
 ExToolTip

The Exontrol's ExToolTip provides featured tooltips for your application. The tooltip is a
common graphical user interface element. It is used in conjunction with a cursor, usually a
mouse pointer. The user hovers the cursor over an item, without clicking it, and a small box
appears with supplementary information regarding the item being hovered over. Adding the
component to your projects is very easy, and requires only a few lines of code.

The features of the component include:

Multi-lines support
Built-in HTML format
Text Decorations support, like gradient, outlined characters, shadow, and so on
Skinning support, including round corners
Customizable Fonts and Colors
Text, Icons, or Custom Size Pictures
PNG, TIFF, EXIF or WMF image format support
Ability to insert hyperlinks with inside tooltip support
Transparency support
Configurable Timing

Ž ExToolTip is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

How to start?

The following steps show you progressively how to start programming the Exontrol's
ExToolTip component:

In VB
Add a reference to the ExToolTip 1.0 Control Library, using the Project\Reference
Add declaration for the component, like Private WithEvents t As
EXTOOLTIPLib.ToolTip, if you plan to use the events of the control, else you can
use Dim t as New EXTOOLTIPLib.ToolTip, to instantiate the control
Instantiate the component when the form is loading, as follows: Set t = New
EXTOOLTIPLib.Top, and so your form may use the newly created tooltip
Specify the tooltip's appearance, icons or pictures using common properties like:
Appearance, Images, HTMLPicture and so on
Call the ShowToolTip method when the mouse is moving.

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 t.ShowToolTip "This is a bit of text that's shown when the cursor hovers the
form"
End Sub

In VB.NET
Add a reference to the ExToolTip 1.0 Control Library, using the Project\Add
Reference\COM
Add declaration for the component, like Private WithEvents t As
EXTOOLTIPLib.ToolTip, if you plan to use the events of the control, else you can
use Dim t as New EXTOOLTIPLib.ToolTip, to instantiate the control
Instantiate the component when the form is loading, as follows: Set t = New
EXTOOLTIPLib.Top, and so your form may use the newly created tooltip
Specify the tooltip's appearance, icons or pictures using common properties like:
Appearance, Images, HTMLPicture and so on
Call the ShowToolTip method when the mouse is moving.

Private Sub Form1_MouseMove(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove
 t.ShowToolTip("This is a bit of text that's shown when the cursor hovers the
form")

End Sub

In C#
Add a reference to the ExToolTip 1.0 Control Library, using the Project\Add
Reference\COM
Instantiate the component when the form is loading, as follows: t = new
EXTOOLTIPLib.ToolTip(), and so your form may use the newly created tooltip
Add the handler for the AnchorClick event, in case you plan to use it as follows:

t.AnchorClick += new
EXTOOLTIPLib._IToolTipEvents_AnchorClickEventHandler(t_AnchorClick);

void t_AnchorClick(string AnchorID, string Options)
{
 System.Diagnostics.Debug.WriteLine("AnchorClick event");
}

Specify the tooltip's appearance, icons or pictures using common properties like:
Appearance, Images, HTMLPicture and so on
Call the ShowToolTip method when the mouse is moving.

private void Form1_MouseMove(object sender, MouseEventArgs e)
{
 t.ShowToolTip("This is a bit of text that's shown when the cursor hovers the
form", "", "", "", "");
}

In C++
Import the Exontrol's ExToolTip type library using the #import
"c:/winnt/system32/extooltip.dll", so the EXTOOLTIPLib namespace is defined
Add a member of EXTOOLTIPLib::IToolTipPtr type to your dialog, as
EXTOOLTIPLib::IToolTipPtr m_spToolTip
Instantiate the m_spToolTip member as follows:

CoInitialize(NULL);
if (SUCCEEDED(CoCreateInstance(__uuidof(EXTOOLTIPLib::ToolTip), NULL,
CLSCTX_ALL, __uuidof(EXTOOLTIPLib::IToolTip), (LPVOID*)&m_spToolTip)))
{
}

