
 ExStatusBar

The Exontrol's ExStatusBar component provides statusbar panels to your forms. The
statusbar is a component (widget) often found at the bottom of windows in a graphical user
interface. It is very frequently divided into sections, each of which shows different
information. Its job is primarily to display information about the current state of its window,
although some status bars have extra functionality. Usually, the status bar often called a
status line in this context displays the current state of the application, and helpful keyboard
shortcuts.

Features include:

Ability to layout the panels as you wish using the CRD strings.
Unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the panel's background
Skinnable Interface support (ability to apply a skin to the any background part,
including the scroll bars)
ActiveX hosting (ability to insert any ActiveX controls to any panel)
WYSWYG Template/Layout Editor support
Built-in HTML support
Semi-transparent colors support
Progress-bar support
Owner draw support
Multiple lines HTML Tooltip support
icons, custom-size pictures

Ž ExStatusBar is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AppearanceEnum
The AppearanceEnum enumeration specifies the appearance of the control's border. Use
the Appearance property to specify the control's border. The AppearanceEnum type
supports the following values:

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The BackgroundExt property specifies the EBN String
format to be displayed on the event's background. The BackgroundExtValue property
access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
BackgroundExt property specifies the EBN String
format to be displayed on the object's background.
The Exontrol's eXButton WYSWYG Builder helps
you to generate or view the EBN String Format, in
the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

https://exontrol.com/exbutton.jsp

exBackColorExt 1

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates

exClientExt 2

the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The

about:blank

FormatAnchor property customizes the visual
effect for anchor elements.
 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text

exTextExt 4

<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define

a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text

color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is

exTextExtAlignment 6
vertically aligned in the middle, and
horizontally aligned on the left.
17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.
32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

exPatternExt 7 8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the BackgroundExtValue property indicates the index of the part of
the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder
helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BodyBackgroundExt property:

After calling the BodyBackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants TextAlignEnum
The TextAlignEnum type specifies the possible alignments of the text inside the panel. Use
the Alignment property to align the caption inside the panel.

Name Value Description

exAlignTopLeft 0 The object or text is aligned in the top-left side of
the control element.

exAlignTopCenter 1 The object or text is aligned in the top-center side
of the control element.

exAlignTopRight 2 The object or text is aligned in the top-right side of
the control element.

exAlignMiddleLeft 16 The object or text is aligned in the middle-left side
of the control element.

exAlignMiddleCenter 17 The object or text is aligned in the center of the
control element.

exAlignMiddleRight 18 The object or text is aligned in the middle-right side
of the control element.

exAlignBottomLeft 32 The object or text is aligned in the bottom-left side
of the control element.

exAlignBottomCenter 33 The object or text is aligned in the bottom-center
side of the control element.

exAlignBottomRight 34 The object or text is aligned in the bottom-right side
of the control element.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows. Let's
say that the control requests painting the {10, 10, 30,
20} area, a rectangle with the width of 20 pixels, and
the height of 10 pixels, the skin will be displayed on
the {14,10,26,20} as each coordinates in the "CP"
syntax is added to the displayed rectangle, so the
skin looks smaller. This way you can apply different
effects to your objects in your control. The following
screen shot shows the control's header when using a
"CP:1 -6 -6 6 6", that displays the original skin on
larger rectangles.

the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the
background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicates the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the BackColor = BackColor Or
&H2000000 indicates that we apply the skin with the index 2 using the old color, to the
object that BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

control's borders using the Appearance property
tooltip appearance using the Background property
panel's background using the BackColor property
background of the panel's percent using the BackColorPercent property
Any HTML caption that includes an tag.

The following VB sample shows "How can I change the panel's visual appearance using
EBN files":

With StatusBar1
 .BeginUpdate
 .Appearance = None2
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "How can I change the panel's visual appearance
using EBN files":

With AxStatusBar1
 .BeginUpdate
 .Appearance = EXSTATUSBARLib.AppearanceEnum.None2
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True

 .EndUpdate
End With

The following C++ sample shows "How can I change the panel's visual appearance using
EBN files":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutAppearance(EXSTATUSBARLib::None2);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I change the panel's visual appearance using
EBN files":

axStatusBar1.BeginUpdate();
axStatusBar1.Appearance = EXSTATUSBARLib.AppearanceEnum.None2;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I change the panel's visual appearance using
EBN files":

with thisform.StatusBar1
 .BeginUpdate
 .Appearance = 0
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's borders using the Appearance property
tooltip appearance using the Background property
panel's background using the BackColor property
background of the panel's percent using the BackColorPercent property
Any HTML caption that includes an tag.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's borders using the Appearance property
tooltip appearance using the Background property
panel's background using the BackColor property
background of the panel's percent using the BackColorPercent property
Any HTML caption that includes an tag.

OleEvent object

The OleEvent object holds information about an event fired by an ActiveX control hosted by
a panel. Use the ControlID property to insert an ActiveX control inside a panel.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

The CountParam property specifies the number of parameters in the event. Use the
ToString property to display information about fired event.

The following VB sample enumerates the arguments of an OLE event when OLEEvent is
fired.

Private Sub StatusBar1_OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
 Debug.Print Ev.ToString()
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

#import "C:\\WINNT\\SYSTEM32\\ExStatusBar.dll"
using namespace EXSTATUSBARLib;

void OnOleEventStatusbar1(LPDISPATCH Panel, LPDISPATCH Ev)
{
 EXSTATUSBARLib::IOleEventPtr spEvent(Ev);
 OutputDebugString(spEvent->ToString);
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSTATUSBARLib namespace that include all objects and types of
the control's TypeLibrary. In case your exstatusbar.dll library is located to another place
than the system folder or well known path, the path to the library should be provided, in
order to let the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxStatusBar1_OleEvent(ByVal sender As System.Object, ByVal e As

AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles AxStatusBar1.OleEvent
 Debug.Print(e.ev.ToString)
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axStatusBar1_OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.Print(e.ev.ToString);
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS panel, ev

wait window nowait ev.ToString

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the identifier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602.

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the ID property to specify a specified even by its identifier. Use the ToString property to
display information about fired event such us name, parameters, types and values. Use the
CountParam property to count the parameters of an OLE event. Use the Param property
to get the event's parameter. Use the Value property to specify the value of the parameter.

The following VB sample enumerates the arguments of an OLE event when OLEEvent is
fired.

Private Sub StatusBar1_OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an inner ActiveX control fires:

#import "C:\\WINNT\\SYSTEM32\\ExStatusBar.dll"
using namespace EXSTATUSBARLib;

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)

 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventStatusbar1(LPDISPATCH Panel, LPDISPATCH Ev)
{
 EXSTATUSBARLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSTATUSBARLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(
i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSTATUSBARLib namespace that include all objects and types of
the control's TypeLibrary. In case your exstatusBar.dll library is located to another place
than the system folder or well known path, the path to the library should be provided, in
order to let the VC finds the type library.

The following VB.NET sample displays the events that an inner ActiveX control fires:

Private Sub AxStatusBar1_OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles AxStatusBar1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSTATUSBARLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an inner ActiveX control fires:

private void axStatusBar1_OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXSTATUSBARLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an inner ActiveX control fires:

*** ActiveX Control Event ***
LPARAMETERS panel, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.Param (item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

item as Variant A long expression that indicates the argument's index or a
string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

Use the Param property to get the event's parameter. Use the ID property to specify a
specified even by its identifier. Use the ToString property to display information about fired
event such us name, parameters, types and values. Use the CountParam property to count
the parameters of an OLE event. Use the Value property to specify the value of the
parameter.

The following VB sample enumerates the arguments of an OLE event when OLEEvent is
fired.

Private Sub StatusBar1_OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an inner ActiveX control fires:

#import "C:\\WINNT\\SYSTEM32\\ExStatusBar.dll"
using namespace EXSTATUSBARLib;

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{

 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventStatusbar1(LPDISPATCH Panel, LPDISPATCH Ev)
{
 EXSTATUSBARLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSTATUSBARLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(
i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSTATUSBARLib namespace that include all objects and types of
the control's TypeLibrary. In case your exstatusBar.dll library is located to another place

than the system folder or well known path, the path to the library should be provided, in
order to let the VC finds the type library.

The following VB.NET sample displays the events that an inner ActiveX control fires:

Private Sub AxStatusBar1_OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles AxStatusBar1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSTATUSBARLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an inner ActiveX control fires:

private void axStatusBar1_OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXSTATUSBARLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an inner ActiveX control fires:

*** ActiveX Control Event ***
LPARAMETERS panel, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)

endfor
wait window nowait s

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object

The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

The following VB sample enumerates the arguments of an OLE event when OLEEvent is
fired.

Private Sub StatusBar1_OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an inner ActiveX control fires:

#import "C:\\WINNT\\SYSTEM32\\ExStatusBar.dll"
using namespace EXSTATUSBARLib;

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);

 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventStatusbar1(LPDISPATCH Panel, LPDISPATCH Ev)
{
 EXSTATUSBARLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSTATUSBARLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(
i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSTATUSBARLib namespace that include all objects and types of
the control's TypeLibrary. In case your exstatusBar.dll library is located to another place
than the system folder or well known path, the path to the library should be provided, in
order to let the VC finds the type library.

The following VB.NET sample displays the events that an inner ActiveX control fires:

Private Sub AxStatusBar1_OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles AxStatusBar1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)

 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSTATUSBARLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an inner ActiveX control fires:

private void axStatusBar1_OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXSTATUSBARLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an inner ActiveX control fires:

*** ActiveX Control Event ***
LPARAMETERS panel, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEventParam.Value as Variant

Retrieves or sets the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

Use the Value property to specify the value of the parameter. Use the ID property to specify
a specified even by its identifier. Use the ToString property to display information about fired
event such us name, parameters, types and values. Use the CountParam property to count
the parameters of an OLE event. Use the Param property to get the event's parameter.

The following VB sample enumerates the arguments of an OLE event when OLEEvent is
fired.

Private Sub StatusBar1_OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an inner ActiveX control fires:

#import "C:\\WINNT\\SYSTEM32\\ExStatusBar.dll"
using namespace EXSTATUSBARLib;

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)

 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOleEventStatusbar1(LPDISPATCH Panel, LPDISPATCH Ev)
{
 EXSTATUSBARLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXSTATUSBARLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(
i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSTATUSBARLib namespace that include all objects and types of
the control's TypeLibrary. In case your exstatusBar.dll library is located to another place
than the system folder or well known path, the path to the library should be provided, in
order to let the VC finds the type library.

The following VB.NET sample displays the events that an inner ActiveX control fires:

Private Sub AxStatusBar1_OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles AxStatusBar1.OleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXSTATUSBARLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an inner ActiveX control fires:

private void axStatusBar1_OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXSTATUSBARLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an inner ActiveX control fires:

*** ActiveX Control Event ***
LPARAMETERS panel, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

Panel object
The Panel object identifies a panel area in the status bar control. The Panel object supports
the following properties and methods:

Name Description

Alignment Gets or sets the alignment of text and icons within the
status bar panel.

BackColor Specifies the background color or the visual appearance
of the panel.

BackColorPercent Specifies the background color or the visual appearance
of the percent bar in the panel.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the panel's background using the EBN string
format.

BackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

Bold Specifies whether the text in the panel appears in bold.
ControlID Specifies the program identifier being shown in the panel.
Enabled Specifies whether the panel is enabled or disabled.
ForeColor Specifies the foreground color of the text in the panel.
Height Specifies the height in pixels of the panel.

Image Gets or sets the index of the icon to display within the
status bar panel.

Index Retrieves the identifier of the panel in the status bar.
Italic Specifies whether the text in the panel appears in italic.

License Specifies the runtime license required to create the user
control inside the panel.

Object Retrieves the inside control being created by ControlID
property.

Offset Specifies the offset to apply when text is being diplayed.

OffsetPercent Specifies the offset to apply when the percent bar is
displayed on the panel.

OwnerDraw Specifies whether the user is responsible with painting the
panel in the status bar control.

Percent Specifies the percent to display the background.

StrikeOut Specifies whether the text in the panel appears as
strikeout.

Text Gets or sets the text of the status bar panel.

ToolTipText Gets or sets ToolTip text associated with the status bar
panel.

ToolTipTitle Gets or sets ToolTip title associated with the status bar
panel.

Transparency Specifies the transparency to display the text in the panel.

Underline Specifies whether the text in the panel appears as
underlined.

UserData Associates an extra data to the panel.
Width Specifies the width in pixels of the panel.
WordWrap Specifies whether the text is word wrapping in the panel.

property Panel.Alignment as TextAlignEnum
Gets or sets the alignment of text and icons within the status bar panel.

Type Description

TextAlignEnum A TextAlignEnum that specifies the alignment of the caption
in the panel.

Use the Alignment property to align the caption in the panel. Use the Text property to assign
a caption to a panel. Use the Image property to assign an icon to a panel.

The following VB sample shows "How can I align the text inside the panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "(0/16/32),(1/17/33),(2/18/34)"
 With .Panel(0)
 .Text = "exAlignTopLeft"
 .Alignment = exAlignTopLeft
 End With
 With .Panel(1)
 .Text = "exAlignTopCenter"
 .Alignment = exAlignTopCenter
 End With
 With .Panel(2)
 .Text = "exAlignTopRight"
 .Alignment = exAlignTopRight
 End With
 With .Panel(16)
 .Text = "exAlignMiddleLeft"
 .Alignment = exAlignMiddleLeft
 End With
 With .Panel(17)
 .Text = "exAlignMiddleCenter"
 .Alignment = exAlignMiddleCenter

 End With
 With .Panel(18)
 .Text = "exAlignMiddleRight"
 .Alignment = exAlignMiddleRight
 End With
 With .Panel(32)
 .Text = "exAlignBottomLeft"
 .Alignment = exAlignBottomLeft
 End With
 With .Panel(33)
 .Text = "exAlignBottomCenter"
 .Alignment = exAlignBottomCenter
 End With
 With .Panel(34)
 .Text = "exAlignBottomRight"
 .Alignment = exAlignBottomRight
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I align the text inside the panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "(0/16/32),(1/17/33),(2/18/34)"
 With .get_Panel(0)
 .Text = "exAlignTopLeft"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopLeft
 End With
 With .get_Panel(1)
 .Text = "exAlignTopCenter"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopCenter
 End With

 With .get_Panel(2)
 .Text = "exAlignTopRight"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopRight
 End With
 With .get_Panel(16)
 .Text = "exAlignMiddleLeft"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft
 End With
 With .get_Panel(17)
 .Text = "exAlignMiddleCenter"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleCenter
 End With
 With .get_Panel(18)
 .Text = "exAlignMiddleRight"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleRight
 End With
 With .get_Panel(32)
 .Text = "exAlignBottomLeft"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignBottomLeft
 End With
 With .get_Panel(33)
 .Text = "exAlignBottomCenter"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignBottomCenter
 End With
 With .get_Panel(34)
 .Text = "exAlignBottomRight"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignBottomRight
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I align the text inside the panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"(0/16/32),(1/17/33),(2/18/34)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(0));
 var_Panel->PutText(L"exAlignTopLeft");
 var_Panel->PutAlignment(EXSTATUSBARLib::exAlignTopLeft);
EXSTATUSBARLib::IPanelPtr var_Panel1 = spStatusBar1->GetPanel(long(1));
 var_Panel1->PutText(L"exAlignTopCenter");
 var_Panel1->PutAlignment(EXSTATUSBARLib::exAlignTopCenter);
EXSTATUSBARLib::IPanelPtr var_Panel2 = spStatusBar1->GetPanel(long(2));
 var_Panel2->PutText(L"exAlignTopRight");
 var_Panel2->PutAlignment(EXSTATUSBARLib::exAlignTopRight);
EXSTATUSBARLib::IPanelPtr var_Panel3 = spStatusBar1->GetPanel(long(16));
 var_Panel3->PutText(L"exAlignMiddleLeft");
 var_Panel3->PutAlignment(EXSTATUSBARLib::exAlignMiddleLeft);
EXSTATUSBARLib::IPanelPtr var_Panel4 = spStatusBar1->GetPanel(long(17));
 var_Panel4->PutText(L"exAlignMiddleCenter");
 var_Panel4->PutAlignment(EXSTATUSBARLib::exAlignMiddleCenter);
EXSTATUSBARLib::IPanelPtr var_Panel5 = spStatusBar1->GetPanel(long(18));
 var_Panel5->PutText(L"exAlignMiddleRight");
 var_Panel5->PutAlignment(EXSTATUSBARLib::exAlignMiddleRight);
EXSTATUSBARLib::IPanelPtr var_Panel6 = spStatusBar1->GetPanel(long(32));
 var_Panel6->PutText(L"exAlignBottomLeft");
 var_Panel6->PutAlignment(EXSTATUSBARLib::exAlignBottomLeft);
EXSTATUSBARLib::IPanelPtr var_Panel7 = spStatusBar1->GetPanel(long(33));
 var_Panel7->PutText(L"exAlignBottomCenter");
 var_Panel7->PutAlignment(EXSTATUSBARLib::exAlignBottomCenter);
EXSTATUSBARLib::IPanelPtr var_Panel8 = spStatusBar1->GetPanel(long(34));

 var_Panel8->PutText(L"exAlignBottomRight");
 var_Panel8->PutAlignment(EXSTATUSBARLib::exAlignBottomRight);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I align the text inside the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "(0/16/32),(1/17/33),(2/18/34)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(0);
 var_Panel.Text = "exAlignTopLeft";
 var_Panel.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopLeft;
EXSTATUSBARLib.Panel var_Panel1 = axStatusBar1.get_Panel(1);
 var_Panel1.Text = "exAlignTopCenter";
 var_Panel1.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopCenter;
EXSTATUSBARLib.Panel var_Panel2 = axStatusBar1.get_Panel(2);
 var_Panel2.Text = "exAlignTopRight";
 var_Panel2.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopRight;
EXSTATUSBARLib.Panel var_Panel3 = axStatusBar1.get_Panel(16);
 var_Panel3.Text = "exAlignMiddleLeft";
 var_Panel3.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft;
EXSTATUSBARLib.Panel var_Panel4 = axStatusBar1.get_Panel(17);
 var_Panel4.Text = "exAlignMiddleCenter";
 var_Panel4.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleCenter;
EXSTATUSBARLib.Panel var_Panel5 = axStatusBar1.get_Panel(18);
 var_Panel5.Text = "exAlignMiddleRight";
 var_Panel5.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleRight;
EXSTATUSBARLib.Panel var_Panel6 = axStatusBar1.get_Panel(32);
 var_Panel6.Text = "exAlignBottomLeft";
 var_Panel6.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignBottomLeft;
EXSTATUSBARLib.Panel var_Panel7 = axStatusBar1.get_Panel(33);
 var_Panel7.Text = "exAlignBottomCenter";
 var_Panel7.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignBottomCenter;
EXSTATUSBARLib.Panel var_Panel8 = axStatusBar1.get_Panel(34);

 var_Panel8.Text = "exAlignBottomRight";
 var_Panel8.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignBottomRight;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I align the text inside the panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "(0/16/32),(1/17/33),(2/18/34)"
 with .Panel(0)
 .Text = "exAlignTopLeft"
 .Alignment = 0
 endwith
 with .Panel(1)
 .Text = "exAlignTopCenter"
 .Alignment = 1
 endwith
 with .Panel(2)
 .Text = "exAlignTopRight"
 .Alignment = 2
 endwith
 with .Panel(16)
 .Text = "exAlignMiddleLeft"
 .Alignment = 16
 endwith
 with .Panel(17)
 .Text = "exAlignMiddleCenter"
 .Alignment = 17
 endwith
 with .Panel(18)
 .Text = "exAlignMiddleRight"
 .Alignment = 18
 endwith

 with .Panel(32)
 .Text = "exAlignBottomLeft"
 .Alignment = 32
 endwith
 with .Panel(33)
 .Text = "exAlignBottomCenter"
 .Alignment = 33
 endwith
 with .Panel(34)
 .Text = "exAlignBottomRight"
 .Alignment = 34
 endwith
 .EndUpdate
endwith

property Panel.BackColor as Color
Specifies the background color or the visual appearance of the panel.

