¥ ExSlider

The Exontrol's eXSlider component allows you adding skinable sliders to your forms or
dialogs. A "slider control" (also known as a trackbar) is a window containing a slider and
optional tick marks. When the user moves the slider, using either the mouse or the direction
keys, the control sends events to indicate the change. The volume controls in the Windows
operating system are slider controls. The eXSlider component lets the user changes its
visual appearance using skins, each one providing an additional visual experience that
enhances viewing pleasure. Skins are relatively easy to build and put on any part of the
control. The control is written from scratch as most of our controls, and it is not sub
classing a slider or trackbar window class or similar, that's why it supports features never
seen in other controls.

Features include:

WYSWYG Template/Layout Editor support

Skinnable Interface support (ability to apply a skin to the any background part)
Windows XP Theme support

Horizontal or Vertical orientation support

Customizable HTML labels

Allow Floating Points

ProgressBar support

Owner Draw support

Multi-lines tooltip support

Ability to put HTML text on any part of the control, includes icons or custom size
pictures

ANSI and UNICODE versions available

e and more

v

1 ' ']] ' ' ' ' 1 T
ro. . Walue 3 o oo ”
N |

b=

Voo
vertical's exslider

5%

Z ExSlider is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.
Here are few hints what to do when you're stuck on your programming:

e Check out the samples - they are here to provide some quick info on how things should
be done

e Check out the how-to questions using the eXHelper tool

e Check out the help - includes documentation for each method, property or event

e Check out if you have the latest version, and if you don't have it send an update
request here.

e Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum

The AlignmentEnum type defines the caption's alignment. Use the Caption property to
specify a text being displayed on any part of the control. Use the CaptionAlignment property
to specify the alignment of the text inside the part.

LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is left centered.
RightAlignment 2 The source is right aligned.

constants AppearanceEnum

The AppearanceEnum enumeration is used to specify the appearance of the control's
border. See also the Appearance property.

None2 0 No border

Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum

The BackgroundPartEnum type defines the parts of the control in a specified state. Use the
Background property to change the visual appearance of a any part of the control in a
specified state.

Use the VisiblePart or VisibleParts property to specify which part is visible and which part is
not visible. Use the EnablePart or EnableParts property to specify which part is enabled
and which part is disabled.

e All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
slider (Orientation property is exVertical).

e All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal slider (Orientation property is exHorizontal).

e Any BackgroundPartEnum expression that ends with P specifies a part of the control
when it is pressed.

e Any BackgroundPartEnum expression that ends with D specifies a part of the control
when it is disabled.

e Any BackgroundPartEnum expression that ends with H specifies a part of the control
when the cursor hovers it.

e Any BackgroundPartEnum expression that ends with no H, P or D specifies a part of
the control in normal state.

Indicates the visual appearance of the borders of
exToolTipAppearance 64 the tooltips. Use the ToolTipWidth property to
specify the width of the tooltip window.

exToolTipBackColor 65 Specifies the tooltip's background color.

exToolTipForeColor 66 Specifies the tooltip's foreground color.

exV/SSel 280 The selection range part (exSelPart) in normal
state.

ex\V/SSelP 281 The selection range part (exSelPart) when it is
pressed.

ex\V/SSelD 282 The selection range part (exSelPart) when it is

disabled.

exVVSSelH

exVSThumb

exVSThumbP

exVSThumbD

exVVSThumbH

exVSLower

exVSLowerP

exVSLowerD

exVSLowerH

exVSUpper

exVSUpperP

exVSUpperD

exVSUpperH

exVVSBack

exVVSBackP

exVSBackD

exVSBackH

exHSSel

283

260

261

262

263

268

269

270

271

272

273

274

275

276

277

278

279

408

The selection range part (exSelPart) when cursor
hovers it.

Specifies the thumb part (exThumbPart) in normal
state.

Specifies the thumb part (exThumbPart) when it is
pressed.

Specifies the thumb part (exThumbPart) when it is
disabled.

Specifies the thumb part (exThumbPart) when
cursor hovers it.

Specifies the lower part (exLowerBackPart) in
normal state.

Specifies the lower part (exLowerBackPart) when
it is pressed.

Specifies the lower part (exLowerBackPart) when
it is disabled.

Specifies the lower part (exLowerBackPart) when
the cursor hovers it.

Specifies the upper part (exUpperBackPart) in
normal state.

Specifies the upper part (exUpperBackPart) when
it is pressed.

Specifies the upper part (exUpperBackPart) when
it is disabled.

Specifies the upper part (exUpperBackPart) when
the cursor hovers it.

Specifies the background part (exLowerBackPart
and exUpperBackPart) in normal state.

Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is pressed.

Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is disabled.

Specifies the background part (exLowerBackPart
and exUpperBackPart) when the cursor hovers it.

The select range part (exSelPart) in normal state.
The selection range part (exSelPart) when it is

exHSSelP

exHSSelD

exHSSelH

exHSThumb

exHSThumbP

exHSThumbD

exHSThumbH

exHSLower

exHSLowerP

exHSLowerD

exHSLowerH

exHSUpper

exHSUpperP

exHSUpperD

exHSUpperH

exHSBack

exHSBackP

exHSBackD

409

410

411

388

389

390

391

396

397

398

399

400

401

402

403

404

405

406

pressed.

The selection range part (exSelPart) when it is
disabled.

The selection range part (exSelPart) when the
cursor hovers it.

Specifies the thumb part (exThumbPart) in normal
state.

Specifies the thumb part (exThumbPart) when it is
pressed.

Specifies the thumb part (exThumbPart) when it is
disabled.

Specifies the thumb part (exThumbPart) when the
cursor hovers it.

Specifies the lower part (exLowerBackPart) in
normal state.

Specifies the lower part (exLowerBackPart) when it
is pressed.

Specifies the lower part (exLowerBackPart) when it
is disabled.

Specifies the lower part (exLowerBackPart) when
the cursor hovers it.

Specifies the upper part (exUpperBackPart) in
normal state.

Specifies the upper part (exUpperBackPart) when it
is pressed.

Specifies the upper part (exUpperBackPart) when it
is disabled.

Specifies the upper part (exUpperBackPart) when
the cursor hovers it.

Specifies the background part (exLowerBackPart
and exUpperBackPart) in normal state.

Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is pressed.

Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is disabled.

exHSBackH 407 Specifies the background part (exLowerBackPart
and exUpperBackPart) when the cursor hovers it.

constants OrientationEnum

Specifies how the control is displayed. Use the Orientation property to specify the control's
orientation.

exVertical 0 The control is vertically oriented.
exHorizontal 1 The control is horizontally oriented.
exReverseOrder 16 exReverseOrder. The control displays the values in

reverse order.

constants PartEnum

The PartEnum expression indicates the parts in the control. Use the Background property to
change the visual aspect for a specified part. Use the VisiblePart or VisibleParts property to
specify which part is visible and which part is not visible. Use the EnablePart or EnableParts
property to specify which part is enabled and which part is disabled.

exLowerBackPart 512
exThumbPart 256
exUpperBackPart 128
exBackgroundPart 640
exSelPart 1
exPartNone 0

The area from the start to the thumb.
The thumb/slider part

The area between thumb and the end.
The lower and upper parts.

The selection range part. Use the SelectRange
property to make it visible.

exPartNone

constants PictureDisplayEnum

Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

I e e on e et side and
MiddleCenter 17 Puts the picture on the center of the source.

T e e o1 e o i, an
LowerlLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner

Tile 48 Tiles the picture on the source.

Stretch 49 Tiles the picture on the source.

constants TickStyleEnum

Specifies how the control displays the ticks. Use the TickStyle property to specify how the
ticks are displayed. The TickColor property indicates the color to paint the ticks.

exBottomRight 0 The ticks are displayed on the bottom/right side.
exTopLeft 1 The ticks are displayed on the top/left side.
exBoth 2 The ticks are displayed on the both side.
exNoTicks 3 No ticks are displayed.

Appearance object

The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to

build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.

Remove Removes a specific skin from the control.

method Appearance.Add (ID as Long, Skin as Variant)

Adds or replaces a skin object to the control.

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE]] / safe arrays of VT |1 or

VT _UI1 expression that indicates the content of the EBN
file. You can use the BYTE][] / safe arrays of VT _I1 or
VT _UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

e A path to the skin file (*.EBN). The ExButton
component or EXEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontro\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"

o A BASEG64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASEG4 encoded string starts with "gBFLBCJw..."

¢ An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any Ul
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

¥P:Header 1 2

WP:Header 2 2 |

HP-Button 1 1 [|
XP:Button 1 2 [|
®P:Buttan 3 5
¥P:Button 3 9]
WP-ExplorerBar 3 1 4
¥F-ExplorerBar 4 1 »

XP:Header 12

XP.Header 22

XP:Button 1 1
XP:Button 1 2
XP:Button 3 5
¥P:Button 3 9 [m]
XP:ExplorerBar 3 1 -[;’]
XP:ExplorerBar 4 1 »

e A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the |ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

(default)

CP144-4-4
CP1-4-444
CP142000

CP100-430

A Boolean expression that indicates whether the new skin

Boolean was added or replaced.

Use the Add method to add or replace skins to the control. Use the Background property to
assign a skin or a color to any part of the control in a specified state.

For instance, the Background(exVSThumbP) = RGB(255,0,0) defines the thumb in a red
color, when it is pressed. The skin method, in it's simplest form, uses a single graphic file
(*.ebn) assigned to a part of the control, when the "XP:" prefix is not specified in the Skin
parameter (available for Windows XP systems). By using a collection of objects laid over
the graphic, it is possible to define which sections of the graphic will be used as borders,
corners and other possible elements, fixing them to their proper position regardless of the
size of the part. Use the Remove method to remove a specific skin from the control. Use
the Clear method to remove all skins in the control. Use the BeginUpdate and EndUpdate
methods to maintain performance while do multiple changes to the control.

<
L

P T o
o, Walie 3 Voo =
T

2l

Voo
wertical's exslider

66T

The identifier you choose for the skin is very important to be used in the
background properties like explained bellow. Shortly, the color properties (Background
property) uses 4 bytes (DWORD, double WORD, and so on) to hold a RGB value. More
than that, the first byte (most significant byte in the color) is used only to specify system
color. if the first bit in the byte is 1, the rest of bits indicates the index of the system color
being used. So, we use the last 7 bits in the high significant byte of the color to indicates
the identifier of the skin being used. So, since the 7 bits can cover 127 values, excluding O,
we have 126 possibilities to store an identifier in that byte. This way, a DWORD expression
indicates the background color stored in RRGGBB format and the index of the skin (ID
parameter) in the last 7 bits in the high significant byte of the color. For instance, the
Background(exThumbPart) = Background(exThumbPart) Or &H2000000 indicates that we
apply the skin with the index 2 using the old color, to the thumb part.

In the following samples, we have used the following skin file: , and we get a slider like

follows:+ -+« =« 0y

The following VB sample changes the visual appearance of the thumb, in the vertical slider:

With Slider

VisualAppearance.Add 1, "D:\Exontrol\ExSlider\sample\VB\Gauge\\Vertical
2\thumb.ebn"

.Background(exVSThumb) = &H1000000
End With

The following VB sample changes the visual appearance of the thumb (when it is pressed
), in the vertical slider:

With Slider1

VisualAppearance.Add 1, "D:\Exontrol\ExSlider\sample\VB\Gauge\\Vertical
2\thumb.ebn"

.Background(exVSThumbP) = & H1000000
End With

The following C++ sample changes the visual appearance of the thumb, in the vertical
slider:

m_slider.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_slider.SetBackground(260 /*exVSThumb*/, 0x01000000);

The following C++ sample changes the visual appearance of the thumb (when it is
pressed), in the vertical slider:

m_slider.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_slider.SetBackground(261 /*exVSThumbP*/, 0x01000000);

The following VB.NET sample changes the visual appearance of the thumb, in the vertical
slider:

With AxSlider1

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumb, &H1000000)
End With

The following VB.NET sample changes the visual appearance of the thumb (when it is
pressed), in the vertical slider:

With AxSlider1

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumbP, &H1000000)
End With

The following C# sample changes the visual appearance of the thumb, in the vertical slider:

axSlider1.VisualAppearance.Add(1, "D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical
2\\thumb.ebn");
axSlider1.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumb, 0x1000000);

The following C# sample changes the visual appearance of the thumb (when it is pressed
), in the vertical slider:

axSlider1.VisualAppearance.Add(1, "D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical
2\\thumb.ebn");

axSlider1.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumbP, 0x1000000);

The following VFP sample changes the visual appearance of the thumb, in the vertical
slider:

with thisform.Slider1

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.Background(260) = 0x1000000
endwith

The following VFP sample changes the visual appearance of the thumb (when it is
pressed), in the vertical slider:

with thisform.Slider1

VisualAppearance. Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.Background(261) = 0x1000000
endwith

method Appearance.Clear ()

Removes all skins in the control.

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part. The skin method may change the visual appearance for any part
of the control, in any state.

method Appearance.Remove (ID as Long)

Removes a specific skin from the control.

A Long expression that indicates the index of the skin

ID as Long being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part. The skin method may change the visual appearance
for any part of the control, in any state.

Slider object

TiP The)cOM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {031F9B36-1219-4DF5-8E09-1A50B8185BC2}. The object's program identifier is: "Exontrol.Slider". The
/COM object module is: "ExSlider.dll"

The Exontrol's eXSlider component allows you adding skinable sliders to your forms or
dialogs. A "slider control" (also known as a trackbar) is a window containing a slider and
optional tick marks. When the user moves the slider, using either the mouse or the direction
keys, the control sends events to indicate the change. The volume controls in the Windows
operating system are slider controls. The component supports the following properties and
methods:

AllowFloat

Appearance

AttachTemplate

BackColor

Background

BeginUpdate

Caption
CaptionAlignment

CaptionindentX
CaptionindentY
Enabled

EnablePart

EnableParts

EndUpdate

EventParam

ExecuteTemplate

Specifies whether the slider's range includes floating
numbers.

Retrieves or sets the control's appearance.

Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

Specifies the control's background color.

Returns or sets a value that indicates the background
color for parts in the control.

This method prevents the control from painting until the
EndUpdate method is called.

Specifies the caption of the part of the control.
Specifies the alignment of the part's caption.
Indents the caption on x axis.

Indents the caption on y axis.

Enables or disables the control.

Indicates whether the specified part is enabled or
disabled.

Specifies the parts of the control to be enabled or
disabled.

Resumes painting the control after painting is suspended
by the BeginUpdate method.

Retrieves or sets a value that indicates the current's event
parameter.

Executes a template and returns the result.

Font
ForeColor
HTMLPicture
hWnd

Images
ImageSize
LabelTick

LargeChange

LargeChangeF

Maximum
MaximumF
Minimum

MinimumF

NotifyParent

Orientation

OwnerDrawPart

PartFromPoint

Picture

PictureDisplay

Replacelcon

SelectRange

SelLength
SelStart

Retrieves or sets the control's font.

