
 ExSurface

The eXSurface lets you organize your objects to a surface. You can use the tool to
generate organigrams, diagrams, graphs, flowcharts and so on. The ExSurface library lets
the user changes its visual appearance using skins, each one providing an additional visual
experience that enhances viewing pleasure.

Features include:

Auto-Arrange support, or ability to automatically arrange horizontally or vertically the
elements on the surface based on their relations, so they won't intersect one with
another as much as possible
Drag and Drop support
Zooming support
Undo/Redo support
ActiveX controls hosting
Tree-View support
Cross/Junction/Intersection Links Support
Skinnable Interface support (ability to apply a skin to any background part)
Unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the element's background.
Print and Print - Preview support, Fit-To-Pages, ...
Easy way to define the control's visual appearance in design mode, using XP-Theme
elements or EBN objects

Ž ExSurface is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
The AlignmentEnum type specifies the object's alignment. The AlignmentEnum type
supports the following values:

Name Value Description
LeftAlignment 0 Left Alignment
CenterAlignment 1 Center Alignment
RightAlignment 2 Right Alignment
UpAlignment 3 Up Alignment
DownAlignment 4 Down Alignment

constants AlignObjectsToGridLinesEnum
The AlignObjectsToGridLinesEnum type specifies how the objects are aligned to none,
minor or major gird lines. The AlignObjectsToGridLines property specifies the way the
objects are aligned to the control's grid lines. The AlignObjectsToGridLinesEnum type
supports the following values:

Name Value Description
exAlignObjectsToNone 0 No alignment is performed.
exAlignObjectsToMinor -1 The objects are aligned to minor grid lines.
exAlignObjectsToMajor 1 The objects are aligned to major grid lines.

constants AllowKeysEnum
The AllowKeysEnum type specifies the keys to be combined in order to start an UI
operation. For instance, the AllowCreateObject property of AllowKeysEnum type indicates
the keys combination to let user creates a new element at runtime. By default, this property
is set on exLeftClick + exDblClick, which means the user is able to create a new element by
double left click. If this property is set on exRightClick + exCRTLKey the user should press
the CTRL key while right clicking the control to start creating a new element. If the
exDblClick flag is included, the user requires to do a double click instead single click to
perform the operation. The exDisallow flag indicates that the operation is not allowed.

The AllowKeysEnum type supports the following values:

Name Value Description
exDisallow 0 exDisallow. The operation is not allowed.

exLeftClick 1 exLeftClick. The operation starts once the user
clicks the left mouse button.

exRightClick 2 exRightClick. The operation starts if the user clicks
the right mouse button.

exMiddleClick 3 exMiddleClick. The operation starts if the user
clicks the middle mouse button.

exSHIFTKey 8 exSHIFTKey. The operation may start only if the
user presses the SHIFT key.

exCTRLKey 16 exCTRLKey. The operation may start only if the
user presses the CTRL key.

exALTKey 32 exALTKey. The operation may start only if the user
presses the ALT key.

exDblClick 64 exDblClick. The operation starts only if the user
double clicks, instead single click.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
border.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The BodyBackgroundExt property specifies the EBN
String format to be displayed on the element's background. The BackgroundExtValue
property access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
BodyBackgroundExt property specifies the EBN
String format to be displayed on the object's
background. The Exontrol's eXButton WYSWYG
Builder helps you to generate or view the EBN
String Format, in the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

https://exontrol.com/exbutton.jsp

exBackColorExt 1

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates

exClientExt 2

the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The

about:blank

FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray
when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,

exTextExt 4

the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the

Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the

rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>

<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

exTextExtAlignment 6

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and
horizontally aligned on the left.
17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.

32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

exPatternExt 7

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part

Name Value Description

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. The ToolTipDelay property
specifies the time in ms that passes before the
ToolTip appears. Use the ToolTip property of the
Element object to specify the element's tooltip. Use
the ToolTipWidth property to specify the width of
the tooltip window. Use the ToolTip property of the
Link objct to specify the tooltip to be shown when
the cursor hovers the link. Use the ShowToolTip
method to display a custom tooltip

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exCheckBoxState0 70

Specifies the visual appearance for the check box in
0 state (unchecked). Use the ShowCheckBox
property to show or hide the element's checkbox.
Use the Checked property to specify the state of
the element's checkbox.

exCheckBoxState1 71

Specifies the visual appearance for the check box in
1 state (checked). Use the ShowCheckBox
property to show or hide the element's checkbox.
Use the Checked property to specify the state of
the element's checkbox.

exCheckBoxState2 72

Specifies the visual appearance for the check box in
2 state (partial, reserved). Use the ShowCheckBox
property to show or hide the element's checkbox.
Use the Checked property to specify the state of
the element's checkbox.

exRadioButtonState0 73 (reserved) Specifies the visual appearance for the
radio button in 0 state (unchecked).

exRadioButtonState1 74 (reserved) Specifies the visual appearance for the
radio button in 1 state (checked).

exCreateObjectColor 75

Specifies the color to show the creation rectangle
when the user creates a new object. The
AllowCreateObject property specifies the
combination of keys that allows the user to create
objects on the surface.

exSelectObjectRectColor 76

Specifies the color to show the selection rectangle
when the objects are selected by dragging. The
AllowSelectObjectRect property specifies the keys
combination so the user can select the elements
from the dragging rectangle. The SelectObjectColor
/ SelectObjectTextColor property specifies the
colors to show the selected elements (while the
control has the focus). The
SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies
the color to show the selected elements (while the
control is not focused). The SelectObjectStyle
property specifies the style to show the selected
elements (like changing the element's
background/foreground colors, showing a border
around the selected elements, and so on).

exElementHostWindowBackColor77 Specifies the visual appearance of the element of
window/control type while dragging.

exEditBackColor 78
Specifies the background color while element is
editing. Use the Edit method to allow inline editing
of the element's caption or extracaption.

exEditForeColor 79
Specifies the foreground color while element is
editing. Use the Edit method to allow inline editing
of the element's caption or extracaption.

exEditSelBackColor 80

Specifies the selection background color while
element is editing. Use the Edit method to allow
inline editing of the element's caption or
extracaption.

exEditSelForeColor 81

Specifies the selection foreground color while
element is editing. Use the Edit method to allow
inline editing of the element's caption or

extracaption.

exLinkObjectsInvalidColor 82

Specifies the color to display an invalid link, when
the user links two objects. The AllowLink event
notifies your application that the user links two
elements on the surface.

exLinkObjectsValidColor 83

Specifies the color to display a valid link, when the
user links two objects. The AllowLink event notifies
your application that the user links two elements on
the surface.

exTreeGlyphCollapsed 84

Specifies the visual appearance to show the glyph
next to the collapsed element. The Expanded
property specifies whether the element is expanded
or collapsed. The ExpadedLinkedElements property
specifies whether the element that has outgoing
links displays the +/- expanding button.

exTreeGlyphExpanded 85

Specifies the visual appearance to show the glyph
next to the expanded element. The Expanded
property specifies whether the element is expanded
or collapsed. The ExpadedLinkedElements property
specifies whether the element that has outgoing
links displays the +/- expanding button.

exHoverInsertObject 86
Specifies the visual appearance to display the
border of the element where the dragging object is
about to be inserted.

exHoverInsertObjectGlyph 87 Specifies the visual appearance of the glyph where
the dragging object is about to be inserted.

exElementBorderColor 88

Specifies the color or the visual appearance of the
element's border. If the property is set on -1, no
border is shown. The BorderColor property
specifies the color to show the border for a specific
element. The BorderPadding property specifies the
border padding.

exElementStatusColor 89

Specifies the color or the visual appearance of the
element's status. If the property is set on -1, no
status is shown. Still, the element's StatusSize
should be set on 0. The StatusColor property
specifies the color or the visual appearance to show
the element's status part. The StatusPattern
property specifies the pattern to show the element's
status part. The StatusAlign property indicates the

alignment of the element's status.

exElementBackColor 90

Specifies the color or the visual appearance of the
element's background. If -1, the element's
background is transparent. The BackColor property
defines the element's background color or visual
appearance.

exElementForeColor 91
Specifies the element's foreground color. The
ForeColor property defines the element's
foreground color or visual appearance.

exContextMenuAppearance 99 Specifies the visual appearance of the control's
context menu.

exContextMenuBackColor 100 Specifies the solid background color for the
control's context menu.

exContextMenuForeColor 101 Specifies the text foreground color for the control's
context menu.

exContextMenuSelBackColor 102 Specifies the solid/EBN selection's background
color in the control's context menu.

exContextMenuSelBorderColor103 Specifies the solid color to show the selection in the
control's context menu.

exContextMenuSelForeColor 104 Specifies the selection's text foreground color in the
control's context menu.

exToolBarAppearance 148 exToolBarAppearance. Specifies the visual
appearance of the surface's toolbar panel.

exToolBarBackColor 149 exToolBarBackColor. Specifies the background
color of the surface's toolbar panel.

exToolBarForeColor 150 exToolBarForeColor. Specifies the foreground color
of the surface's toolbar panel.

exToolBarButtonUpBackColor 151 exToolBarButtonUpBackColor. Specifies the visual
appearance of the toolbar's button while it is up.

exToolBarButtonUpForeColor 152
exToolBarButtonUpForeColor. Specifies the
foreground color of the toolbar's button while it is
up.

exToolBarButtonDownBackColor153
exToolBarButtonDownBackColor. Specifies the
visual appearance of the toolbar's button while it is
down.

exToolBarButtonDownForeColor154
exToolBarButtonDownForeColor. Specifies the
foreground color of the toolbar's button while it is

down.

exToolBarButtonHotBackColor155
exToolBarButtonHotBackColor. Specifies the visual
appearance of the toolbar's button while the cursor
hovers it.

exToolBarButtonHotForeColor 156
exToolBarButtonHotForeColor. Specifies the
foreground color of the toolbar's button while the
cursor hovers it.

constants CaptionSingleLineEnum
The CaptionSingleLineEnum type defines whether the element's caption is displayed on a
single or multiple lines. The (ExtraCaptionSingleLine/)CaptionSingleLine property retrieves
or sets a value indicating whether the element's (extra/)caption is displayed using one
line, or multiple lines. The CaptionSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the element's caption is displayed on
a single line. In this case any \r\n or
 HTML
tags is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the element's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the element's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants CheckStateEnum
The CheckStateEnum type specifies the states of the element's check-box. The Checked
property specifies the state of the element's check box. Use the ShowCheckBox property
to show or hide the element's checkbox. The CheckStateEnum type supports the following
values:

Name Value Description

exUnchecked 0
Specifies whether the element is unchecked. The
Background(exCheckBoxState0) Specifies the
visual appearance for the check box in 0 state.

exChecked 1
Specifies whether the element is checked. The
Background(exCheckBoxState1) Specifies the
visual appearance for the check box in 1 state.

exPartialChecked 2

(reserved) Specifies whether the element is partial-
checked. The Background(exCheckBoxState2)
Specifies the visual appearance for the check box in
2 state.

constants ContentAlignmentEnum
The ContentAlignmentEnum type specifies the object's alignment relative to the corners.
The ContentAlignmentEnum type supports the following values:

Name Value Description

exTopLeft 0 Content is vertically aligned at the top, and
horizontally aligned on the left.

exTopCenter 1 Content is vertically aligned at the top, and
horizontally aligned at the center.

exTopRight 2 Content is vertically aligned at the top, and
horizontally aligned on the right.

exMiddleLeft 16 Content is vertically aligned in the middle, and
horizontally aligned on the left.

exMiddleCenter 17 Content is vertically aligned in the middle, and
horizontally aligned at the center.

exMiddleRight 18 Content is vertically aligned in the middle, and
horizontally aligned on the right.

exBottomLeft 32 Content is vertically aligned at the bottom, and
horizontally aligned on the left.

exBottomCenter 33 Content is vertically aligned at the bottom, and
horizontally aligned at the center.

exBottomRight 34 Content is vertically aligned at the bottom, and
horizontally aligned on the right.

constants CoordEnum
The CoordEnum type defines the type of coordinates the elements of the surface supports.
The Coord property specifies the type of coordinates the elements of the surface display in.
The CoordEnum type supports the following values:

Name Value Description

exDefCoord 0

The positive coordinates are shown right-down to
origin of the surface. The following screen shot
shows the surface using default coordinates:

exCartesian 1

The elements show in Cartesian coordinates. The
positive coordinates are shown right-up to origin of
the surface. The following screen shot shows the
surface using Cartesian coordinates:

exAllowPositiveOnly 16

Only the positive panel of the surface is shown. The
exAllowPositiveOnly flag can be combined with
exDefCoord or exCartesian value. For instance, the
exCartesian + exAllowPositiveOnly indicates that
surface displays only the positive coordinates in
Cartesian system.

constants DefArrangeEnum
The DefArrangeEnum type specifies the options of the Arrange method. The DefArrange
property specifies a property of Arrange method. Changing any of the following properties
has effect at the next Arrange call. The DefArrangeEnum type supports the following
values:

Name Value Description

exDefArrangeDir 0

Specifies the direction to auto-arrange the
elements. By default, the exDefArrangeDir is 0,
which indicates that the elements are horizontally
arranged. The exDefArrangeDir property could be
any of the following:

0, horizontal arrangement
any other value, specifies a vertical
arrangement.

(long expression)

exDefArrangeDX 1

Specifies the distance between two auto-arranged
elements on horizontal axis. By default, the
exDefArrangeDX property is 24 pixels. You can use
the exDefArrangeDX to increase or decrease the
distance of the arranged elements.

(long expression)

exDefArrangeDY 2

Specifies the distance between two auto-arranged
elements on vertical axis. By default, the
exDefArrangeDY property is 18 pixels. You can use
the exDefArrangeDX to increase or decrease the
distance of the arranged elements.

(long expression)

exDefArrangeAlign 3

Specifies the alignment of the elements relative to
incoming/outgoing elements during the Arrange
operation. By default, the exDefArrangeAlign
property is CenterAlignment, which indicates that
the elements are centered relative to
incoming/outgoing elements

(AlignmentEnum expression)

exDefArrangeCompact 4
exDefArrangeCompact. Specifies whether the
elements should be compacted, during the Arrange
operation.

constants EdgeAlignmentEnum
The EdgeAlignmentEnum type specifies the alignment of the object to the edges of the
parent. The EdgeAlignmentEnum type supports the following values:

Name Value Description
exAlignLeft 0 The object is aligned to the left edge.
exAlignRight 1 The object is aligned to the right edge.
exAlignTop 2 The object is aligned to the top edge.
exAlignBottom 3 The object is aligned to the bottom edge.

constants EditEnum
The EditEnum type specifies the caption to be edited on the element. The Part parameter
of the Edit method specifies the caption of the element to be edited. The EditEnum type
supports the following values:

Name Value Description
exEditCaption 0 Edits the element's caption.
exEditExtraCaption 1 Edits the element's extra caption.

constants ElementHostTypeEnum
The ElementHostTypeEnum type defines the type of nodes that you can put on the surface.
The ElementHostTypeEnum type supports the following values:

Name Value Description

exElementHostDefault 0 Specifies the default element. Use the Caption
property to specify the element's caption.

exElementHostWindow 1
Specifies an element that hosts a window. Use the
Window property to associate an existent window
with the current element.

exElementHostControl 2
Specifies an element that hosts a control. Use the
Control/License property to associate an inner
control or an ActiveX control.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc

exCFBitmap 2 A bitmap compatible with Windows 2.X

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB)

exCFPalette 9 A color-palette handle
exCFEMetafile 14 A Windows enhanced metafile

exCFFiles 15 A collection of files. Use Files property to get the
collection of files

exCFRTF -16639A RTF document

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event.

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648Not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants HitTestCodeEnum
The HitTestCodeEnum type specifies the parts of the element being handled by the
HitTestFromPoint property. The exHitTestClient... flags can be combined with any other
flags. The HitTestCodeEnum type supports the following values:

Name Value Description
exHitTestInvalid -1 Invalid hit-test code.
exHitTestMargin 0 Indicates a margin of the element.
exHitTestStatus 1 Indicates the status part of the element.
exHitTestClient 2 Indicates the client part of the element.
exHitTestPicture 3 Indicates a picture of the element.
exHitTestCaption 4 Indicates the caption of the element.
exHitTestExtraCaption 5 Indicates the extra caption of the element.
exHitTestCheckBox 6 Indicates the check-box of the element.
exHitTestGlyph 7 Indicates the glyph of the element.
exHitTestMask 255 Indicates the mask for the hit-test code.
exHitTestClientTopLeft 0 Indicates the top-left portion of the object.
exHitTestClientTopCenter 256 Indicates the top-center portion of the object.
exHitTestClientTopRight 512 Indicates the top-right portion of the object.
exHitTestClientMiddleLeft 4096 Indicates the middle-left portion of the object.
exHitTestClientMiddleCenter 4352 Indicates the midle-center portion of the object.
exHitTestClientMiddleRight 4608 Indicates the midle-right portion of the object.
exHitTestClientBottomLeft 8192 Indicates the bottom-left portion of the object.
exHitTestClientBottomCenter 8448 Indicates the bottom-center portion of the object.
exHitTestClientBottomRight 8704 Indicates the bottom-right portion of the object.

constants LayoutChangingEnum
The LayoutChangingEnum type specifies the operations that the user performs on the
surface. The LayoutStartChanging event occurs when a specified operation begins. The
LayoutEndChanging event notifies that the specified operation ends. The
LayoutChangingEnum type supports the following values.

Name Value Description

exSurfaceMove 0

The user moves/scrolls the surface to a new
position. The AllowMoveSurface property specifies
the keys combination to allow user to move / scroll
the surface.

exSurfaceZoom 1

The user magnifies or shrinks the surface
(zooming). The AllowZoomSurface property
specifies the keys combination to allow user to
zoom the surface.

exSurfaceHome 2
The user restores the surface to its original view.
The Home method restores the view to its original
state (position and zoom).

exResizeObject 3 The user resizes an object on the surface.
exMoveObject 4 The user moves an object on the surface.
exSelectObject 5 The user selects objects on the surface.

exSelectNothing 6

The user selects nothing on the surface. The
AllowSelectNothing property specifies the keys
combination to allow user to select nothing on the
surface.

exCreateObject 7 The user creates objects on the surface.
exEditObject 8 The user edits the element's caption.

exLinkObjects 9
The user links elements. The AllowLinkObjects
property specifies the keys combination to allow
user to link elements on the surface.

exLinkControlPoint 19 The user changes the link's control points.

exFocusLink 20

The user clicks a link (the focused link is being
updated). The FocusLink property retrieves or
changes the current link that is currently focused
(selected or active) within the control.

exUndo 33
An Undo operation is performed (CTR + Z). Occurs
only if the control's AllowUndoRedo property is

True.

exRedo 34
A Redo operation is performed (CTR + Y). Occurs
only if the control's AllowUndoRedo property is
True.

exUndoRedoUpdate 32 The Undo/Redo queue is updated.

constants LinesStyleEnum
The LinesStyleEnum type specifies the type of lines the control can show. The
LinesStyleEnum type supports the following values:

Name Value Description
exNoLines -1 No lines are shown.
exLinesDot 0 The lines shows as dotted.
exLinesHDot4 1 The horizontal lines shows dotted.
exLinesVDot4 2 The vertical lines are shown as dotted.
exLinesDot4 3 The lines are shown as solid.
exLinesHDash 4 The horizontal lines are shown as dashed.
exLinesVDash 8 The vertical lines are shown as dashed.
exLinesDash 12 The lines are shown as dashed.
exLinesHSolid 16 The horizontal lines are shown as solid.
exLinesVSolid 32 The vertical lines are shown as solid.
exLinesSolid 48 The lines are shown as solid.

exLinesThick 256
The lines are shown ticker. This flag can be
combined with any other flags, so the line is shown
ticker.

exLinesThicker 768
The lines are shown ticker. This flag can be
combined with any other flags, so the line is shown
ticker.

constants LinkControlPointEnum
The LinkControlPointEnum type specifies the link's control points. The LinkControlPointEnum
type supports the following values:

Name Value Description
exNoControlPoint 0 The link displays no control points.

exStartControlPoint 1

The link shows control point that changes the link's
StartPos property. Can be combined with
exAllowChangeFrom flag. The exStartControlPoint
point is marked with black squares as shown in the
following picture:

exEndControlPoint 2

The link shows control point that changes the link's
EndPos property. Can be combined with
exAllowChangeTo flag. The exEndControlPoint point
is marked with black squares as shown in the
following picture:

Defines the corners of the link's path. You can
remove a exControlPoint points by dragging to
another, so intermediate exControlPoint points are
removed. You can move all control points of the link

exControlPoint 4

at once, if SHIFT key is pressed. The
exControlPoint points are marked black circles as
shown in the following picture:

exMiddleControlPoint 8

Defines the link's middle control points that are
displayed between two exControlPoint points, to let
the use add new exControlPoint points, to redefine
the link's path. The exMiddleControlPoint points are
marked with gray circles as shown in the following
picture:

exOrthoArrange 16

The exOrthoArrange flag specifies that the lines of
the link are orthogonal arranged when the user drag
and drop the middle or control-points of the path
(excludes the start/end control-points). The flag has
effect only for links that contains horizontal/vertical
lines (orthogonal link). The cursor is changing to
size-all when the mouse pointer hovers the control-
points (excludes the start/end control-points), to
size WE or NS when the mouse pointer hovers the
control-points, else it is changed to hand cursor.
The user can freely customize the link by keeping

the CTRL key down.

exAllowChangeFrom 32

The exAllowChangeFrom(0x20) flag allows the user
to adjust the link's from element by dragging and
dropping the start control point (requires the
exStartControlPoint flag)

exAllowChangeTo 64

The exAllowChangeTo(0x40) flag indicates that the
user can adjust the link's to element by dragging
and dropping the end control point (requires the
exEndControlPoint flag)

constants LinkStyleEnum
The LinkStyleEnum type defines the style of lines to be shown on the surface. The
LinkStyleEnum type supports the following values:

Name Value Description
exLinkSolid 0 The link is solid.
exLinkDash 1 The link is dashed.
exLinkDot 2 The link is dotted.
exLinkDashDot 3 The link has alternating dashes and dots.
exLinkDashDotDot 4 The link has alternating dashes and double dots.

constants MoveNeighborsEnum
The MoveNeighborsEnum type specifies how the elements are shifted once an element is
moved. The The AllowMoveNeighbors property indicates whether the neighbor elements
are shifted once the selection is moved or resized, so they won't intersect the dragging
objects. The MoveNeighborsEnum type supports the following values:

Name Value Description
exDisallowMoveNeighbors 0 No element is moved.

exMoveNeighborsVertically 1 The neighbor elements of the element that's
currently moving, are shifted vertically.

exMoveNeighborsHorizontally 2 The neighbor elements of the element that's
currently moving, are shifted horizontally.

exMoveNeighborsByDragDir 3
The neighbor elements of the element that's
currently moving, are shifted based on the direction
of moving.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the BackgroundExtValue property indicates the index of the part of
the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder
helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BodyBackgroundExt property:

After calling the BodyBackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants PaddingEdgeEnum
The PaddingEdgeEnum type defines the left, top, right and bottom padding to display the
object. The PaddingEdgeEnum type defines the following predefined values:

Name Value Description
exPaddingAll -1 Indicates all margins of the object.
exPaddingLeft 0 Indicates the left margin of the object.
exPaddingTop 1 Indicates the top margin of the object.
exPaddingRight 2 Indicates the right margin of the object.
exPaddingBottom 3 Indicates the bottom margin of the object.

constants PatternEnum
The PatternEnum type specifies the type of patterns that the element can fill with. The Type
property indicates the pattern to fill the element. The Color property indicates the color to fill
the element's pattern, while the FrameColor property indicates the color to show the
element's border/frame if the Type property includes the exPatternFrame flag.

The PatternEnum type supports the following values:

Name Value Description
exPatternEmpty 0 The pattern is not visible.
exPatternSolid 1
exPatternDot 2
exPatternShadow 3
exPatternNDot 4
exPatternFDiagonal 5
exPatternBDiagonal 6
exPatternDiagCross 7
exPatternVertical 8
exPatternHorizontal 9
exPatternCross 10
exPatternBrick 11
exPatternYard 12
exPatternF2Diagonal 13
exPatternB2Diagonal 14

exPatternFrame 256

. The
exPatternFrame can be combined with any other
value. The FrameColor property indicates the color
to show the frame.

exPatternFrameThick 768

. The
exPatternFrameThick can be combined with any
other value. The FrameColor property indicates the
color to show the frame.

constants PictureDisplayEnum
The PictureDisplayEnum type defines the way the control's Picture is arranged on the
control. The Picture property assign a picture to be displayed on the control's background.
The PictureDisplay property indicates how the picture is layout on the control's background.
The PictureDisplayEnum type supports the following values:

Name Value Description

UpperLeft 0 The picture is vertically aligned at the top, and
horizontally aligned on the left.

UpperCenter 1 The picture is vertically aligned at the top, and
horizontally aligned at the center.

UpperRight 2 The picture is vertically aligned at the top, and
horizontally aligned on the right.

MiddleLeft 16 The picture is vertically aligned in the middle, and
horizontally aligned on the left.

MiddleCenter 17 The picture is vertically aligned in the middle, and
horizontally aligned at the center.

MiddleRight 18 The picture is vertically aligned in the middle, and
horizontally aligned on the right.

LowerLeft 32 The picture is vertically aligned at the bottom, and
horizontally aligned on the left.

LowerCenter 33 The picture is vertically aligned at the bottom, and
horizontally aligned at the center.

LowerRight 34 The picture is vertically aligned at the bottom, and
horizontally aligned on the right.

Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ShowExtendedLinksEnum
The ShowExtendedLinksEnum type defines how the links are shown on the surface. The
ShowLinks property specifies the way the control shows the link on the surface. The
ShowExtendedLinksEnum type supports the following values.

Name Value Description

exHideLinks 0

Hides the links on the surface. Use the Visible
property of the Link to hide a specific link.

exShowLinks -1

Shows the links on the surface. The exShowLinks
flag is equivalent with exShowDefaultLinks +
exShowLinksFront, it is provided for the backward
compatibility only (boolean True has the value of -1
)

exShowExtendedLinks 1

Shows the extended links on the surface. This flag
is valid for rectangular links only (
exLinkRectangular).

exShowDefaultLinks 2

Shows the default links on the surface.

exShowLinksFront 16

Shows the links on the front. This flag can be
combined with the exShowLinks,
exShowExtendedLinks, exShowCrossLinksRect,
exShowCrossLinksTriangle, exShowCrossLinksMixt
or exShowDefaultLinks. If the exShowLinksFront is
missing, the links are shown on the control's
background, so elements may show over the links.

exShowCrossLinksRect 32 exShowCrossLinksRect. Shows rectangular cross
links.

exShowCrossLinksTriangle 64 exShowCrossLinksTriangle. Shows triangular cross
links.

exShowCrossLinksMixt 96 exShowCrossLinksMixt. Shows mixed cross links.

constants ShowHandCursorOnEnum
The ShowHandCursorOnEnum type specifies the parts of the element where the hand
cursor may be shown. The ShowHandCursorOn property specifies the parts of the control
where the hand cursor is shown when the mouse-pointer hovers it. The HandCursorClick
event occurs when the user clicks a part of the element. The ShowHandCursorOnEnum
type supports the following values:

Name Value Description

exShowHandCursorNone 0 Specifies that no hand cursor is shown when
hovering any anchor/icon/picture in the element.

exShowHandCursorPicture 1 Specifies that hand cursor is shown when hovering
a picture in the element.

exShowHandCursorIcon 2 Specifies that hand cursor is shown when hovering
an icon in the element.

exShowHandCursorAnchor 4 Specifies that hand cursor is shown when hovering
any anchor on the element.

exShowHandCursorCheck 8 Specifies that hand cursor is shown when hovering
the check-box of the element.

exShowHandCursorPictures 256 Specifies that hand cursor is shown when hovering
the pictures.

exShowHandCursorExtraPictures512 Specifies that hand cursor is shown when hovering
the extra pictures.

exShowHandCursorCaption 1024 Specifies that hand cursor is shown when hovering
pictures of the element's caption.

exShowHandCursorExtraCaption2048 Specifies that hand cursor is shown when hovering
pictures of the element's extra caption.

exShowHandCursorAnchorAll 3076 Specifies that the hand cursor is shown when
hovering any anchor on the element.

exShowHandCursorAll 3855
Specifies that the hand cursor is shown when
hovering any icon, picture, anchor, check parts of
the element.

constants ShowLinksEnum
The ShowLinksEnum type specifies the way the incoming, outgoing or collapsed links are
shown. The ShowLinksColor, ShowLinksStyle and ShowLinksWidth properties specifies the
color, style and width of incoming, outgoing or collapsed links (relative to selected elements
). The ShowLinksEnum type supports the following values.

Name Value Description

exShowLinksStartFrom 1
Shows the links that starts from selected elements.
Use this flag to show the outgoing links of selected
elements with a different color, style or width.

exShowLinksEndTo 2
Shows the links that ends on the selected elements.
Use this flag to show the incoming links of selected
elements with a different color, style or width.

exShowUnselectedLinks 4 Shows the links that are not related to any selected
element.

exShowCollapsedLinks 8

Shows the collapsed links. Use this flag to show the
collapsed links with a different color, style or width.
The ShowLinksOnCollapse property shows when
the collapsed links ate shown or hidden.

exUpdateColorLinksOnly 16 (reserved) Prevents applying the link's color to
related elements.

constants ShowLinkTypeEnum
The ShowLinkTypeEnum type defines the type of links the control can show between
element on the surface. The control's ShowLinksType property specifies the type of the
links to be shown on the surface. The ShowLinkTypeEnum type supports the following
values:

Name Value Description

exLinkRectangular 0

exLinkRound -1

.

exLinkDirect 1

exLinkStraight 2

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
Use the VisualAppearance property to access the Appearance object of the control. Also,
you can use the VisualDesign property to design the visual appearance of the control at
design mode. The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows. Let's
say that the control requests painting the {10, 10, 30,
20} area, a rectangle with the width of 20 pixels, and
the height of 10 pixels, the skin will be displayed on
the {14,10,26,20} as each coordinates in the "CP"
syntax is added to the displayed rectangle, so the
skin looks smaller. This way you can apply different
effects to your objects in your control. The following
screen shot shows the control's header when using a
"CP:1 -6 -6 6 6", that displays the original skin on
larger rectanges .

the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6

ETS_ASSIST = 7
EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3

LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3
UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6

SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5
TTILES_NORMAL = 1

TABP_TOPTABITEMLEFTEDGE = 6
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5
TUTS_NORMAL = 1

TKP_THUMBTOP = 5 TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3
RBS_NORMAL = 1 RBS_HOT

WP_RESTOREBUTTON = 21 = 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4
SBS_NORMAL = 1 SBS_HOT

WP_SYSBUTTON = 13 = 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28

VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00
"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the

BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Element object
The Element object defines an object on the surface. The Element object supports the
following properties and methods:

Name Description

AllowChangeParent Gets or sets a value that indicates whether the element
can change its parent (by drag and drop).

AllowInsertChild Gets or sets a value that indicates whether the element
allows child elements (by drag and drop).

AutoHeight Gets the height of the element to fit its content (as if the
AutoSize property is True).

AutoSize Specifies if the element computes its size automatically.

AutoWidth Gets the width of the element to fit its content (as if the
AutoSize property is True).

BackColor Gets or sets a value that indicates the element's
background color.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the element's background using the EBN
string format.

BackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

BorderColor Gets or sets a value that indicates the element's border
color.

BorderPadding Returns or sets a value that indicates the padding of the
element's borders.

BringToFront Brings the element to front.

Caption Gets or sets a value that indicates the HTML caption to be
displayed on the element.

CaptionAlign Indicates the alignment of the element's caption.

CaptionSingleLine Specifies if the element's caption is displayed on single or
multiple lines.

CheckBoxAlign Indicates the alignment of the element's checkbox.

Checked Gets or sets a value that indicates the element's check-
box state.

ChildCount Counts the number of child elements.

ChildPosition Specifies the position of the element while it is a child
element.

Children Returns a safe array of child elements.

ClientPadding Returns or sets a value that indicates the padding of the
element's client.

Control Specifies the identifier of the inner control hosted by the
current element.

Edit Edits the element.

ElementFormat Specifies the way the control shows the parts of the
element.

Enabled Gets or sets a value that indicates whether the element is
enabled or disabled.

EndUpdateElement Adds programmatically updated properties of the element
to undo/redo queue.

EnsureVisible Scrolls the surface to ensure that the current element fits
the control's visible area.

Expanded Expands or collapses the element.

ExtraCaption Gets or sets a value that indicates the extra HTML caption
to be displayed on the element.

ExtraCaptionAlign Indicates the alignment of the element's extra caption.

ExtraCaptionSingleLine Specifies if the element's extra caption is displayed on
single or multiple lines.

ExtraPictures Specifies the list of extra pictures to be displayed on the
element.

ExtraPicturesAlign Indicates the alignment of the element's extra picture.
FirstChild Gets the first child of the element.

ForeColor Gets or sets a value that indicates the element's
foreground color.

Height Specifies the height of the element.
ID Specifies the element's unique identifier.
IncomingLinks Returns a safe array of incoming links.

InflateSize Increases or decreases the width and height of the
element.

LastChild Gets the last child of the element.
Level Specifies the level of the element in a hierarchy.

License
Indicates the runtime license required to create the inner
control.

MaxHeight Specifies the maximum height of the element.
MaxWidth Specifies the maximum width of the element.
MinHeight Specifies the minimum height of the element.
MinWidth Specifies the minimum width of the element.
MoveTo Moves the element to a new position.

NextSiblingChild Retrieves the next sibling of the element in the parent's
child list

NextVisibleChild Retrieves the next visible element in the parent's child list
Object Returns the inner object hosted by the current element.
OutgoingLinks Returns a safe array of outgoing links.

OverviewColor Gets or sets a value that indicates the element's overview
color.

Padding Returns or sets a value that indicates the padding of the
element's background.

Parent Specifies the element's parent.

PathTo Determines if there is any path from the current element to
the specified element.

Pattern Specifies the pattern to be shown on the element's
background.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the element's background

Pictures Specifies the list of pictures to be displayed on the
element.

PicturesAlign Indicates the alignment of the element's picture.

PrevSiblingChild Retrieves the prev sibling of the element in the parent's
child list

PrevVisibleChild Retrieves the prev visible element in the parent's child list

Resizable Gets or sets a value that indicates whether the user can
resize the element.

ScrollTo Moves or scrolls the surface, so the current element aligns
to the specified corner.

Selectable Indicates if the element is selectable.

Selected Indicates if the element is selected or unselected.
SendToBack Sends the element to the back.

ShowCheckBox Gets or sets a value that indicates whether the element
shows or hides the check-box.

ShowHandCursorOn Specifies whether the hand cursor is shown when hovering
the element.

StartUpdateElement
Starts changing properties of the element, so
EndUpdateElement method adds programmatically
updated properties to undo/redo queue.

StatusAlign Specifies the alignment of the status inside the element.

StatusColor Gets or sets a value that indicates the element's status
color.

StatusPadding Returns or sets a value that indicates the padding of the
element's status.

StatusPattern Specifies the pattern of the element's status
StatusSize Specifies the size of the status inside the element.

ToolTip Gets or sets a value (tooltip) that's displayed once the
cursor hovers the element.

ToolTipTitle Gets or sets a value (title) that's displayed once the cursor
hovers the element.

Type Specifies the element's type.
UserData Indicates any extra data associated with the element.
Visible Shows or hides the element.
VisibleChildCount Counts the number of visible child elements.
VisibleChildren Returns a safe array of visible child elements.
Width Specifies the width of the element.

Window Returns or sets the handle of the window to be hosted by
the element.

X Specifies the element's x-position.
Y Specifies the element's y-position.

property Element.AllowChangeParent as Boolean
Gets or sets a value that indicates whether the element can change its parent (by drag and
drop).

Type Description

Boolean A Boolean expression that specifies whether the element
can change its parent at runtime (by drag and drop).

By default, the AllowChangeParent property is True. Use the AllowChangeParent property
to prevent changing the element's Parent at runtime. The AllowInsertChild property
specifies whether other elements can be inserted as child elements of the current element.
The Parent property indicates the element's parent. Use the AllowInsertObject property to
specify whether the elements can be be dropped over other elements to change its parent
or the children list. The Children property specifies the list of child elements.

property Element.AllowInsertChild as Boolean
Gets or sets a value that indicates whether the element allows child elements (by drag and
drop).

Type Description

Boolean A Boolean expression that indicates whether the element
allows child elements (by drag and drop)

The AllowInsertChild property specifies whether other elements can be inserted as child
elements of the current element. Use the AllowChangeParent property to prevent changing
the element's Parent at runtime. The Parent property indicates the element's parent. Use
the AllowInsertObject property to specify whether the elements can be be dropped over
other elements to change its parent or the children list. The Children property specifies the
list of child elements.

property Element.AutoHeight as Long
Gets the height of the element to fit its content (as if the AutoSize property is True).

Type Description

Long A long expression that specifies the height required to
display the element's content.

The AutoHeight property gets the height of the element's content as if the AutoSize property
is True. The AutoWidth property gets the width required to display the element's content.
The Width / Height property specifies the width / height of the element while the AutoSize
property is False.

property Element.AutoSize as Boolean
Specifies if the element computes its size automatically.

Type Description

Boolean A Boolean expression that specifies whether the size of
the element based on its content.

By default, the AutoSize property is True, if it the Type is exElementHostDefault. While the
AutoSize property is True, the element is not resizable. Its size is changed based on the
element's content: caption, extra-caption, icons, and so on. The InflateSize property
indicates the size to be added to the default auto-size for increasing the size of the element.
The Padding, BorderPadding and StatusPadding properties specifies the padding to be
applied on client, border and status parts of the element. The Caption property specifies
the element's caption. The ExtraCaption property specifies the element's extra caption. The
ShowCheckBox property indicates whether the element's checkbox is visible or hidden. If
AutoSize property is False, you can use the Resizable on False to prevent resizing an
element. If AutoSize property is True, the Width and the Height can not be changed
programmatically. The MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies
the min/max size of the element. Use the AllowResizeObject property to specify whether
the element can be resized at runtime.

property Element.AutoWidth as Long
Gets the width of the element to fit its content (as if the AutoSize property is True).

Type Description

Long A long expression that specifies the width required to
display the element's content.

The AutoWidth property gets the height of the element's content as if the AutoSize property
is True. The AutoHeight property gets the height required to display the element's content.
The Width / Height property specifies the width / height of the element while the AutoSize
property is False.

property Element.BackColor as Color
Gets or sets a value that indicates the element's background color.

Type Description

Color

A Color expression that specifies the color to show
element's background. The last 7 bits in the high significant
byte of the color indicates the identifier of the skin being
used to paint the part. Use the Add method to add new
skins to the control. The -1 indicates that the element's
background is transparent.

By default, the BackColor property is -1, which indicates that the element's background is
transparent. The BackColor property specifies the element's background color.
Background(exElementBackColor) property specifies the default background color / visual
appearance. The ForeColor property specifies the element's foreground color. The Pattern
property defines the pattern to be shown on the control's background. The Padding
property defines the padding of the element. The BorderColor property specifies the color
to show the border for a specific element. The StatusColor property specifies the color or
the visual appearance to show the element's status part. The Picture property specifies the
picture to be shown on the element's background. The PictureDisplay property specifies the
way the element's picture is displayed on the element's background.

property Element.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BodyBackgroundExt property is empty. Using the BodyBackgroundExt
property you have unlimited options to show any HTML text, images, colors, EBNs,
patterns, frames anywhere on the object's background. For instance, let's say you need to
display more colors on the object's background, or just want to display an additional
caption or image to a specified location on the object's background. The EBN String
Format defines the parts of the EBN to be applied on the object's background. The EBN is
a set of UI elements that are built as a tree where each element is anchored to its parent
element. Use the BackgroundExtValue property to change at runtime any UI property for
any part that composes the EBN String Format. The BodyBackgroundExt property is
applied right after setting the object's backcolor, and before drawing the default object's
captions, icons or pictures.

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BodyBackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="

https://exontrol.com/exbutton.jsp

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BodyBackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BodyBackgroundExt property such as "left[10%]
(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Element.BackgroundExtValue(Index as IndexExtEnum, Property
as BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part
that composes the EBN String Format. The BackgroundExtValue property has no effect if
the BodyBackgroundExt property is empty (by default). The idea is as follows: first you
need to decide the layout of the UI to put on the object's background, using the

BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant

expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Element.BorderColor as Color
Gets or sets a value that indicates the element's border color.

Type Description

Color

A Color expression that specifies the color to show
element's border. The last 7 bits in the high significant byte
of the color indicates the identifier of the skin being used
to paint the part. Use the Add method to add new skins to
the control.

By default, the BorderColor is -1, which indicates that the default border color is applied.
The Background(exElementBorderColor) property specifies the default border color / visual
appearance. Use the BorderColor property to specify a different border color. The
BorderPadding property specifies the border padding. The BackColor property specifies
the element's background color. The ForeColor property specifies the element's foreground
color.

property Element.BorderPadding(Edge as PaddingEdgeEnum) as Long
Returns or sets a value that indicates the padding of the element's borders.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be changed

Long A long expression that defines the padding

By default, BorderPadding property is 1. The BorderPadding property specifies the padding
to be applied on borders, to define the position of the status and the body parts of the
element. The StatusPadding property specifies the status padding. The Padding property
specifies the body padding.

The following screen shot shows the element when BorderPadding is 1 (default):

The following screen shot shows the element when BorderPadding is 0:

The following screen shot shows the element when BorderPadding is 4:

method Element.BringToFront ()
Brings the element to front.

Type Description

The BringToFront method brings the element to the front. The SendToBack method sends
the current element to the back. For instance, if two element gets intersected, you can use
the BringToFront method to bring one element on front, or SendToBack method to send the
element on the back. The BringToFront and SendToBack methods changes the drawing
order of the elements.

property Element.Caption as String
Gets or sets a value that indicates the HTML caption to be displayed on the element.

Type Description

String A String expression that defines the HTML caption to be
displayed on the element's background.

By default, the Caption property is empty. Use the Caption property to define the label or
caption to be displayed on the element's background. The CaptionAlign property specifies
the alignment of the caption relative to the edges of the element. The CaptionSingleLine
property specifies whether the element's caption is displayed on single or multiple lines. The
ExtraCaption property defines the second or the extra caption to be displayed on the
element's background. The Images method loads icons to be displayed on the control's
surface. The HTMLPicture property loads and assigns a picture to a key to be used on
control's surface. Use the Pictures property to display one or more icons, picture to the
element. Use the ElementFormat property to define how the parts of the element are
displayed.

The Caption property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA

about:blank

string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.

key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Element.CaptionAlign as ContentAlignmentEnum
Indicates the alignment of the element's caption.

Type Description

ContentAlignmentEnum

A ContentAlignmentEnum expression that specifies the
alignment of the element's caption relative to is edges.
The CaptionAlign property supports additionally the
following flag:

exWidth (4), to distribute the text on the element's
width

The CaptionAlign property specifies the alignment of the caption relative to the edges of the
element. The CaptionSingleLine property specifies whether the element's caption is
displayed on single or multiple lines. Use the Caption property to define the label or caption
to be displayed on the element's background. The ExtraCaption property defines the
second or the extra caption to be displayed on the element's background. The Images
method loads icons to be displayed on the control's surface. The HTMLPicture property
loads and assigns a picture to a key to be used on control's surface.

property Element.CaptionSingleLine as CaptionSingleLineEnum
Specifies if the element's caption is displayed on single or multiple lines.

Type Description

CaptionSingleLineEnum
A CaptionSingleLineEnum expression that specifies
whether the element's caption is displayed on single or
multiple lines.

By default, the CaptionSingleLine property is exCaptionSingleLine. The CaptionSingleLine
property specifies whether the element's caption is displayed on single or multiple lines.
Use the Caption property to define the label or caption to be displayed on the element's
background. The CaptionAlign property specifies the alignment of the caption relative to the
edges of the element. The ExtraCaption property defines the second or the extra caption to
be displayed on the element's background. The Images method loads icons to be displayed
on the control's surface. The HTMLPicture property loads and assigns a picture to a key to
be used on control's surface.

property Element.CheckBoxAlign as ContentAlignmentEnum
Indicates the alignment of the element's checkbox.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
alignment of the checkbox.

By default, the CheckBoxAlign property is exMiddleLeft. Use the CheckBoxAlign property to
align the element's checkbox. The CheckElement event notifies your application once the
user clicks the element's check-box. The ShowCheckBox property specifies whether the
element displays the check-box. The Checked property indicates whether the element is
checked or unchecked. The Background(exCheckBoxState0) Specifies the visual
appearance for the check box in 0 state. The Background(exCheckBoxState1) Specifies the
visual appearance for the check box in 1 state.

property Element.Checked as CheckStateEnum
Gets or sets a value that indicates the element's check-box state.

Type Description

CheckStateEnum A CheckStateEnum expression that specifies the state of
the element's check box.

By default, the Checked property is 0 (unchecked). The Checked property specifies the
state of the element's check box. Use the ShowCheckBox property to show or hide the
element's checkbox. The CheckElement event occurs once the state of the element's
checkbox is changed. Use the CheckBoxAlign property to align the element's checkbox. The
Background(exCheckBoxState0) Specifies the visual appearance for the check box in 0
state. The Background(exCheckBoxState1) Specifies the visual appearance for the check
box in 1 state.

property Element.ChildCount as Long
Counts the number of child elements.

Type Description

Long A Long expression that indicates the count of child
elements.

The ChildCount property counts the number of child elements. The VisibleChildCount
property specifies the list of visible children. The Children property specifies the list of child
elements. Use the Parent property to change the element's parent. The AllowInsertChild
property of the Element object specifies whether the element supports adding child
elements at runtime. The AllowChangeParent property of the Element object specifies
whether the element can change its parent at runtime. The ParentChangeElement event
occurs when the element's parent is changed.

property Element.ChildPosition as Long
Specifies the position of the element while it is a child element.

Type Description

Long A Long expression that specifies the position of the
element in the parent's children collection.

The ChildPosition property indicates the position of the element in the parent's children
collection. Use the Parent property to change the element's parent. The AllowInsertChild
property of the Element object specifies whether the element supports adding child
elements at runtime. The AllowChangeParent property of the Element object specifies
whether the element can change its parent at runtime. The ParentChangeElement event
occurs when the element's parent is changed. The Expanded property expands or collapses
a node.

The following screen shot shows the elements arranged as a tree:

property Element.Children as Variant
Returns a safe array of child elements.

Type Description

Variant
A Safe-Array of elements indicating the list of child
elements. You can use the for-each statement to
enumerate the child elements of specified node.

The Children property specifies the list of child elements. The VisibleChildren property
specifies the list of visible child elements. Use the Parent property to change the element's
parent. The AllowInsertChild property of the Element object specifies whether the element
supports adding child elements at runtime. The AllowChangeParent property of the Element
object specifies whether the element can change its parent at runtime. The
ParentChangeElement event occurs when the element's parent is changed.

The following screen shot shows the elements arranged as a tree:

property Element.ClientPadding(Edge as PaddingEdgeEnum) as Long
Returns or sets a value that indicates the padding of the element's client.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be changed.

Long A long expression that specifies the padding.

The ClientPadding property specifies the padding while the element's Type property is
exElementHostWindow or exElementHostControl. The ClientPadding property has no effect
if the element's Type property is exElementHostDefault (by default). The Padding property
specifies the body/background padding if the element's Type property is
exElementHostDefault (by default). The BorderPadding property specifies the padding to
be applied on borders, to define the position of the status and the body parts of the
element. The StatusPadding property specifies the status padding.

property Element.Control as String
Specifies the identifier of the inner control hosted by the current element.

Type Description

String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

The control supports ActiveX hosting, or in other words, any element can host another
inside controls. The Control property has effect only if the element's Type property is set on
exElementHostControl. If you insert a runtime-licensed control you must specify the License
property before calling the Control property. Use the ElementFormat property to specify the
area where the inner control is displayed. The Object property returns a reference to newly
created control. The control fires the OLEEvent event if an inside ActiveX control fires an
event. Use the InsertControl property to add a new Element object with the Type set on
exElementHostControl, that hosts an ActiveX control.

The Control property must be formatted in one of the following ways:

A ProgID such as "Exontrol.Grid"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

The look and feel of the inner ActiveX control depends on the identifier you are
using, and the version of the library that implements the ActiveX control, so you
need to consult the documentation of the inner ActiveX control you are inserting
inside the exSurface control. The License property indicates a string expression that
indicates the runtime license key for the component being inserted, if required. Only, the
vendor of the component you are going to use is able to give you such of runtime license,
so please contact the control's vendor for such of key. Your development license key is not
compatible with the runtime license key, so it can't be used here.

The following screen shot shows the surface with different inner controls:

The following VB sample creates an element that hosts the Exontrol.Button control:

Private Sub Surface1_CreateElement(ByVal Element As EXSURFACELibCtl.IElement)
 With Element
 .Type = exElementHostControl
 .ElementFormat = """client"""
 .Control = "Exontrol.Button"
 With .Object
 .Caption = "<sha ;;0>Button " & Surface1.Elements.Count
 End With
 End With
End Sub

The samples changes the element's Type to exElementHostControl, and after that specifies
the Control property to create the desired inner control.

The following samples shows how you can host the Exontrol.Button on the surface.

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 With .Add("ActiveX")
 .Type = 2

https://exontrol.com/exbutton.jsp
https://exontrol.com/exbutton.jsp

 .ElementFormat = """check"":18,""client"""
 .ShowCheckBox = True
 .Control = "Exontrol.Button"
 .Object.Caption = "<sha ;;0>button"
 .Height = 32
 .Width = 128
 End With
 End With
End With

VB6

With Surface1
 With .Elements
 With .Add("ActiveX")
 .Type = exElementHostControl
 .ElementFormat = """check"":18,""client"""
 .ShowCheckBox = True
 .Control = "Exontrol.Button"
 .Object.Caption = "<sha ;;0>button"
 .Height = 32
 .Width = 128
 End With
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 With .Add("ActiveX")
 .Type = exontrol.EXSURFACELib.ElementHostTypeEnum.exElementHostControl
 .ElementFormat = """check"":18,""client"""
 .ShowCheckBox = True
 .Control = "Exontrol.Button"
 .Object.Caption = "<sha ;;0>button"
 .Height = 32
 .Width = 128

 End With
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 With .Add("ActiveX")
 .Type = EXSURFACELib.ElementHostTypeEnum.exElementHostControl
 .ElementFormat = """check"":18,""client"""
 .ShowCheckBox = True
 .Control = "Exontrol.Button"
 .Object.Caption = "<sha ;;0>button"
 .Height = 32
 .Width = 128
 End With
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 EXSURFACELib::IElementPtr var_Element = var_Elements-
>Add("ActiveX",vtMissing,vtMissing,vtMissing,vtMissing,vtMissing);
 var_Element->PutType(EXSURFACELib::exElementHostControl);
 var_Element->PutElementFormat(L"\"check\":18,\"client\"");
 var_Element->PutShowCheckBox(VARIANT_TRUE);

 var_Element->PutControl(L"Exontrol.Button");
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXBUTTONLib' for the library: 'ExButton 1.0 Control
Library'

 #import <ExButton.dll>
 using namespace EXBUTTONLib;
*/
 ((EXBUTTONLib::IButtonPtr)(var_Element->GetObject()))->PutCaption(L"<sha
;;0>button");
 var_Element->PutHeight(32);
 var_Element->PutWidth(128);

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 Exsurfacelib_tlb::IElementPtr var_Element = var_Elements-
>Add(TVariant("ActiveX"),TNoParam(),TNoParam(),TNoParam(),TNoParam(),TNoParam());

 var_Element->Type =
Exsurfacelib_tlb::ElementHostTypeEnum::exElementHostControl;
 var_Element->ElementFormat = L"\"check\":18,\"client\"";
 var_Element->ShowCheckBox = true;
 var_Element->Control = L"Exontrol.Button";
 (IDispatch*)var_Element->Object->Caption = L"<sha ;;0>button";
 var_Element->Height = 32;
 var_Element->Width = 128;

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 exontrol.EXSURFACELib.Element var_Element =
var_Elements.Add("ActiveX",null,null,null,null,null);
 var_Element.Type =
exontrol.EXSURFACELib.ElementHostTypeEnum.exElementHostControl;

 var_Element.ElementFormat = "\"check\":18,\"client\"";
 var_Element.ShowCheckBox = true;
 var_Element.Control = "Exontrol.Button";
 // Add 'ExButton 1.0 Control Library' reference to your project.
 (var_Element.Object as exontrol.EXBUTTONLib.exbutton).Caption = "<sha
;;0>button";
 var_Element.Height = 32;
 var_Element.Width = 128;

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Elements = Surface1.Elements;
 var var_Element = var_Elements.Add("ActiveX",null,null,null,null,null);
 var_Element.Type = 2;
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 var_Element.ShowCheckBox = true;
 var_Element.Control = "Exontrol.Button";
 var_Element.Object.Caption = "<sha ;;0>button";
 var_Element.Height = 32;
 var_Element.Width = 128;
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 EXSURFACELib.Element var_Element =
var_Elements.Add("ActiveX",null,null,null,null,null);
 var_Element.Type =
EXSURFACELib.ElementHostTypeEnum.exElementHostControl;
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 var_Element.ShowCheckBox = true;
 var_Element.Control = "Exontrol.Button";
 // Add 'ExButton 1.0 Control Library' reference to your project.