Type Description

Color

A Color expression that specifies the panel's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the BackColor property to change the visual appearance of the the panel using EBN
files. Use the BackColorPanels property to assign the same visual appearance to all panels
in the status bar. Use the <bgcolor> property to specify a background color for a portion of
the caption in the panel. Use the BackColorPercent property to change the visual
appearance of the progress bar in the panel. Use the ForeColor property to change the
panel's foreground color.

The following VB sample shows "How can I change the panel's background color":

With StatusBar1
 .BeginUpdate
 .Format = """"":4,((4;""""/1/4;""""),"""":4,(4;""""/2/4;"""")),"""":4"
 With .Panel(1)
 .Text = "Panel 1"
 .BackColor = 65535
 End With
 With .Panel(2)
 .Text = "Panel 2"
 .BackColor = 16711935
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I change the panel's background color":

With AxStatusBar1
 .BeginUpdate
 .Format = """"":4,((4;""""/1/4;""""),"""":4,(4;""""/2/4;"""")),"""":4"

 With .get_Panel(1)
 .Text = "Panel 1"
 .BackColor = 65535
 End With
 With .get_Panel(2)
 .Text = "Panel 2"
 .BackColor = 16711935
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I change the panel's background color":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutFormat(L"\"\":4,((4;\"\"/1/4;\"\"),\"\":4,(4;\"\"/2/4;\"\")),\"\":4");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"Panel 1");
 var_Panel->PutBackColor(65535);
EXSTATUSBARLib::IPanelPtr var_Panel1 = spStatusBar1->GetPanel(long(2));
 var_Panel1->PutText(L"Panel 2");
 var_Panel1->PutBackColor(16711935);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I change the panel's background color":

axStatusBar1.BeginUpdate();
axStatusBar1.Format = "\"\":4,((4;\"\"/1/4;\"\"),\"\":4,(4;\"\"/2/4;\"\")),\"\":4";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);

 var_Panel.Text = "Panel 1";
 var_Panel.BackColor = 65535;
EXSTATUSBARLib.Panel var_Panel1 = axStatusBar1.get_Panel(2);
 var_Panel1.Text = "Panel 2";
 var_Panel1.BackColor = 16711935;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I change the panel's background color":

with thisform.StatusBar1
 .BeginUpdate
 .Format = ""+chr(34)+""+chr(34)+":4,
((4;"+chr(34)+""+chr(34)+"/1/4;"+chr(34)+""+chr(34)+"),"+chr(34)+""+chr(34)+":4,
(4;"+chr(34)+""+chr(34)+"/2/4;"+chr(34)+""+chr(34)+")),"+chr(34)+""+chr(34)+":4"
 with .Panel(1)
 .Text = "Panel 1"
 .BackColor = 65535
 endwith
 with .Panel(2)
 .Text = "Panel 2"
 .BackColor = 16711935
 endwith
 .EndUpdate
endwith

property Panel.BackColorPercent as Color
Specifies the background color or the visual appearance of the percent bar in the panel.

Type Description

Color

A Color expression that specifies the progress bar 's
background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the BackColorPercent property to change the visual appearance of the progress bar in
the panel. Use the Percent value to display a progress bar inside the panel. Use the
BackColor property to change the visual appearance of the the panel using EBN files. Use
the BackColorPanels property to assign the same visual appearance to all panels in the
status bar. Use the ForeColor property to change the panel's foreground color.

The following VB sample shows "How can I change the color of the percent or a progress-
bar inside the panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 With .Panel(5)
 .Text = "15%"
 .Percent = 15
 .BackColorPercent = 255
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I change the color of the percent or a
progress-bar inside the panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(24;5/6)"
 With .get_Panel(5)
 .Text = "15%"
 .Percent = 15
 .BackColorPercent = 255
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I change the color of the percent or a progress-
bar inside the panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(24;5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"15%");
 var_Panel->PutPercent(15);

 var_Panel->PutBackColorPercent(255);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I change the color of the percent or a progress-
bar inside the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(24;5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "15%";
 var_Panel.Percent = 15;
 var_Panel.BackColorPercent = 255;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I change the color of the percent or a progress-
bar inside the panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 with .Panel(5)
 .Text = "15%"
 .Percent = 15
 .BackColorPercent = 255
 endwith
 .EndUpdate
endwith

property Panel.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is empty. Using the BackgroundExt property you
have unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the object's background. For instance, let's say you need to display more
colors on the object's background, or just want to display an additional caption or image
to a specified location on the object's background. The EBN String Format defines the
parts of the EBN to be applied on the object's background. The EBN is a set of UI elements
that are built as a tree where each element is anchored to its parent element. Use the
BackgroundExtValue property to change at runtime any UI property for any part that
composes the EBN String Format. The BackgroundExt property is applied right after setting
the object's backcolor, and before drawing the default object's captions, icons or pictures.

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="

https://exontrol.com/exbutton.jsp

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BackgroundExt property such as "left[10%]
(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Panel.BackgroundExtValue(Index as IndexExtEnum, Property as
BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part
that composes the EBN String Format. The BackgroundExtValue property has no effect if
the BackgroundExt property is empty (by default). The idea is as follows: first you need
to decide the layout of the UI to put on the object's background, using the BackgroundExt

property, and next (if required), you can change any property of any part of the
background extension to a new value. In other words, let's say you have the same layout
to be applied to some of your objects, so you specify the BackgroundExt to be the same
for them, and next use the BackgroundExtValue property to change particular properties (
like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant

expression)

For instance, having the BackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Panel.Bold as Boolean
Specifies whether the text in the panel appears in bold.

Type Description

Boolean A Boolean expression that specifies whether the caption of
the panel should be shown in bold.

Use the Bold property to show the panel's caption in bold. Use the Text property to assign a
caption or an HTML text to a panel. Use the HTML tag to show in bold only a portion of
the caption in the panel. Use the Italic property to show the panel's caption in italic. Use the
Underline property to underline the panel's caption. Use the StrikeOut property to show the
panel's caption in strikeout.

The following VB sample shows "How can I show in bold a specified panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 With .Panel(1)
 .Text = "Panel 1"
 .Bold = True
 End With
 .Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following VB.NET sample shows "How can I show in bold a specified panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2"

 With .get_Panel(1)
 .Text = "Panel 1"
 .Bold = True
 End With
 .get_Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following C++ sample shows "How can I show in bold a specified panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"Panel 1");
 var_Panel->PutBold(VARIANT_TRUE);
spStatusBar1->GetPanel(long(2))->PutText(L"Panel 2");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I show in bold a specified panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.Text = "Panel 1";
 var_Panel.Bold = true;
axStatusBar1.get_Panel(2).Text = "Panel 2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I show in bold a specified panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 with .Panel(1)
 .Text = "Panel 1"
 .Bold = .T.
 endwith
 .Panel(2).Text = "Panel 2"
 .EndUpdate
endwith

property Panel.ControlID as String
Specifies the program identifier being shown in the panel.

Type Description

String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

The control supports ActiveX hosting, so you can insert any ActiveX component. The
License property specifies the runtime license required to create the inner ActiveX control.
Runtime-less controls are not requiring a runtime key so there is not need to call the
License property before calling the ControlID property. Use the Object property to access
the properties and methods of the inner ActiveX control. The control fires the OleEvent
event to notify when an inner control fires an event.

The ControlID must be formatted in one of the following ways:

A ProgID such as "Exontrol.Tree"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

The ControlID property creates an ActiveX control that's hosted by the control. The look
and feel of the inner ActiveX control depends on the identifier you are using, and the
version of the library that implements the ActiveX control, so you need to consult
the documentation of the inner ActiveX control you are inserting inside the control.

The following VB sample shows "How do I insert an ActiveX control to a panel":

With StatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"

 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 .Panel(1).ControlID = "MSChart20Lib.MSChart"
 .Panel(2).ControlID = "MSCAL.Calendar"
 With .Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = exAlignMiddleLeft
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How do I insert an ActiveX control to a panel":

With AxStatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(24;5/6)"
 .get_Panel(1).ControlID = "MSChart20Lib.MSChart"
 .get_Panel(2).ControlID = "MSCAL.Calendar"
 With .get_Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 End With
 .EndUpdate
End With

The following C++ sample shows "How do I insert an ActiveX control to a panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Demo\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
EXSTATUSBARLib::IAppearancePtr var_Appearance = spStatusBar1-
>GetVisualAppearance();
 var_Appearance->Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(24;5/6)");
spStatusBar1->GetPanel(long(1))->PutControlID(L"MSChart20Lib.MSChart");
spStatusBar1->GetPanel(long(2))->PutControlID(L"MSCAL.Calendar");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"<fgcolor=FFFFFF>175%</fgcolor>");
 var_Panel->PutAlignment(EXSTATUSBARLib::exAlignMiddleLeft);
 var_Panel->PutPercent(75);
 var_Panel->PutTransparency(35);
 var_Panel->PutOffset(L"4 2 -4 -2");
spStatusBar1->EndUpdate();

The following C# sample shows "How do I insert an ActiveX control to a panel":

axStatusBar1.BeginUpdate();
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
EXSTATUSBARLib.Appearance var_Appearance = axStatusBar1.VisualAppearance;
 var_Appearance.Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance.Add(5,"CP:4 1 1 -1 -1");

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(24;5/6)";
axStatusBar1.get_Panel(1).ControlID = "MSChart20Lib.MSChart";
axStatusBar1.get_Panel(2).ControlID = "MSCAL.Calendar";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "<fgcolor=FFFFFF>175%</fgcolor>";
 var_Panel.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft;
 var_Panel.Percent = 75;
 var_Panel.Transparency = 35;
 var_Panel.Offset = "4 2 -4 -2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I insert an ActiveX control to a panel":

with thisform.StatusBar1
 .BeginUpdate
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 with .VisualAppearance
 .Add(4,"c:\exontrol\images\border.ebn")
 .Add(5,"CP:4 1 1 -1 -1")
 endwith
 .BackColorPanels = 83886080

 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 .Panel(1).ControlID = "MSChart20Lib.MSChart"
 .Panel(2).ControlID = "MSCAL.Calendar"
 with .Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = 16
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 endwith
 .EndUpdate
endwith

property Panel.Enabled as Boolean
Specifies whether the panel is enabled or disabled.

Type Description

Boolean A Boolean expression that specifies whether the panel is
enabled or disabled.

By default, the Enabled property is True. Use the Enabled property to enable or disable a
panel. Use the Enabled property to disable the entire control. Use the ForeColor property to
specify the panel's foreground color when the panel is enabled.

The following VB sample shows "How can I disable a panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6)"
 With .Panel(5)
 .Text = "Disabled"
 .Enabled = False
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I disable a panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(5/6)"
 With .get_Panel(5)
 .Text = "Disabled"
 .Enabled = False

 End With
 .EndUpdate
End With

The following C++ sample shows "How can I disable a panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"Disabled");
 var_Panel->PutEnabled(VARIANT_FALSE);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I disable a panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "Disabled";
 var_Panel.Enabled = false;

axStatusBar1.EndUpdate();

The following VFP sample shows "How can I disable a panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6)"
 with .Panel(5)
 .Text = "Disabled"
 .Enabled = .F.
 endwith
 .EndUpdate
endwith

property Panel.ForeColor as Color
Specifies the foreground color of the text in the panel.

Type Description

Color A Color expression that specifies the panel's foreground
color.

Use the ForeColor property to specify the foreground color for a specified panel. Use the
ForeColor property to specify the foreground color for the entire control. Use the <fgcolor>
property to specify a foreground color for a portion of the caption in the panel. Use the Text
property to assign a caption to a panel. Use the BackColor property to assign a
background color or a visual appearance to a panel.

The following VB sample shows "How can I change the caption's foreground color":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1:48/2"
 With .Panel(1)
 .Text = "Panel 1"
 .ForeColor = 65535
 End With
 Set var_Panel = .Panel(2)
 With var_Panel
 .Text = "Panel 2"
 .ForeColor = 16711935
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I change the caption's foreground color":

Dim var_Panel
With AxStatusBar1
 .BeginUpdate

 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1:48/2"
 With .get_Panel(1)
 .Text = "Panel 1"
 .ForeColor = 65535
 End With
 var_Panel = .get_Panel(2)
 With var_Panel
 .Text = "Panel 2"
 .ForeColor = 16711935
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I change the caption's foreground color":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1:48/2");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"Panel 1");

 var_Panel->PutForeColor(65535);
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(2));
 var_Panel->PutText(L"Panel 2");
 var_Panel->PutForeColor(16711935);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I change the caption's foreground color":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1:48/2";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.Text = "Panel 1";
 var_Panel.ForeColor = 65535;
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(2);
 var_Panel.Text = "Panel 2";
 var_Panel.ForeColor = 16711935;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I change the caption's foreground color":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1:48/2"
 with .Panel(1)
 .Text = "Panel 1"
 .ForeColor = 65535
 endwith
 var_Panel = .Panel(2)
 with var_Panel
 .Text = "Panel 2"

 .ForeColor = 16711935
 endwith
 .EndUpdate
endwith

property Panel.Height as Long
Specifies the height in pixels of the panel.

Type Description

Long A long expression that specifies the height of the panel, in
pixels.

Use the Height property to get the height in pixels of the panel. Use the Width property to
specify the width of the panel. Use the Format property to control the width and the height
of the panels, using CRD strings.

The following VB sample shows "Is there any property to get the width/height of the panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6)"
 With .Panel(5)
 .Text = .Width
 End With
 With .Panel(6)
 .Text = .Height
 End With
 .EndUpdate
End With

The following VB.NET sample shows "Is there any property to get the width/height of the
panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(5/6)"

 With .get_Panel(5)
 .Text = .Width
 End With
 With .get_Panel(6)
 .Text = .Height
 End With
 .EndUpdate
End With

The following C++ sample shows "Is there any property to get the width/height of the
panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(_bstr_t(var_Panel->GetWidth()));
EXSTATUSBARLib::IPanelPtr var_Panel1 = spStatusBar1->GetPanel(long(6));
 var_Panel1->PutText(_bstr_t(var_Panel1->GetHeight()));
spStatusBar1->EndUpdate();

The following C# sample shows "Is there any property to get the width/height of the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");

axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = var_Panel.Width.ToString();
EXSTATUSBARLib.Panel var_Panel1 = axStatusBar1.get_Panel(6);
 var_Panel1.Text = var_Panel1.Height.ToString();
axStatusBar1.EndUpdate();

The following VFP sample shows "Is there any property to get the width/height of the
panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6)"
 with .Panel(5)
 .Text = .Width
 endwith
 with .Panel(6)
 .Text = .Height
 endwith
 .EndUpdate
endwith

property Panel.Image as Long
Gets or sets the index of the icon to display within the status bar panel.

Type Description

Long A long expression that indicates the index of the icon being
displayed in the panel.

Use the Image property to assign a single icon to a panel. Use the HTML tag in the
Text property to assign multiple icons in the panel. Use the Images method to assign a list
of icons being used by control. Use the Enabled property to disable a panel. When the
panel is disabled the icons are shown as grayed.

The following VB sample shows "How can I insert an icon to a panel":

With StatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Image = 1
 .EndUpdate
End With

The following VB.NET sample shows "How can I insert an icon to a panel":

With AxStatusBar1
 .BeginUpdate
 .Images

"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .get_Panel(1).Image = 1
 .EndUpdate
End With

The following C++ sample shows "How can I insert an icon to a panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->GetPanel(long(1))->PutImage(1);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I insert an icon to a panel":

axStatusBar1.BeginUpdate();
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.get_Panel(1).Image = 1;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I insert an icon to a panel":

with thisform.StatusBar1
 .BeginUpdate
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Image = 1
 .EndUpdate
endwith

property Panel.Index as Long
Retrieves the identifier of the panel in the status bar.

