
 ExToolBar.CRD

The eXToolBar.CRD component is a graphical control element on which on-screen buttons,
icons, menus, or other input or output elements are placed. The eXTolBar.CRD component
lets the user changes its visual appearance using skins, each one providing an additional
visual experience that enhances viewing pleasure. The eXToolBar.CRD component it's free
to use so no nag screens, no limitation, no evaluation message. Enjoy it.

Features include:

Ability to layout the elements using the CRD format
EBN support
Built-in HTML support
Multiple-lines HTML ToolTip support
Icons/Pictures support
Anchor / Link support
and much more

Ž ExToolBar.CRD is a trademark of Exontrol. All Rights Reserved.

https://www.exontrol.com/excrd.jsp
https://exontrol.com/ebn.jsp

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AppearanceEnum
The AppearanceEnum type specifies the way the toolbar's border is shown. The
Appearance property retrieves or sets the control's appearance. The AppearanceEnum
type supports the following values:

Name Value Description
TopBottom 0 A top and bottom border is shown.
Flat 1 A flat border is shown around the toolbar.
Sunken 2 A sunken border is shown around the toolbar.
Raised 3 A raised border is shown around the toolbar.
Etched 4 A etched border is shown around the toolbar.
Bump 5 A bump border is shown around the toolbar.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part. The BackgroundPartEnum supports the
following values:

Name Value Description

exToolTipAppearance 64 exToolTipAppearance. Specifies the visual
appearance of the borders of the tooltips.

exToolTipBackColor 65 exToolTipBackColor. Specifies the tooltip's
background color.

exToolTipForeColor 66 exToolTipForeColor. Specifies the tooltip's
foreground color.

exToolBarButtonUpBackColor 151 exToolBarButtonUpBackColor. Specifies the visual
appearance of the item when it is up.

exToolBarButtonUpForeColor 152 exToolBarButtonUpForeColor. Specifies the
foreground color of the item when it is up.

exToolBarButtonDownBackColor153 exToolBarButtonDownBackColor. Specifies the
visual appearance of the item when it is down.

exToolBarButtonDownForeColor154 exToolBarButtonUpForeColor. Specifies the
foreground color of the item when it is down.

exToolBarButtonHotBackColor155 exToolBarButtonHotBackColor. Specifies the visual
appearance of the item when the cursor hovers it.

exToolBarButtonHotForeColor 156
exToolBarButtonHotForeColor. Specifies the
foreground color of the item when the cursor hovers
it.

constants PictureDisplayEnum
The PictureDisplayEnum type defines the way the control's Picture is arranged on the
control. The Picture property assign a picture to be displayed on the control's background.
The PictureDisplay property indicates how the picture is layout on the control's background.
The PictureDisplayEnum type supports the following values:

Name Value Description

UpperLeft 0 The picture is vertically aligned at the top, and
horizontally aligned on the left.

UpperCenter 1 The picture is vertically aligned at the top, and
horizontally aligned at the center.

UpperRight 2 The picture is vertically aligned at the top, and
horizontally aligned on the right.

MiddleLeft 16 The picture is vertically aligned in the middle, and
horizontally aligned on the left.

MiddleCenter 17 The picture is vertically aligned in the middle, and
horizontally aligned at the center.

MiddleRight 18 The picture is vertically aligned in the middle, and
horizontally aligned on the right.

LowerLeft 32 The picture is vertically aligned at the bottom, and
horizontally aligned on the left.

LowerCenter 33 The picture is vertically aligned at the bottom, and
horizontally aligned at the center.

LowerRight 34 The picture is vertically aligned at the bottom, and
horizontally aligned on the right.

Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants StateEnum
For internal use only.

Name Value Description
exNormal 0 exNormal
exPushed 1 exPushed
exDisabled 2 exDisabled
exHover 3 exHover

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control.

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00
"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the

BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Item object
The Item object holds information about an item to be shown on the toolbar. The Item
property gives access to an item based on its identifier. The Format property specifies the
CRD format to arrange the objects inside the control. The Item object supports the
following properties and methods:

Name Description
Caption Specifies the item's HTML caption.
Enabled Indicates if the item is enabled or disabled.
ID Specifies the item's identifier.
ToolTip Specifies the item's HTML tooltip.
UserData Specifies the item's user data.

property Item.Caption as String
Specifies the item's HTML caption.

Type Description

String A String expression that defines the built-in HTML caption
to be shown on the item's toolbar.

By default, the Caption property is empty. The Caption property specifies the item's HTML
caption. If the Caption property includes the ItemsDelimiter value, it indicates that the
toolbar's item displays a drop down list, when user clicks the item. Each part of the Caption
between two delimiters indicates an item in the drop down. The ItemValueDelimiter property
specifies the delimiter sequence for drop down value. For instance, "Item A;Item
A#1;Item B#2;Item C#3" indicates that the toolbar's item displays the "Item A",
and it's drop down list contains "Item A" with the value 1, "Item B" with the value 2 and
"Item C" with the value 3.

The ToolTip property specifies the item's tooltip which is shown when the cursor hovers it.
The UserData property associates any extra data to an item. The Enabled property enables
or disables the specified item.

The Caption property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font

about:blank

;12>bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font

to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Item.Enabled as Boolean
Indicates if the item is enabled or disabled.

Type Description

Boolean A Boolean expression that specifies whether the item is
enabled or disabled.

By default, the Enabled property is True. The Enabled property enables or disables the
specified item. The Caption property specifies the item's HTML caption. The ToolTip
property specifies the item's tooltip which is shown when the cursor hovers it. The UserData
property associates any extra data to an item.

property Item.ID as Long
Specifies the item's identifier.

Type Description

Long
A Long expression that defines the item's identifier. The
Format property specifies the CRD format to arrange the
objects inside the control.

The ID property specifies the item's identifier (specified by the Format property). The
UserData property associates any extra data to an item. The Caption property specifies the
item's HTML caption. The ToolTip property specifies the item's tooltip which is shown when
the cursor hovers it. The Enabled property enables or disables the specified item.

property Item.ToolTip as String
Specifies the item's HTML tooltip.

Type Description

String A String expression that specifies the HTML text to be
shown when the cursor hovers the item

By default, the ToolTip property is empty. The ToolTip property specifies the item's tooltip
which is shown when the cursor hovers it. The Caption property specifies the item's HTML
caption. The UserData property associates any extra data to an item. The Enabled
property enables or disables the specified item.

The Caption property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The

about:blank

rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb

represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Item.UserData as Variant
Specifies the item's user data.

Type Description

Variant Any VARIANT expression that's associated with the
current item

By default, the UserData property is empty. The UserData property associates any extra
data to an item. The Caption property specifies the item's HTML caption. The ToolTip
property specifies the item's tooltip which is shown when the cursor hovers it. The Enabled
property enables or disables the specified item.

ToolBarCRD object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {DD586AE6-F2A0-4308-8F34-8016B16F000E}. The object's program identifier is:
"Exontrol.ToolBar.CRD". The /COM object module is: "ExToolBar.CRD.dll"

The eXToolBar.CRD component is a graphical control element on which on-screen buttons,
icons, menus, or other input or output elements are placed. The eXTolBar.CRD component
lets the user changes its visual appearance using skins, each one providing an additional
visual experience that enhances viewing pleasure. The eXToolBar.CRD component it's free
to use so no nag screens, no limitation, no evaluation message. Enjoy it.

Use the Format property to add/remove items in the toolbar control. Use the Item property
to access the Item object. The ToolBarCRD object supports the following properties and
methods.

Name Description
AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

Debug Specifies whether the control displays debug information.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

Format Specifies the CRD format to arrange the objects inside the
control.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays.
Item Retrieves an item from the toolbar.
ItemFromPoint Retrieves the index of the item from the point.
ItemsDelimiter Specifies the delimiter sequence for drop down items.
ItemValueDelimiter Specifies the delimiter sequence for drop down value.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreses the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains

visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

property ToolBarCRD.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to element's caption. The control
fires the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

property ToolBarCRD.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The frame.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

By default, the Appearance property is, TopBottom. Use the Appearance property to
specify the control's border.

https://exontrol.com/exbutton.jsp

method ToolBarCRD.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ToolBarCRD1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ToolBarCRD.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that specifies the control's background
color.