 (var_Element.Object as EXBUTTONLib.Button).Caption = "<sha ;;0>button";
 var_Element.Height = 32;
 var_Element.Width = 128;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Element,com_Elements,com_Object;
 anytype var_Element,var_Elements,var_Object;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;
 var_Element = com_Elements.Add("ActiveX"); com_Element = var_Element;
 com_Element.Type(2/*exElementHostControl*/);
 com_Element.ElementFormat("\"check\":18,\"client\"");
 com_Element.ShowCheckBox(true);
 com_Element.Control("Exontrol.Button");
 var_Object = COM::createFromObject(com_Element.Object()); com_Object =
var_Object;
 com_Object.Caption("<sha ;;0>button");
 com_Element.Height(32);
 com_Element.Width(128);
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 with Add('ActiveX',Nil,Nil,Nil,Nil,Nil) do
 begin
 Type := EXSURFACELib.ElementHostTypeEnum.exElementHostControl;
 ElementFormat := '"check":18,"client"';

 ShowCheckBox := True;
 Control := 'Exontrol.Button';
 (Object as EXBUTTONLib.Button).Caption := '<sha ;;0>button';
 Height := 32;
 Width := 128;
 end;
 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 with Add('ActiveX',Null,Null,Null,Null,Null) do
 begin
 Type := EXSURFACELib_TLB.exElementHostControl;
 ElementFormat := '"check":18,"client"';
 ShowCheckBox := True;
 Control := 'Exontrol.Button';
 (IUnknown(Object) as EXBUTTONLib_TLB.Button).Caption := '<sha ;;0>button';
 Height := 32;
 Width := 128;
 end;
 end;
end

VFP

with thisform.Surface1
 with .Elements
 with .Add("ActiveX")
 .Type = 2
 .ElementFormat =
""+chr(34)+"check"+chr(34)+":18,"+chr(34)+"client"+chr(34)+""
 .ShowCheckBox = .T.
 .Control = "Exontrol.Button"

 .Object.Caption = "<sha ;;0>button"
 .Height = 32
 .Width = 128
 endwith
 endwith
endwith

dBASE Plus

local oSurface,var_Element,var_Elements

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 var_Element = var_Elements.Add("ActiveX")
 var_Element.Type = 2
 var_Element.ElementFormat = "" + ["] + "check" + ["] + ":18," + ["] + "client" +
["] + ""
 var_Element.ShowCheckBox = true
 var_Element.Control = "Exontrol.Button"
 var_Element.Object.Caption = "<sha ;;0>button"
 var_Element.Height = 32
 var_Element.Width = 128

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Element as P
Dim var_Elements as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 var_Element = var_Elements.Add("ActiveX")
 var_Element.Type = 2
 var_Element.ElementFormat = "\"check\":18,\"client\""
 var_Element.ShowCheckBox = .t.
 var_Element.Control = "Exontrol.Button"
 var_Element.Object.Caption = "<sha ;;0>button"

 var_Element.Height = 32
 var_Element.Width = 128

Visual Objects

local var_Element as IElement
local var_Elements as IElements

var_Elements := oDCOCX_Exontrol1:Elements
 var_Element := var_Elements:Add("ActiveX",nil,nil,nil,nil,nil)
 var_Element:Type := exElementHostControl
 var_Element:ElementFormat := "" + CHR(34) + "check" + CHR(34) + ":18," +
CHR(34) + "client" + CHR(34) + ""
 var_Element:ShowCheckBox := true
 var_Element:Control := "Exontrol.Button"
 // Generate Source for 'ExButton 1.0 Control Library' server from
Tools\Automation Server...
 IButton{var_Element:Object}:Caption := "<sha ;;0>button"
 var_Element:Height := 32
 var_Element:Width := 128

PowerBuilder

OleObject oSurface,var_Element,var_Elements

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Element = var_Elements.Add("ActiveX")
 var_Element.Type = 2
 var_Element.ElementFormat = "" + CHAR(34) + "check" + CHAR(34) + ":18," +
CHAR(34) + "client" + CHAR(34) + ""
 var_Element.ShowCheckBox = true
 var_Element.Control = "Exontrol.Button"
 var_Element.Object.Caption = "<sha ;;0>button"
 var_Element.Height = 32
 var_Element.Width = 128

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComAdd of hoElements "ActiveX" Nothing Nothing Nothing Nothing
Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement
 Set ComType of hoElement to OLEexElementHostControl
 Set ComElementFormat of hoElement to ""check":18,"client""
 Set ComShowCheckBox of hoElement to True
 Set ComControl of hoElement to "Exontrol.Button"
 Variant voButton
 Get ComObject of hoElement to voButton
 Handle hoButton
 Get Create (RefClass(cComButton)) to hoButton
 Set pvComObject of hoButton to voButton
 Set ComCaption of hoButton to "<sha ;;0>button"
 Send Destroy to hoButton
 Set ComHeight of hoElement to 32
 Set ComWidth of hoElement to 128
 Send Destroy to hoElement
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElement
 LOCAL oElements
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()
 oElement := oElements:Add("ActiveX")
 oElement:Type := 2/*exElementHostControl*/
 oElement:ElementFormat := "" + CHR(34) + "check" + CHR(34) + ":18," +
CHR(34) + "client" + CHR(34) + ""
 oElement:ShowCheckBox := .T.
 oElement:Control := "Exontrol.Button"
 oElement:Object():Caption := "<sha ;;0>button"
 oElement:Height := 32
 oElement:Width := 128

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Element.Edit (Part as EditEnum, [Options as Variant])
Edits the element.

Type Description

Part as EditEnum An EditEnum expression that specifies the caption to be
edited such as Caption or ExtraCaption.

Options as Variant
A String expression that specifies the options to show the
inline editing. The Options are separated by comma
character (,).

Return Description

Variant

A Long expression that specifies whether the user presses
the ENTER while inline editing. The Valid values are 0 if
user presses the ESC key during inline editing, -1 if the
user presses the ENTER key, or 1 if the user closes the
form.

Use the Edit method to inline edit the element's caption or extra-caption. The Caption
property indicates the element's HTML Caption. The ExtraCaption property indicates the
element's HTML Extra-Caption. The CaptionSingleLine property specifies whether the
element's caption displays single or multiple lines. The ExtraCaptionSingleLine property
specifies whether the element's extra-caption displays single or multiple lines. The control
fires the LayoutStartChanging(exEditObject) event when the Edit method starts, and the
LayoutEndChanging(exEditObject) event when the Edit method ends.

By default, the edit's background is not changed so the inline editing is transparent. Use the
Background(exEditBackColor) to specify the inline editing's background color. Use the
Background(exEditForeColor) to specify the inline editing's foreground color. Use the
Background(exEditSelBackColor) to specify the inline editing's selection background color.
Use the Background(exEditSelForeColor) to specify the inline editing's selection foreground
color.

The Options parameter can include one or more of the following options:

multiline, if present, the inline editing allows editing multiple lines, so ENTER key
inserts a new line, while the CTRL + ENTER validates or ends editing the field.
wordwrap, if present, the inline editor word wraps the text. The multiline should be
set too, so the edit can display multiple lines
tab, if present, the TAB key inserts a TAB character to inline caption
nocolor, specifies that no-colors are applied to inline editing.

property Element.ElementFormat as String
Specifies the way the control shows the parts of the element.

Type Description

String A String format that specified the CRD format to arrange
the parts of the element.

By default, the ElementFormat property is empty. Use the ElementFormat property to
arrange in a different way the parts of the element. If the ElementFormat property is empty,
the format of the elements is specified by the control's ElementFormat property. In other
words, all elements can be formatted the same way using the control's ElementFormat
property or separate way using the Element's ElementFormat property. The
DrawPartsOrder property defines the order of the parts the elements display. The
DrawPartsOrder property has no effect if the ElementFormat property is set.

The know parts of the element are:

check, specifies the part where the element's checkbox is displayed. The
ShowCheckBox property specifies whether the element's checkbox is shown or hidden.
The CheckBoxAlign property specifies the alignment of the checkbox relative to the
"check" part of the element.
caption, specifies the part where the element's caption is displayed. The Caption
property specifies the element's HTML caption. The CaptionAlign property specifies
the alignment of the caption relative to the "caption" part of the element.
extracaption, specifies the part where the element's extra-caption is displayed. The
ExtraCaption property specifies the element's HTML extra-caption. The
ExtraCaptionAlign property specifies the alignment of the extra-caption relative to the
"extracaption" part of the element.
picture, specifies the part where the element's pictures are displayed. The Pictures
property specifies the element's pictures. The PicturesAlign property specifies the
alignment of the pictures relative to the "picture" part of the element.
extrapicture, specifies the part where the element's extra-pictures are displayed. The
ExtraPictures property specifies the element's extra-pictures. The ExtraPicturesAlign
property specifies the alignment of the extra-pictures relative to the "extrapicture"
part of the element.
client, specifies the part of the element where the inside ActiveX is displayed. The
Control property indicates the inside ActiveX that hosted by the element.

The parts of the elements must be included between "" in order to be recognized by the
CRD format.

For instance:

https://exontrol.com/excrd.jsp
https://exontrol.com/excrd.jsp

"check" indicates that just the element's checkbox is displayed, so no matter if other
are set the element displays just the checkbox (if ShowCheckBox property is True)
and the element's Caption property.
"check,caption" indicates that just the element's checkbox and caption are displayed,
so no matter if other are set the element displays just the checkbox (if ShowCheckBox
property is True) and the element's Caption property.
"client" specifies that the whole element displays just the client part, so the inside
Active control will use the entire background to display the inside ActiveX control. This
indicates, that no caption, check or any other part is displayed on the element.
"check":18,"client", displays the element's checkbox aligned to the left on a 18-pixels
wide, and displays the client on the rest of the element.
"18;"caption"/"client"", allows the element's Caption and the Control to be displayed.

The following samples show how you can display the element's checkbox next to the
Command button.

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

VB6

With Surface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128

 End With
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 EXSURFACELib::IElementPtr var_Element = var_Elements-
>InsertControl("Forms.CommandButton.1",vtMissing,vtMissing,vtMissing);
 var_Element->PutElementFormat(L"\"check\":18,\"client\"");
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'MSForms' for the library: 'Microsoft Forms 2.0 Object
Library'

 #import <FM20.DLL>
*/
 ((MSForms::ICommandButtonPtr)(var_Element->GetObject()))-
>PutCaption(L"command");
 var_Element->PutShowCheckBox(VARIANT_TRUE);
 var_Element->PutHeight(48);
 var_Element->PutWidth(128);

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 Exsurfacelib_tlb::IElementPtr var_Element = var_Elements-
>InsertControl(TVariant("Forms.CommandButton.1"),TNoParam(),TNoParam(),TNoParam());

 var_Element->ElementFormat = L"\"check\":18,\"client\"";
 (IDispatch*)var_Element->Object->Caption = L"command";
 var_Element->ShowCheckBox = true;
 var_Element->Height = 48;
 var_Element->Width = 128;

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 exontrol.EXSURFACELib.Element var_Element =
var_Elements.InsertControl("Forms.CommandButton.1",null,null,null);
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 // Add 'Microsoft Forms 2.0 Object Library' reference to your project.
 (var_Element.Object as MSForms.CommandButton).Caption = "command";
 var_Element.ShowCheckBox = true;
 var_Element.Height = 48;
 var_Element.Width = 128;

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Elements = Surface1.Elements;
 var var_Element =
var_Elements.InsertControl("Forms.CommandButton.1",null,null,null);
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 var_Element.Object.Caption = "command";
 var_Element.ShowCheckBox = true;
 var_Element.Height = 48;
 var_Element.Width = 128;
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 EXSURFACELib.Element var_Element =
var_Elements.InsertControl("Forms.CommandButton.1",null,null,null);
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 // Add 'Microsoft Forms 2.0 Object Library' reference to your project.
 (var_Element.Object as MSForms.CommandButton).Caption = "command";
 var_Element.ShowCheckBox = true;
 var_Element.Height = 48;
 var_Element.Width = 128;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Element,com_Elements,com_Object;
 anytype var_Element,var_Elements,var_Object;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;
 var_Element = com_Elements.InsertControl("Forms.CommandButton.1");
com_Element = var_Element;
 com_Element.ElementFormat("\"check\":18,\"client\"");
 var_Object = COM::createFromObject(com_Element.Object()); com_Object =
var_Object;
 com_Object.Caption("command");
 com_Element.ShowCheckBox(true);
 com_Element.Height(48);
 com_Element.Width(128);
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 with InsertControl('Forms.CommandButton.1',Nil,Nil,Nil) do
 begin
 ElementFormat := '"check":18,"client"';
 (Object as MSForms.CommandButton).Caption := 'command';
 ShowCheckBox := True;
 Height := 48;
 Width := 128;
 end;

 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 with InsertControl('Forms.CommandButton.1',Null,Null,Null) do
 begin
 ElementFormat := '"check":18,"client"';
 (IUnknown(Object) as MSForms_TLB.CommandButton).Caption := 'command';
 ShowCheckBox := True;
 Height := 48;
 Width := 128;
 end;
 end;
end

VFP

with thisform.Surface1
 with .Elements
 with .InsertControl("Forms.CommandButton.1")
 .ElementFormat =
""+chr(34)+"check"+chr(34)+":18,"+chr(34)+"client"+chr(34)+""
 .Object.Caption = "command"
 .ShowCheckBox = .T.
 .Height = 48
 .Width = 128
 endwith
 endwith
endwith

dBASE Plus

local oSurface,var_Element,var_Elements

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 var_Element = var_Elements.InsertControl("Forms.CommandButton.1")
 var_Element.ElementFormat = "" + ["] + "check" + ["] + ":18," + ["] + "client" +
["] + ""
 var_Element.Object.Caption = "command"
 var_Element.ShowCheckBox = true
 var_Element.Height = 48
 var_Element.Width = 128

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Element as P
Dim var_Elements as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 var_Element = var_Elements.InsertControl("Forms.CommandButton.1")
 var_Element.ElementFormat = "\"check\":18,\"client\""
 var_Element.Object.Caption = "command"
 var_Element.ShowCheckBox = .t.
 var_Element.Height = 48
 var_Element.Width = 128

Visual Objects

local var_Element as IElement
local var_Elements as IElements

var_Elements := oDCOCX_Exontrol1:Elements
 var_Element := var_Elements:InsertControl("Forms.CommandButton.1",nil,nil,nil)
 var_Element:ElementFormat := "" + CHR(34) + "check" + CHR(34) + ":18," +
CHR(34) + "client" + CHR(34) + ""
 // Generate Source for 'Microsoft Forms 2.0 Object Library' server from

Tools\Automation Server...
 ICommandButton{var_Element:Object}:Caption := "command"
 var_Element:ShowCheckBox := true
 var_Element:Height := 48
 var_Element:Width := 128

PowerBuilder

OleObject oSurface,var_Element,var_Elements

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Element = var_Elements.InsertControl("Forms.CommandButton.1")
 var_Element.ElementFormat = "" + CHAR(34) + "check" + CHAR(34) + ":18," +
CHAR(34) + "client" + CHAR(34) + ""
 var_Element.Object.Caption = "command"
 var_Element.ShowCheckBox = true
 var_Element.Height = 48
 var_Element.Width = 128

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComInsertControl of hoElements "Forms.CommandButton.1" Nothing
Nothing Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement
 Set ComElementFormat of hoElement to ""check":18,"client""

 Variant voCommandButton
 Get ComObject of hoElement to voCommandButton
 Handle hoCommandButton
 Get Create (RefClass(cComCommandButton)) to hoCommandButton
 Set pvComObject of hoCommandButton to voCommandButton
 Set ComCaption of hoCommandButton to "command"
 Send Destroy to hoCommandButton
 Set ComShowCheckBox of hoElement to True
 Set ComHeight of hoElement to 48
 Set ComWidth of hoElement to 128
 Send Destroy to hoElement
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElement
 LOCAL oElements
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()

 oElement := oElements:InsertControl("Forms.CommandButton.1")
 oElement:ElementFormat := "" + CHR(34) + "check" + CHR(34) + ":18," +
CHR(34) + "client" + CHR(34) + ""
 oElement:Object():Caption := "command"
 oElement:ShowCheckBox := .T.
 oElement:Height := 48
 oElement:Width := 128

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Element.Enabled as Boolean
Gets or sets a value that indicates whether the element is enabled or disabled.

Type Description

Boolean A Boolean expression that specifies whether the element
is enabled or disabled.

By default, the Enabled property is True. Use the Enabled property to show the element as
disabled (grayed). The Selectable property specifies whether the user can select the
element at runtime. The Resizable property specifies whether the element can be resized at
runtime. Use the Enabled property of the control to disable the entire surface.

The following screen shot shows a few elements, and one disabled element:

method Element.EndUpdateElement (StartUpdateElement as Long)
Adds programmatically updated properties of the element to undo/redo queue.

Type Description

StartUpdateElement as Long A long expression that specifies the handle being returned
by the StartUpdateElement property

The StartUpdateElement/EndUpdateElement methods record and add changes of the
current element to the control's Undo/Redo queue. You can use the StartBlockUndoRedo /
EndBlockUndoRedo methods to group multiple Undo/Redo operations into a single-block.
The AllowUndoRedo property specifies whether the control supports undo/redo operations
for objects (elements, links, ...). No entry is added to the Undo/Redo queue if no property is
changed for the current element. Each call of the StartUpdateElement must be succeeded
by a EndUpdateElement call. The UndoListAction property lists the Undo actions that can
be performed in the chart. The RedoListAction property lists the Redo actions that can be
performed in the chart.

The StartUpdateElement/EndUpdateElement methods can record changes for the following
properties only:

Caption, gets or sets a value that indicates the HTML caption to be displayed on the
element
Parent, defines the element's parent (when the element is part of a hierarchy)
ChildPosition, specifies the position of the element while it is a child element (when the
element is part of a hierarchy)
ID, defines the element's unique identifier
AutoSize, specifies if the element computes its size automatically
X, specifies the element's x-position
Y, specifies the element's y-position
Width, specifies the width of the element
Height, specifies the height of the element
Visible, shows or hides the element
Enabled, enables or disables the element
BackColor, gets or sets a value that indicates the element's background color
ForeColor, gets or sets a value that indicates the element's foreground color
OverviewColor, gets or sets a value that indicates the element's overview color
BorderColor, gets or sets a value that indicates the element's border color
StatusColor, gets or sets a value that indicates the element's status color
Pictures, specifies the list of pictures to be displayed on the element
ExtraPictures, specifies the list of additional pictures to be displayed on the element
ExtraCaption, gets or sets a value that indicates additional HTML caption to be
displayed on the element

Pattern, specifies the pattern to be shown on the element's background
UserData, associates any extra data associated with the element

The Undo/Redo records show as:

"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods

within the UndoListAction/RedoListAction result

method Element.EnsureVisible ()
Scrolls the surface to ensure that the current element fits the control's visible area.

Type Description

The EnsureVisible method scrolls the surface to ensure that the current element fits the
control's visible area. The ScrollTo method ensures that the element fits the surface's visible
area. The control's ScrollPos, ScrollX and ScrollY properties specify the surface's scroll
position.

property Element.Expanded as Boolean
Expands or collapses the element.

Type Description

Boolean A Boolean expression that specifies whether the element
is expanded or collapsed.

The control displays a +/- expanding glyphs next to the parent elements that contain child
elements or outgoing elements (ExpandLinkedElements property). The Expanded property
specifies whether the element is expanded or collapsed. The ExpandLinkedElements
property specifies whether the elements displays the expand/collapse glyphs when the
element has outgoing elements (the OutgoingLinks property specifies the links that starts
from the element). The Background(exTreeGlyphCollapsed) and
Background(exTreeGlyphExpanded) specifies the visual appearance to show the glyph next
to the collapsed/expanded element. The Parent property specifies the element's parent.
The Children property specifies the list of child elements. The control fires the
ExpandElement event when a node is collapsed or expanded. The Add method adds
programmatically a link between two elements. Use the Insert method to insert
programmatically a child element. Use the ShowLinksOnCollapse property to show the links
between an element and collapsed elements. Use the IndentX / IndentY property to specify
the indentation between child and parent elements.

The following screen shot shows the elements arranged as a tree:

property Element.ExtraCaption as String
Gets or sets a value that indicates the extra HTML caption to be displayed on the element.

Type Description

String A String expression that defines the HTML extra-caption to
be displayed on the element's background.

By default, the ExtraCaption property is empty. The ExtraCaption property defines the
second or the extra caption to be displayed on the element's background. Use the Caption
property to define the label or caption to be displayed on the element's background. The
ExtraCaptionAlign property specifies the alignment of the extra-caption relative to the edges
of the element. The ExtraCaptionSingleLine property specifies whether the element's
caption is displayed on single or multiple lines. The Images method loads icons to be
displayed on the control's surface. The HTMLPicture property loads and assigns a picture
to a key to be used on control's surface.

The ExtraCaption property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to

about:blank

decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the

picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Element.ExtraCaptionAlign as ContentAlignmentEnum
Indicates the alignment of the element's extra caption.

Type Description

ContentAlignmentEnum

A ContentAlignmentEnum expression that specifies the
extra-caption alignment relative to the element's edges.
The ExtraCaptionAlign property supports additionally the
following flag:

exWidth (4), to distribute the text on the element's
width

The ExtraCaptionAlign property specifies the alignment of the extra-caption relative to the
edges of the element. The ExtraCaptionSingleLine property specifies whether the element's
caption is displayed on single or multiple lines. The ExtraCaption property defines the
second or the extra caption to be displayed on the element's background. Use the Caption
property to define the label or caption to be displayed on the element's background. The
Images method loads icons to be displayed on the control's surface. The HTMLPicture
property loads and assigns a picture to a key to be used on control's surface.

property Element.ExtraCaptionSingleLine as CaptionSingleLineEnum
Specifies if the element's extra caption is displayed on single or multiple lines.

Type Description

CaptionSingleLineEnum

A CaptionSingleLineEnum expression that specifies
whether the element's extra caption is displayed on a
single or multiple lines. The ExtraCaptionAlign property
supports additionally the following flag:

exJustify (4), distributes the text evenly between the
margins

By default, the ExtraCaptionSingleLine property is exCaptionSingleLine. The
ExtraCaptionSingleLine property specifies whether the element's caption is displayed on
single or multiple lines. The ExtraCaption property defines the second or the extra caption
to be displayed on the element's background. Use the Caption property to define the label
or caption to be displayed on the element's background. The ExtraCaptionAlign property
specifies the alignment of the extra-caption relative to the edges of the element. The
Images method loads icons to be displayed on the control's surface. The HTMLPicture
property loads and assigns a picture to a key to be used on control's surface.

property Element.ExtraPictures as String
Specifies the list of extra pictures to be displayed on the element.

Type Description

String

A string expression that specifies the list of pictures to be
shown on the element's body. The element's body can
display one ore more pictures at the time, on different
lines. For instance: "1,2/pic1" displays the 1 and 2 icons
on the first line, while pic2 is displayed on the second line.

By default, the ExtraPictures property is "", which means that initially no extra-pictures are
being displayed on the element. The Pictures or/and ExtraPictures property displays a
collection of icons, pictures in the element's body. The Picture and ExtraPictures may
display one or more pictures at the time. The , character indicates the separator of pictures
in the same line, while the / character divides the lines to show the pictures. For instance,
"1,2" displays icon with the index 1 and 2 on the same line, while the "1/2,pic1" displays the
first icon on the first line, the second icon and the picture pic1 on the second line. The
Images method loads icons to the control. The Images collection can display only 16x16
icons. The HTMLPicture assigns a key to a picture object. The ShowHandCursorOn
property specifies whether the hand cursor is shown when hovering a picture on the
element. The HandCursorClick event occurs once the user clicks a picture on the element (
ShowHandCursorOn property must include the exShowHandCursorPicture,
exShowHandCursorIcon and exShowHandCursorExtraPictures). The ExtraPicturesAlign
property specifies the alignment of the extra-Pictures relative to the element.

The Picture property displays a picture on the element's background. The PictureDisplay
property specifies the way the element's picture is displayed on the element's background.
The BackColor property specifies the element's background color.
Background(exElementBackColor) property specifies the default background color / visual
appearance. The ForeColor property specifies the element's foreground color. The Pattern
property defines the pattern to be shown on the control's background.

property Element.ExtraPicturesAlign as ContentAlignmentEnum
Indicates the alignment of the element's extra picture.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
extra-pictures alignment.

By default, the ExtraPicturesAlign property is exTopRight. The ExtraPicturesAlign property
specifies the alignment of the extra-Pictures relative to the element. By default, the
ExtraPictures property is "", which means that initially no extra-pictures are being displayed
on the element. The Pictures or/and ExtraPictures property displays a collection of icons,
pictures in the element's body. The Picture and ExtraPictures may display one or more
pictures at the time. The , character indicates the separator of pictures in the same line,
while the / character divides the lines to show the pictures. For instance, "1,2" displays icon
with the index 1 and 2 on the same line, while the "1/2,pic1" displays the first icon on the
first line, the second icon and the picture pic1 on the second line. The Images method loads
icons to the control. The Images collection can display only 16x16 icons. The HTMLPicture
assigns a key to a picture object. The ShowHandCursorOn property specifies whether the
hand cursor is shown when hovering a picture on the element. The HandCursorClick event
occurs once the user clicks a picture on the element (ShowHandCursorOn property must
include the exShowHandCursorPicture, exShowHandCursorIcon and
exShowHandCursorExtraPictures).

property Element.FirstChild as Element
Gets the first child of the element.

Type Description

Element An Element object that specifies the first child element of
the current element.

The FirstChild property returns nothing if the current element contains no child elements.
The FirstChild property returns the first child element. Use the FirstChild and
NextSiblingChild properties to enumerate child elements one by one. The LastChild property
indicates the last child element. Use the LastChild and PrevSiblingChild properties to
backward enumerate all child elements. The NextVisibleChild property indicates the next
visible element. The PrevVisibleChild property indicates the previously visible element. The
Children property retrieves the child elements at once. The ChildCount property specifies
the number of child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime.

property Element.ForeColor as Color
Gets or sets a value that indicates the element's foreground color.

Type Description

Color A Color expression that defines the element's foreground
color.

By default, the ForeColor property is -1, which indicates that the element's foreground is
defined by the Background(exElementForeColor). The ForeColor property specifies the
element's foreground color. The Pattern property defines the pattern to be shown on the
control's background. The Padding property defines the padding of the element. The
BorderColor property specifies the color to show the border for a specific element. The
StatusColor property specifies the color or the visual appearance to show the element's
status part.

property Element.Height as Long
Specifies the height of the element.

Type Description

Long A Long expression that specifies the height in pixels of the
element.

The Height property specifies the height of the element. The Width property specifies the
width of the element. Use the Width and Height properties to resize the element, while the
AutoSize property is False. If AutoSize property is True, the Width and the Height can not
be changed programmatically. The MinWidth/MaxWidth and MinHeight/MaxHeight
properties specifies the min/max size of the element. The X and Y properties specifies the
position of the element on the surface. Use the MoveTo method to move/resize the element
to a new position / size.

property Element.ID as Variant
Specifies the element's unique identifier.

Type Description

Variant A Long, String or Numeric expression that specifies the
unique identifier of the Element.

The ID property is automatically assigned by the control once a new element is added. You
can change the ID property to a different value, unless there is no other element with the
same ID. In other words, the surface must contains elements with different IDs. The
CreateElement event notifies your application once a new element is created. When
elements are saved to an XML document using the SaveXML, the ID will be as string once
the LoadXML method is called (the XML file is a TEXT file)

property Element.IncomingLinks as Variant
Returns a safe array of incoming links.

Type Description

Variant
A safe-array of Link objects that specifies the links that
ends to the current element. You can use the for-each
statement to enumerate all incoming links.

The IncomingLinks property specifies the list of links that ends on the current element. The
OutgoingLinks property specifies the list of links that starts from the current element. The
ElementFrom property of the Link object indicates where the Link starts. The ElementTo
property of the Link object indicates where the Link ends. Use the
ShowLinksColor(exShowLinksEndTo)/ShowLinksStyle(exShowLinksEndTo)/ShowLinksWidth(exShowLinksEndTo)
properties to mark the incoming links of selected elements.

The following screen shot shows the incoming links (red):

The following VB sample enumerates the incoming elements (of selected elements):

Private Sub Surface1_SelectionChanged()
 With Surface1
 Dim s As Variant
 For Each s In .Selection
 Debug.Print "Incomming Elements of " & s.ID & "are: "
 With s
 For Each i In .IncomingLinks

 Debug.Print i.ElementFrom.ID
 Next
 End With
 Next
 End With
End Sub

property Element.InflateSize as Long
Increases or decreases the width and height of the element.

Type Description

Long
A Long expression that specifies the width and height of
the element to be increased with when AutoSize property
is True.

By default, the The InflateSize property is 1 (pixels). The InflateSize property indicates the
size to be added to the default auto-size for increasing the size of the element. The
Padding, BorderPadding and StatusPadding properties specifies the padding to be applied
on client, border and status parts of the element. The Caption property specifies the
element's caption. The ExtraCaption property specifies the element's extra caption. The
ShowCheckBox property indicates whether the element's checkbox is visible or hidden.

property Element.LastChild as Element
Gets the last child of the element.

Type Description

Element An Element object that specifies the last child element of
the current element.

The LastChild property returns nothing if the current element contains no child elements.
The LastChild property indicates the last child element. The FirstChild property returns the
first child element. Use the FirstChild and NextSiblingChild properties to enumerate child
elements one by one. Use the LastChild and PrevSiblingChild properties to backward
enumerate all child elements. The NextVisibleChild property indicates the next visible
element. The PrevVisibleChild property indicates the previously visible element. The
Children property retrieves the child elements at once. The ChildCount property specifies
the number of child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime.

property Element.Level as Long
Specifies the level of the element in a hierarchy.

Type Description

Long
A Long expression that specifies the level of the element in
the hierarchy. For instance, an element with no parent has
the Level 0.

The Level property specifies the level in the hierarchy of the element. The Parent property
specifies the parent of the element. The Level of the Element is defined as the Level of the
Parent element + 1. The ChildCount property specifies the number of child elements. The
Children property specifies the list of child elements. The AllowInsertChild property of the
Element object specifies whether the element supports adding child elements at runtime.
The AllowChangeParent property of the Element object specifies whether the element can
change its parent at runtime.

property Element.License as String
Indicates the runtime license required to create the inner control.

Type Description
String A String expression that specifies the runtime-license.

The control supports ActiveX hosting, or in other words, any element can host another
inside controls. The License property indicates a string expression that indicates the runtime
license key for the component being inserted, if required. Only, the vendor of the component
you are going to use is able to give you such of runtime license, so please contact the
control's vendor for such of key. Your development license key is not compatible with the
runtime license key, so it can't be used here. The Control property has effect only if the
element's Type property is set on exElementHostControl. If you insert a runtime-licensed
control you must specify the License property before calling the Control property. Use the
ElementFormat property to specify the area where the inner control is displayed. The
Object property returns a reference to newly created control. The ExSurface control fires
the OLEEvent event if an inside ActiveX control fires an event.

The Control property must be formatted in one of the following ways:

A ProgID such as "Exontrol.Grid"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

The look and feel of the inner ActiveX control depends on the identifier you are
using, and the version of the library that implements the ActiveX control, so you
need to consult the documentation of the inner ActiveX control you are inserting
inside the exSurface control.

The following screen shot shows the surface with different inner controls:

property Element.MaxHeight as Long
Specifies the maximum height of the element.

Type Description

Long
A Long expression that specifies the max height of the
element. If negative, the MaxHeight property has no
effect.

By default, the MaxHeight property is -1, which indicates that it has no effect. The
MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies the min/max size of the
element. The Height property specifies the height of the element. The Width property
specifies the width of the element. Use the Width and Height properties to resize the
element, while the AutoSize property is False. If AutoSize property is True, the Width and
the Height can not be changed programmatically. The X and Y properties specifies the
position of the element on the surface. Use the MoveTo method to move/resize the element
to a new position / size.

property Element.MaxWidth as Long
Specifies the maximum width of the element.

Type Description

Long A Long expression that specifies the max width of the
element. If negative, the MaxWidth property has no effect.

By default, the MaxWidth property is -1, which indicates that it has no effect. The
MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies the min/max size of the
element. The Height property specifies the height of the element. The Width property
specifies the width of the element. Use the Width and Height properties to resize the
element, while the AutoSize property is False. If AutoSize property is True, the Width and
the Height can not be changed programmatically. The X and Y properties specifies the
position of the element on the surface. Use the MoveTo method to move/resize the element
to a new position / size.

property Element.MinHeight as Long
Specifies the minimum height of the element.

Type Description

Long A Long expression that specifies the min height of the
element.

By default, the MinHeight property is 10 pixels. The MinWidth/MaxWidth and
MinHeight/MaxHeight properties specifies the min/max size of the element. The Height
property specifies the height of the element. The Width property specifies the width of the
element. Use the Width and Height properties to resize the element, while the AutoSize
property is False. If AutoSize property is True, the Width and the Height can not be
changed programmatically. The X and Y properties specifies the position of the element on
the surface. Use the MoveTo method to move/resize the element to a new position / size.

property Element.MinWidth as Long
Specifies the minimum width of the element.

Type Description

Long A Long expression that specifies the min width of the
element, in pixles.

By default, the MinWidth property is 10 pixels. The MinWidth/MaxWidth and
MinHeight/MaxHeight properties specifies the min/max size of the element. The Height
property specifies the height of the element. The Width property specifies the width of the
element. Use the Width and Height properties to resize the element, while the AutoSize
property is False. If AutoSize property is True, the Width and the Height can not be
changed programmatically. The X and Y properties specifies the position of the element on
the surface. Use the MoveTo method to move/resize the element to a new position / size.

method Element.MoveTo (X as Long, Y as Long, Width as Long, Height
as Long)
Moves the element to a new position.

Type Description

X as Long A long expression that specifies the x-position of the
element on the surface.

Y as Long A long expression that specifies the y-position of the
element on the surface.

Width as Long A long expression that specifies the width of the element
on the surface.

Height as Long A long expression that specifies the height of the element
on the surface.

Use the MoveTo method to move/resize the element to a new position / size. The ScrollTo
method ensures that the element fits the surface's visible area. The X and Y properties
specifies the position of the element on the surface. The Width property specifies the width
of the element. The Height property specifies the height of the element. Use the Width and
Height properties to resize the element, while the AutoSize property is False. If AutoSize
property is True, the Width and the Height can not be changed programmatically. The
MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies the min/max size of the
element.

property Element.NextSiblingChild as Element
Retrieves the next sibling of the element in the parent's child list

Type Description
Element Indicates the next sibling element.

Use the FirstChild and NextSiblingChild properties to enumerate child elements one by one.
The FirstChild property returns nothing if the current element contains no child elements.
The FirstChild property returns the first child element. The LastChild property indicates the
last child element. Use the LastChild and PrevSiblingChild properties to backward
enumerate all child elements. The NextVisibleChild property indicates the next visible
element. The PrevVisibleChild property indicates the previously visible element. The
Children property retrieves the child elements at once. The ChildCount property specifies
the number of child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime.

property Element.NextVisibleChild as Element
Retrieves the next visible element in the parent's child list

Type Description
Element Indicates the next visible element.

The NextVisibleChild property indicates the next visible element. The PrevVisibleChild
property indicates the previously visible element. The FirstChild property returns nothing if
the current element contains no child elements. The FirstChild property returns the first child
element. Use the FirstChild and NextSiblingChild properties to enumerate child elements
one by one. The LastChild property indicates the last child element. Use the LastChild and
PrevSiblingChild properties to backward enumerate all child elements. The Children
property retrieves the child elements at once. The ChildCount property specifies the number
of child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime.

property Element.Object as Object
Returns the inner object hosted by the current element.

Type Description
Object A reference to inner ActiveX control.

The Object property returns nothing if element hosts no ActiveX or creating it failed. The
Object property returns a reference to newly created control. The ExSurface control fires
the OLEEvent event if an inside ActiveX control fires an event. Use the ElementFormat
property to specify the area where the inner control is displayed. The InsertControl property
adds a new Element object with the Type set on exElementHostControl, and so it hosts an
ActiveX inside. The Control property returns the control's identifier. The License property
specifies the runtime-license of the control. For instance, if the Control property is
"Exontrol.Button", the Object property returns a reference to an Exontrol.Button object. If
the Control property is "Exontrol.Grid" the Object property returns a reference to an
Exontrol.Grid object.

The following screen shot shows the Exontrol.Grid on the surface:

property Element.OutgoingLinks as Variant
Returns a safe array of outgoing links.

Type Description

Variant
A safe-array of Link objects that specifies the links that
starts from the current element. You can use the for-each
statement to enumerate all outgoing links.

The OutgoingLinks property specifies the list of links that starts from the current element.
The IncomingLinks property specifies the list of links that ends on the current element. The
ElementFrom property of the Link object indicates where the Link starts. The ElementTo
property of the Link object indicates where the Link ends. Use the
ShowLinksColor(exShowLinksStartsFrom)/
ShowLinksStyle(exShowLinksStartsFrom)/ShowLinksWidth(exShowLinksStartsFrom)
properties to mark the outgoing links of selected elements. The PathTo property indicates if
a path exists from current element to specified element.

The following screen shot shows the outgoing links (red):

The following VB sample enumerates the outgoing elements (of selected elements):

Private Sub Surface1_SelectionChanged()
 With Surface1
 Dim s As Variant
 For Each s In .Selection
 Debug.Print "Outgoing Elements of " & s.ID & "are: "
 With s

 For Each i In .OutgoingLinks
 Debug.Print i.ElementTo.ID
 Next
 End With
 Next
 End With
End Sub

property Element.OverviewColor as Color
Gets or sets a value that indicates the element's overview color.

Type Description

Color A Color expression that specifies the color to show the
element when it is not visible on the surface's client area

By default, the OverviewColor property is -1, which indicates that the control's
OverviewColor property specifies the overview-color to show the elements on the control's
border. Use the OverviewColor property to specify a different color to be shown for specific
elements. The OverviewColor property has effect when the element is not fitting the
surface's client area and it is shown on the border of the surface. If the control's
OverviewColor property is -1, no elements is shown on the border.

The following screen shot shows the how elements are shown when they are not visible in
the surface's client area (look on the border) :

The following screen shot shows the elements when they are visible on the surface's client
area:

property Element.Padding(Edge as PaddingEdgeEnum) as Long
Returns or sets a value that indicates the padding of the element's background.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be changed

Long A long expression that defines the padding

By default, Padding property is 0. The Padding property specifies the body/background
padding. The BorderPadding property specifies the padding to be applied on borders, to
define the position of the status and the body parts of the element. The StatusPadding
property specifies the status padding. The ClientPadding property specifies the padding
while the element's Type property is exElementHostWindow or exElementHostControl.

The following screen shot shows the element when Padding is 0 (default):

The following screen shot shows the element when Padding is 1:

The following screen shot shows the element when Padding is 4:

property Element.Parent as Element
Specifies the element's parent.

Type Description
Element An Element object that specifies the parent element.

The Parent property indicates the element's parent. By default, the Parent property is
nothing, which indicates that the element has no parent. Use the Parent property to change
the element's parent. The ParentChangeElement event occurs when the element's parent is
changed. Use the AllowInsertObject property to specify whether the user can change the
element's parent at runtime by dragging the element over the other. The AllowInsertChild
property of the Element object specifies whether the element supports adding child
elements at runtime. The AllowChangeParent property of the Element object specifies
whether the element can change its parent at runtime. The Children property specifies the
list of child elements. The Level property specifies the level in the hierarchy of the element.

The following screen shot shows the elements arranged as a tree:

property Element.PathTo (ElementTo as Element) as Boolean
Determines if there is any path from the current element to the specified element.

Type Description
ElementTo as Element An Element object that specifies the ending element

Boolean
A Boolean expression that specifies if a path exists
between current element to specified element. A Path is
defined by the element and its outgoing links.

The PathTo property indicates if a path exists from current element to specified element.
The OutgoingLinks property specifies the list of links that starts from the current element.
The IncomingLinks property specifies the list of links that ends on the current element. The
ElementFrom property of the Link object indicates where the Link starts. The ElementTo
property of the Link object indicates where the Link ends. Use the
ShowLinksColor(exShowLinksStartsFrom)/
ShowLinksStyle(exShowLinksStartsFrom)/ShowLinksWidth(exShowLinksStartsFrom)
properties to mark the outgoing links of selected elements.

For instance, you can use the PathTo property to prevent adding cycles in the chart, as in
the following VB sample:

Private Sub Surface1_AllowLink(ByVal ElementFrom As EXSURFACELibCtl.IElement, ByVal
ElementTo As EXSURFACELibCtl.IElement, Cancel As Boolean)
 Cancel = ElementTo.PathTo(ElementFrom)
End Sub

The AllowLink event notifies that the user links two elements.

The following screen shot shows the path between Element A and Element B:

property Element.Pattern as Pattern
Specifies the pattern to be shown on the element's background.

Type Description
Pattern A Pattern to be shown over the element's background.

By default, no Pattern is shown on the element's background. The Pattern property defines
the pattern to be shown on the control's background. The BackColor property specifies the
element's background color. Background(exElementBackColor) property specifies the
default background color / visual appearance. The ForeColor property specifies the
element's foreground color. The Picture property specifies the picture to be shown on the
element's background. The PictureDisplay property specifies the way the element's picture
is displayed on the element's background.

The following screen shot shows an element with different pattern:

The following samples applies a pattern like (not available) over the element:

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 With .Add("Element+Pattern",-100).Pattern
 .Type = 6
 .Color = RGB(224,224,224)
 End With
 .Add "Element",100
 End With
End With

VB6

With Surface1
 With .Elements
 With .Add("Element+Pattern",-100).Pattern
 .Type = exPatternBDiagonal
 .Color = RGB(224,224,224)
 End With
 .Add "Element",100
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 With .Add("Element+Pattern",-100).Pattern
 .Type = exontrol.EXSURFACELib.PatternEnum.exPatternBDiagonal
 .Color = Color.FromArgb(224,224,224)
 End With
 .Add("Element",100)
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 With .Add("Element+Pattern",-100).Pattern
 .Type = EXSURFACELib.PatternEnum.exPatternBDiagonal
 .Color = RGB(224,224,224)
 End With
 .Add("Element",100)
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 EXSURFACELib::IPatternPtr var_Pattern = var_Elements-
>Add("Element+Pattern",long(-100),vtMissing,vtMissing,vtMissing,vtMissing)-
>GetPattern();
 var_Pattern->PutType(EXSURFACELib::exPatternBDiagonal);
 var_Pattern->PutColor(RGB(224,224,224));
 var_Elements->Add("Element",long(100),vtMissing,vtMissing,vtMissing,vtMissing);

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 Exsurfacelib_tlb::IPatternPtr var_Pattern = var_Elements-
>Add(TVariant("Element+Pattern"),TVariant(-100),TNoParam(),TNoParam(),TNoParam(),TNoParam())-
>Pattern;
 var_Pattern->Type = Exsurfacelib_tlb::PatternEnum::exPatternBDiagonal;
 var_Pattern->Color = RGB(224,224,224);
 var_Elements-
>Add(TVariant("Element"),TVariant(100),TNoParam(),TNoParam(),TNoParam(),TNoParam());

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 exontrol.EXSURFACELib.Pattern var_Pattern =
var_Elements.Add("Element+Pattern",-100,null,null,null,null).Pattern;
 var_Pattern.Type = exontrol.EXSURFACELib.PatternEnum.exPatternBDiagonal;
 var_Pattern.Color = Color.FromArgb(224,224,224);
 var_Elements.Add("Element",100,null,null,null,null);

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Elements = Surface1.Elements;
 var var_Pattern =
var_Elements.Add("Element+Pattern",-100,null,null,null,null).Pattern;
 var_Pattern.Type = 6;
 var_Pattern.Color = 14737632;
 var_Elements.Add("Element",100,null,null,null,null);
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 EXSURFACELib.Pattern var_Pattern =
var_Elements.Add("Element+Pattern",-100,null,null,null,null).Pattern;
 var_Pattern.Type = EXSURFACELib.PatternEnum.exPatternBDiagonal;
 var_Pattern.Color =
(uint)ColorTranslator.ToWin32(Color.FromArgb(224,224,224));
 var_Elements.Add("Element",100,null,null,null,null);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Element,com_Elements,com_Pattern;
 anytype var_Element,var_Elements,var_Pattern;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;

 var_Element =
COM::createFromObject(com_Elements.Add("Element+Pattern",COMVariant::createFromInt(-100)));
 com_Element = var_Element;
 var_Pattern = com_Element.Pattern(); com_Pattern = var_Pattern;
 com_Pattern.Type(6/*exPatternBDiagonal*/);
 com_Pattern.Color(WinApi::RGB2int(224,224,224));
 com_Elements.Add("Element",COMVariant::createFromInt(100));
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 with Add('Element+Pattern',TObject(-100),Nil,Nil,Nil,Nil).Pattern do
 begin
 Type := EXSURFACELib.PatternEnum.exPatternBDiagonal;
 Color := $e0e0e0;
 end;
 Add('Element',TObject(100),Nil,Nil,Nil,Nil);
 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 with Add('Element+Pattern',OleVariant(-100),Null,Null,Null,Null).Pattern do
 begin
 Type := EXSURFACELib_TLB.exPatternBDiagonal;
 Color := $e0e0e0;
 end;
 Add('Element',OleVariant(100),Null,Null,Null,Null);
 end;
end

VFP

with thisform.Surface1
 with .Elements
 with .Add("Element+Pattern",-100).Pattern
 .Type = 6
 .Color = RGB(224,224,224)
 endwith
 .Add("Element",100)
 endwith
endwith

dBASE Plus

local oSurface,var_Elements,var_Pattern

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 var_Pattern = var_Elements.Add("Element+Pattern",-100).Pattern
 var_Pattern.Type = 6
 var_Pattern.Color = 0xe0e0e0
 var_Elements.Add("Element",100)

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Elements as P
Dim var_Pattern as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 var_Pattern = var_Elements.Add("Element+Pattern",-100).Pattern
 var_Pattern.Type = 6
 var_Pattern.Color = 14737632
 var_Elements.Add("Element",100)

Visual Objects

local var_Elements as IElements
local var_Pattern as IPattern

var_Elements := oDCOCX_Exontrol1:Elements
 var_Pattern := var_Elements:Add("Element+Pattern",-100,nil,nil,nil,nil):Pattern
 var_Pattern:Type := exPatternBDiagonal
 var_Pattern:Color := RGB(224,224,224)
 var_Elements:Add("Element",100,nil,nil,nil,nil)

PowerBuilder

OleObject oSurface,var_Elements,var_Pattern

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Pattern = var_Elements.Add("Element+Pattern",-100).Pattern
 var_Pattern.Type = 6
 var_Pattern.Color = RGB(224,224,224)
 var_Elements.Add("Element",100)

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComAdd of hoElements "Element+Pattern" -100 Nothing Nothing Nothing
Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement

 Variant voPattern
 Get ComPattern of hoElement to voPattern
 Handle hoPattern
 Get Create (RefClass(cComPattern)) to hoPattern
 Set pvComObject of hoPattern to voPattern
 Set ComType of hoPattern to OLEexPatternBDiagonal
 Set ComColor of hoPattern to (RGB(224,224,224))
 Send Destroy to hoPattern
 Send Destroy to hoElement
 Get ComAdd of hoElements "Element" 100 Nothing Nothing Nothing Nothing
to Nothing
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElements
 LOCAL oPattern
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()

 oPattern := oElements:Add("Element+Pattern",-100):Pattern()
 oPattern:Type := 6/*exPatternBDiagonal*/
 oPattern:SetProperty("Color",AutomationTranslateColor(GraMakeRGBColor
({ 224,224,224 }) , .F.))
 oElements:Add("Element",100)

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Element.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object to be shown on the element's
background.

The Picture property specifies the picture to be shown on the element's background. The
PictureDisplay property specifies the way the element's picture is displayed on the
element's background. The BackColor property specifies the element's background color.
Background(exElementBackColor) property specifies the default background color / visual
appearance. The ForeColor property specifies the element's foreground color. The Pattern
property defines the pattern to be shown on the control's background. The Padding
property defines the padding of the element. The BorderColor property specifies the color
to show the border for a specific element. The StatusColor property specifies the color or
the visual appearance to show the element's status part. Use the Pictures / ExtraPictures
properties to display different pictures on the element. Use the Picture property to assign
your logo on the control's background.

The following screen shot shows the element's background filled with the Picture property:

property Element.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
element's background

Type Description

PictureDisplayEnum
A PictureDisplayEnum expression that indicates how the
element's picture is displayed on the element's
background.

The PictureDisplay property specifies the way the element's picture is displayed on the
element's background. The Picture property specifies the picture to be shown on the
element's background. The BackColor property specifies the element's background color.
Background(exElementBackColor) property specifies the default background color / visual
appearance. The ForeColor property specifies the element's foreground color. The Pattern
property defines the pattern to be shown on the control's background. The Padding
property defines the padding of the element. The BorderColor property specifies the color
to show the border for a specific element. The StatusColor property specifies the color or
the visual appearance to show the element's status part.

property Element.Pictures as String
Specifies the list of pictures to be displayed on the element.

Type Description

String

A string expression that specifies the list of pictures to be
shown on the element's body. The element's body can
display one ore more pictures at the time, on different
lines. For instance: "1,2/pic1" displays the 1 and 2 icons
on the first line, while pic2 is displayed on the second line.

By default, the Pictures property is "", which means that initially no pictures are being
displayed on the element. The Pictures or/and ExtraPictures property displays a collection
of icons, pictures in the element's body. The Picture and ExtraPictures may display one or
more pictures at the time. The , character indicates the separator of pictures in the same
line, while the / character divides the lines to show the pictures. For instance, "1,2" displays
icon with the index 1 and 2 on the same line, while the "1/2,pic1" displays the first icon on
the first line, the second icon and the picture pic1 on the second line. The Images method
loads icons to the control. The Images collection can display only 16x16 icons. The
HTMLPicture assigns a key to a picture object. The ShowHandCursorOn property specifies
whether the hand cursor is shown when hovering a picture on the element. The
HandCursorClick event occurs once the user clicks a picture on the element (
ShowHandCursorOn property must include the exShowHandCursorPicture,
exShowHandCursorIcon and exShowHandCursorPictures). The PicturesAlign property
specifies the alignment of the Pictures relative to the element.

The Picture property displays a picture on the element's background. The PictureDisplay
property specifies the way the element's picture is displayed on the element's background.
The BackColor property specifies the element's background color.
Background(exElementBackColor) property specifies the default background color / visual
appearance. The ForeColor property specifies the element's foreground color. The Pattern
property defines the pattern to be shown on the control's background.

property Element.PicturesAlign as ContentAlignmentEnum
Indicates the alignment of the element's picture.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
alignment of the pictures in the element.

By default, The PicturesAlign property is exBottomRight. The PicturesAlign property
specifies the alignment of the Pictures relative to the element. By default, the Pictures
property is "", which means that initially no pictures are being displayed on the element. The
Pictures or/and ExtraPictures property displays a collection of icons, pictures in the
element's body. The Picture and ExtraPictures may display one or more pictures at the
time. The , character indicates the separator of pictures in the same line, while the /
character divides the lines to show the pictures. For instance, "1,2" displays icon with the
index 1 and 2 on the same line, while the "1/2,pic1" displays the first icon on the first line,
the second icon and the picture pic1 on the second line. The Images method loads icons to
the control. The Images collection can display only 16x16 icons. The HTMLPicture assigns
a key to a picture object. The ShowHandCursorOn property specifies whether the hand
cursor is shown when hovering a picture on the element. The HandCursorClick event occurs
once the user clicks a picture on the element (ShowHandCursorOn property must include
the exShowHandCursorPicture, exShowHandCursorIcon and exShowHandCursorPictures).

property Element.PrevSiblingChild as Element
Retrieves the prev sibling of the element in the parent's child list

Type Description
Element Indicates the previously sibling element.

Use the LastChild and PrevSiblingChild properties to backward enumerate all child
elements. Use the FirstChild and NextSiblingChild properties to enumerate child elements
one by one. The FirstChild property returns nothing if the current element contains no child
elements. The FirstChild property returns the first child element. The LastChild property
indicates the last child element. The NextVisibleChild property indicates the next visible
element. The PrevVisibleChild property indicates the previously visible element. The
Children property retrieves the child elements at once. The ChildCount property specifies
the number of child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime.

property Element.PrevVisibleChild as Element
Retrieves the prev visible element in the parent's child list

Type Description
Element Indicates the previosuly visible element.

The PrevVisibleChild property indicates the previously visible element. The NextVisibleChild
property indicates the next visible element. The FirstChild property returns nothing if the
current element contains no child elements. The FirstChild property returns the first child
element. Use the FirstChild and NextSiblingChild properties to enumerate child elements
one by one. The LastChild property indicates the last child element. Use the LastChild and
PrevSiblingChild properties to backward enumerate all child elements. The Children
property retrieves the child elements at once. The ChildCount property specifies the number
of child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime.

property Element.Resizable as Boolean
Gets or sets a value that indicates whether the user can resize the element.

Type Description

Boolean A Boolean expression that specifies whether the user can
resize the element at runtime.

By default, the Resizable property is True, which specifies that the user can resize the
element at runtime. The Resizable property has no effect if the element's AutoSize property
is True. The MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies the min/max
size of the element. The Height property specifies the height of the element. The Width
property specifies the width of the element. Use the Width and Height properties to resize
the element, while the AutoSize property is False. If AutoSize property is True, the Width
and the Height can not be changed programmatically. The X and Y properties specifies the
position of the element on the surface. Use the MoveTo method to move/resize the element
to a new position / size. The Selectable property indicates whether the user can select the
element. Use the AllowResizeObject property to specify whether the element can be
resized at runtime.

method Element.ScrollTo (To as ContentAlignmentEnum)
Moves or scrolls the surface, so the current element aligns to the specified corner.

Type Description

To as ContentAlignmentEnum A ContentAlignmentEnum expression that specifies where
on the surface the element should be scrolled to.

The ScrollTo method ensures that the element fits the surface's visible area. The control's
ScrollPos, ScrollX and ScrollY properties specify the surface's scroll position. Use the
ScrollTo method of the control to scroll the surface at specified position. The MovePoint
method of the control moves the surface from the one point to another. The MoveCorner
method scrolls the surface from a corner to another.

The X and Y properties specifies the position of the element on the surface. Use the
MoveTo method to move/resize the element to a new position / size. The Width property
specifies the width of the element. The Height property specifies the height of the element.
Use the Width and Height properties to resize the element, while the AutoSize property is
False. If AutoSize property is True, the Width and the Height can not be changed
programmatically. The MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies
the min/max size of the element.

property Element.Selectable as Boolean
Indicates if the element is selectable.

Type Description

Boolean A Boolean expression that specifies whether the element
is selectable or un-selectable.

By default, the Selectable property is True. The Selectable property of the Element object
indicates whether the element is selectable or un-selectable. The SelectionChanged event
occurs once a new element is selected or unselected. The Selected property of the
Element object indicates whether the element is selected or unselected. Use the Enabled
property to show the element as disabled (grayed).

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface. The AllowMoveObject property specifies the keys
combination so the user can move the element from the cursor. The AllowMoveSelection
property indicates whether the entire selection is moved if an element in the selection is
moved. Set the AllowMoveObject property on exDisallow, to prevent user to move any
element in the surface.

property Element.Selected as Boolean
Indicates if the element is selected or unselected.

Type Description

Boolean A Boolean expression that specifies whether the element
is selected or unselected.

By default, the Selected property is False. The Selected property of the Element object
indicates whether the element is selected or unselected. The Selectable property of the
Element object indicates whether the element is selectable or un-selectable. The
SelectionChanged event occurs once a new element is selected or unselected. The
SelectAll method selects all elements in the chart. Use the UnselectAll method to unselect
all elements on the surface.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

method Element.SendToBack ()
Sends the element to the back.

Type Description

The SendToBack method sends the current element to the back. The BringToFront method
brings the element to the front. For instance, if two element gets intersected, you can use
the BringToFront method to bring one element on front, or SendToBack method to send the
element on the back. The BringToFront and SendToBack methods changes the drawing
order of the elements.

property Element.ShowCheckBox as Boolean
Gets or sets a value that indicates whether the element shows or hides the check-box.

Type Description

Boolean A Boolean expression that specifies whether the element
displays the checkbox.

By default, the ShowCheckBox property is False, which means that no check-box is
displayed. Use the ShowCheckBox property to show or hide the element's checkbox. Use
the CheckBoxAlign property to align the element's checkbox. Use the Checked property to
specify the state of the element's checkbox. The CheckElement event occurs when the
checkbox's state is changed. Use the Background(exCheckBoxState0),
Background(exCheckBoxState1), Background(exCheckBoxState2) to change the visual
appearance for all check-boxes.

property Element.ShowHandCursorOn as ShowHandCursorOnEnum
Specifies whether the hand cursor is shown when hovering the element.

Type Description

ShowHandCursorOnEnum
A ShowHandCursorOnEnum expression that specifies the
parts of the element where the hand cursor is shown when
the mouse-pointer hovers it.