Use the Notifier property to assign the handle of the dialog that receives
notifications from the tooltip, if we plan to use the control's events.
Specify the tooltip's appearance, icons or pictures using common properties like:
Appearance, Images, HTMLPicture and so on
Handle the WM_MOUSEMOVE message of the dialog, or add a handler to the
PreTranslateMessage function to call the ShowToolTip method:

BOOL PreTranslateMessage(MSG* pMsg)
{
 /*
 Handles the WM_MOUSEMOVE message during the PreTranslateMessage so
it can show the tooltip even if we move the mouse over the inside controls too.
 As the WM_MOUSEMOVE message is not sent to dialog, if the cursor hovers
the inside windows...
 */
 if (pMsg->message == WM_MOUSEMOVE)
 {
 if (m_spToolTip != NULL)
 m_spToolTip->ShowToolTip(COleVariant("This is a bit of text that's shown
when the cursor hovers the form"), vtMissing, vtMissing, vtMissing);
 }
 return CDialog::PreTranslateMessage(pMsg);
}

In VFP
Create the Exontrol's ExToolTip object as follows:

public t as Object
t = CreateObject("Exontrol.ToolTip")

Specify the tooltip's appearance, icons or pictures using common properties like:
Appearance, Images, HTMLPicture and so on
Call the ShowToolTip method during the Form's MouseMove event as follows:

LPARAMETERS nButton, nShift, nXCoord, nYCoord

with t
 .ShowToolTip("This is a bit of text that's shown when the cursor hovers the
form")

endwith

Web
Add a member to the page, as Dim t
Use the window_onload event to create the Exontrol's ExToolTip object as follows:

Sub window_onload
 set t = CreateObject("Exontrol.ToolTip")
End Sub

Specify the tooltip's appearance, icons or pictures using common properties like:
Appearance, Images, HTMLPicture and so on
Call the ShowToolTip method during the document_onmousemove event as
follows:

Sub document_onmousemove
 t.ShowToolTip "This is a bit of text that's shown when the cursor hovers the
form"
End Sub

Send comments on this topic.
Š 1999-2007 Exontrol Inc, Software. All rights reserved.

https://exontrol.com/sg.jsp?content=techsupport&order=start.html&product=ExToolTip
https://www.exontrol.com

constants AlignmentEnum
The AlignmenEnum type specifies the alignment of the tooltip relative to the showing
position. Use the Alignment parameter of the ShowToolTip method, to specify the alignment
of the tooltip. The AlignmentEnum type supports the following values:

Name Value Description
exTopLeft 0 Aligns the object to the top/left corner.
exTopRight 1 Aligns the object to the top/right corner.
exBottomLeft 2 Aligns the object to the bottom/left corner.
exBottomRight 3 Aligns the object to the bottom/right corner.
exCenter 16 Aligns the object in the center.
exCenterLeft 17 Aligns the object in the center, to the left side.
exCenterRight 18 Aligns the object in the center, to the right side.
exCenterTop 19 Aligns the object in the center, to the top side.
exCenterBottom 19 Aligns the object in the center, to the bottom side.

constants AppearanceEnum
The AppearanceEnum type specifies the predefined types of borders for the tooltip. Use
the Appearance property to change the tooltip's appearance. The AppearanceEnum type
supports the following predefined values:

Name Value Description
exNone 0 No border
exFlat 1 Flat border
exSunken 2 Sunken border
exRaised 3 Raised border
exShadow 16 Shadow border

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Appearance property to change the visual appearance of the borders of the tooltip. Use
the BackColor property to specify the control's background color. Use the ForeColor
property to specify the control's foreground color.

The identifier you choose for the skin is very important to be used in the

background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicates the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background
color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the Appearance = &H2000000
indicates that the second skin object defines the border of the tooltip.

