
 ExSplitBar

The Exontrol's eXSplitBar component, helps you to automatically resizes the left/right or
top/bottom components, while user drags the split bar to a new position. The eXSplitBar
control provides automatic resizing /positioning of controls/windows on your
form/dialog/window. When the Mode property is set to exSplitBarHorz, the control resizes
any controls that lie above or below it, and when the Mode is set to exSplitBarVert, it
resizes controls that lie to its left or right. The difference between the eXSplitBar control
and other components of the same type, is that the eXSplitBar control works for any
programming environments such as Microsoft Office (Microsoft Access, Microsoft Excel,
Microsoft Word), Visual Basic, Visual Fox Pro, /NET Framework, Delphi, C++, C++
Builder, dBASE Plus and more. As usual, there are no dependencies to MFC, VB, VCL, or
anything else.

Features include:

Easy to use, highly customizable
Skinnable Interface support (ability to apply a skin to any background part)
Horizontal, Vertical Mode support
Requires absolutely no code
Ability to specify the split bar's limits
Ability to move controls as you move the split bar, not just when drop event occurs
Ability to hide/shows controls when the split bar is close to the limit
DragStart, Drag and DragEnd events support
Ability to specify the split bar's limits
Ability to specify the name of properties like: Left/Top, Width/Height, Visible, to use on
non-standard containers

Ž ExSplitBar is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
border.

Name Value Description
None2 0 The source has no borders.
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTipText property to
specify the split bar's tooltip. Use the ToolTipWidth
property to specify the width of the tooltip window.
The ToolTipDelay property specifies the time in ms
that passes before the ToolTip appears.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

constants PictureDisplayEnum
Specifies how a picture object is displayed.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants SplitBarModeEnum
The SplitBarModeEnum type defines the type of split bar. The Mode property retrieves or
sets a value that indicates the split bar's mode. The SplitBarModeEnum type supports the
following values:

Name Value Description

exSplitBarAuto 0

By default, the Mode property exSplitBarAuto,
which indicates that the split bar's mode is
determines by its size as:

if the width of the split bar is greater or equal
than its height, the Mode property is
exSplitBarVert
if the width of the split bar is less than its
height, the Mode property is exSplitBarHorz

exSplitBarHorz 1
If the control's Mode property is exSplitBarHorz, the
split bar resizes any controls that lie above or below
it.

exSplitBarVert 2
If the control's Mode property is exSplitBarVert,
the split bar resizes controls that lie to its left or
right.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control.

The following screen shot shows the split bar with an EBN object:

The following screen shot shows the split bar with a solid color:

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1
PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3

PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED =

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3
MS_NORMAL = 1
MS_SELECTED = 2

MP_MENUDROPDOWN = 2 MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED =
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED = 4
TTIBES_FOCUSED

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED = 4
TTILES_FOCUSED

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED = 4
TTIRES_FOCUSED

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3

TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2

TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2

MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =

33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

SplitBar object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {9F28FDED-5EBC-4E9A-A596-C3813C966A0C}. The object's program identifier is: "Exontrol.SplitBar".
The /COM object module is: "ExSplitBar.dll"

The Exontrol's eXSplitBar component, helps you to automatically resizes the left/right or
top/bottom components, while user drags the split bar to a new position. The eXSplitBar
control provides automatic resizing /positioning of controls/windows on your
form/dialog/window. When the Mode property is set to exSplitBarHorz, the control resizes
any controls that lie above or below it, and when the Mode is set to exSplitBarVert, it
resizes controls that lie to its left or right. The difference between the eXSplitBar control
and other components of the same type, is that the eXSplitBar control works for any
programming environments such as Microsoft Office (Microsoft Access, Microsoft Excel,
Microsoft Word), Visual Basic, Visual Fox Pro, /NET Framework, Delphi, C++, and more.
The eXSplitBar supports the following properties and methods:

Name Description

AddObjectLT Adds a new object to be updated in the left/top part of the
split bar.

AddObjectRB Adds a new object to be updated in the right/bottom part
of the split bar.

Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when multiple changes are
performed one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

Cursor Gets or sets the cursor that is displayed when the mouse
pointer hovers the control.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExtendedContainerWnd Specifies the list of window class names of parents added
by the extended control.

ExtendedHeight

Specifies a list of property names separated by comma
character, that indicates the Height property of the
extended control. The Height property of an extended
control gets or sets the control's height.

ExtendedLeft

Specifies a list of property names separated by comma
character, that indicates the Left property of the extended
control. The Left property of an extended control gets or
sets the distance, between the left edge of the object and
the left edge of its containe?Â?l

ExtendedName

Specifies a list of property names separated by comma
character, that indicates the Name property of the
extended control. The Name property of an extended
control specifies the name of the object within the
container.

ExtendedObject

Specifies a list of property names separated by comma
character, that indicates the Object property of the
extended control. The Object property of an extended
control returns the original /hosted object.

ExtendedTop

Specifies a list of property names separated by comma
character, that indicates the Top property of the extended
control. The Top property of an extended control gets or
sets the distance, between the top edge of the object and
the top edge of its container.

ExtendedVisible

Specifies a list of property names separated by comma
character, that indicates the Visible property of the
extended control. The Visible property of an extended
control shows or hides object.

ExtendedWidth

Specifies a list of property names separated by comma
character, that indicates the Width property of the
extended control. The Width property of an extended
control gets or sets the control's width.

Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

HideOnLimit Gets or sets a value that indicates whether the splitting
objects are hidden when the split bar is closed to its limit.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

LimitLT Specifies the expression that determines the limit to drag
the splitter to left/top side of its container.

LimitRB Specifies the expression that determines the limit to drag
the splitter to right/bottom side of its container.

Max Indicates rightmost/bottommost position the split bar can
be moved.

Min Indicates leftmost/topmost position the split bar can be
moved.

Mode Retrieves or sets a value that indicates the split bar's
mode.

MoveOnDrop

Gets or sets a value that indicates whether the splitting
objects (including the split bar itself) are moved once the
user ends dragging the split bar, or contiguously while
dragging it.

MoveTo Moves the split bar to the specified position.

ObjectsIN
Specifies a list of controls that are child of other controls
(prevents changing the left/top part of the control while it is
relative to a different parent).

ObjectsLT Indicates the object to be updated in the left/top part of
the split bar.

ObjectsRB Indicates the object to be updated in the right/bottom part
of the split bar.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreshes the control.

ReplaceIcon
Adds a new icon, replaces an icon or clears the control's
image list.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

SplitBackColor Specifies the splitter's background color.

SplitHotBackColor Specifies the splitter's background color, while the cursor
is hovering it.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipText Specifies the control's tooltip text.
ToolTipTitle Specifies the title of the control's tooltip.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

method SplitBar.AddObjectLT (newVal as Variant)
Adds a new object to be updated in the left/top part of the split bar.

Type Description

newVal as Variant

A Variant expression that could be one of the following:

String expression that indicates the name of the
component. For instance: AddObjectLT(
"Command1")
A String expression that represents a number, which
is the handle of the window. For instance,
AddObjectLT(CStr(Grid1.hWnd))

As string, the AddObjectLT method can add multiple
values at the same time, if passing a string, with values as
explained above, separated by comma character. For
instance: AddObjectLT("Command1,Command2," +
CStr(Grid1.hWnd))

A numeric expression that indicates the handle of the
window. For instance, AddObjectLT(Grid1.hWnd)
An IUnknown interface, that indicates a reference to
the object to be anchored (/COM only). For
instance, AddObjectLT(
GetDlgItem(IDC_SPLITBAR1)-
>GetControlUnknown()), VC++
A IDispatch interface, that indicates a reference to the
object to be anchored (/COM only). For instance,
AddObjectLT(SplitBar1.DefaultInterface), Delphi
An object of Control (System.Windows.Forms) type
that specifies the control (/NET assembly). For
instance, AddObjectLT(exgrid1), C#

A safe array of a VARIANT type, with any value explained
above. For instance, AddObjectLT(Array("Command1",
Command2, Grid1.hWnd)), VB/NET

The AddObjectLT method adds at runtime, a new object to be updated in the left/top part of
the split bar. The ObjectsLT property defines the controls associated with the left/top side
of the split bar at design mode. The Mode property specifies whether the split bar moves
objects horizontally or vertically. When the Mode property is set to exSplitBarHorz, the
control resizes any controls that lie above or below it, and when the Mode is set to

exSplitBarVert, it resizes controls that lie to its left or right. The ObjectsRB property defines
the objects to be updated on the right/bottom side of the split bar. Setting the ObjectsLT
property on "" (empty string), releases any control/object that has been previously
anchored to the slit bar, including the objects being added with the AddObjectLT method, or
the split bar has nothing attached to its left/top side. The LimitLT property specifies the
expression that determines the limit to drag the splitter to left/top side of its container.

By default, if a control/component/object is contained in

both ObjectsLT / AddObjectLT and ObjectsRB / AddObjectRB, the
control/component/object will be moved (not sized), when the split bar moves
else the control/component/object will be moved and sized accordingly with the side of
the split bar it is anchored.