By default, the ShowHandCursorOn property is exShowHandCursorAnchorAll, which
indicates that the hand cursor is shown when user hovers any anchor element (<a>). Use
the Caption or ExtraCaption property to display hyperlinks or anchors in the element. The
AnchorClick event is fired once the user clicks an anchor element. The control fires the
HandCursorClick event when the user clicks a part of the element. The Hit parameter of the
HandCursorClick specifies the part of the element being clicked, while the Key parameter
specifies a value associated with the part being clicked as listed bellow:

exShowHandCursorCheck -> key specifies the Element.Checked property.
exShowHandCursorAnchor -> key specifies the identifier of the anchor element such as
<a id;options> anchor
exShowHandCursorPicture -> key specifies the name of the picture being clicked (
HTMLPicture property)
exShowHandCursorIcon - key specifies the index of the icon being clicked (Images
method)

The above flags can be combined with the following flags:

exShowHandCursorCaption, indicates that the part being clicked belong to the
element's caption.
exShowHandCursorExtraCaption, indicates that the part being clicked belong to the
element's extra caption.
exShowHandCursorPictures, indicates that the part being clicked belong to the
element's pictures.
exShowHandCursorExtraPictures, indicates that the part being clicked belong to the
element's extra pictures.

The following samples shows how you can handle clicking an icon or a picture of the
element:

VBA (MS Access, Excell...)

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub Surface1_HandCursorClick(ByVal Element As Object,ByVal Hit As

Long,ByVal Key As Variant)
 With Surface1
 Debug.Print(Key)
 End With
End Sub

With Surface1
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = 33
 .ShowHandCursorOn = 771 '
ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
ShowHandCursorOnEnum.exShowHandCursorPictures Or
ShowHandCursorOnEnum.exShowHandCursorIcon Or
ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = 1
 End With
End With

VB6

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub Surface1_HandCursorClick(ByVal Element As
EXSURFACELibCtl.IElement,ByVal Hit As

EXSURFACELibCtl.ShowHandCursorOnEnum,ByVal Key As Variant)
 With Surface1
 Debug.Print(Key)
 End With
End Sub

With Surface1
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = exBottomCenter
 .ShowHandCursorOn =
ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
ShowHandCursorOnEnum.exShowHandCursorPictures Or
ShowHandCursorOnEnum.exShowHandCursorIcon Or
ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = exTopCenter
 End With
End With

VB.NET

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub Exsurface1_HandCursorClick(ByVal sender As System.Object,ByVal
Element As exontrol.EXSURFACELib.Element,ByVal Hit As

exontrol.EXSURFACELib.ShowHandCursorOnEnum,ByVal Key As Object) Handles
Exsurface1.HandCursorClick
 With Exsurface1
 Debug.Print(Key)
 End With
End Sub

With Exsurface1

.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=")
 .set_HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
 .set_HTMLPicture("pic2","c:\exontrol\images\auction.gif")
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign =
exontrol.EXSURFACELib.ContentAlignmentEnum.exBottomCenter
 .ShowHandCursorOn =
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures
Or exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures Or
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon Or
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = exontrol.EXSURFACELib.ContentAlignmentEnum.exTopCenter
 End With
End With

VB.NET for /COM

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.

Private Sub AxSurface1_HandCursorClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent) Handles
AxSurface1.HandCursorClick
 With AxSurface1
 Debug.Print(e.key)
 End With
End Sub

With AxSurface1

.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=")
 .set_HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
 .set_HTMLPicture("pic2","c:\exontrol\images\auction.gif")
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = EXSURFACELib.ContentAlignmentEnum.exBottomCenter
 .ShowHandCursorOn =
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures Or
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon Or
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = EXSURFACELib.ContentAlignmentEnum.exTopCenter
 End With
End With

C++

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.

void OnHandCursorClickSurface1(LPDISPATCH Element,long Hit,VARIANT Key)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'
 #import <ExSurface.dll>
 using namespace EXSURFACELib;
 */
 EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
 OutputDebugStringW(L"Key");
}

EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
spSurface1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spSurface1->PutHTMLPicture(L"pic1","c:\\exontrol\\images\\zipdisk.gif");
spSurface1->PutHTMLPicture(L"pic2","c:\\exontrol\\images\\auction.gif");
EXSURFACELib::IElementPtr var_Element = spSurface1->GetElements()-
>Add("Caption",vtMissing,vtMissing,vtMissing,vtMissing,vtMissing);
 var_Element->PutPictures(L"1,2/pic1/pic2");
 var_Element->PutPicturesAlign(EXSURFACELib::exBottomCenter);
 var_Element-
>PutShowHandCursorOn(EXSURFACELib::ShowHandCursorOnEnum(EXSURFACELib::exShowHandCursorExtraPictures
 | EXSURFACELib::exShowHandCursorPictures |
EXSURFACELib::exShowHandCursorIcon | EXSURFACELib::exShowHandCursorPicture));
 var_Element->PutCaptionAlign(EXSURFACELib::exTopCenter);

C++ Builder

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
void __fastcall TForm1::Surface1HandCursorClick(TObject
*Sender,Exsurfacelib_tlb::IElement
*Element,Exsurfacelib_tlb::ShowHandCursorOnEnum Hit,Variant Key)
{
 OutputDebugString(L"Key");
}

Surface1-
>Images(TVariant(String("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="));
Surface1->HTMLPicture[L"pic1"] = TVariant("c:\\exontrol\\images\\zipdisk.gif");
Surface1->HTMLPicture[L"pic2"] = TVariant("c:\\exontrol\\images\\auction.gif");
Exsurfacelib_tlb::IElementPtr var_Element = Surface1->Elements-
>Add(TVariant("Caption"),TNoParam(),TNoParam(),TNoParam(),TNoParam(),TNoParam());

 var_Element->Pictures = L"1,2/pic1/pic2";
 var_Element->PicturesAlign =
Exsurfacelib_tlb::ContentAlignmentEnum::exBottomCenter;
 var_Element->ShowHandCursorOn =
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorExtraPictures |
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorPictures |
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorIcon |
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorPicture;
 var_Element->CaptionAlign =

Exsurfacelib_tlb::ContentAlignmentEnum::exTopCenter;

C#

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
private void exsurface1_HandCursorClick(object
sender,exontrol.EXSURFACELib.Element
Element,exontrol.EXSURFACELib.ShowHandCursorOnEnum Hit,object Key)
{
 System.Diagnostics.Debug.Print(Key.ToString());
}
//this.exsurface1.HandCursorClick += new
exontrol.EXSURFACELib.exg2antt.HandCursorClickEventHandler(this.exsurface1_HandCursorClick);

exsurface1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
exsurface1.set_HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
exsurface1.set_HTMLPicture("pic2","c:\\exontrol\\images\\auction.gif");
exontrol.EXSURFACELib.Element var_Element =
exsurface1.Elements.Add("Caption",null,null,null,null,null);
 var_Element.Pictures = "1,2/pic1/pic2";
 var_Element.PicturesAlign =
exontrol.EXSURFACELib.ContentAlignmentEnum.exBottomCenter;
 var_Element.ShowHandCursorOn =
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures |
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures |
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon |

exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture;
 var_Element.CaptionAlign =
exontrol.EXSURFACELib.ContentAlignmentEnum.exTopCenter;

JavaScript

<SCRIPT FOR="Surface1" EVENT="HandCursorClick(Element,Hit,Key)"
LANGUAGE="JScript">
 alert(Key);
</SCRIPT>

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">

Surface1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +

"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
 "NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
 Surface1.HTMLPicture("pic1") = "c:\\exontrol\\images\\zipdisk.gif";
 Surface1.HTMLPicture("pic2") = "c:\\exontrol\\images\\auction.gif";
 var var_Element = Surface1.Elements.Add("Caption",null,null,null,null,null);
 var_Element.Pictures = "1,2/pic1/pic2";
 var_Element.PicturesAlign = 33;
 var_Element.ShowHandCursorOn = 771;
 var_Element.CaptionAlign = 1;
</SCRIPT>

C# for /COM

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
private void axSurface1_HandCursorClick(object sender,
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent e)
{
 System.Diagnostics.Debug.Print(e.key.ToString());
}
//this.axSurface1.HandCursorClick += new
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEventHandler(this.axSurface1_HandCursorClick);

axSurface1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axSurface1.set_HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
axSurface1.set_HTMLPicture("pic2","c:\\exontrol\\images\\auction.gif");
EXSURFACELib.Element var_Element =
axSurface1.Elements.Add("Caption",null,null,null,null,null);
 var_Element.Pictures = "1,2/pic1/pic2";
 var_Element.PicturesAlign =
EXSURFACELib.ContentAlignmentEnum.exBottomCenter;
 var_Element.ShowHandCursorOn =
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures |
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures |
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon |
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture;
 var_Element.CaptionAlign = EXSURFACELib.ContentAlignmentEnum.exTopCenter;

X++ (Dynamics Ax 2009)

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
void onEvent_HandCursorClick(COM _Element,int _Hit,COMVariant _Key)
{
 ;
 print(_Key);
}

public void init()
{
 COM com_Element;
 anytype var_Element;
 str var_s;
 ;

 super();

 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=";
 exsurface1.Images(COMVariant::createFromStr(var_s));
 exsurface1.HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
 exsurface1.HTMLPicture("pic2","c:\\exontrol\\images\\auction.gif");
 var_Element = COM::createFromObject(exsurface1.Elements()).Add("Caption");

com_Element = var_Element;
 com_Element.Pictures("1,2/pic1/pic2");
 com_Element.PicturesAlign(33/*exBottomCenter*/);
 com_Element.ShowHandCursorOn(771/*exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture*/);
 com_Element.CaptionAlign(1/*exTopCenter*/);
}

Delphi 8 (.NET only)

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
procedure TWinForm1.AxSurface1_HandCursorClick(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent);
begin
 with AxSurface1 do
 begin
 OutputDebugString(e.key);
 end
end;

with AxSurface1 do
begin

Images('gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/'
 +

'oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/'
 +

'wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx'
 +

'3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN'
 +
 'AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=');
 set_HTMLPicture('pic1','c:\exontrol\images\zipdisk.gif');

 set_HTMLPicture('pic2','c:\exontrol\images\auction.gif');
 with Elements.Add('Caption',Nil,Nil,Nil,Nil,Nil) do
 begin
 Pictures := '1,2/pic1/pic2';
 PicturesAlign := EXSURFACELib.ContentAlignmentEnum.exBottomCenter;
 ShowHandCursorOn :=
Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures)
Or Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures) Or
Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon) Or
Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture);
 CaptionAlign := EXSURFACELib.ContentAlignmentEnum.exTopCenter;
 end;
end

Delphi (standard)

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
procedure TForm1.Surface1HandCursorClick(ASender: TObject; Element : IElement;Hit
: ShowHandCursorOnEnum;Key : OleVariant);
begin
 with Surface1 do
 begin
 OutputDebugString(Key);
 end
end;

with Surface1 do
begin

Images('gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/'
 +

'oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/'
 +

'wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx'

 +

'3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN'
 +
 'AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=');
 HTMLPicture['pic1'] := 'c:\exontrol\images\zipdisk.gif';
 HTMLPicture['pic2'] := 'c:\exontrol\images\auction.gif';
 with Elements.Add('Caption',Null,Null,Null,Null,Null) do
 begin
 Pictures := '1,2/pic1/pic2';
 PicturesAlign := EXSURFACELib_TLB.exBottomCenter;
 ShowHandCursorOn :=
Integer(EXSURFACELib_TLB.exShowHandCursorExtraPictures) Or
Integer(EXSURFACELib_TLB.exShowHandCursorPictures) Or
Integer(EXSURFACELib_TLB.exShowHandCursorIcon) Or
Integer(EXSURFACELib_TLB.exShowHandCursorPicture);
 CaptionAlign := EXSURFACELib_TLB.exTopCenter;
 end;
end

VFP

*** HandCursorClick event - The uses clicks a part of the element that shows the had
cursor. ***
LPARAMETERS Element,Hit,Key
 with thisform.Surface1
 DEBUGOUT(Key)
 endwith

with thisform.Surface1
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +

"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .Object.HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .Object.HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
 with .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = 33
 .ShowHandCursorOn = 771 &&
ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
ShowHandCursorOnEnum.exShowHandCursorPictures Or
ShowHandCursorOnEnum.exShowHandCursorIcon Or
ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = 1
 endwith
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 HandCursorClick = class::nativeObject_HandCursorClick
endwith
*/
// The uses clicks a part of the element that shows the had cursor.
function nativeObject_HandCursorClick(Element,Hit,Key)
 local oSurface
 oSurface = form.Activex1.nativeObject
 ? Str(Key)
return

local oSurface,var_Element

oSurface = form.Activex1.nativeObject
oSurface.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oSurface.Template = [HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"] //
oSurface.HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
oSurface.Template = [HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"] //
oSurface.HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
var_Element = oSurface.Elements.Add("Caption")
 var_Element.Pictures = "1,2/pic1/pic2"
 var_Element.PicturesAlign = 33
 var_Element.ShowHandCursorOn = 771 /*exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture*/
 var_Element.CaptionAlign = 1

XBasic (Alpha Five)

' The uses clicks a part of the element that shows the had cursor.
function HandCursorClick as v (Element as OLE::Exontrol.Surface.1::IElement,Hit as
OLE::Exontrol.Surface.1::ShowHandCursorOnEnum,Key as A)
 Dim oSurface as P
 oSurface = topparent:CONTROL_ACTIVEX1.activex
 ? Key
end function

Dim oSurface as P
Dim var_Element as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
oSurface.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oSurface.Template = "HTMLPicture(\"pic1\") = \"c:\exontrol\images\zipdisk.gif\"" '
oSurface.HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
oSurface.Template = "HTMLPicture(\"pic2\") = \"c:\exontrol\images\auction.gif\"" '
oSurface.HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
var_Element = oSurface.Elements.Add("Caption")

 var_Element.Pictures = "1,2/pic1/pic2"
 var_Element.PicturesAlign = 33
 var_Element.ShowHandCursorOn = 771 'exShowHandCursorExtraPictures +
exShowHandCursorPictures + exShowHandCursorIcon +
exShowHandCursorPicture
 var_Element.CaptionAlign = 1

Visual Objects

METHOD OCX_Exontrol1HandCursorClick(Element,Hit,Key) CLASS MainDialog
 // HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
 OutputDebugString(String2Psz(AsString(Key)))
RETURN NIL

local var_Element as IElement

oDCOCX_Exontrol1:Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oDCOCX_Exontrol1:[HTMLPicture,"pic1"] := "c:\exontrol\images\zipdisk.gif"
oDCOCX_Exontrol1:[HTMLPicture,"pic2"] := "c:\exontrol\images\auction.gif"
var_Element := oDCOCX_Exontrol1:Elements:Add("Caption",nil,nil,nil,nil,nil)
 var_Element:Pictures := "1,2/pic1/pic2"
 var_Element:PicturesAlign := exBottomCenter
 var_Element:ShowHandCursorOn := exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture
 var_Element:CaptionAlign := exTopCenter

PowerBuilder

/*begin event HandCursorClick(oleobject Element,long Hit,any Key) - The uses clicks a
part of the element that shows the had cursor.*/
/*
 OleObject oSurface
 oSurface = ole_1.Object
 MessageBox("Information",string(String(Key)))

*/
/*end event HandCursorClick*/

OleObject oSurface,var_Element

oSurface = ole_1.Object
oSurface.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oSurface.HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
oSurface.HTMLPicture("pic2","c:\exontrol\images\auction.gif")
var_Element = oSurface.Elements.Add("Caption")
 var_Element.Pictures = "1,2/pic1/pic2"
 var_Element.PicturesAlign = 33
 var_Element.ShowHandCursorOn = 771 /*exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture*/
 var_Element.CaptionAlign = 1

Visual DataFlex

// The uses clicks a part of the element that shows the had cursor.
Procedure OnComHandCursorClick Variant llElement OLEShowHandCursorOnEnum
llHit Variant llKey
 Forward Send OnComHandCursorClick llElement llHit llKey
 Showln llKey
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Send ComImages
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

 Set ComHTMLPicture "pic1" to "c:\exontrol\images\zipdisk.gif"
 Set ComHTMLPicture "pic2" to "c:\exontrol\images\auction.gif"
 Variant voElements
 Get ComElements to voElements
 Handle hoElements

 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComAdd of hoElements "Caption" Nothing Nothing Nothing Nothing
Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement
 Set ComPictures of hoElement to "1,2/pic1/pic2"
 Set ComPicturesAlign of hoElement to OLEexBottomCenter
 Set ComShowHandCursorOn of hoElement to
(OLEexShowHandCursorExtraPictures + OLEexShowHandCursorPictures +
OLEexShowHandCursorIcon + OLEexShowHandCursorPicture)
 Set ComCaptionAlign of hoElement to OLEexTopCenter
 Send Destroy to hoElement
 Send Destroy to hoElements
End_Procedure

XBase++

PROCEDURE OnHandCursorClick(oSurface,Element,Hit,Key)
 DevOut(Transform(Key,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElement
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oSurface:HandCursorClick := {|Element,Hit,Key|
OnHandCursorClick(oSurface,Element,Hit,Key)} /*The uses clicks a part of the element
that shows the had cursor.*/

oSurface:Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

 oSurface:SetProperty("HTMLPicture","pic1","c:\exontrol\images\zipdisk.gif")
 oSurface:SetProperty("HTMLPicture","pic2","c:\exontrol\images\auction.gif")
 oElement := oSurface:Elements():Add("Caption")
 oElement:Pictures := "1,2/pic1/pic2"
 oElement:PicturesAlign := 33/*exBottomCenter*/
 oElement:ShowHandCursorOn :=
771/*exShowHandCursorExtraPictures+exShowHandCursorPictures+exShowHandCursorIcon+exShowHandCursorPicture*/

 oElement:CaptionAlign := 1/*exTopCenter*/

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Element.StartUpdateElement as Long
Starts changing properties of the element, so EndUpdateElement method adds
programmatically updated properties to undo/redo queue.

Type Description

Long

A Long expression that specifies the handle to be passed
to EndUpdateElement so the updated properties of the
bar are added to the Undo/Redo queue of the chart, so
they can be used in undo/redo operations.

The StartUpdateElement/EndUpdateElement methods record and add changes of the
current element to the control's Undo/Redo queue. You can use the StartBlockUndoRedo /
EndBlockUndoRedo methods to group multiple Undo/Redo operations into a single-block.
The AllowUndoRedo property specifies whether the control supports undo/redo operations
for objects (elements, links, ...). No entry is added to the Undo/Redo queue if no property is
changed for the current element. Each call of the StartUpdateElement must be succeeded
by a EndUpdateElement call. The UndoListAction property lists the Undo actions that can
be performed in the chart. The RedoListAction property lists the Redo actions that can be
performed in the chart.

The StartUpdateElement/EndUpdateElement methods can record changes for the following
properties only:

Type, defines the element's type (default and control)
Control, Specifies the identifier of the inner control hosted by the current element (only
if the Type is exElementHostControl)
License, Indicates the runtime license required to create the inner control (only if the
Type is exElementHostControl)
Caption, gets or sets a value that indicates the HTML caption to be displayed on the
element
Parent, defines the element's parent (when the element is part of a hierarchy)
ChildPosition, specifies the position of the element while it is a child element (when the
element is part of a hierarchy)
ID, defines the element's unique identifier
Format, specifies the way the control shows the parts of the element
AutoSize, specifies if the element computes its size automatically
ShowCheckBox, shows or hides the element's check-box
X, specifies the element's x-position
Y, specifies the element's y-position
Width, specifies the width of the element
Height, specifies the height of the element
Expanded, expands or collapses an element (by default, the UI expand/collapse of the

elements are not recorded into the Undo/Redo queue)
Visible, shows or hides the element
Enabled, enables or disables the element
Checked, checks or un-checks the element (by default, the UI check/uncheck of the
elements are not recorded into the Undo/Redo queue)
BackColor, gets or sets a value that indicates the element's background color
ForeColor, gets or sets a value that indicates the element's foreground color
OverviewColor, gets or sets a value that indicates the element's overview color
BorderColor, gets or sets a value that indicates the element's border color
StatusColor, gets or sets a value that indicates the element's status color
Pictures, specifies the list of pictures to be displayed on the element
ExtraPictures, specifies the list of additional pictures to be displayed on the element
ExtraCaption, gets or sets a value that indicates additional HTML caption to be
displayed on the element
Pattern, specifies the pattern to be shown on the element's background
UserData, associates any extra data associated with the element

The Undo/Redo records show as:

"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods

within the UndoListAction/RedoListAction result.

property Element.StatusAlign as EdgeAlignmentEnum
Specifies the alignment of the status inside the element.

Type Description

EdgeAlignmentEnum An EdgeAlignmentEnum expression that specifies the
alignment of the element's status

The StatusAlign property indicates the alignment of the element's status. Use the
StatusColor property to specify a different status color. The StatusPadding property
specifies the status padding. The BackColor property specifies the element's background
color. The ForeColor property specifies the element's foreground color. The StatusSize
property indicates the size of the element's status. The StatusPattern property indicates a
different pattern to be displayed on the element's status part.

property Element.StatusColor as Color
Gets or sets a value that indicates the element's status color.

Type Description

Color

A Color expression that specifies the color to show the
element's status. The last 7 bits in the high significant byte
of the color indicates the identifier of the skin being used
to paint the part. Use the Add method to add new skins to
the control.

By default, the StatusColor is -1, which indicates that the default status color is applied. The
Background(exElementStatusColor) property specifies the default status color / visual
appearance. Use the StatusColor property to specify a different status color. The
StatusPadding property specifies the status padding. The BackColor property specifies the
element's background color. The ForeColor property specifies the element's foreground
color. The StatusSize property indicates the size of the element's status. The StatusAlign
property indicates the alignment of the element's status. The StatusPattern property
indicates a different pattern to be displayed on the element's status part.

property Element.StatusPadding(Edge as PaddingEdgeEnum) as Long
Returns or sets a value that indicates the padding of the element's status.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be changed

Long A long expression that defines the padding

By default, the StatusPadding is 0. The StatusPadding property specifies the status
padding. Use the StatusColor property to specify a different status color. The BackColor
property specifies the element's background color. The ForeColor property specifies the
element's foreground color. The StatusSize property indicates the size of the element's
status. The StatusAlign property indicates the alignment of the element's status. The
StatusPattern property indicates a different pattern to be displayed on the element's status
part.

The following screen shot shows the element when StatusPadding is 0 (default):

The following screen shot shows the element when StatusPadding is 1:

The following screen shot shows the element when StatusPadding is 4:

property Element.StatusPattern as Pattern
Specifies the pattern of the element's status

Type Description

Pattern A Pattern object that defines the pattern to be shown on
the status

The StatusPattern property indicates a different pattern to be displayed on the element's
status part. Use the StatusColor property to specify a different status color. The
StatusPadding property specifies the status padding. The BackColor property specifies the
element's background color. The ForeColor property specifies the element's foreground
color. The StatusSize property indicates the size of the element's status. The StatusAlign
property indicates the alignment of the element's status.

property Element.StatusSize as Long
Specifies the size of the status inside the element.

Type Description

Long A Long expression that defines the size of the status part
of the element.

By default, the StatusSize property is 4. The StatusSize property indicates the size of the
element's status. The StatusAlign property indicates the alignment of the element's status.
Use the StatusColor property to specify a different status color. The StatusPadding
property specifies the status padding. The BackColor property specifies the element's
background color. The ForeColor property specifies the element's foreground color. The
StatusPattern property indicates a different pattern to be displayed on the element's status
part.

property Element.ToolTip as String
Gets or sets a value (tooltip) that's displayed once the cursor hovers the element.

Type Description
String A String expression that defines the element's tooltip.

By default, the ToolTip property is empty. The ToolTip of the Element is shown, if the ToolTip
property is not empty and the cursor hovers the element. Use the ToolTipTitle property to
assign a title for the element's tooltip. Use the ShowToolTip method to programmatically
show a custom tooltip. Use the ToolTipPopDelay property specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipFont property to change the tooltip's font. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

The following screen shot shows the element's tooltip when the cursor hovers the element:

The ToolTip property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to

about:blank

expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text

<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>

<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Element.ToolTipTitle as String
Gets or sets a value (title) that's displayed once the cursor hovers the element.

Type Description

String A String expression that defines the title of the element's
tooltip.

By default, the ToolTipTitle property is empty. Use the ToolTipTitle property to assign a title
for the element's tooltip. The ToolTip of the Element is shown, if the ToolTip property is not
empty and the cursor hovers the element. Use the ShowToolTip method to programmatically
show a custom tooltip. Use the ToolTipPopDelay property specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipFont property to change the tooltip's font. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

property Element.Type as ElementHostTypeEnum
Specifies the element's type.

Type Description

ElementHostTypeEnum An ElementHostTypeEnum expression that defines type of
the element.

By default, the Type property is exElementHostDefault, which defines the default node, with
caption, check, pictures and so on. Use the Type property to change the element's type.
Changing the Type property at runtime, loses the properties like Caption, Pictures, and so
on. So setting the Type property must be done before calling or changing any of the other
properties. Use the Add/Insert method to add/insert an (child) element of
exElementHostDefault type. Use the InsertControl method to add a new element whose
Type property is set on exElementHostControl. Use the Caption/ExtraCaption property to
specify the element's caption or extra-caption. Use the Pictures/ExtraPictures property to
display one or more icons, picture to the element. Use the ShowCheckBox property to
show the element's check box. Use the ElementFormat property to define how the parts of
the element are displayed.

In case, the Type property is:

exElementHostWindow, you must use the Window property to associate an existent
window with the current element.
exElementHostControl, you must use the Control/License property to create an inner
control or an ActiveX control. Use the ElementFormat property to define how the parts
of the element are displayed. The control fires the OLEEvent event if an inside ActiveX
control fires an event.

property Element.UserData as Variant
Indicates any extra data associated with the element.

Type Description

Variant A VARIANT expression that defines the extra-data
associated with the element.

By default, the element's UserData property is empty, so no extra-data is associated with
the node. You can use the UserData property to associate your extra data with the current
element. The UserData property is not used by the control in any other way, it is provided to
store your extra data.

property Element.Visible as Boolean
Shows or hides the element.

Type Description

Boolean A Boolean expression that specifies whether the element
is visible or hidden on the surface.

By default, the Visible property is True. Use the Visible property to hide an element. Use the
Remove method to remove an element. If the element is child of another element (Parent
property specifies the element's parent), the element is visible, if all parents are visible and
expanded. The Expanded property specifies whether an element is expanded or collapsed.
If the element is not visible, any incoming or outgoing links are not visible as well. The
OutgoingLinks property specifies the list of links that starts from the current element. The
IncomingLinks property specifies the list of links that ends on the current element.

property Element.VisibleChildCount as Long
Counts the number of visible child elements.

Type Description

Long A Long expression that specifies the number of visible
child elements.

The VisibleChildCount property specifies the list of visible children. The ChildCount property
counts the number of child elements. The VisibleChildren property specifies the list of visible
child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime. The AllowChangeParent property of the Element object
specifies whether the element can change its parent at runtime. The ParentChangeElement
event occurs when the element's parent is changed.

property Element.VisibleChildren as Variant
Returns a safe array of visible child elements.

Type Description

Variant
A Safe-Array of elements indicating the list of child
elements. You can use the for-each statement to
enumerate the child elements of specified node.

The Visible Children property specifies the list of visible child elements. The Visible property
specifies whether the element is visible or hidden. The Children property specifies the list of
child elements. Use the Parent property to change the element's parent. The
AllowInsertChild property of the Element object specifies whether the element supports
adding child elements at runtime. The AllowChangeParent property of the Element object
specifies whether the element can change its parent at runtime. The ParentChangeElement
event occurs when the element's parent is changed.

property Element.Width as Long
Specifies the width of the element.

Type Description

Long A Long expression that specifies the width in pixels of the
element.

The Width property specifies the width of the element. The Height property specifies the
height of the element. Use the Width and Height properties to resize the element, while the
AutoSize property is False. If AutoSize property is True, the Width and the Height can not
be changed programmatically. The MinWidth/MaxWidth and MinHeight/MaxHeight
properties specifies the min/max size of the element. The X and Y properties specifies the
position of the element on the surface. Use the MoveTo method to move/resize the element
to a new position / size.

property Element.Window as Long
Returns or sets the handle of the window to be hosted by the element.

Type Description

Long A HANDLE expression that specifies the handle of the
window to be hosted by the current element.

By default, the Windows property is 0. The Window property has effect only, if the
element's Type property is set on exElementHostWindow. The Window property may be
used to associate an existent window from your form or dialog to be hosted by an element
on the surface. Use the InsertControl method to add a new element whose Type property is
set on exElementHostControl, and so to host a new ActiveX control.

property Element.X as Long
Specifies the element's x-position.

Type Description

Long A Long expression that specifies the x-position of the
element on the surface.

The X and Y properties specifies the position of the element on the surface. Use the
MoveTo method to move/resize the element to a new position / size. The Width property
specifies the width of the element. The Height property specifies the height of the element.
Use the Width and Height properties to resize the element, while the AutoSize property is
False. If AutoSize property is True, the Width and the Height can not be changed
programmatically. The MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies
the min/max size of the element.

property Element.Y as Long
Specifies the element's y-position.

Type Description

Long A Long expression that specifies the y-position of the
element on the surface.

The X and Y properties specifies the position of the element on the surface. Use the
MoveTo method to move/resize the element to a new position / size. The Width property
specifies the width of the element. The Height property specifies the height of the element.
Use the Width and Height properties to resize the element, while the AutoSize property is
False. If AutoSize property is True, the Width and the Height can not be changed
programmatically. The MinWidth/MaxWidth and MinHeight/MaxHeight properties specifies
the min/max size of the element.

Elements object
The Elements collection holds the elements to be shown on the surface. The Elements
property of the control accesses the Elements collection. The Links property of the control
accesses the Links collection. The Elements collection supports the following properties and
methods:

Name Description

Add Adds an Element object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of elements in the collection.

Insert Inserts a child Element object to the collection and returns
a reference to the newly created object.

InsertControl
Inserts a child Element object (that hosts another control
inside) to the collection and returns a reference to the
newly created object.

Item Returns a specific Element of the Elements collection,
giving its identifier.

Remove Removes a specific member from the Elements collection,
giving its identifier or reference.

method Elements.Add ([Caption as Variant], [X as Variant], [Y as
Variant])
Adds an Element object to the collection and returns a reference to the newly created
object.

Type Description

Caption as Variant

A String expression that specifies the caption to be
displayed on the element. The Caption property specifies
the value of the Caption parameter. Use the CaptionAlign
property to align the element's caption.

X as Variant

A long expression that specifies the x-position where the
element is sown. If missing, the element is shown at (0,0)
position on the surface. The X property indicates the
element's x-position on the surface.

Y as Variant

A long expression that specifies the y-position where the
element is sown. If missing, the element is shown at (0,0)
position on the surface. The X property indicates the
element's x-position on the surface.

Return Description

Element An Element object that represents the newly created and
added element.

The Add method adds programmatically a new element to the surface. Use the Insert
method to insert programmatically a child element. Use the InsertControl method to insert
programmatically a child element that hosts an inner ActiveX control. The control fires the
AddElement event once a new element is added to the Elements collection. The AutoSize
property specifies whether the element's size if computed automatically based on its
content. While the AutoSize property is True, the element is not resizable. Use the Width /
Height property to specify the size of the element. The AllowCreateObject property
specifies the combination of keys that allows the user to create objects on the surface.

The following samples show how you can programmatically add a new element:

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 .Add "new 1"
 .Add "new 1",24,24
 End With

End With

VB6

With Surface1
 With .Elements
 .Add "new 1"
 .Add "new 1",24,24
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 .Add("new 1")
 .Add("new 1",24,24)
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 .Add("new 1")
 .Add("new 1",24,24)
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/

EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 var_Elements->Add("new 1",vtMissing,vtMissing);
 var_Elements->Add("new 1",long(24),long(24));

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 var_Elements->Add(TVariant("new 1"),TNoParam(),TNoParam());
 var_Elements->Add(TVariant("new 1"),TVariant(24),TVariant(24));

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 var_Elements.Add("new 1",null,null);
 var_Elements.Add("new 1",24,24);

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Elements = Surface1.Elements;
 var_Elements.Add("new 1",null,null);
 var_Elements.Add("new 1",24,24);
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 var_Elements.Add("new 1",null,null);
 var_Elements.Add("new 1",24,24);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Elements;
 anytype var_Elements;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;
 com_Elements.Add("new 1");
 com_Elements.Add("new
1",COMVariant::createFromInt(24),COMVariant::createFromInt(24));
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 Add('new 1',Nil,Nil);
 Add('new 1',TObject(24),TObject(24));
 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 Add('new 1',Null,Null);
 Add('new 1',OleVariant(24),OleVariant(24));
 end;
end

VFP

with thisform.Surface1
 with .Elements
 .Add("new 1")
 .Add("new 1",24,24)
 endwith
endwith

dBASE Plus

local oSurface,var_Elements

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 var_Elements.Add("new 1")
 var_Elements.Add("new 1",24,24)

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Elements as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 var_Elements.Add("new 1")
 var_Elements.Add("new 1",24,24)

Visual Objects

local var_Elements as IElements

var_Elements := oDCOCX_Exontrol1:Elements
 var_Elements:Add("new 1",nil,nil)
 var_Elements:Add("new 1",24,24)

PowerBuilder

OleObject oSurface,var_Elements

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Elements.Add("new 1")
 var_Elements.Add("new 1",24,24)

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Get ComAdd of hoElements "new 1" Nothing Nothing to Nothing
 Get ComAdd of hoElements "new 1" 24 24 to Nothing
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElements
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()
 oElements:Add("new 1")
 oElements:Add("new 1",24,24)

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Elements.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to remove all elements from the surface. Use the Remove method to
remove a specific element from the Elements collection. The RemoveElement event occurs
once the element has been removed from the Elements collection. Use the
RemoveSelection method to remove the selected elements. Removing and element
removes the incoming and outgoing links as well. Use the RemoveElement event to release
any extra data associated with the element.

property Elements.Count as Long
Returns the number of elements in the collection.

Type Description

Long A Long expression that specifies the number of elements
on the surface.

The Count property specifies the number of elements in the Elements collection. The Item
property accesses the element giving its identifier.

The following VB sample enumerates the elements on the surface:

Dim e As Variant
For Each e In Surface1.Elements
 Debug.Print e.ID
Next

method Elements.Insert ([Caption as Variant], [Parent as Variant],
[Position as Variant])
Inserts a child Element object to the collection and returns a reference to the newly created
object.

Type Description

Caption as Variant

A String expression that specifies the caption to be
displayed on the element. The Caption property specifies
the value of the Caption parameter. Use the CaptionAlign
property to align the element's caption.

Parent as Variant

A Long, String or Numeric expression that specifies the
identifier of the parent element, or a reference to the
parent element. The Parent property specifies the
element's parent. The ID property indicates the element's
identifier.

Position as Variant
A Long expression that specifies the position of the
element in the parent's children collection. If missing, the
element is added at the end of the parent's children list

Return Description
Element A Reference to the newly inserted element.

Use the Insert method to insert programmatically a child element. The Add method adds
programmatically a new element to the surface. Use the InsertControl method to insert
programmatically a child element that hosts an inner ActiveX control. The control fires the
AddElement event once a new element is added to the Elements collection. The AutoSize
property specifies whether the element's size if computed automatically based on its
content. While the AutoSize property is True, the element is not resizable. Use the Width /
Height property to specify the size of the element. The Expanded property expands or
collapse the parent element. Use the IndentX / IndentY property to specify the indentation
between child and parent elements.

The following samples show how you can programmatically add a child element, or create a
hierarchy:

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 .Add("Root").ID = "rootID"
 .Insert "Child 1","rootID"

 .Insert("Child 2","rootID").ID = "childID"
 .Insert "Child 3","rootID"
 .Insert "Sub-Child 1.2","childID"
 .Insert "Sub-Child 2.2","childID"
 End With
End With

VB6

With Surface1
 With .Elements
 .Add("Root").ID = "rootID"
 .Insert "Child 1","rootID"
 .Insert("Child 2","rootID").ID = "childID"
 .Insert "Child 3","rootID"
 .Insert "Sub-Child 1.2","childID"
 .Insert "Sub-Child 2.2","childID"
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 .Add("Root").ID = "rootID"
 .Insert("Child 1","rootID")
 .Insert("Child 2","rootID").ID = "childID"
 .Insert("Child 3","rootID")
 .Insert("Sub-Child 1.2","childID")
 .Insert("Sub-Child 2.2","childID")
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 .Add("Root").ID = "rootID"

 .Insert("Child 1","rootID")
 .Insert("Child 2","rootID").ID = "childID"
 .Insert("Child 3","rootID")
 .Insert("Sub-Child 1.2","childID")
 .Insert("Sub-Child 2.2","childID")
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 var_Elements->Add("Root",vtMissing,vtMissing)->PutID("rootID");
 var_Elements->Insert("Child 1","rootID",vtMissing);
 var_Elements->Insert("Child 2","rootID",vtMissing)->PutID("childID");
 var_Elements->Insert("Child 3","rootID",vtMissing);
 var_Elements->Insert("Sub-Child 1.2","childID",vtMissing);
 var_Elements->Insert("Sub-Child 2.2","childID",vtMissing);

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 var_Elements->Add(TVariant("Root"),TNoParam(),TNoParam())-
>set_ID(TVariant("rootID"));
 var_Elements->Insert(TVariant("Child 1"),TVariant("rootID"),TNoParam());
 var_Elements->Insert(TVariant("Child 2"),TVariant("rootID"),TNoParam())-
>set_ID(TVariant("childID"));
 var_Elements->Insert(TVariant("Child 3"),TVariant("rootID"),TNoParam());

 var_Elements->Insert(TVariant("Sub-Child 1.2"),TVariant("childID"),TNoParam());
 var_Elements->Insert(TVariant("Sub-Child 2.2"),TVariant("childID"),TNoParam());

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 var_Elements.Add("Root",null,null).ID = "rootID";
 var_Elements.Insert("Child 1","rootID",null);
 var_Elements.Insert("Child 2","rootID",null).ID = "childID";
 var_Elements.Insert("Child 3","rootID",null);
 var_Elements.Insert("Sub-Child 1.2","childID",null);
 var_Elements.Insert("Sub-Child 2.2","childID",null);

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Elements = Surface1.Elements;
 var_Elements.Add("Root",null,null).ID = "rootID";
 var_Elements.Insert("Child 1","rootID",null);
 var_Elements.Insert("Child 2","rootID",null).ID = "childID";
 var_Elements.Insert("Child 3","rootID",null);
 var_Elements.Insert("Sub-Child 1.2","childID",null);
 var_Elements.Insert("Sub-Child 2.2","childID",null);
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 var_Elements.Add("Root",null,null).ID = "rootID";
 var_Elements.Insert("Child 1","rootID",null);
 var_Elements.Insert("Child 2","rootID",null).ID = "childID";
 var_Elements.Insert("Child 3","rootID",null);
 var_Elements.Insert("Sub-Child 1.2","childID",null);

 var_Elements.Insert("Sub-Child 2.2","childID",null);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Element,com_Elements;
 anytype var_Element,var_Elements;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;
 var_Element = COM::createFromObject(com_Elements.Add("Root"));
com_Element = var_Element;
 com_Element.ID("rootID");
 com_Elements.Insert("Child 1","rootID");
 var_Element = COM::createFromObject(com_Elements.Insert("Child 2","rootID"));
com_Element = var_Element;
 com_Element.ID("childID");
 com_Elements.Insert("Child 3","rootID");
 com_Elements.Insert("Sub-Child 1.2","childID");
 com_Elements.Insert("Sub-Child 2.2","childID");
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 Add('Root',Nil,Nil).ID := 'rootID';
 Insert('Child 1','rootID',Nil);
 Insert('Child 2','rootID',Nil).ID := 'childID';
 Insert('Child 3','rootID',Nil);
 Insert('Sub-Child 1.2','childID',Nil);
 Insert('Sub-Child 2.2','childID',Nil);

 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 Add('Root',Null,Null).ID := 'rootID';
 Insert('Child 1','rootID',Null);
 Insert('Child 2','rootID',Null).ID := 'childID';
 Insert('Child 3','rootID',Null);
 Insert('Sub-Child 1.2','childID',Null);
 Insert('Sub-Child 2.2','childID',Null);
 end;
end

VFP

with thisform.Surface1
 with .Elements
 .Add("Root").ID = "rootID"
 .Insert("Child 1","rootID")
 .Insert("Child 2","rootID").ID = "childID"
 .Insert("Child 3","rootID")
 .Insert("Sub-Child 1.2","childID")
 .Insert("Sub-Child 2.2","childID")
 endwith
endwith

dBASE Plus

local oSurface,var_Element,var_Element1,var_Elements

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 // var_Elements.Add("Root").ID = "rootID"

 var_Element = var_Elements.Add("Root")
 with (oSurface)
 TemplateDef = [Dim var_Element]
 TemplateDef = var_Element
 Template = [var_Element.ID = "rootID"]
 endwith
 var_Elements.Insert("Child 1","rootID")
 // var_Elements.Insert("Child 2","rootID").ID = "childID"
 var_Element1 = var_Elements.Insert("Child 2","rootID")
 with (oSurface)
 TemplateDef = [Dim var_Element1]
 TemplateDef = var_Element1
 Template = [var_Element1.ID = "childID"]
 endwith
 var_Elements.Insert("Child 3","rootID")
 var_Elements.Insert("Sub-Child 1.2","childID")
 var_Elements.Insert("Sub-Child 2.2","childID")

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Element as P
Dim var_Element1 as P
Dim var_Elements as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 ' var_Elements.Add("Root").ID = "rootID"
 var_Element = var_Elements.Add("Root")
 oSurface.TemplateDef = "Dim var_Element"
 oSurface.TemplateDef = var_Element
 oSurface.Template = "var_Element.ID = \"rootID\""

 var_Elements.Insert("Child 1","rootID")
 ' var_Elements.Insert("Child 2","rootID").ID = "childID"
 var_Element1 = var_Elements.Insert("Child 2","rootID")

 oSurface.TemplateDef = "Dim var_Element1"
 oSurface.TemplateDef = var_Element1
 oSurface.Template = "var_Element1.ID = \"childID\""

 var_Elements.Insert("Child 3","rootID")
 var_Elements.Insert("Sub-Child 1.2","childID")
 var_Elements.Insert("Sub-Child 2.2","childID")

Visual Objects

local var_Elements as IElements

var_Elements := oDCOCX_Exontrol1:Elements
 var_Elements:Add("Root",nil,nil):ID := "rootID"
 var_Elements:Insert("Child 1","rootID",nil)
 var_Elements:Insert("Child 2","rootID",nil):ID := "childID"
 var_Elements:Insert("Child 3","rootID",nil)
 var_Elements:Insert("Sub-Child 1.2","childID",nil)
 var_Elements:Insert("Sub-Child 2.2","childID",nil)

PowerBuilder

OleObject oSurface,var_Elements

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Elements.Add("Root").ID = "rootID"
 var_Elements.Insert("Child 1","rootID")
 var_Elements.Insert("Child 2","rootID").ID = "childID"
 var_Elements.Insert("Child 3","rootID")
 var_Elements.Insert("Sub-Child 1.2","childID")
 var_Elements.Insert("Sub-Child 2.2","childID")

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComAdd of hoElements "Root" Nothing Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement
 Set ComID of hoElement to "rootID"
 Send Destroy to hoElement
 Get ComInsert of hoElements "Child 1" "rootID" Nothing to Nothing
 Variant voElement1
 Get ComInsert of hoElements "Child 2" "rootID" Nothing to voElement1
 Handle hoElement1
 Get Create (RefClass(cComElement)) to hoElement1
 Set pvComObject of hoElement1 to voElement1
 Set ComID of hoElement1 to "childID"
 Send Destroy to hoElement1
 Get ComInsert of hoElements "Child 3" "rootID" Nothing to Nothing
 Get ComInsert of hoElements "Sub-Child 1.2" "childID" Nothing to Nothing
 Get ComInsert of hoElements "Sub-Child 2.2" "childID" Nothing to Nothing
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElements

 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()
 oElements:Add("Root"):ID := "rootID"
 oElements:Insert("Child 1","rootID")
 oElements:Insert("Child 2","rootID"):ID := "childID"
 oElements:Insert("Child 3","rootID")
 oElements:Insert("Sub-Child 1.2","childID")
 oElements:Insert("Sub-Child 2.2","childID")

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Elements.InsertControl ([Control as Variant], [License as
Variant], [Parent as Variant], [Position as Variant])
Inserts a child Element object (that hosts another control inside) to the collection and
returns a reference to the newly created object.

Type Description

Control as Variant

A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML. The Control property
returns the value of Control parameter.

License as Variant

A string expression that indicates the runtime license key
for the component being inserted, if required. Only, the
vendor of the component you are going to use is able to
give you such of runtime license, so please contact the
control's vendor for such of key. Your development license
key is not compatible with the runtime license key, so it
can't be used here. The License property specifies the
runtime-license of the control.

Parent as Variant

A Long, String or Numeric expression that specifies the
identifier of the parent element or a reference to the
parent element. The Parent property specifies the
element's parent.

Position as Variant

The position of the element in the parent's children
collection. If missing, the element is added at the end of
the children list. The ChildPosition property returns the
element's position in the parent children collection.

Return Description
Element An Element object that hosts the specified control.

The control supports ActiveX hosting, or in other words, any element can host another
inside controls. The InsertControl property adds a new Element object with the Type set on
exElementHostControl, that hosts an ActiveX control. The inside ActiveX control is specified
by the Control and License parameters. The Object property returns a reference to newly
created control. The ExSurface control fires the OLEEvent event if an inside ActiveX control
fires an event. Use the ElementFormat property to specify the area where the inner control
is displayed.

The Control parameter must be formatted in one of the following ways:

A ProgID such as "Exontrol.Grid"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

The following samples shows how you can host a Command button:

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

VB6

With Surface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 With .InsertControl("Forms.CommandButton.1")
 .ElementFormat = """check"":18,""client"""
 .Object.Caption = "command"
 .ShowCheckBox = True
 .Height = 48
 .Width = 128
 End With
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();

EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 EXSURFACELib::IElementPtr var_Element = var_Elements-
>InsertControl("Forms.CommandButton.1",vtMissing,vtMissing,vtMissing);
 var_Element->PutElementFormat(L"\"check\":18,\"client\"");
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'MSForms' for the library: 'Microsoft Forms 2.0 Object
Library'

 #import <FM20.DLL>
*/
 ((MSForms::ICommandButtonPtr)(var_Element->GetObject()))-
>PutCaption(L"command");
 var_Element->PutShowCheckBox(VARIANT_TRUE);
 var_Element->PutHeight(48);
 var_Element->PutWidth(128);

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 Exsurfacelib_tlb::IElementPtr var_Element = var_Elements-
>InsertControl(TVariant("Forms.CommandButton.1"),TNoParam(),TNoParam(),TNoParam());

 var_Element->ElementFormat = L"\"check\":18,\"client\"";
 (IDispatch*)var_Element->Object->Caption = L"command";
 var_Element->ShowCheckBox = true;
 var_Element->Height = 48;
 var_Element->Width = 128;

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 exontrol.EXSURFACELib.Element var_Element =
var_Elements.InsertControl("Forms.CommandButton.1",null,null,null);
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 // Add 'Microsoft Forms 2.0 Object Library' reference to your project.

 (var_Element.Object as MSForms.CommandButton).Caption = "command";
 var_Element.ShowCheckBox = true;
 var_Element.Height = 48;
 var_Element.Width = 128;

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Elements = Surface1.Elements;
 var var_Element =
var_Elements.InsertControl("Forms.CommandButton.1",null,null,null);
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 var_Element.Object.Caption = "command";
 var_Element.ShowCheckBox = true;
 var_Element.Height = 48;
 var_Element.Width = 128;
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 EXSURFACELib.Element var_Element =
var_Elements.InsertControl("Forms.CommandButton.1",null,null,null);
 var_Element.ElementFormat = "\"check\":18,\"client\"";
 // Add 'Microsoft Forms 2.0 Object Library' reference to your project.
 (var_Element.Object as MSForms.CommandButton).Caption = "command";
 var_Element.ShowCheckBox = true;
 var_Element.Height = 48;
 var_Element.Width = 128;

X++ (Dynamics Ax 2009)

public void init()

{
 COM com_Element,com_Elements,com_Object;
 anytype var_Element,var_Elements,var_Object;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;
 var_Element = com_Elements.InsertControl("Forms.CommandButton.1");
com_Element = var_Element;
 com_Element.ElementFormat("\"check\":18,\"client\"");
 var_Object = COM::createFromObject(com_Element.Object()); com_Object =
var_Object;
 com_Object.Caption("command");
 com_Element.ShowCheckBox(true);
 com_Element.Height(48);
 com_Element.Width(128);
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 with InsertControl('Forms.CommandButton.1',Nil,Nil,Nil) do
 begin
 ElementFormat := '"check":18,"client"';
 (Object as MSForms.CommandButton).Caption := 'command';
 ShowCheckBox := True;
 Height := 48;
 Width := 128;
 end;
 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 with InsertControl('Forms.CommandButton.1',Null,Null,Null) do
 begin
 ElementFormat := '"check":18,"client"';
 (IUnknown(Object) as MSForms_TLB.CommandButton).Caption := 'command';
 ShowCheckBox := True;
 Height := 48;
 Width := 128;
 end;
 end;
end

VFP

with thisform.Surface1
 with .Elements
 with .InsertControl("Forms.CommandButton.1")
 .ElementFormat =
""+chr(34)+"check"+chr(34)+":18,"+chr(34)+"client"+chr(34)+""
 .Object.Caption = "command"
 .ShowCheckBox = .T.
 .Height = 48
 .Width = 128
 endwith
 endwith
endwith

dBASE Plus

local oSurface,var_Element,var_Elements

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 var_Element = var_Elements.InsertControl("Forms.CommandButton.1")
 var_Element.ElementFormat = "" + ["] + "check" + ["] + ":18," + ["] + "client" +

["] + ""
 var_Element.Object.Caption = "command"
 var_Element.ShowCheckBox = true
 var_Element.Height = 48
 var_Element.Width = 128

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Element as P
Dim var_Elements as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 var_Element = var_Elements.InsertControl("Forms.CommandButton.1")
 var_Element.ElementFormat = "\"check\":18,\"client\""
 var_Element.Object.Caption = "command"
 var_Element.ShowCheckBox = .t.
 var_Element.Height = 48
 var_Element.Width = 128

Visual Objects

local var_Element as IElement
local var_Elements as IElements

var_Elements := oDCOCX_Exontrol1:Elements
 var_Element := var_Elements:InsertControl("Forms.CommandButton.1",nil,nil,nil)
 var_Element:ElementFormat := "" + CHR(34) + "check" + CHR(34) + ":18," +
CHR(34) + "client" + CHR(34) + ""
 // Generate Source for 'Microsoft Forms 2.0 Object Library' server from
Tools\Automation Server...
 ICommandButton{var_Element:Object}:Caption := "command"
 var_Element:ShowCheckBox := true
 var_Element:Height := 48
 var_Element:Width := 128

PowerBuilder

OleObject oSurface,var_Element,var_Elements

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Element = var_Elements.InsertControl("Forms.CommandButton.1")
 var_Element.ElementFormat = "" + CHAR(34) + "check" + CHAR(34) + ":18," +
CHAR(34) + "client" + CHAR(34) + ""
 var_Element.Object.Caption = "command"
 var_Element.ShowCheckBox = true
 var_Element.Height = 48
 var_Element.Width = 128

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComInsertControl of hoElements "Forms.CommandButton.1" Nothing
Nothing Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement
 Set ComElementFormat of hoElement to ""check":18,"client""
 Variant voCommandButton
 Get ComObject of hoElement to voCommandButton
 Handle hoCommandButton
 Get Create (RefClass(cComCommandButton)) to hoCommandButton
 Set pvComObject of hoCommandButton to voCommandButton

 Set ComCaption of hoCommandButton to "command"
 Send Destroy to hoCommandButton
 Set ComShowCheckBox of hoElement to True
 Set ComHeight of hoElement to 48
 Set ComWidth of hoElement to 128
 Send Destroy to hoElement
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElement
 LOCAL oElements
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()
 oElement := oElements:InsertControl("Forms.CommandButton.1")
 oElement:ElementFormat := "" + CHR(34) + "check" + CHR(34) + ":18," +
CHR(34) + "client" + CHR(34) + ""
 oElement:Object():Caption := "command"
 oElement:ShowCheckBox := .T.

 oElement:Height := 48
 oElement:Width := 128

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Elements.Item (ID as Variant) as Element
Returns a specific Element of the Elements collection, giving its identifier.

Type Description

ID as Variant A Long, String or Numeric expression that defines the
element's unique identifier.

Element An Element object being retrieved.

The Item property accesses the element giving its identifier. The Count property specifies
the number of elements in the Elements collection. The ID property specifies the element's
unique identfier.

The following VB sample enumerates the elements on the surface:

Dim e As Variant
For Each e In Surface1.Elements
 Debug.Print e.ID
Next

method Elements.Remove (ID as Variant)
Removes a specific member from the Elements collection, giving its identifier or reference.

Type Description

ID as Variant
A Long, String or Numeric expression that specifies the
identifier of the element to be removed, or a reference to
the Element to be removed.

Use the Remove method to remove a specific element from the Elements collection. The
RemoveElement event occurs once the element has been removed from the Elements
collection. Use the RemoveSelection method to remove the selected elements. Use the
Clear method to remove all elements from the surface. Removing and element removes the
incoming and outgoing links as well. Use the RemoveElement event to release any extra
data associated with the element. Use the Visible property to hide a specific element.

ExDataObject object
Defines the object that contains OLE drag and drop information.

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of the specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object

The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property.

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index
String A string value that indicates the filename

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames.

HitTest object
The HitTest object determines the element and the hit-test code. The HitTestFromPoint
property returns the hit-test object from the cursor. The HitTest object supports the
following properties and methods:

Name Description
Element Specifies the element object.
HitTestCode Specifies the hit-test code.
HitTestKey Specifies the hit-test key.

property HitTest.Element as Element
Specifies the element object.

Type Description
Element An Element object

The Element property specifies the Element from the cursor. The HitTestCode property
specifies the code where the cursor hovers the element. The HitTestKey property indicates
the key associated to the part of the element from the cursor.

property HitTest.HitTestCode as HitTestCodeEnum
Specifies the hit-test code.

Type Description

HitTestCodeEnum A HitTestCodeEnum expression that specifies the code of
the part where the cursor is over the element.

The HitTestCode property specifies the code where the cursor hovers the element. The
Element property specifies the Element from the cursor. The HitTestKey property indicates
the key associated to the part of the element from the cursor.

The HitTestCode may indicate one of the following parts of the element:

exHitTestMargin, indicates the border of the element. The HitTestKey property returns
nothing.
exHitTestStatus, indicates the status part of the element. The HitTestKey property
returns nothing.
exHitTestClient, indicates the element's background (empty). The HitTestKey
property returns nothing.
exHitTestPicture, indicates any icon/picture on from the element. The HitTestKey
property specifies the identifier of the icon/picture from the cursor.
exHitTestCaption, indicates the element's Caption. The HitTestKey property specifies
the element's caption.
exHitTestExtraCaption, indicates the element's ExtraCaption. The HitTestKey
property specifies the element's extra-caption.
exHitTestCheckBox, indicates the element's checkbox. The HitTestKey property
specifies the element's Checked property.
exHitTestGlyph, indicates the element's expand/collapse glyph. The HitTestKey
property returns nothing.

property HitTest.HitTestKey as Variant
Specifies the hit-test key.