Type Description
Long A long expression that specifies the index of the panel.

Use the Index property to identify a panel in the status bar. Use the Format property to
assign and layout your status bar, using CRD strings. Use the Debug property to display the
identifiers of the panels. Use the Text property to assign a caption to a panel.

The following VB sample shows "How can I get the index of the panel":

With StatusBar1
 .BeginUpdate
 .Appearance = None2
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Text = 0.Index
 .EndUpdate
End With

The following VB.NET sample shows "How can I get the index of the panel":

With AxStatusBar1
 .BeginUpdate
 .Appearance = EXSTATUSBARLib.AppearanceEnum.None2
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1,2,3,4,(5/6/7/8)"
 .get_Panel(1).Text = 0.Index
 .EndUpdate
End With

The following C++ sample shows "How can I get the index of the panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutAppearance(EXSTATUSBARLib::None2);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->GetPanel(long(1))->PutText(_bstr_t(0->GetIndex()));
spStatusBar1->EndUpdate();

The following C# sample shows "How can I get the index of the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.Appearance = EXSTATUSBARLib.AppearanceEnum.None2;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.get_Panel(1).Text = 0.Index.ToString();
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I get the index of the panel":

with thisform.StatusBar1
 .BeginUpdate
 .Appearance = 0
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")

 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Text = 0.Index
 .EndUpdate
endwith

property Panel.Italic as Boolean
Specifies whether the text in the panel appears in italic.

Type Description

Boolean A Boolean expression that specifies whether the caption of
the panel should be shown in italic.

Use the Italic property to show the panel's caption in italic. Use the Text property to assign
a caption or an HTML text to a panel. Use the <i> HTML tag to show in italic only a portion
of the caption in the panel. Use the Bold property to show the panel's caption in bold. Use
the Underline property to underline the panel's caption. Use the StrikeOut property to show
the panel's caption in strikeout.

The following VB sample shows "How can I show in italic a specified panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 With .Panel(1)
 .Text = "Panel 1"
 .Italic = True
 End With
 .Panel(2).Text = "<i>Panel</i> 2"
 .EndUpdate
End With

The following VB.NET sample shows "How can I show in italic a specified panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2"

 With .get_Panel(1)
 .Text = "Panel 1"
 .Italic = True
 End With
 .get_Panel(2).Text = "<i>Panel</i> 2"
 .EndUpdate
End With

The following C++ sample shows "How can I show in italic a specified panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"Panel 1");
 var_Panel->PutItalic(VARIANT_TRUE);
spStatusBar1->GetPanel(long(2))->PutText(L"<i>Panel</i> 2");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I show in italic a specified panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.Text = "Panel 1";
 var_Panel.Italic = true;
axStatusBar1.get_Panel(2).Text = "<i>Panel</i> 2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I show in italic a specified panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 with .Panel(1)
 .Text = "Panel 1"
 .Italic = .T.
 endwith
 .Panel(2).Text = "<i>Panel</i> 2"
 .EndUpdate
endwith

property Panel.License as String
Specifies the runtime license required to create the user control inside the panel.

Type Description

String A String expression that specifies the runtime key required
to create an inner ActiveX control.

The control supports ActiveX hosting, so you can insert any ActiveX component. Use the
ControlID property to specify the program identifier being shown in the panel. Runtime-less
controls are not requiring a runtime key so there is not need to call the License property
before calling the ControlID property. Use the Object property to access the properties and
methods of the inner ActiveX control. The control fires the OleEvent event to notify when an
inner control fires an event. The ControlID property creates an ActiveX control that's hosted
by the control. The look and feel of the inner ActiveX control depends on the identifier
you are using, and the version of the library that implements the ActiveX control, so
you need to consult the documentation of the inner ActiveX control you are inserting
inside the control.

property Panel.Object as Object
Retrieves the inside control being created by ControlID property.

Type Description

Object An Object that indicates the inner ActiveX control being
created by ControlID property.

Use the Object property to access the properties and methods of the inner ActiveX control.
The control supports ActiveX hosting, so you can insert any ActiveX component. The
License property specifies the runtime license required to create the inner ActiveX control.
Runtime-less controls are not requiring a runtime key so there is not need to call the
License property before calling the ControlID property. The control fires the OleEvent event
to notify when an inner control fires an event. The ControlID property creates an ActiveX
control that's hosted by the control. The look and feel of the inner ActiveX control
depends on the identifier you are using, and the version of the library that
implements the ActiveX control, so you need to consult the documentation of the
inner ActiveX control you are inserting inside the control.

The following VB sample shows "How do I access the properties and the methods of an
inner ActiveX control to a panel":

With StatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .BackColorPanels = 83886080
 .BackColor = -2147483633

 .Format = "1/2,(24;5/6)"
 With .Panel(1)
 .ControlID = "MSCAL.Calendar"
 With .Object
 .MonthLength = 0
 .BackColor = 16777215
 End With
 End With
 With .Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = exAlignMiddleLeft
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How do I access the properties and the methods of
an inner ActiveX control to a panel":

With AxStatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With

 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(24;5/6)"
 With .get_Panel(1)
 .ControlID = "MSCAL.Calendar"
 With .Object
 .MonthLength = 0
 .BackColor = 16777215
 End With
 End With
 With .get_Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 End With
 .EndUpdate
End With

The following C++ sample shows "How do I access the properties and the methods of an
inner ActiveX control to a panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Demo\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +

"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
EXSTATUSBARLib::IAppearancePtr var_Appearance = spStatusBar1-
>GetVisualAppearance();
 var_Appearance->Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(24;5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutControlID(L"MSCAL.Calendar");
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'MSACAL' for the library: 'Microsoft Calendar Control 9.0'

 #import "C:\\PROGRA~1\\MICROS~2\\Office\\MSCAL.OCX"
*/
 MSACAL::ICalendarPtr var_Calendar = ((MSACAL::ICalendarPtr)(var_Panel-
>GetObject()));
 var_Calendar->PutMonthLength(0);
 var_Calendar->PutBackColor(16777215);
EXSTATUSBARLib::IPanelPtr var_Panel1 = spStatusBar1->GetPanel(long(5));
 var_Panel1->PutText(L"<fgcolor=FFFFFF>175%</fgcolor>");
 var_Panel1->PutAlignment(EXSTATUSBARLib::exAlignMiddleLeft);
 var_Panel1->PutPercent(75);
 var_Panel1->PutTransparency(35);
 var_Panel1->PutOffset(L"4 2 -4 -2");
spStatusBar1->EndUpdate();

The following C# sample shows "How do I access the properties and the methods of an
inner ActiveX control to a panel":

axStatusBar1.BeginUpdate();
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
EXSTATUSBARLib.Appearance var_Appearance = axStatusBar1.VisualAppearance;
 var_Appearance.Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(24;5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.ControlID = "MSCAL.Calendar";
 // Add 'Microsoft Calendar Control 9.0' reference to your project.
 MSACAL.Calendar var_Calendar = (var_Panel.Object as MSACAL.Calendar);
 var_Calendar.MonthLength = 0;
 var_Calendar.BackColor = 16777215;
EXSTATUSBARLib.Panel var_Panel1 = axStatusBar1.get_Panel(5);
 var_Panel1.Text = "<fgcolor=FFFFFF>175%</fgcolor>";
 var_Panel1.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft;
 var_Panel1.Percent = 75;
 var_Panel1.Transparency = 35;
 var_Panel1.Offset = "4 2 -4 -2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I access the properties and the methods of an
inner ActiveX control to a panel":

with thisform.StatusBar1
 .BeginUpdate
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 with .VisualAppearance
 .Add(4,"c:\exontrol\images\border.ebn")
 .Add(5,"CP:4 1 1 -1 -1")
 endwith
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 with .Panel(1)
 .ControlID = "MSCAL.Calendar"
 with .Object
 .MonthLength = 0
 .BackColor = 16777215
 endwith
 endwith
 with .Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = 16
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 endwith
 .EndUpdate
endwith

property Panel.Offset as String
Specifies the offset to apply when text is being diplayed.

Type Description

String

A string expression that indicates the padding of the
caption in the panel. The list should be as "l t b r" where
the l indicates the padding to left, t indicates the padding
to top, and so on. For instance, "2 2 -2 -2" indicates that
the text is padded 2 pixels from all sides.

Use the Offset property to add extra padding to the text being displayed in panel. Use the
Text property to assign a caption to a panel. Use the OffsetPercent property to specify the
padding to display the progress-bar inside the panel.

The following VB sample shows "How do I control the padding on the left, top or other
sides":

With StatusBar1
 .BeginUpdate
 .Debug = True
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2/(3,4)"
 With .Panel(3)
 .Text = "Arrange the panels as you want using CRD strings"
 .Alignment = exAlignTopLeft
 .ToolTipText = .Text
 .Offset = "10 10 -10 -10"
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How do I control the padding on the left, top or other
sides":

With AxStatusBar1
 .BeginUpdate

 .Debug = True
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2/(3,4)"
 With .get_Panel(3)
 .Text = "Arrange the panels as you want using CRD strings"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopLeft
 .ToolTipText = .Text
 .Offset = "10 10 -10 -10"
 End With
 .EndUpdate
End With

The following C++ sample shows "How do I control the padding on the left, top or other
sides":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2/(3,4)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(3));
 var_Panel->PutText(L"Arrange the panels as you want using CRD strings");

 var_Panel->PutAlignment(EXSTATUSBARLib::exAlignTopLeft);
 var_Panel->PutToolTipText(var_Panel->GetText());
 var_Panel->PutOffset(L"10 10 -10 -10");
spStatusBar1->EndUpdate();

The following C# sample shows "How do I control the padding on the left, top or other
sides":

axStatusBar1.BeginUpdate();
axStatusBar1.Debug = true;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2/(3,4)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(3);
 var_Panel.Text = "Arrange the panels as you want using CRD strings";
 var_Panel.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignTopLeft;
 var_Panel.ToolTipText = var_Panel.Text;
 var_Panel.Offset = "10 10 -10 -10";
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I control the padding on the left, top or other
sides":

with thisform.StatusBar1
 .BeginUpdate
 .Debug = .T.
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2/(3,4)"
 with .Panel(3)
 .Text = "Arrange the panels as you want using CRD strings"
 .Alignment = 0
 .ToolTipText = .Text
 .Offset = "10 10 -10 -10"

 endwith
 .EndUpdate
endwith

property Panel.OffsetPercent as String
Specifies the offset to apply when the percent bar is displayed on the panel.

Type Description

String

A string expression that indicates the padding of the
progress-bar inside the panel. The list should be as "l t b
r" where the l indicates the padding to left, t indicates the
padding to top, and so on. For instance, "2 2 -2 -2"
indicates that the progress-bar is padded 2 pixels from all
sides of the panel.

Use the OffsetPercent property to specify the padding to display the progress-bar inside
the panel. Use the Percent property to display a progress bar inside the panel. Use the
Offset property to add extra padding to the text being displayed in panel. Use the Text
property to assign a caption to a panel. Use the BackColorPercent property to change the
visual appearance of the progress bar in the panel.

The following VB sample shows "How can I control the padding of the percent/progressbar
control":

With StatusBar1
 .BeginUpdate
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 With .Panel(5)
 .Text = "15%"
 .Percent = 15
 .OffsetPercent = "6 6 -6 -6"
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I control the padding of the
percent/progressbar control":

With AxStatusBar1
 .BeginUpdate
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(24;5/6)"
 With .get_Panel(5)
 .Text = "15%"
 .Percent = 15
 .OffsetPercent = "6 6 -6 -6"
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I control the padding of the
percent/progressbar control":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
EXSTATUSBARLib::IAppearancePtr var_Appearance = spStatusBar1-
>GetVisualAppearance();
 var_Appearance->Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);

spStatusBar1->PutFormat(L"1/2,(24;5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"15%");
 var_Panel->PutPercent(15);
 var_Panel->PutOffsetPercent(L"6 6 -6 -6");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I control the padding of the percent/progressbar
control":

axStatusBar1.BeginUpdate();
EXSTATUSBARLib.Appearance var_Appearance = axStatusBar1.VisualAppearance;
 var_Appearance.Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(24;5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "15%";
 var_Panel.Percent = 15;
 var_Panel.OffsetPercent = "6 6 -6 -6";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I control the padding of the
percent/progressbar control":

with thisform.StatusBar1
 .BeginUpdate
 with .VisualAppearance
 .Add(4,"c:\exontrol\images\border.ebn")
 .Add(5,"CP:4 1 1 -1 -1")
 endwith
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 with .Panel(5)
 .Text = "15%"
 .Percent = 15

 .OffsetPercent = "6 6 -6 -6"
 endwith
 .EndUpdate
endwith

property Panel.OwnerDraw as Boolean
Specifies whether the user is responsible with painting the panel in the status bar control.

Type Description

Boolean A Boolean expression that specifies whether the panel is
owner draw.

By default, the OwnerDraw property is False. Use the OwnerDraw property to perform
your own drawing inside the panel. If the OwnerDraw property is True, the control fires the
OwnerDrawStart event just before erasing and painting the panel. You can use the
Transparency property to apply semi-transparent colors to the panel's content so both
paintings are shown the default and your owner. The control fires the OwnerDrawEnd event
when the control ends painting an owner draw panel. Use the OwnerDrawStart event to
perform painting before control's default painting, and use the OwnerDrawEvent to perform
your paintings after default painting is done.

The first panel in the screen shot shows a curve being drawn using the OwnerDrawStart
event and still performing the default painting, as the text is painted as semi-transparent.

property Panel.Percent as Long
Specifies the percent to display the background.

Type Description

Long
A long expression that specifies the percent of the
progress bar being displayed in the panel. The value
should be from 0 to 100.

Use the Percent property to indicate the percent of progress-bar value being displayed in
the progress bar. The control fires the PercentChange event when the Percent value is
changed. Use the BackColorPercent property to change the visual appearance of the
progress bar in the panel. Use the Text property to assign a different caption to the panel.
Use the Transparency property to specify a semi-transparent color for panel's caption when
a progress-bar is shown. Use the BackColor property to change the visual appearance of
the the panel using EBN files. Use the BackColorPanels property to assign the same visual
appearance to all panels in the status bar. Use the ForeColor property to change the
panel's foreground color. Use the OffsetPercent property to specify the padding to display
the progress-bar inside the panel.

The following VB sample shows "How can I display a percent or a progress-bar inside the
panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 With .Panel(5)
 .Text = "15%"
 .Percent = 15
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I display a percent or a progress-bar inside

the panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(24;5/6)"
 With .get_Panel(5)
 .Text = "15%"
 .Percent = 15
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I display a percent or a progress-bar inside the
panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(24;5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"15%");
 var_Panel->PutPercent(15);

spStatusBar1->EndUpdate();

The following C# sample shows "How can I display a percent or a progress-bar inside the
panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(24;5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "15%";
 var_Panel.Percent = 15;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I display a percent or a progress-bar inside the
panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 with .Panel(5)
 .Text = "15%"
 .Percent = 15
 endwith
 .EndUpdate
endwith

property Panel.StrikeOut as Boolean
Specifies whether the text in the panel appears as strikeout.

Type Description

Boolean A Boolean expression that specifies whether the caption of
the panel is shown in strikeout.

Use the StrikeOut property to show the panel's caption in strikeout. Use the Text property
to assign a caption or an HTML text to a panel. Use the <s> HTML tag to show in strikeout
only a portion of the caption in the panel. Use Italic the property to show the panel's
caption in italic. Use the Bold property to show the panel's caption in italic. Use the
Underline property to underline the panel's caption.

The following VB sample shows "How can I show in strikeout the caption in the panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 With .Panel(1)
 .Text = "Panel 1"
 .StrikeOut = True
 End With
 .Panel(2).Text = "<s>Panel</s> 2"
 .EndUpdate
End With

The following VB.NET sample shows "How can I show in strikeout the caption in the panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2"

 With .get_Panel(1)
 .Text = "Panel 1"
 .StrikeOut = True
 End With
 .get_Panel(2).Text = "<s>Panel</s> 2"
 .EndUpdate
End With

The following C++ sample shows "How can I show in strikeout the caption in the panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"Panel 1");
 var_Panel->PutStrikeOut(VARIANT_TRUE);
spStatusBar1->GetPanel(long(2))->PutText(L"<s>Panel</s> 2");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I show in strikeout the caption in the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.Text = "Panel 1";
 var_Panel.StrikeOut = true;
axStatusBar1.get_Panel(2).Text = "<s>Panel</s> 2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I show in strikeout the caption in the panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 with .Panel(1)
 .Text = "Panel 1"
 .StrikeOut = .T.
 endwith
 .Panel(2).Text = "<s>Panel</s> 2"
 .EndUpdate
endwith

property Panel.Text as String
Gets or sets the text of the status bar panel.

Type Description

String A String expression that indicates the caption of the panel.
This property supports HTML format as listed bellow.

Use the Text property to assign an HTML caption to a panel. Use the Format property to
add and arrange panels in your status bar control. Use the Panel property to access a
Panel object. Use the Debug property to display the identifiers of the panels in the status
bar. Use the Enabled property to enable or disable a panel. Use the ToolTipText property to
specify the tooltip being shown when the cursor hovers the panel. Use the Image property
to assign a single icon to a panel, or use the HTML tag to assign multiple icons or
custom size pictures to a panel. Use the Images method to assign a list of icons to your
status bar. Use the Percent property to display a progress bar inside the panel. Use the
Transparency property to apply semi-transparent color or use the ForeColor property to
specify the panel's foreground color. Use the ControlID property to display an ActiveX
control inside the panel.

Use the Offset property to apply extra padding to your text inside the panel.