In

C++ Builder
C# for /COM on /NET Framework
Delphi
Visual Basic for /COM on /NET Framework
Visual C++

you need to use the AddObjectLT and AddObjectRB methods as in the following samples.

C++ Builder :

SplitBar1->AddObjectLT(TVariant(Button1->Handle));
SplitBar1->AddObjectRB(TVariant(Button2->Handle));
SplitBar1->AddObjectRB(TVariant(SplitBar2->DefaultInterface));
SplitBar1->AddObjectRB(TVariant(Button3->Handle));

C# for /COM on /NET Framework :

axSplitBar1.AddObjectLT(button1);
axSplitBar1.AddObjectRB(button2);
axSplitBar1.AddObjectRB(axSplitBar2);
axSplitBar1.AddObjectRB(button3);

Delphi :

with SplitBar1 do
begin
 AddObjectLT(Button1.Handle);

 AddObjectRB(Button2.Handle);
 AddObjectRB(SplitBar2.DefaultInterface);
 AddObjectRB(Button3.Handle);
end

Visual Basic for /COM on /NET Framework:

With AxSplitBar1
 .AddObjectLT(Button1)
 .AddObjectRB(Button2)
 .AddObjectRB(AxSplitBar2)
 .AddObjectRB(Button3)
End With

Visual C++:

EXSPLITBARLib::ISplitBarPtr spSplitBar1 = GetDlgItem(IDC_SPLITBAR1)-
>GetControlUnknown();
spSplitBar1->AddObjectLT((long)::GetDlgItem(m_hWnd, IDC_BUTTON1));
spSplitBar1->AddObjectRB((long)::GetDlgItem(m_hWnd, IDC_BUTTON2));
spSplitBar1->AddObjectRB(GetDlgItem(IDC_SPLITBAR2)->GetControlUnknown());
spSplitBar1->AddObjectRB((long)::GetDlgItem(m_hWnd, IDC_BUTTON3));

method SplitBar.AddObjectRB (newVal as Variant)
Adds a new object to be updated in the right/bttom part of the split bar.

Type Description

newVal as Variant

A Variant expression that could be one of the following:

String expression that indicates the name of the
component. For instance: AddObjectRB(
"Command1")
A String expression that represents a number, which
is the handle of the window. For instance,
AddObjectRB(CStr(Grid1.hWnd))

As string, the AddObjectRB method can add multiple
values at the same time, if passing a string, with values as
explained above, separated by comma character. For
instance: AddObjectRB("Command1,Command2," +
CStr(Grid1.hWnd))

A numeric expression that indicates the handle of the
window. For instance, AddObjectRB(Grid1.hWnd)
An IUnknown interface, that indicates a reference to
the object to be anchored (/COM only). For
instance, AddObjectRB(
GetDlgItem(IDC_SPLITBAR1)-
>GetControlUnknown()), VC++
A IDispatch interface, that indicates a reference to the
object to be anchored (/COM only). For instance,
AddObjectRB(SplitBar1.DefaultInterface), Delphi
An object of Control (System.Windows.Forms) type
that specifies the control (/NET assembly). For
instance, AddObjectRB(exgrid1), C#

A safe array of a VARIANT type, with any value explained
above. For instance, AddObjectRB(Array("Command1",
Command2, Grid1.hWnd)), VB/NET

The AddObjectRB method adds at runtime, a new object to be updated in the right/bottom
part of the split bar. The ObjectsRB property defines the objects to be updated on the
right/bottom side of the split bar. The ObjectsLT property defines the controls associated
with the left/top side of the split bar at design mode. The Mode property specifies whether
the split bar moves objects horizontally or vertically. When the Mode property is set to

exSplitBarHorz, the control resizes any controls that lie above or below it, and when the
Mode is set to exSplitBarVert, it resizes controls that lie to its left or right. Setting the
ObjectsRB property on "" (empty string), releases any control/object that has been
previously anchored to the slit bar, including the objects being added with the AddObjectRB
method, or the split bar has nothing attached to its left/top side. The LimitRB property
specifies the expression that determines the limit to drag the splitter to right/bottom side of
its container.

By default, if a control/component/object is contained in

both ObjectsLT / AddObjectLT and ObjectsRB / AddObjectRB, the
control/component/object will be moved (not sized), when the split bar moves
else the control/component/object will be moved and sized accordingly with the side of
the split bar it is anchored.

In

C++ Builder
C# for /COM on /NET Framework
Delphi
Visual Basic for /COM on /NET Framework
Visual C++

you need to use the AddObjectLT and AddObjectRB methods as in the following samples.

C++ Builder :

SplitBar1->AddObjectLT(TVariant(Button1->Handle));
SplitBar1->AddObjectRB(TVariant(Button2->Handle));
SplitBar1->AddObjectRB(TVariant(SplitBar2->DefaultInterface));
SplitBar1->AddObjectRB(TVariant(Button3->Handle));

C# for /COM on /NET Framework :

axSplitBar1.AddObjectLT(button1);
axSplitBar1.AddObjectRB(button2);
axSplitBar1.AddObjectRB(axSplitBar2);
axSplitBar1.AddObjectRB(button3);

Delphi :

with SplitBar1 do
begin

 AddObjectLT(Button1.Handle);
 AddObjectRB(Button2.Handle);
 AddObjectRB(SplitBar2.DefaultInterface);
 AddObjectRB(Button3.Handle);
end

Visual Basic for /COM on /NET Framework:

With AxSplitBar1
 .AddObjectLT(Button1)
 .AddObjectRB(Button2)
 .AddObjectRB(AxSplitBar2)
 .AddObjectRB(Button3)
End With

Visual C++:

EXSPLITBARLib::ISplitBarPtr spSplitBar1 = GetDlgItem(IDC_SPLITBAR1)-
>GetControlUnknown();
spSplitBar1->AddObjectLT((long)::GetDlgItem(m_hWnd, IDC_BUTTON1));
spSplitBar1->AddObjectRB((long)::GetDlgItem(m_hWnd, IDC_BUTTON2));
spSplitBar1->AddObjectRB(GetDlgItem(IDC_SPLITBAR2)->GetControlUnknown());
spSplitBar1->AddObjectRB((long)::GetDlgItem(m_hWnd, IDC_BUTTON3));

property SplitBar.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips.

https://exontrol.com/exbutton.jsp

method SplitBar.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub SplitBar1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property SplitBar.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that specifies the control's background
color.

The BackColor property specifies the control's background color. The ForeColor property
specifies the control's foreground color. The SplitBarBackColor property defines the slit
bar's visual appearance/background color. The SplitHotBackColor property defines the slit
bar's visual appearance/background color, while cursor is hovering the split bar. The
BorderWidth property sets or retrieves a value that indicates the border width of the
control. The BorderHeight property sets or retrieves a value that indicates the border height
of the control.

property SplitBar.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control. The BackColor property specifies the
control's background color. The SplitBarBackColor property defines the slit bar's visual
appearance/background color. The SplitHotBackColor property defines the slit bar's visual
appearance/background color, while cursor is hovering the split bar. The BorderWidth
property sets or retrieves a value that indicates the border width of the control. The
BorderHeight property sets or retrieves a value that indicates the border height of the
control.

method SplitBar.BeginUpdate ()
Maintains performance when multiple changes are performed one at a time

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
Refresh method refreshes the control.

property SplitBar.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A Long expression that indicates the border height of the
control.

By default, the BorderHeight property is 2 pixels. The BorderHeight property sets or
retrieves a value that indicates the border height of the control. The BorderWidth property
sets or retrieves a value that indicates the border width of the control. The
SplitHotBackColor property defines the slit bar's visual appearance/background color, while
cursor is hovering the split bar. The SplitBarBackColor property defines the slit bar's visual
appearance/background color. The BackColor property specifies the control's background
color.

property SplitBar.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A Long expression that indicates the border width of the
control.

By default, the BorderWidth property is 2 pixels. The BorderWidth property sets or
retrieves a value that indicates the border width of the control. The BorderHeight property
sets or retrieves a value that indicates the border height of the control. The
SplitHotBackColor property defines the slit bar's visual appearance/background color, while
cursor is hovering the split bar. The SplitBarBackColor property defines the slit bar's visual
appearance/background color. The BackColor property specifies the control's background
color.

property SplitBar.Cursor as Variant
Gets or sets the cursor that is displayed when the mouse pointer hovers the control.

Type Description

Variant

The VARIANT expression that could be:

A string expression that indicates a predefined value
listed bellow
A string expression that indicates the path to a cursor
file
A long expression that indicates the handle of the
cursor.

By default, the Cursor property is "exDefault", which indicates that the split bar determines
the shape of the cursor based on the split bar's mode. The Mode property specifies
whether the split bar moves objects horizontally or vertically. When the Mode property is set
to exSplitBarHorz, the control resizes any controls that lie above or below it, and when the
Mode is set to exSplitBarVert, it resizes controls that lie to its left or right. Use the Cursor
property to specify the cursor that control displays when mouse pointer hovers the split
bar. The Cursor property has no effect if the split bar is disabled. The Enabled property
specifies whether the control is enabled or disabled.