Use the BackColor property to specify a solid color on the control's background. The
ForeColor property specifies the control's foreground color. The Picture property to assign
your logo on the control's background. The control uses the PictureDisplay property to
determine how the picture is displayed on the control's background. Use the
Background(exToolBarButtonHotBackColor) property to specify the visual appearance of
the item when the cursor hovers it.

property ToolBarCRD.Background(Part as BackgroundPartEnum) as
Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control.

How can I change the background of the hovering item?

VBA (MS Access, Excell...)

With ToolBarCRD1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(155) = &H1000000
 .Format = "1,2,3,4"
End With

VB6

With ToolBarCRD1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(exToolBarButtonHotBackColor) = &H1000000
 .Format = "1,2,3,4"
End With

VB.NET

With Extoolbarcrd1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

.set_Background32(exontrol.EXTOOLBARCRDLib.BackgroundPartEnum.exToolBarButtonHotBackColor,&H1000000)

 .Format = "1,2,3,4"
End With

VB.NET for /COM

With AxToolBarCRD1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

.set_Background(EXTOOLBARCRDLib.BackgroundPartEnum.exToolBarButtonHotBackColor,

 .Format = "1,2,3,4"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXTOOLBARCRDLib' for the library: 'ExToolBar.CRD 1.0
Control Library'

 #import <ExToolBar.CRD.dll>
 using namespace EXTOOLBARCRDLib;
*/
EXTOOLBARCRDLib::IToolBarCRDPtr spToolBarCRD1 =
GetDlgItem(IDC_TOOLBARCRD1)->GetControlUnknown();
spToolBarCRD1->GetVisualAppearance()-
>Add(1,"c:\\exontrol\\images\\normal.ebn");
spToolBarCRD1-
>PutBackground(EXTOOLBARCRDLib::exToolBarButtonHotBackColor,0x1000000);
spToolBarCRD1->PutFormat(L"1,2,3,4");

C++ Builder

ToolBarCRD1->VisualAppearance-
>Add(1,TVariant("c:\\exontrol\\images\\normal.ebn"));
ToolBarCRD1-
>Background[Extoolbarcrdlib_tlb::BackgroundPartEnum::exToolBarButtonHotBackColor]
 = 0x1000000;
ToolBarCRD1->Format = L"1,2,3,4";

C#

extoolbarcrd1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
extoolbarcrd1.set_Background32(exontrol.EXTOOLBARCRDLib.BackgroundPartEnum.exToolBarButtonHotBackColor,0x1000000);

extoolbarcrd1.Format = "1,2,3,4";

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:DD586AE6-F2A0-4308-8F34-8016B16F000E"
id="ToolBarCRD1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ToolBarCRD1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
 ToolBarCRD1.Background(155) = 16777216;
 ToolBarCRD1.Format = "1,2,3,4";
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:DD586AE6-F2A0-4308-8F34-8016B16F000E"
id="ToolBarCRD1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ToolBarCRD1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(155) = &H1000000
 .Format = "1,2,3,4"
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axToolBarCRD1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
axToolBarCRD1.set_Background(EXTOOLBARCRDLib.BackgroundPartEnum.exToolBarButtonHotBackColor,0x1000000);

axToolBarCRD1.Format = "1,2,3,4";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 extoolbarcrd1.VisualAppearance().Add(1,"c:\\exontrol\\images\\normal.ebn");
 extoolbarcrd1.Background(155/*exToolBarButtonHotBackColor*/,0x1000000);
 extoolbarcrd1.Format("1,2,3,4");
}

Delphi 8 (.NET only)

with AxToolBarCRD1 do
begin

 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');

set_Background(EXTOOLBARCRDLib.BackgroundPartEnum.exToolBarButtonHotBackColor,$

 Format := '1,2,3,4';
end

Delphi (standard)

with ToolBarCRD1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');
 Background[EXTOOLBARCRDLib_TLB.exToolBarButtonHotBackColor] := $1000000;
 Format := '1,2,3,4';
end

VFP

with thisform.ToolBarCRD1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .Object.Background(155) = 0x1000000
 .Format = "1,2,3,4"
endwith

dBASE Plus

local oToolBarCRD

oToolBarCRD = form.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject
oToolBarCRD.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oToolBarCRD.Template = [Background(155) = 16777216] //
oToolBarCRD.Background(155) = 0x1000000
oToolBarCRD.Format = "1,2,3,4"

XBasic (Alpha Five)

Dim oToolBarCRD as P

oToolBarCRD = topparent:CONTROL_ACTIVEX1.activex
oToolBarCRD.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oToolBarCRD.Template = "Background(155) = 16777216" //
oToolBarCRD.Background(155) = 16777216
oToolBarCRD.Format = "1,2,3,4"

Visual Objects

oDCOCX_Exontrol1:VisualAppearance:Add(1,"c:\exontrol\images\normal.ebn")
oDCOCX_Exontrol1:[Background,exToolBarButtonHotBackColor] := 0x1000000
oDCOCX_Exontrol1:Format := "1,2,3,4"

PowerBuilder

OleObject oToolBarCRD

oToolBarCRD = ole_1.Object
oToolBarCRD.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oToolBarCRD.Background(155,16777216 /*0x1000000*/)
oToolBarCRD.Format = "1,2,3,4"

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voAppearance
 Get ComVisualAppearance to voAppearance
 Handle hoAppearance
 Get Create (RefClass(cComAppearance)) to hoAppearance
 Set pvComObject of hoAppearance to voAppearance
 Get ComAdd of hoAppearance 1 "c:\exontrol\images\normal.ebn" to Nothing
 Send Destroy to hoAppearance
 Set ComBackground OLEexToolBarButtonHotBackColor to |CI$1000000
 Set ComFormat to "1,2,3,4"

End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oToolBarCRD

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oToolBarCRD := XbpActiveXControl():new(oForm:drawingArea)
 oToolBarCRD:CLSID := "Exontrol.ToolBar.CRD.1" /*{DD586AE6-F2A0-4308-8F34-
8016B16F000E}*/
 oToolBarCRD:create(,, {10,60},{610,370})

 oToolBarCRD:VisualAppearance():Add(1,"c:\exontrol\images\normal.ebn")

oToolBarCRD:SetProperty("Background",155/*exToolBarButtonHotBackColor*/,0x1000000)

 oToolBarCRD:Format := "1,2,3,4"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method ToolBarCRD.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called. Use
the Refresh method to refresh the control

property ToolBarCRD.Debug as Boolean
Specifies whether the control displays debug information.

Type Description

Boolean A Boolean expression that specifies whether the control
displays debug information.

By default, the Debug property is False. The Debug property can be used to display the
item's identifiers at runtime.

property ToolBarCRD.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A Boolean expression that specifies whether the toolbar
control is enabled or disabled.

By default, the Enabled property is True. The Enabled property enables or disables the
control. The Enabled property enables or disables the specified item. The Caption property
specifies the item's HTML caption. The ToolTip property specifies the item's tooltip which is
shown when the cursor hovers it. The UserData property associates any extra data to an
item.

method ToolBarCRD.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use the Refresh method to refresh the control

property ToolBarCRD.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events

method ToolBarCRD.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

For instance, the following sample retrieves the the handle of the first visible item:

Debug.Print ToolBarCRD1.ExecuteTemplate("Items.FirstVisibleItem()")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ToolBarCRD.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font . Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while adding
new columns or items.

property ToolBarCRD.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that specifies the control's foreground
color.

The ForeColor property specifies the control's foreground color. Use the BackColor
property to specify a solid color on the control's background. The Picture property to assign
your logo on the control's background. The control uses the PictureDisplay property to
determine how the picture is displayed on the control's background. Use the
Background(exToolBarButtonHotForeColor) property to specify the visual appearance of the
item when the cursor hovers it.

property ToolBarCRD.Format as String
Specifies the CRD format to arrange the objects inside the control.

Type Description

String

A String expression that specifies CRD format to arrange
the items on the toolbar. The Exontrol's Custom Row
Designer (exCRD) is a WYSWYG tool to build new
layouts for cells/nodes, items/rows or columns/fields. The
exCRD tool generates CRD strings from the layout you
built. The syntax of CRD strings is designed to be easy to
build, change and read. Using CRD strings is powerful
than preformatted card view, group view formats, nested
bands, and so on, since you are free to define the full
layout of the cell/node, item/row or a column/field.

The Format property adds/removes items in the toolbar control. The Item property retrieves
an item from the toolbar. The Caption property specifies the item's HTML caption. The
ToolTip property specifies the item's tooltip which is shown when the cursor hovers it. The
UserData property associates any extra data to an item. The Enabled property enables or
disables the specified item. The Select event notifies your application once the user clicks /
selects the item.