The Text property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text

about:blank

with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the

red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample shows "How do I assign a caption or a text to a panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 .Panel(1).Text = "Panel 1"

 .Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following VB.NET sample shows "How do I assign a caption or a text to a panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2"
 .get_Panel(1).Text = "Panel 1"
 .get_Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following C++ sample shows "How do I assign a caption or a text to a panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2");
spStatusBar1->GetPanel(long(1))->PutText(L"Panel 1");
spStatusBar1->GetPanel(long(2))->PutText(L"Panel 2");

spStatusBar1->EndUpdate();

The following C# sample shows "How do I assign a caption or a text to a panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2";
axStatusBar1.get_Panel(1).Text = "Panel 1";
axStatusBar1.get_Panel(2).Text = "Panel 2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I assign a caption or a text to a panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .EndUpdate
endwith

property Panel.ToolTipText as String
Gets or sets ToolTip text associated with the status bar panel.

Type Description

String
A string expression that specifies the tooltip text being
displayed when the cursor hovers the panel. This property
does support HTML format as listed bellow.

By default, the ToolTipText property is empty. Use the ToolTipText property to assign a
tooltip being displayed when the cursor hovers the panel. Use the ToolTipTitle property to
assign a title to the panel's tooltip. The control shows the tooltip only if ToolTipText property
or ToolTipTitle property is not empty. Use the ShowToolTip method to programmatically
display your tooltip. Use the ToolTipDelay property to specify the time in ms that passes
before the ToolTip appears. Use the ToolTipPopDelay property to specify the period in ms
of time the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipWidth property to specify the width of the tooltip window, in pixels.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>

about:blank

... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient

color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Panel.ToolTipTitle as String
Gets or sets ToolTip title associated with the status bar panel.

Type Description

String
A string expression that specifies the tooltip's title. The
tooltip shows up when the cursor hovers the panel. This
property does not support HTML format.

By default, the ToolTipTitle property is empty. Use the ToolTipTitle property to assign a title
to the panel's tooltip. Use the ToolTipText property to assign a tooltip being displayed when
the cursor hovers the panel. The control shows the tooltip only if ToolTipText property or
ToolTipTitle property is not empty. Use the ShowToolTip method to programmatically display
your tooltip. Use the ToolTipDelay property to specify the time in ms that passes before the
ToolTip appears. Use the ToolTipPopDelay property to specify the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipWidth property to specify the width of the tooltip window, in pixels.

property Panel.Transparency as Long
Specifies the transparency to display the text in the panel.

Type Description

Long
A long expression that specifies the percent of
transparency used to paint the panel's caption. The value
should be from 0 to 100, where 0 means opaque.

By default, the Transparency property is 0, which means that the panel's caption is opaque.
The Transparency property have effect if you perform some owner draw during the
OwnerDrawStart event, or you are displaying a progress-bar and the text in the same
panel. Use the Text property to assign a caption to a panel. Use the Percent property to
show a progress-bar inside the panel.

The icon and the 45% are shown using 50% transparency.

The following VB sample shows "How can I show the percent value over the progress bar
using a semi-transparent color":

With StatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .BackColorPanels = 83886080

 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 With .Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = exAlignMiddleLeft
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I show the percent value over the progress
bar using a semi-transparent color":

With AxStatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 With .VisualAppearance
 .Add 4,"c:\exontrol\images\border.ebn"
 .Add 5,"CP:4 1 1 -1 -1"
 End With
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(24;5/6)"
 With .get_Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft

 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I show the percent value over the progress bar
using a semi-transparent color":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
EXSTATUSBARLib::IAppearancePtr var_Appearance = spStatusBar1-
>GetVisualAppearance();
 var_Appearance->Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);

spStatusBar1->PutFormat(L"1/2,(24;5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"<fgcolor=FFFFFF>175%</fgcolor>");
 var_Panel->PutAlignment(EXSTATUSBARLib::exAlignMiddleLeft);
 var_Panel->PutPercent(75);
 var_Panel->PutTransparency(35);
 var_Panel->PutOffset(L"4 2 -4 -2");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I show the percent value over the progress bar
using a semi-transparent color":

axStatusBar1.BeginUpdate();
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
EXSTATUSBARLib.Appearance var_Appearance = axStatusBar1.VisualAppearance;
 var_Appearance.Add(4,"c:\\exontrol\\images\\border.ebn");
 var_Appearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(24;5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "<fgcolor=FFFFFF>175%</fgcolor>";
 var_Panel.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft;
 var_Panel.Percent = 75;
 var_Panel.Transparency = 35;
 var_Panel.Offset = "4 2 -4 -2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I show the percent value over the progress bar
using a semi-transparent color":

with thisform.StatusBar1
 .BeginUpdate
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 with .VisualAppearance
 .Add(4,"c:\exontrol\images\border.ebn")
 .Add(5,"CP:4 1 1 -1 -1")
 endwith
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(24;5/6)"
 with .Panel(5)
 .Text = "<fgcolor=FFFFFF>175%</fgcolor>"
 .Alignment = 16
 .Percent = 75
 .Transparency = 35
 .Offset = "4 2 -4 -2"
 endwith
 .EndUpdate
endwith

property Panel.Underline as Boolean
Specifies whether the text in the panel appears as underlined.

Type Description

Boolean A Boolean expression that specifies whether the caption of
the panel is underlined.

Use the Underline property to underline the panel's caption. Use the Text property to assign
a caption or an HTML text to a panel. Use the <u> or <a> HTML tag to underline a portion
of the caption in the panel. Use Italic the property to show the panel's caption in italic. Use
the Bold property to show the panel's caption in italic. Use the StrikeOut property to show
the panel's caption in strikeout.

The following VB sample shows "How can I underline the caption in the panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 With .Panel(1)
 .Text = "Panel 1"
 .Underline = True
 End With
 .Panel(2).Text = "<u>Panel</u> 2"
 .EndUpdate
End With

The following VB.NET sample shows "How can I underline the caption in the panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2"

 With .get_Panel(1)
 .Text = "Panel 1"
 .Underline = True
 End With
 .get_Panel(2).Text = "<u>Panel</u> 2"
 .EndUpdate
End With

The following C++ sample shows "How can I underline the caption in the panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"Panel 1");
 var_Panel->PutUnderline(VARIANT_TRUE);
spStatusBar1->GetPanel(long(2))->PutText(L"<u>Panel</u> 2");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I underline the caption in the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.Text = "Panel 1";
 var_Panel.Underline = true;
axStatusBar1.get_Panel(2).Text = "<u>Panel</u> 2";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I underline the caption in the panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2"
 with .Panel(1)
 .Text = "Panel 1"
 .Underline = .T.
 endwith
 .Panel(2).Text = "<u>Panel</u> 2"
 .EndUpdate
endwith

property Panel.UserData as Variant
Associates an extra data to the panel.

Type Description

Variant

A Variant expression that specifies any extra data
associated to a panel. If could be a number, a string, a
date, a reference to an object or anything that a VARIANT
expression could hold.

Use the UserData property to assign your extra data to a panel. Use the Text property to
assign a caption to a panel.

The following VB sample shows "How can I assign an extra data to my panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6/7/8)"
 With .Panel(5)
 .Text = "UserData"
 .UserData = "this is just some extra data associated to the panel"
 .ToolTipText = .UserData
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I assign an extra data to my panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(5/6/7/8)"
 With .get_Panel(5)

 .Text = "UserData"
 .UserData = "this is just some extra data associated to the panel"
 .ToolTipText = .UserData
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I assign an extra data to my panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(5/6/7/8)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(L"UserData");
 var_Panel->PutUserData("this is just some extra data associated to the panel");
 var_Panel->PutToolTipText(_bstr_t(var_Panel->GetUserData()));
spStatusBar1->EndUpdate();

The following C# sample shows "How can I assign an extra data to my panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;

axStatusBar1.Format = "1/2,(5/6/7/8)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = "UserData";
 var_Panel.UserData = "this is just some extra data associated to the panel";
 var_Panel.ToolTipText = var_Panel.UserData.ToString();
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I assign an extra data to my panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6/7/8)"
 with .Panel(5)
 .Text = "UserData"
 .UserData = "this is just some extra data associated to the panel"
 .ToolTipText = .UserData
 endwith
 .EndUpdate
endwith

property Panel.Width as Long
Specifies the width in pixels of the panel.

Type Description

Long A long expression that specifies the width of the panel, in
pixels.

Use the Width property to specify the width of the panel. Use the Height property to get the
height in pixels of the panel. Use the Format property to control the width and the height of
the panels, using CRD strings.

The following VB sample shows "Is there any property to get the width/height of the panel":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6)"
 With .Panel(5)
 .Text = .Width
 End With
 With .Panel(6)
 .Text = .Height
 End With
 .EndUpdate
End With

The following VB.NET sample shows "Is there any property to get the width/height of the
panel":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2,(5/6)"

 With .get_Panel(5)
 .Text = .Width
 End With
 With .get_Panel(6)
 .Text = .Height
 End With
 .EndUpdate
End With

The following C++ sample shows "Is there any property to get the width/height of the
panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2,(5/6)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(5));
 var_Panel->PutText(_bstr_t(var_Panel->GetWidth()));
EXSTATUSBARLib::IPanelPtr var_Panel1 = spStatusBar1->GetPanel(long(6));
 var_Panel1->PutText(_bstr_t(var_Panel1->GetHeight()));
spStatusBar1->EndUpdate();

The following C# sample shows "Is there any property to get the width/height of the panel":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");

axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2,(5/6)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(5);
 var_Panel.Text = var_Panel.Width.ToString();
EXSTATUSBARLib.Panel var_Panel1 = axStatusBar1.get_Panel(6);
 var_Panel1.Text = var_Panel1.Height.ToString();
axStatusBar1.EndUpdate();

The following VFP sample shows "Is there any property to get the width/height of the
panel":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2,(5/6)"
 with .Panel(5)
 .Text = .Width
 endwith
 with .Panel(6)
 .Text = .Height
 endwith
 .EndUpdate
endwith

property Panel.WordWrap as Boolean
Specifies whether the text is word wrapping in the panel.

Type Description

Boolean A Boolean expression that specifies whether the panel's
caption is shown using multiple lines or single line.

By default, the WordWrap property is True. If the WordWrap property is True, the panel's
Text is wrapped in the panel.

The following VB sample shows "How can I display the panel using a single line":

With StatusBar1
 .BeginUpdate
 .Debug = True
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2/(3,4)"
 With .Panel(3)
 .Text = "Arrange the panels as you want using CRD strings"
 .ToolTipText = .Text
 .WordWrap = False
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I display the panel using a single line":

With AxStatusBar1
 .BeginUpdate
 .Debug = True
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .GetOcx().BackColor = &H8000000f
 .Format = "1/2/(3,4)"
 With .get_Panel(3)

 .Text = "Arrange the panels as you want using CRD strings"
 .ToolTipText = .Text
 .WordWrap = False
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I display the panel using a single line":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1->PutFormat(L"1/2/(3,4)");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(3));
 var_Panel->PutText(L"Arrange the panels as you want using CRD strings");
 var_Panel->PutToolTipText(var_Panel->GetText());
 var_Panel->PutWordWrap(VARIANT_FALSE);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I display the panel using a single line":

axStatusBar1.BeginUpdate();
axStatusBar1.Debug = true;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Format = "1/2/(3,4)";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(3);
 var_Panel.Text = "Arrange the panels as you want using CRD strings";
 var_Panel.ToolTipText = var_Panel.Text;
 var_Panel.WordWrap = false;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I display the panel using a single line":

with thisform.StatusBar1
 .BeginUpdate
 .Debug = .T.
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .BackColor = -2147483633
 .Format = "1/2/(3,4)"
 with .Panel(3)
 .Text = "Arrange the panels as you want using CRD strings"
 .ToolTipText = .Text
 .WordWrap = .F.
 endwith
 .EndUpdate
endwith

StatusBar object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {0885027A-DF96-481F-928C-E3E3788889BA}. The object's program identifier is: "Exontrol.StatusBar".
The /COM object module is: "ExStatusBar.dll"

The Exontrol's ExStatusBar component provides statusbar panels to your forms. The
statusbar is a component (widget) often found at the bottom of windows in a graphical user
interface. It is very frequently divided into sections, each of which shows different
information. Its job is primarily to display information about the current state of its window,
although some status bars have extra functionality. Usually, the status bar often called a
status line in this context displays the current state of the application, and helpful keyboard
shortcuts. Use the Format property to add and arrange the panels in the status bar
control. Use the Panel property to access the panels in the status bar.

Name Description
AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

BackColorPanels Specifies a background color or a visual appearance
applied to all panels in the status bar control.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

ClearPanels Clears the collection of panels in the control.

Debug Specifies whether the control displays debug information
such of identifiers of the panels.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event

parameter.
ExecuteTemplate Executes a template and returns the result.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

Format Specifies the CRD format to arrange the objects inside the
control.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..
Panel Retrieves the panel in the control giving its identifier.
PanelFromPoint Retrieves the panel from the point.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreshes the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

TemplateResult Gets the result of the last Template call.
TemplateResultN Gets the result of the last Template call, as double.
TemplateResultS Gets the result of the last Template call, as string.

ToolTipDelay
Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

property StatusBar.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub StatusBar1_MouseMove(Button As Integer, Shift As Integer, x As Single, y As
Single)
 With StatusBar1
 .ShowToolTip .AnchorFromPoint(-1, -1), , 3
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxStatusBar1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent) Handles
AxStatusBar1.MouseMoveEvent
 With AxStatusBar1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1), "", 3, -1, -1)
 End With

End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axStatusBar1_MouseMoveEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent e)
{
 axStatusBar1.ShowToolTip(axStatusBar1.get_AnchorFromPoint(-1, -1), "", 3, -1, -1);
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveStatusbar1(short Button, short Shift, long X, long Y)
{
 m_statusBar.ShowToolTip(m_statusBar.GetAnchorFromPoint(-1,-1), COleVariant(""),
COleVariant((long)3), COleVariant(long(-1)), COleVariant(long(-1)));
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.StatusBar1
 .ShowToolTip(.AnchorFromPoint(-1,-1), "", 3, -1, -1)
endwith

property StatusBar.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The frame.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips.

The following VB sample shows "How do I change the control's border, using your EBN
files":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Appearance = 16777216
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True

https://exontrol.com/exbutton.jsp

 .EndUpdate
End With

The following VB.NET sample shows "How do I change the control's border, using your
EBN files":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Appearance = 16777216
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following C++ sample shows "How do I change the control's border, using your EBN
files":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Demo\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(1,"c:\\exontrol\\images\\normal.ebn");
spStatusBar1->PutAppearance((EXSTATUSBARLib::AppearanceEnum)16777216);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");

spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "How do I change the control's border, using your EBN
files":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
axStatusBar1.Appearance = (EXSTATUSBARLib.AppearanceEnum)16777216;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I change the control's border, using your EBN
files":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .Appearance = 16777216
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

method StatusBar.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub StatusBar1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property StatusBar.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that specifies the control's background
color.

Use the BackColor property to change the control's background color. Use the Picture
property to layout a picture on the control's background. Use the Appearance property to
change the visual appearance of the control's border. Use the BackColorPanels property to
assign the same visual aspect for all panels in the status bar control. Use the ForeColor
property to specify the control's foreground color.

The following VB sample shows "How do I change the control's background color":

With StatusBar1
 .BeginUpdate
 .BackColor = 13158600
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "How do I change the control's background color":

With AxStatusBar1
 .BeginUpdate
 .BackColor = Color.FromArgb(200,200,200)
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following C++ sample shows "How do I change the control's background color":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Demo\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutBackColor(13158600);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "How do I change the control's background color":

axStatusBar1.BeginUpdate();
axStatusBar1.BackColor = Color.FromArgb(200,200,200);
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I change the control's background color":

with thisform.StatusBar1
 .BeginUpdate
 .BackColor = 13158600
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")

 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

property StatusBar.BackColorPanels as Color
Specifies a background color or a visual appearance applied to all panels in the status bar
control.

Type Description

Color

A Color expression that specifies the panels background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the BackColorPanels property to change the visual appearance of all panels in the
status bar control, using EBN files. Use the BackColor property to assign a different visual
appearance to a specified panel. Use the BackColor property to change the control's
background color.