Here's the list of predefined values (string expressions):

"exDefault" - (Default) Shape determined by the object.
"exArrow" - Arrow.
"exCross" - Cross (cross-hair pointer).
"exIBeam" - I Beam.
"exIcon" - Icon (small square within a square).
"exSize" - Size (four-pointed arrow pointing north, south, east, and west).
"exSizeNESW" - Size NE SW (double arrow pointing northeast and southwest).
"exSizeNS" - Size N S (double arrow pointing north and south).
"exSizeNWSE" - Size NW, SE.
"exSizeWE" - Size W E (double arrow pointing west and east).
"exUpArrow" - Up Arrow.
"exHourglass" - Hourglass (wait).
"exNoDrop" - No Drop.
"exArrowHourglass" - Arrow and hourglass.
"exHelp" - Arrow and question mark.
"exSizeAll" - Size all.

property SplitBar.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A Boolean expression that specifies whether the control is
enabled or disabled.

By default, the Enabled property is True. The Enabled property specifies whether the
control is enabled or disabled. You can use the Enabled property, to disable splitting the
control. You can disable dragging the split bar, if setting the Cancel parameter to True,
during the DragStart event. The Cursor property specifies the shape of the cursor when the
cursor is hovering the split bar. The control fires DragStart event when the user clicks the
split bar (start dragging the split bar). The Drag event is fired contiguously while the split
bar is dragging. The DragEnd event notifies your application that the user releases the split
bar (ends dragging the split bar). The MoveTo method moves programmatically the split
bar to specified position. The MoveOnDrop property specifies whether the objects to the
left/top and right/bottom of the split bar are moved while dragging or just when the user
drops the split bar. Use the Cursor property to specify the cursor that control displays when
mouse pointer hovers the split bar.

method SplitBar.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use BeginUpdate and EndUpdate statement each time when the control requires more
changes. The Refresh method refreshes the control.

property SplitBar.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method SplitBar.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

Debug.Print SplitBar1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for

newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of

the class associated with a specified program identifier.

property SplitBar.ExtendedContainerWnd as String
Specifies the list of window class names of parents added by the extended control.

Type Description

String
A String expression that defines the list of window class
names (can include wild characters such as * or ?),
separated by backslash / character as explained bellow.

By default, the ExtendedContainerWnd property is "Afx:*\AfxWnd*\AfxWnd*". The
ExtendedContainerWnd property has mostly provided for dBASE Plus support, but it may
be useful for other non-standard containers or environments. The ExtendedContainerWnd
property contains a list of parent class name to be ignored by the component when it
performs layout of the other components on the form. Because dBASE Plus environment
places every new ActiveX inside a new container, you can not get access through the
form's objects using the IOleContainer::EnumObjects, as it would list the component only. In
this case, we have provided the ExtendedContainerWnd property that provides support of
eXSlitBar component on dBASE Plus environment.

For instance, if having the following form in design mode:

Internally, the hierarchy windows of a eXSplitBar inside a dBASE Plus form shows as
bellow.

So as the parents of eXSplitBar are "Afx:...\AfxWnd...\AfxWnd..."and so the
ExtendedContainerWnd property is "Afx:*\AfxWnd*\AfxWnd*".

If future generations of dBASE Plus will change the hierarchy of the windows inside the
form, the ExtendedContainerWnd property may need to be changed.

property SplitBar.ExtendedHeight as String
Specifies a list of property names separated by comma character, that indicates the Height
property of the extended control. The Height property of an extended control gets or sets
the control's height.

Type Description

String
A String expression that specifies a list of property names
separated by comma character, that indicates the Height
property of the extended control.

By default, the ExtendedHeight property is "Height", which specifies that the split bar is
using the "Height" property of the extended control to specify the control's height. Extended
controls may be implemented by OLE control containers to provide a wrapper for contained
controls.

The /COM version may use the following properties:

ExtendedLeft property specifies a list of property names separated by comma
character, that indicates the Left property of the extended control. The Left property of
an extended control gets or sets the distance, between the left edge of the object and
the left edge of its container
ExtendedTop property specifies a list of property names separated by comma
character, that indicates the Top property of the extended control. The Top property of
an extended control gets or sets the distance, between the top edge of the object and
the top edge of its container
ExtendedWidth property specifies a list of property names separated by comma
character, that indicates the Width property of the extended control. The Width
property of an extended control gets or sets the control's width
ExtendedHeight property specifies a list of property names separated by comma
character, that indicates the Height property of the extended control. The Height
property of an extended control gets or sets the control's height.

to determine/change the location/size of the component on the form/dialog/window.

The /NET version uses the following properties:

Left, Top, Width and Height to determine the location and size of the component on the
form
SetBounds method to change the location and size of the component on the form

This property is not available for the /NET version.

property SplitBar.ExtendedLeft as String
Specifies a list of property names separated by comma character, that indicates the Left
property of the extended control. The Left property of an extended control gets or sets the
distance, between the left edge of the object and the left edge of its container

Type Description

String
A String expression that specifies a list of property names
separated by comma character, that indicates the Left
property of the extended control.

By default, the ExtendedLeft property is "Left", which specifies that the split bar is using the
"Left" property of the extended control to get or set the distance, between the left edge of
the object and the left edge of its container. Extended controls may be implemented by
OLE control containers to provide a wrapper for contained controls.

The /COM version may use the following properties:

ExtendedLeft property specifies a list of property names separated by comma
character, that indicates the Left property of the extended control. The Left property of
an extended control gets or sets the distance, between the left edge of the object and
the left edge of its container
ExtendedTop property specifies a list of property names separated by comma
character, that indicates the Top property of the extended control. The Top property of
an extended control gets or sets the distance, between the top edge of the object and
the top edge of its container
ExtendedWidth property specifies a list of property names separated by comma
character, that indicates the Width property of the extended control. The Width
property of an extended control gets or sets the control's width
ExtendedHeight property specifies a list of property names separated by comma
character, that indicates the Height property of the extended control. The Height
property of an extended control gets or sets the control's height.

to determine/change the location/size of the component on the form/dialog/window.

The /NET version uses the following properties:

Left, Top, Width and Height to determine the location and size of the component on the
form
SetBounds method to change the location and size of the component on the form

This property is not available for the /NET version.

property SplitBar.ExtendedName as String
Specifies a list of property names separated by comma character, that indicates the Name
property of the extended control. The Name property of an extended control specifies the
name of the object within the container.

Type Description

String

A String expression that specifies a list of property names
separated by comma character, that indicates the Name
property of the extended control. For instance:
"Name,Caption"

By default, the ExtendedName property is "Name". The Name property of an extended
control specifies the name of the object within the container. The ExtendedName property
Specifies a list of property names separated by comma character, that indicates the Name
property of the extended control. The Name property of an extended control specifies the
name of the object within the container. Shortly, the ExtendedName property defines the
name of the property that can identify the name of the component as known by the
container (/COM only).

The ExtendedName property is used by /COM version by the following properties:

ObjectsLT property indicates the object(s) to be updated in the left/top part of the split
bar
AddObjectLT method adds a new object to be updated in the left/top part of the split
bar
ObjectsLT property indicates the object(s) to be updated in the right/bottom part of the
split bar
AddObjectRB method adds a new object to be updated in the right/bottom part of the
split bar

on following programming languages:

C# for /NET Assembly
Microsoft Office (Access, Excel, Word)
Visual Basic 6
Visual Basic for /NET Assembly
Visual FoxPro

The ExtendedName property is not available on the /NET version.

property SplitBar.ExtendedObject as String
Specifies a list of property names separated by comma character, that indicates the Object
property of the extended control. The Object property of an extended control returns the
original /hosted object.

Type Description

String

A String expression that specifies a list of property names
separated by comma character, that indicates the Object
property of the extended control. For instance,
"Object,GetOcx,DefaultInterface,nativeObject"

By default, the ExtendedObject property is "Object". The Object property of an extended
control returns the original /hosted object.

The ExtendedObject property may be used by /COM version by the following properties:

ObjectsLT property indicates the object(s) to be updated in the left/top part of the split
bar
AddObjectLT method adds a new object to be updated in the left/top part of the split
bar
ObjectsLT property indicates the object(s) to be updated in the right/bottom part of the
split bar
AddObjectRB method adds a new object to be updated in the right/bottom part of the
split bar

on following programming languages:

C# for /NET Assembly
Microsoft Office (Access, Excel, Word)
Visual Basic 6
Visual Basic for /NET Assembly
Visual FoxPro

The ExtendedObject property is not available on the /NET version.

property SplitBar.ExtendedTop as String
Specifies a list of property names separated by comma character, that indicates the Top
property of the extended control. The Top property of an extended control gets or sets the
distance, between the top edge of the object and the top edge of its container.

Type Description

String
A String expression that specifies a list of property names
separated by comma character, that indicates the Top
property of the extended control.

By default, the ExtendedTop property is "Top", which specifies that the split bar is using the
"Top" property of the extended control to get or set the distance, between the top edge of
the object and the top edge of its container. Extended controls may be implemented by
OLE control containers to provide a wrapper for contained controls.