Specifies the control's foreground color.
Adds or replaces a picture in HTML captions.
Retrieves the control's window handle.

Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

Retrieves or sets the size of icons the control displays..
Specifies the label to be shown on ticks.

Gets or sets a value to be added to or subtracted from
the Value property when the slider is moved a large
distance.

Gets or sets a value to be added to or subtracted from
the Value property when the slider is moved a large
distance(as float).

The upper limit value of the scrollable range.
The upper limit value of the scrollable range(as float).
The lower limit value of the scrollable range.
The lower limit value of the scrollable range(as float).

Specifies whether the control sends notifications to the
parent window.

Specifies the control's orientation.

Indicates which part of the control is responsible for its
drawing.

Retrieves the part from the point.
Retrieves or sets a graphic to be displayed in the control.

Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Adds a new icon, replaces an icon or clears the control's
image list.

Returns or sets a value that indicates whether the control
can have a select range.

Returns or sets the length of a selection.

Returns or sets a value that indicates where a selection
starts.

ShowFocusRect

ShowlmagelL.ist

ShowThumbProgress

ShowToolTip

SmallChange

SmallChangeF

Template

TemplateDef

TemplatePut

ThumbSize
TickColor

TickFrequency

TickFrequencyF

TickStyle
ToolTipFont

ToolTipText
ToolTipTitle

ToolTipWidth

ToolTipX

ToolTipY

UserData

Value

Sets or gets a value that indicates whether the control is
marked when it gets the focus.

Specifies whether the control's image list window is visible
or hidden.

Specifies whether the thumb indicates a progress bar.
Shows the specified tooltip at given position.

Gets or sets the value added to or subtracted from the
Value property when the slider is moved a small distance.

Gets or sets the value added to or subtracted from the
Value property when the slider is moved a small distance(
as float).

Specifies the control's template.

Defines inside variables for the next
Template/ExecuteTemplate call.

Defines inside variables for the next
Template/ExecuteTemplate call.

Specifies the width or the height of the thumb.
Specifies the color for the control's ticks.

Returns or sets a value that indicates the ratio of ticks on
the control.

Returns or sets a value that indicates the ratio of ticks on
the control.

Specifies where the ticks appears on the control.
Retrieves or sets the tooltip's font.

Specifies the control's tooltip text.

Specifies the title of the control's tooltip.

Specifies a value that indicates the width of the tooltip
window, in pixels.

Indicates an expression that determines the horizontal-
position of the tooltip, in screen coordinates.

Indicates an expression that determines the vertical-
position of the tooltip, in screen coordinates.

Associates an extra data to a part of the control.
The value that the thumb box position represents.
The value that the thumb box position represents (as float

ValueF

ValueFromPoint

ValueFromPointF

Version
VisiblePart
VisibleParts
VisualAppearance

)(as float).

Retrieves the value from the point.

Retrieves the value from the point (as float).

Retrieves the control's version.

Indicates whether the specified part is visible or hidden.
Specifies the parts of the control being visible.
Retrieves the control's appearance.

property Slider.AllowFloat as Boolean

Specifies whether the slider's range includes floating numbers.

A Boolean expression that indicates whether the slider

Boolean displays floating numbers.

By default, the AllowFloat property is False. Use the AllowFloat property to use the control
on handling value within a floating numbers range.

U

-325-300 275 250 225 200 475 150 1325 100 Q7 050 025 9000 Q425 050 4vs 100 13 130 1.75 200 225 250 TS 300 33
1 1

If the AllowFloat property is False (by default) the following properties work with integer
numbers:

Minimum property specifies the lower limit value of the scrollable range.

Maximum property specifies the upper limit value of the scrollable range.

Value property indicates the position of the slider.

SmallChange property gets or sets the value added to or subtracted from the Value

property when the slider is moved a small distance.

e |LargeChange property indicates the amount by which the slider position changes when
the user clicks in the slider or presses the PAGE UP or PAGE DOWN keys.

e TickFrequency property returns or sets a value that indicates the ratio of ticks on the

control.

If the AllowFloat property is True (by default) the following properties work with floating
numbers:

MinimumF property specifies the lower limit value of the scrollable range.

MaximumF property specifies the upper limit value of the scrollable range.

ValueF property indicates the position of the slider.

SmallChangeF property gets or sets the value added to or subtracted from the Value

property when the slider is moved a small distance.

e LargeChangeF property indicates the amount by which the slider position changes
when the user clicks in the slider or presses the PAGE UP or PAGE DOWN keys.

e TickFrequencyF property returns or sets a value that indicates the ratio of ticks on the

control.

The following samples shows how to use and specify floating numbers within the control (
the range from -3.25 to 3.25):

VBA (MS Access, Excell...)

' Change event - Occurs when the value of the control is changed.
Private Sub Slider1_Change()
With Slider1
Debug.Print(.ValueF)
End With
End Sub

With SliderT
.BeginUpdate
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
LargeChangeF = 1
TickFrequencyF = 0.5
MalueF = 0
LabelTick = "value format " "
EndUpdate

End With

VB6

' Change event - Occurs when the value of the control is changed.
Private Sub Slider1_Change()
With Slider1
Debug.Print(.ValueF)
End With
End Sub

With Slider1
.BeginUpdate
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
LargeChangeF = 1

.TickFrequencyF = 0.5
NalueF = 0
.LabelTick = "value format " "
.EndUpdate

End With

VB.NET

' Change event - Occurs when the value of the control is changed.
Private Sub Exslider1_Change(ByVal sender As System.Object) Handles
Exslider1.Change
With Exslider1
Debug.Print(.ValueF)
End With
End Sub

With Exslider1
.BeginUpdate()
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
LargeChangeF = 1
.TickFrequencyF = 0.5
ValueF = 0
LabelTick = "value format " "
.EndUpdate()

End With

VB.NET for /COM

' Change event - Occurs when the value of the control is changed.
Private Sub AxSlider1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxSlider1.Change
With AxSlider
Debug.Print(.ValueF)
End With
End Sub

With AxSlider1
.BeginUpdate()
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
.LargeChangeF = 1
.TickFrequencyF = 0.5
NalueF = 0
LabelTick = "value format " "
.EndUpdate()

End With

C++

// Change event - Occurs when the value of the control is changed.
void OnChangeSlider1()
{
/*
Copy and paste the following directives to your header file as
it defines the namespace 'EXSLIDERLib' for the library: 'ExSlider 1.0 Control
Library'
#import <ExSliderdll>
using namespace EXSLIDERLib;
*/
EXSLIDERLib:ISliderPtr spSlider1 = GetDlgltem(IDC_SLIDERT)-
>GetControlUnknown();
OutputDebugStringW(_bstr_t(spSlider1->GetValueF()));

}

EXSLIDERLib:ISliderPtr spSlider1 = GetDIgltem(IDC_SLIDERT)-
>GetControlUnknown();

spSlider1->BeginUpdate();
spSlider1->PutAllowFloat(VARIANT_TRUE);
spSlider1->PutMinimumF(-3.25);
spSlider1->PutMaximumF(3.25);

spSlider1->PutSmallChangeF(0.25);
spSlider1->PutLargeChangeF(1);
spSlider1->PutTickFrequencyF(0.5);
spSlider1->PutValueF(0);
spSlider1->PutlLabelTick(L"value format " ");
spSlider1->EndUpdate();

C++ Builder

// Change event - Occurs when the value of the control is changed.
void _ fastcall TForm1::Slider1Change(TObject *Sender)

{
OutputDebugString(PChar(Slider1->ValueF));

}

Slider1->BeginUpdate();
Slider1->AllowFloat = true;
Slider1->MinimumF = -3.25;
Slider1->MaximumF = 3.25;
Slider1->SmallChangeF = 0.25;
Slider1->LargeChangeF = 1;
Slider1->TickFrequencyF = 0.5;
Slider1->ValueF = O;
Slider1->LabelTick = L"value format " *;
Slider1->EndUpdate();

C#

// Change event - Occurs when the value of the control is changed.

private void exslider1_Change(object sender)

{
System.Diagnostics.Debug.Print(exslider1.ValueF.ToString());

}

//this.exslider1.Change += new

exontrol.EXSLIDERLib.exg2antt.ChangeEventHandler(this.exslider1_Change);

exslider1.BeginUpdate();
exslider1.AllowFloat = true;
exslider1.MinimumF = -3.25;
exslider1.MaximumF = 3.25;
exslider1.SmallChangeF = 0.25;
exslider1.LargeChangeF = 1;
exslider1.TickFrequencyF = 0.5;
exslider1.ValueF = 0;
exslider1.LabelTick = "value format " ";
exslider1.EndUpdate();

JavaScript

<SCRIPT FOR="Slider1" EVENT="Change()" LANGUAGE="JScript">
alert(Slider1.ValueF);
</SCRIPT>

<OBJECT classid="clsid:031F9B36-1219-4DF5-8E09-1A50B8185BC2" id="Slider1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
Slider1.BeginUpdate();
Slider1.AllowFloat = true;
Slider1.MinimumF = -3.25;
Slider1.MaximumF = 3.25;
Slider1.SmallChangeF = 0.25;
Slider1.LargeChangeF = 1;
Slider1.TickFrequencyF = 0.5;
Slider1.ValueF = 0;
Slider1.LabelTick = "value format " *;
Slider1.EndUpdate();

</SCRIPT>

C# for /COM

// Change event - Occurs when the value of the control is changed.
private void axSlider1_Change(object sender, EventArgs e)

{
System.Diagnostics.Debug.Print(axSlider1.ValueF.ToString());

}
//this.axSlider1.Change += new EventHandler(this.axSlider1_Change);

axSlider1.BeginUpdate();
axSlider1.AllowFloat = true;
axSlider1.MinimumF = -3.25;
axSlider1.MaximumF = 3.25;
axSlider1.SmallChangeF = 0.25;
axSlider1.LargeChangeF = 1;
axSlider1.TickFrequencyF = 0.5;
axSlider1.ValueF = 0;
axSlider1.LabelTick = "value format " *;
axSlider1.EndUpdate();

X++ (Dynamics Ax 2009)

// Change event - Occurs when the value of the control is changed.
void onEvent_Change()

{
print(exslider1.ValueF());
)

public void init()
{

super();

exslider1.BeginUpdate();
exslider1.AllowFloat(true);
exslider1.MinimumF(-3.25);
exslider1.MaximumF(3.25);
exslider1.SmallChangeF(0.25);

exslider1.LargeChangeF(1);
exslider1.TickFrequencyF(0.5);
exslider1.ValueF(0);
exslider1.LabelTick("value format " ");
exslider1.EndUpdate();

}

Delphi 8 (.NET only)

// Change event - Occurs when the value of the control is changed.
procedure TWinForm1.AxSlider1_Change(sender: System.Object; e:
System.EventArgs);
begin

with AxSlider1 do

begin

OutputDebugString(ValueF);

end

end;

with AxSlider1 do

begin
BeginUpdate();
AllowFloat := True;
MinimumfF := -3.25;
MaximumF := 3.25;
SmallChangeF := 0.25;
LargeChangeF := 1;
TickFrequencyF := 0.5;
ValueF := 0;
LabelTick := 'value format """ ';
EndUpdate();

end

Delphi (standard)

// Change event - Occurs when the value of the control is changed.
procedure TForm1.Slider1Change(ASender: TObject;);
begin

with Slider1 do
begin
OutputDebugString(ValueF);
end
end;

with Slider1 do

begin
BeginUpdate();
AllowFloat := True;
MinimumF := -3.25;
MaximumF := 3.25;
SmallChangeF := 0.25;
LargeChangeF := 1;
TickFrequencyF := 0.5;
ValueF := 0;
LabelTick := 'value format """ *;
EndUpdate();

end

VFP

*** Change event - Occurs when the value of the control is changed. ***
LPARAMETERS nop
with thisform.Slider1
DEBUGOUT(.ValueF)
endwith

with thisform.Slider1
.BeginUpdate
AllowFloat = .T.
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
LargeChangeF = 1
.TickFrequencyF = 0.5
MalueF =0

LabelTick = "value format " "
.EndUpdate
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
Change = class::nativeObject_Change
endwith
*/
// Occurs when the value of the control is changed.
function nativeObject_Change()
local oSlider
oSlider = form.Activex1.nativeObject
? Str(oSlider.ValueF)
return

local oSlider

oSlider = form.Activex1.nativeObject
oSlider.BeginUpdate()
oSliderAllowFloat = true
oSliderMinimumF = -3.25
oSliderMaximumF = 3.25
oSliderSmallChangeF = 0.25
oSliderLargeChangeF = 1
oSlider.TickFrequencyF = 0.5
oSliderValueF = 0

oSlider.LabelTick = "value format " "
oSliderEndUpdate()

Visual Objects

METHOD OCX_Exontrol1Change() CLASS MainDialog
// Change event - Occurs when the value of the control is changed.
OutputDebugString(String2Psz(AsString(oDCOCX_Exontrol1:ValuefF)))

RETURN NIL

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:AllowFloat := true
oDCOCX_Exontrol1:MinimumF := -3.25
oDCOCX_Exontrol1:MaximumF := 3.25
oDCOCX_Exontrol1:SmallChangeF := 0.25
oDCOCX_Exontrol1:LargeChangeF := 1
oDCOCX_Exontrol1:TickFrequencyF := 0.5
oDCOCX_Exontrol1:ValueF := 0
oDCOCX_Exontrol1:LabelTick := "value format " "
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event Change() - Occurs when the value of the control is changed.*/
/*
OleObject oSlider
oSlider = ole_1.0bject
MessageBox("Information”,string(String(oSlider.ValueF)))
*/
/*end event Change*/

OleObject oSlider

oSlider = ole_1.0bject
oSlider.BeginUpdate()
oSliderAllowFloat = true
oSliderMinimumF = -3.25
oSliderMaximumF = 3.25
oSlider.SmallChangeF = 0.25
oSliderLargeChangeF = 1
oSlider.TickFrequencyF = 0.5
oSliderValueF = 0

oSlider.LabelTick = "value format " *

I oSliderEndUpdate()

property Slider.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The thumb and the ticks are
always shown in the control's client area. The skin
may contain transparent objects, and so you can
define round corners. The frame.ebn file contains
such of objects. Use the eXButton's Skin builder to
view or change this file

AppearanceEnum

By default, the control displays no border. Use the VisualAppearance property to add new
skins to the control. Use the Background property to change the visual appearance for a
specific part of the control.

i, Y MR

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With Slider1
.BeginUpdate
VisualAppearance.Add &H16, "c\temp\frame.ebn"
Appearance = &H16000000
.BackColor = RGB(250, 250, 250)
.EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxSlider1
.BeginUpdate()

https://exontrol.com/exbutton.jsp

VisualAppearance. Add(&H16, "c:\temp\frame.ebn")
Appearance = &H16000000
.BackColor = Color.FromArgb(250, 250, 250)
.EndUpdate()