For instance, here are few simple CRD strings:

The CRD string `1,2` divides the cell in two parts, the left side displays the first column,
and the right part displays the second column. Similar with horizontally splitting a cell in
two pieces.

The CRD string `1/2` splits vertically the cell in two parts, where the upper part
displays the first column, and the down part displays the second column. Similar with
vertically splitting a cell in two pieces.

https://www.exontrol.com/excrd.jsp

The CRD string `1/2,3` splits a cell in two, the upper part displays the first column, the
bottom part is divided in other two parts, where the left part displays the second
column, and the right part displays the third column.

The CRD string `18;"Ca<u>pti</u>on"[a=17]/1,(2/3)` splits vertically the cell in two
parts, the upper part displays the "Caption" string aligned on the center, with the height
of 18 pixels, the bottom part is divided in other two parts, the left part displays the first
column, and the second part is vertically divided in other two parts, where the upper
part displays the second column and the bottom part displays the third column.

The CRD syntax in BNF notation is defined like follows:

<CRD> ::= [<Options>] <GroupCRD>
<GroupCRD> ::= <UpPart> ["|" <DownPart>]
<UpPart> ::= <Lines>
<DownPart> ::= <Lines>
<Lines> ::= <Line> | "(" <Lines> ")" | <Lines> "/" <Lines>
<Line> ::= [<Height>;] <LeftPart> ["|" <RightPart>]
<LeftPart> ::= <Fields>
<RightPart> ::= <Fields>
<Fields> ::= <Field> | "(" <Fields> ")" | <Fields> "," <Fields>
<Field> ::= <Identifier> [<Options>] [":" <Width>]

<Identifier> ::= <Index> | <Caption>
<Options> ::= <Options> ["[" <Option> "]"]
<Option> ::= <Property> ["=" <Value>]
<Property> ::= <letter> | <Property> [<letter> | <digit>]
<Value> ::= <Number> | <String>
<Index> ::= <Number>
<Caption> ::= <String>
<Width> ::= <Number>
<Height> ::= <Number>
<Number> ::= <digit><Number>
<String> ::= """<any_character>"""
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The CRD strings may include the following elements:

Index, represents numbers, a set of digits. For instance, 1 2 3, ... and so on
Caption, represents strings, and are delimitated by " characters. For instance, "" (
empty string) "Caption" "test", and so on
, (field separator), delimits the elements in the same line. For instance: 1,"Caption",
(3/4/5)
/, (line separator), delimits the elements in different lines. For instance:
1/"Caption"/(2,3,4)
|, (divider character), splits the left and right parts of a line, or top or bottom parts
of a group
(), (groups), defines a group
[], (options), specifies options for elements in the layout
;, (line's height separator), specifies the height of the line or the group
:, (field's width separator), specifies the width of the field or the group

The Index and Caption element may have one or more of the following options:

Border option, [b=<Number>], specifies which borders are shown or hidden. The
<Number> may be a sum of one or more values like follows:

1, top border, draws the top border
2, right border, draws the right border
4, bottom border, draws the bottom border
8, left border, draws the left border

For instance, the [b=5] means that the element draws the top and the bottom borders.
For instance, if the [b=0] is at the beginning of the CRD string, it specifies that by

default, no borders are shown.

Background option, [bg=RGB(,<Number>,<Number>,<Number>)] | [bg=<Number>],
specifies the background color of the element.
Foreground option, [fg=RGB(,<Number>,<Number>,<Number>)] | [fg=<Number>],
specifies the foreground color of the element. This option has effect only for Caption
elements.

The Caption element may have one or more of the following options:

Alignment option, [a=<Number>], specifies the alignment of the caption in the element.
By default, if the option is missing, the caption is aligned to the left. The <Number>
may be one of the values like follows:

0, TopLeft, Aligns the caption to the top left corner.
1, TopCenter, Centers the caption on the top edge.
2, TopRight, Aligns the caption to the upper right corner.
16, MiddleLeft, Aligns horizontally the caption on the left side, and centers the
caption vertically
17, MiddleCenter, Puts the caption on the center of the element. (Default)
18, MiddleRight, Aligns horizontally the caption on the right side, and centers
the caption vertically
32, BottomLeft, Aligns the caption to the lower left corner
33, BottomCenter, Centers the caption on the lower edge
34, BottomLeft, The caption is resized to fit the source

WordWrap option, [ww], specifies whether the caption is wrapping in the element's
client area. If the option is present, the text is arranged on multiple lines, else the text
is displayed on a single line.

The options for the CRD string may be (these options must be always at the beginning of
the CRD string):

Debug option, [debug], displays debug information when running in the component.
Has no effect in the exCRD tool
Border option, [b=<Number>], specifies which borders are shown or hidden, for all
elements in the CRD string. The <Number> may be a sum of one or more values like
follows:

1, top border, all elements in the CRD layout draw the top border
2, right border, all elements in the CRD layout draw the right border
4, bottom border, all elements in the CRD layout draw the bottom border
8, left border, all elements in the CRD layout draw the left border

DrawGridLines options, [dgl=0|1|-1], specifies whether the CRD layout draws the grid
lines. This option is depending on the component's context.

property ToolBarCRD.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue.

The visual effect is applied to the anchor elements, if the FormatAnchor property is not
empty. For instance, if you want to do not show with a new effect the clicked anchor
elements, you can use the FormatAnchor(False) = "", that means that the clicked or not-
clicked anchors are shown with the same effect that's specified by FormatAnchor(True). An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick event to notify that the user clicks an anchor element. This
event is fired only if prior clicking the control it shows the hand cursor. The AnchorClick
event carries the identifier of the anchor, as well as application options that you can specify
in the anchor element. The hand cursor is shown when the user hovers the mouse on the
anchor elements

property ToolBarCRD.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

By default, the HTMLPicture collection is empty. The HTMLPicture property handles a
collection of custom size picture being displayed in the HTML captions, using the
tags. Use the HTMLPicture property to add new pictures to be used in HTML captions. For
instance, the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). The Images method specifies the list of 16x16
icons to be displayed on the control's surface. The Caption property specifies the caption of
the item (including icons, picture and so on).

https://exontrol.com/eximages.jsp

property ToolBarCRD.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument

method ToolBarCRD.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The Images method assigns a list of icons to be displayed on the control's surface. The
icons can be displayed on the control's using the number HTML tags. The
HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the key tags. The ReplaceIcon method replaces icons in
the control's . The Caption property specifies the caption of the item (including icons,
picture and so on).

property ToolBarCRD.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property ToolBarCRD.Item (Index as Variant) as Item
Retrieves an item from the toolbar.

Type Description

Index as Variant A Long expression that specifies the identifier of the Item
to be requested.

Item An Item object being requested.

The Item property retrieves an item from the toolbar. The Format property adds/removes
items in the toolbar control. The Caption property specifies the item's HTML caption. The
ToolTip property specifies the item's tooltip which is shown when the cursor hovers it. The
UserData property associates any extra data to an item. The Enabled property enables or
disables the specified item. The Select event notifies your application once the user clicks /
selects the item.

How can I display a drop-down panel?

VBA (MS Access, Excell...)