The following VB sample changes the border of the tooltip, using an EBN file:

Private Sub Form_Load()
 Set t = New EXTOOLTIPLib.ToolTip
 With t
 .VisualAppearance.Add &H12, "c:\temp\winword.ebn"
 t.Appearance = &H12000000
 t.BackColor = RGB(255, 255, 255)
 End With
End Sub

The following VB.NET sample changes the border of the tooltip, using an EBN file:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 t = New EXTOOLTIPLib.ToolTip
 t.VisualAppearance.Add(&H12, "c:\temp\winword.ebn")
 t.Appearance = &H12000000
 t.BackColor = ToUInt32(Color.White)
End Sub

where the ToUInt32 function is defined like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the border of the tooltip, using an EBN file:

private void Form1_Load(object sender, EventArgs e)
{
 t = new EXTOOLTIPLib.ToolTip();
 t.VisualAppearance.Add(0x12, "c:\\temp\\winword.ebn");
 t.Appearance = (EXTOOLTIPLib.AppearanceEnum)0x12000000;
 t.BackColor = ToUInt32(Color.White);
}

where the ToUInt32 function is defined like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C++ sample changes the border of the tooltip, using an EBN file:

void initToolTip()
{
 CoInitialize(NULL);
 if (SUCCEEDED(CoCreateInstance(__uuidof(EXTOOLTIPLib::ToolTip), NULL, CLSCTX_ALL,
__uuidof(EXTOOLTIPLib::IToolTip), (LPVOID*)&m_spToolTip)))
 {

 m_spToolTip->VisualAppearance->Add(0x12, COleVariant("c:\\temp\\winword.ebn"
));
 m_spToolTip->Appearance = (EXTOOLTIPLib::AppearanceEnum)0x12000000;
 m_spToolTip->BackColor = RGB(255,255,255);
 }
}

The following VFP sample changes the border of the tooltip, using an EBN file:

public t as Object
t = CreateObject("Exontrol.ToolTip")

with t
 .VisualAppearance.Add(0x12,"c:\temp\winword.ebn")
 .Appearance = 0x12000000
 .BackColor = RGB(255,255,255)
endwith

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

ToolTip object
The Exontrol's ExToolTip provides featured tooltips for your application. The tooltip is a
common graphical user interface element. It is used in conjunction with a cursor, usually a
mouse pointer. The user hovers the cursor over an item, without clicking it, and a small box
appears with supplementary information regarding the item being hovered over. Adding the
component to your projects is very easy, and requires only a few lines of code. The
ExToolTip components supports the following methods and properties:

Name Description
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Retrieves or sets a value that indicates the control's
background color.

ExecuteTemplate Executes a template and returns the result.
Font Retrieves or sets the tooltip's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

FormatAnchor Specifies the visual effect for anchor elements in the
tooltip.

HideToolTip Hides the tooltip.
HTMLPicture Adds or replaces a picture in HTML text.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Image List Control.

ImageSize Retrieves or sets the size of icons the control displays..
Notifier Retrieves or sets the window that receives notifications.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ShowToolTip Shows the tooltip.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipHeight Specifies a value that indicates the height of the ToolTip, in
pixels.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the ToolTip, in
pixels.

Transparency Specifies the tooltip's transparency.
TransparencyInside Specifies the inside tooltip's transparency.
Version Retrieves the control's version.
Visible Specifies whether the tooltip is visible.
VisualAppearance Retrieves the control's appearance.

property ToolTip.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the tooltip's
appearance, or a color expression whose last 7 bits in the
high significant byte of the value indicates the index of the
skin in the Appearance collection, being displayed as
tooltip's borders. For instance, if the Appearance =
0x1000000, indicates that the first skin object in the
Appearance collection defines the control's border. The
Client object in the skin, defines the client area of the
control. The text, icons or pictures of the tooltip are
always shown in the tooltip's client area. The skin
may contain transparent objects, and so you can
define round corners. Use the eXButton's Skin builder
to view or change this file

Use the Appearance property to specify the tooltip's border. Use the BackColor property to
specify the tooltip's background color. Use the ForeColor property to specify the tooltip's
foreground color. Use the VisualAppearance property to access the tooltip's Appearance
collection.