End With

The following C# sample changes the visual aspect of the borders of the control:

axSlider1.BeginUpdate();

axSlider1.VisualAppearance. Add(0x16, "c\\temp\\frame.ebn");
axSlider1.Appearance = (EXSLIDERLib.AppearanceEnum)0x16000000;
axSlider1.BackColor = Color.FromArgb(250, 250, 250);
axSlider1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_slider.BeginUpdate();

m_slider.GetVisualAppearance().Add(0x16, COleVariant("c\\temp\\frame.ebn"));
m_slider.SetAppearance(0x16000000);

m_slider.SetBackColor(RGB(250,250,250));

m_slider.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.Slider1
.BeginUpdate
VisualAppearance.Add(0x16, "c\temp\frame.ebn")
Appearance = 0x16000000
.BackColor = RGB(250, 250, 250)
.EndUpdate
endwith

method Slider.AttachTemplate (Template as Variant)

Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(‘internetexplorerapplication’){ Visible =
True; Navigate('https://www.exontrol.com’) } } ")

This script is equivalent with the following VB code:

Private Sub Slider1_Click()
With CreateObject("internetexplorerapplication")

Visible = True
Navigate ("https://www.exontrol.com")
End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>

<lines> := <line>[<eol> <lines>] | <block>

<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]

<eol>:=";"| "\r\n"

<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eo0l>]
<lines>[<eol>]}[<eo0l>]

<dim> := "DIM" <variables>

<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>

<createobject> := "CREATEOBJECT("<type>"")"

<call> := <variable> | <property> | <variable>"."<property> | <createobject>
<property> := [<property>"."]<identifier>["("<parameters>")"]

<set> := <call> "=" <value>

<property> := <identifier> | <identifier>"("[<parameters>]")"

<parameters> := <value> [","<parameters>]

<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"

<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10>:=01]11]12|3|4|5|6|7|8]|9

<digit16> := <digit10> | A|B|C|D|E| F

<integer> := <digit10>[<integer>]

<hexa> := <digit16>[<hexa>]

<color> := "RGB("<integer>","<integer>","<integer>")"

<date> := "#"<integer>"/"<integer>"/"<integer>" "
<string> := ""<text>"" | """<text>""

<comment> := ""<text>

<handle> := "handle " <event>

<event> := <identifier>"("[<eparameters>]")"

<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

."<property>

[<integer>":"<integer>":"<integer>"]"#"

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.

<type> indicates the type the CreateObject function creates, as a proglD for /COM version
or the assembly-qualified name of the type to create for /INET or /WPF version

<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Slider.BackColor as Color

Specifies the control's background color.

Color A Color expression that indicates the

Use the BackColor property to specify the control's background color. This property does
not affect the visual appearance of the control applied using the Background property. Use
the Picture property to assign a picture on the control's background. Use the ForeColor
property to specify the control's foreground color. The Caption property assigns a text on
any part of the control.

property Slider.Background(Part as BackgroundPartEnum) as Color

Returns or sets a value that indicates the background color for parts in the control.

Part as A BackgroundPartEnum expression that indicates the part
BackgroundPartEnum and the state whose visual appearance is changed.

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Color

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while multiple changes
are applied. Use the VisiblePart or VisibleParts property to specify visible parts in the
control.

In the following samples, we have used the following skin file: and we get the following

slider: + = - %

The following VB sample changes the visual appearance of the thumb, in the vertical slider:

With Slider

VisualAppearance.Add 1, "D:\Exontrol\ExSlider\sample\VB\Gauge\\Vertical
2\thumb.ebn"

.Background(exVSThumb) = &H1000000
End With

The following VB sample changes the visual appearance of the thumb (when it is pressed
), in the vertical slider:

With Slider1

VisualAppearance.Add 1, "D:\Exontrol\ExSlider\sample\VB\Gauge\\Vertical
2\thumb.ebn"

.Background(exVSThumbP) = &H1000000
End With

The following C++ sample changes the visual appearance of the thumb, in the vertical
slider:

m_slider.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_slider.SetBackground(260 /*exVSThumb*/, 0x01000000);

The following C++ sample changes the visual appearance of the thumb (when it is
pressed), in the vertical slider:

m_slider.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_slider.SetBackground(261 /*exVSThumbP*/, 0x01000000);

The following VB.NET sample changes the visual appearance of the thumb, in the vertical
slider:

With AxSlider1

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumb, &H1000000)
End With

The following VB.NET sample changes the visual appearance of the thumb (when it is
pressed), in the vertical slider:

With AxSliderT

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumbP, &H1000000)
End With

The following C# sample changes the visual appearance of the thumb, in the vertical slider:

axSlider1.VisualAppearance. Add(1, "D:\\Exontrol\\ExSlider\\sample\\VB\\Gauge\\Vertical
2\\thumb.ebn");
axSlider1.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumb, 0x1000000);

The following C# sample changes the visual appearance of the thumb (when it is pressed
), in the vertical slider:

axSlider1.VisualAppearance.Add(1, "D:\\Exontro\\ExSlider\\sample\\VB\\Gauge\\Vertical
2\\thumb.ebn");
axSlider1.set_Background(EXSLIDERLib.BackgroundPartEnum.exVSThumbP, 0x1000000);

The following VFP sample changes the visual appearance of the thumb, in the vertical
slider:

with thisform.Slider1

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.Background(260) = 0x1000000
endwith

The following VFP sample changes the visual appearance of the thumb (when it is
pressed), in the vertical slider:

with thisform.Slider1

VisualAppearance.Add(1, "D:\Exontrol\ExSlider\sample\VB\Gauge\Vertical
2\thumb.ebn")

.Background(261) = 0x1000000
endwith

method Slider.BeginUpdate ()

This method prevents the control from painting until the EndUpdate method is called.

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of making your changes, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

property Slider.Caption(Part as PartEnum) as String

Specifies the caption of the part of the control.

A PartEnum expression that specifies the part where the

Part as PartEnum text is displayed.

A String expression that indicates the text being displayed.
String The Caption property support built-in HTML format as
explained bellow.

Use the Caption property to specify a caption on any part of the control. Use the Font
property to specify the control's font. Use the ForeColor property to specify the caption's
color, if the <fgcolor> tag is not used. Use the Value property to specify the control's value.
The CaptionAlignment property specifies the alignment of the caption in the part area. Use
the CaptionindentX property to indent the caption on the part, on the X axis. Use the
CaptionindentY property to indent the caption of the part on the Y axis. Use the
Background property to change the visual appearance for any part of the control, in any
state. The ImageSize property defines the size (width/height) of the icons within the
control's Images collection.

The Caption property supports the following built-in HTML tags:

e ... displays the text in bold

e <i> ... </i> displays the text in italics

e <u> ... </u> underlines the text

o <s> ... </s> Strike-through text

e <a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

o ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

e <fgcolor rrggbb> ... </[fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

e <bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified color. The rr/gg/bb represents the red/green/blue values of

about:blank

the color in hexa values.

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.

key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qgout; (") and &#Fnumber;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a

value between 0 and 4, 1 if missing, and blend could be 0 or 1, O if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

. | .

o <out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

o <sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

shadow

or "<font;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

eutlinefantizaliasing

For instance, the following VB sample prints the control's Value on the control's thumb:

Private Sub Slider1_Change()
With Slider1
.Caption(exThumbPart) = .Value
End With
End Sub

The following C++ sample prints the control's Value on the control's thumb:

void OnChangeSlider1()

{
CString strFormat;

strFormat.Format(_T("%i"), m_slider.GetValue());
m_slider.SetCaption(256, strFormat);

}

The following VB.NET sample prints the control's Value on the control's thumb:

With AxSlider1
set_Caption(EXSLIDERLib.PartEnum.exThumbPart, .Value.ToString())
End With

The following C# sample prints the control's Value on the control's thumb:

private void axSlider1_Change(object sender, EventArgs e)

{
axSlider1.set_Caption(EXSLIDERLib.PartEnum.exThumbPart, axSlider1.Value.ToString());

}

The following VFP sample prints the control's Value on the control's thumb:

*** ActiveX Control Event ***

with thisform.Slider1
.Caption(256) = .Value
endwith

property Slider.CaptionAlignment(Part as PartEnum) as AlignmentEnum

Specifies the alignment of the part's caption.

A PartEnum expression that specifies the part where the

Part as PartEnum text is displayed.

An AlignmentEnum expression that specifies the alignment

AlignmentEnum of the caption.

By default, the CaptionAlignment property is CenterAlignment. Use the CaptionindentX
property to indent the caption on the part, on the X axis. Use the CaptionindentY property
to indent the caption of the part on the Y axis. Use the Caption property to specify a caption
on any part of the control. Use the Font property to specify the control's font. Use the
ForeColor property to specify the caption's color, if the <fgcolor> tag is not used. Use the
Value property to specify the control's value.

The Caption property supports the following built-in HTML tags:

e ... displays the text in bold

e <i> ... </i> displays the text in italics

e <u> ... </u> underlines the text

o <s> ... </s> Strike-through text

e <a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

o ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

e <fgcolor rrggbb> ... </[fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

e <bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified [JEGROIOBNE color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

e <solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>

about:blank

... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient

color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

W] [— . | y

Yl AMITI Il Vol Lo
<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

shadow

or "<font;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

euiine enti-eliesing

property Slider.CaptionindentX(Part as PartEnum) as Long

Indents the caption on x axis.

A PartEnum expression that specifies the part where the

Part as PartEnum text is displayed.

A long expression that specifies the indentation of the

Long caption.

By default, the CaptionindentX property is 0. Use the CaptionindentX property to indent the
caption on the part, on the X axis. Use the CaptionindentY property to indent the caption of
the part on the Y axis. Use the CaptionAlignment property to align the caption of the part.
Use the Caption property to specify a caption on any part of the control. Use the Font
property to specify the control's font. Use the ForeColor property to specify the caption's
color, if the <fgcolor> tag is not used. Use the Value property to specify the control's value.

property Slider.CaptionindentY(Part as PartEnum) as Long

Indents the caption on y axis.

A PartEnum expression that specifies the part where the

Part as PartEnum text is displayed.

A long expression that specifies the indentation of the

Long caption.

By default, the CaptionindentX property is 0. Use the CaptionindentY property to indent the
caption of the part on the Y axis. Use the CaptionindentX property to indent the caption on
the part, on the X axis. Use the CaptionAlignment property to align the caption of the part.
Use the Caption property to specify a caption on any part of the control. Use the Font
property to specify the control's font. Use the ForeColor property to specify the caption's
color, if the <fgcolor> tag is not used. Use the Value property to specify the control's value.

property Slider.Enabled as Boolean

Enables or disables the control.

A Boolean expression that indicates whether the control is

Boolean enabled or disabled.

By default, the Enabled property is True. Use the EnablePart or EnableParts property to
specify a disabled part. If the Enabled property is False, all visible parts of the control are
displayed in disabled state. Use the VisiblePart property to specify which parts are visible
or hidden. Use the Background property to apply a visual effect on any part of the control in
any state.

property Slider.EnablePart(Part as PartEnum) as Boolean

Indicates whether the specified part is enabled or disabled.

A PartEnum expression that specifies the part being

Part as PartEnum enabled or disabled.

A Boolean expression that specifies whether the part is
Boolean .
enabled or diasable.
By default, when a part becomes visible, automatically the EnablePart is called. Use the
EnablePart property to disable parts of the control. A disabled part can't be clicked, and
shows the disabled state. Use the Background property to apply a visual effect on any part
of the control. The EnableParts property is similar with the EnablePart property. Use the
VisiblePart property to specify which parts are visible or hidden. The ClickPart or
ClickingPart event is fired only if the user clicked in an enabled part.

By default, the following parts are enabled:

e exLowerBackPart (the part between the start and the thumb part of the control)
e exThumbPart (the thumb/slider part)
o exUpperBackPart (the part between the thumb and end of the control)

property Slider.EnableParts as Long

Specifies the parts of the control to be enabled or disabled.

A long expression that specifies an OR combination of
Long PartEnum values that indicates which parts are visible and
which parts are not shown.

By default, the EnableParts property is 897 (that's a OR combination of exLowerBackPart,
exThumbPart, exUpperBackPart). The VisiblePart property specifies which part is visible
and which part is hidden. By default, when a part becomes visible, automatically the
EnablePart is called. Use the EnablePart property to disable parts of the control. A disabled
part can't be clicked, and shows the disabled state. Use the Background property to apply
a visual effect on any part of the control. The EnableParts property is similar with the
EnablePart property.

By default, the following parts are enabled:

o exLowerBackPart (the part between the start and the thumb part of the control)
e exThumbPart (the thumb/slider part)
o exUpperBackPart (the part between the thumb and the end part of the control)

method Slider.EndUpdate ()

Resumes painting the control after painting is suspended by the BeginUpdate method.

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of making your changes, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

property Slider.EventParam(Parameter as Long) as Variant

Retrieves or sets a value that indicates the current's event parameter.

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

A VARIANT expression that specifies the parameter's
value.

Parameter as Long

Variant

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to O (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
KeyCode =0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Slider.ExecuteTemplate (Template as String)

Executes a template and returns the result.

Template as String A Template string being executed

A Variant expression that indicates the result after

Variant executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Iemplate property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

| Debug.Print Slider1.ExecuteTemplate("BackColor")

Most of our Ul components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

e Place the control to your form or dialog.

e Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.

e Click it, and locate the Template page.

¢ Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by

commas. (Sample: Dim h, h1, h2)

variable = property(list of arguments) Assigns the result of the property to a variable.

The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments"” may include variables or values

separated by commas. (Sample: h = Insertltem(0,"New Child"))

property(list of arguments) = value Changes the property. The value can be a

variable, a string, a number, a boolean value or a RGB value.

method(list of arguments) Invokes the method. The "list or arguments” may include

variables or values separated by commas.

o { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dof)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property Slider.Font as IFontDisp

Retrieves or sets the control's font.

IFontDisp A Font object used to paint captions.

Use the Font property to specify the font being used when a part displays its caption. Use
the Caption property to specify a text in any part of the control. Use the ForeColor property
to specify the caption's color, if the <fgcolor> tag is not used. Use the Value property to
specify the control's value. The CaptionAlignment property specifies the alignment of the
caption in the part ar

property Slider.ForeColor as Color

Specifies the control's foreground color.

A color expression that indicates the control's foreground

Color
color.

Use the ForeColor property to specify the control's foreground color. The Caption property
assigns a text on any part of the control. Use the BackColor property to specify the
control's background color. This property does not affect the visual appearance of the
control applied using the Background property. Use the Picture property to assign a picture
on the control's background.

property Slider.HTMLPicture(Key as String) as Variant

Adds or replaces a picture in HTML captions.

A String expression that indicates the key of the picture
Key as String being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

¢ a string expression that indicates the path to the
picture file, being loaded.