' Select event - Notifies once the user clicks the item.
Private Sub ToolBarCRD1_Select(ByVal ID As Variant,ByVal SelectedID As Variant)
 With ToolBarCRD1
 Debug.Print("Select")
 Debug.Print(SelectedID)
 End With
End Sub

With ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

VB6

' Select event - Notifies once the user clicks the item.
Private Sub ToolBarCRD1_Select(ByVal ID As Variant,ByVal SelectedID As Variant)
 With ToolBarCRD1

 Debug.Print("Select")
 Debug.Print(SelectedID)
 End With
End Sub

With ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

VB.NET

' Select event - Notifies once the user clicks the item.
Private Sub Extoolbarcrd1_Select(ByVal sender As System.Object,ByVal ID As
Object,ByVal SelectedID As Object) Handles Extoolbarcrd1.Select
 With Extoolbarcrd1
 Debug.Print("Select")
 Debug.Print(SelectedID)
 End With
End Sub

With Extoolbarcrd1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

VB.NET for /COM

' Select event - Notifies once the user clicks the item.
Private Sub AxToolBarCRD1_Select(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent) Handles
AxToolBarCRD1.Select
 With AxToolBarCRD1
 Debug.Print("Select")

 Debug.Print(e.selectedID)
 End With
End Sub

With AxToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .get_Item(1).Caption = "Exit"
 .get_Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

C++

// Select event - Notifies once the user clicks the item.
void OnSelectToolBarCRD1(VARIANT ID,VARIANT SelectedID)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXTOOLBARCRDLib' for the library: 'ExToolBar.CRD
1.0 Control Library'
 #import <ExToolBar.CRD.dll>
 using namespace EXTOOLBARCRDLib;
 */
 EXTOOLBARCRDLib::IToolBarCRDPtr spToolBarCRD1 =
GetDlgItem(IDC_TOOLBARCRD1)->GetControlUnknown();
 OutputDebugStringW(L"Select");
 OutputDebugStringW(L"SelectedID");
}

EXTOOLBARCRDLib::IToolBarCRDPtr spToolBarCRD1 =
GetDlgItem(IDC_TOOLBARCRD1)->GetControlUnknown();
spToolBarCRD1->PutItemsDelimiter(L";");
spToolBarCRD1->PutFormat(L"1,-1,2");
spToolBarCRD1->GetItem(long(1))->PutCaption(L"Exit");
spToolBarCRD1->GetItem(long(2))->PutCaption(L"Item A;Item A#1;Item
B#2;Item C#3");

C++ Builder

// Select event - Notifies once the user clicks the item.
void __fastcall TForm1::ToolBarCRD1Select(TObject *Sender,Variant ID,Variant
SelectedID)
{
 OutputDebugString(L"Select");
 OutputDebugString(L"SelectedID");
}

ToolBarCRD1->ItemsDelimiter = L";";
ToolBarCRD1->Format = L"1,-1,2";
ToolBarCRD1->Item[TVariant(1)]->Caption = L"Exit";
ToolBarCRD1->Item[TVariant(2)]->Caption = L"Item A;Item A#1;Item
B#2;Item C#3";

C#

// Select event - Notifies once the user clicks the item.
private void extoolbarcrd1_Select(object sender,object ID,object SelectedID)
{
 System.Diagnostics.Debug.Print("Select");
 System.Diagnostics.Debug.Print(SelectedID.ToString());
}
//this.extoolbarcrd1.Select += new
exontrol.EXTOOLBARCRDLib.exg2antt.SelectEventHandler(this.extoolbarcrd1_Select);

extoolbarcrd1.ItemsDelimiter = ";";
extoolbarcrd1.Format = "1,-1,2";
extoolbarcrd1[1].Caption = "Exit";
extoolbarcrd1[2].Caption = "Item A;Item A#1;Item B#2;Item C#3";

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="ToolBarCRD1" EVENT="Select(ID,SelectedID)" LANGUAGE="JScript">

 alert("Select");
 alert(SelectedID);
</SCRIPT>

<OBJECT CLASSID="clsid:DD586AE6-F2A0-4308-8F34-8016B16F000E"
id="ToolBarCRD1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ToolBarCRD1.ItemsDelimiter = ";";
 ToolBarCRD1.Format = "1,-1,2";
 ToolBarCRD1.Item(1).Caption = "Exit";
 ToolBarCRD1.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3";
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function ToolBarCRD1_Select(ID,SelectedID)
 With ToolBarCRD1
 alert("Select")
 alert(SelectedID)
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:DD586AE6-F2A0-4308-8F34-8016B16F000E"
id="ToolBarCRD1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()

 With ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// Select event - Notifies once the user clicks the item.
private void axToolBarCRD1_Select(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent e)
{
 System.Diagnostics.Debug.Print("Select");
 System.Diagnostics.Debug.Print(e.selectedID.ToString());
}
//this.axToolBarCRD1.Select += new
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEventHandler(this.axToolBarCRD1_Select);

axToolBarCRD1.ItemsDelimiter = ";";
axToolBarCRD1.Format = "1,-1,2";
axToolBarCRD1[1].Caption = "Exit";
axToolBarCRD1[2].Caption = "Item A;Item A#1;Item B#2;Item C#3";

X++ (Dynamics Ax 2009)

// Select event - Notifies once the user clicks the item.
void onEvent_Select(COMVariant _ID,COMVariant _SelectedID)
{
 ;
 print("Select");
 print(_SelectedID);

}

public void init()
{
 COM com_Item;
 anytype var_Item;
 ;

 super();

 extoolbarcrd1.ItemsDelimiter(";");
 extoolbarcrd1.Format("1,-1,2");
 var_Item =
COM::createFromObject(extoolbarcrd1.Item(COMVariant::createFromInt(1)));
com_Item = var_Item;
 com_Item.Caption("Exit");
 var_Item =
COM::createFromObject(extoolbarcrd1.Item(COMVariant::createFromInt(2)));
com_Item = var_Item;
 com_Item.Caption("Item A;Item A#1;Item B#2;Item C#3");
}

Delphi 8 (.NET only)

// Select event - Notifies once the user clicks the item.
procedure TWinForm1.AxToolBarCRD1_Select(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent);
begin
 with AxToolBarCRD1 do
 begin
 OutputDebugString('Select');
 OutputDebugString(e.selectedID);
 end
end;

with AxToolBarCRD1 do
begin

 ItemsDelimiter := ';';
 Format := '1,-1,2';
 get_Item(TObject(1)).Caption := 'Exit';
 get_Item(TObject(2)).Caption := 'Item A;Item A#1;Item B#2;Item
C#3';
end

Delphi (standard)

// Select event - Notifies once the user clicks the item.
procedure TForm1.ToolBarCRD1Select(ASender: TObject; ID : OleVariant;SelectedID :
OleVariant);
begin
 with ToolBarCRD1 do
 begin
 OutputDebugString('Select');
 OutputDebugString(SelectedID);
 end
end;

with ToolBarCRD1 do
begin
 ItemsDelimiter := ';';
 Format := '1,-1,2';
 Item[OleVariant(1)].Caption := 'Exit';
 Item[OleVariant(2)].Caption := 'Item A;Item A#1;Item B#2;Item
C#3';
end

VFP

*** Select event - Notifies once the user clicks the item. ***
LPARAMETERS ID,SelectedID
 with thisform.ToolBarCRD1
 DEBUGOUT("Select")
 DEBUGOUT(SelectedID)
 endwith

with thisform.ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
endwith

dBASE Plus

/*
with (this.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject)
 Select = class::nativeObject_Select
endwith
*/
// Notifies once the user clicks the item.
function nativeObject_Select(ID,SelectedID)
 oToolBarCRD = form.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject
 ? "Select"
 ? Str(SelectedID)
return

local oToolBarCRD,var_Item,var_Item1

oToolBarCRD = form.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject
oToolBarCRD.ItemsDelimiter = ";"
oToolBarCRD.Format = "1,-1,2"
// oToolBarCRD.Item(1).Caption = "Exit"
var_Item = oToolBarCRD.Item(1)
with (oToolBarCRD)
 TemplateDef = [dim var_Item]
 TemplateDef = var_Item
 Template = [var_Item.Caption = "Exit"]
endwith
// oToolBarCRD.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3"
var_Item1 = oToolBarCRD.Item(2)
with (oToolBarCRD)

 TemplateDef = [dim var_Item1]
 TemplateDef = var_Item1
 Template = [var_Item1.Caption = "Item A;Item A#1;Item B#2;Item
C#3"]
endwith

XBasic (Alpha Five)

' Notifies once the user clicks the item.
function Select as v (ID as A,SelectedID as A)
 oToolBarCRD = topparent:CONTROL_ACTIVEX1.activex
 ? "Select"
 ? SelectedID
end function

Dim oToolBarCRD as P
Dim var_Item as local
Dim var_Item1 as local

oToolBarCRD = topparent:CONTROL_ACTIVEX1.activex
oToolBarCRD.ItemsDelimiter = ";"
oToolBarCRD.Format = "1,-1,2"
' oToolBarCRD.Item(1).Caption = "Exit"
var_Item = oToolBarCRD.Item(1)
oToolBarCRD.TemplateDef = "dim var_Item"
oToolBarCRD.TemplateDef = var_Item
oToolBarCRD.Template = "var_Item.Caption = `Exit`"

' oToolBarCRD.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3"
var_Item1 = oToolBarCRD.Item(2)
oToolBarCRD.TemplateDef = "dim var_Item1"
oToolBarCRD.TemplateDef = var_Item1
oToolBarCRD.Template = "var_Item1.Caption = `Item A;Item A#1;Item
B#2;Item C#3`"