The /COM version may use the following properties:

ExtendedLeft property specifies a list of property names separated by comma
character, that indicates the Left property of the extended control. The Left property of
an extended control gets or sets the distance, between the left edge of the object and
the left edge of its container
ExtendedTop property specifies a list of property names separated by comma
character, that indicates the Top property of the extended control. The Top property of
an extended control gets or sets the distance, between the top edge of the object and
the top edge of its container
ExtendedWidth property specifies a list of property names separated by comma
character, that indicates the Width property of the extended control. The Width
property of an extended control gets or sets the control's width
ExtendedHeight property specifies a list of property names separated by comma
character, that indicates the Height property of the extended control. The Height
property of an extended control gets or sets the control's height.

to determine/change the location/size of the component on the form/dialog/window.

The /NET version uses the following properties:

Left, Top, Width and Height to determine the location and size of the component on the
form
SetBounds method to change the location and size of the component on the form

This property is not available for the /NET version.

property SplitBar.ExtendedVisible as String
Specifies a list of property names separated by comma character, that indicates the Visible
property of the extended control. The Visible property of an extended control shows or
hides object.

Type Description

String
A String expression that specifies a list of property names
separated by comma character, that indicates the Visible
property of the extended control.

By default, the ExtendedVisible property is "Visible", which specifies that the split bar is
using the "Visible" property of the extended control to show or hide a component on the
container. The Visible property of an extended control shows or hides object. Extended
controls may be implemented by OLE control containers to provide a wrapper for contained
controls. The HideOnLimit property gets or sets a value that indicates whether the splitting
objects are hidden when the split bar is closed to its limit. The LimitLT property specifies the
expression that determines the limit to drag the splitter to left/top side of its container. The
LimitRB property specifies the expression that determines the limit to drag the splitter to
right/bottom side of its container.

The /COM version may use one of the following to show / hide the object:

using the Visible property of the extended control, as indicated by the ExtendedVisible
property
using the ShowWindow API, if the handle of the window can be detected using the
IOleWindow::GetWindow, from obj parameter (VC++ environment)
using the ShowWindow API, if the obj refers to a handle of the window (Delphi
enviroment)

The /NET version shows or hides the objects:

using the Visible property of the Control object (System.Windows.Forms)

The ExtendedVisible property is not available for /NET version.

property SplitBar.ExtendedWidth as String
Specifies a list of property names separated by comma character, that indicates the Width
property of the extended control. The Width property of an extended control gets or sets
the control's width.

Type Description

String
A String expression that specifies a list of property names
separated by comma character, that indicates the Width
property of the extended control.

By default, the ExtendedWidth property is "Width", which specifies that the split bar is using
the "Width" property of the extended control to get or set component's width. Extended
controls may be implemented by OLE control containers to provide a wrapper for contained
controls.

The /COM version may use the following properties:

ExtendedLeft property specifies a list of property names separated by comma
character, that indicates the Left property of the extended control. The Left property of
an extended control gets or sets the distance, between the left edge of the object and
the left edge of its container
ExtendedTop property specifies a list of property names separated by comma
character, that indicates the Top property of the extended control. The Top property of
an extended control gets or sets the distance, between the top edge of the object and
the top edge of its container
ExtendedWidth property specifies a list of property names separated by comma
character, that indicates the Width property of the extended control. The Width
property of an extended control gets or sets the control's width
ExtendedHeight property specifies a list of property names separated by comma
character, that indicates the Height property of the extended control. The Height
property of an extended control gets or sets the control's height.

to determine/change the location/size of the component on the form/dialog/window.

The /NET version uses the following properties:

Left, Top, Width and Height to determine the location and size of the component on the
form
SetBounds method to change the location and size of the component on the form

This property is not available for the /NET version.

property SplitBar.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font . Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while
multiple changes are performed..

property SplitBar.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that specifies the control's foreground
color.

The ForeColor property specifies the control's foreground color. The BackColor property
specifies the control's background color. The SplitBarBackColor property defines the slit
bar's visual appearance/background color. The SplitHotBackColor property defines the slit
bar's visual appearance/background color, while cursor is hovering the split bar. The
BorderWidth property sets or retrieves a value that indicates the border width of the
control. The BorderHeight property sets or retrieves a value that indicates the border height
of the control.

property SplitBar.HideOnLimit as Boolean
Gets or sets a value that indicates whether the splitting objects are hidden when the split
bar is closed to its limit.

Type Description

Boolean A Boolean expression that specifies whether the splitting
objects are hidden when the split bar is closed to its limit.

By default, the HideOnLimit property is True, which indicates that the splitting objects are
hidden when split bar's position is Min or Max. The Min property indicates leftmost/topmost
position the split bar can be moved. The Max property indicates rightmost/bottommost
position the split bar can be moved. The LimitLT property specifies the expression that
determines the limit to drag the splitter to left/top side of its container. The LimitRB property
specifies the expression that determines the limit to drag the splitter to right/bottom side of
its container. The control fires the Show event when an object requires to be shown or
hidden.

The /COM version may use one of the following to show / hide the object:

using the Visible property of the extended control. The ExtendedVisible property
specifies a list of property names separated by comma character, that indicates the
Visible property of the extended control. The Visible property of an extended control
shows or hides object. By default, the ExtendedVisible property is "Visible".
using the ShowWindow API, if the handle of the window can be detected using the
IOleWindow::GetWindow, from obj parameter (VC++ environment)
using the ShowWindow API, if the obj refers to a handle of the window (Delphi
enviroment)

The /NET version shows or hides the objects:

using the Visible property of the Control object (System.Windows.Forms)

property SplitBar.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows you can load pictures into the control:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

https://exontrol.com/eximages.jsp

property SplitBar.hWnd as Long
Retrieves the control's window handle.

Type Description
Long A long expression that indicates the window's handle.

The Microsoft Windows operating environment identifies each form in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many
Windows operating environment functions require the hWnd of the active window as an
argument. Because the value of this property can change while a program is running, you
cannot rely on its value (e.g., when stored in a variable).

method SplitBar.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The control provides an image list window, that's displayed at design time. The ImageSize
property defines the size (width/height) of the icons within the control's Images collection.
Use the ShowImageList property to hide the image list window, at design time. At design
time, the user can add new icons to the control's Images collection, by dragging icon files,
exe files, etc, to the images list window. At runtime, the user can use the Images and
ReplaceIcon method to change the Images collection. The Images collection is 1 based.

property SplitBar.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property SplitBar.LimitLT as String
Specifies the expression that determines the limit to drag the splitter to left/top side of its
container.

Type Description

String A string expression that defines the limit moving the split
bar to the left/top side.

By default, the LimitLT property is "8D", which indicates 8 dots (8 pixels for DPI settings of
100%, 12 pixels for DPI settings of 150%, , 16 pixels for DPI settings of 200%, and so on
). The LimitLT property specifies the expression that determines the limit to drag the splitter
to left/top side of its container. The LimitRB property specifies the expression that
determines the limit to drag the splitter to right/bottom side of its container. The Min
property indicates leftmost/topmost position the split bar can be moved. The Max property
indicates rightmost/bottommost position the split bar can be moved.

Any of the following properties can be used to anchor controls/components/objects to the
left/top/right/bottom sides of the split bar:

ObjectsLT property indicates the object(s) to be updated in the left/top part of the split
bar
AddObjectLT method adds a new object to be updated in the left/top part of the split
bar
ObjectsLT property indicates the object(s) to be updated in the right/bottom part of the
split bar
AddObjectRB method adds a new object to be updated in the right/bottom part of the
split bar

For instance:

"0", specifies that no limit is applied
"8", indicates that the limit is 8 pixels
"8D", 8 pixels for DPI settings of 100%, 12 pixels for DPI settings of 150%, , 16 pixels
for DPI settings of 200%, and so on
"25%", limits the split bar to a quarter from the full-distance.
"25% + 8D"

The LimitLT property supports the following operators:

valueD, specifies that the value indicates dots instead of pixels. For instance: 10D
specifies 10 pixels for DPI settings of 100%, 15 pixels for DPI settings of 150%, , 20
pixels for DPI settings of 200%, and so on
value%, indicates the percent of size to be used. For instance, 50% indicates that half

of the full-range. The % (percent) is applied to the container, if no object is anchored to
the split bar, else it is applied to the object with the minimum size.
+, adds two operands. For instance 10 + 25%, indicates 10 pixels plus a quarter from
the full-range
-, subtracts two operands
/, divides two numbers
*, multiples two numbers

property SplitBar.LimitRB as String
Specifies the expression that determines the limit to drag the splitter to right/bottom side of
its container.

Type Description

String A string expression that defines the limit moving the split
bar to the left/top side.

By default, the LimitRB property is "8D", which indicates 8 dots (8 pixels for DPI settings of
100%, 12 pixels for DPI settings of 150%, , 16 pixels for DPI settings of 200%, and so on
). The LimitRB property specifies the expression that determines the limit to drag the
splitter to right/bottom side of its container. The LimitLT property specifies the expression
that determines the limit to drag the splitter to left/top side of its container. The Min
property indicates leftmost/topmost position the split bar can be moved. The Max property
indicates rightmost/bottommost position the split bar can be moved.