The following VB sample changes the border of the tooltip, using an EBN file:

Private Sub Form_Load()
 Set t = New EXTOOLTIPLib.ToolTip
 With t
 .VisualAppearance.Add &H12, "c:\temp\winword.ebn"
 t.Appearance = &H12000000
 t.BackColor = RGB(255, 255, 255)
 End With
End Sub

The following VB.NET sample changes the border of the tooltip, using an EBN file:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 t = New EXTOOLTIPLib.ToolTip
 t.VisualAppearance.Add(&H12, "c:\temp\winword.ebn")

https://exontrol.com/exbutton.jsp

 t.Appearance = &H12000000
 t.BackColor = ToUInt32(Color.White)
End Sub

where the ToUInt32 function is defined like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the border of the tooltip, using an EBN file:

private void Form1_Load(object sender, EventArgs e)
{
 t = new EXTOOLTIPLib.ToolTip();
 t.VisualAppearance.Add(0x12, "c:\\temp\\winword.ebn");
 t.Appearance = (EXTOOLTIPLib.AppearanceEnum)0x12000000;
 t.BackColor = ToUInt32(Color.White);
}

where the ToUInt32 function is defined like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C++ sample changes the border of the tooltip, using an EBN file:

void initToolTip()
{

 CoInitialize(NULL);
 if (SUCCEEDED(CoCreateInstance(__uuidof(EXTOOLTIPLib::ToolTip), NULL, CLSCTX_ALL,
__uuidof(EXTOOLTIPLib::IToolTip), (LPVOID*)&m_spToolTip)))
 {
 m_spToolTip->VisualAppearance->Add(0x12, COleVariant("c:\\temp\\winword.ebn"
));
 m_spToolTip->Appearance = (EXTOOLTIPLib::AppearanceEnum)0x12000000;
 m_spToolTip->BackColor = RGB(255,255,255);
 }
}

The following VFP sample changes the border of the tooltip, using an EBN file:

public t as Object
t = CreateObject("Exontrol.ToolTip")

with t
 .VisualAppearance.Add(0x12,"c:\temp\winword.ebn")
 .Appearance = 0x12000000
 .BackColor = RGB(255,255,255)
endwith

method ToolTip.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ToolTip1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ToolTip.BackColor as Color
Retrieves or sets a value that indicates the control's background color.

Type Description

Color A Color expression that specifies the tooltip's background
color.

By default, the BackColor property is 0. If the BackColor property is 0, the system defines
the tooltip's background color. Use the BackColor property to specify the tooltip's
background color. Use the Appearance property to specify the tooltip's border. Use the
ForeColor property to specify the tooltip's foreground color. Use the <bgcolor> built-in
HTML element to specify a background color for parts of the text in the tooltip.

The following VB sample changes the border of the tooltip, using an EBN file:

Private Sub Form_Load()
 Set t = New EXTOOLTIPLib.ToolTip
 With t
 .VisualAppearance.Add &H12, "c:\temp\winword.ebn"
 t.Appearance = &H12000000
 t.BackColor = RGB(255, 255, 255)
 End With
End Sub

The following VB.NET sample changes the border of the tooltip, using an EBN file:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 t = New EXTOOLTIPLib.ToolTip
 t.VisualAppearance.Add(&H12, "c:\temp\winword.ebn")
 t.Appearance = &H12000000
 t.BackColor = ToUInt32(Color.White)
End Sub

where the ToUInt32 function is defined like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G

 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the border of the tooltip, using an EBN file:

private void Form1_Load(object sender, EventArgs e)
{
 t = new EXTOOLTIPLib.ToolTip();
 t.VisualAppearance.Add(0x12, "c:\\temp\\winword.ebn");
 t.Appearance = (EXTOOLTIPLib.AppearanceEnum)0x12000000;
 t.BackColor = ToUInt32(Color.White);
}

where the ToUInt32 function is defined like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C++ sample changes the border of the tooltip, using an EBN file:

void initToolTip()
{
 CoInitialize(NULL);
 if (SUCCEEDED(CoCreateInstance(__uuidof(EXTOOLTIPLib::ToolTip), NULL, CLSCTX_ALL,
__uuidof(EXTOOLTIPLib::IToolTip), (LPVOID*)&m_spToolTip)))
 {
 m_spToolTip->VisualAppearance->Add(0x12, COleVariant("c:\\temp\\winword.ebn"
));
 m_spToolTip->Appearance = (EXTOOLTIPLib::AppearanceEnum)0x12000000;
 m_spToolTip->BackColor = RGB(255,255,255);
 }
}