¢ a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.

Variant e A Picture object that indicates the picture being added

or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). Use the Caption property to specify a caption on
any part of the control. Use the Background property to change the visual appearance for
any part of the control, in any state.

https://exontrol.com/eximages.jsp

property Slider.hWnd as Long

Retrieves the control's window handle.

A long expression that indicates the control's window

Long handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method Slider.Images (Handle as Variant)

Sets at runtime the control's image list. The Handle should be a handle to an Images List

Control.

Handle as Variant

The Handle parameter can be:

e A string expression that specifies the ICO file to add.

The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (sfring, loads the
icon using its path)

A string expression that indicates the BASEG4
encoded string that holds the icons list. Use the
Exontrol's Eximages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (sfring, loads icons using base64
encoded string)

A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)

A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)

A long expression that identifies a handle to an Image
List Control (the Handle should be of HHIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
IIVal field, as VT 18 type. The LONGLONG /
LONG_PTRis __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hlmagelList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImagelList)), where himagelList is of
HIMAGELIST type. The GetSafeHandle() method of
the ClmagelList gets the HHMAGELIST handle (long,
loads icon from HIMAGELIST type)

Use the Images method to add icons being displayed in any part of the control using the
Caption property. The user can add images at design time, by drag and drop files to
combo's image holder. The ImageSize property defines the size (width/height) of the icons
within the control's Images collection. Use the Replacelcon method to add, remove or clear
icons in the control's images collection. Use the Caption property to specify the part's
caption. Use the HTMLPicture property to display custom size pictures in any part of the
control.

property Slider.ImageSize as Long

Retrieves or sets the size of icons the control displays..

A long expression that defines the size of icons the control

Long displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Slider.LabelTick as String

Specifies the label to be shown on ticks.

A String expression that indicates the label to be displayed
on ticks. The result value of the formatting expression

String supports built-in HTML format like explained bellow. For
instance, use the LabelTick property on "value" to show
the labels on each tick.

By default, the LabelTick property is empty, which means no labels are displayed on ticks.
The TickFrequency/TickFrequencyF property returns or sets a value that indicates the ratio
of ticks on the control. The AllowFloat property specifies whether the control integer or
floating numbers.

nrsin 61 mnax
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For instance:

"value", shows the values for each tick.

e " (value=current ? '<fgcolor=FF0000>' : ") + value", shows the current
slider's position with a different color and font.

e "value = current ? value : "", shows the value for the current tick only.

e "(value = current ? '': ") + (value array 'ab bc cd de ef fg gh hi ij jk kl'

split ' ')" displays different captions for slider's values.

The LabelTick property is a formatted expression which result may include the HTML tags.

The LabelTick property indicates a formatting expression that may use the following
predefined keywords:

value gets the slider's position to be displayed

current gets the current slider's value. The current keyword gets the Value/ValueF

vmin gets the slider's minimum value. The vmin keyword gets the Minimum/MinimumF

vmax gets the slider's maximum value. The vmax keyword gets the

Maximum/MaximumF

e smin gets the slider's selection minimum value. The smin keyword gets the SelStart
value.

e smax gets the slider's selection maximum value. The smax keyword gets the SelStart

+ SellLength value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5

| (divide operator), priority 5

mod (reminder operator), priority 5

+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)

e - (subtraction operator), priority 4

The supported unary boolean operators are:
e not (not operator), priority 3 (high priority)
The supported binary boolean operators are:

e or (or operator), priority 2
e and (or operator), priority 1

The supported binary boolean operators, all these with the same priority O, are :

< (less operator)

<= (less or equal operator)

= (equal operator)

= (not equal operator)

>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority O, are :

e ? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false part”

, While it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 =1 ? 'One’': (%0 =2 ? "Two' : 'not
found')" returns 'One' if the value is 1, 'Twao' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

e array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)”

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array

(‘J,'F','M'" A", 'M',Jun’,'J",’'A",'S",'O",'N','D’) " is equivalent with "month(value)-1 case
(default:"; 0:'J";1:'F";2:'M"; 3:'A";4:'"M";5:'Jun’;6:'J"; 7:'A";8:'S";9:'0"; 10:'N'; 11:'D’)".

e in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)”

, Where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

e switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, Where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntaxis "%0=c 1 ? c 1
(%0=c2?c2:(...7.:default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

e case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate |F operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ; | c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expressioni. The default, c1, c2, c¢3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns O.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009%# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

o o #4/1/2009#, from hours 06:00 AM to 12:00 PM
o #4/5/2009%#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
o #5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

e type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null

2 - short

3 - long

4 - float

5 - double

6 - currency
7 - date

8 - string

9 - object
10 - error

11 - boolean

0O 0O 0O 0O O O O O o o o o

12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
o 21 - unsigned long on 64 bites
str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

O O O O O O o o

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number

round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2

floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument

abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format " displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|," will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|Decimal Sep|Grouping| ThousandSep|Negative Order|LeadingZero' with the
following meanings:

o NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.

o DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.

o Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit

indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.

o ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.

o NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

= (O - Left parenthesis, number, right parenthesis; for example, (1.1)

1 - Negative sign, number; for example, -1.1

2 - Negative sign, space, number; for example, - 1.1

3 - Number, negative sign; for example, 1.1-

4 - Number, space, negative sign; for example, 1.1 -

o LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string

lower (unary operator) returns a string expression in lowercase letters

upper (unary operator) returns a string expression in uppercase letters

proper (unary operator) returns from a character expression a string capitalized as

appropriate for proper names

e |trim (unary operator) removes spaces on the left side of a string

e rtrim (unary operator) removes spaces on the right side of a string

trim (unary operator) removes spaces on both sides of a string

startwith (binary operator) specifies whether a string starts with specified string

endwith (binary operator) specifies whether a string ends with specified string

contains (binary operator) specifies whether a string contains another specified string

left (binary operator) retrieves the left part of the string

right (binary operator) retrieves the right part of the string

a mid b (binary operator) retrieves the middle part of the string a starting from b (1

means first position, and so on)

e a count b (binary operator) retrieves the number of occurrences of the b in a

e areplace b with c (double binary operator) replaces in a the b with ¢, and gets the
result.

e a split b, splits the a using the separator b, and returns an array. For instance, the

"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' " gets the weekday as

string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.

timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"

shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.

shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".

dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.

longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.

year (unary operator) retrieves the year of the date (100,...,9999)

month (unary operator) retrieves the month of the date (1, 2,...,12)

day (unary operator) retrieves the day of the date (1, 2,...,31)

yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)

weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)

hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)

min (unary operator) retrieves the minute of the date (0, 1, ..., 59)

sec (unary operator) retrieves the second of the date (0, 1, ..., 59)
LabelTick property can display labels using the following built-in HTML tags:

 displays the text in bold.

<i></i> displays the text in italics.

<u></u> underlines the text.

<s></s> Strike-through text

 displays portions of text with a different font and/or different

size. For instance, the bit draws the bit text using the Tahoma
font, on size 12 pt. If the name of the font is missing, and instead size is present, the
current font is used with a different size. For instance, bit displays the
bit text using the current font, but with a different size.

<fgcolor=RRGGBB></fgcolor> displays text with a specified foreground color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text with a specified [JEGKOIOUNE color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.

 a forced line-break

<solidline> The next line shows a solid-line on top/bottom side. If has no effect for a
single line caption.

<dotline> The next line shows a dot-line on top/bottom side. If has no effect for a
single line caption.

<upline> The next line shows a solid/dot-line on top side. If has no effect for a single
line caption.

<r> Right aligns the text

<c> Centers the text

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qgout; (") and &#number
(the character with specified code), For instance, the € displays the EUR
character, in UNICODE configuration. The & ampersand is only recognized as markup
when it is followed by a known letter or a # character and a digit. For instance if you
want to display bold in HTML caption you can use bold

property Slider.LargeChange as Long

The amount by which the slider position changes when the user clicks in the slider or
presses the PAGE UP or PAGE DOWN keys.

A long expression that indicates the value being added or
Long subtracted from the control's Value when the user clicks
the slider's upper or lower area.

By default, the LargeChange property is 10. The LargeChange property gets or sets a
value to be added to or subtracted from the Value property when the slider is moved a
large distance. The SmallChange property gets or sets the value added to or subtracted
from the Value property when the thumb is moved a small distance. If the LargeChange
property is 0, the Value property is not changed when clicking the the upper or lower part of
the control. Use the Minimum and Maximum properties to specify the range's value. Use the
Caption property to put a HTML text on any part of the control. The LabelTick property
indicates the HTML expression to be displayed as labels for each tick.

The Value property goes from:

e Minimum to Maximum values

property Slider.LargeChangeF as Double

Gets or sets a value to be added to or subtracted from the Value property when the slider
is moved a large distance(as float).

A floating expression that indicates the value being added
Double or subtracted from the control's Value when the user clicks
the slider's upper or lower area.

By default, the LargeChangeF property is 10.00 This property has effect ONLY if the
AllowFloat property is True. The LargeChangeF property gets or sets a value to be added
to or subtracted from the ValueF property when the slider is moved a large distance. The
SmallChangeF property gets or sets the value added to or subtracted from the ValueF
property when the thumb is moved a small distance. If the LargeChangeF property is 0, the
ValueF property is not changed when clicking the the upper or lower part of the control. Use
the MinimumF and MaximumF properties to specify the range's value. Use the Caption
property to put a HTML text on any part of the control. The LabelTick property indicates the
HTML expression to be displayed as labels for each tick.

The ValueF property goes from:

e MinimumF to MaximumF values

property Slider.Maximum as Long

The upper limit value of the scrollable range.

A long expression that indicates the upper limit value of the

Lon
9 scrollable range.

By default, the Maximum property is 10. The Value property specifies the control's value.
The Minimum property specifies the lower limit value of the scrollable range. The
LargeChange property gets or sets a value to be added to or subtracted from the Value
property when the slider is moved a large distance. The SmallChange property gets or sets
the value added to or subtracted from the Value property when the thumb is moved a small
distance.

The Value property goes from:

e Minimum to Maximum values

property Slider.MaximumF as Double

The upper limit value of the scrollable range(as float).

A floating expression that indicates the upper limit value of

Double the scrollable range.

By default, the MaximumF property is 10.00 The MaximumF property has effect ONLY if
the AllowFloat property is True. The ValueF property specifies the control's value. The
MinimumF property specifies the lower limit value of the scrollable range. The
LargeChangeF property gets or sets a value to be added to or subtracted from the ValueF
property when the slider is moved a large distance. The SmallChangeF property gets or
sets the value added to or subtracted from the Value property when the thumb is moved a
small distance.

The ValueF property goes from:

e MinimumF to MaximumF values

property Slider.Minimum as Long

The lower limit value of the scrollable range.

A long expression that indicates the lower limit value of the

Lon
9 scrollable range.

By default, the Minimum property is 0. The Value property specifies the control's value. The
Maximum property specifies the upper limit value of the scrollable range. The LargeChange
property gets or sets a value to be added to or subtracted from the Value property when
the slider is moved a large distance. The SmallChange property gets or sets the value
added to or subtracted from the Value property when the thumb is moved a small distance.

The Value property goes from:

e Minimum to Maximum values

property Slider.MinimumF as Double

The lower limit value of the scrollable range(as float).

A floating expression that indicates the lower limit value of

Double the scrollable range.

By default, the MinimumF property is 0.00 This property has effect ONLY if the AllowFloat
property is True. The ValueF property specifies the control's value. The MaximumF property
specifies the upper limit value of the scrollable range. The LargeChangeF property gets or
sets a value to be added to or subtracted from the ValueF property when the slider is
moved a large distance. The SmallChangeF property gets or sets the value added to or
subtracted from the Value property when the thumb is moved a small distance.

The ValueF property goes from:

e MinimumF to MaximumF values

property Slider.NotifyParent as Boolean

Specifies whether the control sends notifications to the parent window.

A Boolen expression that indicates whether the control
Boolean sends notification messages to the parent window, when
an event occurs.

Currently, this property is not implemented.

property Slider.Orientation as OrientationEnum

Specifies how the control displays the slider and the ticks.

An OrientationEnum expression that indicates the control's

OrientationEnum))
orientation.

By default, the Orientation property is exHorizontal. Use the Orientation property to change
the control's orientation. Use the Value property to specify the control's value.

property Slider.OwnerDrawPart(Part as PartEnum) as Boolean

Indicates which part of the control is responsible for its drawing.

Part as PartEnum A PartEnum expression that's responsible for its drawing

A Boolean expression that indicates whether the user is

Boolean responsible for drawing the specified part, or not.

By default, the OwnerDrawPart property is 0. The control fires the OwnerDrawStart and
OwnerDrawEnd events when the control requires drawing the owner draw part. These
events are fired only for visible parts, that have the OwnerDrawPart property on True. The
VisiblePart or VisibleParts property specifies the part being visible or hidden.

The control paints the parts in the following order (only if visible):

e exBackgroundPart
exLowerBackPart
exUpperBackPart
exSelPart
exThumbPart

For instance, the following VB sample draws the lower part in red, and the upper part in
green (as in the screen shot) :

With Slider
.OwnerDrawPart(exLowerBackPart Or exUpperBackPart) = True
End With

Private Type RECT
Left As Long
Top As Long
Right As Long

Bottom As Long
End Type
Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, IpRect As RECT) As
Long
Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, IpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub Slider1_OwnerDrawEnd(ByVal Part As EXSLIDERLibCtl.PartEnum, ByVal hdc As
Long)
Dim r As RECT, h As Long
GetClipBox hdc, r
rLeft = rlLeft + 4
rRight = rRight - 4
If Part = exLowerBackPart Then
h = CreateSolidBrush(RGB(255, 0, 0))
FillRect hdc, r, h
DeleteObject (h)
Else
If Part = exUpperBackPart Then
h = CreateSolidBrush(RGB(0, 255, 0))
FillRect hdc, r, h
DeleteObject (h)
End If
End If
End Sub

The following C++ sample draws the lower part in red, and the upper part in green (as in
the screen shot) :

m_slider.SetOwnerDrawPart(128 /*exUpperBackPart*/, TRUE);
m_slider.SetOwnerDrawPart(512 /*exLowerBackPart*/, TRUE);

void OnOwnerDrawEndSlider1(long Part, long hDC)
{
HDC h = (HDC)hDC;
RECT rtPart = {0}; GetClipBox(h, &rtPart);

InflateRect(&rtPart, -4, 0);
switch (Part)

{
case 128: /*exUpperBackPart*/

{
HBRUSH hB = CreateSolidBrush(RGB(0,255,0));
FillRect(h, &rtPart, hB);
DeleteObject(hB);
break;
}

case 512: /*exLowerBackPart*/
{
HBRUSH hB = CreateSolidBrush(RGB(255,0,0));
FillRect(h, &rtPart, hB);
DeleteObject(hB);
break;

property Slider.PartFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as PartEnum

Retrieves the part from the point.