Any of the following properties can be used to anchor controls/components/objects to the
left/top/right/bottom sides of the split bar:

ObjectsLT property indicates the object(s) to be updated in the left/top part of the split
bar
AddObjectLT method adds a new object to be updated in the left/top part of the split
bar
ObjectsLT property indicates the object(s) to be updated in the right/bottom part of the
split bar
AddObjectRB method adds a new object to be updated in the right/bottom part of the
split bar

For instance:

"0", specifies that no limit is applied
"8", indicates that the limit is 8 pixels
"8D", 8 pixels for DPI settings of 100%, 12 pixels for DPI settings of 150%, , 16 pixels
for DPI settings of 200%, and so on
"25%", limits the split bar to a quarter from the full-distance.
"25% + 8D"

The LimitRB property supports the following operators:

valueD, specifies that the value indicates dots instead of pixels. For instance: 10D
specifies 10 pixels for DPI settings of 100%, 15 pixels for DPI settings of 150%, , 20
pixels for DPI settings of 200%, and so on
value%, indicates the percent of size to be used. For instance, 50% indicates that half

of the full-range. The % (percent) is applied to the container, if no object is anchored to
the split bar, else it is applied to the object with the minimum size.
+, adds two operands. For instance 10 + 25%, indicates 10 pixels plus a quarter from
the full-range
-, subtracts two operands
/, divides two numbers
*, multiples two numbers

property SplitBar.Max as Long
Indicates rightmost/bottommost position the split bar can be moved.

Type Description

Long A Long expression that specifies the rightmost/bottommost
position the split bar can be moved

The MoveTo method moves programmatically the split bar to specified position. For
instance, MoveTo(Max) moves the split bar and its associated objects to the right/bottom-
most position. The Max property indicates rightmost/bottommost position the split bar can
be moved. The Min property indicates leftmost/topmost position the split bar can be moved.
The LimitLT property specifies the expression that determines the limit to drag the splitter to
left/top side of its container. The LimitRB property specifies the expression that determines
the limit to drag the splitter to right/bottom side of its container. The MoveOnDrop property
specifies whether the objects to the left/top and right/bottom of the split bar are moved
while dragging or just when the user drops the split bar. The control fires DragStart event
when the user clicks the split bar (start dragging the split bar). The Drag event is fired
contiguously while the split bar is dragging. The DragEnd event notifies your application that
the user releases the split bar (ends dragging the split bar). The Enabled property
specifies whether the control is enabled or disabled. The HideOnLimit property gets or sets
a value that indicates whether the splitting objects are hidden when the split bar is closed to
its limit.

property SplitBar.Min as Long
Indicates leftmost/topmost position the split bar can be moved.

Type Description

Long A Long expression that specifies the leftmost/topmost
position the split bar can be moved

The MoveTo method moves programmatically the split bar to specified position. For
instance, MoveTo(Min) moves the split bar and its associated objects to the left/top-most
position. The Min property indicates leftmost/topmost position the split bar can be moved.
The Max property indicates rightmost/bottommost position the split bar can be moved. The
LimitLT property specifies the expression that determines the limit to drag the splitter to
left/top side of its container. The LimitRB property specifies the expression that determines
the limit to drag the splitter to right/bottom side of its container. The MoveOnDrop property
specifies whether the objects to the left/top and right/bottom of the split bar are moved
while dragging or just when the user drops the split bar. The control fires DragStart event
when the user clicks the split bar (start dragging the split bar). The Drag event is fired
contiguously while the split bar is dragging. The DragEnd event notifies your application that
the user releases the split bar (ends dragging the split bar). The Enabled property
specifies whether the control is enabled or disabled. The HideOnLimit property gets or sets
a value that indicates whether the splitting objects are hidden when the split bar is closed to
its limit.

property SplitBar.Mode as SplitBarModeEnum
Retrieves or sets a value that indicates the split bar's mode.

Type Description

SplitBarModeEnum A SplitBarModeEnum expression that determines the split
bar's mode.

By default, the Mode property exSplitBarAuto, which indicates that the split bar's mode is
determines by its size as:

if the width of the split bar is greater or equal than its height, the Mode property is
exSplitBarVert
if the width of the split bar is less than its height, the Mode property is exSplitBarHorz

Any of the following properties can be used to anchor controls/components/objects to the
left/top/right/bottom sides of the split bar:

ObjectsLT property indicates the object(s) to be updated in the left/top part of the split
bar
AddObjectLT method adds a new object to be updated in the left/top part of the split
bar
ObjectsLT property indicates the object(s) to be updated in the right/bottom part of the
split bar
AddObjectRB method adds a new object to be updated in the right/bottom part of the
split bar

The LimitRB property specifies the expression that determines the limit to drag the splitter
to right/bottom side of its container. The LimitLT property specifies the expression that
determines the limit to drag the splitter to left/top side of its container.

Here's the steps you need to follow in order to use the eXSplitBar control:

Insert the eXSplitBar library/reference to your project
Place eXSplitBar control to your form/dialog/window
Specify the objects in the left/top and right/bottom parts of the split bar, using the
ObjectsLT / ObjectsRB or AddObjectLT / AddObjectRB available at runtime.

For instance, let's say we have the following layout:

so we have two split bars (horizontal and vertical), and three buttons/commands. One
splitter should resizes the left-most button, and the rest, and the vertical split bar show
resize the top-most button and the bellow one.

In

C# for /NET Assembly
Microsoft Office (Access, Excel, Word)
Visual Basic 6
Visual Basic for /NET Assembly
Visual FoxPro

you can select the split bar in design mode, and specify the objects in the left/top and
right/bottom parts of the split bar as in the following screen shot, using the ObjectsLT and
ObjectsRB properties:

In

C++ Builder
C# for /COM on /NET Framework
Delphi
Visual Basic for /COM on /NET Framework
Visual C++

you need to use the AddObjectLT and AddObjectRB methods as in the following samples.

C++ Builder :

SplitBar1->AddObjectLT(TVariant(Button1->Handle));
SplitBar1->AddObjectRB(TVariant(Button2->Handle));
SplitBar1->AddObjectRB(TVariant(SplitBar2->DefaultInterface));
SplitBar1->AddObjectRB(TVariant(Button3->Handle));

C# for /COM on /NET Framework :

axSplitBar1.AddObjectLT(button1);
axSplitBar1.AddObjectRB(button2);
axSplitBar1.AddObjectRB(axSplitBar2);
axSplitBar1.AddObjectRB(button3);

Delphi :

with SplitBar1 do
begin
 AddObjectLT(Button1.Handle);
 AddObjectRB(Button2.Handle);
 AddObjectRB(SplitBar2.DefaultInterface);
 AddObjectRB(Button3.Handle);
end

Visual Basic for /COM on /NET Framework:

With AxSplitBar1
 .AddObjectLT(Button1)
 .AddObjectRB(Button2)
 .AddObjectRB(AxSplitBar2)
 .AddObjectRB(Button3)
End With

Visual C++:

EXSPLITBARLib::ISplitBarPtr spSplitBar1 = GetDlgItem(IDC_SPLITBAR1)-
>GetControlUnknown();
spSplitBar1->AddObjectLT((long)::GetDlgItem(m_hWnd, IDC_BUTTON1));
spSplitBar1->AddObjectRB((long)::GetDlgItem(m_hWnd, IDC_BUTTON2));
spSplitBar1->AddObjectRB(GetDlgItem(IDC_SPLITBAR2)->GetControlUnknown());
spSplitBar1->AddObjectRB((long)::GetDlgItem(m_hWnd, IDC_BUTTON3));

property SplitBar.MoveOnDrop as Boolean
Gets or sets a value that indicates whether the splitting objects (including the split bar itself
) are moved once the user ends dragging the split bar, or contiguously while dragging it.

Type Description

Boolean

A Boolean expression that indicates whether the splitting
objects (including the split bar itself) are moved once the
user ends dragging the split bar, or contiguously while
dragging it.

By default, the MoveOnDrop property is True, which indicates that the splitting objects (
including the split bar itself) are moved once the user drops the split bar. The control fires
DragStart event when the user clicks the split bar (start dragging the split bar). The Drag
event is fired contiguously while the split bar is dragging. The DragEnd event notifies your
application that the user releases the split bar (ends dragging the split bar). The Enabled
property specifies whether the control is enabled or disabled. The MoveTo method moves
programmatically the split bar to specified position. The MoveOnDrop property specifies
whether the objects to the left/top and right/bottom of the split bar are moved while
dragging or just when the user drops the split bar.

method SplitBar.MoveTo (Position as Long)
Moves the split bar to the specified position.

Type Description

Position as Long

A Long expression that specifies the position to move the
split bar. The Position property should be a value between
Min and Max properties. If 0, the MoveTo method has no
effect, just refresh the split bar at the current position.