The following VB sample shows "How do I draw a border for all panels":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 2 2 -2 -2"
 .BackColorPanels = 83886080
 .Debug = True
 .Format = "(0/1:32),2,(3/4/5)"
 .EndUpdate
End With

The following VB.NET sample shows "How do I draw a border for all panels":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 2 2 -2 -2"
 .GetOcx().BackColorPanels = &H5000000
 .Debug = True
 .Format = "(0/1:32),2,(3/4/5)"
 .EndUpdate

End With

The following C++ sample shows "How do I draw a border for all panels":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 2 2 -2 -2");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->PutFormat(L"(0/1:32),2,(3/4/5)");
spStatusBar1->EndUpdate();

The following C# sample shows "How do I draw a border for all panels":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 2 2 -2 -2");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Debug = true;
axStatusBar1.Format = "(0/1:32),2,(3/4/5)";
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I draw a border for all panels":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 2 2 -2 -2")

 .BackColorPanels = 83886080
 .Debug = .T.
 .Format = "(0/1:32),2,(3/4/5)"
 .EndUpdate
endwith

property StatusBar.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample shows "Can I change the default border of the tooltip, using your
EBN files":

With StatusBar1
 .BeginUpdate
 .ToolTipDelay = 1
 .ToolTipWidth = 364
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(exToolTipAppearance) = 16777216
 .Format = "1"
 With .Panel(1)
 .Text = "This is a bit of text that should occurs when the cursor hovers the panel"

 .ToolTipText = .Text
 .ToolTipTitle = "Title"
 .Alignment = exAlignMiddleLeft
 End With
 .EndUpdate
End With

The following VB.NET sample shows "Can I change the default border of the tooltip, using
your EBN files":

With AxStatusBar1
 .BeginUpdate
 .ToolTipDelay = 1
 .ToolTipWidth = 364
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"

.set_Background(EXSTATUSBARLib.BackgroundPartEnum.exToolTipAppearance,16777216)
 .Format = "1"
 With .get_Panel(1)
 .Text = "This is a bit of text that should occurs when the cursor hovers the panel"
 .ToolTipText = .Text
 .ToolTipTitle = "Title"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft
 End With
 .EndUpdate
End With

The following C++ sample shows "Can I change the default border of the tooltip, using your
EBN files":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/

EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutToolTipDelay(1);
spStatusBar1->PutToolTipWidth(364);
spStatusBar1->GetVisualAppearance()->Add(1,"c:\\exontrol\\images\\normal.ebn");
spStatusBar1->PutBackground(EXSTATUSBARLib::exToolTipAppearance,16777216);
spStatusBar1->PutFormat(L"1");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(1));
 var_Panel->PutText(L"This is a bit of text that should occurs when the cursor hovers the
panel");
 var_Panel->PutToolTipText(var_Panel->GetText());
 var_Panel->PutToolTipTitle(L"Title");
 var_Panel->PutAlignment(EXSTATUSBARLib::exAlignMiddleLeft);
spStatusBar1->EndUpdate();

The following C# sample shows "Can I change the default border of the tooltip, using your
EBN files":

axStatusBar1.BeginUpdate();
axStatusBar1.ToolTipDelay = 1;
axStatusBar1.ToolTipWidth = 364;
axStatusBar1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
axStatusBar1.set_Background(EXSTATUSBARLib.BackgroundPartEnum.exToolTipAppearance,16777216);

axStatusBar1.Format = "1";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(1);
 var_Panel.Text = "This is a bit of text that should occurs when the cursor hovers the
panel";
 var_Panel.ToolTipText = var_Panel.Text;
 var_Panel.ToolTipTitle = "Title";
 var_Panel.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleLeft;
axStatusBar1.EndUpdate();

The following VFP sample shows "Can I change the default border of the tooltip, using your
EBN files":

with thisform.StatusBar1

 .BeginUpdate
 .ToolTipDelay = 1
 .ToolTipWidth = 364
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .Background(64) = 16777216
 .Format = "1"
 with .Panel(1)
 .Text = "This is a bit of text that should occurs when the cursor hovers the panel"
 .ToolTipText = .Text
 .ToolTipTitle = "Title"
 .Alignment = 16
 endwith
 .EndUpdate
endwith

method StatusBar.BeginUpdate ()
Maintains performance when items are added to the control one at a time. This method
prevents the control from painting until the EndUpdate method is called.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

property StatusBar.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that specifies the height, in pixels of the
border where the panels are displayed.

By default, the BorderHeight property is 0. Use the BorderWidth and BorderHeight
properties to control the area where the panels are displayed. Use the Offset property to
specify the padding to display the caption inside the panel. Use the OffsetPercent property
to specify the padding to display the progress-bar inside the panel.

The following VB sample shows "Is there any option to increase the empty space on
borders of the control":

With StatusBar1
 .BeginUpdate
 .BorderWidth = 20
 .BorderHeight = 20
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "Is there any option to increase the empty space on
borders of the control":

With AxStatusBar1
 .BeginUpdate
 .BorderWidth = 20
 .BorderHeight = 20
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True

 .EndUpdate
End With

The following C++ sample shows "Is there any option to increase the empty space on
borders of the control":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutBorderWidth(20);
spStatusBar1->PutBorderHeight(20);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "Is there any option to increase the empty space on
borders of the control":

axStatusBar1.BeginUpdate();
axStatusBar1.BorderWidth = 20;
axStatusBar1.BorderHeight = 20;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "Is there any option to increase the empty space on
borders of the control":

with thisform.StatusBar1
 .BeginUpdate
 .BorderWidth = 20
 .BorderHeight = 20
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

property StatusBar.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that specifies the width, in pixels of the
border where the panels are displayed.

By default, the BorderWidth property is 0. Use the BorderWidth and BorderHeight
properties to control the area where the panels are displayed. Use the Offset property to
specify the padding to display the caption inside the panel. Use the OffsetPercent property
to specify the padding to display the progress-bar inside the panel.

The following VB sample shows "Is there any option to increase the empty space on
borders of the control":

With StatusBar1
 .BeginUpdate
 .BorderWidth = 20
 .BorderHeight = 20
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "Is there any option to increase the empty space on
borders of the control":

With AxStatusBar1
 .BeginUpdate
 .BorderWidth = 20
 .BorderHeight = 20
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True

 .EndUpdate
End With

The following C++ sample shows "Is there any option to increase the empty space on
borders of the control":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutBorderWidth(20);
spStatusBar1->PutBorderHeight(20);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "Is there any option to increase the empty space on
borders of the control":

axStatusBar1.BeginUpdate();
axStatusBar1.BorderWidth = 20;
axStatusBar1.BorderHeight = 20;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "Is there any option to increase the empty space on
borders of the control":

with thisform.StatusBar1
 .BeginUpdate
 .BorderWidth = 20
 .BorderHeight = 20
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

method StatusBar.ClearPanels ()
Clears the collection of panels in the control.

Type Description

Use the ClearPanels property to remove all panels in the status bar control. Use the Format
property to add and arrange the panels in your status bar control. Use the Panel property
to access a panel in the status bar. If no panel is no accessed, the control display the
Format property as an HTML caption. Use the Debug property to display the identifiers of
the panels in the status bar.

property StatusBar.Debug as Boolean
Specifies whether the control displays debug information such of indentifiers of the panels.

Type Description

Boolean A Boolean expression that specifies whether the control
displays the identifier of the panels in the status bar.

By default, the Debug property is True. Use the Debug property to display the identifiers of
the panels in your status bar control. Use the Format property to add and arrange the
panels in the status bar control. Use the Panel property to access a panel in the status bar
control. The Index property of the panel indicates the index of the panel.

The following screen show shows the identifiers of the panels:

The following screen shot shows the status bar without displaying its identifiers:

So, the status bar has the following panels: 3, 11, 21, 33 and 44, and the Format property
is "<a1>link"[a=17]:64,11:64,((24;21/"Arrange the panels as you want using CRD
strings"[a=17][ww])/24;3),(33/44):48. The numbers that appear in bold, are the identifiers
being displayed in the status bar.

property StatusBar.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that specifies whether the status bar
is enabled or disabled.

Use the Enabled property to disable the control. Use the Enabled property to disable a
specified panel. When the control is disabled, all panels looks grayed.

The following VB sample shows "How can I disable the control":

With StatusBar1
 .BeginUpdate
 .Enabled = False
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Image = 1
 .Panel(2).Text = "1:41:41:41
icons"
 With .Panel(3)
 .Text = "2"
 .Alignment = exAlignMiddleRight
 End With
 .EndUpdate
End With

The following VB.NET sample shows "How can I disable the control":

With AxStatusBar1
 .BeginUpdate
 .Enabled = False
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .get_Panel(1).Image = 1
 .get_Panel(2).Text = "1:41:41:4
1 icons"
 With .get_Panel(3)
 .Text = "2"
 .Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleRight
 End With
 .EndUpdate
End With

The following C++ sample shows "How can I disable the control":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "C:\\WINNT\\system32\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;

*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutEnabled(VARIANT_FALSE);
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->GetPanel(long(1))->PutImage(1);
spStatusBar1->GetPanel(long(2))->PutText(L"1:41:4
1:41 icons");
EXSTATUSBARLib::IPanelPtr var_Panel = spStatusBar1->GetPanel(long(3));
 var_Panel->PutText(L"2");
 var_Panel->PutAlignment(EXSTATUSBARLib::exAlignMiddleRight);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I disable the control":

axStatusBar1.BeginUpdate();
axStatusBar1.Enabled = false;
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.get_Panel(1).Image = 1;
axStatusBar1.get_Panel(2).Text = "1:41:41:4
1 icons";
EXSTATUSBARLib.Panel var_Panel = axStatusBar1.get_Panel(3);
 var_Panel.Text = "2";
 var_Panel.Alignment = EXSTATUSBARLib.TextAlignEnum.exAlignMiddleRight;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I disable the control":

with thisform.StatusBar1
 .BeginUpdate
 .Enabled = .F.
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")

 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Image = 1
 .Panel(2).Text = "1:41:41:41
icons"
 with .Panel(3)
 .Text = "2"
 .Alignment = 18
 endwith
 .EndUpdate
endwith

method StatusBar.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

property StatusBar.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method StatusBar.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print StatusBar1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property StatusBar.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that specifies the font to display the panels.

Use the Font property to specify the font to display the panels. Use the HTM tag to
apply a different font for portion of text in the caption of the panel. Use the Text property to
specify the caption of the panel. Use the ToolTipFont property to specify the the font to
display the tooltip when the cursor hovers a panel. Use the ForeColor property to specify
the control's foreground color. Use the Bold property to show the panel's caption in bold.
Use the Italic property to show the panel's caption in italic. Use the Underline property to
underline the panel's caption. Use the StrikeOut property to show the panel's caption in
strikeout.

The following VB sample shows "How can I change the control's font":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 Set f = CreateObject("StdFont")
 With f
 .Name = "Verdana"
 .Size = 12
 End With
 .Font = f
 .Format = """static text""[fg=255][a=17],11,22,(33/44)"
 .EndUpdate
End With

The following VB.NET sample shows "How can I change the control's font":

Dim f
With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"

 .GetOcx().BackColorPanels = &H5000000
 f = CreateObject("StdFont")
 With f
 .Name = "Verdana"
 .Size = 12
 End With
 .Font = f
 .Format = """static text""[fg=255][a=17],11,22,(33/44)"
 .EndUpdate
End With

The following C++ sample shows "How can I change the control's font":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
/*
 Includes the definition for CreateObject function like follows:

 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };

*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'stdole' for the library: 'OLE Automation'

 #import "C:\\WINNT\\System32\\stdole2.tlb"
*/
stdole::FontPtr f = ::CreateObject(L"StdFont");
 f->PutName(L"Verdana");
 f->PutSize(_variant_t(long(12)));
spStatusBar1->PutFont(IFontDispPtr(((stdole::FontPtr)(f))));
spStatusBar1->PutFormat(L"\"static text\"[fg=255][a=17],11,22,(33/44)");
spStatusBar1->EndUpdate();

The following C# sample shows "How can I change the control's font":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
stdole.IFontDisp f = new stdole.StdFont() as stdole.IFontDisp;
 f.Name = "Verdana";
 f.Size = 12;
axStatusBar1.Font = (f as stdole.IFontDisp);
axStatusBar1.Format = "\"static text\"[fg=255][a=17],11,22,(33/44)";
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I change the control's font":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 f = CreateObject("StdFont")
 with f
 .Name = "Verdana"

 .Size = 12
 endwith
 .Font = f
 .Format = ""+chr(34)+"static text"+chr(34)+"[fg=255][a=17],11,22,(33/44)"
 .EndUpdate
endwith

property StatusBar.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that specifies the control's foreground
color.

Use the ForeColor property to specify the control's foreground color. Use the <fgcolor>
HTML tag to specify a different foreground color for portion of text in the panel. Use the
Text property to assign a caption to a panel. Use the BackColor property to specify the
control's background color.

The following VB sample shows "How do I change the control's foreground color":

With StatusBar1
 .BeginUpdate
 .ForeColor = 7895160
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "How do I change the control's foreground color":

With AxStatusBar1
 .BeginUpdate
 .ForeColor = Color.FromArgb(120,120,120)
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following C++ sample shows "How do I change the control's foreground color":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutForeColor(7895160);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "How do I change the control's foreground color":

axStatusBar1.BeginUpdate();
axStatusBar1.ForeColor = Color.FromArgb(120,120,120);
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I change the control's foreground color":

with thisform.StatusBar1
 .BeginUpdate
 .ForeColor = 7895160
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080

 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

property StatusBar.Format as String
Specifies the CRD format to arrange the objects inside the control.

Type Description

String
A CRD String expression that specifies the arrangement of
the panels and captions in the status bar. This is a CRD
string.

By default, the Format property is empty, so no panels are displayed. Use the Format
property to add an arrange the panels in the status bar. Use the Panel property to access
panels in the status bar. Use the Debug property to display the identifiers of the panels in
the status bar. Use the BackColorPanels property to specify the visual appearance of the
borders around the panels. For instance, if the Format property is "1,2" the status bar
displays two panels with the identifiers 1 and 2.

The following VB sample shows how can I add two panels to the status bar control:

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following VB sample shows how can I add three panels aligned from top to bottom:

With StatusBar1
 .BeginUpdate
 .BackColor = -2147483633
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"

 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1/2/3"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .Panel(3).Text = "Panel 3"
 .EndUpdate
End With

The following VB.NET sample shows how can I add two panels to the status bar control:

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2"
 .get_Panel(1).Text = "Panel 1"
 .get_Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following VB.NET sample shows how can I add three panels aligned from top to
bottom:

With AxStatusBar1
 .BeginUpdate
 .GetOcx().BackColor = &H8000000f
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1/2/3"
 .get_Panel(1).Text = "Panel 1"
 .get_Panel(2).Text = "Panel 2"
 .get_Panel(3).Text = "Panel 3"
 .EndUpdate
End With

The following C++ sample shows how can I add two panels to the status bar control:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2");
spStatusBar1->GetPanel(long(1))->PutText(L"Panel 1");
spStatusBar1->GetPanel(long(2))->PutText(L"Panel 2");
spStatusBar1->EndUpdate();

The following C++ sample shows how can I add three panels aligned from top to bottom:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1/2/3");
spStatusBar1->GetPanel(long(1))->PutText(L"Panel 1");
spStatusBar1->GetPanel(long(2))->PutText(L"Panel 2");
spStatusBar1->GetPanel(long(3))->PutText(L"Panel 3");
spStatusBar1->EndUpdate();

The following C# sample shows how can I add two panels to the status bar control:

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;

axStatusBar1.Format = "1,2";
axStatusBar1.get_Panel(1).Text = "Panel 1";
axStatusBar1.get_Panel(2).Text = "Panel 2";
axStatusBar1.EndUpdate();

The following C# sample shows how can I add three panels aligned from top to bottom:

axStatusBar1.BeginUpdate();
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1/2/3";
axStatusBar1.get_Panel(1).Text = "Panel 1";
axStatusBar1.get_Panel(2).Text = "Panel 2";
axStatusBar1.get_Panel(3).Text = "Panel 3";
axStatusBar1.EndUpdate();

The following VFP sample shows how can I add two panels to the status bar control:

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .EndUpdate

endwith

The following VFP sample shows how can I add three panels aligned from top to bottom:

with thisform.StatusBar1
 .BeginUpdate
 .BackColor = -2147483633
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1/2/3"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .Panel(3).Text = "Panel 3"
 .EndUpdate
endwith

property StatusBar.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

The following VB sample shows "Can I change the visual effect, appearance for the anchor,
hyperlink elements, in HTML captions":

https://exontrol.com/eximages.jsp

With StatusBar1
 .BeginUpdate
 .FormatAnchor(True) = "<u><fgcolor=FF0000> </fgcolor></u>"
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3"
 .Panel(1).Text = "<a1>link 1"
 .Panel(2).Text = "<a2>link 2"
 .Panel(3).Text = "<a3>link 3"
 .EndUpdate
End With

The following VB.NET sample shows "Can I change the visual effect, appearance for the
anchor, hyperlink elements, in HTML captions":

With AxStatusBar1
 .BeginUpdate
 .set_FormatAnchor(True,"<u><fgcolor=FF0000> </fgcolor></u>")
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3"
 .get_Panel(1).Text = "<a1>link 1"
 .get_Panel(2).Text = "<a2>link 2"
 .get_Panel(3).Text = "<a3>link 3"
 .EndUpdate
End With

The following C++ sample shows "Can I change the visual effect, appearance for the
anchor, hyperlink elements, in HTML captions":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"

 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutFormatAnchor(VARIANT_TRUE,L"<u><fgcolor=FF0000>
</fgcolor></u>");
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3");
spStatusBar1->GetPanel(long(1))->PutText(L"<a1>link 1");
spStatusBar1->GetPanel(long(2))->PutText(L"<a2>link 2");
spStatusBar1->GetPanel(long(3))->PutText(L"<a3>link 3");
spStatusBar1->EndUpdate();

The following C# sample shows "Can I change the visual effect, appearance for the anchor,
hyperlink elements, in HTML captions":

axStatusBar1.BeginUpdate();
axStatusBar1.set_FormatAnchor(true,"<u><fgcolor=FF0000> </fgcolor></u>
");
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3";
axStatusBar1.get_Panel(1).Text = "<a1>link 1";
axStatusBar1.get_Panel(2).Text = "<a2>link 2";
axStatusBar1.get_Panel(3).Text = "<a3>link 3";
axStatusBar1.EndUpdate();

The following VFP sample shows "Can I change the visual effect, appearance for the
anchor, hyperlink elements, in HTML captions":

with thisform.StatusBar1
 .BeginUpdate
 .FormatAnchor(.T.) = "<u><fgcolor=FF0000> </fgcolor></u>"
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")

 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3"
 .Panel(1).Text = "<a1>link 1"
 .Panel(2).Text = "<a2>link 2"
 .Panel(3).Text = "<a3>link 3"
 .EndUpdate
endwith

property StatusBar.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following VB sample shows "Can I displays a custom size picture to panels":

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"

https://exontrol.com/eximages.jsp

 .Format = "1,2,3,4"
 .Panel(1).Text = "pic1"
 .EndUpdate
End With

The following VB.NET sample shows "Can I displays a custom size picture to panels":

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .set_HTMLPicture("pic1","c:\exontrol\images\zipdisk.gif")
 .Format = "1,2,3,4"
 .get_Panel(1).Text = "pic1"
 .EndUpdate
End With

The following C++ sample shows "Can I displays a custom size picture to panels":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutHTMLPicture(L"pic1","c:\\exontrol\\images\\zipdisk.gif");
spStatusBar1->PutFormat(L"1,2,3,4");
spStatusBar1->GetPanel(long(1))->PutText(L"pic1");
spStatusBar1->EndUpdate();

The following C# sample shows "Can I displays a custom size picture to panels":

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.set_HTMLPicture("pic1","c:\\exontrol\\images\\zipdisk.gif");
axStatusBar1.Format = "1,2,3,4";
axStatusBar1.get_Panel(1).Text = "pic1";
axStatusBar1.EndUpdate();

The following VFP sample shows "Can I displays a custom size picture to panels":

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .HTMLPicture("pic1") = "c:\exontrol\images\zipdisk.gif"
 .Format = "1,2,3,4"
 .Panel(1).Text = "pic1"
 .EndUpdate
endwith

property StatusBar.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

method StatusBar.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the RepaceIcon method to add, remove or clear icons in the
control's images collection. Use the Image property to assign a single icon to a panel. Use
the HTML tag in the panels' Text to display multiple icons or custom size pictures.
The HTMLPicture property adds or replaces a picture in HTML captions.