Type Description

Variant A String expression that determines the key associated
with the part of the element from the cursor.

The HitTestKey property indicates the key associated to the part of the element from the
cursor. The Element property specifies the Element from the cursor. The HitTestCode
property specifies the code where the cursor hovers the element.

The HitTestKey may returns one of the following values, based on the HitTestCode property
as listed:

nothing, if HitTestCode property is exHitTestMargin, exHitTestStatus, exHitTestClient
and exHitTestGlyph.
the identifier of the icon/picture from the cursor if HitTestCode property is
exHitTestPicture.
the element's caption if HitTestCode property is exHitTestCaption.
the element's extra-caption if HitTestCode property is exHitTestExtraCaption.
element's Checked property, if HitTestCode property is exHitTestCheckBox.

Link object
The Link object defines a link between two elements on the surface. The link starts from
ElementFrom element and ends on ElementTo element. The Link object supports the
following properties and methods:

Name Description

AllowControlPoint Indicates the control points of the link, the user can use to
customize the link.

ArrowColor Gets or sets a value that indicates the link's arrow color.
ArrowFrameColor Customizes the color to show the frame of the arrow.
ArrowSize Gets or sets the size to show the arrow for specified link.

Caption Gets or sets a value that indicates the HTML caption to be
displayed on the link.

CaptionAlign Indicates the alignment of the link's caption.
Color Gets or sets a value that indicates the link's color.
CustomPath Specifies the link's custom path.
ElementFrom Specifies the element where the link starts from.
ElementTo Specifies the element where the link ends into.
EndPos Specifies where the link ends on the target/to element.

EndUpdateLink Adds programmatically updated properties of the link to
undo/redo queue.

ID Specifies the link's unique identifier.
ShowDir Shows or hides the link's direction.

ShowLinkType Specifies how the link shows from source to target
element.

StartPos Specifies where the link starts on the source/from
element.

StartUpdateLink
Starts changing properties of the link, so EndUpdateLink
method adds programmatically updated properties to
undo/redo queue.

Style Specifies the link's style.

ToolTip Gets or sets a value (tooltip) that's displayed once the
cursor hovers the link.

ToolTipTitle Gets or sets a value (title) that's displayed once the cursor
hovers the link.

UserData Indicates any extra data associated with the link.
Visible Shows or hides the link.
Width Gets or sets a value that indicates the link's width.

property Link.AllowControlPoint as LinkControlPointEnum
Indicates the control points of the link, the user can use to customize the link.

Type Description

LinkControlPointEnum
A LinkControlPointEnum expression that indicates the
control points of the link, the user can use to customize the
link.

The AllowControlPoint property defines the control points for an individual link, the user can
use to customize the link. The AllowControlPoint property is similar with the control's
AllowLinkControlPoint property, excepts that it is applied to a link only. For instance,
exNoControlPoint specifies that the link displays no control points, so the user can not
customize the link's path. The link's control points are displayed only if the control is not
locked (control's DesignMode property is not exDesignLock The
LayoutStartChanging(exLinkControlPoint) / LayoutEndChanging(exLinkControlPoint) events
as soon as user starts / ends changing the link's control points. The CustomPath property
specifies the link's custom path, as a string of x,y proportions separated by comma. The
CustomPath property contains the proportions of link's control-points, as a "x,y,x,y,x,y,...".
The x, y are proportions of link's control-points relative to the start/end points of the link.
The 0,0 indicates the link's start point, while 1,1 indicates the link's end point. For instance,
"0.5,0,0.5,1" defines the link to go from start (0,0) to (0.5,0), then (0.5,1), and finally to the
end (1,1)

property Link.ArrowColor as Color
Gets or sets a value that indicates the link's arrow color.

Type Description

Color

A Color expression that defines the color to show the
arrow of the link. The last 7 bits in the high significant byte
of the color indicates the identifier of the skin being used
to paint the part. Use the Add method to add new skins to
the control. In other words, you can use the EBN objects
to define a different type of arrow.

By default, the ArrowColor property is -1, which indicates that the control's LinksArrowColor
property indicates the color to show the arrow or direction of the link. The ArrowColor
property specifies the color to show the direction of the particular link. The Color property
specifies the color to show the entire link. The ShowDir property specifies whether the
arrow of the link is shown or hidden. The Width property specifies the size of the link and so
the size of the arrow. The Visible property indicates whether the link is visible or hidden.

property Link.ArrowFrameColor as Color
Customizes the color to show the frame of the arrow.

Type Description
Color A Color expression to show the arrow's frame

By default, the ArrowFrameColor property is -1 which indicates that LinksArrowFrameColor
property specifies the color of the arrow's frame. The ArrowFrameColor property specifies
the color to show the arrow's frame for a particular link. The LinksArrowFrameColor
property specifies the color to show the default frame of the arrow. Use the LinksColor
property to define the color to show all links on the surface. The Color property specifies
the color for an individual link. The LinksArrowColor property specifies the color to show the
arrow of the links. The control's LinksShowDir property specifies whether the arrow of the
links is shown or hidden. The LinksWidth property specifies the size of the links and so the
size of the arrow. The ShowLinks property specifies whether the surface shows or hides
the links. The LinksArrowSize property specifies the size to show the arrow for links.

property Link.ArrowSize as Long
Gets or sets the size to show the arrow for specified link.

Type Description
Long A long expression that specifies the size of the arrow

By default, the ArrowSize property is -1 which indicates that LinksArrowSize property
controls the size of the arrow. The ArrowSize property specifies the size to show the arrow
for a particular link. The LinksArrowSize property specifies the size to show the arrow for
links. Use the LinksColor property to define the color to show all links on the surface. The
Color property specifies the color for an individual link. The LinksArrowColor property
specifies the color to show the arrow of the links. The control's LinksShowDir property
specifies whether the arrow of the links is shown or hidden. The LinksWidth property
specifies the size of the links and so the size of the arrow. The ShowLinks property
specifies whether the surface shows or hides the links. The LinksArrowFrameColor
property specifies the color to show the default frame of the arrow.

property Link.Caption as String
Gets or sets a value that indicates the HTML caption to be displayed on the link.

Type Description

String A String expression that defines the HTML caption to be
displayed on the link.

Use the Caption property to define the label or caption to be displayed on the link. The
CaptionAlign property specifies the alignment of the caption on the link. The Images method
loads icons to be displayed on the control's surface. The HTMLPicture property loads and
assigns a picture to a key to be used on control's surface.

The Caption property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

about:blank

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR

character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Link.CaptionAlign as AlignmentEnum
Indicates the alignment of the link's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that defines the alignment
of the caption on the link.

By default, the CaptionAlign property is CenterAlignment. Use the CaptionAlign property to
align the caption on the start or end element of the link. Use the Caption property to define
the label or caption to be displayed on the link. The ElementFrom property defines the
element where the link starts. The ElementTo property defines the element where the link
ends.

property Link.Color as Color
Gets or sets a value that indicates the link's color.

Type Description

Color A Color expression that specifies the color to show the
link.

By default, the Color property is -1, which indicates that the LinksColor property specifies
the color to show the links. The Color property specifies the color to show the entire link.
The ArrowColor property specifies the color to show the direction of the particular link. The
ShowDir property specifies whether the arrow of the link is shown or hidden. The Width
property specifies the size of the link and so the size of the arrow. The Visible property
indicates whether the link is visible or hidden. The ShowLinksColor property specifies the
color to show the incoming, outgoing or collapsed links.

property Link.CustomPath as Variant
Specifies the link's custom path.

Type Description
Variant A string expression that define the link's custom path.

The CustomPath property specifies the link's custom path, as a string of x,y proportions
separated by comma. The CustomPath property contains the proportions of link's control-
points, as a "x,y,x,y,x,y,...". The x, y are proportions of link's control-points relative to the
start/end points of the link. The 0,0 indicates the link's start point, while 1,1 indicates the
link's end point. For instance, "0.5,0,0.5,1" defines the link to go from start (0,0) to (0.5,0),
then (0.5,1), and finally to the end (1,1). The AllowLinkControlPoint property indicates the
control points of the link, the user can use to customize the link's path. The
AllowControlPoint property defines the control points for an individual link, the user can use
to customize the link.

property Link.ElementFrom as Element
Specifies the element where the link starts from.

Type Description
Element An Element object that specifies where the link starts.

The ElementFrom property specifies where the link starts. The ElementTo property
specifies the element where the link ends. The StartPos/EndPos properties indicates where
on the starting element links starts and where on the ending elements the link ends. The
ShowDir property specifies whether the direction of the link is shown or hidden.

property Link.ElementTo as Element
Specifies the element where the link ends into.

Type Description
Element An Element object where the link ends.

The ElementTo property specifies the element where the link ends. The ElementFrom
property specifies where the link starts. The StartPos/EndPos properties indicates where
on the starting element links starts and where on the ending elements the link ends. The
ShowDir property specifies whether the direction of the link is shown or hidden.

property Link.EndPos as AlignmentEnum
Specifies where the link ends on the target/to element.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies where on the
ending element the link ends.

The StartPos/EndPos properties indicates where on the starting element links starts and
where on the ending elements the link ends. The ShowDir property specifies whether the
direction of the link is shown or hidden. The ElementTo property specifies the element
where the link ends. The ElementFrom property specifies where the link starts.

method Link.EndUpdateLink (StartUpdateLink as Long)
Adds programmatically updated properties of the link to undo/redo queue.

Type Description

StartUpdateLink as Long A long expression that indicates the result of the
StartUpdateLink property

The StartUpdateLink/EndUpdateLink methods record and add changes of the current link to
the control's Undo/Redo queue. You can use the StartBlockUndoRedo / EndBlockUndoRedo
methods to group multiple Undo/Redo operations into a single-block. The AllowUndoRedo
property specifies whether the control supports undo/redo operations for objects (links,
links, ...). No entry is added to the Undo/Redo queue if no property is changed for the
current link. Each call of the StartUpdateLink must be succeeded by a EndUpdateLink call.
The UndoListAction property lists the Undo actions that can be performed in the chart. The
RedoListAction property lists the Redo actions that can be performed in the chart.

The StartUpdateLink/EndUpdateLink methods can record changes for the following
properties only:

ElementFrom, specifies the element where the link starts from
ElementTo, specifies the element where the link ends into
ID, specifies the link's unique identifier
Style, specifies the link's style
Color, specifies the link's color
Width, specifies the link's width
Visible, shows or hides the link
StartPos, specifies where the link starts on the source/from element
EndPos, specifies where the link ends on the target/to element
ShowLinkType, specifies how the link shows from source to target element
ShowDir, shows or hides the link's direction/arrow
ArrowColor, defines the link's arrow color
UserData, associates any extra data associated with the link
Caption, gets or sets a value that indicates the HTML caption to be displayed on the
link
ToolTip, gets or sets a value (tooltip) that's displayed once the cursor hovers the link
ToolTipTitle, gets or sets a value (title) that's displayed once the cursor hovers the link
AllowControlPoint, indicates the control points of the link, the user can use to customize
the link
CustomPath, specifies the link's custom path

The Undo/Redo records show as:

"UpdateLink;LINKID", indicates that one or more properties of the element has been

updated, using the StartUpdateLink / EndUpdateLink methods

within the UndoListAction/RedoListAction result

property Link.ID as Variant
Specifies the link's unique identifier.

Type Description

Variant A Long, String or Numeric expression that defines the
unique identifier of the link.

By default, the control automatically generates an unique identifier for each link. You can
use the ID property to define your id for the link. The control fires the CreateLink event
when the user adds at runtime a link between two elements. The AllowLinkObjects property
specifies the keys combination to let the user links two elements on the surface, the
ElementFrom property specifies the element where the link starts, where the ElementTo
property specifies ending element of the link. Prior to CreateLink event the control fires the
AddLink event that indicates that the link has been added to the Links collection. The
AllowLink event occurs when user links two elements to specify whether the link is
allowed.

property Link.ShowDir as Boolean
Shows or hides the link's direction.

Type Description

Boolean A Boolean expression that specifies whether the link's
direction is shown or hidden.

The ShowDir property specifies whether the arrow of the link is shown or hidden. The
LinksShowDir property specifies whether the direction for all links are shown or hidden. The
ArrowColor property specifies the color to show the direction of the particular link. The
Width property specifies the size of the link and so the size of the arrow. The Visible
property indicates whether the link is visible or hidden. The StartPos/EndPos properties
indicates where on the starting element links starts and where on the ending elements the
link ends.

property Link.ShowLinkType as ShowLinkTypeEnum
Specifies how the link shows from source to target element.

Type Description

ShowLinkTypeEnum A ShowLinkTypeEnum expression that defines the type of
the link to be show between elements.

By default, the ShowLinkType property is -1, which specifies that the control's
ShowLinksType property indicates the type of the links to be shown between elements. The
ShowLinkType property specifies a different type of link between two elements. The Color
property specifies the color to show the entire link. The ShowDir property specifies whether
the arrow of the link is shown or hidden. The Width property specifies the size of the link
and so the size of the arrow. The Visible property indicates whether the link is visible or
hidden. The Style property defines the style of the line to be shown on the link.

The following screen shot shows the exLinkRectangular type:

The following screen shot shows the exLinkRound type:

The following screen shot shows the exLinkDirect type:

The following screen shot shows the exLinkStraight type:

property Link.StartPos as AlignmentEnum
Specifies where the link starts on the source/from element.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies where on the
starting element the link starts.

The StartPos/EndPos properties indicates where on the starting element links starts and
where on the ending elements the link ends. The ShowDir property specifies whether the
direction of the link is shown or hidden. The ElementTo property specifies the element
where the link ends. The ElementFrom property specifies where the link starts.

property Link.StartUpdateLink as Long
Starts changing properties of the link, so EndUpdateLink method adds programmatically
updated properties to undo/redo queue.

Type Description

Long

A Long expression that specifies the handle to be passed
to EndUpdateLink so the updated properties of the bar are
added to the Undo/Redo queue of the chart, so they can
be used in undo/redo operations.

The StartUpdateLink/EndUpdateLink methods record and add changes of the current link to
the control's Undo/Redo queue. You can use the StartBlockUndoRedo / EndBlockUndoRedo
methods to group multiple Undo/Redo operations into a single-block. The AllowUndoRedo
property specifies whether the control supports undo/redo operations for objects (links,
links, ...). No entry is added to the Undo/Redo queue if no property is changed for the
current link. Each call of the StartUpdateLink must be succeeded by a EndUpdateLink call.
The UndoListAction property lists the Undo actions that can be performed in the chart. The
RedoListAction property lists the Redo actions that can be performed in the chart.

The StartUpdateLink/EndUpdateLink methods can record changes for the following
properties only:

ElementFrom, specifies the element where the link starts from
ElementTo, specifies the element where the link ends into
ID, specifies the link's unique identifier
Style, specifies the link's style
Color, specifies the link's color
Width, specifies the link's width
Visible, shows or hides the link
StartPos, specifies where the link starts on the source/from element
EndPos, specifies where the link ends on the target/to element
ShowLinkType, specifies how the link shows from source to target element
ShowDir, shows or hides the link's direction/arrow
ArrowColor, defines the link's arrow color
UserData, associates any extra data associated with the link
Caption, gets or sets a value that indicates the HTML caption to be displayed on the
link
ToolTip, gets or sets a value (tooltip) that's displayed once the cursor hovers the link
ToolTipTitle, gets or sets a value (title) that's displayed once the cursor hovers the link
AllowControlPoint, indicates the control points of the link, the user can use to customize
the link
CustomPath, specifies the link's custom path

The Undo/Redo records show as:

"UpdateLink;LINKID", indicates that one or more properties of the element has been
updated, using the StartUpdateLink / EndUpdateLink methods

within the UndoListAction/RedoListAction result

property Link.Style as LinkStyleEnum
Specifies the link's style.

Type Description

LinkStyleEnum A LinkStyleEnum expression that defines the style of the
line to be shown between elements.

By default, the Style property is -1, which specifies that the control's LinksStyle property
specifies the style of the line to be shown on links. The Style property indicates the style of
the line to be shown on a particular link. The ShowLinkType property specifies the type of
the link to be shown, like rectangular, straight and so on. The Width property specifies the
size of the link and so the size of the arrow. The Visible property indicates whether the link
is visible or hidden. The Color property specifies the color to show the entire link. The
ShowDir property specifies whether the arrow of the link is shown or hidden. The
ShowLinksStyle property specifies the style to show the incoming, outgoing or collapsed
links.

property Link.ToolTip as String
Gets or sets a value (tooltip) that's displayed once the cursor hovers the link.

Type Description

String A String expression that defines the HTML caption to be
shown when the cursor hovers the link.

Use the ToolTip property to define the label or caption to be shown when the cursor hovers
the link. The ToolTipTitle defines the title of the link's tooltip. The Images method loads icons
to be displayed on the control's surface. The HTMLPicture property loads and assigns a
picture to a key to be used on control's surface.

The ToolTip property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

about:blank

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR

character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Link.ToolTipTitle as String
Gets or sets a value (title) that's displayed once the cursor hovers the link.

Type Description
String A String expression that defines the title of the link's tooltip

The ToolTipTitle defines the title of the link's tooltip. Use the ToolTip property to define the
label or caption to be shown when the cursor hovers the link.

property Link.UserData as Variant
Indicates any extra data associated with the link.

Type Description

Variant A VARIANT expression that defines any extra-data you
can associate with the link.

The UserData property specifies any extra-data associated with the link. The control fires
the AddLink event when a new link is added to the surface. The RemoveLink event notifies
your application once a link is removed form the surface.

property Link.Visible as Boolean
Shows or hides the link.

Type Description

Boolean A Boolean expression that specifies whether the link is
visible or hidden.

By default, the Visible property is True. Use the Visible property to hide a particular link.
The Visible property indicates whether the link is visible or hidden. The ShowLinks property
specifies whether the control show or hide the links on the surface. The ShowDir property
specifies whether the arrow of the link is shown or hidden. A link between two elements is
visible, if both element are visible. Use the Visible property to specify whether an element is
visible or hidden. Use the ShowLinksOnCollapse property to show the links between an
element and collapsed elements.

property Link.Width as Long
Gets or sets a value that indicates the link's width.

Type Description
Long A Long expression that specifies the size of the link.

By default, the Width property of the link is -1, which specifies that the control's LinksWidth
property indicates the width of the link. The Width property specifies the width of a
particular link. The Width property specifies the size of the link and so the size of the arrow.
The Color property specifies the color to show the entire link. The ShowDir property
specifies whether the arrow of the link is shown or hidden. The Visible property indicates
whether the link is visible or hidden. The ShowLinksWidth property specifies the width to
show the incoming, outgoing or collapsed links.

Links object
The Links collection holds the links to be shown on the surface. The Links collection can be
accessed throgh the control's Links property. The Links collection supports the following
properties and methods:

Name Description

Add Adds a Link object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of elements in the collection.

Item Returns a specific Link of the Links collection, giving its
identifier.

Remove Removes a specific member from the Links collection,
giving its identifier or reference.

method Links.Add (From as Element, To as Element, [ID as Variant])
Adds a Link object to the collection and returns a reference to the newly created object.

Type Description

From as Element
An Element object where the link starts. The ElementFrom
property of the Link indicates the element where the link
starts.

To as Element
An Element object where the link ends. The ElementTo
property of the Link indicates the element where the link
ends.

ID as Variant

A Long, String or Numeric expression that indicates the
unique identifier of the link. If missing, the control will
automatically generate an unique identifier. The ID
property specifies the link's identifier.

Return Description
Link A Link object being created.

.Use the Add method to programmatically add new link to the surface. The AddLink event
notifies your application once a new link is added to the Links collection. Calling
programmatically the Add method does NOT fire the CreateLink or AllowLink events. The
Remove method removes a link from the surface. The Clear method clears all the links on
the surface. The StartPos/EndPos properties indicates where on the starting element links
starts and where on the ending elements the link ends. The ShowLinks property specifies
whether the surface shows or hides the links. The OutgoingLinks property returns a safe
array of outgoing links (links that starts from the element). The IncomingLinks property
returns a safe array of incoming links (links that ends on the element). The
AllowLinkObjects property specifies the combination of keys that allows the user to link the
objects.

The following screen shot shows the surface with different type of links:

The order of the events when the user links two elements at runtime is:

LayoutStartChanging(exLinkObjects), the user clicks on the surface
AllowLink, occurs to specify whether the link between two elements is possible.
AddLink, adds the new link to the Links collection
CreateLink, the user ends creating the link
LayoutEndChanging(exLinkObjects), the user un-clicks the surface

The following samples show how you can add programmatically a link:

VBA (MS Access, Excell...)

With Surface1
 With .Elements
 .Add "Element <sha ;;0>A"
 .Add "Element <sha ;;0>B",96,24
 End With
 With .Links
 .Add Surface1.Elements.item(1),Surface1.Elements.item(2)
 End With
End With

VB6

With Surface1
 With .Elements
 .Add "Element <sha ;;0>A"

 .Add "Element <sha ;;0>B",96,24
 End With
 With .Links
 .Add Surface1.Elements.item(1),Surface1.Elements.item(2)
 End With
End With

VB.NET

With Exsurface1
 With .Elements
 .Add("Element <sha ;;0>A")
 .Add("Element <sha ;;0>B",96,24)
 End With
 With .Links
 .Add(Exsurface1.Elements.get_item(1),Exsurface1.Elements.get_item(2))
 End With
End With

VB.NET for /COM

With AxSurface1
 With .Elements
 .Add("Element <sha ;;0>A")
 .Add("Element <sha ;;0>B",96,24)
 End With
 With .Links
 .Add(AxSurface1.Elements.item(1),AxSurface1.Elements.item(2))
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
EXSURFACELib::IElementsPtr var_Elements = spSurface1->GetElements();
 var_Elements->Add("Element <sha ;;0>A",vtMissing,vtMissing);
 var_Elements->Add("Element <sha ;;0>B",long(96),long(24));
EXSURFACELib::ILinksPtr var_Links = spSurface1->GetLinks();
 var_Links->Add(spSurface1->GetElements()->Getitem(long(1)),spSurface1-
>GetElements()->Getitem(long(2)),vtMissing);

C++ Builder

Exsurfacelib_tlb::IElementsPtr var_Elements = Surface1->Elements;
 var_Elements->Add(TVariant("Element <sha ;;0>A"),TNoParam(),TNoParam());
 var_Elements->Add(TVariant("Element <sha ;;0>B"),TVariant(96),TVariant(24));
Exsurfacelib_tlb::ILinksPtr var_Links = Surface1->Links;
 var_Links->Add(Surface1->Elements->get_item(TVariant(1)),Surface1->Elements-
>get_item(TVariant(2)),TNoParam());

C#

exontrol.EXSURFACELib.Elements var_Elements = exsurface1.Elements;
 var_Elements.Add("Element <sha ;;0>A",null,null);
 var_Elements.Add("Element <sha ;;0>B",96,24);
exontrol.EXSURFACELib.Links var_Links = exsurface1.Links;
 var_Links.Add(exsurface1.Elements[1],exsurface1.Elements[2],null);

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">

 var var_Elements = Surface1.Elements;
 var_Elements.Add("Element <sha ;;0>A",null,null);
 var_Elements.Add("Element <sha ;;0>B",96,24);
 var var_Links = Surface1.Links;
 var_Links.Add(Surface1.Elements.item(1),Surface1.Elements.item(2),null);
</SCRIPT>

C# for /COM

EXSURFACELib.Elements var_Elements = axSurface1.Elements;
 var_Elements.Add("Element <sha ;;0>A",null,null);
 var_Elements.Add("Element <sha ;;0>B",96,24);
EXSURFACELib.Links var_Links = axSurface1.Links;
 var_Links.Add(axSurface1.Elements[1],axSurface1.Elements[2],null);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Elements,com_Links;
 anytype var_Elements,var_Links;
 ;

 super();

 var_Elements = exsurface1.Elements(); com_Elements = var_Elements;
 com_Elements.Add("Element <sha ;;0>A");
 com_Elements.Add("Element <sha
;;0>B",COMVariant::createFromInt(96),COMVariant::createFromInt(24));
 var_Links = exsurface1.Links(); com_Links = var_Links;

com_Links.Add(COM::createFromObject(exsurface1.Elements()).item(COMVariant::createFromInt(1)),COM::createFromObject(exsurface1.

}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 with Elements do
 begin
 Add('Element <sha ;;0>A',Nil,Nil);
 Add('Element <sha ;;0>B',TObject(96),TObject(24));
 end;
 with Links do
 begin

Add(AxSurface1.Elements.item[TObject(1)],AxSurface1.Elements.item[TObject(2)],Nil);
 end;
end

Delphi (standard)

with Surface1 do
begin
 with Elements do
 begin
 Add('Element <sha ;;0>A',Null,Null);
 Add('Element <sha ;;0>B',OleVariant(96),OleVariant(24));
 end;
 with Links do
 begin

Add(Surface1.Elements.item[OleVariant(1)],Surface1.Elements.item[OleVariant(2)],Null);

 end;
end

VFP

with thisform.Surface1
 with .Elements
 .Add("Element <sha ;;0>A")
 .Add("Element <sha ;;0>B",96,24)
 endwith

 with .Links
 .Add(thisform.Surface1.Elements.item(1),thisform.Surface1.Elements.item(2))
 endwith
endwith

dBASE Plus

local oSurface,var_Elements,var_Links

oSurface = form.Activex1.nativeObject
var_Elements = oSurface.Elements
 var_Elements.Add("Element <sha ;;0>A")
 var_Elements.Add("Element <sha ;;0>B",96,24)
var_Links = oSurface.Links
 var_Links.Add(oSurface.Elements.item(1),oSurface.Elements.item(2))

XBasic (Alpha Five)

Dim oSurface as P
Dim var_Elements as P
Dim var_Links as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
var_Elements = oSurface.Elements
 var_Elements.Add("Element <sha ;;0>A")
 var_Elements.Add("Element <sha ;;0>B",96,24)
var_Links = oSurface.Links
 var_Links.Add(oSurface.Elements.item(1),oSurface.Elements.item(2))

Visual Objects

local var_Elements as IElements
local var_Links as ILinks

var_Elements := oDCOCX_Exontrol1:Elements
 var_Elements:Add("Element <sha ;;0>A",nil,nil)

 var_Elements:Add("Element <sha ;;0>B",96,24)
var_Links := oDCOCX_Exontrol1:Links
 var_Links:Add(oDCOCX_Exontrol1:Elements:[item,1],oDCOCX_Exontrol1:Elements:
[item,2],nil)

PowerBuilder

OleObject oSurface,var_Elements,var_Links

oSurface = ole_1.Object
var_Elements = oSurface.Elements
 var_Elements.Add("Element <sha ;;0>A")
 var_Elements.Add("Element <sha ;;0>B",96,24)
var_Links = oSurface.Links
 var_Links.Add(oSurface.Elements.item(1),oSurface.Elements.item(2))

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Get ComAdd of hoElements "Element <sha ;;0>A" Nothing Nothing to Nothing
 Get ComAdd of hoElements "Element <sha ;;0>B" 96 24 to Nothing
 Send Destroy to hoElements
 Variant voLinks
 Get ComLinks to voLinks
 Handle hoLinks
 Get Create (RefClass(cComLinks)) to hoLinks
 Set pvComObject of hoLinks to voLinks
 Variant vFrom
 Variant voElements1
 Get ComElements to voElements1

 Handle hoElements1
 Get Create (RefClass(cComElements)) to hoElements1
 Set pvComObject of hoElements1 to voElements1
 Get Comitem of hoElements1 1 to vFrom
 Send Destroy to hoElements1
Variant vTo
 Variant voElements2
 Get ComElements to voElements2
 Handle hoElements2
 Get Create (RefClass(cComElements)) to hoElements2
 Set pvComObject of hoElements2 to voElements2
 Get Comitem of hoElements2 2 to vTo
 Send Destroy to hoElements2
 Get ComAdd of hoLinks vFrom vTo Nothing to Nothing
 Send Destroy to hoLinks
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElements
 LOCAL oLinks
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/

 oSurface:create(,, {10,60},{610,370})

 oElements := oSurface:Elements()
 oElements:Add("Element <sha ;;0>A")
 oElements:Add("Element <sha ;;0>B",96,24)
 oLinks := oSurface:Links()
 oLinks:Add(oSurface:Elements:item(1),oSurface:Elements:item(2))

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Links.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to remove all links from the surface. The Remove method removes a
specific link from the Links collection. The IncomingLinks property returns a safe array of
incoming links (links that ends on the element). The OutgoingLinks property returns a safe
array of outgoing links (links that starts from the element). The RemoveLink event notifies
your application once a link has been removed from the Links collection. The ShowLinks
property specifies whether the surface shows or hides the links.

property Links.Count as Long
Returns the number of elements in the collection.

Type Description

Long A Long expression that specifies the number of links on
the surface.

The Count property specifies the number of links on the surface. Use the Add method to
programmatically add new link to the surface. The Remove method removes a link from the
surface. The Clear method clears all the links on the surface. The StartPos/EndPos
properties indicates where on the starting element links starts and where on the ending
elements the link ends. The ShowLinks property specifies whether the surface shows or
hides the links. The OutgoingLinks property returns a safe array of outgoing links (links that
starts from the element). The IncomingLinks property returns a safe array of incoming links
(links that ends on the element).

The following VB sample enumerates the links on the surface:

Dim l As Variant
For Each l In Surface1.Links
 Debug.Print l.ID
Next

property Links.Item (ID as Variant) as Link
Returns a specific Link of the Links collection, giving its identifier.

Type Description

ID as Variant A Long, String or Numeric expression that specifies the
identifier of the link to be requested.

Link A Link object being requested.

Use the Item property to access a link giving its identifier. The ID property of the Link
specifies the identifier of the link. The Count property specifies the number of links on the
surface. Use the Add method to programmatically add new link to the surface. The Remove
method removes a link from the surface. The Clear method clears all the links on the
surface.

The following VB sample enumerates the links on the surface:

Dim l As Variant
For Each l In Surface1.Links
 Debug.Print l.ID
Next

method Links.Remove (ID as Variant)
Removes a specific member from the Links collection, giving its identifier or reference.

Type Description

ID as Variant
A Long, String or Numeric expression that specifies the
identifier of the link to be removed, or a reference to the
Link object to e removed.

The Remove method removes a specific link from the Links collection. Use the Clear
method to remove all links from the surface. The IncomingLinks property returns a safe
array of incoming links (links that ends on the element). The OutgoingLinks property
returns a safe array of outgoing links (links that starts from the element). The RemoveLink
event notifies your application once a link has been removed from the Links collection. The
Visible property shows or hides a specific link.

OleEvent object

The OleEvent object holds information about an event fired by an ActiveX control hosted by
the element.

Name Description
CountParam Retrieves the count of the OLE element's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when OleEvent event is fired.

Private Sub Surface1_OleEvent(ByVal Element As EXSURFACELibCtl.IElement, ByVal Ev As
EXSURFACELibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an element:

 #import <exsurface.dll>

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;

 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventSurface1(LPDISPATCH Element, LPDISPATCH Ev)
{
 EXSURFACELib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSURFACELib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i)
);
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSURFACELib namespace that include all objects and types of the
control's TypeLibrary. In case your exsurface.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an element:

Private Sub AxSurface1_OleEvent(ByVal sender As Object, ByVal e As

AxEXSURFACELib._ISurfaceEvents_OleEventEvent) Handles AxSurface1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSURFACELib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an element:

private void AxSurface1_OleEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXSURFACELib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an element (OleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the idenfier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside control is -602.

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the Name property to get the name of the event. Use the ID property to specify a
specified even by its identifier. Use the ToString property to display information about fired
event such us name, parameters, types and values. Use the CountParam property to count
the parameters of an OLE event. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when OleEvent event is fired.

Private Sub Surface1_OleEvent(ByVal Element As EXSURFACELibCtl.IElement, ByVal Ev As
EXSURFACELibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an element:

 #import <exsurface.dll>

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventSurface1(LPDISPATCH Element, LPDISPATCH Ev)
{
 EXSURFACELib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSURFACELib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i)
);
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSURFACELib namespace that include all objects and types of the
control's TypeLibrary. In case your exsurface.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an element:

Private Sub AxSurface1_OleEvent(ByVal sender As Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OleEventEvent) Handles AxSurface1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSURFACELib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an element:

private void AxSurface1_OleEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXSURFACELib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an element (OleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.Param (Item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

Item as Variant A long expression that indicates the argument's index or a
a string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when OleEvent event is fired.

Private Sub Surface1_OleEvent(ByVal Element As EXSURFACELibCtl.IElement, ByVal Ev As
EXSURFACELibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an element:

 #import <exsurface.dll>

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {

 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventSurface1(LPDISPATCH Element, LPDISPATCH Ev)
{
 EXSURFACELib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSURFACELib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i)
);
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSURFACELib namespace that include all objects and types of the
control's TypeLibrary. In case your exsurface.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an element:

Private Sub AxSurface1_OleEvent(ByVal sender As Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OleEventEvent) Handles AxSurface1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSURFACELib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an element:

private void AxSurface1_OleEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXSURFACELib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an element (OleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)

endfor
wait window nowait s

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object

The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the element's parameter.
Value Retrieves the value of the element's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when OleEvent event is fired.

Private Sub Surface1_OleEvent(ByVal Element As EXSURFACELibCtl.IElement, ByVal Ev As
EXSURFACELibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an element:

 #import <exsurface.dll>

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventSurface1(LPDISPATCH Element, LPDISPATCH Ev)
{
 EXSURFACELib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSURFACELib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i)
);
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSURFACELib namespace that include all objects and types of the
control's TypeLibrary. In case your exsurface.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an element:

Private Sub AxSurface1_OleEvent(ByVal sender As Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OleEventEvent) Handles AxSurface1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSURFACELib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an element:

private void AxSurface1_OleEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXSURFACELib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an element (OleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEventParam.Value as Variant

Specifies the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when OleEvent event is fired.

Private Sub Surface1_OleEvent(ByVal Element As EXSURFACELibCtl.IElement, ByVal Ev As
EXSURFACELibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an element:

 #import <exsurface.dll>

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventSurface1(LPDISPATCH Element, LPDISPATCH Ev)
{
 EXSURFACELib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSURFACELib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i)
);
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSURFACELib namespace that include all objects and types of the
control's TypeLibrary. In case your exsurface.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an element:

Private Sub AxSurface1_OleEvent(ByVal sender As Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OleEventEvent) Handles AxSurface1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSURFACELib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an element:

private void AxSurface1_OleEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXSURFACELib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an element (OleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

Pattern object
The Pattern object can be used to apply a pattern and a frame with different colors on an
UI element. For instance, the StatusPattern property indicates the pattern to be applied on
the element's status. The Pattern object supports the following properties:

Name Description
Color Specifies the pattern color.
FrameColor Specifies the pattern's frame color.

Type Retrieves or sets a value that indicates the pattern to fill
the element.

property Pattern.Color as Color
Specifies the pattern color.

Type Description

Color A Color expression that specifies the color to show the
pattern.

By default, the Color property is 0 (black). The Color property indicates the color to
display the pattern. The Type property indicates the type of the pattern to be shown. The
FrameColor property indicates the color to show the frame, if the exPatternFrame flag is
included in the Type property.

property Pattern.FrameColor as Color
Specifies the pattern's frame color.

Type Description

Color A Color expression that specifies the color to show the
frame.

By default, the FrameColor property is 0 (black). The FrameColor property indicates the
color to show the frame, if the exPatternFrame flag is included in the Type property. The
Type property indicates the type of the pattern to be shown. The Color property indicates
the color to display the pattern.

property Pattern.Type as PatternEnum
Retrieves or sets a value that indicates the pattern to fill the element.

Type Description

PatternEnum A PatternEnum expression that specifies the type of the
pattern to fill the element.

By default, the Type property is exPatternEmpty which indicates that no pattern is shown.
The Type property indicates the pattern to display on the element. The Color property
indicates the color to display the pattern. The FrameColor property indicates the color to
show the frame, if the exPatternFrame flag is included in the Type property.

Surface object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {AC1DF7F4-0919-4364-8167-2F9B5155EA4B}. The object's program identifier is: "Exontrol.Surface".
The /COM object module is: "ExSurface.dll"

The Surface objects allows you to put elements and links on a surface. You can use the tool
to generate organigrams, diagrams, graphs, flowcharts and so on. The Surface objects
supports the following properties and methods:

Name Description
AlignObjectsToGridLines Specifies whether the objects are aligned to grid lines.

AllowCreateObject Specifies the combination of keys that allows the user to
create objects on the surface.

AllowInsertObject
Gets or sets a value that specifies whether the user can
drag and drop elements to other elements to insert them
as child elements.

AllowLinkControlPoint Indicates the control points of the link, the user can use to
customize the link.

AllowLinkObjects Specifies the combination of keys that allows the user to
link the objects.

AllowMoveDescendents Specifies whether all descendents of the focusing element
are moved once the focusing element is moved.

AllowMoveNeighbors
Indicates whether the neighbor elements are shifted once
the selection is moved or resized, so they won't intersect
the dragging objects.

AllowMoveObject Specifies the combination of keys that allows the user to
move the objects.

AllowMoveSelection Specifies whether the entire selection is moved once the
focusing element is moved.

AllowMoveSurface Specifies the combination of keys that allows the user to
move the surface.

AllowResizeObject Specifies the combination of keys that allows the user to
resize the objects.

AllowResizeSelection Specifies whether the entire selection is resized once the
focusing element is resize.

AllowSelectNothing Empties the selection when the user clicks outside of the
elements.

AllowSelectObject Specifies the combination of keys that allows the user to

select objects on the surface.

AllowSelectObjectRect Specifies the combination of keys that allows the user to
select objects on the surface, by dragging a rectangle.

AllowToggleSelectKey Specifies the combination of keys to select multiple not-
contiguously objects.

AllowUndoRedo Enables or disables the Undo/Redo feature.

AllowZoomSurface Specifies the combination of keys that allows the user to
magnify or shrink the surface.

AllowZoomWheelSurface Enables or disables zooming the control using the mouse
wheel.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

Arrange Arranges the elements, starting from giving element,
based on the links.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AxisColor Indicates the color to show the axis on the surface.
AxisStyle Specifies the style to display the axis lines.
BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

CancelLayoutChanging Cancels the current layout changing operation.

CanRedo Retrieves a value that indicates whether the surface can
perform a Redo operation.

CanUndo Retrieves a value that indicates whether the surface can
perform an Undo operation.

Coord Specifies the type of coordinates the elements of the
surface display in.

CopyTo Exports the control's view to an EMF file.
DefArrange Retrieves or sets an option for Arrange method.
DrawPartsOrder Defines the order of the parts the elements display

EditContextMenuItems Specifies the control's context menu, while editing the
element.

ElementFormat Specifies the way the control shows the parts of the
elements.

ElementFromPoint Gets the Element object from the cursor.
ElementFromPosition Gets the Element object from the position.
Elements Retrieves the control's elements.
Enabled Enables or disables the control.

EndBlockUndoRedo
Ends recording the UI operations and adds the undo/redo
operations as a block, so they all can be restored at once,
if Undo method is performed.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExpandLinkedElements Specifies whether the linked elements are expanded or
collapsed.

FitToClient Resizes or/and moves the entire chart to fit the control's
client area.

FocusLink Gets or sets the focused link
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FreezeEvents Prevents the control to fire any event.

GroupUndoRedoActions Groups the next to current Undo/Redo Actions in a single
block.

HideSel Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

HitTestFromPoint
Gets the Element object and the Hit-Test code from the
cursor.

Home Restores the view to the origin.
HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..
IndentX Specifies the child elements indentation on x-axis.
IndentY Specifies the child elements indentation on y-axis.

Layout Saves or loads the control's layout, such as position,
zooming factor, selection, and so on.

LinkFromPoint Gets the Link object from the cursor.
Links Retrieves the control's links.

LinksArrowColor Specifies the color/visual appearance to draw the arrows
of the links between the elements.

LinksArrowFrameColor Specifies the color to show the default frame of the arrow
LinksArrowSize Specifies the size to show the arrow for links

LinksColor Specifies the color to draw the links between the
elements.

LinksShowDir Specifies whether the links show or hide the
direction/arrow.

LinksStyle Specifies the style to draw the links between the
elements.

LinksWidth Specifies the width in pixels of the pen to draw the links
between the elements.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MajorGridColor Indicates the color to show the major grid lines on the
surface.

MajorGridHeight Indicates the height between two consecutive major grid
lines.

MajorGridStyle Specifies the style to display the major grid lines.
Indicates the width between two consecutive major grid

MajorGridWidth lines.

MinorGridColor Indicates the color to show the minor grid lines on the
surface.

MinorGridHeight Indicates the height between two consecutive minor grid
lines.

MinorGridStyle Specifies the style to display the minor grid lines.

MinorGridWidth Indicates the width between two consecutive minor grid
lines.

MoveCorner Moves or scrolls the surface.

MovePoint Moves or scrolls the surface, so the cursor aligns to
specified corner.

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

OverviewColor Specifies the color to show objects outside of the
surface's client area.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PointToPosition Converts the screen coordinates to surface position.
PositionToPoint Converts the surface position to screen coordinates.
Redo Redoes the next action in the surface's Redo queue.

RedoListAction Lists the Redo actions that can be performed on the
surface.

RedoRemoveAction Removes the first redo actions that can be performed on
the surface.

Refresh Refreses the control.
RemoveSelection Removes the elements in the selection.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

ScrollPos Specifies the vertical/horizontal scroll position.

ScrollTo Scrolls the surface to giving position.
ScrollX Indicates the x-scrolling position of the surface.
ScrollY Indicates the y-scrolling position of the surface.

SelCount Indicates the number of elements being selected on the
surface.

SelectAll Selects all selectable elements in the control.

Selection Returns or sets a safe array of selected elements on the
surface.

SelectObjectColor Indicates the color to show the selected objects.

SelectObjectColorInactive Indicates the color to show the selected objects, when the
surface is not active/focused.

SelectObjectStyle Specifies the style to display the selected object.
SelectObjectTextColor Indicates the color to show the text for selected objects.

SelectObjectTextColorInactiveIndicates the color to show the text for selected objects,
when the surface is not active/focused.

SelElement Gets the element being selected giving its index in the
selection.

ShowGridLines Shows or hides the grid lines in the control.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowLinks Retrieves or sets a value that indicates whether the links
between elements are visible or hidden.

ShowLinksColor Retrieves or sets a value that indicates the color to display
the links based on the user selection.

ShowLinksOnCollapse Specifies whether the links for collapsed elements are
shown or hidden.

ShowLinksStyle Retrieves or sets a value that indicates the style to display
the links based on the user selection.

ShowLinksType Specifies how the links are displayed between the
elements.

ShowLinksWidth Retrieves or sets a value that indicates the width to
display the links based on the user selection.

ShowToolTip Shows the specified tooltip at given position.

SingleSel Returns or sets a value that indicates whether the user
can select one or more objects.

StartBlockUndoRedo
Starts recording the UI operations as a block of undo/redo
operations.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolBarCaption Specifies the HTML caption of the giving item in the
control's toolbar.

ToolBarFormat Specifies the CRD format to arrange the buttons inside the
control's toolbar.

ToolBarHTMLPicture Adds or replaces a picture in toolbar's HTML captions.

ToolBarImages Sets at runtime the toolbar's image list. The Handle should
be a handle to an Images List Control.

ToolBarRefresh Refreshes the control's toolbar.

ToolBarReplaceIcon Adds a new icon, replaces an icon or clears the toolbar's
image list.

ToolBarToolTip Specifies the HTML tooltip of the giving item in the
control's toolbar.

ToolBarVisible Shows or hides control's toolbar.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

Undo Performs the last Undo operation.

UndoListAction Lists the Undo actions that can be performed on the
surface.

UndoRedoQueueLength Gets or sets the maximum number of Undo/Redo actions
that may be stored to the surface's queue.

UndoRemoveAction Removes the last undo actions that can be performed on
the surface.

UnselectAll Unselects all elements in the control.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

VisualDesign Invokes the control's VisualAppearance designer.
Zoom Specifies the current zooming factor of the surface.

ZoomLevels Specifies the list of zooming factors to be displayed on the
control's toolbar.

ZoomMax Specifies the maximum zooming factor of the surface.
ZoomMin Specifies the minimum zooming factor of the surface.

ZoomStep
Specifies the step to increase or decrease the zooming
factor of the surface, while the user rotates the mouse
wheel.

property Surface.AlignObjectsToGridLines as
AlignObjectsToGridLinesEnum
Specifies whether the objects are aligned to grid lines.

Type Description

AlignObjectsToGridLinesEnum
An AlignObjectsToGridLinesEnum expression that
indicates whether the elements on the surface are aligned
to none, minor or major grid lines.

By default, the AlignObjectsToGridLines property is exAlignObjectsToNone, which indicates
that no alignment is performed, when the elements are shown on the surface. Use the
AlignObjectsToGridLines property to align the elements to the grid lines. Use the
MinorGridWidth / MinorGridHeight property to specify the how minor grid lines are
displayed/aligned. Use the MajorGridWidth / MajorGridHeight property to specify the how
major grid lines are displayed/aligned. The AutoSize property of the Element specifies
whether the element's size is computed based on the element's content. The CaptionAlign
property specifies the alignment of the element's caption. Use the AxisStyle property to hide
the axis lines or to display with a different style. Use the AxisColor property to specify the
color to show the axis lines.

The following screen shot shows the axis and grid lines:

property Surface.AllowCreateObject as AllowKeysEnum
Specifies the combination of keys that allows the user to create objects on the surface.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination to allow user creates new elements on the
surface.

By default, the AllowCreateObject property exLeftClick + exDblClick, which means that a
double click on the surface will create new elements. The AllowCreateObject property
specifies the combination of keys that allows the user to create objects on the surface. Set
the AllowCreateObject property on exDisallow to prevent creating new elements at runtime.
Use the Background(exCreateObjectColor) property to specify color or visual appearance
of the creation rectangle when the user creates a new object. The CreateElement event
occurs when the user creates the element on the surface. The control fires the
LayoutStartChanging(exCreateObject) / LayoutEndChanging(exCreateObject) event when
the user creates a new element on the surface.

The order of the events when the user creates the element at runtime is:

LayoutStartChanging(exCreateObject), the user clicks on the surface
AddElement, adds the new element to the Elements collection
CreateElement, the user ends creating the object
LayoutEndChanging(exCreateObject), the user un-clicks the surface

The following screen shot shows the creating rectangle:

property Surface.AllowInsertObject as Boolean
Gets or sets a value that specifies whether the user can drag and drop elements to other
elements to insert them as child elements.

Type Description

Boolean
A Boolean expression that specifies whether the user can
drag and drop elements to other elements to insert them
as child elements.

Use the AllowInsertObject property to specify whether the elements can be be dropped
over other elements to change its parent or the children list. Use the AllowChangeParent
property to prevent changing the element's Parent at runtime. The AllowInsertChild property
specifies whether other elements can be inserted as child elements of the current element.
The Parent property indicates the element's parent. The Children property specifies the list
of child elements. The control fires the ParentChangeElement event when the user changes
the element's parent.

property Surface.AllowLinkControlPoint as LinkControlPointEnum
Indicates the control points of the link, the user can use to customize the link.

Type Description

LinkControlPointEnum
A LinkControlPointEnum expression that specifies the
control points of the link, the user can use to customize the
link.

The AllowLinkControlPoint property indicates the control points of the link, the user can use
to customize the link's path. The property is applied to all links (unless the AllowControlPoint
property indicates a different value). For instance, exStartControlPoint | exEndControlPoint
specifies that the user can change only the start/end position of the link. The
exStartControlPoint and exEndControlPoint points are marked with black squares and
defines the link's control points to change the link's start (Link.StartPos property) and end
(Link.EndPos property) position. The exControlPoint points are marked black circles and
defines the corners of the link's path. You can remove a exControlPoint points by dragging
to another, so intermediate exControlPoint points are removed. You can move all control
points of the link at once, if SHIFT key is pressed. The exMiddleControlPoint points are
marked with gray circles, and are displayed between two exControlPoint points, to let the
use add new exControlPoint points, to redefine the link's path. The
LayoutStartChanging(exLinkControlPoint) / LayoutEndChanging(exLinkControlPoint) events
as soon as user starts / ends changing the link's control points

The CustomPath property specifies the link's custom path, as a string of x,y proportions
separated by comma. The CustomPath property contains the proportions of link's control-
points, as a "x,y,x,y,x,y,...". The x, y are proportions of link's control-points relative to the
start/end points of the link. The 0,0 indicates the link's start point, while 1,1 indicates the
link's end point. For instance, "0.5,0,0.5,1" defines the link to go from start (0,0) to (0.5,0),
then (0.5,1), and finally to the end (1,1)

property Surface.AllowLinkObjects as AllowKeysEnum
Specifies the combination of keys that allows the user to link the objects.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can link two elements on the
surface.

By default, the AllowLinkObjects property is exLeftClick + exSHIFTKey, which indicates that
the user can start linking two elements once he clicks an element while keeping the SHIFT
key pressed. The AllowLinkObjects property specifies the combination of keys that allows
the user to link the objects. Set the AllowLinkObjects property on exDisallow to prevent
adding links between elements at runtime. The Background(exLinkObjectsInvalidColor)
property specifies the color to show the invalid link. The
Background(exLinkObjectsValidColor) property specifies the color to show the valid link.
The control fires the LayoutStartChanging(exLinkObjects) /
LayoutEndChanging(exLinkObjects) event when the user creates a new link on the surface.

The order of the events when the user links two elements at runtime is:

LayoutStartChanging(exLinkObjects), the user clicks on the surface
AllowLink, occurs to specify whether the link between two elements is possible.
AddLink, adds the new link to the Links collection
CreateLink, the user ends creating the link
LayoutEndChanging(exLinkObjects), the user un-clicks the surface

The following screen shot shows the link when the user links elements:

property Surface.AllowMoveDescendents as Boolean
Specifies whether all descendents of the focusing element are moved once the focusing
element is moved.

Type Description

Boolean
A Boolean expression that specifies whether all
descendents elements are moved when focused element
is moved.

By default, the AllowMoveDescendents property is True. Use the AllowMoveDescendents
property to prevent moving all descendents (children and outgoing elements) when
focused element is moved. The OutgoingLinks property returns a safe array of outgoing
links (links that starts from the element). The Children property returns the collection of
child elements. Use the AllowResizeSelection property to prevent resizing the entire
selection when focused element is resized. Use the AllowMoveSelection property to prevent
moving the entire selection when focused element is moved. Use the
ExpandLinkedElements property to add expand/collapse glyphs next to elements that has
outgoing links.

property Surface.AllowMoveNeighbors as MoveNeighborsEnum
Indicates whether the neighbor elements are shifted once the selection is moved or resized,
so they won't intersect the dragging objects.

Type Description

MoveNeighborsEnum

A MoveNeighborsEnum expression that specifies whether
the neighbor elements are shifted once the selection is
moved or resized, so they won't intersect the dragging
objects

By default, the AllowMoveNeighbors property is exDisallowMoveNeighbors, which indicates
that no neighbor elements is moved. The AllowMoveNeighbors property indicates whether
the neighbor elements are shifted once the selection is moved or resized, so they won't
intersect the dragging objects.

property Surface.AllowMoveObject as AllowKeysEnum
Specifies the combination of keys that allows the user to move the objects.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can move the element from the
cursor.

By default, the AllowMoveObject property is exLeftClick, which indicates that with a simple
click on the element, the user can move the element. The AllowMoveObject property
specifies the keys combination so the user can move the element from the cursor. The
AllowMoveSelection property indicates whether the entire selection is moved if an element
in the selection is moved. Set the AllowMoveObject property on exDisallow, to prevent user
to move any element in the surface. Use the AllowResizeObject property to specify whether
the element can be resized at runtime. Use the Selectable property to specify whether the
user can select or not an element from the surface. Since the user can not select an
element, it can not move it too. The AllowMoveSurface property specifies the combination
of keys that allows the user to move the surface. The control fires the
LayoutStartChanging(exMoveObject) / LayoutEndChanging(exMoveObject) event when the
user moves the object to a new position.

property Surface.AllowMoveSelection as Boolean
Specifies whether the entire selection is moved once the focusing element is moved.

Type Description

Boolean A Boolean expression that specifies whether the entire
selection is moved when focused element is moved.

By default, the AllowMoveSelection property is True. Use the AllowMoveSelection property
to prevent moving the entire selection when focused element is moved. Use the
AllowResizeSelection property to prevent resizing the entire selection when focused
element is resized. Use the AllowMoveDescendents property to prevent moving all
descendents (children and outgoing elements) when focused element is moved. The
SingleSel property specifies whether the surface allows selecting one or multiple elements.
The Selectable property of the Element object indicates whether the element is selectable
or un-selectable. The AllowMoveObject property specifies the keys combination so the user
can move the element from the cursor.

property Surface.AllowMoveSurface as AllowKeysEnum
Specifies the combination of keys that allows the user to move the surface.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can scroll or move the surface to
a new position.

By default, the AllowMoveSurface property is exLeftClick, which means you can scroll or
move the surface by clicking the left mouse button and drag it to a new position. The
AllowMoveSurface property specifies the combination of keys that allows the user to move
the surface. The AllowZoomSurface property specifies whether the user can zoom the
surface. The AllowZoomWheelSurface property specifies whether the surface is zooming
when the user rotates the mouse wheel. The AllowMoveObject property specifies whether
the user move the objects as soon as clicking the element. The control's ScrollPos, ScrollX
and ScrollY properties specify the surface's scroll position. The control fires the
LayoutStartChanging(exSurfaceMove) / LayoutEndChanging(exSurfaceMove) event when
the user moves the surface to a new position.

property Surface.AllowResizeObject as AllowKeysEnum
Specifies the combination of keys that allows the user to resize the objects.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can resize the element from the
cursor.

By default, the AllowResizeObject property is exLeftClick, which indicates that with a simple
click on the element's border, the user can resize the element. Use the AllowResizeObject
property to specify whether the element can be resized at runtime. The AllowMoveObject
property specifies the keys combination so the user can move the element from the cursor.
The AllowResizeSelection property indicates whether the entire selection is resized if an
element in the selection is resized. Set the AllowResizeObject property on exDisallow, to
prevent user to resize any element in the surface. Use the Resizable / AutoSize property to
prevent an element to be resized at runtime. The control fires the
LayoutStartChanging(exResizeObject) / LayoutEndChanging(exResizeObject) event when
the user resizes the object.

property Surface.AllowResizeSelection as Boolean
Specifies whether the entire selection is resized once the focusing element is resize.

Type Description

Boolean
A Boolean expression that specifies whether all elements
in the selection are resized once the focused element is
resized.

By default, the AllowResizeSelection property is True. Use the AllowResizeSelection
property to prevent resizing the entire selection when focused element is resized. Use the
AllowMoveSelection property to prevent moving the entire selection when focused element
is moved. Use the AllowMoveDescendents property to prevent moving all descendents (
children and outgoing elements) when focused element is moved. The SingleSel property
specifies whether the surface allows selecting one or multiple elements. The Selectable
property of the Element object indicates whether the element is selectable or un-selectable.
Use the AllowResizeObject property to specify whether the element can be resized at
runtime.

property Surface.AllowSelectNothing as Boolean
Empties the selection when the user clicks outside of the elements.