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The x values is always expressed in client
coordinates.

A single that specifies the current X location of the mouse
Y as OLE_YPOS_ PIXELS pointer. The x values is always expressed in client
coordinates.

A PartEnum expression that indicates the part from the

PartEnum .
point.

The PartFromPoint property specifies the part of the control from the cursor. Use the
ValueFromPoint property to determine the value from the cursor. Use the VisiblePart or
VisibleParts property to specify the visible parts of the control.

The following VB sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
With Slider1
If (0 <> (.PartFromPoint(-1, -1) And exBackgroundPart)) Then
Value = ValueFromPoint(-1, -1)
End If
End With
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
upper or lower part of the control:

Private Sub AxSlider1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_ MouseDownEvent) Handles AxSlider1.MouseDownEvent
With AxSlider1
If (0 <> (.get_PartFromPoint(-1, -1) And EXSLIDERLib.PartEnum.exBackgroundPart))
Then
Malue = .get_ValueFromPoint(-1, -1)

End If
End With
End Sub

The following C++ sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

void OnMouseDownSlider1(short Button, short Shift, long X, long Y)

{
if (m_slider.GetPartFromPoint(-1,-1) & 640)

m_slider.SetValue(m_slider.GetValueFromPoint(-1,-1));

}

The following C# sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

private void axSlider1_MouseDownEvent(object sender,
AXEXSLIDERLib._ISliderEvents MouseDownEvent e)
{
if (0 != (axSlider1.get_PartFromPoint(-1,-1) &
EXSLIDERLib.PartEnum.exBackgroundPart))
axSlider1.Value = axSlider1.get_ValueFromPoint(-1, -1);

}

The following VFP sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.slider1
if (O # bitand(.PartFromPoint(-1,-1), 640))
Value = ValueFromPoint(-1,-1)
endif
endwith

property Slider.Picture as IPictureDisp

Retrieves or sets a graphic to be displayed in the control.

A Picture object that's displayed on the control's

IPictureDisp background

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
BackColor property to change the control's background color. Use the Background property
to change the visual appearance for any part of the control in any state.

property Slider.PictureDisplay as PictureDisplayEnum

Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

A PictureDisplayEnum expression that indicates the way

PictureDisplayEnum how the picture is displayed.

By default, the PictureDisplay property is exTile. Use the PictureDisplay property specifies
how the Picture is displayed on the control's background. If the control has no picture
associated the PictureDisplay property has no effect. Use the BackColor property to
change the control's background color. Use the Background property to change the visual
appearance for any part of the control in any state.

method Slider.Replacelcon ([lcon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Icon as Variant

Index as Variant

Long

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)

a string expression that indicates the path to the
picture file

a string expression that defines the picture's content
encoded as BASEG64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is O, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

A long expression that defines the index of the icon to
insert or remove, as follows:

e A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the lcon parameter is zero)

¢ A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

A long expression that indicates the index of the icon in the
images collection

Use the Replacelcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the Replacelcon property can clear the images collection. Use the Images
method to attach a image list to the control. Use the Caption property to specify the part's
caption. Use the HTMLPicture property to display custom size pictures in any part of the
control.

The following VB sample adds a new icon to control's images list:

i = ExSlider1.Replacelcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

i = ExSlider1.Replacelcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the first
icon is replaced.

The following VB sample removes an icon from control's images list:
ExSlider1.Replacelcon 0, i, i specifies the index of icon removed.
The following VB clears the control's icons collection:

ExSlider1.Replacelcon 0, -1

property Slider.SelectRange as Boolean

Returns or sets a value that indicates whether the control can have a select range.

A Boolen expression that indicates whether the control can

Boolean
have a select range.

By default, the SelectRange property is False. The SelStart property specifies where the
selection starts. The SelLength property specifies the length of the selection. Use the
Background property to change the visual aspect of the selection range. Use the Value
property to specify the control's value. Use the Minimum and Maximum properties to specify
the range's value. Use the Caption property to put a HTML text on any part of the control.
The slider control has a capability that you might ignore: you can assign its SelectRange
property to True to enter Select Range mode, during which the user can use the Slider to
select a range instead of a single value. When in Select Range mode, however, it's up to
you to manage the SelStart and SelLength properties.

] 1 1 1 1 1 1 1 1 1]
6 |

——r
1 ' 1 ']] ' ' ' ' 1

The blue area indicates the selection range. Using the Background property you can specify
a new visual appearance of the selection range, including skins. Use the SelStart and
SellLenght property to specify the area being occupied by selection range.

property Slider.SelLength as Long

Returns or sets the length of a selection.

Long A long expression that indicates the length of the selection.

By default, the SelLength property is 0. The SelectRange property returns or sets a value
that indicates whether the control can have a select range. The SelStart property returns or
sets a value that indicates where a selection starts. Use the Background property to
change the visual aspect of the selection range. Use the Value property to specify the
control's value. Use the Minimum and Maximum properties to specify the range's value. Use
the Caption property to put a HTML text on any part of the control. The slider control has a
capability that you might ignore: you can assign its SelectRange property to True to enter
Select Range mode, during which the user can use the Slider to select a range instead of a
single value. When in Select Range mode, however, it's up to you to manage the SelStart
and SelLength properties.

| 1 ' 1 1 1 1 1 1 1 1
i1 -| E—

The blue area indicates the selection range. Using the Background property you can specify
a new visual appearance of the selection range, including skins. Use the SelStart and
SellLenght property to specify the area being occupied by selection range.

property Slider.SelStart as Long

Returns or sets a value that indicates where a selection starts.

A long expression that specifies where the selection

Long starts.

By default, the SelStart property is 0. The SelectRange property returns or sets a value
that indicates whether the control can have a select range. The SelLength property
specifies the length of the selection. Use the Background property to change the visual
aspect of the selection range. Use the Value property to specify the control's value. Use the
Minimum and Maximum properties to specify the range's value. Use the Caption property to
put a HTML text on any part of the control. The slider control has a capability that you might
ignore: you can assign its SelectRange property to True to enter Select Range mode,
during which the user can use the Slider to select a range instead of a single value. When in
Select Range mode, however, it's up to you to manage the SelStart and SelLength
properties.

"E_-l_

The blue area indicates the selection range. Using the Background property you can specify
a new visual appearance of the selection range, including skins. Use the SelStart and
SellLenght property to specify the area being occupied by selection range.

property Slider.ShowFocusRect as Boolean

Sets or gets a value that indicates whether the control is marked when it gets the focus.

A boolean expression that indicates whether the control is

Boolean highlighted when the control gets the focus.

By default, the ShowFocusRect property is False. Use the ShowFocusRect property to
mark the control that has the focus.

property Slider.ShowlmageList as Boolean

Specifies whether the control's image list window is visible or hidden.

A boolean expression that specifies whether the control's

Boolean image list window is visible or hidden.

By default, the ShowlmageList property is True. Use the ShowlmagelList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the Slider control. Use
the Replacelcon method to add, remove or clear icons in the control's images collection.
Use the HTMLPicture property to display custom size picture in any part of the control.

property Slider.ShowThumbProgress as Boolean

Specifies whether the thumb indicates a progress bar.

A Boolean expression that specifies whether the control

Boolean shows the progressbar instead the thumb or slider.

By default, the ShowThumbProgress property is False. Use the ShowThumbProgress
property to change your slider control to a progress bar control. Use the Value property to
specify the control's value. Use the Minimum and Maximum properties to specify the range's
value. Use the Caption property to put a HTML text on any part of the control. The
SmallChange property gets or sets the value added to or subtracted from the Value
property when the thumb is moved a small distance. The LargeChange property gets or
sets a value to be added to or subtracted from the Value property when the slider is moved
a large distance. Use the Background property to change the visual appearance for any
part of the control, in any state.

£5°1

method Slider.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])

Shows the specified tooltip at given position.

The ToolTip parameter can be any of the following:

e NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed

e A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

ToolTip as String

The Title parameter can be any of the following:

e missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
Title as Variant changed.
e A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft

1 - exTopRight

2 - exBottomLeft

3 - exBottomRight
0x10 - exCenter

0x11 - exCenterlLeft
0x12 - exCenterRight
0x13 - exCenterTop

e 0x14 - exCenterBottom

Alignment as Variant

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

Specifies the horizontal position to display the tooltip as
one of the following:

e missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)

e -1, indicates the current horizontal position of the

X as Variant cursor (current x-position)

¢ a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)

¢ a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Specifies the vertical position to display the tooltip as one
of the following:

e missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)

e -1, indicates the current vertical position of the cursor
(current y-position)

e a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)

¢ a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Y as Variant

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

e ShowToolTip("<null>", <null>",,"+8","+8"), shows the tooltip of the object moved relative

to its default position

e ShowToolTip("<null>", new title’), adds, changes or replaces the title of the object's
tooltip

e ShowToolTip('new content’), adds, changes or replaces the object's tooltip

e ShowToolTip('new content’, new title’), shows the tooltip and title at current position

e ShowToolTip('new content’, new title’,,"+8","+8"), shows the tooltip and title moved
relative to the current position

e ShowToolTip('new content’,"",,128,128), displays the tooltip at a fixed position

e ShowToolTip("", "), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

o ... displays the text in bold

e <i> ... </i> displays the text in italics

e <u> ... </u> underlines the text

o <s> .. </s> Strike-through text

e <aid;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

o ... displays portions of text with a different font and/or

different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

o <fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

e <bhgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

¢ <solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

o <dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

e <upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.

key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, O if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

9 :
<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb

represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

shadow

or "<font;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

eutlinefantizaliasing

property Slider.SmallChange as Long

Gets or sets the value added to or subtracted from the Value property when the slider is
moved a small distance.

A long expression that indicates the value added to or
Long subtracted from the Value property when the thumb is
moved a small distance.

By default, the SmallChange property is 1. The SmallChange property gets or sets the
value added to or subtracted from the Value property when the thumb is moved a small
distance. If the SmallChange property is 0, the Value property is not changed when clicking
the left/up or down/right buttons of the control. The LargeChange property gets or sets a
value to be added to or subtracted from the Value property when the slider is moved a
large distance. Use the Minimum and Maximum properties to specify the range's value. Use
the Caption property to put a HTML text on any part of the control. The LabelTick property
indicates the HTML expression to be displayed as labels for each tick.

The Value property goes from:

e Minimum to Maximum values

property Slider.SmallChangeF as Double

Gets or sets the value added to or subtracted from the Value property when the slider is
moved a small distance(as float).

A floating expression that indicates the value added to or
Double subtracted from the Value property when the thumb is
moved a small distance.

By default, the SmallChangeF property is 1.00 The SmallChange property gets or sets the
value added to or subtracted from the ValueF property when the thumb is moved a small
distance and the AllowFloat property is True. If the SmallChange property is 0, the Value
property is not changed when clicking the left/up or down/right buttons of the control. The
LargeChangeF property gets or sets a value to be added to or subtracted from the Value
property when the slider is moved a large distance. Use the MinimumF and MaximumFE
properties to specify the range's value. Use the Caption property to put a HTML text on any
part of the control. The LabelTick property indicates the HTML expression to be displayed
as labels for each tick.

The ValueF property goes from:

e MinimumF to MaximumF values

property Slider.Template as String

Specifies the control's template.

String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to gets the result after executing a template script.

Most of our Ul components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

e Place the control to your form or dialog.

e Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.

e Click it, and locate the Template page.

e Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)

e variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property” is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = Insertltem(0,"New Child"))

e property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.

e method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.

o { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dof)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property Slider.TemplateDef as Variant

Defines inside variables for the next Template/ExecuteTemplate call.

A string expression that indicates the Dim declaration, or
Variant any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
TemplateDef = [Dim var_Column]
TemplateDef = var_Column
Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
.Columns.Add("Column 1").Def(exCellBackColor) = 255
.Columns.Add "Column 2"
Items.AddItem O
Jtems.Addltem 1

Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)

TemplateDef = [Dim var_Column]

TemplateDef = var_Column

Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.ltems.AddItem(0)
Control.ltems.AddItem(1)
Control.ltems.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent: CONTROL_ACTIVEX1.activex

' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.ltems.AddItem(0)
Control.ltems.AddItem(1)
Control.ltems.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column®, which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)

e variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments” may include variables or values
separated by commas. (Sample: h = Insertltem(0, "New Child"))

o property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.

e method(list of arguments) Invokes the method. The "list or arguments” may include
variables or values separated by commas.

e { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

e boolean expression with possible values as True or False

e numeric expression may starts with Ox which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45

e date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971

e string expression is delimited by " or * characters. If using the = character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

e Me property indicates the original object.

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

o LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Slider.TemplatePut (NewVal as Variant)

Defines inside variables for the next Template/ExecuteTemplate call.

A string expression that indicates the Dim declaration, or
New\Val as Variant any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)

e variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property” is the property name
of the object in the context. The "list or arguments” may include variables or values
separated by commas. (Sample: h = Insertltem(0, "New Child"))

e property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.

e method(list of arguments) Invokes the method. The "list or arguments” may include
variables or values separated by commas.

e { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dof)
character splits the object from its property. For instance, the

Columns.Add("Column1”).HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

e boolean expression with possible values as True or False

e numeric expression may starts with Ox which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45

o date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971

o string expression is delimited by " or * characters. If using the = character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

o Me property indicates the original object.

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

e LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Slider.ThumbSize as Long
Specifies the width or the height of the thumb.

A long expression that defines the size of the control's

Long thumb.

By default, the ThumbSize property is -1. If the ThumbSize property is -1, the control
automatically computes its size based on Maximum, Minimum, LargeChange and related
properties. If the ThumbSize property is greater than 0, it indicates in pixels the size of the
thumb. Use the Orientation property to specify whether the control is vertically or
horizontally oriented.

property Slider.TickColor as Color

Specifies the color for the control's ticks.

A Color expression that indicates the color to paint the

Color ticks.

Use the TickColor property specifies the color to paint the ticks. Use the TickStyle property
to indicate where the ticks are displayed. The TickFrequency indicates the ratio of ticks in

the control.

property Slider.TickFrequency as Long

Returns or sets a value that indicates the ratio of ticks on the control.

A long expression that that indicates the ratio of ticks on

Long the control.

By default, the TickFrequency property is 1. The TickFrequency indicates the ratio of ticks
in the control. Use the TickStyle property to indicate where the ticks are displayed. Use the
TickColor property specifies the color to paint the ticks. The LabelTick property indicates
the HTML expression to be displayed as labels for each tick. The SmallChange property
indicates the minimum movement of the slider's position.

property Slider.TickFrequencyF as Double

Returns or sets a value that indicates the ratio of ticks on the control.

A floating expression that that indicates the ratio of ticks

Double on the control.