The following VB sample shows "How can I insert an icon to a panel":

With StatusBar1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Image = 1
 .EndUpdate
End With

The following VB.NET sample shows "How can I insert an icon to a panel":

With AxStatusBar1
 .BeginUpdate
 .Images

"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .get_Panel(1).Image = 1
 .EndUpdate
End With

The following C++ sample shows "How can I insert an icon to a panel":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->GetPanel(long(1))->PutImage(1);
spStatusBar1->EndUpdate();

The following C# sample shows "How can I insert an icon to a panel":

axStatusBar1.BeginUpdate();
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.get_Panel(1).Image = 1;
axStatusBar1.EndUpdate();

The following VFP sample shows "How can I insert an icon to a panel":

with thisform.StatusBar1
 .BeginUpdate
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Panel(1).Image = 1
 .EndUpdate
endwith

property StatusBar.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property StatusBar.Panel (Index as Variant) as Panel
Retrieves the panel in the control giving its identifier.

Type Description

Index as Variant A Long expression that specifies the index of the panel
being accessed.

Panel A Panel object being accessed

Use the Panel property to access a panel in your status bar control. Use the Format
property to add and arrange the panels in the status bar. Use the Text property to specify
the caption in the panel. Use the Debug property to display the identifiers of the panels in
the status bar. Use the BackColorPanels property to specify the visual appearance of the
borders around the panels. Use the PanelFromPoint property to get the panel from the
cursor.

The following VB sample shows how can I add two panels to the status bar control:

With StatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following VB sample shows how can I add three panels aligned from top to bottom:

With StatusBar1
 .BeginUpdate
 .BackColor = -2147483633
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"

 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1/2/3"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .Panel(3).Text = "Panel 3"
 .EndUpdate
End With

The following VB.NET sample shows how can I add two panels to the status bar control:

With AxStatusBar1
 .BeginUpdate
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2"
 .get_Panel(1).Text = "Panel 1"
 .get_Panel(2).Text = "Panel 2"
 .EndUpdate
End With

The following VB.NET sample shows how can I add three panels aligned from top to
bottom:

With AxStatusBar1
 .BeginUpdate
 .GetOcx().BackColor = &H8000000f
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1/2/3"
 .get_Panel(1).Text = "Panel 1"
 .get_Panel(2).Text = "Panel 2"
 .get_Panel(3).Text = "Panel 3"
 .EndUpdate
End With

The following C++ sample shows how can I add two panels to the status bar control:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2");
spStatusBar1->GetPanel(long(1))->PutText(L"Panel 1");
spStatusBar1->GetPanel(long(2))->PutText(L"Panel 2");
spStatusBar1->EndUpdate();

The following C++ sample shows how can I add three panels aligned from top to bottom:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutBackColor(-2147483633);
spStatusBar1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0")
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1/2/3");
spStatusBar1->GetPanel(long(1))->PutText(L"Panel 1");
spStatusBar1->GetPanel(long(2))->PutText(L"Panel 2");
spStatusBar1->GetPanel(long(3))->PutText(L"Panel 3");
spStatusBar1->EndUpdate();

The following C# sample shows how can I add two panels to the status bar control:

axStatusBar1.BeginUpdate();
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;

axStatusBar1.Format = "1,2";
axStatusBar1.get_Panel(1).Text = "Panel 1";
axStatusBar1.get_Panel(2).Text = "Panel 2";
axStatusBar1.EndUpdate();

The following C# sample shows how can I add three panels aligned from top to bottom:

axStatusBar1.BeginUpdate();
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColor = 0x8000000f;
axStatusBar1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1/2/3";
axStatusBar1.get_Panel(1).Text = "Panel 1";
axStatusBar1.get_Panel(2).Text = "Panel 2";
axStatusBar1.get_Panel(3).Text = "Panel 3";
axStatusBar1.EndUpdate();

The following VFP sample shows how can I add two panels to the status bar control:

with thisform.StatusBar1
 .BeginUpdate
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .EndUpdate

endwith

The following VFP sample shows how can I add three panels aligned from top to bottom:

with thisform.StatusBar1
 .BeginUpdate
 .BackColor = -2147483633
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1/2/3"
 .Panel(1).Text = "Panel 1"
 .Panel(2).Text = "Panel 2"
 .Panel(3).Text = "Panel 3"
 .EndUpdate
endwith

property StatusBar.PanelFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Panel
Retrieves the panel from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Panel A Panel object that specifies the panel from the cursor or
nothing if no panel at the cursor.

Use the PanelFromPoint property to get the Panel from the point specified by the {X,Y}.
The X and Y coordinates are expressed in client coordinates, so a conversion must be done
in case your coordinates are relative to the screen or to other window. If the X parameter
is -1 and Y parameter is -1 the PanelFromPoint property determines the handle of
the Panel from the cursor. Use the Text property to access the text of the panel. Use the
Index property to identify a panel in the status bar.

The following VB sample displays the caption from the cursor:

Private Sub StatusBar1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim p As EXSTATUSBARLibCtl.Panel
 With StatusBar1
 Set p = .PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print p.Text
 End If
 End With
End Sub

The following VB.NET sample displays the caption from the cursor:

Private Sub AxStatusBar1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent) Handles
AxStatusBar1.MouseMoveEvent

 Dim p As EXSTATUSBARLib.Panel
 With AxStatusBar1
 p = .get_PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print(p.Text)
 End If
 End With
End Sub

The following C# sample displays the caption from the cursor:

private void axStatusBar1_MouseMoveEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent e)
{
 EXSTATUSBARLib.Panel p = axStatusBar1.get_PanelFromPoint(-1, -1);
 if (p != null)
 System.Diagnostics.Debug.WriteLine(p.Text);
}

The following C++ sample displays the caption from the cursor:

void OnMouseMoveStatusbar1(short Button, short Shift, long X, long Y)
{
 CPanel panel = m_statusBar.GetPanelFromPoint(-1, -1);
 if (panel.m_lpDispatch != NULL)
 OutputDebugString(panel.GetText());
}

The following VFP sample displays the caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.StatusBar1
 local p
 p = .PanelFromPoint(-1,-1)
 if (!isnull(p))
 wait window nowait p.Text
 endif

endwith

property StatusBar.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
BackColor property to specify the control's background color. Use the Appearance property
to change the visual appearance of the control's border. Use the BackColorPanels property
to assign the same visual aspect for all panels in the status bar control.

The following VB sample shows "How do I put a picture on the control's left top corner":

With StatusBar1
 .BeginUpdate
 .Picture = StatusBar1.ExecuteTemplate("loadpicture(`c:\exontrol\images\zipdisk.gif`)")
 .PictureDisplay = UpperLeft
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "How do I put a picture on the control's left top
corner":

With AxStatusBar1
 .BeginUpdate
 .Picture = AxStatusBar1.ExecuteTemplate("loadpicture(`c:\exontrol\images\zipdisk.gif`)")
 .PictureDisplay = EXSTATUSBARLib.PictureDisplayEnum.UpperLeft
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"

 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following C++ sample shows "How do I put a picture on the control's left top corner":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutPicture(IPictureDispPtr(((IDispatch*)(spStatusBar1-
>ExecuteTemplate("loadpicture(`c:\\exontrol\\images\\zipdisk.gif`)")))));
spStatusBar1->PutPictureDisplay(EXSTATUSBARLib::UpperLeft);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "How do I put a picture on the control's left top corner":

axStatusBar1.BeginUpdate();
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).Picture =
(axStatusBar1.ExecuteTemplate("loadpicture(`c:\\exontrol\\images\\zipdisk.gif`)") as
stdole.IPictureDisp);
axStatusBar1.PictureDisplay = EXSTATUSBARLib.PictureDisplayEnum.UpperLeft;
axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");

(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I put a picture on the control's left top corner":

with thisform.StatusBar1
 .BeginUpdate
 .Picture =
thisform.StatusBar1.ExecuteTemplate("loadpicture(`c:\exontrol\images\zipdisk.gif`)")
 .PictureDisplay = 0
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

property StatusBar.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
Picture property to layout a picture on the control's background. Use the BackColor
property to specify the control's background color. Use the Appearance property to change
the visual appearance of the control's border. Use the BackColorPanels property to assign
the same visual aspect for all panels in the status bar control.

The following VB sample shows "How do I put a picture on the control's left top corner":

With StatusBar1
 .BeginUpdate
 .Picture = StatusBar1.ExecuteTemplate("loadpicture(`c:\exontrol\images\zipdisk.gif`)")
 .PictureDisplay = UpperLeft
 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following VB.NET sample shows "How do I put a picture on the control's left top
corner":

With AxStatusBar1
 .BeginUpdate
 .Picture = AxStatusBar1.ExecuteTemplate("loadpicture(`c:\exontrol\images\zipdisk.gif`)")
 .PictureDisplay = EXSTATUSBARLib.PictureDisplayEnum.UpperLeft

 .VisualAppearance.Add 4,"c:\exontrol\images\border.ebn"
 .VisualAppearance.Add 5,"CP:4 1 1 -1 -1"
 .GetOcx().BackColorPanels = &H5000000
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = True
 .EndUpdate
End With

The following C++ sample shows "How do I put a picture on the control's left top corner":

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSTATUSBARLib' for the library: 'ExStatusBar 1.0 Control
Library'

 #import "D:\\Exontrol\\ExStatusBar\\project\\Debug\\ExStatusBar.dll"
 using namespace EXSTATUSBARLib;
*/
EXSTATUSBARLib::IStatusBarPtr spStatusBar1 = GetDlgItem(IDC_STATUSBAR1)-
>GetControlUnknown();
spStatusBar1->BeginUpdate();
spStatusBar1->PutPicture(IPictureDispPtr(((IDispatch*)(spStatusBar1-
>ExecuteTemplate("loadpicture(`c:\\exontrol\\images\\zipdisk.gif`)")))));
spStatusBar1->PutPictureDisplay(EXSTATUSBARLib::UpperLeft);
spStatusBar1->GetVisualAppearance()->Add(4,"c:\\exontrol\\images\\border.ebn");
spStatusBar1->GetVisualAppearance()->Add(5,"CP:4 1 1 -1 -1");
spStatusBar1->PutBackColorPanels(83886080);
spStatusBar1->PutFormat(L"1,2,3,4,(5/6/7/8)");
spStatusBar1->PutDebug(VARIANT_TRUE);
spStatusBar1->EndUpdate();

The following C# sample shows "How do I put a picture on the control's left top corner":

axStatusBar1.BeginUpdate();
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).Picture =
(axStatusBar1.ExecuteTemplate("loadpicture(`c:\\exontrol\\images\\zipdisk.gif`)") as
stdole.IPictureDisp);
axStatusBar1.PictureDisplay = EXSTATUSBARLib.PictureDisplayEnum.UpperLeft;

axStatusBar1.VisualAppearance.Add(4,"c:\\exontrol\\images\\border.ebn");
axStatusBar1.VisualAppearance.Add(5,"CP:4 1 1 -1 -1");
(axStatusBar1.GetOcx() as EXSTATUSBARLib.StatusBar).BackColorPanels = 0x5000000;
axStatusBar1.Format = "1,2,3,4,(5/6/7/8)";
axStatusBar1.Debug = true;
axStatusBar1.EndUpdate();

The following VFP sample shows "How do I put a picture on the control's left top corner":

with thisform.StatusBar1
 .BeginUpdate
 .Picture =
thisform.StatusBar1.ExecuteTemplate("loadpicture(`c:\exontrol\images\zipdisk.gif`)")
 .PictureDisplay = 0
 .VisualAppearance.Add(4,"c:\exontrol\images\border.ebn")
 .VisualAppearance.Add(5,"CP:4 1 1 -1 -1")
 .BackColorPanels = 83886080
 .Format = "1,2,3,4,(5/6/7/8)"
 .Debug = .T.
 .EndUpdate
endwith

method StatusBar.Refresh ()
Refreshes the control.

Type Description

The Refresh method forces repainting the control. Use the BeginUpdate and EndUpdate
methods to maintain the control's performance while adding multiple items or columns. Use
the hWnd property to get the handle of the control's window.

The following VB sample calls the Refresh method:

StatusBar1.Refresh

The following C++ sample calls the Refresh method:

m_statusBar.Refresh();

The following VB.NET sample calls the Refresh method:

AxStatusBar1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axStatusBar1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.StatusBar1.Object.Refresh()

method StatusBar.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control.

The following VB sample adds a new icon to control's images list:

 i = ExStatusBar1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExStatusBar1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExStatusBar1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExStatusBar1.ReplaceIcon 0, -1

property StatusBar.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the StatusBar control.
Use the RepaceIcon method to add, remove or clear icons in the control's images
collection.

method StatusBar.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property StatusBar.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property StatusBar.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method StatusBar.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property StatusBar.TemplateResult as Variant
Gets the result of the last Template call.

Type Description

Variant

A VARIANT expression that indicates the result of the last
Template call. The TemplateResultN property gets the
result as number (double expression). The
TemplateResultS property gets the result as string.

The TemplateResult, TemplateResultN, TemplateResultS property returns the result of the
last Template call, as variant, numeric (double) or as string. The Template property takes a
string called x-script, and executes it. For instance, you can use the TemplateDef, Template,
TemplateResult or ExecuteTemplate to work with x-script. It is known that programming
languages such as dBASE Plus, XBasic from AlphaFive, Wonderware, does not support
setting a property with multiple parameters. In other words, these programming languages
does not support something like Property(Parameters) = Value, so our controls provide an
alternative using the TemplateDef method.

For instance, the Wonderware does not support parameters for events, or parameters of
any event are not defined during the event, so in this case, you require an alternative in
order to get the value for these parameters. Let's say the Select event, which has one
parameter ID of long type, which indicates the identifier of the item being selected. The
EventParam property gets the value for any parameter of a specified event. The same, the
EventParam requires parameters so Wonderware won't support it, in this case, the
Template and TemplateResult can be used to get the ID parameter of the Select event as
follows:

DIM id As Message
#exMenu1.Template = "EventParam(0)";
id = #exMenu1.TemplateResultS;
MessageBox(id, "Identifier", 0);

This code must be called during the Select event, else the EventParam has no effect.

The Template script (x-script) is composed by lines of instructions. Instructions are
separated by "\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.

https://exontrol.com/content/products/exmenu/help/_IMenuEvents_Select.htm

The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property StatusBar.TemplateResultN as Double
Gets the result of the last Template call, as double.

Type Description

Double

A Double expression that indicates the result of the last
Template call. The TemplateResult property gets the result
as variant. The TemplateResultS property gets the result
as string.

The TemplateResult, TemplateResultN, TemplateResultS property returns the result of the
last Template call, as variant, numeric (double) or as string. The Template property takes a
string called x-script, and executes it. For instance, you can use the TemplateDef, Template,
TemplateResult or ExecuteTemplate to work with x-script. It is known that programming
languages such as dBASE Plus, XBasic from AlphaFive, Wonderware, does not support
setting a property with multiple parameters. In other words, these programming languages
does not support something like Property(Parameters) = Value, so our controls provide an
alternative using the TemplateDef method.

For instance, the Wonderware does not support parameters for events, or parameters of
any event are not defined during the event, so in this case, you require an alternative in
order to get the value for these parameters. Let's say the Select event, which has one
parameter ID of long type, which indicates the identifier of the item being selected. The
EventParam property gets the value for any parameter of a specified event. The same, the
EventParam requires parameters so Wonderware won't support it, in this case, the
Template and TemplateResult can be used to get the ID parameter of the Select event as
follows:

DIM id As Message
#exMenu1.Template = "EventParam(0)";
id = #exMenu1.TemplateResultS;
MessageBox(id, "Identifier", 0);

This code must be called during the Select event, else the EventParam has no effect.

The Template script (x-script) is composed by lines of instructions. Instructions are
separated by "\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.

https://exontrol.com/content/products/exmenu/help/_IMenuEvents_Select.htm

The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property StatusBar.TemplateResultS as String
Gets the result of the last Template call, as string.

Type Description

String

A String expression that indicates the result of the last
Template call. The TemplateResultN property gets the
result as number (double expression). The
TemplateResult property gets the result as variant.

The TemplateResult, TemplateResultN, TemplateResultS property returns the result of the
last Template call, as variant, numeric (double) or as string. The Template property takes a
string called x-script, and executes it. For instance, you can use the TemplateDef, Template,
TemplateResult or ExecuteTemplate to work with x-script. It is known that programming
languages such as dBASE Plus, XBasic from AlphaFive, Wonderware, does not support
setting a property with multiple parameters. In other words, these programming languages
does not support something like Property(Parameters) = Value, so our controls provide an
alternative using the TemplateDef method.

For instance, the Wonderware does not support parameters for events, or parameters of
any event are not defined during the event, so in this case, you require an alternative in
order to get the value for these parameters. Let's say the Select event, which has one
parameter ID of long type, which indicates the identifier of the item being selected. The
EventParam property gets the value for any parameter of a specified event. The same, the
EventParam requires parameters so Wonderware won't support it, in this case, the
Template and TemplateResult can be used to get the ID parameter of the Select event as
follows:

DIM id As Message
#exMenu1.Template = "EventParam(0)";
id = #exMenu1.TemplateResultS;
MessageBox(id, "Identifier", 0);

This code must be called during the Select event, else the EventParam has no effect.