Type Description

Boolean A Boolean expression that specifies whether the selection
is cleared when user clicks any empty part of the surface.

By default, the AllowSelectNothing property is True, which indicates that all elements are
unselected when user clicks an empty part of the surface. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. Set the AllowSelectNothing property on False to prevent un-selecting elements
when clicking any empty part of rge surface. The AllowSelectObject property indicates the
keys combination to allow user selecting new elements. The SelectionChanged event
occurs once a new element is selected or unselected. The Selectable property of the
Element object indicates whether the element is selectable or un-selectable. The
AllowSelectObjectRect property specifies the keys combination so the user can select the
elements from the dragging rectangle. The SelectAll method selects all elements in the
chart. Use the UnselectAll method to unselect all elements on the surface. The SingleSel
property specifies whether the surface allows selecting one or multiple elements. The
SelCount property counts the number of selected elements. The SelElement property
returns the selected element based on its index in the selected elements collection. The
Selection property sets or gets a safe array of selected elements. The control fires the
LayoutStartChanging(exSelectNothing) / LayoutEndChanging(exSelectNothing) event when
the user selects nothing (click an empty area on the surface).

property Surface.AllowSelectObject as AllowKeysEnum
Specifies the combination of keys that allows the user to select objects on the surface.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys
combination so the user can select elements

By default, the AllowSelectObject property is exLeftClick, which indicates that the user
selects an element from the point when left clicking the element (Selectable property is
True). Set the AllowSelectObject property on exDisallow to prevent selecting elements
when clicking them. The AllowSelectObject property indicates the keys combination to allow
user selecting new elements. The AllowToggleSelectKey property indicates the key to be
used so the user can toggle a selected element. The SelectionChanged event occurs once
a new element is selected or unselected. The Selectable property of the Element object
indicates whether the element is selectable or un-selectable. The AllowSelectNothing
property indicates whether the selection is cleared once the user clicks any empty area on
the surface. The AllowSelectObjectRect property specifies the keys combination so the
user can select the elements from the dragging rectangle. The SelectAll method selects all
elements in the chart. Use the UnselectAll method to unselect all elements on the surface.
The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
control fires the LayoutStartChanging(exSelectObject) /
LayoutEndChanging(exSelectObject) event when the user selects the object. The HideSel
property specifies whether the selected elements are highlighted or not when the control
loses the focus.

property Surface.AllowSelectObjectRect as AllowKeysEnum
Specifies the combination of keys that allows the user to select objects on the surface, by
dragging a rectangle.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can select elements that
intersects the dragging rectangle.

By default, the AllowSelectObjectRect is exLeftClick + exALTKey, which indicates that the
user can start dragging a rectangle by clicking the left mouse button while keeping the ALT
key, to select the elements (Selectable property is True) that intersect the rectangle. Set
the AllowSelectObjectRect property on exDisallow to prevent selecting elements using the
dragging rectangle. The AllowSelectObjectRect property specifies the keys combination so
the user can select the elements from the dragging rectangle. Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle. The AllowSelectObject
property indicates the keys combination to allow user selecting new elements. The
AllowToggleSelectKey property indicates the key to be used so the user can toggle a
selected element. The AllowSelectNothing property indicates whether the selection is
cleared once the user clicks any empty area on the surface. The SelectAll method selects
all elements in the chart. Use the UnselectAll method to unselect all elements on the
surface. The SingleSel property specifies whether the surface allows selecting one or
multiple elements. The SelCount property counts the number of selected elements. The
SelElement property returns the selected element based on its index in the selected
elements collection. The Selection property sets or gets a safe array of selected elements.

The following screen shot shows the selection rectangle:

property Surface.AllowToggleSelectKey as AllowKeysEnum
Specifies the combination of keys to select multiple not-contiguously objects.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys to
allow the user to select/unselect an element, in the surface
view

By default, the AllowToggleSelectKey property is exCTRLKey, which indicates that the user
can unselect/select an element by pressing the left mouse button and keeping the CTRL
key down. The AllowToggleSelectKey property indicates the key to be used so the user can
toggle a selected element. Set the AllowToggleSelectKey property on exDisallow to prevent
selecting elements when clicking them (while keeping the CTRL key). The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The SelectionChanged event occurs once a new element is selected or
unselected. The Selectable property of the Element object indicates whether the element is
selectable or un-selectable. The AllowSelectNothing property indicates whether the
selection is cleared once the user clicks any empty area on the surface. The
AllowSelectObjectRect property specifies the keys combination so the user can select the
elements from the dragging rectangle. The SelectAll method selects all elements in the
chart. Use the UnselectAll method to unselect all elements on the surface. The SingleSel
property specifies whether the surface allows selecting one or multiple elements. The
SelCount property counts the number of selected elements. The SelElement property
returns the selected element based on its index in the selected elements collection. The
Selection property sets or gets a safe array of selected elements.

property Surface.AllowUndoRedo as Boolean
Enables or disables the Undo/Redo feature.

Type Description

Boolean A boolean expression that specifies whether the control
supports Undo/Redofeature

By default, the AllowUndoRedo property is false, which indicates that the Undo/Redo
feature us disabled. The Undo and Redo features let you remove or repeat single or
multiple actions, but all actions must be undone or redone in the order you did or undid them
 you cant skip actions. For example, if you added three elements and then decide you want
to undo the first change you made, you must undo all three changes. To undo an action you
need to press Ctrl+Z, while for to redo something you've undone, press Ctrl+Y. The
CanUndo property retrieves a value that indicates whether the control may perform the last
Undo operation. The CanRedo property retrieves a value that specifies whether the control
can execute the next operation in the control's Redo queue. Call the Undo method to Undo
the last control operation. The Redo redoes the next action in the control's redo queue. The
UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo actions
that may be stored to the control's queue, or in other words how many operations the
control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The

RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

The control's toolbar displays the Undo/Redo commands if the ToolBarFormat property
includes 103, Undo (undoes the last control operation, enabled only if the Undo operation is
possible) and 104, Redo (redoes the next action in the control's redo queue, enabled only if
the Undo operation is possible) identifiers as in the following screen shot:

The Undo/Redo toolbar-commands are automatically enabled or disabled

property Surface.AllowZoomSurface as AllowKeysEnum
Specifies the combination of keys that allows the user to magnify or shrink the surface.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys
combination so the user zooms the surface

By default, the AllowZoomSurface property is exMiddleClick, which indicates that clicking
the middle mouse button zooms the surface. The control fires the
LayoutStartChanging(exSurfaceZoom) / LayoutEndChanging(exSurfaceZoom) event when
the user zooms the surface. The Zoom property specifies the current zooming factor of the
surface. The ZoomMin/ZoomMax property specifies the range of the surface's zooming.
The AllowZoomWheelSurface property specifies whether the user can zoom the surface by
rotating the mouse wheel.

The following samples shows how you can prevent zooming the surface:

VBA (MS Access, Excell...)

With Surface1
 .AllowZoomSurface = 0
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB6

With Surface1
 .AllowZoomSurface = exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB.NET

With Exsurface1
 .AllowZoomSurface = exontrol.EXSURFACELib.AllowKeysEnum.exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB.NET for /COM

With AxSurface1
 .AllowZoomSurface = EXSURFACELib.AllowKeysEnum.exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
spSurface1->PutAllowZoomSurface(EXSURFACELib::exDisallow);
spSurface1->PutAllowZoomWheelSurface(VARIANT_FALSE);
spSurface1->PutToolBarFormat(L"-1,100");

C++ Builder

Surface1->AllowZoomSurface = Exsurfacelib_tlb::AllowKeysEnum::exDisallow;
Surface1->AllowZoomWheelSurface = false;
Surface1->ToolBarFormat = L"-1,100";

C#

exsurface1.AllowZoomSurface = exontrol.EXSURFACELib.AllowKeysEnum.exDisallow;
exsurface1.AllowZoomWheelSurface = false;
exsurface1.ToolBarFormat = "-1,100";

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Surface1.AllowZoomSurface = 0;
 Surface1.AllowZoomWheelSurface = false;
 Surface1.ToolBarFormat = "-1,100";
</SCRIPT>

C# for /COM

axSurface1.AllowZoomSurface = EXSURFACELib.AllowKeysEnum.exDisallow;
axSurface1.AllowZoomWheelSurface = false;
axSurface1.ToolBarFormat = "-1,100";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exsurface1.AllowZoomSurface(0/*exDisallow*/);
 exsurface1.AllowZoomWheelSurface(false);
 exsurface1.ToolBarFormat("-1,100");
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 AllowZoomSurface := EXSURFACELib.AllowKeysEnum.exDisallow;
 AllowZoomWheelSurface := False;
 ToolBarFormat := '-1,100';
end

Delphi (standard)

with Surface1 do
begin
 AllowZoomSurface := EXSURFACELib_TLB.exDisallow;
 AllowZoomWheelSurface := False;
 ToolBarFormat := '-1,100';
end

VFP

with thisform.Surface1
 .AllowZoomSurface = 0
 .AllowZoomWheelSurface = .F.
 .ToolBarFormat = "-1,100"
endwith

dBASE Plus

local oSurface

oSurface = form.Activex1.nativeObject
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = false
oSurface.ToolBarFormat = "-1,100"

XBasic (Alpha Five)

Dim oSurface as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = .f.
oSurface.ToolBarFormat = "-1,100"

Visual Objects

oDCOCX_Exontrol1:AllowZoomSurface := exDisallow
oDCOCX_Exontrol1:AllowZoomWheelSurface := false
oDCOCX_Exontrol1:ToolBarFormat := "-1,100"

PowerBuilder

OleObject oSurface

oSurface = ole_1.Object
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = false
oSurface.ToolBarFormat = "-1,100"

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComAllowZoomSurface to OLEexDisallow
 Set ComAllowZoomWheelSurface to False
 Set ComToolBarFormat to "-1,100"
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)

 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oSurface:AllowZoomSurface := 0/*exDisallow*/
 oSurface:AllowZoomWheelSurface := .F.
 oSurface:ToolBarFormat := "-1,100"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Surface.AllowZoomWheelSurface as Boolean
Enables or disables zooming the control using the mouse wheel.

Type Description

Boolean A Boolean expression that specifies whether the user can
zoom the surface by rotating the mouse wheel.

By default, the AllowZoomWheelSurface property is True. The AllowZoomWheelSurface
property specifies whether the user can zoom the surface by rotating the mouse wheel. The
control fires the LayoutStartChanging(exSurfaceZoom) /
LayoutEndChanging(exSurfaceZoom) event when the user zooms the surface. The Zoom
property specifies the current zooming factor of the surface. The ZoomMin/ZoomMax
property specifies the range of the surface's zooming.

The following samples shows how you can prevent zooming the surface:

VBA (MS Access, Excell...)

With Surface1
 .AllowZoomSurface = 0
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB6

With Surface1
 .AllowZoomSurface = exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB.NET

With Exsurface1
 .AllowZoomSurface = exontrol.EXSURFACELib.AllowKeysEnum.exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB.NET for /COM

With AxSurface1
 .AllowZoomSurface = EXSURFACELib.AllowKeysEnum.exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
spSurface1->PutAllowZoomSurface(EXSURFACELib::exDisallow);
spSurface1->PutAllowZoomWheelSurface(VARIANT_FALSE);
spSurface1->PutToolBarFormat(L"-1,100");

C++ Builder

Surface1->AllowZoomSurface = Exsurfacelib_tlb::AllowKeysEnum::exDisallow;
Surface1->AllowZoomWheelSurface = false;
Surface1->ToolBarFormat = L"-1,100";

C#

exsurface1.AllowZoomSurface = exontrol.EXSURFACELib.AllowKeysEnum.exDisallow;
exsurface1.AllowZoomWheelSurface = false;
exsurface1.ToolBarFormat = "-1,100";

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Surface1.AllowZoomSurface = 0;
 Surface1.AllowZoomWheelSurface = false;
 Surface1.ToolBarFormat = "-1,100";
</SCRIPT>

C# for /COM

axSurface1.AllowZoomSurface = EXSURFACELib.AllowKeysEnum.exDisallow;
axSurface1.AllowZoomWheelSurface = false;
axSurface1.ToolBarFormat = "-1,100";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exsurface1.AllowZoomSurface(0/*exDisallow*/);
 exsurface1.AllowZoomWheelSurface(false);
 exsurface1.ToolBarFormat("-1,100");
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 AllowZoomSurface := EXSURFACELib.AllowKeysEnum.exDisallow;
 AllowZoomWheelSurface := False;
 ToolBarFormat := '-1,100';
end

Delphi (standard)

with Surface1 do
begin
 AllowZoomSurface := EXSURFACELib_TLB.exDisallow;
 AllowZoomWheelSurface := False;
 ToolBarFormat := '-1,100';
end

VFP

with thisform.Surface1
 .AllowZoomSurface = 0
 .AllowZoomWheelSurface = .F.
 .ToolBarFormat = "-1,100"
endwith

dBASE Plus

local oSurface

oSurface = form.Activex1.nativeObject
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = false
oSurface.ToolBarFormat = "-1,100"

XBasic (Alpha Five)

Dim oSurface as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = .f.
oSurface.ToolBarFormat = "-1,100"

Visual Objects

oDCOCX_Exontrol1:AllowZoomSurface := exDisallow
oDCOCX_Exontrol1:AllowZoomWheelSurface := false
oDCOCX_Exontrol1:ToolBarFormat := "-1,100"

PowerBuilder

OleObject oSurface

oSurface = ole_1.Object
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = false
oSurface.ToolBarFormat = "-1,100"

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComAllowZoomSurface to OLEexDisallow
 Set ComAllowZoomWheelSurface to False
 Set ComToolBarFormat to "-1,100"
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)

 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oSurface:AllowZoomSurface := 0/*exDisallow*/
 oSurface:AllowZoomWheelSurface := .F.
 oSurface:ToolBarFormat := "-1,100"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Surface.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to element's caption. The control
fires the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub Surface1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Surface1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxSurface1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_MouseMoveEvent) Handles
AxSurface1.MouseMoveEvent
 With AxSurface1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With

End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axSurface1_MouseMoveEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_MouseMoveEvent e)
{
 axSurface1.ShowToolTip(axSurface1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveSurface1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_surface.ShowToolTip(m_surface.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .Surface1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property Surface.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy/chart,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. You can use the VisualDesign to change the control's visual
appearance at design time.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

https://exontrol.com/exbutton.jsp

With Surface1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\normal.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxSurface1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\normal.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axSurface1.BeginUpdate();
axSurface1.VisualAppearance.Add(0x16, "c:\\temp\\normal.ebn");
axSurface1.Appearance = (EXSURFACELib.AppearanceEnum)0x16000000;
axSurface1.BackColor = Color.FromArgb(250, 250, 250);
axSurface1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_g2antt.BeginUpdate();
m_g2antt.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\normal.ebn"));
m_g2antt.SetAppearance(0x16000000);
m_g2antt.SetBackColor(RGB(250,250,250));
m_g2antt.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.Surface1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\normal.ebn")

 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method Surface.Arrange ([ID as Variant])
Arranges the elements, starting from giving element, based on the links.

Type Description

ID as Variant
A long expression that specifies the identifier of the
element where the arrangement should start, or missing to
arrange ell elements of the control.

The Arrange(ID) method arranges the elements starting from element with the specified
ID. If missing, all linked-elements are arranged. The Auto-Arrange feature arranges
automatically horizontally or vertically the elements on the surface based on their relations,
so they won't intersect one with another as much as possible. The Add (of Elements
collection) method adds a new element on the surface, while Add (of Links collection)
adds a new link between two elements. The DefArrange property defines options to
perform the arrangement of the elements.

The Arrange method changes the position of the elements determined by:

X property, specifies the element's x-position.
Y property, specifies the element's y-position.

The DefArrange property can:

arrange elements horizontally or vertically
increases or decrease the distance between arranged elements.
align the elements based on the incoming outgoing elements.

The following screen shot shows the elements before calling Arrange method:

 The following screen shot shows the elements after calling Arrange method:

method Surface.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Surface1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Surface.AxisColor as Color
Indicates the color to show the axis on the surface.

Type Description

Color A Color expression that indicates the color to show the
axis lines.

Use the AxisColor property to specify the color to show the axis lines. Use the AxisStyle
property to hide the axis lines or to display with a different style. Use the MinorGridWidth /
MinorGridHeight property to specify the how minor grid lines are displayed/aligned. Use the
ShowGridLines property to specify whether the control shows or hides the minor/major grid
lines. Use the MajorGridWidth / MajorGridHeight property to specify the how major grid
lines are displayed/aligned. Use the MajorGridStyle property to specify the style of the
major lines. Use the MinorGridStyle property to specify the style of the minor lines. The
MajorGridColor property specifies the color to show the major grid lines. The
MinorGridColor property specifies the color to show the minor grid lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.AxisStyle as LinesStyleEnum
Specifies the style to display the axis lines.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the style to
show the axis lines.

By default, the AxisStyle property is exLinesSolid + exLinesThick. Use the AxisStyle
property to hide the axis lines or to display with a different style. Set the AxisStyle property
on exNoLines to show no axis lines. Use the AxisColor property to specify the color to show
the axis lines. Use the MinorGridWidth / MinorGridHeight property to specify the how minor
grid lines are displayed/aligned. Use the ShowGridLines property to specify whether the
control shows or hides the minor/major grid lines. Use the MajorGridWidth /
MajorGridHeight property to specify the how major grid lines are displayed/aligned. Use the
MajorGridStyle property to specify the style of the major lines. Use the MinorGridStyle
property to specify the style of the minor lines. The MajorGridColor property specifies the
color to show the major grid lines. The MinorGridColor property specifies the color to show
the minor grid lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that defines the control's background
color

Use the BackColor property to specify a solid color on the control's background. The
Picture property to assign your logo on the control's background. The control uses the
PictureDisplay property to determine how the picture is displayed on the control's
background. The Background(exElementBorderColor) or Background(exElementBackColor)
property specifies the default element's border or background color. The ForeColor
property specifies the color to show the captions on the elements.

The following screen shot shows a logo on the control's background:

property Surface.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control. For instance, use the
Background(exElementBackColor) property to specify a solid color to be shown on the
element's background.

The following samples remove the border for all elements:

VBA (MS Access, Excell...)

With Surface1
 .Background(88) = -1
 .Elements.Add "new element"
End With

VB6

With Surface1
 .Background(exElementBorderColor) = -1
 .Elements.Add "new element"
End With

VB.NET

With Exsurface1

.set_Background32(exontrol.EXSURFACELib.BackgroundPartEnum.exElementBorderColor,-1)

 .Elements.Add("new element")
End With

VB.NET for /COM

With AxSurface1
 .set_Background(EXSURFACELib.BackgroundPartEnum.exElementBorderColor,-1)
 .Elements.Add("new element")
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
spSurface1->PutBackground(EXSURFACELib::exElementBorderColor,-1);
spSurface1->GetElements()->Add("new element",vtMissing,vtMissing);

C++ Builder

Surface1-
>Background[Exsurfacelib_tlb::BackgroundPartEnum::exElementBorderColor] = -1;
Surface1->Elements->Add(TVariant("new element"),TNoParam(),TNoParam());

C#

exsurface1.set_Background32(exontrol.EXSURFACELib.BackgroundPartEnum.exElementBorderColor,-1);

exsurface1.Elements.Add("new element",null,null);

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Surface1.Background(88) = -1;
 Surface1.Elements.Add("new element",null,null);
</SCRIPT>

C# for /COM

axSurface1.set_Background(EXSURFACELib.BackgroundPartEnum.exElementBorderColor,-1);

axSurface1.Elements.Add("new element",null,null);

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exsurface1.Background(88/*exElementBorderColor*/,-1);
 exsurface1.Elements().Add("new element");
}

Delphi 8 (.NET only)

with AxSurface1 do
begin

set_Background(EXSURFACELib.BackgroundPartEnum.exElementBorderColor,$ffffffff);

 Elements.Add('new element',Nil,Nil);
end

Delphi (standard)

with Surface1 do
begin
 Background[EXSURFACELib_TLB.exElementBorderColor] := $ffffffff;
 Elements.Add('new element',Null,Null);
end

VFP

with thisform.Surface1
 .Object.Background(88) = -1
 .Elements.Add("new element")
endwith

dBASE Plus

local oSurface

oSurface = form.Activex1.nativeObject
oSurface.Template = [Background(88) = -1] // oSurface.Background(88) = -1
oSurface.Elements.Add("new element")

XBasic (Alpha Five)

Dim oSurface as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
oSurface.Template = "Background(88) = -1" ' oSurface.Background(88) = -1
oSurface.Elements.Add("new element")

Visual Objects

oDCOCX_Exontrol1:[Background,exElementBorderColor] := -1
oDCOCX_Exontrol1:Elements:Add("new element",nil,nil)

PowerBuilder

OleObject oSurface

oSurface = ole_1.Object
oSurface.Background(88,-1)
oSurface.Elements.Add("new element")

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComBackground OLEexElementBorderColor to -1
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Get ComAdd of hoElements "new element" Nothing Nothing to Nothing
 Send Destroy to hoElements
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oSurface:SetProperty("Background",88/*exElementBorderColor*/,-1)
 oSurface:Elements():Add("new element")

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Surface.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called. Use
the Refresh method to refresh the control.

property Surface.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long
A Long expression that specifies the height of the control's
border where the element that does not fit the control's
visible part are shown.

By default, the BorderHeight property is 2 pixels tall. The BorderWidth / BorderHeight
properties specify the size on the margin where the overview elements are shown. The
OverviewColor property specifies the color to show the elements when they do not fit the
surface's visible area. The OverviewColor property has effect when the element is not fitting
the surface's client area and it is shown on the border of the surface.

The following screen shot shows the how elements are shown when they are not visible in
the surface's client area (look on the border) :

property Surface.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long
A Long expression that specifies the width of the control's
border where the element that does not fit the control's
visible part are shown.

By default, the BorderWidth property is 2 pixels wide. The BorderWidth / BorderHeight
properties specify the size on the margin where the overview elements are shown. The
OverviewColor property specifies the color to show the elements when they do not fit the
surface's visible area. The OverviewColor property has effect when the element is not fitting
the surface's client area and it is shown on the border of the surface.

The following screen shot shows the how elements are shown when they are not visible in
the surface's client area (look on the border) :

method Surface.CancelLayoutChanging ()
Cancels the current layout changing operation.

Type Description

During the LayoutStartChaning event, you can call the CancelLayoutChanging method to
cancel the specified operation. Calling the CancelLayoutChanging method anywhere else,
has no effect.

The operations being signaled by the LayoutStartChanging / LayoutEndChanging events
are:

exSurfaceMove, the user scrolls or moves the surface. The AllowMoveSurface
property specifies the keys combination to allow user to move / scroll the surface.
exSurfaceZoom, the user magnifies or shrinks the surface. The AllowZoomSurface
property specifies the keys combination to allow user to zoom the surface.
exSurfaceHome, the user clicks the Home button on the control's toolbar, so the
surface is restored to original position. The Home method has the same effect.
exResizeObject, the user resizes the object. The AllowResizeObject property
specifies the keys combination to allow user to resize the object.
exMoveObject, the user moves the object. The AllowMoveObject property specifies
the keys combination to allow user to move the object.
exSelectObject, the user clicks the object to get it selected. The AllowSelectObject
property specifies the keys combination to allow user to select the object.
exSelectNothing, the user clicks an empty zone of the surface. The
AllowSelectNothing property specifies the keys combination to allow user to select
nothing on the surface.
exCreateObject, the user creates an element on the surface. The AllowCreateObject
property specifies the keys combination to allow user to create elements on the
surface.
exEditObject, the user edits the element's caption.
exLinkObjects, the user creates an element on the surface. The AllowLinkObjects
property specifies the keys combination to allow user to link elements on the surface.

property Surface.CanRedo as Boolean
Retrieves a value that indicates whether the surface can perform a Redo operation.

Type Description

Boolean A boolean expression that specifies whether the control
can perform a Redo operation

The CanRedo method indicates whether the control can perform a Redo operation. The
AllowUndoRedo property enables or disables the Undo/Redo feature. The Redo redoes the
next action in the control's redo queue. The Undo method undoes the last control operation.
The UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo
actions that may be stored to the control's queue, or in other words how many operations
the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Surface.CanUndo as Boolean
Retrieves a value that indicates whether the surface can perform an Undo operation.

Type Description

Boolean A boolean expression that specifies whether the control
can perform an Undo operation

The CanUndo method indicates whether the control can perform an Undo operation. The
AllowUndoRedo property enables or disables the Undo/Redo feature. The Undo method
undoes the last control operation. The Redo redoes the next action in the control's redo
queue. The UndoRedoQueueLength property gets or sets the maximum number of
Undo/Redo actions that may be stored to the control's queue, or in other words how many
operations the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Surface.Coord as CoordEnum
Specifies the type of coordinates the elements of the surface display in.

Type Description

CoordEnum A CoordEnum expression that specifies the type of
coordinates the elements of the surface display in.

By default, the Coord property is exDefCoord, which indicates that the positive coordinates
always show bottom-right to the origin. The Coord property can be used to allow the
surface to display positive coordinates only.

The following screen shot shows the surface using default coordinates:

The following screen shot shows the surface using Cartesian coordinates:

property Surface.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify

the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

 The following VB sample saves the control's content to a file:

If (Surface1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Surface1.CopyTo("")
 Debug.Print i
Next

property Surface.DefArrange(Option as DefArrangeEnum) as Variant
Retrieves or sets an option for Arrange method.

Type Description

Option as DefArrangeEnum A DefArrangeEnum expression that specifies the property
of the Arrange method to be accessed

Variant A VARIANT expression that specifies the value of the
giving property.

The DefArrange property retrieves or sets an option for Arrange method. The Arrange
method arranges the elements, starting from giving element, based on the links. Changing
any DefArrangeEnum properties has effect at the next Arrange call only.

For instance, you can use the DefArrange property to:

arrange elements horizontally or vertically
increases or decrease the distance between arranged elements.
align the elements based on the incoming outgoing elements.

property Surface.DrawPartsOrder as String
Defines the order of the parts the elements display

Type Description

String
A string expression that specifies the order to draw the
parts of the elements. The list is separated by comma, no
spaces are accepted

By default, the DrawPartsOrder property is
"extracaption,caption,extrapicture,picture,check,client". The DrawPartsOrder property
supports the following parts (separated by comma): "extracaption", "caption",
"extrapicture", "picture", "check" and "client". You can use the DrawPartsOrder property to
make the caption to be displayed over the picture, by using
"extrapicture,picture,check,extracaption,caption,client". If a part is missing from the
DrawPartsOrder property, it is not shown in the element. For instance, if "check" is missing
the element shows no check-box, even the element's ShowCheckBox property is True. The
CaptionAlign, PicturesAlign property aligns the caption/pictures The ElementFormat
property specifies the way the control shows the parts of the element (The
DrawPartsOrder property has no effect if the ElementFormat property is set)

property Surface.EditContextMenuItems as String
Specifies the control's context menu, while editing the event.

Type Description

String A string expression that indicates the items to be shown
on the edit's context menu.

The edit's context menu is displayed if the user right clicks while editing the event. Use the
EditContextMenuItems property to change the edit's context menu.

By default the EditContextMenuItems property is:

Command[id=57625][captionwidth=48][group=19](Undo[id=57643][align=1]
[button=-1][captionwidth=44],Redo[id=57644][align=1][button=-1]),Edit[id=57624]
[captionwidth=48][group=19](Cut[id=57635][align=1][button=-1],Copy[id=57634]
[align=1][button=-1],Paste[id=57637][align=1][button=-1],Delete[id=57632][align=1]
[button=-1],Select All[id=57642][align=1][button=-1]),format[sep][id=57623]
[height=13],Type[id=57622][show=1][captionwidth=28][group=19](B[id=57648]
[typ=1][align=1][show=1],I[id=57649][typ=1][align=1][show=1],U[id=57650]
[typ=1][align=1][show=1],S[id=57651][typ=1][align=1][show=1],[sep]
[id=57621],A[id=57760][typ=1][align=1][spchk=-1][show=1](ID[id=57761]
[edittype=1][editwidth=-172],Options[id=57762][edittype=1]
[editwidth=-72]),G[id=57715][typ=1][align=1][spchk=-1][show=1]
(Color[id=57717][edittype=518][border=0][editwidth=-72],Mode[id=57724]
[group=17](H[id=57725][typ=2][align=1][chk=1][show=1][grp=2],V[id=57726]
[typ=2][align=1][show=1][grp=2],FD[id=57727][typ=2][align=1][show=1]
[grp=2],BD[id=57728][typ=2][align=1][show=1][grp=2]),Blend Triangular
Shape[id=57729][typ=1][show=-1]),O[id=57730][typ=1][align=1][spchk=-1]
[show=1](Color[id=57732][edittype=518][border=0]
[editwidth=-96],Width[id=57739][edittype=3][border=0][min=1][max=4][freq=1]
[editwidth=-72]),S[id=57743][typ=1][align=1][spchk=-1][show=1]
(Color[id=57745][edittype=518][border=0][editwidth=-72],Offset[id=57752]
[edittype=3][border=0][min=-8][max=+8][freq=1]
[editwidth=-128],Width[id=57756][edittype=3][border=0][min=2][max=+7]
[freq=1][editwidth=-128])),[sep][id=57620][height=4],Align[id=57619][show=1]
[captionwidth=24][height=26][group=19]([id=57618][group=19]
(Offset[id=57709][typ=1][chk][show=1][showdis][border=0][min=-32][max=+32]
[freq=4][editwidth=-96][height=24])),Color[id=57618][captionwidth=28]

[height=26][group=3](Fore[id=57685][typ=1][show=1][showdis][editwidth=-96]
[height=24],[sep][id=57617],Back[id=57686][typ=1][show=1][showdis]
[editwidth=-96][height=24]),Font[id=57617][captionwidth=28][height=26]
[group=3](Face[id=57701][typ=1][show=1][showdis][height=24][editwidth=-116],
[sep][id=57616],Size[id=57702][typ=1][show=1][showdis][height=24]
[editwidth=-82][min=4][max=72][freq=4]),Misc[id=57609][captionwidth=24]
[group=3](Image[id=57608](Size[id=57680][edittype=515][border=0][min=16]
[max=128][freq=16][editwidth=-128][ticklabel=value = %i ? ''+value : (value =
vmax ? ''+value : (value = vmin ? ''+value : ''))],Insert[id=57679]()))

By default, the control's context menu shows as following:

Let's say we want to remove all that grouping, and shows as a regular context menu (just
remove all the [group] from the EditContextMenuItems property, and you should get
something like:

The EditContextMenuItems's syntax in BNF notation:

<EditContextMenuItems> ::= <ITEMS>
<ITEMS> ::= <ITEM>["("<ITEMS>")"][","<ITEMS>]
<ITEM> ::= <CAPTION>[<OPTIONS>]
<OPTIONS> ::= "["<OPTION>"]"["["<OPTIONS>"]"]
<OPTION> ::= <PROPERTY>["="<VALUE>]
<PROPERTY> ::= "img" | "himg" | "sep" | "id" | "typ" | "group" | "chk" | "button" | "align" |

"spchk" | "show" | "rad" | "dis" | "showdis" | "bld" | "itl" | "stk" | "und" | "bg" | "fg" | "edittype"
| "edit" | "mask" | "border" | "editwidth" | "captionwidth" | "height" | "grp" | "tfi" | "ttp" | "min" |
"max" | "tick" | "freq" | "ticklabel" | "small" | "large" | "spin" | "ettp" | "float"

where the <CAPTION> is the HTML caption to be shown on the context menu item. The
<VALUE> indicates the value of giving property.

img=<VALUE>, where <VALUE> is an integer expression, that indicates the index of
the icon being displayed for the item.
himg=<VALUE>, where <VALUE> indicates the key of the picture to be displayed for
the item.
sep, specifies an separator item
id=<VALUE>, where <VALUE> is an integer expression, that indicates the identifier of
the item.
typ=<VALUE>, where <VALUE> could be one of the following:

0 for regular items,
1 for items that display a check/box (chk)
2 to display radio buttons (rad)

group=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values:

0 (exNoGroupPopup), No grouping is performed on the sub-menu, so the sub-
items are shown to a float popup,
1 (exGroupPopup), Groups and displays the sub-menu items on the current item,
arranged from left to right
2 (exNoGroupPopupFrame), Prevents showing the frame around each grouping
item.
4 (exGroupPopupCenter), Shows the grouping popup aligned to the center of the
current item.
8 (exGroupPopupRight), Shows the grouping popup aligned to the right of the
current item.
16 (exGroupPopupEqualSize), Shows the items that make the group of the same
size

chk[=<VALUE>], where <VALUE> could be 0 for unchecked, or not zero for checked.
The chk option makes the item to display a check box. If the <VALUE> is missing the
item still displays an un-checked check box.
button=<VALUE>, where <VALUE> could be 0 for regular or not zero to show the item
as a button.
align=<VALUE>, where <VALUE> could be one of the following:

0 (left), to align the item's caption to the left
1 (center), to center the item's caption
2 (right), to align the item's caption to the right

spchk=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item's sub menu is shown only if the item is checked.

show=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the checked item shows as selected
rad=<VALUE>, where <VALUE> could be 0 for unchecked radio button or not zero to
for checked radio button. Use the grp option to define the group of radio where this
button should be associated, If no group of radio buttons is required, the grp could be
ignored.
dis, specifies a disabled item
showdis=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item shows as disabled, but it is still enabled
bld, specifies that the item appears in bold
itl, specifies that the item appears in italics
stk, specifies that the item appears as strikeout
und, specifies that the item is underlined
bg=<VALUE>, specifies the item's background color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a long expression.
fg=<VALUE>, specifies the item's foreground color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a long expression.
edittype=<VALUE>, associates an edit field to the item, where <VALUE> could be one
of the following values:

0 (exItemDisableEdit), No editor is assigned to the current item.
1 (exItemEditText), A text-box editor is assigned to the current item.
2 (exItemEditMask), A masked text-box editor is assigned to the current item.
3 (exItemEditSlider), A slider editor is assigned to the current item.
4 (exItemEditProgress), A progress editor is assigned to the current item.
5 (exItemEditScrollBar), A scrollbar editor is assigned to the current item.
6 (exItemEditColor), A color editor is assigned to the current item.
7 (exItemEditFont), A font editor is assigned to the current item.
256 (exItemEditReadOnly), specifies that the item's editor is shown as disabled.
This value could be combined with one of the values from 0 to 7, 512
512 (exItemEditSpin), A spin editor is assigned to the current item. This value
could be combined with one of the values from 0 to 7, 256

edit=<VALUE>, specifies the caption to be shown in the item's edit field, where
<VALUE> could be any string
mask=<VALUE>, specifies the mask to be applied on a masked editor. This option is
valid for exItemEditMask edit. Use the float option to allow masking floating point
numbers. See Masking for more information about <VALUE> of the mask option. See
Masking Float for more information about <VALUE> if the float option is used.
border=<VALUE>, specifies the border to be shown on the item's edit field, where
<VALUE> could be one of the following:

0 (exEditBorderNone), No border is shown.

-1 (exEditBorderInset), shows an inset border
1 (exEditBorderSingle), shows a frame border

editwidth=<VALUE>, specifies the width to show the edit field inside the item. where
<VALUE> could be a long expression. A negative value indicates that the field goes to
the end of the item
captionwidth=<VALUE>, specifies the width to show the HTML caption of the item.
where <VALUE> could be a long expression. A negative value indicates that no
limitation is applied to the item's caption, so no truncate caption is shown
height=<VALUE>, specifies the height to show the item, where <VALUE> could be a
positive long expression
grp=<VALUE>, defines the radio group. It should be used when you define more
groups of radio buttons. A group of radio buttons means that only one item could be
checked at one time. The rad option specifies that the item displays a radio button.
Use the grp option to define the group of radio where this button should be associated,
If no group of radio buttons is required, the grp could be ignored. The <VALUE> could
be any long expression.
ttp=<VALUE>, defines the item's tooltip. The <VALUE> could be any HTML string
expression. The item's tooltip is shown when the user hovers the item.
min=<VALUE>, defines the minimum value of the edit field. The <VALUE> could be any
long expression, and specifies the minimum value for any slider, progress, scroll, spin,
or range editor.
max=<VALUE>, defines the maximum value of the edit field. The <VALUE> could be
any long expression, and specifies the maximum value for any slider, progress, scroll,
spin, or range editor.
tick=<VALUE>, defines where the ticks of the slider edit appear. This option is valid for
exItemEditSlider edit. The <VALUE> could be one of the following values:

0 (exBottomRight), The ticks are displayed on the bottom/right side.
1 (exTopLeft), The ticks are displayed on the top/left side.
2 (exBoth), The ticks are displayed on the both side.
3 (exNoTicks), No ticks are displayed.

freq=<VALUE>, indicates the ratio of ticks on the slider edit. This option is valid for
exItemEditSlider edit. The <VALUE> could be a positive long expression.
ticklabel=<VALUE>, indicates the HTML label to be displayed on slider's ticks. This
option is valid for exItemEditSlider edit. See Tick Label Expression for more information
about <VALUE> of the ticklabel option.
small=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the arrow key (left, right, or button). This option is valid for
exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive long
expression.
large=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the CTRL + arrow key (CTRL + left, CTRL + right). This option is valid
for exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive long
expression.

spin=<VALUE>, specifies the step to advance when user clicks the editor's spin.. This
option is valid for exItemEditSpin edit. The <VALUE> could be a positive long
expression.
ettp=<VALUE>, specifies the HTML tooltip to be shown when the item's value is
changed. This option is valid for exItemEditSlider/exItemEditScrollBar edit. The
<VALUE> could be any string expression.
float=<VALUE>, Specifies whether the mask field masks a floating point number. This
option is valid for exItemEditMask edit. See Masking Float for more information about
<VALUE> of mask option, if the float option is used. The <VALUE> could be 0 for
standard masking field or not zero to specify that the field is masking a floating point.

ContextMenu - Masking

For instance, the following input-mask (ext-phone)

!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is

separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,

";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. readonly, the editor
is locked, user can not update the content, the caret is available, so user can
copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed

and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.

rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

ContextMenu - Masking Float

The [mask=<VALUE>] property may indicate the followings, if the [float=-1] is present

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates
the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the <VALUE> property is empty, the control takes the settings for the regional options
like: Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The <VALUE>"-###.###.##0,00" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The <VALUE>"-###.###.###,##" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator)

The <VALUE>"-###,###,###.##" filter floating point numbers a number for English settings (
"." is the decimal sign, "," is the thousands separator)

The <VALUE>"####" indicates a max-4 digit number (positive) without a decimal symbol
and without digit grouping

The <VALUE>"-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the
decimal sign, no thousands separator)

The <VALUE>"#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

ContextMenu - Tick Label Expression

For instance:

"value", shows the values for each tick.
" (value=current ? '<fgcolor=FF0000>' : '') + value", shows the current
slider's position with a different color and font.
"value = current ? value : ''", shows the value for the current tick only.
"(value = current ? '' : '') + (value array 'ab bc cd de ef fg gh hi ij jk kl'
split ' ')" displays different captions for slider's values.

The The <VALUE> of [ticklabel] option is a formatted expression which result may include
the HTML tags.

The The <VALUE> of [ticklabel] option indicates a formatting expression that may use the
following predefined keywords:

value gets the slider's position to be displayed
current gets the current slider's value.
vmin gets the slider's minimum value.
vmax gets the slider's maximum value.
smin gets the slider's selection minimum value.
smax gets the slider's selection maximum value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified

dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the

field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.

shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display labels using the following built-in HTML
tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of text with a different font and/or different
size. For instance, the bit draws the bit text using the Tahoma
font, on size 12 pt. If the name of the font is missing, and instead size is present, the
current font is used with a different size. For instance, bit displays the
bit text using the current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text with a specified foreground color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text with a specified background color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on top/bottom side. If has no effect for a
single line caption.
<dotline> The next line shows a dot-line on top/bottom side. If has no effect for a
single line caption.
<upline> The next line shows a solid/dot-line on top side. If has no effect for a single
line caption.
<r> Right aligns the text

<c> Centers the text
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number
(the character with specified code), For instance, the € displays the EUR
character, in UNICODE configuration. The & ampersand is only recognized as markup
when it is followed by a known letter or a # character and a digit. For instance if you
want to display bold in HTML caption you can use bold

property Surface.ElementFormat as String
Specifies the way the control shows the parts of the elements.

Type Description

String
A String format that specified the CRD format to arrange
the parts of the element. This setting is applied to all
elements that has the ElementFormat property on empty

By default, the ElementFormat property is empty. Use the ElementFormat property to
arrange parts of the elements in a different way. The ElementFormat property specifies the
format to display parts of a specified element. The ElementFormat property is applied to all
elements with the ElementFormat property on empty.

The know parts of the element are:

check, specifies the part where the element's checkbox is displayed. The
ShowCheckBox property specifies whether the element's checkbox is shown or hidden.
The CheckBoxAlign property specifies the alignment of the checkbox relative to the
"check" part of the element.
caption, specifies the part where the element's caption is displayed. The Caption
property specifies the element's HTML caption. The CaptionAlign property specifies
the alignment of the caption relative to the "caption" part of the element.
extracaption, specifies the part where the element's extra-caption is displayed. The
ExtraCaption property specifies the element's HTML extra-caption. The
ExtraCaptionAlign property specifies the alignment of the extra-caption relative to the
"extracaption" part of the element.
picture, specifies the part where the element's pictures are displayed. The Pictures
property specifies the element's pictures. The PicturesAlign property specifies the
alignment of the pictures relative to the "picture" part of the element.
extrapicture, specifies the part where the element's extra-pictures are displayed. The
ExtraPictures property specifies the element's extra-pictures. The ExtraPicturesAlign
property specifies the alignment of the extra-pictures relative to the "extrapicture"
part of the element.
client, specifies the part of the element where the inside ActiveX is displayed. The
Control property indicates the inside ActiveX that hosted by the element.

The parts of the elements must be included between "" in order to be recognized by the
CRD format.

For instance:

"check" indicates that just the element's checkbox is displayed, so no matter if other

https://exontrol.com/excrd.jsp
https://exontrol.com/excrd.jsp

are set the element displays just the checkbox (if ShowCheckBox property is True)
and the element's Caption property.
"check,caption" indicates that just the element's checkbox and caption are displayed,
so no matter if other are set the element displays just the checkbox (if ShowCheckBox
property is True) and the element's Caption property.
"client" specifies that the whole element displays just the client part, so the inside
Active control will use the entire background to display the inside ActiveX control. This
indicates, that no caption, check or any other part is displayed on the element.
"check":18,"client", displays the element's checkbox aligned to the left on a 18-pixels
wide, and displays the client on the rest of the element.
"18;"caption"/"client"", allows the element's Caption and the Control to be displayed.

property Surface.ElementFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Element
Gets the Element object from the cursor.

Type Description
X as OLE_XPOS_PIXELS A Long expression that specifies the x-cursor position.
Y as OLE_YPOS_PIXELS A Long expression that specifies the y-cursor position.
Element An Element object from the cursor

The ElementFromPoint(-1,-1) property returns the element from the cursor or nothing if no
element at the current cursor position. The ElementFromPosition property determines the
element from the surface giving the coordinates on the surface. Use the LinkFromPoint
property to get if there is any link at the specified position. The HitTestFromPoint(-1,-1)
property returns the element and the hit-test code from the cursor. The
ShowHandCursorOn property specifies the parts of the element that shows the hand cursor
when the mouse-pointer hovers the part. The HitTestFromPoint(-1,-1) property returns the
element/hit-test code from the cursor.

property Surface.ElementFromPosition (X as Long, Y as Long) as
Element
Gets the Element object from the position.

Type Description

X as Long A Long expression that specifies the x-coordinate on the
surface.

Y as Long A Long expression that specifies the y-coordinate on the
surface.

Element An Element object from the position.

The (0,0) point indicates the origin of the surface, so the X and Y parameters must be
relative to the origin of the surface. The ElementFromPoint property gets the element from
the surface giving the position on the surface. Use the PointToPosition / PositionToPoint
property to convert screen coordinates to surface coordinates or reverse. The
ElementFromPoint(-1,-1) property returns the element from the cursor or nothing if no
element at the current cursor position. The X and Y properties specifies the position of
the element on the surface. The Width property specifies the width of the element, in
surface coordinates. The Height property specifies the height of the element, in surface
coordinates.

property Surface.Elements as Elements
Retrieves the control's elements.

Type Description
Elements The surface's Elements collection.

The Elements property gives the access to the surface's Elements collection. The Add
method adds programmatically a new element to the surface. Use the Insert method to
insert programmatically a child element. Use the InsertControl method to insert
programmatically a child element that hosts an inner ActiveX control. The control fires the
AddElement event once a new element is added to the Elements collection. The
AllowCreateObject property specifies the combination of keys that allows the user to create
objects on the surface. The Links property gives access to the surface's Links collection.

property Surface.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A Boolean expression that specifies whether the control is
enabled or disabled.

By default, the Enabled property is True. Use the Enabled property of the control to disable
the entire surface. The Enabled property changes the Enabled state of the window that
hosts the surface. While the control's Enabled property is False, no mouse or key events
are generated. Use the Enabled property to show the element as disabled (grayed). The
Selectable property specifies whether the user can select the element at runtime. The
Resizable property specifies whether the element can be resized at runtime.

method Surface.EndBlockUndoRedo ()
Ends recording the UI operations and adds the undo/redo operations as a block, so they all
can be restored at once, if Undo method is performed.

Type Description

You can use the StartBlockUndoRedo / EndBlockUndoRedo methods to group multiple
Undo/Redo operations into a single-block. The GroupUndoRedoActions groups the next to
current Undo/Redo Actions in a single block. A block may hold multiple Undo/Redo actions.
The AllowUndoRedo property enables or disables the Undo/Redo feature. Use the
GroupUndoRedoActions method to group two or more entries in the Undo/Redo queue in a
single block, so when a next Undo/Redo operation is performed, multiple actions may occur.
For instance, moving several elements in the same time (multiple elements selection) is
already recorded as a single block. Use the UndoRedoQueueLength property to specify the
number of entries that Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveElement;B
MoveElement;A
EndBlock

method Surface.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use the Refresh method to refresh the control.

property Surface.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Surface.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Surface.ExpandLinkedElements as Boolean
Specifies whether the linked elements are expanded or collapsed.

Type Description

Boolean

A Boolean expression that specifies whether the control
expands or collapses the descendent elements. By
descending element of current element we mean any
element that has a link that starts from current element
and ends to this element.

By default, the ExpandLinkedElements property is False. Use the ExpandLinkedElements
property to add expand/collapse glyphs next to elements that has outgoing links. The
OutgoingLinks property specifies the links that starts from the element. The Expanded
property specifies whether the element is expanded or collapsed. Use the
AllowMoveDescendents property to specify whether all descendents elements are moved
once the focused element is moved. The Add method adds programmatically a link between
two elements. Use the ShowLinksOnCollapse property to show the links between an
element and collapsed elements. The ShowLinks property specifies the way the control
shows the links on the surface.

The following screen shot shows the surface with ExpandLinkedElements property is True:

The following screen shot shows the surface with ExpandLinkedElements property is False
(by default):

method Surface.FitToClient ()
Resizes or/and moves the entire chart to fit the control's client area.

Type Description

property Surface.FocusLink as Variant
Gets or sets the focused link

Type Description

Variant

The FocusLink property is a get/set property that returns:

empty value, no link has been clicked/focused
a Link object that defines the link being focused

or it can be:

an empty value, to clear the focused link (no link is
focused)
a string expression that determines the key of the
newly focused link
a numeric expression that specifies the index of the
new link with the focus
a Link object that defines the newly focused link

By default, the FocusLink property is empty. The FocusLink property retrieves or changes
the current link that is currently focused (selected or active) within the control. Getting the
focused link might be useful if you want to perform an action based on the user's current
selection. Setting the focused link might be useful if you want to guide the users navigation
programmatically (e.g., moving focus to a specific link after a user action). The
LayoutStartChanging(exFocusLink) / LayoutEndChanging(exFocusLink) property notifies
your application once the user focuses a new link.

property Surface.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the elements.

Use the Font property to change the control's font . Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while adding
new columns or items.

The following VB sample assigns by code a new font to the control:

With Surface1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_surface.GetFont();
font.SetName("Tahoma");
m_surface.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxSurface1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);
axSurface1.Font = font;

axSurface1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.Surface1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property Surface.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that defines the control's foreground
color.

The ForeColor property defines the control's foreground color.. The Picture property to
assign your logo on the control's background. The control uses the PictureDisplay property
to determine how the picture is displayed on the control's background. The
Background(exElementForeColor) property specifies the default element's foreground color.
The BackColor property specifies the control's background color.

method Surface.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the Surface.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property Surface.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. You can use the <a> anchor
elements to insert hyperlinks to cells, bars or links. Use the Caption property to specify the
element's caption.

The visual effect is applied to the anchor elements, if the FormatAnchor property is not
empty. For instance, if you want to do not show with a new effect the clicked anchor
elements, you can use the FormatAnchor(False) = "", that means that the clicked or not-
clicked anchors are shown with the same effect that's specified by FormatAnchor(True). An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick event to notify that the user clicks an anchor element. This
event is fired only if prior clicking the control it shows the hand cursor. The AnchorClick
event carries the identifier of the anchor, as well as application options that you can specify
in the anchor element. The hand cursor is shown when the user hovers the mouse on the
anchor elements.

method Surface.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to improve performance of the
control while loading data into it.

Purpose:

FreezeEvents(True) is used to temporarily stop (or "freeze") a control from responding
to any events (such as clicks, changes in value, etc.).
FreezeEvents(False) re-enables (or "unfreezes") event handling for the control,
allowing it to respond to events again.

Use Case:

Imagine you're making multiple updates to a control, such as a list, a form, or a UI
component, and you don't want the control to react to each individual change (e.g.,
trigger event handlers after each modification). You would use FreezeEvents(True) to
pause event handling while making the updates, then use FreezeEvents(False) once all
updates are complete.

Example Scenario:

Lets say you have a list where changing the selection triggers an event. You want to
programmatically add several items to the list, but you don't want the selection-
changed event to fire every time you add a new item:

control.FreezeEvents(True) // Stop event processing
// Perform multiple changes to the control
control.AddItem("Item 1")
control.AddItem("Item 2")
control.AddItem("Item 3")
control.FreezeEvents(False) // Resume event processing

Without freezing the events, the control might trigger its event handler each time an
item is added. Freezing prevents that, ensuring that the control remains "quiet" during
updates.

Benefits:

Improved performance: Prevents unnecessary event handling during batch updates.
Avoids unintended side effects: Stops event handlers from running when you dont want
them to (e.g., while setting up or modifying the control).

method Surface.GroupUndoRedoActions (Count as Long)
Groups the next to current Undo/Redo Actions in a single block.

Type Description

Count as Long
A Long expression that specifies the number of entries
being grouped in a single block of actions, in the
Undo/Redo queue.

The GroupUndoRedoActions groups the next to current Undo/Redo Actions in a single
block. A block may hold multiple Undo/Redo actions. The AllowUndoRedo property enables
or disables the Undo/Redo feature. Use the GroupUndoRedoActions method to group two
or more entries in the Undo/Redo queue in a single block, so when a next Undo/Redo
operation is performed, multiple actions may occur. You can use the StartBlockUndoRedo /
EndBlockUndoRedo methods to group multiple Undo/Redo operations into a single-block.
For instance, moving several elements in the same time (multiple elements selection) is
already recorded as a single block. Use the UndoRedoQueueLength property to specify the
number of entries that Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveElement;B
MoveElement;A
EndBlock

property Surface.HideSel as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A Boolean expression that determines whether selected
item appears highlighted when a control loses the focus.

By default, the HideSel property is True, which indicates that selected elements are not
highlighted when the control loses the focus. The HideSel property specifies whether the
selected elements are highlighted or not when the control loses the focus. The SingleSel
property specifies whether the surface allows selecting one or multiple elements. The
Selectable property of the Element object indicates whether the element is selectable or un-
selectable. The SelCount property counts the number of selected elements. The
SelElement property returns the selected element based on its index in the selected
elements collection. The Selection property sets or gets a safe array of selected elements.
The SelectionChanged event occurs once a new element is selected or unselected. The
Selected property of the Element object indicates whether the element is selected or
unselected. The SelectAll method selects all elements in the chart. Use the UnselectAll
method to unselect all elements on the surface. Use the AllowMoveSelection property to
prevent moving the entire selection when focused element is moved. Use the
AllowResizeSelection property to prevent resizing the entire selection when focused
element is resized. Use the AllowMoveDescendents property to prevent moving all
descendents (children and outgoing elements) when focused element is moved.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

property Surface.HitTestFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as HitTest
Gets the Element object and the Hit-Test code from the cursor.

Type Description
X as OLE_XPOS_PIXELS A Long expression that specifies the x-cursor position.
Y as OLE_YPOS_PIXELS A Long expression that specifies the y-cursor position.

HitTest A HitTest object that holds information about the Element
from the specified position.

The HitTestFromPoint property returns the element/hit-test code from the specified position.
The HitTestFromPoint(-1,-1) property returns the element/hit-test code from the current
cursor position. The ElementFromPoint property returns the element from the cursor. For
instance, you can use the HitTestFromPoint property to determine whether the cursor
hovers the expand/collapse glyphs, the element's checkbox, picture and so on.

The following VB sample determines if the cursor hovers the element's expand/collapse
glyphs:

Private Sub Surface1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HitTest
 Set h = Surface1.HitTestFromPoint(-1, -1)
 If Not h Is Nothing Then
 If (h.HitTestCode And exHitTestMask) = exHitTestGlyph Then
 Debug.Print "Expand/Collase Glyph of " & h.Element.ID
 End If
 End If
End Sub

method Surface.Home ()
Restores the view to the origin.

Type Description

The Home method moves the surface's scroll position to 0 and the zooming factor to 100%.
The control fires the LayoutStartChanging(exSurfaceHome) /
LayoutEndChanging(exSurfaceHome) event when the user clicks the Home button. The
control's ScrollPos, ScrollX and ScrollY properties specify the surface's scroll position. The
Zoom property specifies the current zooming factor.

property Surface.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

By default, the HTMLPicture collection is empty. The HTMLPicture property handles a
collection of custom size picture being displayed in the HTML captions, using the
tags. Use the HTMLPicture property to add new pictures to be used in HTML captions. For
instance, the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). The Images method specifies the list of 16x16
icons to be displayed on the control's surface. The Caption property specifies the caption of
the element (including icons, picture and so on). Use the Pictures / ExtraPictures
properties to display different pictures on the element.

https://exontrol.com/eximages.jsp

property Surface.hWnd as Long

Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

method Surface.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The Images method assigns a list of icons to be displayed on the control's surface. The
icons can be displayed on the control's using the number HTML tags. The
ImageSize property defines the size (width/height) of the icons within the control's Images
collection. The HTMLPicture property handles a collection of custom size picture being
displayed in the HTML captions, using the key tags. The ReplaceIcon method
replaces icons in the control's . The Caption property specifies the caption of the element (
including icons, picture and so on). Use the Pictures / ExtraPictures properties to display
different pictures on the element.

property Surface.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Surface.IndentX as Long
Specifies the child elements indentation on x-axis.