By default, the TickFrequencyF property is 1.00 The TickFrequencyF indicates the ratio of
ticks in the control, when the AllowFloat property is True . Use the TickStyle property to
indicate where the ticks are displayed. Use the TickColor property specifies the color to
paint the ticks. The LabelTick property indicates the HTML expression to be displayed as
labels for each tick. The SmallChangeF property indicates the minimum movement of the
slider's position.

property Slider.TickStyle as TickStyleEnum

Specifies where the ticks appears on the control.

A TickStyleEnum expression that indicates where the ticks

TickStyleEnum .
’ are displayed

By default, the TickStyle property is exBottomRight. Use the TickStyle property to indicate
where the ticks are displayed. The TickFrequency indicates the ratio of ticks in the control.
Use the TickColor property specifies the color to paint the ticks.

property Slider.ToolTipFont as IFontDisp

Retrieves or sets the tooltip's font.

IFontDisp A Font object being used to display the tooltip

Use the ToolTipFont property to assign a font for the control's tooltip.

property Slider.ToolTipText as String

Specifies the control's tooltip text.

A String expression that specifies the tooltip being
String displayed when the user clicks and moves the control's
thumb.

Use the ToolTipText property to assign a tooltip to be displayed when the user clicks and
moves the thumb part of the control. Use the ToolTipTitle property to assign a title for the
tooltip. The tooltip shows up only when the user clicks and moves the thumb, and the
ToolTipText or ToolTipTitle property is not empty. Use the Value property to specify the
control's value. Use the Minimum and Maximum properties to specify the range's value. The
control fires the Change event property when the user changes the position of the thumb.

IminI , , , , :;J , , Ihn'lﬁ}{l|

Yalue: 4
Thiz iz just a text that showen when the
uzer moves the slider.

The following VB sample displays a tooltip when user moves the thumb:

Private Sub Slider1_Change()
With Slider1
.Object.ToolTipText = "Record " & .Value & "/" & .Maximum
JoolTipTitle = "Position"
End With
End Sub

The following VB/NET sample displays a tooltip when user moves the thumb:

Private Sub AxSlider1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxSlider1.Change
With AxSlider
JoolTipText = "Record " & Value.ToString() & "/" & .Maximum.ToString()
JoolTipTitle = "Position"
End With
End Sub

The following C# sample displays a tooltip when user moves the thumb:

private void axSlider1_Change(object sender, EventArgs e)
{

axSlider1.ToolTipText = "Record " + axSlider1.Value.ToString() + "/" +
axSlider1.Maximum.ToString();

axSlider1.ToolTipTitle = "Position";

}

The following C++ sample displays a tooltip when user moves the thumb:

void OnChangeSlider1()
{
CString strFormat;
strFormat.Format(_T("Record %i/%i"), m_slider.GetValue(), m_slider.GetMaximum());
m_sliderSetToolTipText(strFormat);
m_slider.SetToolTipTitle("Position");

}
The following VFP sample displays a tooltip when user moves the thumb:

*** ActiveX Control Event ***

with thisform.Slider1
.Object.ToolTipText = "Record " + Itrim(str(.Value)) + "/" + ltrim(str(.Maximum))
JoolTipTitle = "Position"

endwith

property Slider.ToolTipTitle as String

Specifies the title of the control's tooltip.

A String expression that specifies the title of the tooltip
String being displayed when the user clicks and moves the
control's thumb.

Use the ToolTipTitle property to assign a title for the tooltip. Use the ToolTipText property to
assign a tooltip to be displayed when the user clicks and moves the thumb part of the
control. The tooltip shows up only when the user clicks and moves the thumb, and the
ToolTipText or ToolTipTitle property is not empty. Use the Value property to specify the
control's value. Use the Minimum and Maximum properties to specify the range's value. The
control fires the Change event property when the user changes the position of the thumb.

Yalue: 4
Thiz iz just a text that showen when the
uzer moves the slider.

The following VB sample displays a tooltip when user moves the thumb:

Private Sub Slider1_Change()
With Slider1
.Object.ToolTipText = "Record " & .Value & "/" & .Maximum
JoolTipTitle = "Position"
End With
End Sub

The following VB/NET sample displays a tooltip when user moves the thumb:

Private Sub AxSlider1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxSlider1.Change
With AxSlider
JoolTipText = "Record " & Value.ToString() & "/" & .Maximum.ToString()
JoolTipTitle = "Position"
End With
End Sub

The following C# sample displays a tooltip when user moves the thumb:

private void axSlider1_Change(object sender, EventArgs e)
{

axSlider1.ToolTipText = "Record " + axSlider1.Value.ToString() + "/" +
axSlider1.Maximum.ToString();

axSlider1.ToolTipTitle = "Position";

}

The following C++ sample displays a tooltip when user moves the thumb:

void OnChangeSlider1()
{
CString strFormat;
strFormat.Format(_T("Record %i/%i"), m_slider.GetValue(), m_slider.GetMaximum());
m_sliderSetToolTipText(strFormat);
m_slider.SetToolTipTitle("Position");

}
The following VFP sample displays a tooltip when user moves the thumb:

*** ActiveX Control Event ***

with thisform.Slider1
.Object.ToolTipText = "Record " + Itrim(str(.Value)) + "/" + ltrim(str(.Maximum))
JoolTipTitle = "Position"

endwith

property Slider.ToolTipWidth as Long

Specifies a value that indicates the width of the tooltip window, in pixels.

A long expression that indicates the width of the tooltip

Long window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description.

IminI , , , , :;J , , Ihn'lﬁ}{l|

Yalue: 4
Thiz iz just & text that =howen when the
uzer moves the slider.

property Slider.ToolTipX as String

Indicates an expression that determines the horizontal-position of the tooltip, in screen
coordinates.

Specifies the expression to show slider's horizontal-

String position of the tooltip

property Slider.ToolTipY as String

Indicates an expression that determines the vertical-position of the tooltip, in screen
coordinates.

Specifies the expression to show slider's vertical-position

String of the tooltip

property Slider.UserData(Part as PartEnum) as Variant

Associates an extra data to a part of the control.

A PartEnum expression that specifies the part to assign an

Part as PartEnum extra data.

A Variant expression that indicates the extra data being

Variant assigned to a part of the control.

use the UserData property to assign an extra data to a part of the control. Use the Caption
property to specify the part's caption. Use the Background property to change the visual
appearance of any part of the control. Use the VisiblePart or VisibleParts property to
specify visible parts in the control. Use the EnablePart or EnableParts property to specify
which parts are enabled or disabled. Use the OwnerDrawPart property to specify an owner
draw part.

property Slider.Value as Long

The value that the slider position represents.

Long A long expression that indicates the control's value.

The trial/demo version of the control always retrieves an arbitrary (random) value.
The registered version of the control retrieves the correctly value.

The Value property specifies the control's value. The control fires the Change event after
user changes the control's value. The control fires the Changing property before changing
the control's value. Use the Minimum and Maximum properties to specify the range's value.
Use the Caption property to put a HTML text on any part of the control. The SmallChange
property gets or sets the value added to or subtracted from the Value property when the
thumb is moved a small distance. The LargeChange property gets or sets a value to be
added to or subtracted from the Value property when the slider is moved a large distance.
Use the Background property to change the visual appearance for any part of the control, in
any state.

The Value property goes from:
e Minimum to Maximum values

For instance, the following VB sample prints the control's Value on the control's thumb:

Private Sub Slider1_Change()
With Slider1
.Caption(exThumbPart) = .Value
End With
End Sub

The following C++ sample prints the control's Value on the control's thumb:

void OnChangeSlider1()

{
CString strFormat;

strFormat.Format(_T("%i"), m_slider.GetValue());
m_slider.SetCaption(256, strFormat);

}

The following VB.NET sample prints the control's Value on the control's thumb:

With AxSlider1
set_Caption(EXSLIDERLib.PartEnum.exThumbPart, .Value.ToString())
End With

The following C# sample prints the control's Value on the control's thumb:

private void axSlider1_Change(object sender, EventArgs e)

{
axSlider1.set_Caption(EXSLIDERLib.PartEnum.exThumbPart, axSlider1.Value.ToString());

}

The following VFP sample prints the control's Value on the control's thumb:

*** ActiveX Control Event ***

with thisform.Slider1
.Caption(256) = Value
endwith

property Slider.ValueF as Double

The value that the thumb box position represents (as float)(as float).

Double A floating expression that indicates the control's value.

The trial/demo version of the control always retrieves an arbitrary (random) value.
The registered version of the control retrieves the correctly value.

The ValueF property specifies the control's value. The ValueF property has effect ONLY if
the AllowFloat property is True. The control fires the Change event after user changes the
control's value. The control fires the Changing property before changing the control's value.
Use the MinimumF and MaximumF properties to specify the range's value. Use the Caption
property to put a HTML text on any part of the control. The SmallChangeF property gets or
sets the value added to or subtracted from the ValueF property when the thumb is moved a
small distance. The LargeChangeF property gets or sets a value to be added to or
subtracted from the Value property when the slider is moved a large distance. Use the
Background property to change the visual appearance for any part of the control, in any
state. The LabelTick property indicates the HTML expression to be displayed as labels for
each tick.

The ValueF property goes from:

e MinimumF to MaximumF values

For instance, the following samples print the control's ValueF on the control's thumb:

VBA (MS Access, Excell...)

' Change event - Occurs when the value of the control is changed.
Private Sub Slider1_Change()
With Slider
.Caption(256) = .ValueF
End With
End Sub

With Slider1
.BeginUpdate
AllowFloat = True

MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
.ThumbSize = 48
MalueF = 0
TickStyle = 2
.TickFrequencyF = 0
.EndUpdate

End With

VB6

' Change event - Occurs when the value of the control is changed.
Private Sub Slider1_Change()
With Slider1
.Caption(exThumbPart) = .ValueF
End With
End Sub

With SliderT
.BeginUpdate
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
.ThumbSize = 48
MalueF =0
TickStyle = exBoth
TickFrequencyF = 0
EndUpdate

End With

VB.NET

' Change event - Occurs when the value of the control is changed.
Private Sub Exslider1_Change(ByVal sender As System.Object) Handles
Exslider1.Change

With Exslider1

set_Caption(exontrol.EXSLIDERLib.PartEnum.exThumbPart,.ValueF)
End With
End Sub

With Exslider1
.BeginUpdate()
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
.ThumbSize = 48
MalueF =0
TickStyle = exontrol.EXSLIDERLib.TickStyleEnum.exBoth
.TickFrequencyF = 0
.EndUpdate()

End With

VB.NET for /COM

' Change event - Occurs when the value of the control is changed.
Private Sub AxSlider1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxSlider1.Change
With AxSlider
.set_Caption(EXSLIDERLib.PartEnum.exThumbPart,.ValueF)
End With
End Sub

With AxSliderT
.BeginUpdate()
AllowFloat = True
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
.ThumbSize = 48
MalueF = 0
.TickStyle = EXSLIDERLib.TickStyleEnum.exBoth
.TickFrequencyF = 0

.EndUpdate()
End With

C++

// Change event - Occurs when the value of the control is changed.
void OnChangeSlider1()
{
/*
Copy and paste the following directives to your header file as
it defines the namespace 'EXSLIDERLib' for the library: 'ExSlider 1.0 Control
Library'
#import <ExSliderdll>
using namespace EXSLIDERLib;
*/
EXSLIDERLib:ISliderPtr spSlider1 = GetDIgltem(IDC_SLIDER1)-
>GetControlUnknown();
spSlider1->PutCaption(EXSLIDERLib::exThumbPart,_bstr_t(spSlider1-
>GetValueF());

}

EXSLIDERLib:ISliderPtr spSlider1 = GetDIgltem(IDC_SLIDERT)-
>GetControlUnknown();
spSlider1->BeginUpdate();
spSlider1->PutAllowFloat(VARIANT_TRUE);
spSlider1->PutMinimumF(-3.25);
spSlider1->PutMaximumF(3.25);
spSlider1->PutSmallChangeF(0.25);
spSlider1->PutThumbSize(48);
spSlider1->PutValueF(0);
spSlider1->PutTickStyle(EXSLIDERLib::exBoth);
spSlider1->PutTickFrequencyF(0);
spSlider1->EndUpdate();

C++ Builder

// Change event - Occurs when the value of the control is changed.

C#

void __fastcall TForm1:Slider1Change(TObject *Sender)
{

Slider1->Caption[Exsliderlib_tlb::PartEnum::exThumbPart] = PChar(Slider1-
>ValueF);

}

Slider1->BeginUpdate();

Slider1->AllowFloat = true;

Slider1->MinimumF = -3.25;

Slider1->MaximumF = 3.25;

Slider1->SmallChangeF = 0.25;

Slider1->ThumbSize = 48;

Slider1->ValueF = 0;

Slider1->TickStyle = Exsliderlib_tlb:TickStyleEnum::exBoth;
Slider1->TickFrequencyF = 0;

Slider1->EndUpdate();

// Change event - Occurs when the value of the control is changed.
private void exslider1_Change(object sender)

{

exslider1.set_Caption(exontrol.EXSLIDERLib.PartEnum.exThumbPart,exslider1.ValueF.To¢

}

//this.exslider1.Change += new
exontrol.EXSLIDERLib.exg2antt.ChangeEventHandler(this.exslider1_Change);

exslider1.BeginUpdate();
exslider1.AllowFloat = true;
exslider1.MinimumF = -3.25;
exslider1.MaximumF = 3.25;
exslider1.SmallChangeF = 0.25;
exslider1.ThumbSize = 48;
exslider1.ValueF = 0O;

exslider1.TickStyle = exontrol.EXSLIDERLib.TickStyleEnum.exBoth;
exslider1.TickFrequencyF = 0;
exslider1.EndUpdate();

JavaScript

<SCRIPT FOR="Slider1" EVENT="Change()" LANGUAGE=")Script">
Slider1.Caption(256) = Slider1.ValueF;
</SCRIPT>

<OBIJECT classid="clsid:031F9B36-1219-4DF5-8E09-1A50B8185BC2" id="Slider1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
Slider1.BeginUpdate();
Slider1.AllowFloat = true;
Slider1.MinimumF = -3.25;
Slider1.MaximumF = 3.25;
Slider1.SmallChangeF = 0.25;
Slider1.ThumbSize = 48;
Slider1.ValueF = 0;
Slider1.TickStyle = 2;
Slider1.TickFrequencyF = 0;
Slider1.EndUpdate();

</SCRIPT>

C# for /COM

// Change event - Occurs when the value of the control is changed.
private void axSlider1_Change(object sender, EventArgs e)

{

axSlider1.set_Caption(EXSLIDERLib.PartEnum.exThumbPart,axSlider1.ValueF.ToString());

}
//this.axSlider1.Change += new EventHandler(this.axSlider1_Change);

axSlider1.BeginUpdate();

axSlider1.AllowFloat = true;

axSlider1.MinimumF = -3.25;

axSlider1.MaximumF = 3.25;

axSlider1.SmallChangeF = 0.25;

axSlider1.ThumbSize = 48;

axSlider1.ValueF = 0;

axSlider1.TickStyle = EXSLIDERLib.TickStyleEnum.exBoth;
axSlider1.TickFrequencyF = 0;

axSlider1.EndUpdate();