The following VFP sample changes the border of the tooltip, using an EBN file:

public t as Object
t = CreateObject("Exontrol.ToolTip")

with t
 .VisualAppearance.Add(0x12,"c:\temp\winword.ebn")
 .Appearance = 0x12000000
 .BackColor = RGB(255,255,255)
endwith

method ToolTip.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

Debug.Print ToolTip1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for

newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of

the class associated with a specified program identifier.

property ToolTip.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font. Use the built-in HTML element to
specify a different font for parts of the text in the tooltip. Use the , <i>, <s> or <u> built-
in HTML element to change the font's attributes to show portions of text inside the tooltip.
Use the ForeColor property to specify the tooltip's foreground color. Use the <bgcolor>
built-in HTML element to specify a background color for parts of the text in the tooltip.

property ToolTip.ForeColor as Color
Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A Color expression that specifies the tooltip's foreground
color.

By default, the ForeColor property is 0. If the ForeColor property is 0, the system defines
the tooltip's foreground color. Use the ForeColor property to specify the control's
foreground color. Use the Appearance property to specify the tooltip's border. Use the
BackColor property to specify the tooltip's background color. Use the <fgcolor> built-in
HTML element to specify a foreground color for parts of the text in the tooltip.

property ToolTip.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in the tooltip.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTML format to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

method ToolTip.HideToolTip ()
Hides the tooltip.

Type Description

Use the HideToolTip method to programmatically hide the tooltip. Use the ShowToolTip
method to show the tooltip. Use the hWnd property to get the handle of the window that
hosts the tooltip. Use the Visible property to specify whether the tooltip is visible or hidden.

property ToolTip.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML text.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the built-in HTML elements. By default, the HTMLPicture
collection is empty. Use the Images method to assign a list of icons to the tooltip. Use the
RepalceIcon method to add, remove or clear icons in the control's images collection. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

https://exontrol.com/eximages.jsp

property ToolTip.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method ToolTip.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Image List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

Use the Images method to assign a list of icons to the tooltip. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection. Use the
ReplaceIcon method to add, remove or clear icons in the control's images collection. The
HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the built-in HTML elements.

property ToolTip.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property ToolTip.Notifier as Long
Retrieves or sets the window that receives notifications.

Type Description

Long A long expression that specifies the handle of the window
to receive the notifications

Reserved for internal use only.

method ToolTip.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon method to add, remove or clear icons in the control's images
collection. Use the Images method to assign a list of icons to the tooltip. The ImageSize
property defines the size (width/height) of the icons within the control's Images collection.
The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the built-in HTML elements. Also, the ReplaceIcon property
can clear the images collection.

The following VB sample adds a new icon to control's images list:

 i = ExToolTip1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExToolTip1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExToolTip1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExToolTip1.ReplaceIcon 0, -1

method ToolTip.ShowToolTip (ToolTip as Variant, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the tooltip.

Type Description

ToolTip as Variant
A String expression that indicates the description of the
tooltip, that supports built-in HTML format like described
bellow.

Title as Variant If present, A String expression that indicates the title of the
tooltip.

Alignment as Variant
A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing, the tooltip
is aligned to the left/top corder.

X as Variant

A single that specifies the current X location of the mouse
pointer. The x values is always expressed in screen
coordinates. If missing or -1, the current mouse X position
is used. A string expression that indicates the offset to
move the tooltip window relative to the cursor position.

Y as Variant

A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in screen
coordinates. If missing or -1, the current mouse Y position
is used. A string expression that indicates the offset to
move the tooltip window relative to the cursor position.