The MoveTo method moves programmatically the split bar to specified position. For
instance, you can programmatically move the split bar to the rightmost / topmost position by
calling the MoveTo(Max) method. The Min property indicates leftmost/topmost position the
split bar can be moved. The Max property indicates rightmost/bottommost position the split
bar can be moved. The LimitLT property specifies the expression that determines the limit
to drag the splitter to left/top side of its container. The LimitRB property specifies the
expression that determines the limit to drag the splitter to right/bottom side of its container.
The MoveOnDrop property specifies whether the objects to the left/top and right/bottom of
the split bar are moved while dragging or just when the user drops the split bar. The control
fires DragStart event when the user clicks the split bar (start dragging the split bar). The
Drag event is fired contiguously while the split bar is dragging. The DragEnd event notifies
your application that the user releases the split bar (ends dragging the split bar). The
Enabled property specifies whether the control is enabled or disabled.

The /COM version may use the following properties:

ExtendedLeft property, Specifies a list of property names separated by comma
character, that indicates the Left property of the extended control. The Left property of
an extended control gets or sets the distance, between the left edge of the object and
the left edge of its container.

 to determine the location/size of the object in its container.

property SplitBar.ObjectsIN as String
Specifies a list of controls that are child of other controls (prevents changing the left/top
part of the control while it is relative to a different parent).

Type Description

String
A string expression that specifies a list of controls that are
child of other controls (prevents changing the left/top part
of the control while it is relative to a different parent).

property SplitBar.ObjectsLT as String
Indicates the object to be updated in the left/top part of the split bar.

Type Description

String

A String expression that specifies the name of the controls
on the form to be udated by the split bar when it moves,
separated by comma character. For instance,
"Command1,Command2"

By default, the ObjectsLT property is "", so no associated components to the split bar. This
property is provided to define the controls associated with the left/top side of the split bar
at design mode, but it works if using at runtime as well. The Mode property specifies
whether the split bar moves objects horizontally or vertically. When the Mode property is set
to exSplitBarHorz, the control resizes any controls that lie above or below it, and when the
Mode is set to exSplitBarVert, it resizes controls that lie to its left or right. The AddObjectLT
method adds at runtime, a new object to be updated in the left/top part of the split bar. The
ObjectsRB property defines the objects to be updated on the right/bottom side of the split
bar. Setting the ObjectsLT property on "" (empty string), releases any control/object that
has been previously anchored to the slit bar, including the objects being added with the
AddObjectLT method, or the split bar has nothing attached to its left/top side. The LimitLT
property specifies the expression that determines the limit to drag the splitter to left/top
side of its container.

By default, if a control/component/object is contained in

both ObjectsLT / AddObjectLT and ObjectsRB / AddObjectRB, the
control/component/object will be moved (not sized), when the split bar moves
else the control/component/object will be moved and sized accordingly with the side of
the split bar it is anchored.

The ExtendedName property Specifies a list of property names separated by comma
character, that indicates the Name property of the extended control. The Name property of
an extended control specifies the name of the object within the container. The
ExtendedName property defines the name of the property that can extracts the name from
the container (/COM only).

Currently, the ObjectsLT property can be used in any of the following programming
environments:

C# for /NET Assembly
Microsoft Office (Access, Excel, Word)
Visual Basic 6
Visual Basic for /NET Assembly

Visual FoxPro

but it could work on other containers as well.

For instance, let's say we have the following layout:

so we have two split bars (horizontal and vertical), and three buttons/commands. One
splitter should resizes the left-most button, and the rest, and the vertical split bar show
resize the top-most button and the bellow one.

Select the split bar component in design mode and specify the ObjectsLT / ObjectsRB
properties as shown bellow:

property SplitBar.ObjectsRB as String
Indicates the object to be updated in the right/bottom part of the split bar.

Type Description

String

A String expression that specifies the name of the controls
on the form to be udated by the split bar when it moves,
separated by comma character. For instance,
"Command1,Command2"

By default, the ObjectsRB property is "", so no associated components to the split bar. This
property is provided to define the controls associated with the right/bottom side of the split
bar at design mode, but it works if using at runtime as well. The Mode property specifies
whether the split bar moves objects horizontally or vertically. When the Mode property is set
to exSplitBarHorz, the control resizes any controls that lie above or below it, and when the
Mode is set to exSplitBarVert, it resizes controls that lie to its left or right. The
AddObjectRB method adds at runtime, a new object to be updated in the right/bottom part
of the split bar. The ObjectsLT property defines the objects to be updated on the left/top
side of the split bar. Setting the ObjectsRB property on "" (empty string), releases any
control/object that has been previously anchored to the slit bar, including the objects being
added with the AddObjectRB method, or the split bar has nothing attached to its
right/bottom side. The LimitRB property specifies the expression that determines the limit to
drag the splitter to right/bottom side of its container.

By default, if a control/component/object is contained in

both ObjectsLT / AddObjectLT and ObjectsRB / AddObjectRB, the
control/component/object will be moved (not sized), when the split bar moves
else the control/component/object will be moved and sized accordingly with the side of
the split bar it is anchored.

Currently, the ObjectsRB property can be used in any of the following programming
environments:

C# for /NET Assembly
Microsoft Office (Access, Excel, Word)
Visual Basic 6
Visual Basic for /NET Assembly
Visual FoxPro

but it could work on other containers as well.

For instance, let's say we have the following layout:

so we have two split bars (horizontal and vertical), and three buttons/commands. One
splitter should resizes the left-most button, and the rest, and the vertical split bar show
resize the top-most button and the bellow one.

Select the split bar component in design mode and specify the ObjectsLT / ObjectsRB
properties as shown bellow:

property SplitBar.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object that indicates the control's picture.

Use the Picture property to load a picture on the control's background. Use the
PictureDisplay property to arrange the picture on the control's background.

property SplitBar.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the control's picture is displayed.

Use the Picture property to load a picture into the control's background. Use the
PictureDisplay property to arrange how the control's picture is displayed on its background.
Use the BackColor property to specify the control's background color.

method SplitBar.Refresh ()
Refreshes the control.

Type Description

The Refresh method refreshes the control. Use BeginUpdate and EndUpdate statement
each time when the control requires more changes.

method SplitBar.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = SplitBar1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), where i is the index to
insert the icon

The following sample shows how to replace an icon into control's images list::

 i = SplitBar1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 SplitBar1.ReplaceIcon 0, i, in this case the i is the index of the icon to remove

The following sample shows how to clear the control's icons collection:

 SplitBar1.ReplaceIcon 0, -1

property SplitBar.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden.

By default, the ShowImageList property is False. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the tree control. Use the
RepaceIcon method to add, remove or clear icons in the control's images collection.

property SplitBar.SplitBackColor as Color
Specifies the splitter's background color.

Type Description

Color

A color expression that defines the splitter's background
color.. The last 7 bits in the high significant byte of the
color indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

The SplitBarBackColor property defines the slit bar's visual appearance/background color.
The BackColor property specifies the control's background color. The SplitHotBackColor
property defines the slit bar's visual appearance/background color, while cursor is hovering
the split bar. The BorderWidth property sets or retrieves a value that indicates the border
width of the control. The BorderHeight property sets or retrieves a value that indicates the
border height of the control.

property SplitBar.SplitHotBackColor as Color
Specifies the splitter's background color, while the cursor is hovering it.

Type Description

Color

A color expression that defines the splitter's background
color.. The last 7 bits in the high significant byte of the
color indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

The SplitHotBackColor property defines the slit bar's visual appearance/background color,
while cursor is hovering the split bar. The SplitBarBackColor property defines the slit bar's
visual appearance/background color. The BackColor property specifies the control's
background color. The BorderWidth property sets or retrieves a value that indicates the
border width of the control. The BorderHeight property sets or retrieves a value that
indicates the border height of the control.

property SplitBar.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result of executing a template script.

The Exontrol's eXHelper tool helps you to find easy and quickly the answers and the source
code for your questions regarding the usage of our UI components.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by

https://exontrol.com/exhelper.jsp

commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property SplitBar.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method SplitBar.TemplatePut (newVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

newVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property SplitBar.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

By default, the ToolTipDelay property is 500ms, which indicates that the split bar's tooltip is
shown after a half a second. If the ToolTipDelay or ToolTipPopDelay property is 0, the
control displays no tooltips. The ToolTipText property specifies the HTML caption to be
shown when the cursor is hovering an enabled slit bar. The ToolTipTitle property specifies
the title of the control's tooltip. Use the ToolTipPopDelay property specifies the period in ms
of time the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipFont property or HTML element to assign a new
font for tooltips.

property SplitBar.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip

Use the ToolTipFont property or HTML element to assign a new font for tooltips. If
the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipText property specifies the HTML caption to be shown when the cursor is hovering
an enabled slit bar. The ToolTipTitle property specifies the title of the control's tooltip. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

property SplitBar.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A Long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

By default, the ToolTipPopDelay property is 5000ms, which indicates that the split bar's
tooltip is shown for 5 seconds. If the ToolTipDelay or ToolTipPopDelay property is 0, the
control displays no tooltips. Use the ToolTipPopDelay property specifies the period in ms of
time the ToolTip remains visible if the mouse pointer is stationary within a control. The
ToolTipText property specifies the HTML caption to be shown when the cursor is hovering
an enabled slit bar. The ToolTipTitle property specifies the title of the control's tooltip. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipFont property or HTML element to assign a new
font for tooltips.

property SplitBar.ToolTipText as String
Specifies the control's tooltip text.