Type Description

Long A Long expression that specifies the child elements
indentation on x-axis.

By default, the IndentX is 24 pixels. Use the IndentX property to specify the indentation
between child and parent elements on x-axis. The IndentY property specifies the indentation
between children and parent elements on y-axis. The Insert method add programmatically a
child element. The Expanded property expands or collapse the parent element.

The following screen shot shows the tree using the default values for IndentX(24),
IndentY(2) properties:

The following screen shot shows the tree using the IndentX(0), IndentY(0) properties:

The following screen shot shows the tree using the IndentX(-24), IndentY(2) properties:

property Surface.IndentY as Long
Specifies the child elements indentation on y-axis.

Type Description

Long A Long expression that specifies the child elements
indentation on y-axis.

By default, the IndentY is 2 pixels. The IndentY property specifies the indentation between
children and parent elements on y-axis. Use the IndentX property to specify the indentation
between child and parent elements on x-axis. The Insert method add programmatically a
child element. The Expanded property expands or collapse the parent element.

The following screen shot shows the tree using the default values for IndentX(24),
IndentY(2) properties:

The following screen shot shows the tree using the IndentX(0), IndentY(0) properties:

The following screen shot shows the tree using the IndentX(-24), IndentY(2) properties:

property Surface.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

surface's scroll position as indicated by ScrollX and ScrollY properties.
surface's zoom factor as indicated by the Zoom property.
selected elements as indicated by the Selection property

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

https://www.youtube.com/watch?v=TbWWnDJlD9w

property Surface.LinkFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Link
Gets the Link object from the cursor.

Type Description
X as OLE_XPOS_PIXELS A Long expression that specifies the x-cursor position.
Y as OLE_YPOS_PIXELS A Long expression that specifies the y-cursor position.
Link A Link object from the cursor

Use the LinkFromPoint property to get if there is any link at the specified position. The
ElementFromPoint(-1,-1) property returns the element from the cursor or nothing if no
element at the cursor position. The HitTestFromPoint(-1,-1) property returns the element
and the hit-test code from the cursor. The ShowHandCursorOn property specifies the parts
of the element that shows the hand cursor when the mouse-pointer hovers the part. The
HitTestFromPoint(-1,-1) property returns the element/hit-test code from the cursor.

property Surface.Links as Links
Retrieves the control's links.

Type Description
Links A Links object that indicates the surface's Links collection.

The Links property gives the access to the surface's Links collection. The Add method adds
programmatically a Link object to the collection and returns a reference to the newly
created object. The AllowLinkObjects property specifies the combination of keys that allows
the user to link the objects. The AddLink event notifies your application once a new link is
added to the Links collection.

property Surface.LinksArrowColor as Color
Specifies the color/visual appearance to draw the arrows of the links between the
elements.

Type Description

Color

A Color expression that defines the color to show the
arrow of the links. The last 7 bits in the high significant
byte of the color indicates the identifier of the skin being
used to paint the part. Use the Add method to add new
skins to the control. In other words, you can use the EBN
objects to define a different type of arrows.

By default, the LinksArrowColor is -1, which indicates that the LinksColor property specifies
the color of the arrow. The LinksArrowColor property specifies the color to show the arrow
of the links. The ArrowColor property specifies the color to show the direction of the
particular link. The control's LinksShowDir property specifies whether the arrow of the links
is shown or hidden. The LinksWidth property specifies the size of the links and so the size
of the arrow. The ShowLinks property specifies whether the surface shows or hides the
links.

property Surface.LinksArrowFrameColor as Color
Specifies the color to show the default frame of the arrow

Type Description
Color A Color expression to show the arrow's frame

By default, the LinksArrowFrameColor property is -1 which indicates that LinksArrowColor
property specifies the color of the arrow's frame. The LinksArrowFrameColor property
specifies the color to show the default frame of the arrow. The ArrowFrameColor property
specifies the color to show the arrow's frame for a particular link. Use the LinksColor
property to define the color to show all links on the surface. The Color property specifies
the color for an individual link. The LinksArrowColor property specifies the color to show the
arrow of the links. The control's LinksShowDir property specifies whether the arrow of the
links is shown or hidden. The LinksWidth property specifies the size of the links and so the
size of the arrow. The ShowLinks property specifies whether the surface shows or hides
the links. The LinksArrowSize property specifies the size to show the arrow for links.

property Surface.LinksArrowSize as Long
Specifies the size to show the arrow for links

Type Description
Long A long expression that specifies the size of the arrow

By default, the LinksArrowSize property is -1 which indicates that LinksWidth property
controls the size of the arrow. The LinksArrowSize property specifies the size to show the
arrow for links. The ArrowSize property specifies the size to show the arrow for a particular
link. Use the LinksColor property to define the color to show all links on the surface. The
Color property specifies the color for an individual link. The LinksArrowColor property
specifies the color to show the arrow of the links. The control's LinksShowDir property
specifies whether the arrow of the links is shown or hidden. The LinksWidth property
specifies the size of the links and so the size of the arrow. The ShowLinks property
specifies whether the surface shows or hides the links. The LinksArrowFrameColor
property specifies the color to show the default frame of the arrow.

property Surface.LinksColor as Color
Specifies the color to draw the links between the elements.

Type Description

Color A Color expression that specifies the color to show the
links between elements on the surface.

By default, the LinksColor property is RGB(0,0,0). Use the LinksColor property to define
the color to show all links on the surface. The Color property specifies the color for an
individual link. The LinksArrowColor property specifies the color to show the arrow of the
links. The control's LinksShowDir property specifies whether the arrow of the links is shown
or hidden. The LinksWidth property specifies the size of the links and so the size of the
arrow. The ShowLinks property specifies whether the surface shows or hides the links. The
LinksArrowFrameColor property specifies the color to show the default frame of the arrow.
The LinksArrowSize property specifies the size to show the arrow for links.

property Surface.LinksShowDir as Boolean
Specifies whether the links show or hide the direction/arrow.

Type Description

Boolean A Boolean expression that specifies that the arrow for all
links are shown or hidden.

The LinksShowDir property specifies whether the direction for all links are shown or hidden.
The ShowDir property specifies whether the arrow of the link is shown or hidden. The
ArrowColor property specifies the color to show the direction of the particular link. The
LinkWidth property specifies the size of the link and so the size of the arrow. The Visible
property indicates whether the link is visible or hidden.

property Surface.LinksStyle as LinkStyleEnum
Specifies the style to draw the links between the elements.

Type Description

LinkStyleEnum A LinkStyleEnum expression that defines the style of the
line to be shown between elements.

The LinksStyle property specifies the style of the lines/links to be shown on the surface.
The Style property indicates the style of the line to be shown on a particular link. The
ShowLinksType property defines the type of the link to be shown between elements on the
surface. The LinksWidth property specifies the size of the links and so the size of the arrow.
The ShowLinks property specifies whether the surface shows or hides the links. The
control's LinksStyle property defines the style of the line to be shown on the link. The
control's LinksShowDir property specifies whether the arrow of the links is shown or hidden.

property Surface.LinksWidth as Long
Specifies the width in pixels of the pen to draw the links between the elements.

Type Description

Long A Long expression that specifies the width to show the
links between elements.

The LinksWidth property specifies the width of the links between elements. The Width
property specifies the size of the link and so the size of the arrow. The ShowLinksType
property defines the type of the link to be shown between elements on the surface. The
LinksStyle property specifies the style of the lines/links to be shown on the surface. The
ShowLinks property specifies whether the surface shows or hides the links. The control's
LinksShowDir property specifies whether the arrow of the links is shown or hidden.

method Surface.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument.

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to load XML documents, previously saved using the SaveXML method. The
LoadXML method loads elements and links. The elements of the surface go to the
<Elements> section, while the links go to the <Links> section. Each element goes under
the <element> section, while each information about a link goes to the <link> section.

The XML Format of the file is:

- <Content Author Component Version ...>
 - <Elements>
 <Element ID ... />
 ...
 </Elements>
 - <Links>
 <Link ID ...>
 </Link>
 </Links>
 </Content>

property Surface.MajorGridColor as Color
Indicates the color to show the major grid lines on the surface.

Type Description

Color A Color expression that specifies the color to show the
major grid lines.

The MajorGridColor property specifies the color to show the major grid lines. Use the
MajorGridStyle property to specify the style of the major lines. Use the ShowGridLines
property to specify whether the control shows or hides the minor/major grid lines. Use the
MajorGridWidth / MajorGridHeight property to specify the how major grid lines are
displayed/aligned. Use the MinorGridWidth / MinorGridHeight property to specify the how
minor grid lines are displayed/aligned. Use the MinorGridStyle property to specify the style
of the minor lines. The MinorGridColor property specifies the color to show the minor grid
lines. Use the AxisStyle property to hide the axis lines or to display with a different style.
Use the AxisColor property to specify the color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MajorGridHeight as Long
Indicates the height between two consecutive major grid lines.

Type Description

Long A Long expression that specifies the distance (in pixels)
between two consecutive major grid lines.

Use the MajorGridWidth / MajorGridHeight property to specify the how major grid lines are
displayed/aligned. Use the MajorGridStyle property to specify the style of the major lines.
Use the MinorGridStyle property to specify the style of the minor lines. The MajorGridColor
property specifies the color to show the major grid lines. Use the MinorGridWidth /
MinorGridHeight property to specify the how minor grid lines are displayed/aligned. Use the
ShowGridLines property to specify whether the control shows or hides the minor/major grid
lines. The MinorGridColor property specifies the color to show the minor grid lines. Use the
AxisStyle property to hide the axis lines or to display with a different style. Use the
AxisColor property to specify the color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MajorGridStyle as LinesStyleEnum
Specifies the style to display the major grid lines.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the style of
major grid lines.

By default, the MajorGridStyle property is exLinesDot. Use the MajorGridStyle property to
specify the style of the major lines. The MajorGridColor property specifies the color to
show the major grid lines. Use the ShowGridLines property to specify whether the control
shows or hides the minor/major grid lines. Use the MajorGridWidth / MajorGridHeight
property to specify the how major grid lines are displayed/aligned. Use the MinorGridWidth
/ MinorGridHeight property to specify the how minor grid lines are displayed/aligned. Use
the MinorGridStyle property to specify the style of the minor lines. The MinorGridColor
property specifies the color to show the minor grid lines. Use the AxisStyle property to hide
the axis lines or to display with a different style. Use the AxisColor property to specify the
color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MajorGridWidth as Long
Indicates the width between two consecutive major grid lines.

Type Description

Long A Long expression that specifies the distance (in pixels)
between two consecutive major grid lines.

Use the MajorGridWidth / MajorGridHeight property to specify the how major grid lines are
displayed/aligned. Use the MajorGridStyle property to specify the style of the major lines.
Use the MinorGridWidth / MinorGridHeight property to specify the how minor grid lines are
displayed/aligned. Use the ShowGridLines property to specify whether the control shows or
hides the minor/major grid lines. Use the MinorGridStyle property to specify the style of the
minor lines. The MajorGridColor property specifies the color to show the major grid lines.
The MinorGridColor property specifies the color to show the minor grid lines. Use the
AxisStyle property to hide the axis lines or to display with a different style. Use the
AxisColor property to specify the color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MinorGridColor as Color
Indicates the color to show the minor grid lines on the surface.

Type Description

Color A Color expression that specifies the color to show the
minor grid lines.

The MinorGridColor property specifies the color to show the minor grid lines. Use the
MinorGridWidth / MinorGridHeight property to specify the how minor grid lines are
displayed/aligned. Use the ShowGridLines property to specify whether the control shows or
hides the minor/major grid lines. Use the MajorGridWidth / MajorGridHeight property to
specify the how major grid lines are displayed/aligned. Use the MajorGridStyle property to
specify the style of the major lines. Use the MinorGridStyle property to specify the style of
the minor lines. The MajorGridColor property specifies the color to show the major grid
lines. Use the AxisStyle property to hide the axis lines or to display with a different style.
Use the AxisColor property to specify the color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MinorGridHeight as Long
Indicates the height between two consecutive minor grid lines.

Type Description

Long A Long expression that specifies the distance (in pixels)
between two consecutive minor grid lines.

Use the MinorGridWidth / MinorGridHeight property to specify the how minor grid lines are
displayed/aligned. Use the ShowGridLines property to specify whether the control shows or
hides the minor/major grid lines. Use the MajorGridWidth / MajorGridHeight property to
specify the how major grid lines are displayed/aligned. Use the MajorGridStyle property to
specify the style of the major lines. Use the MinorGridStyle property to specify the style of
the minor lines. The MajorGridColor property specifies the color to show the major grid
lines. The MinorGridColor property specifies the color to show the minor grid lines. Use the
AxisStyle property to hide the axis lines or to display with a different style. Use the
AxisColor property to specify the color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MinorGridStyle as LinesStyleEnum
Specifies the style to display the minor grid lines.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the style to
show the minor lines.

By default, the MinorGridStyle property is exLinesDot4. Use the MinorGridStyle property to
specify the style of the minor lines. The MinorGridColor property specifies the color to show
the minor grid lines. Use the MinorGridWidth / MinorGridHeight property to specify the how
minor grid lines are displayed/aligned. Use the ShowGridLines property to specify whether
the control shows or hides the minor/major grid lines. Use the MajorGridWidth /
MajorGridHeight property to specify the how major grid lines are displayed/aligned. Use the
MajorGridStyle property to specify the style of the major lines. The MajorGridColor
property specifies the color to show the major grid lines. Use the AxisStyle property to hide
the axis lines or to display with a different style. Use the AxisColor property to specify the
color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.MinorGridWidth as Long
Indicates the width between two consecutive minor grid lines.

Type Description

Long A Long expression that specifies the distance (in pixels)
between two consecutive minor grid lines.

Use the MinorGridWidth / MinorGridHeight property to specify the how minor grid lines are
displayed/aligned. Use the ShowGridLines property to specify whether the control shows or
hides the minor/major grid lines. Use the MajorGridWidth / MajorGridHeight property to
specify the how major grid lines are displayed/aligned. Use the MajorGridStyle property to
specify the style of the major lines. Use the MinorGridStyle property to specify the style of
the minor lines. The MajorGridColor property specifies the color to show the major grid
lines. The MinorGridColor property specifies the color to show the minor grid lines. Use the
AxisStyle property to hide the axis lines or to display with a different style. Use the
AxisColor property to specify the color to show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

method Surface.MoveCorner (From as ContentAlignmentEnum, To as
ContentAlignmentEnum)
Moves or scrolls the surface.

Type Description
From as
ContentAlignmentEnum

A ContentAlignmentEnum expression that indicates the
point to move the surface from.

To as ContentAlignmentEnum A ContentAlignmentEnum expression that indicates the
point to move the surface to.

The MoveCorner method scrolls the surface from a corner to another. The MovePoint
method of the control moves the surface from the one point to another. The ScrollTo method
ensures that the element fits the surface's visible area. The control's ScrollPos, ScrollX and
ScrollY properties specify the surface's scroll position. Use the ScrollTo method of the
control to scroll the surface at specified position.

method Surface.MovePoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, To as ContentAlignmentEnum)
Moves or scrolls the surface, so the cursor aligns to specified corner.

Type Description

X as OLE_XPOS_PIXELS A Long expression that specifies the x-coordinate on the
screen to move the surface from.

Y as OLE_YPOS_PIXELS A Long expression that specifies the y-coordinate on the
screen to move the surface from.

To as ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
corner of the surface to move the surface to.

The MovePoint method of the control moves the surface from the one point to another. The
MoveCorner method scrolls the surface from a corner to another. Use the ScrollTo method
of the control to scroll the surface at specified position. The ScrollTo method ensures that
the element fits the surface's visible area. The control's ScrollPos, ScrollX and ScrollY
properties specify the surface's scroll position.

method Surface.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

The method is only for internal use.

property Surface.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum
An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode. 0 means no drag and drop
support, 1 means manual support.

In the /NET Assembly, you have to use the AllowDrop property as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

By default, the OLEDropMode property is exOLEDropNone. Curently, the control supports
only manual OLE Drag and Drop operation.

See the OLEStartDrag and OLEDragDrop events for more details about implementing drag
and drop operations into the ExSurface control.

https://exontrol.com/faq.jsp/net/#dragdrop

property Surface.OverviewColor as Color
Specifies the color to show objects outside of the surface's client area.

Type Description
Color A Color expression that specifies the overview color.

By default, the OverviewColor property is RGB(190,190,190), If the control's
OverviewColor property is -1, no elements is shown on the border. Use the OverviewColor
property of the Element to specify a different color to be shown for specific elements. The
OverviewColor property has effect when the element is not fitting the surface's client area
and it is shown on the border of the surface. The BorderWidth / BorderHeight properties
specify the size on the margin where the overview elements are shown.

The following screen shot shows the how elements are shown when they are not visible in
the surface's client area (look on the border) :

The following screen shot shows the elements when they are visible on the surface's client
area:

property Surface.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. Use the Picture property to assign your
logo on the control's background. The control uses the PictureDisplay property to determine
how the picture is displayed on the control's background. The BackColor property specifies
a solid color to be shown on the control's background. The Picture property specifies a
picture to be displayed on the element's background.

The following screen shot shows a logo on the control's background:

property Surface.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum
A PictureDisplayEnum expression that indicates the way
the control arranges the picture on the control's
background.

The control uses the PictureDisplay property to determine how the picture is displayed on
the control's background. By default, the control has no picture associated. Use the Picture
property to assign your logo on the control's background. The BackColor property specifies
a solid color to be shown on the control's background. The Picture property specifies a
picture to be displayed on the element's background.

method Surface.PointToPosition (ByRef X as Long, ByRef Y as Long)
Converts display coordinates to element's position.

Type Description

X as Long
(By Reference) A Long expression that determines the x-
coordinate on the screen. On return it gets the x-
coordinate on the surface.

Y as Long
(By Reference) A Long expression that determines the y-
coordinate on the screen. On return it gets the y-
coordinate on the surface.

Use the PointToPosition / PositionToPoint property to convert screen coordinates to surface
coordinates or reverse. The PointToPosition / PositionToPoint convert the giving point based
on the ScrollX, ScrollY and Zoom conditions (scroll position and the zooming factor of the
surface). If X and Y are -1, on return the X and Y defines the surface coordinates. The
ElementFromPoint property gets the element from the surface giving the position on the
surface. The ElementFromPoint(-1,-1) property returns the element from the cursor or
nothing if no element at the current cursor position. On PowerBuilder, or any other
environment that does not support parameters by reference you can use the
ExecuteTemplate method. For instance, you can use a code like ExecuteTemplate("dim
x,y;x=-1;y=-1;PointToPosition(x,y);x") that returns the x-position (surface's coordinates) of
the current mouse pointer. In the same manner you can use ExecuteTemplate("dim
x,y;x=-1;y=-1;PointToPosition(x,y);y") to return the y-position.

method Surface.PositionToPoint (ByRef X as Long, ByRef Y as Long)
Converts element's position to display coordinates.

Type Description

X as Long
(By Reference) A Long expression that determines the x-
coordinate on the surface. On return it gets the x-
coordinate on the screen.

Y as Long
(By Reference) A Long expression that determines the y-
coordinate on the surface. On return it gets the y-
coordinate on the screen.

Use the PointToPosition / PositionToPoint property to convert screen coordinates to surface
coordinates or reverse. The PointToPosition / PositionToPoint convert the giving point based
on the ScrollX, ScrollY and Zoom conditions (scroll position and the zooming factor of the
surface). The (0,0) point indicates the origin of the surface, so the X and Y parameters
must be relative to the origin of the surface. The ElementFromPoint property gets the
element from the surface giving the position on the surface. The ElementFromPoint(-1,-1)
property returns the element from the cursor or nothing if no element at the current cursor
position. On PowerBuilder, or any other environment that does not support parameters by
reference you can use the ExecuteTemplate method. For instance, you can use a code like
ExecuteTemplate("dim x,y;x=-1;y=-1;PointToPosition(x,y);x") that returns the x-position
(surface's coordinates) of the current mouse pointer. In the same manner you can use
ExecuteTemplate("dim x,y;x=-1;y=-1;PointToPosition(x,y);y") to return the y-position.

method Surface.Redo ()
Redoes the next action in the surface's Redo queue.

Type Description

The Redo redoes the next action in the control's redo queue. The AllowUndoRedo property
enables or disables the Undo/Redo feature. The CanRedo method indicates whether the
control can perform a Redo operation. The Undo method undoes the last control operation.
The UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo
actions that may be stored to the control's queue, or in other words how many operations
the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Surface.RedoListAction ([Action as Variant], [Count as
Variant]) as String
Lists the Redo actions that can be performed on the surface.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exUndoRedoAddElement(13) ~
"AddElement;ELEMENTID", indicates that a new
element has been created
exUndoRedoRemoveElement(14) ~
"RemoveElement;ELEMENTID", indicates that an
element has been removed
exUndoRedoMoveElement(15) ~
"MoveElement;ELEMENTID", indicates that an
element has been moved or resized
exUndoRedoUpdateElement(16) ~
"UpdateElement;ELEMENTID", indicates that one or
more properties of the element has been updated,
using the StartUpdateElement / EndUpdateElement
methods
exUndoRedoAddLink(10) ~ "AddLink;LINKID",
indicates that a new link has been created
exUndoRedoRemoveLink(11) ~
"RemoveLink;LINKID", indicates that a link has been
removed
exUndoRedoUpdateLink(12) ~ "UpdateLink;LINKID",
specifies that one of more properties of the link has
been updated, using the StartUpdateLink /
EndUpdateLink methods

For instance, RedoListAction(12) shows only AddElement
actions in the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, RedoListAction(12,1) shows only the last
AddElement action being added to the redo stack

String A String expression that lists the Redo actions that may be
performed.

The RedoListAction property lists the Redo actions that can be performed in the control.
The AllowUndoRedo property enables or disables the Undo/Redo feature. The
UndoListAction property lists the Undo actions that can be performed in the control. Use the
UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo)
event notifies your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

Here's a sample how the result of RedoListAction method looks like:

AddElement;1
UpdateElement;A
AddElement;2
UpdateElement;B
AddLink;1
UpdateLink;Akak
MoveElement;B
StartBlock
MoveElement;3
AddElement;3

EndBlock

method Surface.RedoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last redo actions that can be performed on the surface.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
remove. If missing or -1, all actions are removed.

The Action parameter can be one of the following:

exUndoRedoAddElement(13) ~
"AddElement;ELEMENTID", indicates that a new
element has been created
exUndoRedoRemoveElement(14) ~
"RemoveElement;ELEMENTID", indicates that an
element has been removed
exUndoRedoMoveElement(15) ~
"MoveElement;ELEMENTID", indicates that an
element has been moved or resized
exUndoRedoUpdateElement(16) ~
"UpdateElement;ELEMENTID", indicates that one or
more properties of the element has been updated,
using the StartUpdateElement / EndUpdateElement
methods
exUndoRedoAddLink(10) ~ "AddLink;LINKID",
indicates that a new link has been created
exUndoRedoRemoveLink(11) ~
"RemoveLink;LINKID", indicates that a link has been
removed
exUndoRedoUpdateLink(12) ~ "UpdateLink;LINKID",
specifies that one of more properties of the link has
been updated, using the StartUpdateLink /
EndUpdateLink methods

For instance, RedoRemoveAction(12) removes only
AddElement actions from the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to remove. If missing or -1, all actions are
removed. For instance, RedoRemoveAction(12,1)
removes only the last AddElement action from the redo
stack

The RedoRemoveAction method removes the first action to be performed if the Redo
method is invoked. Use the RedoRemoveAction() (with no parameters) to remove all redo
actions. Use the UndoRemoveAction method to remove the last action from the undo queue.
The AllowUndoRedo property enables or disables the Undo/Redo feature. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. The
LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event notifies
your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

method Surface.Refresh ()
Refreses the control.

Type Description

method Surface.RemoveSelection ()
Removes the elements in the selection.

Type Description

method Surface.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection. The user can add images
at design time, by drag and drop files to control's images holder. The ShowImageList
property available for the /COM shows or hides the control's images holder at design
mode. Use the Pictures / ExtraPictures properties to display different pictures on the
element.

The following VB sample adds a new icon to control's images list:

i = ExSurface1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

i = ExSurface1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

ExSurface1.ReplaceIcon 0, i, where i specifies the index of icon removed.

The following VB clears the control's icons collection:

ExSurface1.ReplaceIcon 0, -1

method Surface.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, an XML document
object, or a custom object that supports persistence as
follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

Surface1.SaveXML("sample.xml")

Reference to a String member - Saves the control's
content to the string member. Note that the string
member must be empty, before calling the SaveXML
method. For example:

Dim s As String
Surface1.SaveXML s

In VB.NET for /NET assembly, you should call such as
:

Dim s As String = String.Empty
Exsurface1.SaveXML(s)

In C# for /NET assembly, you should call such as :

string s = string.Empty;
exsurface1.SaveXML(ref s);

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
Surface1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write

method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data in XML documents. The LoadXML method loads XML
documents being created with SaveXML method. The elements of the surface go to the
<Elements> section, while the links go to the <Links> section. Each element goes under
the <element> section, while each information about a link goes to the <link> section.

The XML Format of the file is:

- <Content Author Component Version ...>
 - <Elements>
 <Element ID ... />
 ...
 </Elements>
 - <Links>
 <Link ID ...>
 </Link>
 </Links>
 </Content>

property Surface.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean A Boolean expression that specifies the surface's vertical
or horizontal posituion

Long A long expression that specifies the scroll position.

The control's ScrollPos, ScrollX and ScrollY properties specify the surface's scroll position.
The ScrollX property is equivalent with ScrollPos(False), and the ScrollY property is
equivalent with the ScrollPos(True). Use the ScrollTo method of the control to scroll the
surface at specified position. The MovePoint method of the control moves the surface from
the one point to another. The MoveCorner method scrolls the surface from a corner to
another. The ScrollTo method ensures that the element fits the surface's visible area. The
AllowMoveSurface property specifies the combination of keys that allows the user to move
the surface.

method Surface.ScrollTo (X as Long, Y as Long)
Scrolls the surface to giving position.

Type Description

X as Long A Long expression that specifies the x-position where the
surface should be scrolled.

Y as Long A Long expression that specifies the y-position where the
surface should be scrolled.

Use the ScrollTo method of the control to scroll the surface at specified position. The
MovePoint method of the control moves the surface from the one point to another. The
MoveCorner method scrolls the surface from a corner to another. The ScrollTo method
ensures that the element fits the surface's visible area. The control's ScrollPos, ScrollX and
ScrollY properties specify the surface's scroll position.

property Surface.ScrollX as Long
Indicates the x-scrolling position of the surface.

Type Description
Long A Long expression that specifies the x-scroll position.

The control's ScrollPos, ScrollX and ScrollY properties specify the surface's scroll position.
The ScrollX property is equivalent with ScrollPos(False), and the ScrollY property is
equivalent with the ScrollPos(True). Use the ScrollTo method of the control to scroll the
surface at specified position. The MovePoint method of the control moves the surface from
the one point to another. The MoveCorner method scrolls the surface from a corner to
another. The ScrollTo method ensures that the element fits the surface's visible area. The
AllowMoveSurface property specifies the combination of keys that allows the user to move
the surface.

property Surface.ScrollY as Long
Indicates the y-scrolling position of the surface.

Type Description
Long A Long expression that specifies the y-scroll position.

The control's ScrollPos, ScrollX and ScrollY properties specify the surface's scroll position.
The ScrollX property is equivalent with ScrollPos(False), and the ScrollY property is
equivalent with the ScrollPos(True). Use the ScrollTo method of the control to scroll the
surface at specified position. The MovePoint method of the control moves the surface from
the one point to another. The MoveCorner method scrolls the surface from a corner to
another. The ScrollTo method ensures that the element fits the surface's visible area. The
AllowMoveSurface property specifies the combination of keys that allows the user to move
the surface.

property Surface.SelCount as Long
Indicates the number of elements being selected on the surface.

Type Description

Long A Long expression that specifies the number of selected
elements.

The SelCount property counts the number of selected elements. The SelElement property
returns the selected element based on its index in the selected elements collection. The
SingleSel property specifies whether the surface allows selecting one or multiple elements.
The SelectAll method selects all elements in the chart. Use the UnselectAll method to
unselect all elements on the surface. The Selection property sets or gets a safe array of
selected elements. The SelectionChanged event occurs once a new element is selected or
unselected. The Selected property of the Element object indicates whether the element is
selected or unselected. The Selectable property of the Element object indicates whether
the element is selectable or un-selectable.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

method Surface.SelectAll ()
Selects all selectable elements in the control.

Type Description

The SelectAll method selects all elements in the chart. Use the UnselectAll method to
unselect all elements on the surface. The SelectionChanged event occurs once a new
element is selected or unselected. The SingleSel property specifies whether the surface
allows selecting one or multiple elements. The SelCount property counts the number of
selected elements. The SelElement property returns the selected element based on its
index in the selected elements collection. The Selection property sets or gets a safe array
of selected elements. The Selected property of the Element object indicates whether the
element is selected or unselected. The Selectable property of the Element object indicates
whether the element is selectable or un-selectable.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

property Surface.Selection as Variant
Returns or sets a safe array of selected elements on the surface.

Type Description

Variant

A Safe-Array of Element objects. If calling the Set
property the Safe-Array may contains the ID of the
Elements to be selected, like: Selection = Array("1", "2"),
which indicates that the elements with the ID, "1" and "2"
are selected. The Selection method can be used to
enumerate the selected elements using the for each
statements.

The Selection property sets or gets a safe array of selected elements. The SelCount
property counts the number of selected elements. The SelElement property returns the
selected element based on its index in the selected elements collection. The SingleSel
property specifies whether the surface allows selecting one or multiple elements. The
SelectAll method selects all elements in the chart. Use the UnselectAll method to unselect
all elements on the surface. The SelectionChanged event occurs once a new element is
selected or unselected. The Selected property of the Element object indicates whether the
element is selected or unselected. The Selectable property of the Element object indicates
whether the element is selectable or un-selectable.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

property Surface.SelectObjectColor as Color
Indicates the color to show the selected objects.

Type Description

Color A Color expression that specifies the color to show the
selected elements while the control has the focus.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The SelectionChanged event occurs once a new element is selected or unselected. The
Selected property of the Element object indicates whether the element is selected or
unselected. The Selectable property of the Element object indicates whether the element is
selectable or un-selectable.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface.

The following screen shot shows the selected elements (default, SelectObjectStyle
property exLinesSolid + exLinesThick, SelectObjectColor indicates a solid color):

The following screen shot shows the selected elements (default, SelectObjectStyle
property exNoLines, SelectObjectColor indicates a solid color):

The following screen shot shows the selected elements (default, SelectObjectStyle
property exLinesSolid + exLinesThick, SelectObjectColor indicates an EBN color):

The following screen shot shows the selected elements (default, SelectObjectStyle
property exNoLines, SelectObjectColor indicates an EBN color):

property Surface.SelectObjectColorInactive as Color
Indicates the color to show the selected objects, when the surface is not active/focused.

Type Description

Color A Color expression that specifies the color to show the
selected elements while the control is not focused.

The SelectObjectColorInactive / SelectObjectTextColorInactive property specifies the color
to show the selected elements (while the control is not focused). The SelectObjectColor /
SelectObjectTextColor property specifies the colors to show the selected elements (while
the control has the focus). The SelectObjectStyle property specifies the style to show the
selected elements (like changing the element's background/foreground colors, showing a
border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The SelectionChanged event occurs once a new element is selected or unselected. The
Selected property of the Element object indicates whether the element is selected or
unselected. The Selectable property of the Element object indicates whether the element is
selectable or un-selectable.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface.

property Surface.SelectObjectStyle as LinesStyleEnum
Specifies the style to display the selected object.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the style of
the line to be shown on the selected elements.

By default, the The SelectObjectStyle property is exLinesSolid + exLinesThick. If the
SelectObjectStyle property is exNoLines, no lines are shown around the selected elements.
The SelectObjectStyle property specifies the style to show the selected elements (like
changing the element's background/foreground colors, showing a border around the
selected elements, and so on). The SelectObjectColor / SelectObjectTextColor property
specifies the colors to show the selected elements (while the control has the focus). The
SelectObjectColorInactive / SelectObjectTextColorInactive property specifies the color to
show the selected elements (while the control is not focused). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface.

The following screen shot shows the selected elements (default, SelectObjectStyle
property exLinesSolid + exLinesThick, SelectObjectColor indicates a solid color):

The following screen shot shows the selected elements (default, SelectObjectStyle
property exNoLines, SelectObjectColor indicates a solid color):

The following screen shot shows the selected elements (default, SelectObjectStyle
property exLinesSolid + exLinesThick, SelectObjectColor indicates an EBN color):

The following screen shot shows the selected elements (default, SelectObjectStyle
property exNoLines, SelectObjectColor indicates an EBN color):

property Surface.SelectObjectTextColor as Color
Indicates the color to show the text for selected objects.

Type Description

Color
A Color expression that specifies the foreground color for
selected elements. The -1 indicates that no foreground is
changed for selected elements.

By default, the SelectObjectTextColor property is -1, which indicates no foreground color is
changed for selected elements. The SelectObjectColor / SelectObjectTextColor property
specifies the colors to show the selected elements (while the control has the focus). The
SelectObjectColorInactive / SelectObjectTextColorInactive property specifies the color to
show the selected elements (while the control is not focused). The SelectObjectStyle
property specifies the style to show the selected elements (like changing the element's
background/foreground colors, showing a border around the selected elements, and so on
). Use the Background(exSelectObjectRectColor) property to specify the color to show the
rectangle that highlights the elements that intersect the dragging rectangle.

The SelectionChanged event occurs once a new element is selected or unselected. The
Selected property of the Element object indicates whether the element is selected or
unselected. The Selectable property of the Element object indicates whether the element is
selectable or un-selectable.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface.

property Surface.SelectObjectTextColorInactive as Color
Indicates the color to show the text for selected objects, when the surface is not
active/focused.

Type Description

Color
A Color expression that specifies the foreground color for
selected elements. The -1 indicates that no foreground is
changed for selected elements.

By default, the SelectObjectTextColorInactive property is -1, which indicates no foreground
color is changed for selected elements. The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectColor / SelectObjectTextColor property
specifies the colors to show the selected elements (while the control has the focus). The
SelectObjectStyle property specifies the style to show the selected elements (like
changing the element's background/foreground colors, showing a border around the
selected elements, and so on). Use the Background(exSelectObjectRectColor) property to
specify the color to show the rectangle that highlights the elements that intersect the
dragging rectangle.

The SelectionChanged event occurs once a new element is selected or unselected. The
Selected property of the Element object indicates whether the element is selected or
unselected. The Selectable property of the Element object indicates whether the element is
selectable or un-selectable.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface.

property Surface.SelElement (Index as Long) as Element
Gets the element being selected giving its index in the selection.

Type Description

Index as Long
A Long expression that specifies the index of selected
element to be accessed. The Index is a positive number
between 0 and (SelCount - 1) property

Element An Element object that specifies the selected element

The SelElement property returns the selected element based on its index in the selected
elements collection. The SelCount property counts the number of selected elements. The
SingleSel property specifies whether the surface allows selecting one or multiple elements.
The SelectAll method selects all elements in the chart. Use the UnselectAll method to
unselect all elements on the surface. The Selection property sets or gets a safe array of
selected elements. The SelectionChanged event occurs once a new element is selected or
unselected. The Selected property of the Element object indicates whether the element is
selected or unselected. The Selectable property of the Element object indicates whether
the element is selectable or un-selectable.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

property Surface.ShowGridLines as Boolean
Shows or hides the grid lines in the control.

Type Description

Boolean A Boolean expression that specifies whether the
minor/major grid lines are shown or hidden.

By default, the ShowGridLines property is True. Use the ShowGridLines property to specify
whether the control shows or hides the minor/major grid lines. Use the MinorGridWidth /
MinorGridHeight property to specify the how minor grid lines are displayed/aligned. Use the
MajorGridWidth / MajorGridHeight property to specify the how major grid lines are
displayed/aligned. Use the MajorGridStyle property to specify the style of the major lines.
Use the MinorGridStyle property to specify the style of the minor lines. The MajorGridColor
property specifies the color to show the major grid lines. The MinorGridColor property
specifies the color to show the minor grid lines. Use the AxisStyle property to hide the axis
lines or to display with a different style. Use the AxisColor property to specify the color to
show the axis lines.

Use the AlignObjectsToGridLines property to align the elements to the grid lines. The
AutoSize property of the Element specifies whether the element's size is computed based
on the element's content. The CaptionAlign property specifies the alignment of the element's
caption.

property Surface.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

The property is available for /COM version only, and only at design mode. By default, the
ShowImageList property is False. Use the ShowImageList property to show the control's
images list window. The control's images list window is visible only at design time. Use the
Images method to associate an images list control to the control. Use the ReplaceIcon
method to add, remove or clear icons in the control's images collection, at runtime. Use the
Pictures / ExtraPictures properties to display different pictures on the element.

property Surface.ShowLinks as ShowExtendedLinksEnum
Retrieves or sets a value that indicates whether the links between elements are visible or
hidden.

Type Description

ShowExtendedLinksEnum A ShowExtendedLinksEnum expression that specifies
whether the links on the surface are shown or hidden.

By default, the ShowLinks property is exShowExtendedLinks + exShowLinksFront. The
ShowLinks property specifies the way the control shows the links on the surface. Use the
ShowLinks property to hide the links on the surface. Use the ShowLinks property to show
the links on the control's background rather than front. Use the Visible property of the Link
to hide a specific link. Use the ShowLinksOnCollapse property to show the links between an
element and collapsed elements. The ExpandLinkedElements property specifies whether
the elements displays the expand/collapse glyphs when the element has outgoing elements
(the OutgoingLinks property specifies the links that starts from the element).

The following screen shot shows the links on the surface (when the ShowLinks property is
exShowExtendedLinks + exShowCrossLinksRect):

The following screen shot shows the links on the surface (when the ShowLinks property is
exShowLinks):

property Surface.ShowLinksColor(Links as ShowLinksEnum) as Color
Retrieves or sets a value that indicates the color to display the links based on the user
selection.

Type Description

Links as ShowLinksEnum A ShowLinksEnum expression that indicates the color of
incoming, outgoing or collapsed links is changed.

Color A Color expression that specifies the color to show the
related links.

The ShowLinksColor property specifies a color to show the incoming, outgoing or collapsed
links. The Color property specifies the color to show the entire link. For instance, Use the
ShowLinksColor(exShowLinksStartsFrom) / ShowLinksStyle(exShowLinksStartsFrom) /
ShowLinksWidth(exShowLinksStartsFrom) properties to mark the outgoing links of selected
elements. The control fires the SelectionChanged event when a new element is selected or
unselected.

The following screen shot shows the incoming links (red):

property Surface.ShowLinksOnCollapse as Boolean
Specifies whether the links for collapsed elements are shown or hidden.

Type Description

Boolean A Boolean expression that specifies whether the links of
collapsed elements are shown or hidden.

By default, ShowLinksOnCollapse property is True. Use the ShowLinksOnCollapse property
to show the links between collapsed elements. Use the Expanded property to specify
whether the element is expanded or collapsed. The ExpandLinkedElements property
specifies whether the elements displays the expand/collapse glyphs when the element has
outgoing elements (the OutgoingLinks property specifies the links that starts from the
element). Use the Visible property of the Link to hide a specific link. The
ShowLinksColor(exShowCollapsedLinks) / ShowLinksStyle(exShowCollapsedLinks) /
ShowLinksWidth(exShowCollapsedLinks) property specifies how the collapsed links are
shown.

The following screen shot shows a link between two child elements, when both parents are
expanded:

Having the ShowLinksOnCollapse property on True, the following screen shot shows the link
when one parent is collapsed:

Having the ShowLinksOnCollapse property on True, the following screen shot shows the link
when both parents are collapsed:

In other words, the ShowLinksOnCollapse property allows you to still display the links for
collapsed elements. A collapsed link is shown between expanded and visible elements.

property Surface.ShowLinksStyle(Links as ShowLinksEnum) as
LinkStyleEnum
Retrieves or sets a value that indicates the style to display the links based on the user
selection.

Type Description

Links as ShowLinksEnum A ShowLinksEnum expression that indicates the width of
incoming, outgoing or collapsed links is changed.

LinkStyleEnum A LinkStyleEnum expression that specifies the style of the
line to show the related links.

The ShowLinksStyle property specifies the style to show the incoming, outgoing or
collapsed links. The Style property indicates the style of the line to be shown on a particular
link. Use the ShowLinksColor(exShowLinksStartsFrom) /
ShowLinksStyle(exShowLinksStartsFrom) / ShowLinksWidth(exShowLinksStartsFrom)
properties to mark the outgoing links of selected elements. The control fires the
SelectionChanged event when a new element is selected or unselected. The OutgoingLinks
property specifies the list of links that starts from the current element. The IncomingLinks
property specifies the list of links that ends on the current element.

The following screen shot shows the outgoing links with a different style:

property Surface.ShowLinksType as ShowLinkTypeEnum
Specifies how the links are displayed between the elements.

Type Description

ShowLinkTypeEnum A ShowLinkTypeEnum expression that defines the type of
the link to be show between elements.

The ShowLinksType property defines the type of the link to be shown between elements on
the surface. The ShowLinkType property specifies a different type of link between two
elements. Use the LinksColor property to define the color to show all links on the surface.
The control's LinksShowDir property specifies whether the arrow of the links is shown or
hidden. The LinksWidth property specifies the size of the links and so the size of the arrow.
The ShowLinks property specifies whether the surface shows or hides the links. The
control's LinksStyle property defines the style of the line to be shown on the link.

The following screen shot shows the exLinkRectangular type:

The following screen shot shows the exLinkRound type:

The following screen shot shows the exLinkDirect type:

The following screen shot shows the exLinkStraight type:

property Surface.ShowLinksWidth(Links as ShowLinksEnum) as Long
Retrieves or sets a value that indicates the width to display the links based on the user
selection.

Type Description

Links as ShowLinksEnum A ShowLinksEnum expression that indicates the width of
incoming, outgoing or collapsed links is changed.

Long A Long expression that specifies the width of related links.

The ShowLinksWidth property specifies the width to show the incoming, outgoing or
collapsed links. The Width property specifies the width of a particular link. Use the
ShowLinksColor(exShowLinksStartsFrom) / ShowLinksStyle(exShowLinksStartsFrom) /
ShowLinksWidth(exShowLinksStartsFrom) properties to mark the outgoing links of selected
elements. The control fires the SelectionChanged event when a new element is selected or
unselected. The OutgoingLinks property specifies the list of links that starts from the current
element. The IncomingLinks property specifies the list of links that ends on the current
element.

The following screen shot shows the outgoing links (red):

method Surface.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Surface.SingleSel as Boolean
Returns or sets a value that indicates whether the user can select one or more objects.

Type Description

Boolean A Boolean expression that specifies whether the control
supports single or multiple selection.

By default, the SingleSel property is False, which indicates that multiple elements can be
selected. The SingleSel property specifies whether the surface allows selecting one or
multiple elements. The Selectable property of the Element object indicates whether the
element is selectable or un-selectable. The SelCount property counts the number of
selected elements. The SelElement property returns the selected element based on its
index in the selected elements collection. The Selection property sets or gets a safe array
of selected elements. The SelectionChanged event occurs once a new element is selected
or unselected. The Selected property of the Element object indicates whether the element
is selected or unselected. The SelectAll method selects all elements in the chart. Use the
UnselectAll method to unselect all elements on the surface. Use the AllowMoveSelection
property to prevent moving the entire selection when focused element is moved. Use the
AllowResizeSelection property to prevent resizing the entire selection when focused
element is resized. Use the AllowMoveDescendents property to prevent moving all
descendents (children and outgoing elements) when focused element is moved. The
HideSel property specifies whether the selected elements are highlighted or not when the
control loses the focus.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

method Surface.StartBlockUndoRedo ()
Starts recording the UI operations as a block of undo/redo operations.

Type Description

You can use the StartBlockUndoRedo / EndBlockUndoRedo methods to group multiple
Undo/Redo operations into a single-block. The GroupUndoRedoActions groups the next to
current Undo/Redo Actions in a single block. A block may hold multiple Undo/Redo actions.
The AllowUndoRedo property enables or disables the Undo/Redo feature. Use the
GroupUndoRedoActions method to group two or more entries in the Undo/Redo queue in a
single block, so when a next Undo/Redo operation is performed, multiple actions may occur.
For instance, moving several elements in the same time (multiple elements selection) is
already recorded as a single block. Use the UndoRedoQueueLength property to specify the
number of entries that Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveElement;B
MoveElement;A
EndBlock

property Surface.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property Surface.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Surface.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Surface.ToolBarCaption(ID as Long) as String
Specifies the HTML caption of the giving ToolBar in the control's toolbar.

Type Description

ID as Long

A Long expression that indicates the identifier of the
caption/field being changed. The predefined identifiers are:

100, Home (restores the view to the origin)
101, Zoom (changes the zooming factor of the
surface)
103, Undo (undoes the last control operation,
enabled only if the Undo operation is possible)
104, Redo (redoes the next action in the control's
redo queue, enabled only if the Undo operation is
possible)

String A string expression that indicates the caption or field's
value.

Use the ToolBarCaption property to change captions in the control's toolbar. The
ToolBarToolTip property specifies the button's tooltip. The ToolBarImages method loads
icons to be displayed on the control's toolbar. The ToolBarHTMLPicture property loads
custom-sized pictures to be displayed on the control's toolbar using the HTML tag.
Use the ToolBarFormat property to customize the control's toolbar such as adding new
buttons, icons, pictures or HTML captions to control's toolbar. The control fires the
ToolBarClick event when the user clicks a button in the control's toolbar. For exToolBar...
values (any value greater that 100), # character splits the button's label and it's identifier (
SelectedID parameter). For instance, if the ToolBarCaption(200) = "Letter#1", the button
with the identifier 200 displays the "Letter" label, while the 1 is carried to SelectedID
parameter of the ToolBarClick event when it is fired. If the ToolBarCaption property includes
vbCrLF ("\r\n" sequence), the associated buttons displays a drop down field. Use the
ToolBarRefresh method to refresh the control's toolbar.

The ToolBarCaption property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text

about:blank

(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...

</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Surface.ToolBarFormat as String
Specifies the CRD format to arrange the buttons inside the control's toolbar.

Type Description

String A String expression that specifies the CRD format to
control's toolbar.

By default, the ToolBarFormat property is "-1,100,101" and arranges the toolbar as in the
following screen shot. If empty, the control's toolbar displays no buttons.

The predefined identifiers for ToolBarFormat property are:

100, Home (restores the view to the origin)
101, Zoom (changes the zooming factor of the surface)
103, Undo (undoes the last control operation, enabled only if the Undo operation is
possible)
104, Redo (redoes the next action in the control's redo queue, enabled only if the Undo
operation is possible)

Use the ToolBarFormat property to add new buttons, to display icons, pictures, or any other
HTML caption. The ToolBarCaption property specifies the caption of the button. The
ToolBarToolTip property specifies the button's tooltip. The control fires the ToolBarClick
event when the user clicks a button in the control's toolbar. The control fires the
ToolBarAnchorClick event when the user clicks an hyperlink element. The ToolBarRefresh
method refreshes the control's toolbar.

For instance, the following screen shot shows the control's toolbar when the ToolBarFormat
property is "-1,100,101,1000"

If the ToolBarCaption(1000) property is set as "<sha ;;0>custom" the control's toolbar
shows as:

https://exontrol.com/excrd.jsp

property Surface.ToolBarHTMLPicture(Key as String) as Variant
Adds or replaces a picture in toolbar's HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

By default, the ToolBarHTMLPicture collection is empty. The ToolBarHTMLPicture property
handles a collection of custom size picture being displayed in the HTML captions, using the
 tags. Use the ToolBarHTMLPicture property to add new pictures to be used in HTML
captions. For instance, the ToolBarHTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the
zapotec picture and associates the pic1 key to it. Any "pic1" sequence in
HTML captions, displays the pic1 picture. On return, the ToolBarHTMLPicture property
retrieves a Picture object (this implements the IPictureDisp interface). The ToolBarImages
method specifies the list of 16x16 icons to be displayed on the control's toolbar. The
ToolBarCaption property specifies the caption of the button (including icons, picture and so
on).

https://exontrol.com/eximages.jsp

method Surface.ToolBarImages (Handle as Variant)
Sets at runtime the toolbar's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

A long expression that identifies a handle to an Image list (
the Handle should be of HIMAGELIST type) or a string
expression that indicates the base64 encoded string that
holds the icons list. Use the eximages tool to save your
icons as base64 encoded format.

The ToolBarImages method assigns a list of icons to be displayed on the control's toolbar.
The icons can be displayed on the control's toolbar using the number HTML
tags.The ToolBarHTMLPicture property handles a collection of custom size picture being
displayed in the HTML captions, using the key tags. The ToolBarReplaceIcon
method replaces icons in the control's toolbar. The ToolBarCaption property specifies the
caption of the button (including icons, picture and so on).

https://exontrol.com/eximages.jsp

method Surface.ToolBarRefresh ()
Refreshes the control's toolbar.

Type Description

Use the ToolBarRefresh method to refresh the control's toolbar. The ToolBarCaption
property specifies the caption of the button (including icons, picture and so on).

method Surface.ToolBarReplaceIcon ([Icon as Variant], [Index as
Variant])
Adds a new icon, replaces an icon or clears the toolbar's image list.

Type Description

Icon as Variant A long expression that indicates the icon's handle. By
default, the Icon parameter is 0, if it is missing.

Index as Variant
A long expression that indicates the index where icon is
inserted. By default, the Index parameter is -1, if it is
missing.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ToolBarReplaceIcon property to add, remove or replace an icon in the toolbar's
images collection. Also, the ToolBarReplaceIcon property can clear the toolbar's images
collection. Use the ToolBarImages method to attach an image list to the toolbar.

The following sample shows how to add a new icon to toolbar's images list:

i = Surface1.ToolBarReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), where i is the
index to insert the icon

The following sample shows how to replace an icon into toolbar's images list::

i = Surface1.ToolBarReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case
the i is zero, because the first icon was replaced.

The following sample shows how to remove an icon from toolbar's images list:

Surface1.ToolBarReplaceIcon 0, i, in this case the i is the index of the icon to remove

The following sample shows how to clear the toolbar's icons collection:

Surface1.ToolBarReplaceIcon 0, -1

property Surface.ToolBarToolTip(ID as Long) as String
Specifies the HTML tooltip of the giving item in the control's toolbar.

Type Description

ID as Long

A Long expression that indicates the identifier of the
tooltip/field being changed. The predefined identifiers are:

100, Home (restores the view to the origin)
101, Zoom (changes the zooming factor of the
surface)
103, Undo (undoes the last control operation,
enabled only if the Undo operation is possible)
104, Redo (redoes the next action in the control's
redo queue, enabled only if the Undo operation is
possible)

String A string expression that indicates the HTML tooltip of the
field in the control's toobar.

The ToolBarToolTip property assigns a tooltip to be displayed when mouse-pointer hovers a
field in the control's toolbar. The ToolBarImages method loads icons to be displayed on the
control's toolbar. The ToolBarHTMLPicture property loads custom-sized pictures to be
displayed on the control's toolbar using the HTML tag. Use the ToolBarCaption
property to change captions in the control's toolbar.

The ToolBarToolTip property supports the following HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

about:blank

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to

your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb

represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Surface.ToolBarVisible as Boolean
Shows or hides control's toolbar.

Type Description

Boolean A Boolean expression that specifies whether the control's
toolbar is visible or hidden.

By default, the ToolBarVisible property is True. Use the ToolBarVisible property to hide the
control's toolbar. Use the ToolBarFormat property to customize the control's toolbar, by
adding new buttons or drop-down fields to the control's toolbar. The ToolBarCaption
property specifies the HTML caption to be shown on fields of the control's toolbar. The
ToolBarToolTip property assigns a tooltip to a field on the control's toolbar. The ToolBarClick
event occurs once the user selects/clicks a field in the control's toolbar. The
ToolBarAnchorClick event notifies your application if an anchor element is clicked on the
control's toolbar. The ToolbarRefresh method refreshes the control's toolbar.

The following screen shot shows the control's default toolbar:

property Surface.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipFont property to assign a font for the
control's tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. The ToolTip/ToolTipTitle property of the
Element defines the element's tooltip. The ToolTip property of the Link defines the link's
tooltip. Use the ShowToolTip method to programmatically show a custom tooltip.

property Surface.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description

IFontDisp
A Font object that defines the font to show the control's
tooltip. You can use the HTML tag to define a
different font for parts of the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. If the ToolTipDelay or
ToolTipPopDelay property is 0, the control displays no tooltips. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. The ToolTip/ToolTipTitle property of the
Element defines the element's tooltip. The ToolTip property of the Link defines the link's
tooltip. Use the ShowToolTip method to programmatically show a custom tooltip.

property Surface.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipFont property to assign a font for the
control's tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. The ToolTip/ToolTipTitle property of the
Element defines the element's tooltip. The ToolTip property of the Link defines the link's
tooltip. Use the ShowToolTip method to programmatically show a custom tooltip.

property Surface.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to specify the width of the tooltip window. If the ToolTipDelay
or ToolTipPopDelay property is 0, the control displays no tooltips. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. The ToolTip/ToolTipTitle property of the Element defines the
element's tooltip. The ToolTip property of the Link defines the link's tooltip. Use the
ShowToolTip method to programmatically show a custom tooltip.

method Surface.Undo ()
Performs the last Undo operation.

Type Description

The Undo method undoes the last control operation. The AllowUndoRedo property enables
or disables the Undo/Redo feature. The CanUndo method indicates whether the control can
perform an Undo operation. The Redo redoes the next action in the control's redo queue.
The UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo
actions that may be stored to the control's queue, or in other words how many operations
the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Surface.UndoListAction ([Action as Variant], [Count as
Variant]) as String
Lists the Undo actions that can be performed on the surface.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exUndoRedoAddElement(13) ~
"AddElement;ELEMENTID", indicates that a new
element has been created
exUndoRedoRemoveElement(14) ~
"RemoveElement;ELEMENTID", indicates that an
element has been removed
exUndoRedoMoveElement(15) ~
"MoveElement;ELEMENTID", indicates that an
element has been moved or resized
exUndoRedoUpdateElement(16) ~
"UpdateElement;ELEMENTID", indicates that one or
more properties of the element has been updated,
using the StartUpdateElement / EndUpdateElement
methods
exUndoRedoAddLink(10) ~ "AddLink;LINKID",
indicates that a new link has been created
exUndoRedoRemoveLink(11) ~
"RemoveLink;LINKID", indicates that a link has been
removed
exUndoRedoUpdateLink(12) ~ "UpdateLink;LINKID",
specifies that one of more properties of the link has
been updated, using the StartUpdateLink /
EndUpdateLink methods

For instance, UndoListAction(12) shows only AddElement
actions in the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, UndoListAction(12,1) shows only the last
AddElement action being added to the undo stack

String A String expression that lists the Undo actions that may be
performed.

The UndoListAction property lists the Undo actions that can be performed in the control.
The AllowUndoRedo property enables or disables the Undo/Redo feature. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo)
event notifies your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

Here's a sample how the result of UndoListAction method looks like:

StartBlock
MoveElement;3
AddElement;3
EndBlock
MoveElement;B
UpdateLink;Akak
AddLink;1
UpdateElement;B
AddElement;2
UpdateElement;A

AddElement;1

property Surface.UndoRedoQueueLength as Long
Gets or sets the maximum number of Undo/Redo actions that may be stored to the
surface's queue.