Use the ShowToolTip method to display programmatically the tooltip. Use the HideToolTip
method to hide the tooltip. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipPopDelay property specifies the period in ms of
time the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
Font property to change the tooltip's font. Use the Appearance property indicates the visual
appearance of the borders of the tooltip. Use the BackColor property indicates the tooltip's
background color. Use the ForeColor property indicates the tooltip's foreground color.

The ToolTip parameter supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text

about:blank

(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR

character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The Alignment parameter can be one of the followings:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

Use numeric values as strings for X and Y parameters, to move the tooltip window
relative to the position of the cursor. For instance, ShowToolTp("text",,,"11","12"), means
that the tooltip window is moved 11 pixels on the X axis, and 12 pixels on the Y axis,
before showing it in the default position. In this case the X and Y parameters MUST be
passed as strings not as LONG values.

The following VB sample displays the tooltip when the cursor hovers the form:

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 t.ShowToolTip "This is a bit of text that's shown when the cursor hovers the form"
End Sub

The following VB.NET sample displays the tooltip when the cursor hovers the form:

Private Sub Form1_MouseMove(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove
 t.ShowToolTip("This is a bit of text that's shown when the cursor hovers the form")
End Sub

The following C# sample displays the tooltip when the cursor hovers the form:

private void Form1_MouseMove(object sender, MouseEventArgs e)
{
 t.ShowToolTip("This is a bit of text that's shown when the cursor hovers the form", "", "",
"", "");
}

The following C++ sample displays the tooltip when the cursor hovers the form:

BOOL PreTranslateMessage(MSG* pMsg)
{
 /*
 Handles the WM_MOUSEMOVE message during the PreTranslateMessage so it can
show the tooltip even if we move the mouse over the inside controls too.
 As the WM_MOUSEMOVE message is not sent to dialog, if the cursor hovers the
inside windows...
 */
 if (pMsg->message == WM_MOUSEMOVE)
 {
 if (m_spToolTip != NULL)
 m_spToolTip->ShowToolTip(COleVariant("This is a bit of text that's shown when
the cursor hovers the form"), vtMissing, vtMissing, vtMissing);
 }
 return CDialog::PreTranslateMessage(pMsg);
}

The following VFP sample displays the tooltip when the cursor hovers the form:

LPARAMETERS nButton, nShift, nXCoord, nYCoord

with t
 .ShowToolTip("This is a bit of text that's shown when the cursor hovers the form")
endwith

property ToolTip.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result of executing a template script.

The Exontrol's eXHelper tool helps you to find easy and quickly the answers and the source
code for your questions regarding the usage of our UI components.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by

https://exontrol.com/exhelper.jsp

commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ToolTip.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ToolTip.TemplatePut (newVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

newVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

Send comments on this topic.
Š 1999-2017 Exontrol.COM, Software. All rights reserved.

https://www.exontrol.com/sg.jsp?content=techsupport&order=ToolTip_TemplatePut.htm&product=ExToolTip
https://www.exontrol.com

property ToolTip.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the tooltip is never shown. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipHeight property to specify the height of the
tooltip window. Use the ShowToolTip method to display the tooltip. Use the HideToolTip
method to hide programmatically the tooltip. Use the Appearance property to specify the
tooltip's appearance.

property ToolTip.ToolTipHeight as Long
Specifies a value that indicates the height of the ToolTip, in pixels.

Type Description

Long A long expression that specifies the height of the tooltip,
when it displays a custom size picture.

By default, the ToolTipHeight property is 96 pixels. Use the ToolTipHeight property to
change the tooltip window height. The height of the tooltip window is automatically
computed based on tooltip's description. If the tooltip property displays a custom size
picture, the ToolTipHeight property specifies the height of the tooltip. The ToolTipWidth
property specifies a value that indicates the width of the ToolTip, in pixels. If the
ToolTipDelay or ToolTipPopDelay property is 0, the tooltip is never shown. The ToolTipDelay
property Specifies the time in ms that passes before the ToolTip appears. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ShowToolTip method to display the
tooltip. Use the HideToolTip method to hide programmatically the tooltip. Use the
Appearance property to specify the tooltip's appearance.