X++ (Dynamics Ax 2009)

// Change event - Occurs when the value of the control is changed.
void onEvent_Change()

{
exslider1.Caption(256/*exThumbPart*/,exslider1.ValueF());
}

public void init()
{

super();

exslider1.BeginUpdate();
exslider1.AllowFloat(true);
exslider1.MinimumF(-3.25);
exslider1.MaximumF(3.25);
exslider1.SmallChangeF(0.25);
exslider1. ThumbSize(48);
exslider1.ValueF(0);
exslider1.TickStyle(2/*exBoth*/);
exslider1.TickFrequencyF(0);
exslider1.EndUpdate();

|}

Delphi 8 (.NET only)

// Change event - Occurs when the value of the control is changed.
procedure TWinForm1.AxSlider1_Change(sender: System.Object; e:
System.EventArgs);
begin

with AxSlider1 do

begin

set_Caption(EXSLIDERLib.PartEnum.exThumbPart,ValueF);

end

end;

with AxSlider1 do

begin
BeginUpdate();
AllowFloat := True;
MinimumF := -3.25;
MaximumF := 3.25;
SmallChangeF := 0.25;
ThumbSize := 48;
ValueF := 0;
TickStyle := EXSLIDERLib.TickStyleEnum.exBoth;
TickFrequencyF := 0;
EndUpdate();

end

Delphi (standard)

// Change event - Occurs when the value of the control is changed.
procedure TForm1.Slider1Change(ASender: TObject;);
begin

with Slider1 do

begin

Caption[EXSLIDERLib_TLB.exThumbPart] := ValueF;

end

end;

with Slider1 do

begin
BeginUpdate();
AllowFloat := True;
MinimumF := -3.25;
MaximumF := 3.25;
SmallChangeF := 0.25;
ThumbSize := 48;
ValueF := 0;
TickStyle := EXSLIDERLib_TLB.exBoth;
TickFrequencyF := 0;
EndUpdate();

end

VFP

*** Change event - Occurs when the value of the control is changed. ***
LPARAMETERS nop
with thisform.Slider1
.Caption(256) = .ValueF
endwith

with thisform.Slider1
.BeginUpdate
AllowFloat = .T.
MinimumF = -3.25
MaximumF = 3.25
SmallChangeF = 0.25
.ThumbSize = 48
MalueF =0
TickStyle = 2
TickFrequencyF = 0
EndUpdate

endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
Change = class::nativeObject_Change
endwith
*/
// Occurs when the value of the control is changed.
function nativeObject_Change()
local oSlider
oSlider = form.Activex1.nativeObject
oSlider.Template = [Caption(256) = Str(ValueF)] // oSlider.Caption(256) =
Str(oSlider.ValueF)
return

local oSlider

oSlider = form.Activex1.nativeObject
oSlider.BeginUpdate()
oSliderAllowFloat = true
oSliderMinimumF = -3.25
oSliderMaximumF = 3.25
oSliderSmallChangeF = 0.25
oSliderThumbSize = 48
oSliderValueF = 0
oSliderTickStyle = 2
oSlider.TickFrequencyF = 0
oSliderEndUpdate()

Visual Objects

METHOD OCX_Exontrol1Change() CLASS MainDialog
// Change event - Occurs when the value of the control is changed.
oDCOCX_Exontrol1:[Caption,exThumbPart] := AsString(oDCOCX_Exontrol1:ValueF)
RETURN NIL

oDCOCX_Exontrol1:BeginUpdate()

oDCOCX_Exontrol1:AllowFloat := true
oDCOCX_Exontrol1:MinimumF := -3.25
oDCOCX_Exontrol1:MaximumF := 3.25
oDCOCX_Exontrol1:SmallChangeF := 0.25
oDCOCX_Exontrol1:ThumbSize := 48
oDCOCX_Exontrol1:ValueF := 0
oDCOCX_Exontrol1:TickStyle := exBoth
oDCOCX_Exontrol1:TickFrequencyF := 0
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event Change() - Occurs when the value of the control is changed.*/
/*
OleObject oSlider
oSlider = ole_1.0bject
oSlider.Caption(256,String(oSlider.ValueF))
*/
/*end event Change*/

OleObject oSlider

oSlider = ole_1.0bject
oSlider.BeginUpdate()
oSliderAllowFloat = true
oSliderMinimumF = -3.25
oSliderMaximumF = 3.25
oSlider.SmallChangeF = 0.25
oSlider,ThumbSize = 48
oSliderValueF = 0
oSliderTickStyle = 2
oSlider.TickFrequencyF = 0
oSliderEndUpdate()

property Slider.ValueFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_ PIXELS) as Long

Retrieves the value from the point.

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The x values is always expressed in client
coordinates.

A single that specifies the current X location of the mouse
Y as OLE_YPOS_ PIXELS pointer. The x values is always expressed in client
coordinates.

Long A long expression that indicates the value from the point.

The trial/demo version of the control always retrieves an arbitrary (random) value.
The registered version of the control retrieves the correctly value.

Use the ValueFromPoint property to determine the value from the cursor. The
PartFromPoint property specifies the part of the control from the cursor. Use the VisiblePart
or VisibleParts property to specify the visible parts of the control.

The following VB sample jumps to the value from the point when the user clicks the button:

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Slider1.Value = Slider1.ValueFromPoint(-1, -1)
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
button:

Private Sub AxSlider1_MouseDownEvent(ByVal sender As System.Object, ByVal e As

AXEXSLIDERLib._ISliderEvents_MouseDownEvent) Handles AxSlider1.MouseDownEvent
AxSlider1.Value = AxSlider1.get_ValueFromPoint(-1, -1)

End Sub

The following C++ sample jumps to the value from the point when the user clicks the button:

void OnMouseDownSlider1(short Button, short Shift, long X, long Y)
{

m_slider.SetValue(m_slider.GetValueFromPoint(-1,-1));

}

The following C# sample jumps to the value from the point when the user clicks the button:

private void axSlider1_MouseDownEvent(object sender,
AXEXSLIDERLib._ISliderEvents MouseDownEvent e)

{

axSlider1.Value = axSlider1.get_ValueFromPoint(-1, -1);

}

The following VFP sample jumps to the value from the point when the user clicks the button:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.slider
Value = ValueFromPoint(-1,-1)
endwith

property Slider.ValueFromPointF (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Double

Retrieves the value from the point (as float).

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The x values is always expressed in client
coordinates.

A single that specifies the current X location of the mouse
Y as OLE_YPOS_ PIXELS pointer. The x values is always expressed in client
coordinates.

Double A long expression that indicates the value from the point.

The trial/demo version of the control always retrieves an arbitrary (random) value.
The registered version of the control retrieves the correctly value.

Use the ValueFromPointF property to determine the value from the cursor. This property
has effect only if the AllowFloat property it True. The PartFromPoint property specifies the
part of the control from the cursor. Use the VisiblePart or VisibleParts property to specify
the visible parts of the control.

The following VB sample jumps to the value from the point when the user clicks the button:

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Slider1.Value = Slider1.ValueFromPoint(-1, -1)
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
button:

Private Sub AxSlider1_MouseDownEvent(ByVal sender As System.Object, ByVal e As

AXEXSLIDERLib._ISliderEvents_MouseDownEvent) Handles AxSlider1.MouseDownEvent
AxSlider1.Value = AxSlider1.get_ValueFromPoint(-1, -1)

End Sub

The following C++ sample jumps to the value from the point when the user clicks the button:

void OnMouseDownSlider1(short Button, short Shift, long X, long Y)
{

m_slider.SetValue(m_slider.GetValueFromPoint(-1,-1));

}

The following C# sample jumps to the value from the point when the user clicks the button:

private void axSlider1_MouseDownEvent(object sender,
AXEXSLIDERLib._ISliderEvents_MouseDownEvent e)

{
axSlider1.Value = axSlider1.get_ValueFromPoint(-1, -1);

}

The following VFP sample jumps to the value from the point when the user clicks the button:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.slider1
Value = ValueFromPoint(-1,-1)
endwith

property Slider.Version as String

Retrieves the control's version.

String A string expression that indicates the control's version.

The version property specifies the control's version.

property Slider.VisiblePart(Part as PartEnum) as Boolean

Indicates whether the specified part is visible or hidden.

A PartEnum expression or a combination of PartEnum

Part as PartEnum expressions being shown or hidden

A boolean expression that indicates whether the part is

Boolean visible or hidden

The VisiblePart property specifies which part is visible and which part is hidden. The
VisibleParts property is similar to VisiblePart property, excepts that all parts must be
specified. By default, when a part becomes visible, the EnablePart property is automatically
called, so it becomes enabled. The control fires the ClickPart event when the user clicks a
part of the control. The ClickingPart event is fired continuously while the user keeps clicking
the part of the control. Use the Background property to specify a visual appearance for a
specified part of the control in a certain state.

By default, the following parts are shown:

e exLowerBackPart (the part between the start and the thumb part of the control)
e exThumbPart (the thumb/slider part)
o exUpperBackPart (the part between the thumb and the end part of the control)

property Slider.VisibleParts as Long

Specifies the parts of the control being visible.

A long expression that specifies an OR combination of
Long PartEnum values that indicates which parts are visible and
which parts are not shown.

By default, the VisibleParts property is 897 (that's a OR combination of exLowerBackPart,
exThumbPart, exUpperBackPart). The VisiblePart property specifies which part is visible
and which part is hidden. By default, when a part becomes visible, the EnablePart property
is automatically called, so it becomes enabled. Use the Background property to specify a
visual appearance for a specified part of the control in a certain state.

By default, the following parts are shown:

o exLowerBackPart (the part between the start and the thumb part of the control)
e exThumbPart (the thumb/slider part)
o exUpperBackPart (the part between the thumb and the end part of the control)

The control fires the ClickPart event when the user clicks a part of the control. The
ClickingPart event is fired continuously while the user keeps clicking the part of the control.

property Slider.VisualAppearance as Appearance

Retrieves the control's appearance.

Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. The control supports skinning any part,
using the Background property.

&
=

Voo
wertical's exslider s

ExSlider events

TiP The)cOM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {031F9B36-1219-4DF5-8E09-1A50B8185BC2}. The object's program identifier is: "Exontrol.Slider". The
/COM object module is: "ExSlider.dll"

The component supports the following events:

Change Occurs when the value of the control is changed.
Changing Occurs when the value of the control is about to change.

: Occurs when the user presses and then releases the left
Click

mouse button over the control.
ClickingPart Occurs while the user keeps clicking the part.
ClickPart Fired when the user clicks a part of the control.
: Occurs when the user dblclk the left mouse button over an
DblClick :
object.

KevDown Occurs when the user presses a key while an object has
REYLOWN the focus.
KeyPress Occurs when the user presses and releases an ANSI key.
KevU Occurs when the user releases a key while an object has
REVLD the focus.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
QOwnerDrawEnd Ends painting the owner draw part.
OwnerDrawStart Starts painting the owner draw part.

event Change ()

Occurs when the value of the control is changed.

Use the Change event to notify your application when the control's Value/ValueF is changed.
The Value property of the control specifies the value of the control. Use the
Minimum/MinimumF and Maximum/MaximumFE properties to specify the range's value. The
control fires Changing event just before changing the control's value. Use the Caption
property to put a HTML text on any part of the control.

Syntax for Change event, INET version, on:

private void Change(object sender)

{
}

Private Sub Change(ByVal sender As System.Object) Handles Change
End Sub

Syntax for Change event, /ICOM version, on:

private void Change(object sender, EventArgs e)

{
}

S void OnChange()

{
}

void _ fastcall Change(TObject *Sender)
Builder |l
}

procedure Change(ASender: TObject;);
begin
end;

Delphi 8
(NET
only)
procedure Change(sender: System.Object; e: System.EventArgs);
begin
end;

Powe...

begin event Change()
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Change
End Sub

Private Sub Change()
End Sub

VB6

Private Sub Change()
End Sub

LPARAMETERS nop

PROCEDURE OnChange(oSlider)
RETURN

Syntax for Change event, /ICOM version (Others) on.

<SCRIPT EVENT="Change()" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function Change()
End Function
</SCRIPT>

YSP| Procedure OnComChange
Data... Forward Send OnComChange

l End_Procedure

METHOD OCX_Change() CLASS MainDialog
RETURN NIL

Visual
Objects

YA void onEvent_Change()

{
}

function Change as v ()
end function

function nativeObject_Change()
return

For instance, the following VB sample prints the control's Value on the control's thumb:

Private Sub Slider1_Change()
With Slider1
.Caption(exThumbPart) = .Value
End With
End Sub

The following C++ sample prints the control's Value on the control's thumb:

void OnChangeSlider1()

{
CString strFormat;

strFormat.Format(_T("%i"), m_slider.GetValue());
m_slider.SetCaption(256, strFormat);

}

The following VB.NET sample prints the control's Value on the control's thumb:

With AxSlider1
set_Caption(EXSLIDERLib.PartEnum.exThumbPart, .Value.ToString())
End With

The following C# sample prints the control's Value on the control's thumb:

private void axSlider1_Change(object sender, EventArgs e)

{
axSlider1.set_Caption(EXSLIDERLib.PartEnum.exThumbPart, axSlider1.Value.ToString());

}

The following VFP sample prints the control's Value on the control's thumb:

*** ActiveX Control Event ***

with thisform.Slider1
.Caption(256) = Value
endwith

event Changing (OldValue as Long, ByRef NewValue as Long)

Occurs when the value of the control is about to change.

A long expression that indicates the control's Value before

OldValue as Long performing the change.

(By Reference) (by reference) A long expression that

NewValue as Long indicates the control's newly value.

The trial/demo version of the control always retrieves an arbitrary (random) value
for OldValue and NewValue parameters. The registered version of the control
retrieves the correctly values.

The Changing event notifies your application just before changing the control's Value. Use
the Changing event to prevent specified values, since the NewValue parameter is passed by
reference so you can change during the handler. The control fires the Change event after
user changes the value. Use the Minimum and Maximum properties to specify the range's
value. Use the Caption property to put a HTML text on any part of the control. The
SmallChange property gets or sets the value added to or subtracted from the Value
property when the thumb is moved a small distance. The LargeChange property gets or
sets a value to be added to or subtracted from the Value property when the slider is moved
a large distance.