Type Description

Long

A Long expression that specifies the length of the
Undo/Redo queue. If -1, the queue is unlimited, 0 allows
no entries in the Undo/Redo queue (Undo/Redo is
disabled).

By default, the UndoRedoQueueLength property is -1. The AllowUndoRedo property
enables or disables the Undo/Redo feature. Use the UndoRedoQueueLength property to
specify the number of entries that Undo/Redo queue may store. For instance, if the
UndoRedoQueueLength property is 1, the control retains only the last chart operation.
Changing the UndoRedoQueueLength property may change the current Undo/Redo queue
based on the new length. The length being specified, does not affect the blocks in the
queue. A block may hold multiple Undo/Redo actions. Use the GroupUndoRedoActions
method to group two or more entries in the Undo/Redo queue in a single block, so when a
next Undo/Redo operation is performed, multiple actions may occur. For instance, moving
several elements in the same time (multiple elements selection) is already recorded as a
single block.

method Surface.UndoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last undo actions that can be performed on the surface.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
remove. If missing or -1, all actions are removed.

The Action parameter can be one of the following:

exUndoRedoAddElement(13) ~
"AddElement;ELEMENTID", indicates that a new
element has been created
exUndoRedoRemoveElement(14) ~
"RemoveElement;ELEMENTID", indicates that an
element has been removed
exUndoRedoMoveElement(15) ~
"MoveElement;ELEMENTID", indicates that an
element has been moved or resized
exUndoRedoUpdateElement(16) ~
"UpdateElement;ELEMENTID", indicates that one or
more properties of the element has been updated,
using the StartUpdateElement / EndUpdateElement
methods
exUndoRedoAddLink(10) ~ "AddLink;LINKID",
indicates that a new link has been created
exUndoRedoRemoveLink(11) ~
"RemoveLink;LINKID", indicates that a link has been
removed
exUndoRedoUpdateLink(12) ~ "UpdateLink;LINKID",
specifies that one of more properties of the link has
been updated, using the StartUpdateLink /
EndUpdateLink methods

For instance, UndoRemoveAction(12) removes only
AddElement actions from the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to remove. If missing or -1, all actions are
removed. For instance, UndoRemoveAction(12,1) removes
only the last AddElement action from the undo stack

Use the UndoRemoveAction method to remove the last action from the undo queue. Use the
UndoRemoveAction() (with no parameters) to remove all undo actions. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. The AllowUndoRedo property enables or disables the Undo/Redo feature. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. The
LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event notifies
your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddElement;ELEMENTID", indicates that a new element has been created
"RemoveElement;ELEMENTID", indicates that an element has been removed
"MoveElement;ELEMENTID", indicates that an element has been moved or resized
"UpdateElement;ELEMENTID", indicates that one or more properties of the element
has been updated, using the StartUpdateElement / EndUpdateElement methods
"AddLink;LINKID", indicates that a new link has been created
"RemoveLink;LINKID", indicates that a link has been removed
"UpdateLink;LINKID", specifies that one of more properties of the link has been
updated, using the StartUpdateLink / EndUpdateLink methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

method Surface.UnselectAll ()
Unselects all elements in the control.

Type Description

Use the UnselectAll method to unselect all elements on the surface. The SelectAll method
selects all elements in the chart. The SelectionChanged event occurs once a new element is
selected or unselected. The SingleSel property specifies whether the surface allows
selecting one or multiple elements. The SelCount property counts the number of selected
elements. The SelElement property returns the selected element based on its index in the
selected elements collection. The Selection property sets or gets a safe array of selected
elements. The Selected property of the Element object indicates whether the element is
selected or unselected. The Selectable property of the Element object indicates whether
the element is selectable or un-selectable.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface.

property Surface.Version as String
Retrieves the control's version.

Type Description

String A String expression that specifies the version of the control
you are running.

The Version property specifies the version of the control you are running.

property Surface.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance The Appearance object holds a collection of skins.

The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. You can use the VisualDesign property to design
the visual appearance of the control at design mode.

property Surface.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

property Surface.Zoom as Double
Specifies the current zooming factor of the surface.

Type Description

Double A Numeric expression that specifies the current zooming
factor of the surface.

The Zoom property specifies the surface's current zooming factor. The control fires the
LayoutStartChanging(exSurfaceZoom) / LayoutEndChanging(exSurfaceZoom) event when
the user zooms the surface. The ZoomLevels property specifies the zooming factors to be
displayed on the control's toolbar. The ZoomMin, ZoomMax and ZoomStep determines the
range of the zooming to be used, if the ZoomLevels property is empty. Use the
ToolBarFormat property to customize the control's toolbar. The ZoomLevels property
specifies the zooming factors to be displayed on the control's toolbar. The
AllowZoomSurface property specifies the combination of keys that allows the user to
magnify or shrink the surface. The AllowZoomWheelSurface property specifies whether the
user can zoom the surface by rotating the mouse wheel.

The following samples shows how you can prevent zooming the surface:

VBA (MS Access, Excell...)

With Surface1
 .AllowZoomSurface = 0
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB6

With Surface1
 .AllowZoomSurface = exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

VB.NET

With Exsurface1
 .AllowZoomSurface = exontrol.EXSURFACELib.AllowKeysEnum.exDisallow
 .AllowZoomWheelSurface = False

 .ToolBarFormat = "-1,100"
End With

VB.NET for /COM

With AxSurface1
 .AllowZoomSurface = EXSURFACELib.AllowKeysEnum.exDisallow
 .AllowZoomWheelSurface = False
 .ToolBarFormat = "-1,100"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'

 #import <ExSurface.dll>
 using namespace EXSURFACELib;
*/
EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
spSurface1->PutAllowZoomSurface(EXSURFACELib::exDisallow);
spSurface1->PutAllowZoomWheelSurface(VARIANT_FALSE);
spSurface1->PutToolBarFormat(L"-1,100");

C++ Builder

Surface1->AllowZoomSurface = Exsurfacelib_tlb::AllowKeysEnum::exDisallow;
Surface1->AllowZoomWheelSurface = false;
Surface1->ToolBarFormat = L"-1,100";

C#

exsurface1.AllowZoomSurface = exontrol.EXSURFACELib.AllowKeysEnum.exDisallow;
exsurface1.AllowZoomWheelSurface = false;

exsurface1.ToolBarFormat = "-1,100";

JavaScript

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Surface1.AllowZoomSurface = 0;
 Surface1.AllowZoomWheelSurface = false;
 Surface1.ToolBarFormat = "-1,100";
</SCRIPT>

C# for /COM

axSurface1.AllowZoomSurface = EXSURFACELib.AllowKeysEnum.exDisallow;
axSurface1.AllowZoomWheelSurface = false;
axSurface1.ToolBarFormat = "-1,100";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exsurface1.AllowZoomSurface(0/*exDisallow*/);
 exsurface1.AllowZoomWheelSurface(false);
 exsurface1.ToolBarFormat("-1,100");
}

Delphi 8 (.NET only)

with AxSurface1 do
begin
 AllowZoomSurface := EXSURFACELib.AllowKeysEnum.exDisallow;

 AllowZoomWheelSurface := False;
 ToolBarFormat := '-1,100';
end

Delphi (standard)

with Surface1 do
begin
 AllowZoomSurface := EXSURFACELib_TLB.exDisallow;
 AllowZoomWheelSurface := False;
 ToolBarFormat := '-1,100';
end

VFP

with thisform.Surface1
 .AllowZoomSurface = 0
 .AllowZoomWheelSurface = .F.
 .ToolBarFormat = "-1,100"
endwith

dBASE Plus

local oSurface

oSurface = form.Activex1.nativeObject
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = false
oSurface.ToolBarFormat = "-1,100"

XBasic (Alpha Five)

Dim oSurface as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = .f.
oSurface.ToolBarFormat = "-1,100"

Visual Objects

oDCOCX_Exontrol1:AllowZoomSurface := exDisallow
oDCOCX_Exontrol1:AllowZoomWheelSurface := false
oDCOCX_Exontrol1:ToolBarFormat := "-1,100"

PowerBuilder

OleObject oSurface

oSurface = ole_1.Object
oSurface.AllowZoomSurface = 0
oSurface.AllowZoomWheelSurface = false
oSurface.ToolBarFormat = "-1,100"

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComAllowZoomSurface to OLEexDisallow
 Set ComAllowZoomWheelSurface to False
 Set ComToolBarFormat to "-1,100"
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oSurface:AllowZoomSurface := 0/*exDisallow*/
 oSurface:AllowZoomWheelSurface := .F.
 oSurface:ToolBarFormat := "-1,100"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Surface.ZoomLevels as String
Specifies the list of zooming factors to be displayed on the control's toolbar.

Type Description

String
A String expression that specifies the zoom factors
available on the surface, separated by comma
characters.

By default, the ZoomLevels property is "25,35,50,75,100,150,200,300,400". The
ZoomLevels property specifies the zooming factors to be displayed on the control's toolbar.
If the ZoomLevels property is empty, the ZoomMin, ZoomMax and ZoomStep determines
the range of the zooming to be used. Use the ToolBarFormat property to customize the
control's toolbar. The Zoom property specifies the surface's current zooming factor. The
AllowZoomSurface property specifies the combination of keys that allows the user to
magnify or shrink the surface. The AllowZoomWheelSurface property specifies whether the
user can zoom the surface by rotating the mouse wheel. The control fires the
LayoutStartChanging(exSurfaceZoom) / LayoutEndChanging(exSurfaceZoom) event when
the user zooms the surface.

property Surface.ZoomMax as Double
Specifies the maximum zooming factor of the surface.

Type Description

Double A Numeric expression that specifies the max value for the
Zoom property.

By default, the ZoomMax property is 400. the ZoomMin, ZoomMax and ZoomStep
determines the range of the zooming to be used, if the ZoomLevels property is empty. Use
the ToolBarFormat property to customize the control's toolbar. The ZoomLevels property
specifies the zooming factors to be displayed on the control's toolbar. The Zoom property
specifies the surface's current zooming factor. The AllowZoomSurface property specifies
the combination of keys that allows the user to magnify or shrink the surface. The
AllowZoomWheelSurface property specifies whether the user can zoom the surface by
rotating the mouse wheel. The control fires the LayoutStartChanging(exSurfaceZoom) /
LayoutEndChanging(exSurfaceZoom) event when the user zooms the surface.

property Surface.ZoomMin as Double
Specifies the minimum zooming factor of the surface.

Type Description

Double A Numeric expression that specifies the min value for the
Zoom property.

By default, the ZoomMin property is 20. the ZoomMin, ZoomMax and ZoomStep
determines the range of the zooming to be used, if the ZoomLevels property is empty. Use
the ToolBarFormat property to customize the control's toolbar. The ZoomLevels property
specifies the zooming factors to be displayed on the control's toolbar. The Zoom property
specifies the surface's current zooming factor. The AllowZoomSurface property specifies
the combination of keys that allows the user to magnify or shrink the surface. The
AllowZoomWheelSurface property specifies whether the user can zoom the surface by
rotating the mouse wheel. The control fires the LayoutStartChanging(exSurfaceZoom) /
LayoutEndChanging(exSurfaceZoom) event when the user zooms the surface.

property Surface.ZoomStep as Double
Specifies the step to increase or decrease the zooming factor of the surface, while the user
rotates the mouse wheel.

Type Description

Double A Numeric expression that specifies the step value for the
Zoom property.

By default, the ZoomStep property is 10. the ZoomMin, ZoomMax and ZoomStep
determines the range of the zooming to be used, if the ZoomLevels property is empty. Use
the ToolBarFormat property to customize the control's toolbar. The ZoomLevels property
specifies the zooming factors to be displayed on the control's toolbar. The Zoom property
specifies the surface's current zooming factor. The AllowZoomSurface property specifies
the combination of keys that allows the user to magnify or shrink the surface. The
AllowZoomWheelSurface property specifies whether the user can zoom the surface by
rotating the mouse wheel. The control fires the LayoutStartChanging(exSurfaceZoom) /
LayoutEndChanging(exSurfaceZoom) event when the user zooms the surface.

ExSurface events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {AC1DF7F4-0919-4364-8167-2F9B5155EA4B}. The object's program identifier is: "Exontrol.Surface".
The /COM object module is: "ExSurface.dll"

The exGrid component supports the following events:

Name Description
AddElement A new element has been added to the surface.
AddLink A new link has been added to the links collection.

AllowLink Occurs when the user links an element with another
element.

AnchorClick Occurs when an anchor element is clicked.
CheckElement The element's Checked property has been changed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

CreateElement The user creates at runtime a new element.
CreateLink The user creates at runtime a new link.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.
ExpandElement The element is expanded or collapsed.

HandCursorClick The uses clicks a part of the element that shows the had
cursor.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutEndChanging Notifies your application once the control's layout has been
changed.

LayoutStartChanging Occurs when the control's layout is about to be changed.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.

OLECompleteDrag Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.
OleEvent Occurs once an inside control fires an event.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.
ParentChangeElement The element's parent is changed.
RClick Occurs once the user right clicks the control.
RemoveElement An element has been removed from the surface.
RemoveLink The link is removed from the links collection.

SelectionChanged Notifies your application that the control's selection has
been changed.

ToolBarAnchorClick Occurs when an anchor element is clicked, on the control's
toolbar.

ToolBarClick Occurs when the user clicks a button in the toolbar.

C#

VB

private void AddElement(object sender,exontrol.EXSURFACELib.Element Element)
{
}

Private Sub AddElement(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element) Handles AddElement
End Sub

C#

C++

private void AddElement(object sender,
AxEXSURFACELib._ISurfaceEvents_AddElementEvent e)
{
}

void OnAddElement(LPDISPATCH Element)
{
}

event AddElement (Element as Element)
A new element has been added to the surface.

Type Description
Element as Element An Element object being added to the Elements collection.

The AddElement event notifies your application once a new element has been added to the
Elements collection. The Add method adds a new element to the Elements collection. The
CreateElement event notifies your application when the user creates at runtime the element
on the surface. You can use the AddElement event to change properties of the added
element to default values or to associate any extra data to the added element.

The order of the events when the user creates the element at runtime is:

LayoutStartChanging(exCreateObject), the user clicks on the surface
AddElement, adds the new element to the Elements collection
CreateElement, the user ends creating the object
LayoutEndChanging(exCreateObject), the user un-clicks the surface

The AddElement event may be called during the LoadXML method.

Syntax for AddElement event, /NET version, on:

Syntax for AddElement event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall AddElement(TObject *Sender,Exsurfacelib_tlb::IElement *Element)
{
}

procedure AddElement(ASender: TObject; Element : IElement);
begin
end;

procedure AddElement(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_AddElementEvent);
begin
end;

begin event AddElement(oleobject Element)
end event AddElement

Private Sub AddElement(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_AddElementEvent) Handles AddElement
End Sub

Private Sub AddElement(ByVal Element As EXSURFACELibCtl.IElement)
End Sub

Private Sub AddElement(ByVal Element As Object)
End Sub

LPARAMETERS Element

PROCEDURE OnAddElement(oSurface,Element)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AddElement(Element)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for AddElement event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function AddElement(Element)
End Function
</SCRIPT>

Procedure OnComAddElement Variant llElement
 Forward Send OnComAddElement llElement
End_Procedure

METHOD OCX_AddElement(Element) CLASS MainDialog
RETURN NIL

void onEvent_AddElement(COM _Element)
{
}

function AddElement as v (Element as OLE::Exontrol.Surface.1::IElement)
end function

function nativeObject_AddElement(Element)
return

C#

VB

private void AddLink(object sender,exontrol.EXSURFACELib.Link Link)
{
}

Private Sub AddLink(ByVal sender As System.Object,ByVal Link As
exontrol.EXSURFACELib.Link) Handles AddLink
End Sub

C#

C++

private void AddLink(object sender,
AxEXSURFACELib._ISurfaceEvents_AddLinkEvent e)
{
}

void OnAddLink(LPDISPATCH Link)

event AddLink (Link as Link)
A new link has been added to the links collection.

Type Description
Link as Link A Link object being added to the Links collection.

The AddLink event notifies your application once a new link has been added to the Links
collection. The Add method adds a new link to the Links collection. The CreateLink event
notifies your application when the user links two elements on the surface. You can use the
AddLink event to change properties of the added link to default values or to associate any
extra data to the added link. The AllowLink event occurs when user links two elements to
specify whether the link is allowed.

The order of the events when the user links two elements at runtime is:

LayoutStartChanging(exLinkObjects), the user clicks on the surface
AllowLink, occurs to specify whether the link between two elements is possible.
AddLink, adds the new link to the Links collection
CreateLink, the user ends creating the link
LayoutEndChanging(exLinkObjects), the user un-clicks the surface

The AddLink event may be called during the LoadXML method.

Syntax for AddLink event, /NET version, on:

Syntax for AddLink event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall AddLink(TObject *Sender,Exsurfacelib_tlb::ILink *Link)
{
}

procedure AddLink(ASender: TObject; Link : ILink);
begin
end;

procedure AddLink(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_AddLinkEvent);
begin
end;

begin event AddLink(oleobject Link)
end event AddLink

Private Sub AddLink(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_AddLinkEvent) Handles AddLink
End Sub

Private Sub AddLink(ByVal Link As EXSURFACELibCtl.ILink)
End Sub

Private Sub AddLink(ByVal Link As Object)
End Sub

LPARAMETERS Link

PROCEDURE OnAddLink(oSurface,Link)
RETURN

Java… <SCRIPT EVENT="AddLink(Link)" LANGUAGE="JScript">
Syntax for AddLink event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddLink(Link)
End Function
</SCRIPT>

Procedure OnComAddLink Variant llLink
 Forward Send OnComAddLink llLink
End_Procedure

METHOD OCX_AddLink(Link) CLASS MainDialog
RETURN NIL

void onEvent_AddLink(COM _Link)
{
}

function AddLink as v (Link as OLE::Exontrol.Surface.1::ILink)
end function

function nativeObject_AddLink(Link)
return

event AllowLink (ElementFrom as Element, ElementTo as Element,
ByRef Cancel as Boolean)
Occurs when the user links an element with another element.

Type Description

ElementFrom as Element An Element object that specifies where the link starts
from.

ElementTo as Element An Element object that specifies where the link ends to.

Cancel as Boolean
(By Reference) A Boolean expression that specifies
whether the operation is canceled or allowed, or if the link
will or will not be added.

The AllowLink event occurs when user links two elements to specify whether the link is
allowed. For instance, you can use the PathTo property of the Element object to check if
there is a path from an element to another, so avoid cycles. The CreateLink event occurs
when the user links two elements on the surface. The AllowLinkObjects property specifies
the keys combination to let the user links two elements on the surface, the ElementFrom
property specifies the element where the link starts, where the ElementTo property
specifies ending element of the link. Prior to CreateLink event the control fires the AddLink
event that indicates that the link has been added to the Links collection. You can use the
Remove method to remove the link. The Background(exLinkObjectsInvalidColor) property
specifies the color to show the invalid link. The Background(exLinkObjectsValidColor)
property specifies the color to show the valid link.

The following VB sample prevents adding cycles to the chart:

Private Sub Surface1_AllowLink(ByVal ElementFrom As EXSURFACELibCtl.IElement, ByVal
ElementTo As EXSURFACELibCtl.IElement, Cancel As Boolean)
 Cancel = ElementTo.PathTo(ElementFrom)
End Sub

The order of the events when the user links two elements at runtime is:

LayoutStartChanging(exLinkObjects), the user clicks on the surface
AllowLink, occurs to specify whether the link between two elements is possible.
AddLink, adds the new link to the Links collection
CreateLink, the user ends creating the link
LayoutEndChanging(exLinkObjects), the user un-clicks the surface

The AllowLink event is not called during the LoadXML method.

C#

VB

private void AllowLink(object sender,exontrol.EXSURFACELib.Element
ElementFrom,exontrol.EXSURFACELib.Element ElementTo,ref bool Cancel)
{
}

Private Sub AllowLink(ByVal sender As System.Object,ByVal ElementFrom As
exontrol.EXSURFACELib.Element,ByVal ElementTo As
exontrol.EXSURFACELib.Element,ByRef Cancel As Boolean) Handles AllowLink
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void AllowLink(object sender,
AxEXSURFACELib._ISurfaceEvents_AllowLinkEvent e)
{
}

void OnAllowLink(LPDISPATCH ElementFrom,LPDISPATCH ElementTo,BOOL FAR*
Cancel)
{
}

void __fastcall AllowLink(TObject *Sender,Exsurfacelib_tlb::IElement
*ElementFrom,Exsurfacelib_tlb::IElement *ElementTo,VARIANT_BOOL * Cancel)
{
}

procedure AllowLink(ASender: TObject; ElementFrom : IElement;ElementTo :
IElement;var Cancel : WordBool);
begin
end;

procedure AllowLink(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_AllowLinkEvent);
begin
end;

Syntax for AllowLink event, /NET version, on:

Syntax for AllowLink event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event AllowLink(oleobject ElementFrom,oleobject ElementTo,boolean
Cancel)
end event AllowLink

Private Sub AllowLink(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_AllowLinkEvent) Handles AllowLink
End Sub

Private Sub AllowLink(ByVal ElementFrom As EXSURFACELibCtl.IElement,ByVal
ElementTo As EXSURFACELibCtl.IElement,Cancel As Boolean)
End Sub

Private Sub AllowLink(ByVal ElementFrom As Object,ByVal ElementTo As
Object,Cancel As Boolean)
End Sub

LPARAMETERS ElementFrom,ElementTo,Cancel

PROCEDURE OnAllowLink(oSurface,ElementFrom,ElementTo,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AllowLink(ElementFrom,ElementTo,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AllowLink(ElementFrom,ElementTo,Cancel)
End Function
</SCRIPT>

Procedure OnComAllowLink Variant llElementFrom Variant llElementTo Boolean
llCancel
 Forward Send OnComAllowLink llElementFrom llElementTo llCancel
End_Procedure

Syntax for AllowLink event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_AllowLink(ElementFrom,ElementTo,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_AllowLink(COM _ElementFrom,COM _ElementTo,COMVariant
/*bool*/ _Cancel)
{
}

function AllowLink as v (ElementFrom as
OLE::Exontrol.Surface.1::IElement,ElementTo as
OLE::Exontrol.Surface.1::IElement,Cancel as L)
end function

function nativeObject_AllowLink(ElementFrom,ElementTo,Cancel)
return

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXSURFACELib._ISurfaceEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor.

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the Caption or ExtraCaption property to
display hyperlinks or anchors in the element. Use the Caption property to assign a
caption/hyperlink to a link.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oSurface,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void CheckElement(object sender,exontrol.EXSURFACELib.Element
Element)
{
}

Private Sub CheckElement(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element) Handles CheckElement
End Sub

C#

C++

C++
Builder

private void CheckElement(object sender,
AxEXSURFACELib._ISurfaceEvents_CheckElementEvent e)
{
}

void OnCheckElement(LPDISPATCH Element)
{
}

void __fastcall CheckElement(TObject *Sender,Exsurfacelib_tlb::IElement *Element)
{
}

event CheckElement (Element as Element)
The element's Checked property has been changed.

Type Description

Element as Element An Element object that specifies the element being
checked or un-checked.

The CheckElement event notifies your application once the user clicks the element's check-
box. The ShowCheckBox property specifies whether the element displays the check-box.
The Checked property indicates whether the element is checked or unchecked. Use the
CheckBoxAlign property to align the element's checkbox. The Background(
exCheckBoxState0) Specifies the visual appearance for the check box in 0 state. The
Background(exCheckBoxState1) Specifies the visual appearance for the check box in 1
state.

Syntax for CheckElement event, /NET version, on:

Syntax for CheckElement event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure CheckElement(ASender: TObject; Element : IElement);
begin
end;

procedure CheckElement(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_CheckElementEvent);
begin
end;

begin event CheckElement(oleobject Element)
end event CheckElement

Private Sub CheckElement(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_CheckElementEvent) Handles CheckElement
End Sub

Private Sub CheckElement(ByVal Element As EXSURFACELibCtl.IElement)
End Sub

Private Sub CheckElement(ByVal Element As Object)
End Sub

LPARAMETERS Element

PROCEDURE OnCheckElement(oSurface,Element)
RETURN

Java…

VBSc…

<SCRIPT EVENT="CheckElement(Element)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CheckElement(Element)
End Function
</SCRIPT>

Syntax for CheckElement event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComCheckElement Variant llElement
 Forward Send OnComCheckElement llElement
End_Procedure

METHOD OCX_CheckElement(Element) CLASS MainDialog
RETURN NIL

void onEvent_CheckElement(COM _Element)
{
}

function CheckElement as v (Element as OLE::Exontrol.Surface.1::IElement)
end function

function nativeObject_CheckElement(Element)
return

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event notifies your application once the user clicks the surface. Use a
MouseDown or MouseUp event procedure to specify actions that will occur when a mouse
button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ElementFromPoint(-1,-1) property returns the element from the
cursor or nothing if no element at the cursor position. The HitTestFromPoint property returns
the element and the hit-test code from the cursor. You can use the Edit method to edit the
element's caption or extra caption. The HandCursorClick event notifies once the user clicks
a part of the element (which shows a hand cursor when the pointer hovers it).

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oSurface)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void CreateElement(object sender,exontrol.EXSURFACELib.Element
Element)
{
}

Private Sub CreateElement(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element) Handles CreateElement
End Sub

C# private void CreateElement(object sender,
AxEXSURFACELib._ISurfaceEvents_CreateElementEvent e)
{
}

event CreateElement (Element as Element)
The user creates at runtime a new element.

Type Description
Element as Element An Element object being created.

The CreateElement event occurs when the user creates the element on the surface. The
AllowCreateObject property specifies the keys combination to let the user creates the
elements at runtime. Prior to CreateElement event the AddElement event is fired to notify
that the element has been added to the Elements collection. The CreateElement event is
not fired when you add programmatically the element calling the Add method. For instance,
you can call the Element.Edit method during the CreateElement to let the user edits the
element's caption once a new element is created. You can call the Remove method to
remove the newly created element.

The order of the events when the user creates the element at runtime is:

LayoutStartChanging(exCreateObject), the user clicks on the surface
AddElement, adds the new element to the Elements collection
CreateElement, the user ends creating the object
LayoutEndChanging(exCreateObject), the user un-clicks the surface

The CreateElement event is not called during the LoadXML method.

Syntax for CreateElement event, /NET version, on:

Syntax for CreateElement event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnCreateElement(LPDISPATCH Element)
{
}

void __fastcall CreateElement(TObject *Sender,Exsurfacelib_tlb::IElement *Element)
{
}

procedure CreateElement(ASender: TObject; Element : IElement);
begin
end;

procedure CreateElement(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_CreateElementEvent);
begin
end;

begin event CreateElement(oleobject Element)
end event CreateElement

Private Sub CreateElement(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_CreateElementEvent) Handles CreateElement
End Sub

Private Sub CreateElement(ByVal Element As EXSURFACELibCtl.IElement)
End Sub

Private Sub CreateElement(ByVal Element As Object)
End Sub

LPARAMETERS Element

PROCEDURE OnCreateElement(oSurface,Element)
RETURN

Syntax for CreateElement event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CreateElement(Element)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CreateElement(Element)
End Function
</SCRIPT>

Procedure OnComCreateElement Variant llElement
 Forward Send OnComCreateElement llElement
End_Procedure

METHOD OCX_CreateElement(Element) CLASS MainDialog
RETURN NIL

void onEvent_CreateElement(COM _Element)
{
}

function CreateElement as v (Element as OLE::Exontrol.Surface.1::IElement)
end function

function nativeObject_CreateElement(Element)
return

The following VB sample calls the Edit method once a new element is created:

Private Sub Surface1_CreateElement(ByVal Element As EXSURFACELibCtl.IElement)
 With Element
 .AutoSize = True
 .Caption = "new " & Surface1.Elements.Count
 .Edit exEditCaption
 End With
End Sub

The following VB sample creates an element that hosts the Exontrol.Button control:

https://exontrol.com/exbutton.jsp

Private Sub Surface1_CreateElement(ByVal Element As EXSURFACELibCtl.IElement)
 With Element
 .Type = exElementHostControl
 .ElementFormat = """client"""
 .Control = "Exontrol.Button"
 With .Object
 .Caption = "<sha ;;0>Button " & Surface1.Elements.Count
 End With
 End With
End Sub

C#

VB

private void CreateLink(object sender,exontrol.EXSURFACELib.Link Link)
{
}

Private Sub CreateLink(ByVal sender As System.Object,ByVal Link As
exontrol.EXSURFACELib.Link) Handles CreateLink
End Sub

C# private void CreateLink(object sender,
AxEXSURFACELib._ISurfaceEvents_CreateLinkEvent e)
{

event CreateLink (Link as Link)
The user creates at runtime a new link.

Type Description
Link as Link A Link object being created.

The CreateLink event occurs when the user links two elements on the surface. The
AllowLinkObjects property specifies the keys combination to let the user links two elements
on the surface, the ElementFrom property specifies the element where the link starts,
where the ElementTo property specifies ending element of the link. Prior to CreateLink
event the control fires the AddLink event that indicates that the link has been added to the
Links collection. You can use the Remove method to remove the link. The AllowLink event
occurs when user links two elements to specify whether the link is allowed. The
Background(exLinkObjectsInvalidColor) property specifies the color to show the invalid link.
The Background(exLinkObjectsValidColor) property specifies the color to show the valid
link.

The order of the events when the user links two elements at runtime is:

LayoutStartChanging(exLinkObjects), the user clicks on the surface
AllowLink, occurs to specify whether the link between two elements is possible.
AddLink, adds the new link to the Links collection
CreateLink, the user ends creating the link
LayoutEndChanging(exLinkObjects), the user un-clicks the surface

The CreateLink event is not called during the LoadXML method.

Syntax for CreateLink event, /NET version, on:

Syntax for CreateLink event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnCreateLink(LPDISPATCH Link)
{
}

void __fastcall CreateLink(TObject *Sender,Exsurfacelib_tlb::ILink *Link)
{
}

procedure CreateLink(ASender: TObject; Link : ILink);
begin
end;

procedure CreateLink(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_CreateLinkEvent);
begin
end;

begin event CreateLink(oleobject Link)
end event CreateLink

Private Sub CreateLink(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_CreateLinkEvent) Handles CreateLink
End Sub

Private Sub CreateLink(ByVal Link As EXSURFACELibCtl.ILink)
End Sub

Private Sub CreateLink(ByVal Link As Object)
End Sub

LPARAMETERS Link

PROCEDURE OnCreateLink(oSurface,Link)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CreateLink(Link)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CreateLink(Link)
End Function
</SCRIPT>

Procedure OnComCreateLink Variant llLink
 Forward Send OnComCreateLink llLink
End_Procedure

METHOD OCX_CreateLink(Link) CLASS MainDialog
RETURN NIL

void onEvent_CreateLink(COM _Link)
{
}

function CreateLink as v (Link as OLE::Exontrol.Surface.1::ILink)
end function

function nativeObject_CreateLink(Link)
return

Syntax for CreateLink event, /COM version (others), on:

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C# private void DblClick(object sender,
AxEXSURFACELib._ISurfaceEvents_DblClickEvent e)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when the user double clicks the control. Use a MouseDown or
MouseUp event procedure to specify actions that will occur when a mouse button is
pressed or released. The ElementFromPoint(-1,-1) property returns the element from the
cursor or nothing if no element at the cursor position. The HitTestFromPoint property returns
the element and the hit-test code from the cursor. You can use the Edit method to edit the
element's caption or extra caption. Use the AllowCreateObject property to specify the keys
combination so the user creates the elements in the surface. By default, the control creates
a new element once the user double clicks the surface.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oSurface,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Surface.1::OLE_XPOS_PIXELS,Y
as OLE::Exontrol.Surface.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

Syntax for DblClick event, /COM version (others), on:

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. This is useful for X++,
which does not support event with parameters passed by reference. Also, this could be
useful for C++ Builder or Delphi, which does not handle properly the events with
parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

If you are not familiar with what a type library means just handle the Event of the control as
follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exsurface1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void Event(object sender, AxEXSURFACELib._ISurfaceEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_EventEvent);
begin
end;

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oSurface,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void ExpandElement(object sender,exontrol.EXSURFACELib.Element
Element)
{
}

Private Sub ExpandElement(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element) Handles ExpandElement
End Sub

C#

C++

C++
Builder

private void ExpandElement(object sender,
AxEXSURFACELib._ISurfaceEvents_ExpandElementEvent e)
{
}

void OnExpandElement(LPDISPATCH Element)
{
}

void __fastcall ExpandElement(TObject *Sender,Exsurfacelib_tlb::IElement
*Element)
{
}

event ExpandElement (Element as Element)
The element is expanded or collapsed.

Type Description
Element as Element An Element being expanded or collapsed.

The ExpandElement event is fired when an element is expanded or collapsed. The element
displays the expanding/collapsing glyph if the element contains child elements or there are
links that starts from the element (outgoing links, while the ExpandLinkedElements property
is True). The Expanded property specifies whether the element is expanded or collapsed.
The Children property returns the list of child element of giving element. The OutgoingLinks
property indicates the list of links that starts from specified element.

Syntax for ExpandElement event, /NET version, on:

Syntax for ExpandElement event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ExpandElement(ASender: TObject; Element : IElement);
begin
end;

procedure ExpandElement(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_ExpandElementEvent);
begin
end;

begin event ExpandElement(oleobject Element)
end event ExpandElement

Private Sub ExpandElement(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_ExpandElementEvent) Handles ExpandElement
End Sub

Private Sub ExpandElement(ByVal Element As EXSURFACELibCtl.IElement)
End Sub

Private Sub ExpandElement(ByVal Element As Object)
End Sub

LPARAMETERS Element

PROCEDURE OnExpandElement(oSurface,Element)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ExpandElement(Element)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ExpandElement(Element)
End Function
</SCRIPT>

Syntax for ExpandElement event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComExpandElement Variant llElement
 Forward Send OnComExpandElement llElement
End_Procedure

METHOD OCX_ExpandElement(Element) CLASS MainDialog
RETURN NIL

void onEvent_ExpandElement(COM _Element)
{
}

function ExpandElement as v (Element as OLE::Exontrol.Surface.1::IElement)
end function

function nativeObject_ExpandElement(Element)
return

event HandCursorClick (Element as Element, Hit as
ShowHandCursorOnEnum, Key as Variant)
The uses clicks a part of the element that shows the had cursor.

Type Description
Element as Element An Element object being clicked.
Hit as
ShowHandCursorOnEnum

A ShowHandCursorOnEnum expression that specifies the
part of the element being clicked.

Key as Variant

A VARIANT expression that specifies the key associated
with the part being clicked. For instance, if the Hit
indicates the exShowHandCursorCheck flag, the Key
parameter specifies the element's checkbox state.

The HandCursorClick event notifies once the user clicks a part of the element (which
shows a hand cursor when the pointer hovers it). The ShowHandCursorOn property
specifies the parts of the element that shows the hand cursor when the mouse-pointer
hovers the part. The Hit parameter specifies the part of the element being clicked, while the
Key parameter specifies a value associated with the part being clicked as listed bellow:

exShowHandCursorCheck -> key specifies the Element.Checked property.
exShowHandCursorAnchor -> key specifies the identifier of the anchor element such as
<a id;options> anchor
exShowHandCursorPicture -> key specifies the name of the picture being clicked (
HTMLPicture property)
exShowHandCursorIcon - key specifies the index of the icon being clicked (Images
method)

The above flags can be combined with the following flags:

exShowHandCursorCaption, indicates that the part being clicked belong to the
element's caption.
exShowHandCursorExtraCaption, indicates that the part being clicked belong to the
element's extra caption.
exShowHandCursorPictures, indicates that the part being clicked belong to the
element's pictures.
exShowHandCursorExtraPictures, indicates that the part being clicked belong to the
element's extra pictures.

The HandCursorClick event occurs also if an anchor element is clicked so you can handle
the AnchorClick event too. You can use the HitTestFromPoint property to determine whether
the cursor hovers the expand/collapse glyphs, the element's checkbox, picture and so on.

C#

VB

private void HandCursorClick(object sender,exontrol.EXSURFACELib.Element
Element,exontrol.EXSURFACELib.ShowHandCursorOnEnum Hit,object Key)
{
}

Private Sub HandCursorClick(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element,ByVal Hit As
exontrol.EXSURFACELib.ShowHandCursorOnEnum,ByVal Key As Object) Handles
HandCursorClick
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void HandCursorClick(object sender,
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent e)
{
}

void OnHandCursorClick(LPDISPATCH Element,long Hit,VARIANT Key)
{
}

void __fastcall HandCursorClick(TObject *Sender,Exsurfacelib_tlb::IElement
*Element,Exsurfacelib_tlb::ShowHandCursorOnEnum Hit,Variant Key)
{
}

procedure HandCursorClick(ASender: TObject; Element : IElement;Hit :
ShowHandCursorOnEnum;Key : OleVariant);
begin
end;

procedure HandCursorClick(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent);
begin
end;

Syntax for HandCursorClick event, /NET version, on:

Syntax for HandCursorClick event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event HandCursorClick(oleobject Element,long Hit,any Key)
end event HandCursorClick

Private Sub HandCursorClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent) Handles
HandCursorClick
End Sub

Private Sub HandCursorClick(ByVal Element As EXSURFACELibCtl.IElement,ByVal
Hit As EXSURFACELibCtl.ShowHandCursorOnEnum,ByVal Key As Variant)
End Sub

Private Sub HandCursorClick(ByVal Element As Object,ByVal Hit As Long,ByVal Key
As Variant)
End Sub

LPARAMETERS Element,Hit,Key

PROCEDURE OnHandCursorClick(oSurface,Element,Hit,Key)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="HandCursorClick(Element,Hit,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function HandCursorClick(Element,Hit,Key)
End Function
</SCRIPT>

Procedure OnComHandCursorClick Variant llElement
OLEShowHandCursorOnEnum llHit Variant llKey
 Forward Send OnComHandCursorClick llElement llHit llKey
End_Procedure

Syntax for HandCursorClick event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_HandCursorClick(Element,Hit,Key) CLASS MainDialog
RETURN NIL

void onEvent_HandCursorClick(COM _Element,int _Hit,COMVariant _Key)
{
}

function HandCursorClick as v (Element as OLE::Exontrol.Surface.1::IElement,Hit as
OLE::Exontrol.Surface.1::ShowHandCursorOnEnum,Key as A)
end function

function nativeObject_HandCursorClick(Element,Hit,Key)
return

The following samples shows how you can handle clicking an icon or a picture of the
element:

VBA (MS Access, Excell...)

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub Surface1_HandCursorClick(ByVal Element As Object,ByVal Hit As
Long,ByVal Key As Variant)
 With Surface1
 Debug.Print(Key)
 End With
End Sub

With Surface1
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = 33
 .ShowHandCursorOn = 771 '
ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
ShowHandCursorOnEnum.exShowHandCursorPictures Or
ShowHandCursorOnEnum.exShowHandCursorIcon Or
ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = 1
 End With
End With

VB6

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub Surface1_HandCursorClick(ByVal Element As
EXSURFACELibCtl.IElement,ByVal Hit As
EXSURFACELibCtl.ShowHandCursorOnEnum,ByVal Key As Variant)
 With Surface1
 Debug.Print(Key)
 End With
End Sub

With Surface1
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = exBottomCenter
 .ShowHandCursorOn =
ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
ShowHandCursorOnEnum.exShowHandCursorPictures Or
ShowHandCursorOnEnum.exShowHandCursorIcon Or
ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = exTopCenter
 End With
End With

VB.NET

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub Exsurface1_HandCursorClick(ByVal sender As System.Object,ByVal
Element As exontrol.EXSURFACELib.Element,ByVal Hit As
exontrol.EXSURFACELib.ShowHandCursorOnEnum,ByVal Key As Object) Handles
Exsurface1.HandCursorClick
 With Exsurface1
 Debug.Print(Key)
 End With
End Sub

With Exsurface1

.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"

 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=")
 .set_HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
 .set_HTMLPicture("pic2","c:\exontrol\images\auction.gif")
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign =
exontrol.EXSURFACELib.ContentAlignmentEnum.exBottomCenter
 .ShowHandCursorOn =
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures
Or exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures Or
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon Or
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = exontrol.EXSURFACELib.ContentAlignmentEnum.exTopCenter
 End With
End With

VB.NET for /COM

' HandCursorClick event - The uses clicks a part of the element that shows the
had cursor.
Private Sub AxSurface1_HandCursorClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent) Handles
AxSurface1.HandCursorClick
 With AxSurface1
 Debug.Print(e.key)
 End With
End Sub

With AxSurface1

.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=")
 .set_HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
 .set_HTMLPicture("pic2","c:\exontrol\images\auction.gif")
 With .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = EXSURFACELib.ContentAlignmentEnum.exBottomCenter
 .ShowHandCursorOn =
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures Or
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon Or
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = EXSURFACELib.ContentAlignmentEnum.exTopCenter
 End With
End With

C++

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
void OnHandCursorClickSurface1(LPDISPATCH Element,long Hit,VARIANT Key)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSURFACELib' for the library: 'ExSurface 1.0 Control
Library'
 #import <ExSurface.dll>
 using namespace EXSURFACELib;
 */
 EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
 OutputDebugStringW(L"Key");
}

EXSURFACELib::ISurfacePtr spSurface1 = GetDlgItem(IDC_SURFACE1)-
>GetControlUnknown();
spSurface1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spSurface1->PutHTMLPicture(L"pic1","c:\\exontrol\\images\\zipdisk.gif");
spSurface1->PutHTMLPicture(L"pic2","c:\\exontrol\\images\\auction.gif");
EXSURFACELib::IElementPtr var_Element = spSurface1->GetElements()-
>Add("Caption",vtMissing,vtMissing,vtMissing,vtMissing,vtMissing);
 var_Element->PutPictures(L"1,2/pic1/pic2");
 var_Element->PutPicturesAlign(EXSURFACELib::exBottomCenter);
 var_Element-
>PutShowHandCursorOn(EXSURFACELib::ShowHandCursorOnEnum(EXSURFACELib::exShowHandCursorExtraPictures
 | EXSURFACELib::exShowHandCursorPictures |
EXSURFACELib::exShowHandCursorIcon | EXSURFACELib::exShowHandCursorPicture));
 var_Element->PutCaptionAlign(EXSURFACELib::exTopCenter);

C++ Builder

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
void __fastcall TForm1::Surface1HandCursorClick(TObject
*Sender,Exsurfacelib_tlb::IElement
*Element,Exsurfacelib_tlb::ShowHandCursorOnEnum Hit,Variant Key)
{
 OutputDebugString(L"Key");
}

Surface1-

>Images(TVariant(String("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="));
Surface1->HTMLPicture[L"pic1"] = TVariant("c:\\exontrol\\images\\zipdisk.gif");
Surface1->HTMLPicture[L"pic2"] = TVariant("c:\\exontrol\\images\\auction.gif");
Exsurfacelib_tlb::IElementPtr var_Element = Surface1->Elements-
>Add(TVariant("Caption"),TNoParam(),TNoParam(),TNoParam(),TNoParam(),TNoParam());

 var_Element->Pictures = L"1,2/pic1/pic2";
 var_Element->PicturesAlign =
Exsurfacelib_tlb::ContentAlignmentEnum::exBottomCenter;
 var_Element->ShowHandCursorOn =
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorExtraPictures |
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorPictures |
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorIcon |
Exsurfacelib_tlb::ShowHandCursorOnEnum::exShowHandCursorPicture;
 var_Element->CaptionAlign =
Exsurfacelib_tlb::ContentAlignmentEnum::exTopCenter;

C#

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
private void exsurface1_HandCursorClick(object
sender,exontrol.EXSURFACELib.Element
Element,exontrol.EXSURFACELib.ShowHandCursorOnEnum Hit,object Key)
{
 System.Diagnostics.Debug.Print(Key.ToString());
}
//this.exsurface1.HandCursorClick += new

exontrol.EXSURFACELib.exg2antt.HandCursorClickEventHandler(this.exsurface1_HandCursorClick);

exsurface1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
exsurface1.set_HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
exsurface1.set_HTMLPicture("pic2","c:\\exontrol\\images\\auction.gif");
exontrol.EXSURFACELib.Element var_Element =
exsurface1.Elements.Add("Caption",null,null,null,null,null);
 var_Element.Pictures = "1,2/pic1/pic2";
 var_Element.PicturesAlign =
exontrol.EXSURFACELib.ContentAlignmentEnum.exBottomCenter;
 var_Element.ShowHandCursorOn =
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures |
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures |
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon |
exontrol.EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture;
 var_Element.CaptionAlign =
exontrol.EXSURFACELib.ContentAlignmentEnum.exTopCenter;

JavaScript

<SCRIPT FOR="Surface1" EVENT="HandCursorClick(Element,Hit,Key)"
LANGUAGE="JScript">
 alert(Key);
</SCRIPT>

<OBJECT classid="clsid:AC1DF7F4-0919-4364-8167-2F9B5155EA4B"
id="Surface1"></OBJECT>

<SCRIPT LANGUAGE="JScript">

Surface1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +

"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
 "NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
 Surface1.HTMLPicture("pic1") = "c:\\exontrol\\images\\zipdisk.gif";
 Surface1.HTMLPicture("pic2") = "c:\\exontrol\\images\\auction.gif";
 var var_Element = Surface1.Elements.Add("Caption",null,null,null,null,null);
 var_Element.Pictures = "1,2/pic1/pic2";
 var_Element.PicturesAlign = 33;
 var_Element.ShowHandCursorOn = 771;
 var_Element.CaptionAlign = 1;
</SCRIPT>

C# for /COM

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
private void axSurface1_HandCursorClick(object sender,
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent e)
{
 System.Diagnostics.Debug.Print(e.key.ToString());
}
//this.axSurface1.HandCursorClick += new
AxEXSURFACELib._ISurfaceEvents_HandCursorClickEventHandler(this.axSurface1_HandCursorClick);

axSurface1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axSurface1.set_HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
axSurface1.set_HTMLPicture("pic2","c:\\exontrol\\images\\auction.gif");
EXSURFACELib.Element var_Element =
axSurface1.Elements.Add("Caption",null,null,null,null,null);
 var_Element.Pictures = "1,2/pic1/pic2";
 var_Element.PicturesAlign =
EXSURFACELib.ContentAlignmentEnum.exBottomCenter;
 var_Element.ShowHandCursorOn =
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures |
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures |
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon |
EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture;
 var_Element.CaptionAlign = EXSURFACELib.ContentAlignmentEnum.exTopCenter;

X++ (Dynamics Ax 2009)

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
void onEvent_HandCursorClick(COM _Element,int _Hit,COMVariant _Key)
{
 ;
 print(_Key);
}

public void init()
{
 COM com_Element;

 anytype var_Element;
 str var_s;
 ;

 super();

 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=";
 exsurface1.Images(COMVariant::createFromStr(var_s));
 exsurface1.HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
 exsurface1.HTMLPicture("pic2","c:\\exontrol\\images\\auction.gif");
 var_Element = COM::createFromObject(exsurface1.Elements()).Add("Caption");
com_Element = var_Element;
 com_Element.Pictures("1,2/pic1/pic2");
 com_Element.PicturesAlign(33/*exBottomCenter*/);
 com_Element.ShowHandCursorOn(771/*exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture*/);
 com_Element.CaptionAlign(1/*exTopCenter*/);
}

Delphi 8 (.NET only)

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
procedure TWinForm1.AxSurface1_HandCursorClick(sender: System.Object; e:

AxEXSURFACELib._ISurfaceEvents_HandCursorClickEvent);
begin
 with AxSurface1 do
 begin
 OutputDebugString(e.key);
 end
end;

with AxSurface1 do
begin

Images('gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/'
 +

'oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/'
 +

'wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx'
 +

'3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN'
 +
 'AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=');
 set_HTMLPicture('pic1','c:\exontrol\images\zipdisk.gif');
 set_HTMLPicture('pic2','c:\exontrol\images\auction.gif');
 with Elements.Add('Caption',Nil,Nil,Nil,Nil,Nil) do
 begin
 Pictures := '1,2/pic1/pic2';
 PicturesAlign := EXSURFACELib.ContentAlignmentEnum.exBottomCenter;
 ShowHandCursorOn :=
Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorExtraPictures)
Or Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPictures) Or
Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorIcon) Or
Integer(EXSURFACELib.ShowHandCursorOnEnum.exShowHandCursorPicture);
 CaptionAlign := EXSURFACELib.ContentAlignmentEnum.exTopCenter;
 end;
end

Delphi (standard)

// HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
procedure TForm1.Surface1HandCursorClick(ASender: TObject; Element : IElement;Hit
: ShowHandCursorOnEnum;Key : OleVariant);
begin
 with Surface1 do
 begin
 OutputDebugString(Key);
 end
end;

with Surface1 do
begin

Images('gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/'
 +

'oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/'
 +

'wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx'
 +

'3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN'
 +
 'AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=');
 HTMLPicture['pic1'] := 'c:\exontrol\images\zipdisk.gif';
 HTMLPicture['pic2'] := 'c:\exontrol\images\auction.gif';
 with Elements.Add('Caption',Null,Null,Null,Null,Null) do
 begin
 Pictures := '1,2/pic1/pic2';
 PicturesAlign := EXSURFACELib_TLB.exBottomCenter;
 ShowHandCursorOn :=
Integer(EXSURFACELib_TLB.exShowHandCursorExtraPictures) Or
Integer(EXSURFACELib_TLB.exShowHandCursorPictures) Or

Integer(EXSURFACELib_TLB.exShowHandCursorIcon) Or
Integer(EXSURFACELib_TLB.exShowHandCursorPicture);
 CaptionAlign := EXSURFACELib_TLB.exTopCenter;
 end;
end

VFP

*** HandCursorClick event - The uses clicks a part of the element that shows the had
cursor. ***
LPARAMETERS Element,Hit,Key
 with thisform.Surface1
 DEBUGOUT(Key)
 endwith

with thisform.Surface1
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .Object.HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .Object.HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
 with .Elements.Add("Caption")
 .Pictures = "1,2/pic1/pic2"
 .PicturesAlign = 33
 .ShowHandCursorOn = 771 &&

ShowHandCursorOnEnum.exShowHandCursorExtraPictures Or
ShowHandCursorOnEnum.exShowHandCursorPictures Or
ShowHandCursorOnEnum.exShowHandCursorIcon Or
ShowHandCursorOnEnum.exShowHandCursorPicture
 .CaptionAlign = 1
 endwith
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 HandCursorClick = class::nativeObject_HandCursorClick
endwith
*/
// The uses clicks a part of the element that shows the had cursor.
function nativeObject_HandCursorClick(Element,Hit,Key)
 local oSurface
 oSurface = form.Activex1.nativeObject
 ? Str(Key)
return

local oSurface,var_Element

oSurface = form.Activex1.nativeObject
oSurface.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oSurface.Template = [HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"] //
oSurface.HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
oSurface.Template = [HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"] //
oSurface.HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
var_Element = oSurface.Elements.Add("Caption")
 var_Element.Pictures = "1,2/pic1/pic2"
 var_Element.PicturesAlign = 33
 var_Element.ShowHandCursorOn = 771 /*exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture*/
 var_Element.CaptionAlign = 1

XBasic (Alpha Five)

' The uses clicks a part of the element that shows the had cursor.
function HandCursorClick as v (Element as OLE::Exontrol.Surface.1::IElement,Hit as
OLE::Exontrol.Surface.1::ShowHandCursorOnEnum,Key as A)
 Dim oSurface as P
 oSurface = topparent:CONTROL_ACTIVEX1.activex
 ? Key
end function

Dim oSurface as P
Dim var_Element as P

oSurface = topparent:CONTROL_ACTIVEX1.activex
oSurface.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oSurface.Template = "HTMLPicture(\"pic1\") = \"c:\exontrol\images\zipdisk.gif\"" '
oSurface.HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
oSurface.Template = "HTMLPicture(\"pic2\") = \"c:\exontrol\images\auction.gif\"" '
oSurface.HTMLPicture("pic2") = "c:\exontrol\images\auction.gif"
var_Element = oSurface.Elements.Add("Caption")
 var_Element.Pictures = "1,2/pic1/pic2"
 var_Element.PicturesAlign = 33
 var_Element.ShowHandCursorOn = 771 'exShowHandCursorExtraPictures +
exShowHandCursorPictures + exShowHandCursorIcon +
exShowHandCursorPicture
 var_Element.CaptionAlign = 1

Visual Objects

METHOD OCX_Exontrol1HandCursorClick(Element,Hit,Key) CLASS MainDialog
 // HandCursorClick event - The uses clicks a part of the element that shows
the had cursor.
 OutputDebugString(String2Psz(AsString(Key)))
RETURN NIL

local var_Element as IElement

oDCOCX_Exontrol1:Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oDCOCX_Exontrol1:[HTMLPicture,"pic1"] := "c:\exontrol\images\zipdisk.gif"
oDCOCX_Exontrol1:[HTMLPicture,"pic2"] := "c:\exontrol\images\auction.gif"
var_Element := oDCOCX_Exontrol1:Elements:Add("Caption",nil,nil,nil,nil,nil)
 var_Element:Pictures := "1,2/pic1/pic2"
 var_Element:PicturesAlign := exBottomCenter
 var_Element:ShowHandCursorOn := exShowHandCursorExtraPictures |
exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture
 var_Element:CaptionAlign := exTopCenter

PowerBuilder

/*begin event HandCursorClick(oleobject Element,long Hit,any Key) - The uses clicks a
part of the element that shows the had cursor.*/
/*
 OleObject oSurface
 oSurface = ole_1.Object
 MessageBox("Information",string(String(Key)))
*/
/*end event HandCursorClick*/

OleObject oSurface,var_Element

oSurface = ole_1.Object
oSurface.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oSurface.HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
oSurface.HTMLPicture("pic2","c:\exontrol\images\auction.gif")
var_Element = oSurface.Elements.Add("Caption")
 var_Element.Pictures = "1,2/pic1/pic2"
 var_Element.PicturesAlign = 33
 var_Element.ShowHandCursorOn = 771 /*exShowHandCursorExtraPictures |

exShowHandCursorPictures | exShowHandCursorIcon | exShowHandCursorPicture*/
 var_Element.CaptionAlign = 1

Visual DataFlex

// The uses clicks a part of the element that shows the had cursor.
Procedure OnComHandCursorClick Variant llElement OLEShowHandCursorOnEnum
llHit Variant llKey
 Forward Send OnComHandCursorClick llElement llHit llKey
 Showln llKey
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Send ComImages
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

 Set ComHTMLPicture "pic1" to "c:\exontrol\images\zipdisk.gif"
 Set ComHTMLPicture "pic2" to "c:\exontrol\images\auction.gif"
 Variant voElements
 Get ComElements to voElements
 Handle hoElements
 Get Create (RefClass(cComElements)) to hoElements
 Set pvComObject of hoElements to voElements
 Variant voElement
 Get ComAdd of hoElements "Caption" Nothing Nothing Nothing Nothing
Nothing to voElement
 Handle hoElement
 Get Create (RefClass(cComElement)) to hoElement
 Set pvComObject of hoElement to voElement
 Set ComPictures of hoElement to "1,2/pic1/pic2"
 Set ComPicturesAlign of hoElement to OLEexBottomCenter
 Set ComShowHandCursorOn of hoElement to
(OLEexShowHandCursorExtraPictures + OLEexShowHandCursorPictures +
OLEexShowHandCursorIcon + OLEexShowHandCursorPicture)
 Set ComCaptionAlign of hoElement to OLEexTopCenter

 Send Destroy to hoElement
 Send Destroy to hoElements
End_Procedure

XBase++

PROCEDURE OnHandCursorClick(oSurface,Element,Hit,Key)
 DevOut(Transform(Key,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oElement
 LOCAL oSurface

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSurface := XbpActiveXControl():new(oForm:drawingArea)
 oSurface:CLSID := "Exontrol.Surface.1" /*{AC1DF7F4-0919-4364-8167-
2F9B5155EA4B}*/
 oSurface:create(,, {10,60},{610,370})

 oSurface:HandCursorClick := {|Element,Hit,Key|
OnHandCursorClick(oSurface,Element,Hit,Key)} /*The uses clicks a part of the element
that shows the had cursor.*/

oSurface:Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

 oSurface:SetProperty("HTMLPicture","pic1","c:\exontrol\images\zipdisk.gif")

 oSurface:SetProperty("HTMLPicture","pic2","c:\exontrol\images\auction.gif")
 oElement := oSurface:Elements():Add("Caption")
 oElement:Pictures := "1,2/pic1/pic2"
 oElement:PicturesAlign := 33/*exBottomCenter*/
 oElement:ShowHandCursorOn :=
771/*exShowHandCursorExtraPictures+exShowHandCursorPictures+exShowHandCursorIcon+exShowHandCursorPicture*/

 oElement:CaptionAlign := 1/*exTopCenter*/

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

You can use the Edit method of the Element object to starts editing the element's Caption
or ExtraCaption.