Visual Objects

METHOD OCX_Exontrol1Select(ID,SelectedID) CLASS MainDialog
 // Select event - Notifies once the user clicks the item.
 OutputDebugString(String2Psz("Select"))
 OutputDebugString(String2Psz(AsString(SelectedID)))
RETURN NIL

oDCOCX_Exontrol1:ItemsDelimiter := ";"
oDCOCX_Exontrol1:Format := "1,-1,2"
oDCOCX_Exontrol1:[Item,1]:Caption := "Exit"
oDCOCX_Exontrol1:[Item,2]:Caption := "Item A;Item A#1;Item B#2;Item
C#3"

PowerBuilder

/*begin event Select(any ID,any SelectedID) - Notifies once the user clicks the item.*/
/*
 oToolBarCRD = ole_1.Object
 MessageBox("Information",string("Select"))
 MessageBox("Information",string(String(SelectedID)))
*/
/*end event Select*/

OleObject oToolBarCRD

oToolBarCRD = ole_1.Object
oToolBarCRD.ItemsDelimiter = ";"
oToolBarCRD.Format = "1,-1,2"
oToolBarCRD.Item(1).Caption = "Exit"
oToolBarCRD.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3"

Visual DataFlex

// Notifies once the user clicks the item.
Procedure OnComSelect Variant llID Variant llSelectedID
 Forward Send OnComSelect llID llSelectedID
 Showln "Select" llSelectedID
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComItemsDelimiter to ";"
 Set ComFormat to "1,-1,2"
 Variant voItem
 Get ComItem 1 to voItem
 Handle hoItem
 Get Create (RefClass(cComItem)) to hoItem
 Set pvComObject of hoItem to voItem
 Set ComCaption of hoItem to "Exit"
 Send Destroy to hoItem
 Variant voItem1
 Get ComItem 2 to voItem1
 Handle hoItem1
 Get Create (RefClass(cComItem)) to hoItem1
 Set pvComObject of hoItem1 to voItem1
 Set ComCaption of hoItem1 to "Item A;Item A#1;Item B#2;Item
C#3"
 Send Destroy to hoItem1
End_Procedure

XBase++

PROCEDURE OnSelect(oToolBarCRD,ID,SelectedID)
 DevOut("Select")
 DevOut(Transform(SelectedID,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oToolBarCRD

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oToolBarCRD := XbpActiveXControl():new(oForm:drawingArea)
 oToolBarCRD:CLSID := "Exontrol.ToolBar.CRD.1" /*{DD586AE6-F2A0-4308-8F34-
8016B16F000E}*/
 oToolBarCRD:create(,, {10,60},{610,370})

 oToolBarCRD:Select := {|ID,SelectedID| OnSelect(oToolBarCRD,ID,SelectedID)}
/*Notifies once the user clicks the item.*/

 oToolBarCRD:ItemsDelimiter := ";"
 oToolBarCRD:Format := "1,-1,2"
 oToolBarCRD:Item(1):Caption := "Exit"
 oToolBarCRD:Item(2):Caption := "Item A;Item A#1;Item B#2;Item
C#3"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property ToolBarCRD.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the index of the item from the point.

Type Description
X as OLE_XPOS_PIXELS A Long expression that specifies the x-cursor position.
Y as OLE_YPOS_PIXELS A Long expression that specifies the y-cursor position.

Long A Long expression that specifies the index of the item from
the cursor or 0 if not found.

Use the ItemFromPoint property to get the item from cursor. The MouseMove event is
generated continually as the mouse pointer moves across objects. Unless another object
has captured the mouse, an object recognizes a MouseMove event whenever the mouse
position is within its borders. The MouseIn event occurs when the mouse enters the item.
The MouseOut event occurs when the mouse exits the item. Use the
Background(exToolBarButtonHotBackColor) property to specify the visual appearance of
the item when the cursor hovers it.

property ToolBarCRD.ItemsDelimiter as String
Specifies the delimiter sequence for drop down items.

Type Description

String
A String expression that specifies the delimiter of items in
the Caption property to specify the items into a drop down
item.

By default, the ItemsDelimiter property is "\r\n" (Chr(13) & Chr(10), Carriage return-
linefeed combination). The ItemsDelimiter property specifies the delimiter sequence for
drop down items. The ItemValueDelimiter property specifies the delimiter sequence for drop
down value. The Caption property specifies the caption to be shown on the item. If the
Caption property includes the ItemsDelimiter value, it indicates that the toolbar's item
displays a drop down list, when user clicks the item. Each part of the Caption between two
delimiters indicates an item in the drop down. For instance, "Item A;Item A#1;Item
B#2;Item C#3" indicates that the toolbar's item displays the "Item A", and it's drop
down list contains "Item A" with the value 1, "Item B" with the value 2 and "Item C" with the
value 3.

How can I display a drop-down panel?

VBA (MS Access, Excell...)

' Select event - Notifies once the user clicks the item.
Private Sub ToolBarCRD1_Select(ByVal ID As Variant,ByVal SelectedID As Variant)
 With ToolBarCRD1
 Debug.Print("Select")
 Debug.Print(SelectedID)
 End With
End Sub

With ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"

 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

VB6

' Select event - Notifies once the user clicks the item.
Private Sub ToolBarCRD1_Select(ByVal ID As Variant,ByVal SelectedID As Variant)
 With ToolBarCRD1
 Debug.Print("Select")
 Debug.Print(SelectedID)
 End With
End Sub

With ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

VB.NET

' Select event - Notifies once the user clicks the item.
Private Sub Extoolbarcrd1_Select(ByVal sender As System.Object,ByVal ID As
Object,ByVal SelectedID As Object) Handles Extoolbarcrd1.Select
 With Extoolbarcrd1
 Debug.Print("Select")
 Debug.Print(SelectedID)
 End With
End Sub

With Extoolbarcrd1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

VB.NET for /COM

' Select event - Notifies once the user clicks the item.
Private Sub AxToolBarCRD1_Select(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent) Handles
AxToolBarCRD1.Select
 With AxToolBarCRD1
 Debug.Print("Select")
 Debug.Print(e.selectedID)
 End With
End Sub

With AxToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .get_Item(1).Caption = "Exit"
 .get_Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
End With

C++

// Select event - Notifies once the user clicks the item.
void OnSelectToolBarCRD1(VARIANT ID,VARIANT SelectedID)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXTOOLBARCRDLib' for the library: 'ExToolBar.CRD
1.0 Control Library'
 #import <ExToolBar.CRD.dll>
 using namespace EXTOOLBARCRDLib;
 */
 EXTOOLBARCRDLib::IToolBarCRDPtr spToolBarCRD1 =
GetDlgItem(IDC_TOOLBARCRD1)->GetControlUnknown();
 OutputDebugStringW(L"Select");
 OutputDebugStringW(L"SelectedID");
}

EXTOOLBARCRDLib::IToolBarCRDPtr spToolBarCRD1 =

GetDlgItem(IDC_TOOLBARCRD1)->GetControlUnknown();
spToolBarCRD1->PutItemsDelimiter(L";");
spToolBarCRD1->PutFormat(L"1,-1,2");
spToolBarCRD1->GetItem(long(1))->PutCaption(L"Exit");
spToolBarCRD1->GetItem(long(2))->PutCaption(L"Item A;Item A#1;Item
B#2;Item C#3");

C++ Builder

// Select event - Notifies once the user clicks the item.
void __fastcall TForm1::ToolBarCRD1Select(TObject *Sender,Variant ID,Variant
SelectedID)
{
 OutputDebugString(L"Select");
 OutputDebugString(L"SelectedID");
}

ToolBarCRD1->ItemsDelimiter = L";";
ToolBarCRD1->Format = L"1,-1,2";
ToolBarCRD1->Item[TVariant(1)]->Caption = L"Exit";
ToolBarCRD1->Item[TVariant(2)]->Caption = L"Item A;Item A#1;Item
B#2;Item C#3";

C#

// Select event - Notifies once the user clicks the item.
private void extoolbarcrd1_Select(object sender,object ID,object SelectedID)
{
 System.Diagnostics.Debug.Print("Select");
 System.Diagnostics.Debug.Print(SelectedID.ToString());
}
//this.extoolbarcrd1.Select += new
exontrol.EXTOOLBARCRDLib.exg2antt.SelectEventHandler(this.extoolbarcrd1_Select);

extoolbarcrd1.ItemsDelimiter = ";";
extoolbarcrd1.Format = "1,-1,2";

extoolbarcrd1[1].Caption = "Exit";
extoolbarcrd1[2].Caption = "Item A;Item A#1;Item B#2;Item C#3";