Type Description
String A string expression that indicates the split bar's tooltip.

By default, the ToolTipText property is "". The ToolTipText property specifies the HTML
caption to be shown when the cursor is hovering an enabled slit bar. The ToolTipTitle
property specifies the title of the control's tooltip. If the ToolTipDelay or ToolTipPopDelay
property is 0, the control displays no tooltips. Use the ToolTipPopDelay property specifies
the period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. Use the ToolTipWidth property to specify the width of the tooltip window. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipFont property or HTML element to assign a new
font for tooltips.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank

line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or

blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property SplitBar.ToolTipTitle as String
Specifies the title of the control's tooltip.

Type Description

String A String expression that specifies the title of the control's
tooltip.

By default, the ToolTipTitle property is "". The ToolTipTitle property specifies the title of the
control's tooltip. The ToolTipText property specifies the HTML caption to be shown when
the cursor is hovering an enabled slit bar. If the ToolTipDelay or ToolTipPopDelay property is
0, the control displays no tooltips. Use the ToolTipPopDelay property specifies the period in
ms of time the ToolTip remains visible if the mouse pointer is stationary within a control. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipFont property or HTML element to assign a new
font for tooltips.

property SplitBar.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A Long expression that specifies a value that indicates the
width of the tooltip window, in pixels.

By default, the ToolTipWidth property is 196 pixels, which indicates that the width of the split
bar's tooltip is not greater than 196 pixels. Use the ToolTipWidth property to specify the
width of the tooltip window. If the ToolTipDelay or ToolTipPopDelay property is 0, the control
displays no tooltips. The ToolTipText property specifies the HTML caption to be shown when
the cursor is hovering an enabled slit bar. The ToolTipTitle property specifies the title of the
control's tooltip. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipFont property or HTML element to assign a new
font for tooltips.

property SplitBar.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the control's version.

property SplitBar.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. The SplitBarBackColor property defines
the slit bar's visual appearance/background color. The SplitHotBackColor property defines
the slit bar's visual appearance/background color, while cursor is hovering the split bar. The
BorderWidth property sets or retrieves a value that indicates the border width of the
control. The BorderHeight property sets or retrieves a value that indicates the border height
of the control.

The following screen shot shows the split bar with an EBN object:

The following screen shot shows the split bar with a solid color:

ExSplitBar events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {9F28FDED-5EBC-4E9A-A596-C3813C966A0C}. The object's program identifier is: "Exontrol.SplitBar".
The /COM object module is: "ExSplitBar.dll"

The ExSplitBar component supports the following events:

Name Description

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Drag Notifies that the user drags the split bar.
DragEnd Occurs once the user ends dragging the split bar.
DragStart Occurs once the user starts dragging the split bar.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
RClick Occurs once the user right clicks the control.
Show Occurs when an object requires to be shown or hidden.

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The control fires the DragStart event when user starts dragging the
split bar, Drag event while dragging it, and DragEnd event when dragging the split bar ends.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()

end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oSplitBar)

RETURN

Java…

VBSc…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Syntax for Click event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXSPLITBARLib._ISplitBarEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use a MouseDown or
MouseUp event procedure to specify actions that will occur when a mouse button is
pressed or released. Unlike the Click and DblClick events, MouseDown and MouseUp
events lets you distinguish between the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers. The control fires the DragStart event when user starts dragging the split bar,
Drag event while dragging it, and DragEnd event when dragging the split bar ends.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)

end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oSplitBar,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.SplitBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.SplitBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

Syntax for DblClick event, /COM version (others), on:

C#

VB

private void Drag(object sender,int Position)
{
}

Private Sub Drag(ByVal sender As System.Object,ByVal Position As Integer)
Handles Drag
End Sub

C#

C++

C++
Builder

private void Drag(object sender, AxEXSPLITBARLib._ISplitBarEvents_DragEvent e)
{
}

void OnDrag(long Position)
{
}

void __fastcall Drag(TObject *Sender,long Position)
{
}

event Drag (Position as Long)
Notifies that the user drags the split bar.

Type Description

Position as Long
A long expression that specifies position the split bar has
been moved by dragging. It indicates the distance in
pixels, from the point where the dragging begins.

The Drag event is fired contiguously while the split bar is dragging. The control fires
DragStart event when the user clicks the split bar (start dragging the split bar). The
DragEnd event notifies your application that the user releases the split bar (ends dragging
the split bar). The Enabled property specifies whether the control is enabled or disabled.
The MoveTo method moves programmatically the split bar to specified position. The
MoveOnDrop property specifies whether the objects to the left/top and right/bottom of the
split bar are moved while dragging or just when the user drops the split bar.

Syntax for Drag event, /NET version, on:

Syntax for Drag event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Drag(ASender: TObject; Position : Integer);
begin
end;

procedure Drag(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_DragEvent);
begin
end;

begin event Drag(long Position)

end event Drag

Private Sub Drag(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_DragEvent) Handles Drag
End Sub

Private Sub Drag(ByVal Position As Long)
End Sub

Private Sub Drag(ByVal Position As Long)
End Sub

LPARAMETERS Position

PROCEDURE OnDrag(oSplitBar,Position)

RETURN

Java…

VBSc…

<SCRIPT EVENT="Drag(Position)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Drag(Position)

Syntax for Drag event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComDrag Integer llPosition
 Forward Send OnComDrag llPosition
End_Procedure

METHOD OCX_Drag(Position) CLASS MainDialog
RETURN NIL

void onEvent_Drag(int _Position)
{
}

function Drag as v (Position as N)
end function

function nativeObject_Drag(Position)
return

C#

VB

private void DragEnd(object sender,int Position,bool Cancel)
{
}

Private Sub DragEnd(ByVal sender As System.Object,ByVal Position As
Integer,ByVal Cancel As Boolean) Handles DragEnd
End Sub

C#

C++

private void DragEnd(object sender,
AxEXSPLITBARLib._ISplitBarEvents_DragEndEvent e)
{
}

void OnDragEnd(long Position,BOOL Cancel)
{
}

event DragEnd (Position as Long, Cancel as Boolean)
Occurs once the user ends dragging the split bar.

Type Description

Position as Long
A long expression that determines the position where the
drag operation ends. This 0 indicates the initial position, or
where the dragging begins.

Cancel as Boolean A Boolean expression that specifies whether the dragging
operation has been canceled or not.

The DragEnd event notifies your application that the user releases the split bar (ends
dragging the split bar). The control fires DragStart event when the user clicks the split bar (
start dragging the split bar). The Drag event is fired contiguously while the split bar is
dragging. The Enabled property specifies whether the control is enabled or disabled. The
MoveTo method moves programmatically the split bar to specified position. The
MoveOnDrop property specifies whether the objects to the left/top and right/bottom of the
split bar are moved while dragging or just when the user drops the split bar.

Syntax for DragEnd event, /NET version, on:

Syntax for DragEnd event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DragEnd(TObject *Sender,long Position,VARIANT_BOOL Cancel)
{
}

procedure DragEnd(ASender: TObject; Position : Integer;Cancel : WordBool);
begin
end;

procedure DragEnd(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_DragEndEvent);
begin
end;

begin event DragEnd(long Position,boolean Cancel)

end event DragEnd

Private Sub DragEnd(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_DragEndEvent) Handles DragEnd
End Sub

Private Sub DragEnd(ByVal Position As Long,ByVal Cancel As Boolean)
End Sub

Private Sub DragEnd(ByVal Position As Long,ByVal Cancel As Boolean)
End Sub

LPARAMETERS Position,Cancel

PROCEDURE OnDragEnd(oSplitBar,Position,Cancel)

RETURN

Syntax for DragEnd event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DragEnd(Position,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DragEnd(Position,Cancel)
End Function
</SCRIPT>

Procedure OnComDragEnd Integer llPosition Boolean llCancel
 Forward Send OnComDragEnd llPosition llCancel
End_Procedure

METHOD OCX_DragEnd(Position,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_DragEnd(int _Position,boolean _Cancel)
{
}

function DragEnd as v (Position as N,Cancel as L)
end function

function nativeObject_DragEnd(Position,Cancel)
return

C#

VB

private void DragStart(object sender,int Position,ref bool Cancel)
{
}

Private Sub DragStart(ByVal sender As System.Object,ByVal Position As
Integer,ByRef Cancel As Boolean) Handles DragStart
End Sub

C#

C++

private void DragStart(object sender,
AxEXSPLITBARLib._ISplitBarEvents_DragStartEvent e)
{
}

void OnDragStart(long Position,BOOL FAR* Cancel)
{
}

event DragStart (Position as Long, ByRef Cancel as Boolean)
Occurs once the user starts dragging the split bar.

Type Description

Position as Long A long expression that determines the position where the
drag operation begins. This parameter is always 0.

Cancel as Boolean

(By Reference) A Boolean expression that specifies
whether the drag operation should continue or cancel. You
can change the Cancel parameter during the DragStart
event.