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oSurface,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oSurface,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oSurface,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

event LayoutEndChanging (Operation as LayoutChangingEnum)
Notifies your application once the control's layout has been changed.

Type Description
Operation as
LayoutChangingEnum

A LayoutChangingEnum expression that specifies the
operation that ends.

The LayoutEndChanging event notifies that the specified operation ends. The
LayoutStartChanging event occurs once the user starts an operation on the surface, like
creating / adding a new element to the surface. During the LayoutStartChaning event, you
can call the CancelLayoutChanging method to cancel the specified operation.

The operations being signaled by the LayoutStartChanging / LayoutEndChanging events
are:

exSurfaceMove, the user scrolls or moves the surface. The AllowMoveSurface
property specifies the keys combination to allow user to move / scroll the surface.
exSurfaceZoom, the user magnifies or shrinks the surface. The AllowZoomSurface
property specifies the keys combination to allow user to zoom the surface.
exSurfaceHome, the user clicks the Home button on the control's toolbar, so the
surface is restored to original position. The Home method has the same effect.
exResizeObject, the user resizes the object. The AllowResizeObject property
specifies the keys combination to allow user to resize the object.
exMoveObject, the user moves the object. The AllowMoveObject property specifies
the keys combination to allow user to move the object.
exSelectObject, the user clicks the object to get it selected. The AllowSelectObject
property specifies the keys combination to allow user to select the object.
exSelectNothing, the user clicks an empty zone of the surface. The
AllowSelectNothing property specifies the keys combination to allow user to select
nothing on the surface.
exCreateObject, the user creates an element on the surface. The AllowCreateObject
property specifies the keys combination to allow user to create elements on the
surface.
exEditObject, the user edits the element's caption.
exLinkObjects, the user creates an element on the surface. The AllowLinkObjects
property specifies the keys combination to allow user to link elements on the surface
exFocusLink, the user clicks a link (the focused link is being updated). The FocusLink
property retrieves or changes the current link that is currently focused (selected or
active) within the control.
exUndo, An Undo operation is performed (CTR + Z). Occurs only if the control's
AllowUndoRedo property is True.
exRedo, A Redo operation is performed (CTR + Y). Occurs only if the control's

C#

VB

private void LayoutEndChanging(object
sender,exontrol.EXSURFACELib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutEndChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXSURFACELib.LayoutChangingEnum) Handles LayoutEndChanging
End Sub

C#

C++

C++
Builder

Delphi

private void LayoutEndChanging(object sender,
AxEXSURFACELib._ISurfaceEvents_LayoutEndChangingEvent e)
{
}

void OnLayoutEndChanging(long Operation)
{
}

void __fastcall LayoutEndChanging(TObject
*Sender,Exsurfacelib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutEndChanging(ASender: TObject; Operation :
LayoutChangingEnum);

AllowUndoRedo property is True.
exUndoRedoUpdate, The Undo/Redo queue is updated. Occurs only if the control's
AllowUndoRedo property is True.

For instance, the following events occur when user creates an element on the surface:

LayoutStartChanging(exCreateObject), the user clicks on the surface
AddElement, adds the new element to the Elements collection
CreateElement, the user ends creating the object
LayoutEndChanging(exCreateObject), the user un-clicks the surface

Syntax for LayoutEndChanging event, /NET version, on:

Syntax for LayoutEndChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure LayoutEndChanging(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_LayoutEndChangingEvent);
begin
end;

begin event LayoutEndChanging(long Operation)
end event LayoutEndChanging

Private Sub LayoutEndChanging(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_LayoutEndChangingEvent) Handles
LayoutEndChanging
End Sub

Private Sub LayoutEndChanging(ByVal Operation As
EXSURFACELibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutEndChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutEndChanging(oSurface,Operation)
RETURN

Java…

VBSc…

<SCRIPT EVENT="LayoutEndChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutEndChanging(Operation)
End Function
</SCRIPT>

Syntax for LayoutEndChanging event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComLayoutEndChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutEndChanging llOperation
End_Procedure

METHOD OCX_LayoutEndChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutEndChanging(int _Operation)
{
}

function LayoutEndChanging as v (Operation as
OLE::Exontrol.Surface.1::LayoutChangingEnum)
end function

function nativeObject_LayoutEndChanging(Operation)
return

event LayoutStartChanging (Operation as LayoutChangingEnum)
Occurs when the control's layout is about to be changed.

Type Description
Operation as
LayoutChangingEnum

A LayoutChangingEnum expression that specifies the
operation that begins.

The LayoutStartChanging event occurs once the user starts an operation on the surface,
like creating / adding a new element to the surface. During the LayoutStartChaning event,
you can call the CancelLayoutChanging method to cancel the specified operation. The
LayoutEndChanging event notifies that the specified operation ends.

The operations being signaled by the LayoutStartChanging / LayoutEndChanging events
are:

exSurfaceMove, the user scrolls or moves the surface. The AllowMoveSurface
property specifies the keys combination to allow user to move / scroll the surface.
exSurfaceZoom, the user magnifies or shrinks the surface. The AllowZoomSurface
property specifies the keys combination to allow user to zoom the surface.
exSurfaceHome, the user clicks the Home button on the control's toolbar, so the
surface is restored to original position. The Home method has the same effect.
exResizeObject, the user resizes the object. The AllowResizeObject property
specifies the keys combination to allow user to resize the object.
exMoveObject, the user moves the object. The AllowMoveObject property specifies
the keys combination to allow user to move the object.
exSelectObject, the user clicks the object to get it selected. The AllowSelectObject
property specifies the keys combination to allow user to select the object.
exSelectNothing, the user clicks an empty zone of the surface. The
AllowSelectNothing property specifies the keys combination to allow user to select
nothing on the surface.
exCreateObject, the user creates an element on the surface. The AllowCreateObject
property specifies the keys combination to allow user to create elements on the
surface.
exEditObject, the user edits the element's caption.
exLinkObjects, the user creates an element on the surface. The AllowLinkObjects
property specifies the keys combination to allow user to link elements on the surface.
exFocusLink, the user clicks a link (the focused link is being updated). The FocusLink
property retrieves or changes the current link that is currently focused (selected or
active) within the control.
exUndo, An Undo operation is performed (CTR + Z). Occurs only if the control's
AllowUndoRedo property is True.
exRedo, A Redo operation is performed (CTR + Y). Occurs only if the control's

C#

VB

private void LayoutStartChanging(object
sender,exontrol.EXSURFACELib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutStartChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXSURFACELib.LayoutChangingEnum) Handles LayoutStartChanging
End Sub

C#

C++

C++
Builder

Delphi

private void LayoutStartChanging(object sender,
AxEXSURFACELib._ISurfaceEvents_LayoutStartChangingEvent e)
{
}

void OnLayoutStartChanging(long Operation)
{
}

void __fastcall LayoutStartChanging(TObject
*Sender,Exsurfacelib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutStartChanging(ASender: TObject; Operation :
LayoutChangingEnum);

AllowUndoRedo property is True.
exUndoRedoUpdate, The Undo/Redo queue is updated. Occurs only if the control's
AllowUndoRedo property is True.

For instance, the following events occur when user creates an element on the surface:

LayoutStartChanging(exCreateObject), the user clicks on the surface
AddElement, adds the new element to the Elements collection
CreateElement, the user ends creating the object
LayoutEndChanging(exCreateObject), the user un-clicks the surface

Syntax for LayoutStartChanging event, /NET version, on:

Syntax for LayoutStartChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure LayoutStartChanging(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_LayoutStartChangingEvent);
begin
end;

begin event LayoutStartChanging(long Operation)
end event LayoutStartChanging

Private Sub LayoutStartChanging(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_LayoutStartChangingEvent) Handles
LayoutStartChanging
End Sub

Private Sub LayoutStartChanging(ByVal Operation As
EXSURFACELibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutStartChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutStartChanging(oSurface,Operation)
RETURN

Java…

VBSc…

<SCRIPT EVENT="LayoutStartChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutStartChanging(Operation)
End Function
</SCRIPT>

Syntax for LayoutStartChanging event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComLayoutStartChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutStartChanging llOperation
End_Procedure

METHOD OCX_LayoutStartChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutStartChanging(int _Operation)
{
}

function LayoutStartChanging as v (Operation as
OLE::Exontrol.Surface.1::LayoutChangingEnum)
end function

function nativeObject_LayoutStartChanging(Operation)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ElementFromPoint(-1,-1) property returns the element from the
cursor or nothing if no element at the cursor position. The HitTestFromPoint(-1,-1) property
returns the element and the hit-test code from the cursor. The HandCursorClick event
notifies once the user clicks a part of the element (which shows a hand cursor when the
pointer hovers it).

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseDownEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oSurface,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Surface.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Surface.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The ElementFromPoint(-1,-1) property
returns the element from the cursor or nothing if no element at the cursor position. The
HitTestFromPoint(-1,-1) property returns the element and the hit-test code from the cursor.
The ShowHandCursorOn property specifies the parts of the element that shows the hand
cursor when the mouse-pointer hovers the part. The HitTestFromPoint(-1,-1) property
returns the element/hit-test code from the cursor. Use the LinkFromPoint property to get if
there is any link at the specified position.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXSURFACELib._ISurfaceEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseMove(oSurface,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Surface.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Surface.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample determines if the cursor hovers the element's expand/collapse
glyphs:

Private Sub Surface1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 Dim h As HitTest
 Set h = Surface1.HitTestFromPoint(-1, -1)
 If Not h Is Nothing Then
 If (h.HitTestCode And exHitTestMask) = exHitTestGlyph Then
 Debug.Print "Expand/Collase Glyph of " & h.Element.ID
 End If
 End If
End Sub

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ElementFromPoint(-1,-1) property returns the element from the
cursor or nothing if no element at the cursor position. The HitTestFromPoint(-1,-1) property
returns the element and the hit-test code from the cursor. The HandCursorClick event
notifies once the user clicks a part of the element (which shows a hand cursor when the
pointer hovers it).

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseUpEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oSurface,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Surface.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Surface.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXSURFACELib._ISurfaceEvents_OLECompleteDragEvent e)
{

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another.

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to set the OLEDropMode and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oSurface,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in bellow.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLEDragDrop(object sender,
AxEXSURFACELib._ISurfaceEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

void __fastcall OLEDragDrop(TObject *Sender,Exsurfacelib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y)
{
}

In the /NET Assembly, you have to use the DragDrop event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXSURFACELibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oSurface,Data,Effect,Button,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

Syntax for OLEDragDrop event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as OLE::Exontrol.Surface.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.Surface.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Surface.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

The following VB sample adds a new item when the user drags a file (Open the Windows
Explorer, click and drag a file to the control) :

Private Sub Surface1_OLEDragDrop(Index As Integer, ByVal Data As
EXSURFACELibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)
 If Data.GetFormat(exCFFiles) Then
 Data.GetData (exCFFiles)
 Dim strFile As String
 strFile = Data.Files(0)
 'Adds a new item to the control
 Surface1(Index).Visible = False
 With Surface1(Index)

 .BeginUpdate
 Dim i As HITEM
 i = .Items.AddItem(strFile)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 Surface1(Index).Visible = True
 End If
End Sub

The following VC sample inserts a child item for each file that user drags:

#import <exsurface.dll> rename("GetItems", "exGetItems")

#include "Items.h"
void OnOLEDragDropSurface1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXSURFACELib::IExDataObjectPtr spData(Data);
 if (spData != NULL)
 if (spData->GetFormat(EXSURFACELib::exCFFiles))
 {
 CItems items = m_surface.GetItems();
 // Gets the handle of the item where the files will be inserted
 long c = 0, h = 0, nParentItem = m_surface.GetItemFromPoint(X, Y, &c, &h);
 if (nParentItem == 0)
 if (c != 0)
 nParentItem = items.GetCellItem(c);
 EXSURFACELib::IExDataObjectFilesPtr spFiles(spData->Files);
 if (spFiles->Count > 0)
 {
 m_surface.BeginUpdate();
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 for (long i = 0; i < spFiles->Count; i++)
 items.InsertItem(nParentItem, vtMissing, COleVariant(spFiles->GetItem(i
).operator const char *()));
 if (nParentItem)

 items.SetExpandItem(nParentItem, TRUE);
 m_surface.EndUpdate();
 }

 }
}

The #import statement imports definition for the ExDataObject and ExDataObjectFiles
objects. If the exsurface.dll file is located in another folder than the system folder, the path
to the file must be specified. The sample gets the item where the files were dragged and
insert all files in that position, as child items, if case.

The following VB.NET sample inserts a child item for each file that user drags:

Private Sub AxSurface1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLEDragDropEvent) Handles AxSurface1.OLEDragDrop
 If e.data.GetFormat(EXSURFACELib.exClipboardFormatEnum.exCFFiles) Then
 If (e.data.Files.Count > 0) Then
 AxSurface1.BeginUpdate()
 With AxSurface1.Items
 Dim iParent As Integer, c As Integer, hit As EXSURFACELib.HitTestInfoEnum
 iParent = AxSurface1.get_ItemFromPoint(e.x, e.y, c, hit)
 If iParent = 0 Then
 If Not c = 0 Then
 iParent = .CellItem(c)
 End If
 End If
 Dim i As Long
 For i = 0 To e.data.Files.Count - 1
 .InsertItem(iParent, , e.data.Files(i))
 Next
 If Not (iParent = 0) Then
 .ExpandItem(iParent) = True
 End If
 End With
 AxSurface1.EndUpdate()
 End If
 End If

End Sub

The following C# sample inserts a child item for each file that user drags:

private void axSurface1_OLEDragDrop(object sender,
AxEXSURFACELib._ISurfaceEvents_OLEDragDropEvent e)
{
 if (e.data.GetFormat(
Convert.ToInt16(EXSURFACELib.exClipboardFormatEnum.exCFFiles)))
 if (e.data.Files.Count > 0)
 {
 EXSURFACELib.HitTestInfoEnum hit;
 int c = 0, iParent = axSurface1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (iParent == 0)
 if (c != 0)
 iParent = axSurface1.Items.get_CellItem(c);

 axSurface1.BeginUpdate();
 for (int i = 0; i < e.data.Files.Count; i++)
 axSurface1.Items.InsertItem(iParent,"", e.data.Files[i].ToString());
 if (iParent != 0)
 axSurface1.Items.set_ExpandItem(iParent, true);
 axSurface1.EndUpdate();
 }
}

The following VFP sample inserts a child item for each file that user drags:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

local c, hit, iParent
c = 0
hit = 0
if (data.GetFormat(15)) && exCFFiles
 if (data.Files.Count() > 0)
 with thisform.Surface1.Items
 iParent = thisform.Surface1.ItemFromPoint(x, y, @c, @hit)

 thisform.Surface1.BeginUpdate()
 for i = 0 to data.files.Count() - 1
 .InsertItem(iParent, "", data.files(i))
 next
 if (iParent != 0)
 .DefaultItem = iParent
 .ExpandItem(0) = .t.
 endif
 thisform.Surface1.EndUpdate()
 endwith
 endif
endif

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed bellow.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

These bits correspond to the values 1, 2, and 4,
respectively. The shift parameter indicates the state of
these keys; some, all, or none of the bits can be set,
indicating that some, all, or none of the keys are
depressed. For example, if both the CTRL and ALT keys
were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

State as Integer
An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed bellow.

C#

VB

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void OLEDragOver(object sender,
AxEXSURFACELib._ISurfaceEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exsurfacelib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Private Sub OLEDragOver(ByVal Data As EXSURFACELibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)

Syntax for OLEDragOver event, /COM version, on:

VBA

VFP

Xbas…

End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oSurface,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.Surface.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.Surface.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Surface.1::OLE_YPOS_PIXELS,State as N)

Syntax for OLEDragOver event, /COM version (others), on:

dBASE

end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

C#

VB

private void OleEvent(object sender,exontrol.EXSURFACELib.Element
Element,exontrol.EXSURFACELib.OleEvent Ev)
{
}

Private Sub OleEvent(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element,ByVal Ev As exontrol.EXSURFACELib.OleEvent)

event OleEvent (Element as Element, Ev as OleEvent)
Occurs once an inside control fires an event.

Type Description
Element as Element An Element object that hosts the ActiveX control.

Ev as OleEvent A OleEvent object that contains information about the
event.

The ExSurface component supports ActiveX hosting. The Type property on
exElementHostControl, specifies that the element hosts an inside control. The Control
property specifies the program identifier of the control to be hosted. In case you are
inserting a runtime-licensed control you must specify the License property, prior calling the
Control property. The Object property specifies the object being hosted (a reference to the
inside ActiveX control). The OleEvent event occurs once an inner control fires an event.
Use the ToString property of the OleEvent object to display general information about the
fired event.

The following screen shot shows the Exontrol.Grid on the surface:

Syntax for OleEvent event, /NET version, on:

Handles OleEvent
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void OleEvent(object sender,
AxEXSURFACELib._ISurfaceEvents_OleEventEvent e)
{
}

void OnOleEvent(LPDISPATCH Element,LPDISPATCH Ev)
{
}

void __fastcall OleEvent(TObject *Sender,Exsurfacelib_tlb::IElement
*Element,Exsurfacelib_tlb::IOleEvent *Ev)
{
}

procedure OleEvent(ASender: TObject; Element : IElement;Ev : IOleEvent);
begin
end;

procedure OleEvent(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OleEventEvent);
begin
end;

begin event OleEvent(oleobject Element,oleobject Ev)
end event OleEvent

Private Sub OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OleEventEvent) Handles OleEvent
End Sub

Private Sub OleEvent(ByVal Element As EXSURFACELibCtl.IElement,ByVal Ev As
EXSURFACELibCtl.IOleEvent)
End Sub

Syntax for OleEvent event, /COM version, on:

VBA

VFP

Xbas…

Private Sub OleEvent(ByVal Element As Object,ByVal Ev As Object)
End Sub

LPARAMETERS Element,Ev

PROCEDURE OnOleEvent(oSurface,Element,Ev)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OleEvent(Element,Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OleEvent(Element,Ev)
End Function
</SCRIPT>

Procedure OnComOleEvent Variant llElement Variant llEv
 Forward Send OnComOleEvent llElement llEv
End_Procedure

METHOD OCX_OleEvent(Element,Ev) CLASS MainDialog
RETURN NIL

void onEvent_OleEvent(COM _Element,COM _Ev)
{
}

function OleEvent as v (Element as OLE::Exontrol.Surface.1::IElement,Ev as
OLE::Exontrol.Surface.1::IOleEvent)
end function

function nativeObject_OleEvent(Element,Ev)
return

Syntax for OleEvent event, /COM version (others), on:

The following VB sample adds a command button:

With Surface1
 With .Elements
 With .Add("activex hosting")
 .Type = exElementHostControl
 .Control = "Forms.CommandButton.1"
 End With
 End With
End With

The following sample displays information about fired event:

Private Sub Surface1_OleEvent(ByVal Element As EXSURFACELibCtl.IElement, ByVal Ev As
EXSURFACELibCtl.IOleEvent)
 Debug.Print Ev.ToString()
End Sub

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed bellow.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXSURFACELib._ISurfaceEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLEGiveFeedbackEvent) Handles OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oSurface,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXSURFACELib._ISurfaceEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exsurfacelib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not implemented

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXSURFACELibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oSurface,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.Surface.1::IExDataObject,Format
as N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

In the /NET Assembly, you have to use the DragEnter event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the AllowedEffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You
may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use exCFFiles
and Files property to add files to the drag and drop data object.

The idea of drag and drop in exSurface control is the same as in other controls. To start
accepting drag and drop sources the exSurface control should have the OLEDropMode to
exOLEDropManual. Once that is is set, the exSurface starts accepting any drag and drop
sources.

The first step is if you want to be able to drag items from your exSurface control to other

https://exontrol.com/faq.jsp/net/#dragdrop

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void OLEStartDrag(object sender,
AxEXSURFACELib._ISurfaceEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exsurfacelib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_OLEStartDragEvent);
begin
end;

controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects can be changed only in
the OLEStartDrag event. The OLE_StartDrag event is fired when user is about to drag
items from the control. The AllowedEffect parameter and SetData property must be set
to continue drag and drop operation, as in the following samples:

Syntax for OLEStartDrag event, /NET version, on:

Syntax for OLEStartDrag event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXSURFACELibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oSurface,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,

Syntax for OLEStartDrag event, /COM version (others), on:

XBasic

dBASE

DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.Surface.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

The following VB sample drags data from a control to another, by registering a new
clipboard format:

Private Sub Surface1_OLEStartDrag(Index As Integer, ByVal Data As
EXSURFACELibCtl.IExDataObject, AllowedEffects As Long)

 ' We are going to add two clipboard formats: text and "EXSURFACE" clipboard format.
 ' We need to use RegisterClipboardFormat API function in order to register our
 ' clipboard format. One cliboard format is enough, but the sample shows
 ' how to filter in OLEDragDrop event the other clipboard formats

 ' Builds a string that contains each cell's caption on a new line
 Dim n As Long
 Dim s As String
 With Surface1(Index)
 s = Index & vbCrLf ' Saves the source
 For n = 0 To .Columns.Count - 1
 s = s & .Items.CellCaption(.Items.SelectedItem(0), n) & vbCrLf
 Next
 End With

 AllowedEffects = 0
 ' Checks whether the selected item has a parent
 If (Surface1(Index).Items.ItemParent(Surface1(Index).Items.SelectedItem(0)) <> 0) Then
 AllowedEffects = 1
 End If
 ' Sets the text clipboard format
 Data.SetData s, exCFText

 ' Builds an array of bytes, and copy there all characters in the s string.
 ' Passes the array to the SetData method.
 ReDim v(Len(s)) As Byte
 For n = 0 To Len(s) - 1
 v(n) = Asc(Mid(s, n + 1, 1))
 Next
 Data.SetData v, RegisterClipboardFormat("EXSURFACE")

End Sub

The code fills data for two types of clipboard formats: text (CF_TEXT) and
"EXSURFACE" registered clipboard format. The registered clipboard format must be an
array of bytes. As you can see we have used the RegisterClipboardFormat API function,
and it should be declared like:

Private Declare Function RegisterClipboardFormat Lib "user32" Alias
"RegisterClipboardFormatA" (ByVal lpString As String) As Integer

The second step is accepting OLE drag and drop source objects. That means, if you would
like to let your control accept drag and drop objects, you have to handle the OLEDragDrop
event. It gets as argument an object Data that stores the drag and drop information. The
next sample shows how handle the OLEDragDrop event:

Private Sub Surface1_OLEDragDrop(Index As Integer, ByVal Data As
EXSURFACELibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)
 ' Checks whether the clipboard format is our. Since we have registered the clipboard in
the
 ' OLEStartData format we now its format, so we can handle this type of clip formats.
 If (Data.GetFormat(RegisterClipboardFormat("EXSURFACE"))) Then
 ' Builds the saved string from the array passed
 Dim s As String
 Dim v() As Byte
 Dim n As Integer
 v = Data.GetData(RegisterClipboardFormat("EXSURFACE"))
 For n = LBound(v) To UBound(v)
 s = s + Chr(v(n))
 Next

 Debug.Print s

 'Adds a new item to the control, and sets the cells captions like we saved, line by line
 Surface1(Index).Visible = False
 With Surface1(Index)
 .BeginUpdate
 Dim i As HITEM
 Dim item As String
 Dim nCur As Long
 i = .Items.AddItem()
 nCur = InStr(1, s, vbCrLf) + Len(vbCrLf) ' Jumps the source
 For n = 0 To .Columns.Count - 1
 Dim nnCur As Long
 nnCur = InStr(nCur, s, vbCrLf)
 .Items.CellCaption(i, n) = Mid(s, nCur, nnCur - nCur)
 nCur = nnCur + Len(vbCrLf)
 Next
 .Items.CellImage(i, "EmployeeID") = Int(.Items.CellCaption(i, "EmployeeID"))
 .Items.SetParent i, h(Index, Int(.Items.CellCaption(i, "EmployeeID")) - 1)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 Surface1(Index).Visible = True
 End If
End Sub

The following VC sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

#import <exsurface.dll> rename("GetItems", "exGetItems")

#include "Items.h"
#include "Columns.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {

 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOLEStartDragSurface1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 CItems items = m_surface.GetItems();
 long nCount = items.GetSelectCount(), nColumnCount =
m_surface.GetColumns().GetCount();
 if (nCount > 0)
 {
 *AllowedEffects = /*exOLEDropEffectCopy */ 1;
 EXSURFACELib::IExDataObjectPtr spData(Data);
 if (spData !=NULL)
 {
 CString strData;
 for (long i = 0; i < nCount; i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < nColumnCount; j++)
 strData += V2S(&items.GetCellCaption(vtItem, COleVariant(j))) + "\t";
 }
 strData += "\r\n";
 spData->SetData(COleVariant(strData), COleVariant(
(long)EXSURFACELib::exCFText));
 }
 }
}

The sample saves data as CF_TEXT format (EXSURFACELib::exCFText). The data is a
text, where each item is separated by "\r\n" (new line), and each cell is separated by "\t" (

TAB charcater). Of course, data can be saved as you want. The sample only gives an idea
of what and how it could be done. The sample uses the #import statement to import the
control's type library, including definitions for ExDataObject and ExDataObjectFiles that are
required to fill data to be dragged. If your exsurface.dll file is located in another place than
your system folder, the path to the exsurface.dll file needs to be specified, else compiler
errors occur.

The following VB.NET sample copies the selected items to the clipboard, as soon as the
user starts dragging the items:

Private Sub AxSurface1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_OLEStartDragEvent) Handles AxSurface1.OLEStartDrag
 With AxSurface1.Items
 If (.SelectCount > 0) Then
 e.allowedEffects = 1 'exOLEDropEffectCopy
 Dim i As Integer, j As Integer, strData As String, nColumnCount As Long =
AxSurface1.Columns.Count
 For i = 0 To .SelectCount - 1
 For j = 0 To nColumnCount - 1
 strData = strData + .CellCaption(.SelectedItem(i), j) + Chr(Keys.Tab)
 Next
 Next
 strData = strData + vbCrLf
 e.data.SetData(strData, EXSURFACELib.exClipboardFormatEnum.exCFText)
 End If
 End With
End Sub

The following C# sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

private void axSurface1_OLEStartDrag(object sender,
AxEXSURFACELib._ISurfaceEvents_OLEStartDragEvent e)
{
 int nCount = axSurface1.Items.SelectCount;
 if (nCount > 0)
 {
 int nColumnCount = axSurface1.Columns.Count;
 e.allowedEffects = /*exOLEDropEffectCopy*/ 1;

 string strData = "";
 for (int i =0 ; i < nCount; i++)
 {
 for (int j = 0; j < nColumnCount; j++)
 {
 object strCell =
axSurface1.Items.get_CellCaption(axSurface1.Items.get_SelectedItem(i), j);
 strData += (strCell != null ? strCell.ToString() : "") + "\t";
 }
 strData += "\r\n";
 }
 e.data.SetData(strData, EXSURFACELib.exClipboardFormatEnum.exCFText);
 }
}

The following VFP sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

local sData, nColumnCount, i, j
with thisform.Surface1.Items
 if (.SelectCount() > 0)
 allowedeffects = 1 && exOLEDropEffectCopy
 sData = ""
 nColumnCount = thisform.Surface1.Columns.Count
 for i = 0 to .SelectCount - 1
 for j = 0 to nColumnCount
 sData = sData + .CellCaption(.SelectedItem(i), j) + chr(9)
 next
 sData = sData + chr(10)+ chr(13)
 next
 data.SetData(sData, 1) && exCFText
 endif
endwith

C#

VB

private void ParentChangeElement(object sender,exontrol.EXSURFACELib.Element
Element)
{
}

Private Sub ParentChangeElement(ByVal sender As System.Object,ByVal Element
As exontrol.EXSURFACELib.Element) Handles ParentChangeElement
End Sub

C#

C++

C++
Builder

private void ParentChangeElement(object sender,
AxEXSURFACELib._ISurfaceEvents_ParentChangeElementEvent e)
{
}

void OnParentChangeElement(LPDISPATCH Element)
{
}

void __fastcall ParentChangeElement(TObject *Sender,Exsurfacelib_tlb::IElement
*Element)
{
}

event ParentChangeElement (Element as Element)
The element is expanded or collapsed.

Type Description
Element as Element An Element object whose parent is changed.

The ParentChangeElement event occurs when the element's parent is changed. Use the
AllowInsertObject property to specify whether the user can change the element's parent at
runtime by dragging the element over the other. The Parent property indicates the element's
parent. The AllowInsertChild property of the Element object specifies whether the element
supports adding child elements at runtime. The AllowChangeParent property of the Element
object specifies whether the element can change its parent at runtime.

Syntax for ParentChangeElement event, /NET version, on:

Syntax for ParentChangeElement event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ParentChangeElement(ASender: TObject; Element : IElement);
begin
end;

procedure ParentChangeElement(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_ParentChangeElementEvent);
begin
end;

begin event ParentChangeElement(oleobject Element)
end event ParentChangeElement

Private Sub ParentChangeElement(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_ParentChangeElementEvent) Handles
ParentChangeElement
End Sub

Private Sub ParentChangeElement(ByVal Element As EXSURFACELibCtl.IElement)
End Sub

Private Sub ParentChangeElement(ByVal Element As Object)
End Sub

LPARAMETERS Element

PROCEDURE OnParentChangeElement(oSurface,Element)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ParentChangeElement(Element)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ParentChangeElement(Element)
End Function
</SCRIPT>

Syntax for ParentChangeElement event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComParentChangeElement Variant llElement
 Forward Send OnComParentChangeElement llElement
End_Procedure

METHOD OCX_ParentChangeElement(Element) CLASS MainDialog
RETURN NIL

void onEvent_ParentChangeElement(COM _Element)
{
}

function ParentChangeElement as v (Element as OLE::Exontrol.Surface.1::IElement)
end function

function nativeObject_ParentChangeElement(Element)
return

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

event RClick ()
Occurs once the user right clicks the control.

Type Description

The RClick event notifies when the user right clicks the control. The
ElementFromPoint(-1,-1) property returns the element from the cursor or nothing if no
element at the cursor position. The HitTestFromPoint property returns the element and the
hit-test code from the cursor. You can use the Edit method to edit the element's caption or
extra caption. The HandCursorClick event notifies once the user clicks a part of the element
(which shows a hand cursor when the pointer hovers it).

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oSurface)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

C#

VB

private void RemoveElement(object sender,exontrol.EXSURFACELib.Element
Element)
{
}

Private Sub RemoveElement(ByVal sender As System.Object,ByVal Element As
exontrol.EXSURFACELib.Element) Handles RemoveElement
End Sub

C#

C++

C++
Builder

private void RemoveElement(object sender,
AxEXSURFACELib._ISurfaceEvents_RemoveElementEvent e)
{
}

void OnRemoveElement(LPDISPATCH Element)
{
}

void __fastcall RemoveElement(TObject *Sender,Exsurfacelib_tlb::IElement
*Element)
{
}

event RemoveElement (Element as Element)
An element has been removed from the surface.

Type Description

Element as Element An Element object that specifies the element being
removed from the Elements collection.

The RemoveElement event occurs once the element has been removed from the Elements
collection. Use the RemoveElement event to release any extra data associated with the
element. Use the Remove method to remove a specific element from the Elements
collection. Use the RemoveSelection method to remove the selected elements. Use the
Clear method to remove all elements from the surface. Removing and element removes the
incoming and outgoing links as well.

Syntax for RemoveElement event, /NET version, on:

Syntax for RemoveElement event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveElement(ASender: TObject; Element : IElement);
begin
end;

procedure RemoveElement(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_RemoveElementEvent);
begin
end;

begin event RemoveElement(oleobject Element)
end event RemoveElement

Private Sub RemoveElement(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_RemoveElementEvent) Handles RemoveElement
End Sub

Private Sub RemoveElement(ByVal Element As EXSURFACELibCtl.IElement)
End Sub

Private Sub RemoveElement(ByVal Element As Object)
End Sub

LPARAMETERS Element

PROCEDURE OnRemoveElement(oSurface,Element)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveElement(Element)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveElement(Element)
End Function
</SCRIPT>

Syntax for RemoveElement event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveElement Variant llElement
 Forward Send OnComRemoveElement llElement
End_Procedure

METHOD OCX_RemoveElement(Element) CLASS MainDialog
RETURN NIL

void onEvent_RemoveElement(COM _Element)
{
}

function RemoveElement as v (Element as OLE::Exontrol.Surface.1::IElement)
end function

function nativeObject_RemoveElement(Element)
return

C#

VB

private void RemoveLink(object sender,exontrol.EXSURFACELib.Link Link)
{
}

Private Sub RemoveLink(ByVal sender As System.Object,ByVal Link As
exontrol.EXSURFACELib.Link) Handles RemoveLink
End Sub

C#

C++

C++
Builder

Delphi

private void RemoveLink(object sender,
AxEXSURFACELib._ISurfaceEvents_RemoveLinkEvent e)
{
}

void OnRemoveLink(LPDISPATCH Link)
{
}

void __fastcall RemoveLink(TObject *Sender,Exsurfacelib_tlb::ILink *Link)
{
}

procedure RemoveLink(ASender: TObject; Link : ILink);
begin
end;

event RemoveLink (Link as Link)
The link is removed from the links collection.

Type Description
Link as Link A Link object that specifies the link to be removed.

The RemoveLink event notifies your application once a link has been removed from the
Links collection. The Remove method removes a specific link from the Links collection. Use
the Clear method to remove all links from the surface. The IncomingLinks property returns a
safe array of incoming links (links that ends on the element). The OutgoingLinks property
returns a safe array of outgoing links (links that starts from the element).

Syntax for RemoveLink event, /NET version, on:

Syntax for RemoveLink event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveLink(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_RemoveLinkEvent);
begin
end;

begin event RemoveLink(oleobject Link)
end event RemoveLink

Private Sub RemoveLink(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_RemoveLinkEvent) Handles RemoveLink
End Sub

Private Sub RemoveLink(ByVal Link As EXSURFACELibCtl.ILink)
End Sub

Private Sub RemoveLink(ByVal Link As Object)
End Sub

LPARAMETERS Link

PROCEDURE OnRemoveLink(oSurface,Link)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RemoveLink(Link)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveLink(Link)
End Function
</SCRIPT>

Procedure OnComRemoveLink Variant llLink
 Forward Send OnComRemoveLink llLink
End_Procedure

Syntax for RemoveLink event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_RemoveLink(Link) CLASS MainDialog
RETURN NIL

void onEvent_RemoveLink(COM _Link)
{
}

function RemoveLink as v (Link as OLE::Exontrol.Surface.1::ILink)
end function

function nativeObject_RemoveLink(Link)
return

C#

VB

private void SelectionChanged(object sender)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object) Handles
SelectionChanged
End Sub

event SelectionChanged ()
Notifies your application that the control's selection has been changed.

Type Description

The SelectionChanged event occurs once a new element is selected or unselected. The
Selected property of the Element object indicates whether the element is selected or
unselected. The Selectable property of the Element object indicates whether the element is
selectable or un-selectable.

The SelectObjectColor / SelectObjectTextColor property specifies the colors to show the
selected elements (while the control has the focus). The SelectObjectColorInactive /
SelectObjectTextColorInactive property specifies the color to show the selected elements (
while the control is not focused). The SelectObjectStyle property specifies the style to
show the selected elements (like changing the element's background/foreground colors,
showing a border around the selected elements, and so on). Use the
Background(exSelectObjectRectColor) property to specify the color to show the rectangle
that highlights the elements that intersect the dragging rectangle.

The SingleSel property specifies whether the surface allows selecting one or multiple
elements. The SelCount property counts the number of selected elements. The SelElement
property returns the selected element based on its index in the selected elements
collection. The Selection property sets or gets a safe array of selected elements. The
AllowSelectObject property indicates the keys combination to allow user selecting new
elements. The AllowSelectObjectRect property specifies the keys combination so the user
can select the elements from the dragging rectangle. The AllowSelectNothing property
indicates whether the selection is cleared once the user clicks any empty area on the
surface. The SelectAll method selects all elements in the chart. Use the UnselectAll method
to unselect all elements on the surface.

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

private void SelectionChanged(object sender, EventArgs e)
{
}

void OnSelectionChanged()
{
}

void __fastcall SelectionChanged(TObject *Sender)
{
}

procedure SelectionChanged(ASender: TObject;);
begin
end;

procedure SelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelectionChanged()
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelectionChanged
End Sub

Private Sub SelectionChanged()
End Sub

Private Sub SelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnSelectionChanged(oSurface)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="SelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged()
End Function
</SCRIPT>

Procedure OnComSelectionChanged
 Forward Send OnComSelectionChanged
End_Procedure

METHOD OCX_SelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged()
{
}

function SelectionChanged as v ()
end function

function nativeObject_SelectionChanged()
return

Syntax for SelectionChanged event, /COM version (others), on:

The following VB sample enumerates the incoming elements (of selected elements):

Private Sub Surface1_SelectionChanged()
 With Surface1
 Dim s As Variant
 For Each s In .Selection
 Debug.Print "Incomming Elements of " & s.ID & "are: "
 With s

 For Each i In .IncomingLinks
 Debug.Print i.ElementFrom.ID
 Next
 End With
 Next
 End With
End Sub

The following VB sample enumerates the outgoing elements (of selected elements):

Private Sub Surface1_SelectionChanged()
 With Surface1
 Dim s As Variant
 For Each s In .Selection
 Debug.Print "Outgoing Elements of " & s.ID & "are: "
 With s
 For Each i In .OutgoingLinks
 Debug.Print i.ElementTo.ID
 Next
 End With
 Next
 End With
End Sub

C#

VB

private void ToolBarAnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub ToolBarAnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles ToolBarAnchorClick
End Sub

C#

C++

private void ToolBarAnchorClick(object sender,
AxEXSURFACELib._ISurfaceEvents_ToolBarAnchorClickEvent e)
{
}

void OnToolBarAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

event ToolBarAnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked, on the control's toolbar.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the ToolBarAnchorClick event to notify that the user clicks an anchor
element (being displayed on the control's toobar). An anchor is a piece of text or some
other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The ToolBarAnchorClick event is fired
only if prior clicking the control it shows the hand cursor. The control fires the
ToolBarAnchorClick event when the user clicks an hyperlink element. The ToolBarCaption
property specifies the caption of the button. Use the ToolBarRefresh method to refresh the
control's toolbar. The ToolBarToolTip property specifies the button's tooltip. The control fires
the ToolBarClick event when the user clicks a button in the surface's toolbar.

Syntax for ToolBarAnchorClick event, /NET version, on:

Syntax for ToolBarAnchorClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall ToolBarAnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure ToolBarAnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure ToolBarAnchorClick(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_ToolBarAnchorClickEvent);
begin
end;

begin event ToolBarAnchorClick(string AnchorID,string Options)
end event ToolBarAnchorClick

Private Sub ToolBarAnchorClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_ToolBarAnchorClickEvent) Handles
ToolBarAnchorClick
End Sub

Private Sub ToolBarAnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub ToolBarAnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnToolBarAnchorClick(oSurface,AnchorID,Options)
RETURN

Java… <SCRIPT EVENT="ToolBarAnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

Syntax for ToolBarAnchorClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function ToolBarAnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComToolBarAnchorClick String llAnchorID String llOptions
 Forward Send OnComToolBarAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_ToolBarAnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_ToolBarAnchorClick(str _AnchorID,str _Options)
{
}

function ToolBarAnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_ToolBarAnchorClick(AnchorID,Options)
return

C#

VB

private void ToolBarClick(object sender,int ID,int SelectedID)
{
}

Private Sub ToolBarClick(ByVal sender As System.Object,ByVal ID As Integer,ByVal
SelectedID As Integer) Handles ToolBarClick
End Sub

C# private void ToolBarClick(object sender,

event ToolBarClick (ID as Long, SelectedID as Long)
Occurs when the user clicks a button in the toolbar.

Type Description

ID as Long A Long expression that specifies the identifier of the
button/selector being clicked.

SelectedID as Long

A long expression that specifies the identifier being
selected. (the identifier being specified by the second part
of the ToolBarCaption property [separated by # character
]). For instance, if the ToolBarCaption property is
"Letter#1234" the button displays the "Letter" label, the
SelectedID parameter is 1234 if the user clicks the button
or selects the item in a drop down field.

The control fires the ToolBarClick event when the user clicks a button or selects a value in
the control's toolbar. The ToolBarCaption property specifies the caption of the button. The
ToolBarToolTip property specifies the button's tooltip. Use the ToolBarRefresh method to
refresh the control's toolbar. Use the ToolBarFormat property to add new buttons, to
display icons, pictures, or any other HTML caption.

The following screen shot shows the control's default toolbar:

For instance, clicking the Home button, generates the ToolBarClick(100) event. Instead
selecting a new value from the zoom field (drop-down field), generates
ToolBarClick(101,zoom) where the zoom is the zoom-factor being chosen.

Syntax for ToolBarClick event, /NET version, on:

Syntax for ToolBarClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

AxEXSURFACELib._ISurfaceEvents_ToolBarClickEvent e)
{
}

void OnToolBarClick(long ID,long SelectedID)
{
}

void __fastcall ToolBarClick(TObject *Sender,long ID,long SelectedID)
{
}

procedure ToolBarClick(ASender: TObject; ID : Integer;SelectedID : Integer);
begin
end;

procedure ToolBarClick(sender: System.Object; e:
AxEXSURFACELib._ISurfaceEvents_ToolBarClickEvent);
begin
end;

begin event ToolBarClick(long ID,long SelectedID)
end event ToolBarClick

Private Sub ToolBarClick(ByVal sender As System.Object, ByVal e As
AxEXSURFACELib._ISurfaceEvents_ToolBarClickEvent) Handles ToolBarClick
End Sub

Private Sub ToolBarClick(ByVal ID As Long,ByVal SelectedID As Long)
End Sub

Private Sub ToolBarClick(ByVal ID As Long,ByVal SelectedID As Long)
End Sub

LPARAMETERS ID,SelectedID

PROCEDURE OnToolBarClick(oSurface,ID,SelectedID)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ToolBarClick(ID,SelectedID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolBarClick(ID,SelectedID)
End Function
</SCRIPT>

Procedure OnComToolBarClick Integer llID Integer llSelectedID
 Forward Send OnComToolBarClick llID llSelectedID
End_Procedure

METHOD OCX_ToolBarClick(ID,SelectedID) CLASS MainDialog
RETURN NIL

void onEvent_ToolBarClick(int _ID,int _SelectedID)
{
}

function ToolBarClick as v (ID as N,SelectedID as N)
end function

function nativeObject_ToolBarClick(ID,SelectedID)
return

Syntax for ToolBarClick event, /COM version (others), on:

property Elements.Item (ID as Variant) as Element
Returns a specific Element of the Elements collection, giving its identifier.

Type Description

ID as Variant A Long, String or Numeric expression that defines the
element's unique identifier.

Element An Element object being retrieved.

The Item property accesses the element giving its identifier. The Count property specifies
the number of elements in the Elements collection. The ID property specifies the element's
unique identfier.

The following VB sample enumerates the elements on the surface:

Dim e As Variant
For Each e In Surface1.Elements
 Debug.Print e.ID
Next

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds two numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
date(value) format `MMM d, yyyy` , returns the date such as Sep 2, 2023, for English
format
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and

https://exontrol.com/expression.jsp

programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,
0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the

in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.

a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by
2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats a numeric value with specified flags. The
format method formats numeric or date expressions (depends on the type of the value,
explained at operators for dates). If flags is empty, the number is displayed as shown
in the field "Number" in the "Regional and Language Options" from the Control Panel.
For instance the "1000 format ''" displays 1,000.00 for English format, while 1.000,00
is displayed for German format. "1000 format '2|.|3|,'" will always displays 1,000.00 no
matter of the settings in your control panel. If formatting the number fails for some
invalid parameter, the value is displayed with no formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with
the following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the

field "No. of digits after decimal" from "Regional and Language Options" is
using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left
of the decimal separator. Values in the range 0 through 9 and 32 are valid.
The most significant grouping digit indicates the number of digits in the least
significant group immediately to the left of the decimal separator. Each
subsequent grouping digit indicates the next significant group of digits to the
left of the previous group. If the last value supplied is not 0, the remaining
groups repeat the last group. Typical examples of settings for this member
are: 0 to group digits as in 123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as in 12,34,56,789.00. If the flag is
missing, the field "Digit grouping" from "Regional and Language Options"
indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the
field "Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing,
the field "Negative number format" from "Regional and Language Options" is
using. The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If
the flag is missing, the field "Display leading zeros" from "Regional and
Language Options" is using. The valid values are 0, 1

 The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"

trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (
0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15
value format 'flags' (binary operator) formats a date expression with specified flags.
The format method formats numeric (depends on the type of the value, explained at
operators for numbers) or date expressions. If not supported, the value is formatted as
a number (the date format is supported by newer version only). The flags specifies the
format picture string that is used to form the date. Possible values for the format
picture string are defined below. For instance, the date(value) format `MMM d, yyyy`

returns "Sep 2, 2023"

The following table defines the format types used to represent days:

d, day of the month as digits without leading zeros for single-digit days (8)
dd, day of the month as digits with leading zeros for single-digit days (08)
ddd, abbreviated day of the week as specified by the current locale ("Mon" in
English)
dddd, day of the week as specified by the current locale ("Monday" in
English)

The following table defines the format types used to represent months:

M, month as digits without leading zeros for single-digit months (4)
MM, month as digits with leading zeros for single-digit months (04)
MMM, abbreviated month as specified by the current locale ("Nov" in English)
MMMM, month as specified by the current locale ("November" for English)

The following table defines the format types used to represent years:

y, year represented only by the last digit (3)
yy, year represented only by the last two digits. A leading zero is added for
single-digit years (03)
yyy, year represented by a full four or five digits, depending on the calendar
used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other
supported calendars. Calendars that have single-digit or two-digit years, such
as for the Japanese Emperor era, are represented differently. A single-digit
year is represented with a leading zero, for example, "03". A two-digit year is
represented with two digits, for example, "13". No additional leading zeros are
displayed.
yyyy, behaves identically to "yyyy"

The following table defines the format types used to represent era:

g, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)
gg, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)

The following table defines the format types used to represent hours:

h, hours with no leading zero for single-digit hours; 12-hour clock
hh, hours with leading zero for single-digit hours; 12-hour clock
H, hours with no leading zero for single-digit hours; 24-hour clock

HH, hours with leading zero for single-digit hours; 24-hour clock

The following table defines the format types used to represent minutes:

m, minutes with no leading zero for single-digit minutes
mm, minutes with leading zero for single-digit minutes

The following table defines the format types used to represent seconds:

s, seconds with no leading zero for single-digit seconds
ss, seconds with leading zero for single-digit seconds

The following table defines the format types used to represent time markers:

t, one character time marker string, such as A or P
tt, multi-character time marker string, such as AM or PM

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Element
	AllowChangeParent property
	AllowInsertChild property
	AutoHeight property (readonly)
	AutoSize property
	AutoWidth property (readonly)
	BackColor property
	BackgroundExt property
	BackgroundExtValue property
	BorderColor property
	BorderPadding property
	BringToFront method
	Caption property
	CaptionAlign property
	CaptionSingleLine property
	CheckBoxAlign property
	Checked property
	ChildCount property (readonly)
	ChildPosition property
	Children property (readonly)
	ClientPadding property
	Control property
	Edit method
	ElementFormat property
	Enabled property
	EndUpdateElement method
	EnsureVisible method
	Expanded property
	ExtraCaption property
	ExtraCaptionAlign property
	ExtraCaptionSingleLine property
	ExtraPictures property
	ExtraPicturesAlign property
	FirstChild property (readonly)
	ForeColor property
	Height property
	ID property
	IncomingLinks property (readonly)
	InflateSize property
	LastChild property (readonly)
	Level property (readonly)
	License property
	MaxHeight property
	MaxWidth property
	MinHeight property
	MinWidth property
	MoveTo method
	NextSiblingChild property (readonly)
	NextVisibleChild property (readonly)
	Object property (readonly)
	OutgoingLinks property (readonly)
	OverviewColor property
	Padding property
	Parent property
	PathTo property (readonly)
	Pattern property (readonly)
	Picture property
	PictureDisplay property
	Pictures property
	PicturesAlign property
	PrevSiblingChild property (readonly)
	PrevVisibleChild property (readonly)
	Resizable property
	ScrollTo method
	Selectable property
	Selected property
	SendToBack method
	ShowCheckBox property
	ShowHandCursorOn property
	StartUpdateElement property (readonly)
	StatusAlign property
	StatusColor property
	StatusPadding property
	StatusPattern property (readonly)
	StatusSize property
	ToolTip property
	ToolTipTitle property
	Type property
	UserData property
	Visible property
	VisibleChildCount property (readonly)
	VisibleChildren property (readonly)
	Width property
	Window property
	X property
	Y property

	Elements
	Add method
	Clear method
	Count property (readonly)
	Insert method
	InsertControl method
	Item property (readonly)
	Remove method

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	HitTest
	Element property (readonly)
	HitTestCode property (readonly)
	HitTestKey property (readonly)

	Link
	AllowControlPoint property
	ArrowColor property
	ArrowFrameColor property
	ArrowSize property
	Caption property
	CaptionAlign property
	Color property
	CustomPath property
	ElementFrom property
	ElementTo property
	EndPos property
	EndUpdateLink method
	ID property
	ShowDir property
	ShowLinkType property
	StartPos property
	StartUpdateLink property (readonly)
	Style property
	ToolTip property
	ToolTipTitle property
	UserData property
	Visible property
	Width property

	Links
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	Pattern
	Color property
	FrameColor property
	Type property

	Surface
	AlignObjectsToGridLines property
	AllowCreateObject property
	AllowInsertObject property
	AllowLinkControlPoint property
	AllowLinkObjects property
	AllowMoveDescendents property
	AllowMoveNeighbors property
	AllowMoveObject property
	AllowMoveSelection property
	AllowMoveSurface property
	AllowResizeObject property
	AllowResizeSelection property
	AllowSelectNothing property
	AllowSelectObject property
	AllowSelectObjectRect property
	AllowToggleSelectKey property
	AllowUndoRedo property
	AllowZoomSurface property
	AllowZoomWheelSurface property
	AnchorFromPoint property (readonly)
	Appearance property
	Arrange method
	AttachTemplate method
	AxisColor property
	AxisStyle property
	BackColor property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	CancelLayoutChanging method
	CanRedo property (readonly)
	CanUndo property (readonly)
	Coord property
	CopyTo property (readonly)
	DefArrange property
	DrawPartsOrder property
	EditContextMenuItems property
	ElementFormat property
	ElementFromPoint property (readonly)
	ElementFromPosition property (readonly)
	Elements property (readonly)
	Enabled property
	EndBlockUndoRedo method
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	ExpandLinkedElements property
	FitToClient method
	FocusLink property
	Font property
	ForeColor property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	GroupUndoRedoActions method
	HideSel property
	HitTestFromPoint property (readonly)
	Home method
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	IndentX property
	IndentY property
	Layout property
	LinkFromPoint property (readonly)
	Links property (readonly)
	LinksArrowColor property
	LinksArrowFrameColor property
	LinksArrowSize property
	LinksColor property
	LinksShowDir property
	LinksStyle property
	LinksWidth property
	LoadXML method
	MajorGridColor property
	MajorGridHeight property
	MajorGridStyle property
	MajorGridWidth property
	MinorGridColor property
	MinorGridHeight property
	MinorGridStyle property
	MinorGridWidth property
	MoveCorner method
	MovePoint method
	OLEDrag method
	OLEDropMode property
	OverviewColor property
	Picture property
	PictureDisplay property
	PointToPosition method
	PositionToPoint method
	Redo method
	RedoListAction property (readonly)
	RedoRemoveAction method
	Refresh method
	RemoveSelection method
	ReplaceIcon method
	SaveXML method
	ScrollPos property
	ScrollTo method
	ScrollX property
	ScrollY property
	SelCount property (readonly)
	SelectAll method
	Selection property
	SelectObjectColor property
	SelectObjectColorInactive property
	SelectObjectStyle property
	SelectObjectTextColor property
	SelectObjectTextColorInactive property
	SelElement property (readonly)
	ShowGridLines property
	ShowImageList property
	ShowLinks property
	ShowLinksColor property
	ShowLinksOnCollapse property
	ShowLinksStyle property
	ShowLinksType property
	ShowLinksWidth property
	ShowToolTip method
	SingleSel property
	StartBlockUndoRedo method
	Template property
	TemplateDef property
	TemplatePut method
	ToolBarCaption property
	ToolBarFormat property
	ToolBarHTMLPicture property
	ToolBarImages method
	ToolBarRefresh method
	ToolBarReplaceIcon method
	ToolBarToolTip property
	ToolBarVisible property
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	Undo method
	UndoListAction property (readonly)
	UndoRedoQueueLength property
	UndoRemoveAction method
	UnselectAll method
	Version property
	VisualAppearance property (readonly)
	VisualDesign property
	Zoom property
	ZoomLevels property
	ZoomMax property
	ZoomMin property
	ZoomStep property

	ExSurface events
	AddElement event
	AddLink event
	AllowLink event
	AnchorClick event
	CheckElement event
	Click event
	CreateElement event
	CreateLink event
	DblClick event
	Event event
	ExpandElement event
	HandCursorClick event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutEndChanging event
	LayoutStartChanging event
	MouseDown event
	MouseMove event
	MouseUp event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OleEvent event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	ParentChangeElement event
	RClick event
	RemoveElement event
	RemoveLink event
	SelectionChanged event
	ToolBarAnchorClick event
	ToolBarClick event