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="ToolBarCRD1" EVENT="Select(ID,SelectedID)" LANGUAGE="JScript">
 alert("Select");
 alert(SelectedID);
</SCRIPT>

<OBJECT CLASSID="clsid:DD586AE6-F2A0-4308-8F34-8016B16F000E"
id="ToolBarCRD1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ToolBarCRD1.ItemsDelimiter = ";";
 ToolBarCRD1.Format = "1,-1,2";
 ToolBarCRD1.Item(1).Caption = "Exit";
 ToolBarCRD1.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3";
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function ToolBarCRD1_Select(ID,SelectedID)
 With ToolBarCRD1
 alert("Select")
 alert(SelectedID)
 End With
End Function

</SCRIPT>

<OBJECT CLASSID="clsid:DD586AE6-F2A0-4308-8F34-8016B16F000E"
id="ToolBarCRD1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// Select event - Notifies once the user clicks the item.
private void axToolBarCRD1_Select(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent e)
{
 System.Diagnostics.Debug.Print("Select");
 System.Diagnostics.Debug.Print(e.selectedID.ToString());
}
//this.axToolBarCRD1.Select += new
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEventHandler(this.axToolBarCRD1_Select);

axToolBarCRD1.ItemsDelimiter = ";";
axToolBarCRD1.Format = "1,-1,2";
axToolBarCRD1[1].Caption = "Exit";
axToolBarCRD1[2].Caption = "Item A;Item A#1;Item B#2;Item C#3";

X++ (Dynamics Ax 2009)

// Select event - Notifies once the user clicks the item.
void onEvent_Select(COMVariant _ID,COMVariant _SelectedID)
{
 ;
 print("Select");
 print(_SelectedID);
}

public void init()
{
 COM com_Item;
 anytype var_Item;
 ;

 super();

 extoolbarcrd1.ItemsDelimiter(";");
 extoolbarcrd1.Format("1,-1,2");
 var_Item =
COM::createFromObject(extoolbarcrd1.Item(COMVariant::createFromInt(1)));
com_Item = var_Item;
 com_Item.Caption("Exit");
 var_Item =
COM::createFromObject(extoolbarcrd1.Item(COMVariant::createFromInt(2)));
com_Item = var_Item;
 com_Item.Caption("Item A;Item A#1;Item B#2;Item C#3");
}

Delphi 8 (.NET only)

// Select event - Notifies once the user clicks the item.
procedure TWinForm1.AxToolBarCRD1_Select(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent);
begin
 with AxToolBarCRD1 do
 begin
 OutputDebugString('Select');

 OutputDebugString(e.selectedID);
 end
end;

with AxToolBarCRD1 do
begin
 ItemsDelimiter := ';';
 Format := '1,-1,2';
 get_Item(TObject(1)).Caption := 'Exit';
 get_Item(TObject(2)).Caption := 'Item A;Item A#1;Item B#2;Item
C#3';
end

Delphi (standard)

// Select event - Notifies once the user clicks the item.
procedure TForm1.ToolBarCRD1Select(ASender: TObject; ID : OleVariant;SelectedID :
OleVariant);
begin
 with ToolBarCRD1 do
 begin
 OutputDebugString('Select');
 OutputDebugString(SelectedID);
 end
end;

with ToolBarCRD1 do
begin
 ItemsDelimiter := ';';
 Format := '1,-1,2';
 Item[OleVariant(1)].Caption := 'Exit';
 Item[OleVariant(2)].Caption := 'Item A;Item A#1;Item B#2;Item
C#3';
end

VFP

*** Select event - Notifies once the user clicks the item. ***

LPARAMETERS ID,SelectedID
 with thisform.ToolBarCRD1
 DEBUGOUT("Select")
 DEBUGOUT(SelectedID)
 endwith

with thisform.ToolBarCRD1
 .ItemsDelimiter = ";"
 .Format = "1,-1,2"
 .Item(1).Caption = "Exit"
 .Item(2).Caption = "Item A;Item A#1;Item B#2;Item C#3"
endwith

dBASE Plus

/*
with (this.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject)
 Select = class::nativeObject_Select
endwith
*/
// Notifies once the user clicks the item.
function nativeObject_Select(ID,SelectedID)
 oToolBarCRD = form.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject
 ? "Select"
 ? Str(SelectedID)
return

local oToolBarCRD,var_Item,var_Item1

oToolBarCRD = form.EXTOOLBAR_CRDACTIVEXCONTROL1.nativeObject
oToolBarCRD.ItemsDelimiter = ";"
oToolBarCRD.Format = "1,-1,2"
// oToolBarCRD.Item(1).Caption = "Exit"
var_Item = oToolBarCRD.Item(1)
with (oToolBarCRD)
 TemplateDef = [dim var_Item]
 TemplateDef = var_Item

 Template = [var_Item.Caption = "Exit"]
endwith
// oToolBarCRD.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3"
var_Item1 = oToolBarCRD.Item(2)
with (oToolBarCRD)
 TemplateDef = [dim var_Item1]
 TemplateDef = var_Item1
 Template = [var_Item1.Caption = "Item A;Item A#1;Item B#2;Item
C#3"]
endwith

XBasic (Alpha Five)

' Notifies once the user clicks the item.
function Select as v (ID as A,SelectedID as A)
 oToolBarCRD = topparent:CONTROL_ACTIVEX1.activex
 ? "Select"
 ? SelectedID
end function

Dim oToolBarCRD as P
Dim var_Item as local
Dim var_Item1 as local

oToolBarCRD = topparent:CONTROL_ACTIVEX1.activex
oToolBarCRD.ItemsDelimiter = ";"
oToolBarCRD.Format = "1,-1,2"
' oToolBarCRD.Item(1).Caption = "Exit"
var_Item = oToolBarCRD.Item(1)
oToolBarCRD.TemplateDef = "dim var_Item"
oToolBarCRD.TemplateDef = var_Item
oToolBarCRD.Template = "var_Item.Caption = `Exit`"

' oToolBarCRD.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3"

var_Item1 = oToolBarCRD.Item(2)
oToolBarCRD.TemplateDef = "dim var_Item1"
oToolBarCRD.TemplateDef = var_Item1
oToolBarCRD.Template = "var_Item1.Caption = `Item A;Item A#1;Item
B#2;Item C#3`"

Visual Objects

METHOD OCX_Exontrol1Select(ID,SelectedID) CLASS MainDialog
 // Select event - Notifies once the user clicks the item.
 OutputDebugString(String2Psz("Select"))
 OutputDebugString(String2Psz(AsString(SelectedID)))
RETURN NIL

oDCOCX_Exontrol1:ItemsDelimiter := ";"
oDCOCX_Exontrol1:Format := "1,-1,2"
oDCOCX_Exontrol1:[Item,1]:Caption := "Exit"
oDCOCX_Exontrol1:[Item,2]:Caption := "Item A;Item A#1;Item B#2;Item
C#3"

PowerBuilder

/*begin event Select(any ID,any SelectedID) - Notifies once the user clicks the item.*/
/*
 oToolBarCRD = ole_1.Object
 MessageBox("Information",string("Select"))
 MessageBox("Information",string(String(SelectedID)))
*/
/*end event Select*/

OleObject oToolBarCRD

oToolBarCRD = ole_1.Object
oToolBarCRD.ItemsDelimiter = ";"

oToolBarCRD.Format = "1,-1,2"
oToolBarCRD.Item(1).Caption = "Exit"
oToolBarCRD.Item(2).Caption = "Item A;Item A#1;Item B#2;Item
C#3"

Visual DataFlex

// Notifies once the user clicks the item.
Procedure OnComSelect Variant llID Variant llSelectedID
 Forward Send OnComSelect llID llSelectedID
 Showln "Select" llSelectedID
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComItemsDelimiter to ";"
 Set ComFormat to "1,-1,2"
 Variant voItem
 Get ComItem 1 to voItem
 Handle hoItem
 Get Create (RefClass(cComItem)) to hoItem
 Set pvComObject of hoItem to voItem
 Set ComCaption of hoItem to "Exit"
 Send Destroy to hoItem
 Variant voItem1
 Get ComItem 2 to voItem1
 Handle hoItem1
 Get Create (RefClass(cComItem)) to hoItem1
 Set pvComObject of hoItem1 to voItem1
 Set ComCaption of hoItem1 to "Item A;Item A#1;Item B#2;Item
C#3"
 Send Destroy to hoItem1
End_Procedure