The Template script (x-script) is composed by lines of instructions. Instructions are
separated by "\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.

https://exontrol.com/content/products/exmenu/help/_IMenuEvents_Select.htm

The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property StatusBar.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ToolTipText property to specify the tooltip being shown when the cursor hovers the panel.
Use the ShowToolTip method to display a custom tooltip.

property StatusBar.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the ToolTipText property to specify the tooltip being shown when the cursor
hovers the panel.

property StatusBar.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipText property to specify the tooltip being shown when the
cursor hovers the panel. Use the ShowToolTip method to display a custom tooltip.

property StatusBar.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ToolTipText property to specify the tooltip being
shown when the cursor hovers the panel. Use the ShowToolTip method to display a custom
tooltip.

property StatusBar.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the control's version.

property StatusBar.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

control's borders using the Appearance property
tooltip appearance using the Background property
panel's background using the BackColor property
background of the panel's percent using the BackColorPercent property
Any HTML caption that includes an tag.

ExStatusBar events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {0885027A-DF96-481F-928C-E3E3788889BA}. The object's program identifier is: "Exontrol.StatusBar".
The /COM object module is: "ExStatusBar.dll"

The StatusBar component supports the following events:

Name Description
AnchorClick Occurs when the anchor element is clicked.

Click Occurs when the user presses and then releases the left
mouse button over the control.

ClickPanel Occurs when the user clicks a panel.

DblClick Occurs when the user dblclk the left mouse button over an
object.

DblClickPanel Occurs when the user double clicks a panel.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OleEvent Occurs when an inside ActiveX control fires an event.
OwnerDrawEnd Ends painting the owner draw panel.
OwnerDrawStart Starts painting the owner draw panel.
PercentChange Occurs when the Percent property is changed.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when the anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oStatusBar,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

The following VB sample displays the identifier of the hyperlink being clicked:

Private Sub StatusBar1_AnchorClick(ByVal AnchorID As String, ByVal Options As String)
 Debug.Print AnchorID
End Sub

The following VB.NET sample displays the identifier of the hyperlink being clicked:

Private Sub AxStatusBar1_AnchorClick(ByVal sender As Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_AnchorClickEvent) Handles
AxStatusBar1.AnchorClick

 Debug.Print(e.anchorID)
End Sub

The following C# sample displays the identifier of the hyperlink being clicked:

private void axStatusBar1_AnchorClick(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_AnchorClickEvent e)
{
 System.Diagnostics.Debug.WriteLine(e.anchorID);
}

The following C++ sample displays the identifier of the hyperlink being clicked:

void OnAnchorClickStatusbar1(LPCTSTR AnchorID, LPCTSTR Options)
{
 MessageBox(AnchorID);
}

The following VFP sample displays the identifier of the hyperlink being clicked:

*** ActiveX Control Event ***
LPARAMETERS panel

with panel
 .Text = LTrim(RTrim(.Percent)) + "%"
endwith

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oStatusBar)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ClickPanel(object sender,exontrol.EXSTATUSBARLib.Panel Panel)
{
}

Private Sub ClickPanel(ByVal sender As System.Object,ByVal Panel As
exontrol.EXSTATUSBARLib.Panel) Handles ClickPanel
End Sub

C#

C++

C++
Builder

Delphi

private void ClickPanel(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_ClickPanelEvent e)
{
}

void OnClickPanel(LPDISPATCH Panel)
{
}

void __fastcall ClickPanel(TObject *Sender,Exstatusbarlib_tlb::IPanel *Panel)
{
}

procedure ClickPanel(ASender: TObject; Panel : IPanel);

event ClickPanel (Panel as Panel)
Occurs when the user clicks a panel.

Type Description
Panel as Panel A Panel object being clicked.

The ClickPanel event notifies your application when the user clicks a panel in the status bar
control. The ClickPanel event is not fired if a panel is disabled. Use the Enabled property to
enable or disable a panel. If the panel is disabled or the user presses the right mouse
button, you still can find out the panel from the cursor using the PanelFromPoint property.
The ClickPanel event is fired when the user releases the left mouse button over the panel.
Use the DblClickPanel event to notify your application whether the user double clicked a
panel.

Syntax for ClickPanel event, /NET version, on:

Syntax for ClickPanel event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure ClickPanel(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_ClickPanelEvent);
begin
end;

begin event ClickPanel(oleobject Panel)
end event ClickPanel

Private Sub ClickPanel(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_ClickPanelEvent) Handles ClickPanel
End Sub

Private Sub ClickPanel(ByVal Panel As EXSTATUSBARLibCtl.IPanel)
End Sub

Private Sub ClickPanel(ByVal Panel As Object)
End Sub

LPARAMETERS Panel

PROCEDURE OnClickPanel(oStatusBar,Panel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ClickPanel(Panel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ClickPanel(Panel)
End Function
</SCRIPT>

Syntax for ClickPanel event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComClickPanel Variant llPanel
 Forward Send OnComClickPanel llPanel
End_Procedure

METHOD OCX_ClickPanel(Panel) CLASS MainDialog
RETURN NIL

void onEvent_ClickPanel(COM _Panel)
{
}

function ClickPanel as v (Panel as OLE::Exontrol.StatusBar.1::IPanel)
end function

function nativeObject_ClickPanel(Panel)
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the PanelFromPoint
method to determine the cell over the cursor. The following samples display the caption of
the panel being double clicked. Use the Text property to specify the panel's caption.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oStatusBar,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.StatusBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.StatusBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays the caption of the panel being double clicked:

Private Sub StatusBar1_DblClick(Shift As Integer, X As Single, Y As Single)
 Dim p As EXSTATUSBARLibCtl.Panel
 With StatusBar1
 Set p = .PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print p.Text
 End If
 End With
End Sub

The following VB.NET sample displays the caption of the panel being double clicked:

Private Sub AxStatusBar1_DblClick(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_DblClickEvent) Handles AxStatusBar1.DblClick
 Dim p As EXSTATUSBARLib.Panel
 With AxStatusBar1
 p = .get_PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print(p.Text)
 End If
 End With
End Sub

The following C# sample displays the caption of the panel being double clicked:

private void axStatusBar1_DblClick(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_DblClickEvent e)
{
 EXSTATUSBARLib.Panel p = axStatusBar1.get_PanelFromPoint(-1, -1);
 if (p != null)
 System.Diagnostics.Debug.WriteLine(p.Text);
}

The following C++ sample displays the caption of the panel being double clicked:

void OnDblClickStatusbar1(short Shift, long X, long Y)
{
 CPanel panel = m_statusBar.GetPanelFromPoint(-1, -1);
 if (panel.m_lpDispatch != NULL)
 OutputDebugString(panel.GetText());
}

The following VFP sample displays the caption of the panel being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

with thisform.StatusBar1
 local p
 p = .PanelFromPoint(-1,-1)

 if (!isnull(p))
 wait window nowait p.Text
 endif
endwith

C#

VB

private void DblClickPanel(object sender,exontrol.EXSTATUSBARLib.Panel Panel)
{
}

Private Sub DblClickPanel(ByVal sender As System.Object,ByVal Panel As
exontrol.EXSTATUSBARLib.Panel) Handles DblClickPanel
End Sub

C#

C++

C++
Builder

Delphi

private void DblClickPanel(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_DblClickPanelEvent e)
{
}

void OnDblClickPanel(LPDISPATCH Panel)
{
}

void __fastcall DblClickPanel(TObject *Sender,Exstatusbarlib_tlb::IPanel *Panel)
{
}

procedure DblClickPanel(ASender: TObject; Panel : IPanel);

event DblClickPanel (Panel as Panel)
Occurs when the user double clicks a panel.

Type Description
Panel as Panel A Panel object being double clicked.

The DblClickPanel event notifies your application when the user double clicks a panel in the
status bar control. The DblClickPanel event is not fired if a panel is disabled. Use the
Enabled property to enable or disable a panel. If the panel is disabled or the user presses
the right mouse button, you still can find out the panel from the cursor using the
PanelFromPoint property. The DblClickPanel event is fired when the user releases the left
mouse button over the panel. Use the ClickPanel event to notify your application whether
the user clicks a panel.

Syntax for DblClickPanel event, /NET version, on:

Syntax for DblClickPanel event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure DblClickPanel(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_DblClickPanelEvent);
begin
end;

begin event DblClickPanel(oleobject Panel)
end event DblClickPanel

Private Sub DblClickPanel(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_DblClickPanelEvent) Handles DblClickPanel
End Sub

Private Sub DblClickPanel(ByVal Panel As EXSTATUSBARLibCtl.IPanel)
End Sub

Private Sub DblClickPanel(ByVal Panel As Object)
End Sub

LPARAMETERS Panel

PROCEDURE OnDblClickPanel(oStatusBar,Panel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClickPanel(Panel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClickPanel(Panel)
End Function
</SCRIPT>

Syntax for DblClickPanel event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComDblClickPanel Variant llPanel
 Forward Send OnComDblClickPanel llPanel
End_Procedure

METHOD OCX_DblClickPanel(Panel) CLASS MainDialog
RETURN NIL

void onEvent_DblClickPanel(COM _Panel)
{
}

function DblClickPanel as v (Panel as OLE::Exontrol.StatusBar.1::IPanel)
end function

function nativeObject_DblClickPanel(Panel)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exstatusbar1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exstatusbar1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exstatusbar1.Items().EnableItem(exstatusbar1.EventParam(2 /*NewItem*/)))
 exstatusbar1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oStatusBar,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oStatusBar,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oStatusBar,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oStatusBar,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the PanelFromPoint property to get the panel from the cursor.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oStatusBar,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.StatusBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.StatusBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample displays the caption of the panel being clicked:

Private Sub StatusBar1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim p As EXSTATUSBARLibCtl.Panel
 With StatusBar1
 Set p = .PanelFromPoint(-1, -1)

 If (Not p Is Nothing) Then
 Debug.Print p.Text
 End If
 End With
End Sub

The following VB.NET sample displays the caption of the panel being clicked:

Private Sub AxStatusBar1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseDownEvent) Handles
AxStatusBar1.MouseDownEvent
 Dim p As EXSTATUSBARLib.Panel
 With AxStatusBar1
 p = .get_PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print(p.Text)
 End If
 End With
End Sub

The following C# sample displays the caption of the panel being clicked:

private void axStatusBar1_MouseDownEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseDownEvent e)
{
 EXSTATUSBARLib.Panel p = axStatusBar1.get_PanelFromPoint(-1, -1);
 if (p != null)
 System.Diagnostics.Debug.WriteLine(p.Text);
}

The following C++ sample displays the caption of the panel being clicked:

void OnMouseDownStatusbar1(short Button, short Shift, long X, long Y)
{
 CPanel panel = m_statusBar.GetPanelFromPoint(-1, -1);
 if (panel.m_lpDispatch != NULL)
 OutputDebugString(panel.GetText());
}

The following VFP sample displays the caption of the panel being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.StatusBar1
 local p
 p = .PanelFromPoint(-1,-1)
 if (!isnull(p))
 wait window nowait p.Text
 endif
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent e)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the PanelFromPoint property to get
the panel from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oStatusBar,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.StatusBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.StatusBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample displays the caption from the cursor:

Private Sub StatusBar1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim p As EXSTATUSBARLibCtl.Panel

 With StatusBar1
 Set p = .PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print p.Text
 End If
 End With
End Sub

The following VB.NET sample displays the caption from the cursor:

Private Sub AxStatusBar1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent) Handles
AxStatusBar1.MouseMoveEvent
 Dim p As EXSTATUSBARLib.Panel
 With AxStatusBar1
 p = .get_PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print(p.Text)
 End If
 End With
End Sub

The following C# sample displays the caption from the cursor:

private void axStatusBar1_MouseMoveEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseMoveEvent e)
{
 EXSTATUSBARLib.Panel p = axStatusBar1.get_PanelFromPoint(-1, -1);
 if (p != null)
 System.Diagnostics.Debug.WriteLine(p.Text);
}

The following C++ sample displays the caption from the cursor:

void OnMouseMoveStatusbar1(short Button, short Shift, long X, long Y)
{
 CPanel panel = m_statusBar.GetPanelFromPoint(-1, -1);
 if (panel.m_lpDispatch != NULL)
 OutputDebugString(panel.GetText());

}

The following VFP sample displays the caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.StatusBar1
 local p
 p = .PanelFromPoint(-1,-1)
 if (!isnull(p))
 wait window nowait p.Text
 endif
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the PanelFromPoint property to get the panel from the cursor.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oStatusBar,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.StatusBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.StatusBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample displays the caption of the panel being clicked:

Private Sub StatusBar1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim p As EXSTATUSBARLibCtl.Panel
 With StatusBar1
 Set p = .PanelFromPoint(-1, -1)

 If (Not p Is Nothing) Then
 Debug.Print p.Text
 End If
 End With
End Sub

The following VB.NET sample displays the caption of the panel being clicked:

Private Sub AxStatusBar1_MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_MouseUpEvent) Handles
AxStatusBar1.MouseUpEvent
 Dim p As EXSTATUSBARLib.Panel
 With AxStatusBar1
 p = .get_PanelFromPoint(-1, -1)
 If (Not p Is Nothing) Then
 Debug.Print(p.Text)
 End If
 End With
End Sub

The following C# sample displays the caption of the panel being clicked:

private void axStatusBar1_MouseUpEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_MouseUpEvent e)
{
 EXSTATUSBARLib.Panel p = axStatusBar1.get_PanelFromPoint(-1, -1);
 if (p != null)
 System.Diagnostics.Debug.WriteLine(p.Text);
}

The following C++ sample displays the caption of the panel being clicked:

void OnMouseUpStatusbar1(short Button, short Shift, long X, long Y)
{
 CPanel panel = m_statusBar.GetPanelFromPoint(-1, -1);
 if (panel.m_lpDispatch != NULL)
 OutputDebugString(panel.GetText());
}

The following VFP sample displays the caption of the panel being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.StatusBar1
 local p
 p = .PanelFromPoint(-1,-1)
 if (!isnull(p))
 wait window nowait p.Text
 endif
endwith

C#

VB

private void OleEvent(object sender,exontrol.EXSTATUSBARLib.Panel
Panel,exontrol.EXSTATUSBARLib.OleEvent Ev)
{
}

Private Sub OleEvent(ByVal sender As System.Object,ByVal Panel As
exontrol.EXSTATUSBARLib.Panel,ByVal Ev As exontrol.EXSTATUSBARLib.OleEvent)
Handles OleEvent
End Sub

C#

C++

C++
Builder

private void OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
}

void OnOleEvent(LPDISPATCH Panel,LPDISPATCH Ev)
{
}

void __fastcall OleEvent(TObject *Sender,Exstatusbarlib_tlb::IPanel
*Panel,Exstatusbarlib_tlb::IOleEvent *Ev)
{
}

event OleEvent (Panel as Panel, Ev as OleEvent)
Occurs when an inside ActiveX control fires an event.

Type Description
Panel as Panel A Panel object that hosts an ActiveX.
Ev as OleEvent An Ev object that holds information about the fired event.

The OleEvent event notifies your application when an inner ActiveX control fires an event.
Use the ToString property to display information about fired event. Use the ControlID
property to insert an ActiveX control to a panel.

Syntax for OleEvent event, /NET version, on:

Syntax for OleEvent event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OleEvent(ASender: TObject; Panel : IPanel;Ev : IOleEvent);
begin
end;

procedure OleEvent(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent);
begin
end;

begin event OleEvent(oleobject Panel,oleobject Ev)
end event OleEvent

Private Sub OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles OleEvent
End Sub

Private Sub OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel,ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
End Sub

Private Sub OleEvent(ByVal Panel As Object,ByVal Ev As Object)
End Sub

LPARAMETERS Panel,Ev

PROCEDURE OnOleEvent(oStatusBar,Panel,Ev)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OleEvent(Panel,Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OleEvent(Panel,Ev)
End Function

Syntax for OleEvent event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOleEvent Variant llPanel Variant llEv
 Forward Send OnComOleEvent llPanel llEv
End_Procedure

METHOD OCX_OleEvent(Panel,Ev) CLASS MainDialog
RETURN NIL

void onEvent_OleEvent(COM _Panel,COM _Ev)
{
}

function OleEvent as v (Panel as OLE::Exontrol.StatusBar.1::IPanel,Ev as
OLE::Exontrol.StatusBar.1::IOleEvent)
end function

function nativeObject_OleEvent(Panel,Ev)
return

The following VB sample enumerates the arguments of an OLE event when OLEEvent is
fired.

Private Sub StatusBar1_OleEvent(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal Ev As
EXSTATUSBARLibCtl.IOleEvent)
 Debug.Print Ev.ToString()
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

#import "C:\\WINNT\\SYSTEM32\\ExStatusBar.dll"
using namespace EXSTATUSBARLib;

void OnOleEventStatusbar1(LPDISPATCH Panel, LPDISPATCH Ev)
{
 EXSTATUSBARLib::IOleEventPtr spEvent(Ev);
 OutputDebugString(spEvent->ToString);

}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXSTATUSBARLib namespace that include all objects and types of
the control's TypeLibrary. In case your exstatusbar.dll library is located to another place
than the system folder or well known path, the path to the library should be provided, in
order to let the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxStatusBar1_OleEvent(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent) Handles AxStatusBar1.OleEvent
 Debug.Print(e.ev.ToString)
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axStatusBar1_OleEvent(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OleEventEvent e)
{
 System.Diagnostics.Debug.Print(e.ev.ToString);
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS panel, ev

wait window nowait ev.ToString

C#

VB

private void OwnerDrawEnd(object sender,exontrol.EXSTATUSBARLib.Panel
Panel,int hDC)
{
}

Private Sub OwnerDrawEnd(ByVal sender As System.Object,ByVal Panel As
exontrol.EXSTATUSBARLib.Panel,ByVal hDC As Integer) Handles OwnerDrawEnd
End Sub

C# private void OwnerDrawEnd(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OwnerDrawEndEvent e)

event OwnerDrawEnd (Panel as Panel, hDC as Long)
Ends painting the owner draw panel.