property ToolTip.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the tooltip is never shown. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipHeight property to specify the height of the
tooltip window. Use the ShowToolTip method to display the tooltip. Use the HideToolTip
method to hide programmatically the tooltip. Use the Appearance property to specify the
tooltip's appearance.

property ToolTip.ToolTipWidth as Long
Specifies a value that indicates the width of the ToolTip, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

By default, the ToolTipWidth property is 196 pixels. Use the ToolTipWidth property to
change the tooltip window width. The height of the tooltip window is automatically computed
based on tooltip's description. If the tooltip property displays a custom size picture, the
ToolTipHeight property specifies the height of the tooltip. If the ToolTipDelay or
ToolTipPopDelay property is 0, the tooltip is never shown. The ToolTipDelay property
Specifies the time in ms that passes before the ToolTip appears. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ShowToolTip method to display the tooltip. Use the
HideToolTip method to hide programmatically the tooltip. Use the Appearance property to
specify the tooltip's appearance.

property ToolTip.Transparency as Long
Specifies the tooltip's transparency.

Type Description

Long
A long expression that specifies the transparency of the
tooltip, 0 means fully opaque, 50 means semi-transparent
while 100 means completely transparent.

By default, the Transparency property is 0. The Transparency property has no effect if it is
0. Use the Transparency property to display semi-transparent tooltips. The
TransparencyInside property specifies the transparency for inside tool tip if it is displayed.
The Transparency property gets or sets a value indicating the percentage of transparency
of the tooltip. The transparency is a value from 0 to 100; 0 indicating fully opaque and 100
indicating a completely transparent tooltip.

The following screen shot shows a semi-transparent tooltip (Transparency = 50):

The following screen shot shows an opaque tooltip (Transparency = 0, by default):

property ToolTip.TransparencyInside as Long
Specifies the inside tooltip's transparency.

Type Description

Long
A long expression that specifies the transparency of the
inside tooltip, 0 means fully opaque, 50 means semi-
transparent while 100 means completely transparent.

By default, the TransparencyInside property is 0. The TransparencyInside property has no
effect if it is 0. Use the TransparencyInside property to display semi-transparent inside
tooltips. Use the anchor elements to display inside tooltip. The TransparencyInside property
gets or sets a value indicating the percentage of transparency of the inside tooltip. The
transparency is a value from 0 to 100; 0 indicating fully opaque and 100 indicating a
completely transparent tooltip.

property ToolTip.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property ToolTip.Visible as Boolean
Specifies whether the tooltip is visible.

Type Description

Boolean A Boolean expression that indicates whether the tooltip is
visible or hiden

The Visible property determines if the tooltip is visible or hiden. Use the ShowToolTip
method to show programmatically the tooltip. Use the HideToolTip method to hide
programmatically the tooltip. Use the hWnd property to access the handle of the window
that hosts the tooltip. If the ToolTipDelay or ToolTipPopDelay property is 0, the tooltip is
never shown.

property ToolTip.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance collection that holds a collection of skins

Use the VisuapAppearance property to access the tooltip's Appearance collection. Use the
Appearance property to specify the tooltip's border. Use the BackColor property to specify
the tooltip's background color. Use the ForeColor property to specify the tooltip's
foreground color.

The following VB sample changes the border of the tooltip, using an EBN file:

Private Sub Form_Load()
 Set t = New EXTOOLTIPLib.ToolTip
 With t
 .VisualAppearance.Add &H12, "c:\temp\winword.ebn"
 t.Appearance = &H12000000
 t.BackColor = RGB(255, 255, 255)
 End With
End Sub

The following VB.NET sample changes the border of the tooltip, using an EBN file:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 t = New EXTOOLTIPLib.ToolTip
 t.VisualAppearance.Add(&H12, "c:\temp\winword.ebn")
 t.Appearance = &H12000000
 t.BackColor = ToUInt32(Color.White)
End Sub

where the ToUInt32 function is defined like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B