The control fires DragStart event when the user clicks the split bar (start dragging the split
bar). The Drag event is fired contiguously while the split bar is dragging. The DragEnd
event notifies your application that the user releases the split bar (ends dragging the split
bar). The Enabled property specifies whether the control is enabled or disabled. The
MoveTo method moves programmatically the split bar to specified position. The
MoveOnDrop property specifies whether the objects to the left/top and right/bottom of the
split bar are moved while dragging or just when the user drops the split bar.

Syntax for DragStart event, /NET version, on:

Syntax for DragStart event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DragStart(TObject *Sender,long Position,VARIANT_BOOL * Cancel)
{
}

procedure DragStart(ASender: TObject; Position : Integer;var Cancel : WordBool);
begin
end;

procedure DragStart(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_DragStartEvent);
begin
end;

begin event DragStart(long Position,boolean Cancel)

end event DragStart

Private Sub DragStart(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_DragStartEvent) Handles DragStart
End Sub

Private Sub DragStart(ByVal Position As Long,Cancel As Boolean)
End Sub

Private Sub DragStart(ByVal Position As Long,Cancel As Boolean)
End Sub

LPARAMETERS Position,Cancel

PROCEDURE OnDragStart(oSplitBar,Position,Cancel)

RETURN

Syntax for DragStart event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DragStart(Position,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DragStart(Position,Cancel)
End Function
</SCRIPT>

Procedure OnComDragStart Integer llPosition Boolean llCancel
 Forward Send OnComDragStart llPosition llCancel
End_Procedure

METHOD OCX_DragStart(Position,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_DragStart(int _Position,COMVariant /*bool*/ _Cancel)
{
}

function DragStart as v (Position as N,Cancel as L)
end function

function nativeObject_DragStart(Position,Cancel)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. This is useful for X++,
which does not support event with parameters passed by reference. Also, this could be
useful for C++ Builder or Delphi, which does not handle properly the events with
parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

If you are not familiar with what a type library means just handle the Event of the control as
follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exsplitbar1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

MouseMove/-606(0 , 0 , 19 , 191)
MouseDown/-605(1 , 0 , 19 , 191)
DragStart/4(0 , =false)
MouseMove/-606(1 , 0 , 20 , 191)

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

private void Event(object sender, AxEXSPLITBARLib._ISplitBarEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

Drag/5(1)
MouseMove/-606(1 , 0 , 21 , 191)
Drag/5(3)
MouseMove/-606(1 , 0 , 22 , 191)
Drag/5(-6)
DragEnd/6(-6 , false)
MouseUp/-607(1 , 0 , 19 , 194)
MouseMove/-606(0 , 0 , 24 , 190)

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_EventEvent);
begin
end;

begin event Event(long EventID)

end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oSplitBar,EventID)

RETURN

Java…

VBSc…

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function

Syntax for Event event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXSPLITBARLib._ISplitBarEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)

end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oSplitBar,KeyCode,Shift)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXSPLITBARLib._ISplitBarEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)

end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oSplitBar,KeyAscii)

RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXSPLITBARLib._ISplitBarEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)

end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oSplitBar,KeyCode,Shift)

RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int
Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXSPLITBARLib._ISplitBarEvents_MouseDownEvent e)

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The control fires the DragStart event when user starts dragging the
split bar, Drag event while dragging it, and DragEnd event when dragging the split bar ends.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int
Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)

end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseDown(oSplitBar,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS
llX OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.SplitBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.SplitBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int
Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXSPLITBARLib._ISplitBarEvents_MouseMoveEvent e)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The control fires the DragStart event
when user starts dragging the split bar, Drag event while dragging it, and DragEnd event
when dragging the split bar ends.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int
Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)

end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseMove(oSplitBar,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS
llX OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.SplitBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.SplitBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXSPLITBARLib._ISplitBarEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)

end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oSplitBar,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.SplitBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.SplitBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

event RClick ()
Occurs once the user right clicks the control.

Type Description

The RClick event notifies your application when the user right clicks the control. By default,
the user can drag the split bar by left or right click the split bar. In order to prevent dragging
the split bar when using the right mouse button, you can change the Cancel parameter of
the DragStart event. Use the RClick event to add your context menu. Use the Click event to
notify your application that the user clicks the control (using the left mouse button). Use
the MouseDown or MouseUp event if you require the cursor position during the RClick
event.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()

end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oSplitBar)

RETURN

Java…

VBSc…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Syntax for RClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

event Show (Obj as Variant, Visible as Boolean)
Occurs when an object requires to be shown or hidden.

Type Description

Obj as Variant

A Variant expression that could be one of the following:

String expression that indicates the name of the
component
A long expression that specifies the handle of the
window
An IUnknown or IDispatch interface that identifies the
component (Object for VB, GetOcx() for /COM
objects on /NET framework , DefaultInterface for
Delphi, nativeObject for dBase, and so on)
An object of Control (System.Windows.Forms) type
that specifies the control (/NET assembly, when
objects has been added using the AddObjectLT(obj) /
AddObjectRB(obj) methods

to be shown or hidden. For instance, if the ObjectsLT
property is "Command1,Command2", the obj parameter
could be "Command1" or "Command2"

Visible as Boolean
A Boolean expression that specifies whether
the component requires to be shown (True) or hidden
(False).

The split bar control fires the Show event when a component/control/object requires to be
shown or hidden. The HideOnLimit property gets or sets a value that indicates whether the
splitting objects are hidden when the split bar is closed to its limit. If the HideOnLimit
property is True, the control automatically shows or hides the components associated with
the split bar when it is close to the limit. The LimitLT property specifies the expression that
determines the limit to drag the splitter to left/top side of its container. The LimitRB property
specifies the expression that determines the limit to drag the splitter to right/bottom side of
its container.

The /COM version may use one of the following to show / hide the object:

using the Visible property of the extended control. The ExtendedVisible property
specifies a list of property names separated by comma character, that indicates the
Visible property of the extended control. The Visible property of an extended control
shows or hides object. By default, the ExtendedVisible property is "Visible".
using the ShowWindow API, if the handle of the window can be detected using the

C#

VB

private void Show(object sender,object Obj,bool Visible)
{
}

Private Sub Show(ByVal sender As System.Object,ByVal Obj As Object,ByVal Visible
As Boolean) Handles Show
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void Show(object sender, AxEXSPLITBARLib._ISplitBarEvents_ShowEvent e)
{
}

void OnShow(VARIANT Obj,BOOL Visible)
{
}

void __fastcall Show(TObject *Sender,Variant Obj,VARIANT_BOOL Visible)
{
}

procedure Show(ASender: TObject; Obj : OleVariant;Visible : WordBool);
begin
end;

procedure Show(sender: System.Object; e:
AxEXSPLITBARLib._ISplitBarEvents_ShowEvent);
begin
end;

IOleWindow::GetWindow, from obj parameter (VC++ environment)
using the ShowWindow API, if the obj refers to a handle of the window (Delphi
enviroment)

The /NET version shows or hides the objects:

using the Visible property of the Control object (System.Windows.Forms)

Syntax for Show event, /NET version, on:

Syntax for Show event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event Show(any Obj,boolean Visible)

end event Show

Private Sub Show(ByVal sender As System.Object, ByVal e As
AxEXSPLITBARLib._ISplitBarEvents_ShowEvent) Handles Show
End Sub

Private Sub Show(ByVal Obj As Variant,ByVal Visible As Boolean)
End Sub

Private Sub Show(ByVal Obj As Variant,ByVal Visible As Boolean)
End Sub

LPARAMETERS Obj,Visible

PROCEDURE OnShow(oSplitBar,Obj,Visible)

RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="Show(Obj,Visible)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Show(Obj,Visible)
End Function
</SCRIPT>

Procedure OnComShow Variant llObj Boolean llVisible
 Forward Send OnComShow llObj llVisible
End_Procedure

METHOD OCX_Show(Obj,Visible) CLASS MainDialog
RETURN NIL

Syntax for Show event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_Show(COMVariant _Obj,boolean _Visible)
{
}

function Show as v (Obj as A,Visible as L)
end function

function nativeObject_Show(Obj,Visible)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	SplitBar
	AddObjectLT method
	AddObjectRB method
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	Cursor property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	ExtendedContainerWnd property
	ExtendedHeight property
	ExtendedLeft property
	ExtendedName property
	ExtendedObject property
	ExtendedTop property
	ExtendedVisible property
	ExtendedWidth property
	Font property
	ForeColor property
	HideOnLimit property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	LimitLT property
	LimitRB property
	Max property (readonly)
	Min property (readonly)
	Mode property
	MoveOnDrop property
	MoveTo method
	ObjectsIN property
	ObjectsLT property
	ObjectsRB property
	Picture property
	PictureDisplay property
	Refresh method
	ReplaceIcon method
	ShowImageList property
	SplitBackColor property
	SplitHotBackColor property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipText property
	ToolTipTitle property
	ToolTipWidth property
	Version property
	VisualAppearance property (readonly)

	ExSplitBar events
	Click event
	DblClick event
	Drag event
	DragEnd event
	DragStart event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	RClick event
	Show event