Type Description
Panel as Panel A Panel object being painted

hDC as Long A long expression that indicates the handle to the painting
device context (HDC)

The control fires the OwnerDrawEnd event when painting the panel is done. The
OwnerDrawEnd event is fired after default painting is done. The OwnerDrawStart event is
fired when a panel requires to be painted. The OwnerDrawStart event is fired only for
owner draw panels. Use the OwnerDraw property to specify which panel is owner draw
and which panel is not. You can use the OwnerDrawStart event to avoid painting any panel
using the DefaultPainting parameter. Use the OwnerDrawStart event to perform painting
panel before default implementation is called. For instance, if the owner panel pains a
transparent or lucent skin, the OwnerDrawStart event lets you paint the panel before putting
the default skin. The rectangle that should be painted in the device context can be
retrieved using the GetClipBox API function.

Syntax for OwnerDrawEnd event, /NET version, on:

Syntax for OwnerDrawEnd event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnOwnerDrawEnd(LPDISPATCH Panel,long hDC)
{
}

void __fastcall OwnerDrawEnd(TObject *Sender,Exstatusbarlib_tlb::IPanel
*Panel,long hDC)
{
}

procedure OwnerDrawEnd(ASender: TObject; Panel : IPanel;hDC : Integer);
begin
end;

procedure OwnerDrawEnd(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_OwnerDrawEndEvent);
begin
end;

begin event OwnerDrawEnd(oleobject Panel,long hDC)
end event OwnerDrawEnd

Private Sub OwnerDrawEnd(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OwnerDrawEndEvent) Handles
OwnerDrawEnd
End Sub

Private Sub OwnerDrawEnd(ByVal Panel As EXSTATUSBARLibCtl.IPanel,ByVal hDC
As Long)
End Sub

Private Sub OwnerDrawEnd(ByVal Panel As Object,ByVal hDC As Long)
End Sub

LPARAMETERS Panel,hDC

Xbas… PROCEDURE OnOwnerDrawEnd(oStatusBar,Panel,hDC)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OwnerDrawEnd(Panel,hDC)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OwnerDrawEnd(Panel,hDC)
End Function
</SCRIPT>

Procedure OnComOwnerDrawEnd Variant llPanel Integer llhDC
 Forward Send OnComOwnerDrawEnd llPanel llhDC
End_Procedure

METHOD OCX_OwnerDrawEnd(Panel,hDC) CLASS MainDialog
RETURN NIL

void onEvent_OwnerDrawEnd(COM _Panel,int _hDC)
{
}

function OwnerDrawEnd as v (Panel as OLE::Exontrol.StatusBar.1::IPanel,hDC as N)
end function

function nativeObject_OwnerDrawEnd(Panel,hDC)
return

Syntax for OwnerDrawEnd event, /COM version (others), on:

The following VB sample displays a curve in the owner draw panel:

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long

End Type
Private Type POINTAPI
 x As Long
 y As Long
End Type

Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, lpRect As RECT) As
Long
Private Declare Function PolyBezier Lib "gdi32" (ByVal hdc As Long, lppt As POINTAPI,
ByVal cPoints As Long) As Long
Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, ByVal hObject As
Long) As Long
Private Declare Function CreatePen Lib "gdi32" (ByVal nPenStyle As Long, ByVal nWidth As
Long, ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub StatusBar1_OwnerDrawStart(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal
hdc As Long, DefaultPainting As Boolean)
 Dim r As RECT
 GetClipBox hdc, r
 hPen = CreatePen(0, 3, RGB(255, 0, 0))
 hOPen = SelectObject(hdc, hPen)
 r.Left = r.Left + 4
 r.Right = r.Right - 4
 r.Top = r.Top + 4
 r.Bottom = r.Bottom - 4
 Dim p(7) As POINTAPI
 p(0).x = r.Left
 p(0).y = r.Bottom
 p(1).x = (r.Left + r.Right) / 2
 p(1).y = r.Top
 p(2).x = r.Left
 p(2).y = r.Top
 p(3).x = 2 * (r.Left + r.Right) / 3
 p(3).y = (r.Bottom + r.Top) / 2
 p(4).x = 2 * (r.Left + r.Right) / 3
 p(4).y = r.Top

 p(5).x = 4 * (r.Left + r.Right) / 5
 p(5).y = (r.Bottom + r.Top) / 3
 p(6).x = r.Right
 p(6).y = r.Bottom
 PolyBezier hdc, p(0), 7
 SelectObject hdc, hOPen
 DeleteObject hOPen
End Sub

The following C++ sample displays a curve in the owner draw panel:

void OnOwnerDrawStartStatusbar1(LPDISPATCH Panel, long hDC, BOOL FAR*
DefaultPainting)
{
 HDC h = (HDC)hDC;
 RECT r = {0};

 GetClipBox(h, &r);
 CPanel panel(Panel);
 panel.m_bAutoRelease = FALSE;
 POINT p[7] = {(0,0)};
 HPEN hPen = CreatePen(PS_SOLID, 3, RGB(255,0,0));
 HPEN hOPen = (HPEN)::SelectObject(h, hPen);
 InflateRect(&r, -4, -4);

 p[0].x = r.left;
 p[0].y = r.bottom;
 p[1].x = (r.left + r.right) / 2;
 p[1].y = r.top;
 p[2].x = r.left;
 p[2].y = r.top;
 p[3].x = 2 * (r.left + r.right) / 3;
 p[3].y = (r.bottom + r.top) / 2;
 p[4].x = 2 * (r.left + r.right) / 3;
 p[4].y = r.top;
 p[5].x = 4 * (r.left + r.right) / 5;
 p[5].y = (r.bottom + r.top) / 3;

 p[6].x = r.right;
 p[6].y = r.bottom;
 PolyBezier(h, p, 7);

 ::SelectObject(h, hOPen);
 DeleteObject(hPen);
}

C#

VB

private void OwnerDrawStart(object sender,exontrol.EXSTATUSBARLib.Panel
Panel,int hDC,ref bool DefaultPainting)
{
}

Private Sub OwnerDrawStart(ByVal sender As System.Object,ByVal Panel As
exontrol.EXSTATUSBARLib.Panel,ByVal hDC As Integer,ByRef DefaultPainting As
Boolean) Handles OwnerDrawStart

event OwnerDrawStart (Panel as Panel, hDC as Long, ByRef
DefaultPainting as Boolean)
Starts painting the owner draw panel.

Type Description
Panel as Panel A Panel object being painted

hDC as Long A long expression that indicates the handle to the painting
device context (HDC)

DefaultPainting as Boolean

(By Reference) A Boolen expression that indicates
whether the default painting should be performed or not. If
the DefaultPainting parameter is True, the control paints
the part as default, else the panel is not painted by the
control so the user should draw the panel.

The OwnerDrawStart event is fired when a panel requires to be painted. The
OwnerDrawStart event is fired before erasing and painting the panel. The
OwnerDrawStart event is fired only for owner draw panels. Use the OwnerDraw property
to specify which panel is owner draw and which panel is not. You can use the
OwnerDrawStart event to avoid painting any panel using the DefaultPainting parameter. The
control fires the OwnerDrawEnd event when painting the panel is done. Use the
OwnerDrawStart event to perform painting panel before default implementation is called.
For instance, if the owner panel pains a transparent or lucent skin, the OwnerDrawStart
event lets you paint the panel before putting the default skin. The rectangle that should
be painted in the device context can be retrieved using the GetClipBox API function.

Syntax for OwnerDrawStart event, /NET version, on:

End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void OwnerDrawStart(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_OwnerDrawStartEvent e)
{
}

void OnOwnerDrawStart(LPDISPATCH Panel,long hDC,BOOL FAR* DefaultPainting)
{
}

void __fastcall OwnerDrawStart(TObject *Sender,Exstatusbarlib_tlb::IPanel
*Panel,long hDC,VARIANT_BOOL * DefaultPainting)
{
}

procedure OwnerDrawStart(ASender: TObject; Panel : IPanel;hDC : Integer;var
DefaultPainting : WordBool);
begin
end;

procedure OwnerDrawStart(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_OwnerDrawStartEvent);
begin
end;

begin event OwnerDrawStart(oleobject Panel,long hDC,boolean DefaultPainting)
end event OwnerDrawStart

Private Sub OwnerDrawStart(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_OwnerDrawStartEvent) Handles
OwnerDrawStart
End Sub

Private Sub OwnerDrawStart(ByVal Panel As EXSTATUSBARLibCtl.IPanel,ByVal hDC
As Long,DefaultPainting As Boolean)

Syntax for OwnerDrawStart event, /COM version, on:

VBA

VFP

Xbas…

End Sub

Private Sub OwnerDrawStart(ByVal Panel As Object,ByVal hDC As
Long,DefaultPainting As Boolean)
End Sub

LPARAMETERS Panel,hDC,DefaultPainting

PROCEDURE OnOwnerDrawStart(oStatusBar,Panel,hDC,DefaultPainting)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="OwnerDrawStart(Panel,hDC,DefaultPainting)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OwnerDrawStart(Panel,hDC,DefaultPainting)
End Function
</SCRIPT>

Procedure OnComOwnerDrawStart Variant llPanel Integer llhDC Boolean
llDefaultPainting
 Forward Send OnComOwnerDrawStart llPanel llhDC llDefaultPainting
End_Procedure

METHOD OCX_OwnerDrawStart(Panel,hDC,DefaultPainting) CLASS MainDialog
RETURN NIL

void onEvent_OwnerDrawStart(COM _Panel,int _hDC,COMVariant /*bool*/
_DefaultPainting)
{
}

function OwnerDrawStart as v (Panel as OLE::Exontrol.StatusBar.1::IPanel,hDC as
N,DefaultPainting as L)

Syntax for OwnerDrawStart event, /COM version (others), on:

dBASE

end function

function nativeObject_OwnerDrawStart(Panel,hDC,DefaultPainting)
return

The following VB sample displays a curve in the owner draw panel:

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Private Type POINTAPI
 x As Long
 y As Long
End Type

Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, lpRect As RECT) As
Long
Private Declare Function PolyBezier Lib "gdi32" (ByVal hdc As Long, lppt As POINTAPI,
ByVal cPoints As Long) As Long
Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, ByVal hObject As
Long) As Long
Private Declare Function CreatePen Lib "gdi32" (ByVal nPenStyle As Long, ByVal nWidth As
Long, ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub StatusBar1_OwnerDrawStart(ByVal Panel As EXSTATUSBARLibCtl.IPanel, ByVal
hdc As Long, DefaultPainting As Boolean)
 Dim r As RECT
 GetClipBox hdc, r
 hPen = CreatePen(0, 3, RGB(255, 0, 0))
 hOPen = SelectObject(hdc, hPen)
 r.Left = r.Left + 4
 r.Right = r.Right - 4
 r.Top = r.Top + 4

 r.Bottom = r.Bottom - 4
 Dim p(7) As POINTAPI
 p(0).x = r.Left
 p(0).y = r.Bottom
 p(1).x = (r.Left + r.Right) / 2
 p(1).y = r.Top
 p(2).x = r.Left
 p(2).y = r.Top
 p(3).x = 2 * (r.Left + r.Right) / 3
 p(3).y = (r.Bottom + r.Top) / 2
 p(4).x = 2 * (r.Left + r.Right) / 3
 p(4).y = r.Top
 p(5).x = 4 * (r.Left + r.Right) / 5
 p(5).y = (r.Bottom + r.Top) / 3
 p(6).x = r.Right
 p(6).y = r.Bottom
 PolyBezier hdc, p(0), 7
 SelectObject hdc, hOPen
 DeleteObject hOPen
End Sub

The following C++ sample displays a curve in the owner draw panel:

void OnOwnerDrawStartStatusbar1(LPDISPATCH Panel, long hDC, BOOL FAR*
DefaultPainting)
{
 HDC h = (HDC)hDC;
 RECT r = {0};

 GetClipBox(h, &r);
 CPanel panel(Panel);
 panel.m_bAutoRelease = FALSE;
 POINT p[7] = {(0,0)};
 HPEN hPen = CreatePen(PS_SOLID, 3, RGB(255,0,0));
 HPEN hOPen = (HPEN)::SelectObject(h, hPen);
 InflateRect(&r, -4, -4);

 p[0].x = r.left;
 p[0].y = r.bottom;
 p[1].x = (r.left + r.right) / 2;
 p[1].y = r.top;
 p[2].x = r.left;
 p[2].y = r.top;
 p[3].x = 2 * (r.left + r.right) / 3;
 p[3].y = (r.bottom + r.top) / 2;
 p[4].x = 2 * (r.left + r.right) / 3;
 p[4].y = r.top;
 p[5].x = 4 * (r.left + r.right) / 5;
 p[5].y = (r.bottom + r.top) / 3;
 p[6].x = r.right;
 p[6].y = r.bottom;
 PolyBezier(h, p, 7);

 ::SelectObject(h, hOPen);
 DeleteObject(hPen);
}

event PercentChange (Panel as Panel)
Occurs when the Percent property is changed.

Type Description

Panel as Panel A Panel object where the Percent property has been
changed.

Use the PercentChange event to notify your application when the Percent property is
changed. The Percent property specifies the percent of the progress bar being displayed in
the panel. Use the PercentChange event to change the panel's caption according to the
percent value. The Text property specifies the caption of the panel.

The following VB sample change the panel's caption according to the Percent value:

Private Sub StatusBar1_PercentChange(ByVal Panel As EXSTATUSBARLibCtl.IPanel)
 Panel.Text = Panel.Percent + "%"
End Sub

The following VB.NET sample change the panel's caption according to the Percent value:

Private Sub AxStatusBar1_PercentChange(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_PercentChangeEvent) Handles
AxStatusBar1.PercentChange
 With e.panel
 .Text = .Percent.ToString() + "%"
 End With
End Sub

The following C# sample change the panel's caption according to the Percent value:

private void axStatusBar1_PercentChange(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_PercentChangeEvent e)
{
 e.panel.Text = e.panel.Percent.ToString() + "%";
}

The following C++ sample change the panel's caption according to the Percent value:

void OnPercentChangeStatusbar1(LPDISPATCH Panel)
{

C#

VB

private void PercentChange(object sender,exontrol.EXSTATUSBARLib.Panel Panel)
{
}

Private Sub PercentChange(ByVal sender As System.Object,ByVal Panel As
exontrol.EXSTATUSBARLib.Panel) Handles PercentChange
End Sub

C#

C++

C++
Builder

private void PercentChange(object sender,
AxEXSTATUSBARLib._IStatusBarEvents_PercentChangeEvent e)
{
}

void OnPercentChange(LPDISPATCH Panel)
{
}

void __fastcall PercentChange(TObject *Sender,Exstatusbarlib_tlb::IPanel *Panel)
{

 CPanel panel(Panel);
 panel.m_bAutoRelease = FALSE;
 CString strPercent;
 strPercent.Format("%i%%", panel.GetPercent());
 panel.SetText(strPercent);
}

The following VFP sample change the panel's caption according to the Percent value:

*** ActiveX Control Event ***
LPARAMETERS panel

with panel
 .Text = LTrim(RTrim(.Percent)) + "%"
endwith

Syntax for PercentChange event, /NET version, on:

Syntax for PercentChange event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure PercentChange(ASender: TObject; Panel : IPanel);
begin
end;

procedure PercentChange(sender: System.Object; e:
AxEXSTATUSBARLib._IStatusBarEvents_PercentChangeEvent);
begin
end;

begin event PercentChange(oleobject Panel)
end event PercentChange

Private Sub PercentChange(ByVal sender As System.Object, ByVal e As
AxEXSTATUSBARLib._IStatusBarEvents_PercentChangeEvent) Handles
PercentChange
End Sub

Private Sub PercentChange(ByVal Panel As EXSTATUSBARLibCtl.IPanel)
End Sub

Private Sub PercentChange(ByVal Panel As Object)
End Sub

LPARAMETERS Panel

PROCEDURE OnPercentChange(oStatusBar,Panel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="PercentChange(Panel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function PercentChange(Panel)

Syntax for PercentChange event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComPercentChange Variant llPanel
 Forward Send OnComPercentChange llPanel
End_Procedure

METHOD OCX_PercentChange(Panel) CLASS MainDialog
RETURN NIL

void onEvent_PercentChange(COM _Panel)
{
}

function PercentChange as v (Panel as OLE::Exontrol.StatusBar.1::IPanel)
end function

function nativeObject_PercentChange(Panel)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	Panel
	Alignment property
	BackColor property
	BackColorPercent property
	BackgroundExt property
	BackgroundExtValue property
	Bold property
	ControlID property
	Enabled property
	ForeColor property
	Height property (readonly)
	Image property
	Index property (readonly)
	Italic property
	License property
	Object property (readonly)
	Offset property
	OffsetPercent property
	OwnerDraw property
	Percent property
	StrikeOut property
	Text property
	ToolTipText property
	ToolTipTitle property
	Transparency property
	Underline property
	UserData property
	Width property (readonly)
	WordWrap property

	StatusBar
	AnchorFromPoint property (readonly)
	Appearance property
	AttachTemplate method
	BackColor property
	BackColorPanels property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	ClearPanels method
	Debug property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	Font property
	ForeColor property
	Format property
	FormatAnchor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Panel property (readonly)
	PanelFromPoint property (readonly)
	Picture property
	PictureDisplay property
	Refresh method
	ReplaceIcon method
	ShowImageList property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	TemplateResult property (readonly)
	TemplateResultN property (readonly)
	TemplateResultS property (readonly)
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	Version property
	VisualAppearance property (readonly)

	ExStatusBar events
	AnchorClick event
	Click event
	ClickPanel event
	DblClick event
	DblClickPanel event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	OleEvent event
	OwnerDrawEnd event
	OwnerDrawStart event
	PercentChange event