XBase++

PROCEDURE OnSelect(oToolBarCRD,ID,SelectedID)

 DevOut("Select")
 DevOut(Transform(SelectedID,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oToolBarCRD

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oToolBarCRD := XbpActiveXControl():new(oForm:drawingArea)
 oToolBarCRD:CLSID := "Exontrol.ToolBar.CRD.1" /*{DD586AE6-F2A0-4308-8F34-
8016B16F000E}*/
 oToolBarCRD:create(,, {10,60},{610,370})

 oToolBarCRD:Select := {|ID,SelectedID| OnSelect(oToolBarCRD,ID,SelectedID)}
/*Notifies once the user clicks the item.*/

 oToolBarCRD:ItemsDelimiter := ";"
 oToolBarCRD:Format := "1,-1,2"
 oToolBarCRD:Item(1):Caption := "Exit"
 oToolBarCRD:Item(2):Caption := "Item A;Item A#1;Item B#2;Item
C#3"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property ToolBarCRD.ItemValueDelimiter as String
Specifies the delimiter sequence for drop down value.

Type Description

String A String expression that specifies the delimiter for drop
down values.

By default, the ItemsDelimiter property is "\r\n" (Chr(13) & Chr(10), Carriage return-
linefeed combination). The ItemsDelimiter property specifies the delimiter sequence for
drop down items. The ItemValueDelimiter property specifies the delimiter sequence for drop
down value. The Caption property specifies the caption to be shown on the item. If the
Caption property includes the ItemsDelimiter value, it indicates that the toolbar's item
displays a drop down list, when user clicks the item. Each part of the Caption between two
delimiters indicates an item in the drop down. For instance, "Item A;Item A#1;Item
B#2;Item C#3" indicates that the toolbar's item displays the "Item A", and it's drop
down list contains "Item A" with the value 1, "Item B" with the value 2 and "Item C" with the
value 3.

property ToolBarCRD.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. Use the Picture property to assign your
logo on the control's background. The control uses the PictureDisplay property to determine
how the picture is displayed on the control's background. The BackColor property specifies
a solid color to be shown on the control's background.

property ToolBarCRD.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum
A PictureDisplayEnum expression that indicates the way
the control arranges the picture on the control's
background.

The control uses the PictureDisplay property to determine how the picture is displayed on
the control's background. By default, the control has no picture associated. Use the Picture
property to assign your logo on the control's background. The BackColor property specifies
a solid color to be shown on the control's background.

method ToolBarCRD.Refresh ()
Refreses the control.

Type Description

Use the Refresh method to refresh the control. The BeginUpdate / EndUpdate method
maintains performance when items are added to the control one at a time.

method ToolBarCRD.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The user can add images at design time, by
drag and drop files to control's images holder. The ShowImageList property available for
the /COM shows or hides the control's images holder at design mode.

The following VB sample adds a new icon to control's images list:

i = ExToolBarCRD1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

i = ExToolBarCRD1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so
the first icon is replaced.

The following VB sample removes an icon from control's images list:

ExToolBarCRD1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

ExToolBarCRD1.ReplaceIcon 0, -1

property ToolBarCRD.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the ToolBarCRD control.
Use the RepaceIcon method to add, remove or clear icons in the control's images
collection.

method ToolBarCRD.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String A String expression that indicates the description of the
tooltip.

Title as Variant If present, A String expression that indicates the title of the
tooltip.

Alignment as Variant
A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing, the tooltip
is aligned to the left/top corder.

X as Variant

A single that specifies the current X location of the mouse
pointer. The x values is always expressed in screen
coordinates. If missing or -1, the current mouse X position
is used. A string expression that indicates the offset to
move the tooltip window relative to the cursor position.

Y as Variant

A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in screen
coordinates. If missing or -1, the current mouse Y position
is used. A string expression that indicates the offset to
move the tooltip window relative to the cursor position.

Use the ShowToolTip method to display a custom tooltip. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipFont property to change the tooltip's font. Use
the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips. Use the Background(exToolTipBackColor) property indicates the
tooltip's background color. Use the Background(exToolTipForeColor) property indicates the
tooltip's foreground color.

The Alignment parameter can be one of the followings:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop

0x14 - exCenterBottom

Use numeric values as strings for X and Y parameters, to move the tooltip window
relative to the position of the cursor. For instance, ShowToolTp("text",,,"11","12"), means
that the tooltip window is moved 11 pixels on the X axis, and 12 pixels on the Y axis,
before showing it in the default position. In this case the X and Y parameters MUST be
passed as strings not as LONG values

property ToolBarCRD.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ToolBarCRD.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ToolBarCRD.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ToolBarCRD.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipFont property to assign a font for the
control's tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the ShowToolTip method to
programmatically show a custom tooltip.

property ToolBarCRD.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description

IFontDisp
A Font object that defines the font to show the control's
tooltip. You can use the HTML tag to define a
different font for parts of the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. If the ToolTipDelay or
ToolTipPopDelay property is 0, the control displays no tooltips. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the ShowToolTip method to
programmatically show a custom tooltip.

property ToolBarCRD.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipFont property to assign a font for the
control's tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the ShowToolTip method to
programmatically show a custom tooltip.

property ToolBarCRD.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to specify the width of the tooltip window. If the ToolTipDelay
or ToolTipPopDelay property is 0, the control displays no tooltips. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ShowToolTip method to programmatically show a
custom tooltip.

property ToolBarCRD.Version as String
Retrieves the control's version.

Type Description

String A String expression that specifies the version of the control
you are running.

The Version property specifies the version of the control you are running.

property ToolBarCRD.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance The Appearance object holds a collection of skins.

The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control.

ExToolBar.CRD events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {DD586AE6-F2A0-4308-8F34-8016B16F000E}. The object's program identifier is:
"Exontrol.ToolBar.CRD". The /COM object module is: "ExToolBar.CRD.dll"

The eXToolBar.CRD component is a graphical control element on which on-screen buttons,
icons, menus, or other input or output elements are placed. The eXTolBar.CRD component
lets the user changes its visual appearance using skins, each one providing an additional
visual experience that enhances viewing pleasure. The eXToolBar.CRD component it's free
to use so no nag screens, no limitation, no evaluation message.

The following table shows how you can create / access different type of objects (red items
indicates the name of the property/method):

EXTOOLBARCRDLib.ToolBarCRD
 "Item(Variant)" -> EXTOOLBARCRDLib.Item
 "VisualAppearance" -> EXTOOLBARCRDLib.Appearance

The following table shows how you can create / access different type of objects (red items
indicates the name of the property/method):

EXTOOLBARCRDLib.Appearance <- "VisualAppearance" of
EXTOOLBARCRDLib.ToolBarCRD
EXTOOLBARCRDLib.Item <- "Item(Variant)" of EXTOOLBARCRDLib.ToolBarCRD

The ExToolBar.CRD component supports the following events:

Name Description
AnchorClick Occurs when an anchor element is clicked.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.

MouseIn Occurs when the mouse enters the part.
MouseMove Occurs when the user moves the mouse.
MouseOut Occurs when the mouse exists the part.
MouseUp Occurs when the user releases a mouse button.
Select Notifies once the user clicks the item.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C#

C++

private void AnchorClick(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_AnchorClickEvent e)
{
}

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata".

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)

end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_AnchorClickEvent) Handles
AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oToolBarCRD,AnchorID,Options)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. The
Select event notifies once the user clicks/select an item in the toolbar control. Use a
MouseDown or MouseUp event procedure to specify actions that will occur when a mouse
button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()

end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oToolBarCRD)

RETURN

Java…

VBSc…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Syntax for Click event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

C++
Builder

private void DblClick(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the ItemFromPoint
method to determine the cell over the cursor.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)

end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oToolBarCRD,Shift,X,Y)

RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.ToolBar.CRD.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ToolBar.CRD.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyDownEvent e)

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)

end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyDownEvent) Handles
KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oToolBarCRD,KeyCode,Shift)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)

end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oToolBarCRD,KeyAscii)

RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)

end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oToolBarCRD,KeyCode,Shift)

RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int
Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseDownEvent e)

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. The Select event notifies once the user clicks/select
an item in the toolbar control. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int
Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)

end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oToolBarCRD,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS
llX OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.ToolBar.CRD.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ToolBar.CRD.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseIn(object sender,object ID)
{
}

Private Sub MouseIn(ByVal sender As System.Object,ByVal ID As Object) Handles
MouseIn
End Sub

C#

C++

C++
Builder

private void MouseIn(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseInEvent e)
{
}

void OnMouseIn(VARIANT ID)
{
}

void __fastcall MouseIn(TObject *Sender,Variant ID)
{
}

event MouseIn (ID as Variant)
Occurs when the mouse enters the part.