 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the border of the tooltip, using an EBN file:

private void Form1_Load(object sender, EventArgs e)
{
 t = new EXTOOLTIPLib.ToolTip();
 t.VisualAppearance.Add(0x12, "c:\\temp\\winword.ebn");
 t.Appearance = (EXTOOLTIPLib.AppearanceEnum)0x12000000;
 t.BackColor = ToUInt32(Color.White);
}

where the ToUInt32 function is defined like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C++ sample changes the border of the tooltip, using an EBN file:

void initToolTip()
{
 CoInitialize(NULL);
 if (SUCCEEDED(CoCreateInstance(__uuidof(EXTOOLTIPLib::ToolTip), NULL, CLSCTX_ALL,
__uuidof(EXTOOLTIPLib::IToolTip), (LPVOID*)&m_spToolTip)))
 {
 m_spToolTip->VisualAppearance->Add(0x12, COleVariant("c:\\temp\\winword.ebn"
));
 m_spToolTip->Appearance = (EXTOOLTIPLib::AppearanceEnum)0x12000000;
 m_spToolTip->BackColor = RGB(255,255,255);
 }
}

The following VFP sample changes the border of the tooltip, using an EBN file:

public t as Object
t = CreateObject("Exontrol.ToolTip")

with t
 .VisualAppearance.Add(0x12,"c:\temp\winword.ebn")
 .Appearance = 0x12000000
 .BackColor = RGB(255,255,255)
endwith

ExToolTip events
Adding the component to your projects is very easy, and requires only a few lines of code.
The ToolTip object supports the following event(s):

Name Description
AnchorClick Occurs when an anchor element is clicked.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXTOOLTIPLib._IToolTipEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String

A string expression that specifies options of the anchor
element. For the eXToolTip control, the Options
parameter specifies the inside tooltip being shown when
the cursor hovers the anchor element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata".

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXTOOLTIPLib._IToolTipEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXTOOLTIPLib._IToolTipEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oToolTip,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

The following VB sample opens your default browser (IE, Chrome, Firefox, ...) when user
clicks an hyperlink (using the /COM assembly version):

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If Not (t.Visible) Then
 t.ShowToolTip "<a www.exontrol.com>exontrol click and so on", Nothing,
EXTOOLTIPLib.exTopLeft, "+16", Nothing
 End If
End Sub

Private Sub t_AnchorClick(ByVal AnchorID As String, ByVal Options As String)

 Shell ("C:\Program Files\Internet Explorer\IEXPLORE.EXE " & "http://" & AnchorID)
End Sub

The following VB/NET sample opens your default browser (IE, Chrome, Firefox, ...) when
user clicks an hyperlink (using the /NET assembly version):

Private Sub Form1_MouseMove(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseMove
 If Not (Extooltip1.Visible) Then
 Extooltip1.ShowToolTip("<a www.exontrol.com>exontrol click and so on",
Nothing, exontrol.EXTOOLTIPLib.AlignmentEnum.exTopLeft, "+16", Nothing)
 End If
End Sub

Private Sub Extooltip1_AnchorClick_1(ByVal sender As System.Object, ByVal AnchorID As
System.String, ByVal Options As System.String) Handles Extooltip1.AnchorClick
 System.Diagnostics.Process.Start("http://" + AnchorID.ToString())
End Sub

The AnchorID parameter carries the first argument of the <a param1;param2> HTML tag in
the tooltip. In the previously sample, the first parameter of the <a> is www.exontrol.com
which is passed to AnchorClick event when user presses the exontrol link in the tooltip.

	Information
	How to get support?
	How to start?
	Appearance
	Add method
	Clear method
	Remove method

	ToolTip
	Appearance property
	AttachTemplate method
	BackColor property
	ExecuteTemplate method
	Font property
	ForeColor property
	FormatAnchor property
	HideToolTip method
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Notifier property
	ReplaceIcon method
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipHeight property
	ToolTipPopDelay property
	ToolTipWidth property
	Transparency property
	TransparencyInside property
	Version property
	Visible property (readonly)
	VisualAppearance property (readonly)

	ExToolTip events
	AnchorClick event