Type Description

ID as Variant
 A Long expression that specifies the identifier of the item.
The Item property accesses the Item object giving its
identifier.

The MouseIn event occurs when the mouse enters the item. The MouseOut event occurs
when the mouse exits the item. The MouseMove event is generated continually as the
mouse pointer moves across objects. Unless another object has captured the mouse, an
object recognizes a MouseMove event whenever the mouse position is within its borders.
Use the Background(exToolBarButtonHotBackColor) property to specify the visual
appearance of the item when the cursor hovers it. Use the ItemFromPoint property to get
the item from cursor.

Syntax for MouseIn event, /NET version, on:

Syntax for MouseIn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseIn(ASender: TObject; ID : OleVariant);
begin
end;

procedure MouseIn(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseInEvent);
begin
end;

begin event MouseIn(any ID)

end event MouseIn

Private Sub MouseIn(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseInEvent) Handles MouseIn
End Sub

Private Sub MouseIn(ByVal ID As Variant)
End Sub

Private Sub MouseIn(ByVal ID As Variant)
End Sub

LPARAMETERS ID

PROCEDURE OnMouseIn(oToolBarCRD,ID)

RETURN

Java…

VBSc…

<SCRIPT EVENT="MouseIn(ID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseIn(ID)
End Function

Syntax for MouseIn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComMouseIn Variant llID
 Forward Send OnComMouseIn llID
End_Procedure

METHOD OCX_MouseIn(ID) CLASS MainDialog
RETURN NIL

void onEvent_MouseIn(COMVariant _ID)
{
}

function MouseIn as v (ID as A)
end function

function nativeObject_MouseIn(ID)
return

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int
Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer

An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down. Gets
which mouse button was pressed as 1 for Left Mouse
Button, 2 for Right Mouse Button and 4 for Middle Mouse
Button.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The MouseIn event occurs when the
mouse enters the item. The MouseOut event occurs when the mouse exits the item. Use
the Background(exToolBarButtonHotBackColor) property to specify the visual appearance
of the item when the cursor hovers it. Use the ItemFromPoint property to get the item from
cursor.

Syntax for MouseMove event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseMoveEvent(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int
Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)

end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As

Syntax for MouseMove event, /COM version, on:

VFP

Xbas…

Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oToolBarCRD,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS
llX OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.ToolBar.CRD.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ToolBar.CRD.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)

Syntax for MouseMove event, /COM version (others), on:

return

C#

VB

private void MouseOut(object sender,object ID)
{
}

Private Sub MouseOut(ByVal sender As System.Object,ByVal ID As Object) Handles
MouseOut
End Sub

C#

C++

C++
Builder

private void MouseOut(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseOutEvent e)
{
}

void OnMouseOut(VARIANT ID)
{
}

void __fastcall MouseOut(TObject *Sender,Variant ID)
{
}

event MouseOut (ID as Variant)
Occurs when the mouse exists the part.

Type Description

ID as Variant
 A Long expression that specifies the identifier of the item.
The Item property accesses the Item object giving its
identifier.

The MouseOut event occurs when the mouse exits the item. The MouseIn event occurs
when the mouse enters the item. The MouseMove event is generated continually as the
mouse pointer moves across objects. Unless another object has captured the mouse, an
object recognizes a MouseMove event whenever the mouse position is within its borders.
Use the Background(exToolBarButtonHotBackColor) property to specify the visual
appearance of the item when the cursor hovers it. Use the ItemFromPoint property to get
the item from cursor.

Syntax for MouseOut event, /NET version, on:

Syntax for MouseOut event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseOut(ASender: TObject; ID : OleVariant);
begin
end;

procedure MouseOut(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseOutEvent);
begin
end;

begin event MouseOut(any ID)

end event MouseOut

Private Sub MouseOut(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseOutEvent) Handles MouseOut
End Sub

Private Sub MouseOut(ByVal ID As Variant)
End Sub

Private Sub MouseOut(ByVal ID As Variant)
End Sub

LPARAMETERS ID

PROCEDURE OnMouseOut(oToolBarCRD,ID)

RETURN

Java…

VBSc…

<SCRIPT EVENT="MouseOut(ID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseOut(ID)
End Function

Syntax for MouseOut event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComMouseOut Variant llID
 Forward Send OnComMouseOut llID
End_Procedure

METHOD OCX_MouseOut(ID) CLASS MainDialog
RETURN NIL

void onEvent_MouseOut(COMVariant _ID)
{
}

function MouseOut as v (ID as A)
end function

function nativeObject_MouseOut(ID)
return

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseUpEvent e)
{

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. The Select event notifies once the user clicks/select
an item in the toolbar control. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)

end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_MouseUpEvent) Handles
MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseUp(oToolBarCRD,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.ToolBar.CRD.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ToolBar.CRD.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void Select(object sender,object ID,object SelectedID)
{
}

Private Sub Select(ByVal sender As System.Object,ByVal ID As Object,ByVal
SelectedID As Object) Handles Select
End Sub

C#

C++

private void Select(object sender,
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent e)
{
}

void OnSelect(VARIANT ID,VARIANT SelectedID)
{
}

event Select (ID as Variant, SelectedID as Variant)
Notifies once the user clicks the item.

Type Description

ID as Variant
A Long expression that specifies the identifier of the item
being clicked/selected. The Item property accesses the
Item object giving its identifier.

SelectedID as Variant A Long expression that specifies the value of the drop
down item being clicked/selected.

The Select event notifies once the user clicks/select an item in the toolbar control. The Click
event is fired when the user releases the left mouse button over the control. Use a
MouseDown or MouseUp event procedure to specify actions that will occur when a mouse
button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for Select event, /NET version, on:

Syntax for Select event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Select(TObject *Sender,Variant ID,Variant SelectedID)
{
}

procedure Select(ASender: TObject; ID : OleVariant;SelectedID : OleVariant);
begin
end;

procedure Select(sender: System.Object; e:
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent);
begin
end;

begin event Select(any ID,any SelectedID)

end event Select

Private Sub Select(ByVal sender As System.Object, ByVal e As
AxEXTOOLBARCRDLib._IToolBarCRDEvents_SelectEvent) Handles Select
End Sub

Private Sub Select(ByVal ID As Variant,ByVal SelectedID As Variant)
End Sub

Private Sub Select(ByVal ID As Variant,ByVal SelectedID As Variant)
End Sub

LPARAMETERS ID,SelectedID

PROCEDURE OnSelect(oToolBarCRD,ID,SelectedID)

RETURN

Syntax for Select event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Select(ID,SelectedID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Select(ID,SelectedID)
End Function
</SCRIPT>

Procedure OnComSelect Variant llID Variant llSelectedID
 Forward Send OnComSelect llID llSelectedID
End_Procedure

METHOD OCX_Select(ID,SelectedID) CLASS MainDialog
RETURN NIL

void onEvent_Select(COMVariant _ID,COMVariant _SelectedID)
{
}

function Select as v (ID as A,SelectedID as A)
end function

function nativeObject_Select(ID,SelectedID)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Item
	Caption property
	Enabled property
	ID property (readonly)
	ToolTip property
	UserData property

	ToolBarCRD
	AnchorFromPoint property (readonly)
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	Debug property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	Font property
	ForeColor property
	Format property
	FormatAnchor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Item property (readonly)
	ItemFromPoint property (readonly)
	ItemsDelimiter property
	ItemValueDelimiter property
	Picture property
	PictureDisplay property
	Refresh method
	ReplaceIcon method
	ShowImageList property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	Version property
	VisualAppearance property (readonly)

	ExToolBar.CRD events
	AnchorClick event
	Click event
	DblClick event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseIn event
	MouseMove event
	MouseOut event
	MouseUp event
	Select event