Syntax for Changing event, INET version, on:

private void Changing(object sender,int OldValue,ref int NewValue)

{
}

Private Sub Changing(ByVal sender As System.Object,ByVal OldValue As
Integer,ByRef NewValue As Integer) Handles Changing
End Sub

Syntax for Changing event, /COM version, on:

private void Changing(object sender,
AXEXSLIDERLib._ISliderEvents_ChangingEvent e)
{
}

C++

void OnChanging(long OldValue,long FAR* NewValue)

{
}

void _ fastcall Changing(TObject *Sender,long OldValue,long * NewValue)
Builder |l

}

procedure Changing(ASender: TObject; OldValue : Integer;var NewValue : Integer);
begin
end;

R procedure Changing(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLIb._ISliderEvents_ChangingEvent);
begin
end;

begin event Changing(long OldValue long NewValue)
end event Changing

Private Sub Changing(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLIib._ISliderEvents_ChangingEvent) Handles Changing
End Sub

Private Sub Changing(ByVal OldValue As Long,NewValue As Long)
End Sub

VB6

Private Sub Changing(ByVal OldValue As Long,NewValue As Long)
End Sub

LPARAMETERS OldValue,NewValue

PROCEDURE OnChanging(oSlider,OldValue,NewValue)
RETURN

Syntax for Changing event, /ICOM version (Others) op.

<SCRIPT EVENT="Changing(OldValue,NewValue)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function Changing(OldValue,NewValue)
End Function
</SCRIPT>

NS Procedure OnComChanging Integer [lOldValue Integer [INewValue
saal| Forward Send OnComChanging lIOldValue [INewValue
End_Procedure

METHOD OCX_Changing(OldValue,NewValue) CLASS MainDialog
RETURN NIL

Visual
Objects

VS void onEvent_Changing(int _OldValue,COMVariant /*long*/ _NewValue)

{
}

function Changing as v (OldValue as N,NewValue as N)
end function

function nativeObject_Changing(OldValue,NewValue)
return

The following VB sample limits the control's Value to SmallChange property:

Private Sub Slider1_Changing(ByVal OldValue As Long, NewValue As Long)
With Slider1
NewValue = CLng(NewValue / .SmallChange) * .SmallChange
If NewValue > .Maximum Then
NewValue = .Maximum
End If
End With
End Sub

The following VB samples prints the old and the new value on the thumb part of the control:

Private Sub Slider1_Changing(ByVal OldValue As Long, NewValue As Long)
With Slider1
.Caption(exThumbPart) = " " & OldValue & " - " & NewValue
End With
End Sub

The following VB.NET samples prints the old and the new value on the thumb part of the
control:

Private Sub AxSlider1_Changing(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_ChangingEvent) Handles AxSlider1.Changing
With AxSlider
set_Caption(EXSLIDERLib.PartEnum.exThumbPart, " " +
e.oldValue.ToString() + " - " + e.newValue.ToString())
End With

End Sub

The following C++ samples prints the old and the new value on the thumb part of the
control:

void OnChangingSlider1(long OldValue, long FAR* NewValue)

{
CString strFormat;

strFormat.Format(_T(" %i - %i"), OldValue, *NewValue);
m_slider.SetCaption(256, strFormat);

}

The following C# samples prints the old and the new value on the thumb part of the control:

private void axSlider1_Changing(object sender,
AXEXSLIDERLib._ISliderEvents_ChangingEvent e)
{

axSlider1.set_Caption(EXSLIDERLib.PartEnum.exThumbPart, "" +
e.oldValue.ToString() + " - " + e.newValue.ToString());

}

The following VFP samples prints the old and the new value on the thumb part of the
control:

*** ActiveX Control Event ***
LPARAMETERS oldvalue, newvalue

with thisform.Slider1
.Caption(256) = "" + ltrim(Str(oldvalue)) + " - " + ltrim(Str(newvalue))
endwith

event Click ()

Occurs when the user presses and then releases the left mouse button over the control.

The Click event is fired when the user releases the left mouse button over the control. The
ClickPart event notifies your application that the user clicks a part of the control. The
ClickingPart event is fired continuously while the user keeps clicking a part of the control.
The PartFromPoint property specifies the part of the control from the cursor. Use the
ValueFromPoint property to determine the value from the cursor. Use a MouseDown or
MouseUp event procedure to specify actions that will occur when a mouse button is
pressed or released. Unlike the Click and DblClick events, MouseDown and MouseUp
events lets you distinguish between the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Syntax for Click event, INET version, on:

private void Click(object sender)

{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

Syntax for Click event, ICOM version, on:

private void ClickEvent(object sender, EventArgs e)

{
}

S void OnClick()

{
}

void _ fastcall Click(TObject *Sender)
Builder |l
}

procedure Click(ASender: TObject;);
begin

l end;

R procedure ClickEvent(sender: System.Object; e: System.EventArgs);
(NET :
only) begin

end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent

End Sub
V=9l Private Sub Click()
End Sub
Private Sub Click()
End Sub
LPARAMETERS nop
PROCEDURE OnClick(oSlider)

RETURN

Syntax for Click event, /COM version (0thers) qn.

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

VAP Procedure OnComClick
Data... Forward Send OnComClick
End_Procedure

Visual
Objects

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

N void onEvent_Click()

{
}

function Click as v ()
end function

function nativeObject_Click()
return

event ClickingPart (Part as PartEnum)

Occurs while the user keeps clicking the part.

Part as PartEnum A PartEnum expression being clicked.

The ClickingPart event is fired continuously while the user keeps clicking the part of the
control. The ClickPart event is fired when the user clicks and releases the left mouse button
over the part of the control. The VisibleParts property is similar to VisiblePart property,
excepts that all parts must be specified. By default, when a part becomes visible, the
EnablePart property is automatically called, so it becomes enabled. Use the Background
property to specify a visual appearance for a specified part of the control in a certain state.

Syntax for ClickingPart event, INET version, on:

private void ClickingPart(object sender,exontrol. EXSLIDERLib.PartEnum Part)

{
}

Private Sub ClickingPart(ByVal sender As System.Object,ByVal Part As
exontrol. EXSLIDERLib.PartEnum) Handles ClickingPart
End Sub

Syntax for ClickingPart event, /COM version, on:

private void ClickingPart(object sender,
AXEXSLIDERLib._ISliderEvents_ClickingPartEvent e)
{
}

Sl void OnClickingPart(long Part)

{
}

void _ fastcall ClickingPart(TObject *Sender,Exsliderlib_tlb::PartEnum Part)
Builder {
}

procedure ClickingPart(ASender: TObject; Part : PartEnum);
begin

I end;

R procedure ClickingPart(sender: System.Object; e:

((-)EE/)T AXEXSLIDERLib._ISliderEvents_ClickingPartEvent);

begin
end;
begin event ClickingPart(long Part)

end event ClickingPart

Private Sub ClickingPart(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_ClickingPartEvent) Handles ClickingPart
End Sub

Private Sub ClickingPart(ByVal Part As EXSLIDERLibCtl.PartEnum)
End Sub

Private Sub ClickingPart(ByVal Part As Long)
End Sub

LPARAMETERS Part

PROCEDURE OnClickingPart(oSlider,Part)
RETURN

Syntax for ClickingPart event, /ICOM version (Others) on.

<SCRIPT EVENT="ClickingPart(Part)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript" >
Function ClickingPart(Part)

End Function
</SCRIPT>

Procedure OnComClickingPart OLEPartEnum IIPart
Forward Send OnComClickingPart IIPart

Visual

l End_Procedure

METHOD OCX_ClickingPart(Part) CLASS MainDialog
RETURN NIL

Visual
Objects

Y void onEvent_ClickingPart(int _Part)

{
}

function ClickingPart as v (Part as OLE::Exontrol.Slider.1::PartEnum)
end function

function nativeObject_ClickingPart(Part)
return

event ClickPart (Part as PartEnum)

Fired when the user clicks a part of the control.

Part as PartEnum A PartEnum expression being clicked.

The ClickPart event notifies your application that the user clicks a part of the control. The
ClickPart event is fired only after releasing the mouse. The ClickingPart event is fired
continuously while the user keeps clicking a part of the control. The VisiblePart or
VisibleParts property specifies the part being visible or hidden.

Syntax for ClickPart event, INET version, on:

private void ClickPart(object sender,exontrol. EXSLIDERLib.PartEnum Part)

{
}

Private Sub ClickPart(ByVal sender As System.Object,ByVal Part As
exontrol.EXSLIDERLib.PartEnum) Handles ClickPart
End Sub

Syntax for ClickPart event, /COM version, on:

private void ClickPart(object sender, AXEXSLIDERLIb._ISliderEvents_ClickPartEvent
e)
{
}

| void OnClickPart(long Part)

{
}

void _ fastcall ClickPart(TObject *Sender,Exsliderlib_tlb::PartEnum Part)
Builder {
}

procedure ClickPart(ASender: TObject; Part : PartEnum);
begin
end;

)| procedure ClickPart(sender: System.Object; e:
Ul AXEXSLIDERLib._ISliderEvents_ClickPartEvent);

only)
begin
end;
begin event ClickPart(long Part)

end event ClickPart

Private Sub ClickPart(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_ClickPartEvent) Handles ClickPart

End Sub
'3l Private Sub ClickPart(ByVal Part As EXSLIDERLibCtl.PartEnum)
End Sub
Private Sub ClickPart(ByVal Part As Long)
End Sub
LPARAMETERS Part
PROCEDURE OnClickPart(oSlider,Part)

RETURN

Syntax for ClickPart event, /ICOM version (0thers) o

<SCRIPT EVENT="ClickPart(Part)" LANGUAGE="JScript" >
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function ClickPart(Part)
End Function
</SCRIPT>

VAP Procedure OnComClickPart OLEPartEnum IlPart
Data... Forward Send OnComClickPart lIPart
End_Procedure

Visual
Objects

METHOD OCX_ClickPart(Part) CLASS MainDialog
RETURN NIL

VR void onEvent_ClickPart(int _Part)

{
}

function ClickPart as v (Part as OLE::Exontrol.Slider.1::PartEnum)
end function

function nativeObject_ClickPart(Part)
return

event DbIClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)

Occurs when the user dbliclk the left mouse button over an object.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

A single that specifies the current X location of the mouse
X as OLE_XPOS _PIXELS pointer. The x values is always expressed in container
coordinates.

Shift as Integer

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The y values is always expressed in container
coordinates

The DblIClick event is fired when user double clicks the control. The PartFromPoint property
specifies the part of the control from the cursor. Use the ValueFromPoint property to
determine the value from the cursor. Use the VisibleParts or VisiblePart property to specify
which part of the control is visible or hidden.

Syntax for DbIClick event, INET version, on:

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

Syntax for DbIClick event, /COM version, on:

private void DblClick(object sender, AXEXSLIDERLib._ISliderEvents_DblClickEvent
e)
{
}

S void OnDblClick(short Shift,long X,long Y)
{
}

void _ fastcall DbIClick(TObject *Sender,short Shift,int X,int Y)
Builder

{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

SRR procedure DblClick(sender: System.Object; e:
Selll AXEXSLIDERLib. ISliderEvents_DbIClickEvent)
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_DblClickEvent) Handles DblClick

End Sub
V=3l Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub
Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub
LPARAMETERS Shift,X,Y
PROCEDURE OnDblClick(oSlider,Shift,X,Y)

RETURN

Syntax for DbIClick event, /COM version (0thers) qon.

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">

Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

¥R Procedure OnComDblClick Short lIShift OLE_XPOS_PIXELS IIX OLE_YPOS_PIXELS
Data... 1\%

Forward Send OnComDDblClick lIShift IIX IlY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

N void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Slider.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Slider.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays the part from the cursor:

Private Sub Slider1_DblClick(Shift As Integer, X As Single, Y As Single)
Debug.Print Slider1.PartFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
End Sub

The following VB.NET sample displays the part from the cursor:

Private Sub AxSlider1_DblClick(ByVal sender As System.Object, ByVal e As

AXEXSLIDERLib._ISliderEvents_DblClickEvent) Handles AxSlider1.DblClick
Debug.WriteLine(AxSlider1.get_PartFromPoint(e.x, e.y).ToString())

End Sub

The following C++ sample displays the part from the cursor:

void OnDblClickSlider1(short Shift, long X, long Y)

{
CString strFormat;

strFormat.Format(_T("%i"), m_slider.GetPartFromPoint(X, Y));
OutputDebugString(strFormat);

}

The following C# sample displays the part from the cursor:

private void axSlider1_DblClick(object sender, AXEXSLIDERLib._ISliderEvents_DblClickEvent
e)

{
System.Diagnostics.Debug.WriteLine(axSlider1.get_PartFromPoint(e.x, e.y).ToString());

}

The following VB sample displays the part from the cursor:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

wait window nowait ltrim(str(thisform.slider1.PartFromPoint(x,y)))

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

KeyCode as Integer (By Reference) An integer that represent the key code.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit

Shift as Integer 1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0

CtrlDown = (Shift And 2) > 0

AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrIDown Then

Syntax for KeyDown event, /INET version, on:

private void KeyDown(object senderref short KeyCode,short Shift)

{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

Syntax for KeyDown event, /COM version, on:

private void KeyDownEvent(object sender,
AXEXSLIDERLib._ISliderEvents_KeyDownEvent e)

‘ {
)

S| void OnKeyDown(short FAR* KeyCode,short Shift)

{
}

void _ fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
Builder

{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

R procedure KeyDownEvent(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLIib._ISliderEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Powe...

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

VB6

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oSlider,KeyCode,Shift)
RETURN

Syntax for KeyDown event, /ICOM version (Others) op.

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Y| Procedure OnComKeyDown Short lIKeyCode Short IIShift
saull| Forward Send OnComKeyDown lIKeyCode IIShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

Visual
Objects

V| void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)

{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

event KeyPress (ByRef KeyAscii as Integer)

Occurs when the user presses and releases an ANSI key.

(By Reference) An integer that returns a standard numeric

KeyAscii as Integer ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, INET version, on:

private void KeyPress(object sender,ref short KeyAscii)

{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

Syntax for KeyPress event, /COM version, on:

private void KeyPressEvent(object sender,
AXEXSLIDERLib._ISliderEvents_KeyPressEvent e)
{
}

S void OnKeyPress(short FAR* KeyAscii)

{
}

void _ fastcall KeyPress(TObject *Sender,short * KeyAscii)
Builder {
}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

R procedure KeyPressEvent(sender: System.Object; e:
(C-EE)T AXEXSLIDERLIib._ISliderEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Powe...

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

VB6

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oSlider,KeyAscii)
RETURN

Syntax for KeyPress event, /COM version (Others) o

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript" >
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Visual

Data...

Procedure OnComKeyPress Short [IKeyAscii
Forward Send OnComKeyPress |IKeyAscii

End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

Visual
Objects

Y void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)

{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user releases a key while an object has the focus.

KeyCode as Integer (By Reference) An integer that represent the key code.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit

Shift as Integer 1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, INET version, on:

private void KeyUp(object sender,ref short KeyCode,short Shift)

{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

Syntax for KeyUp event, /COM version, on:

private void KeyUpEvent(object sender,
AXEXSLIDERLib._ISliderEvents_KeyUpEvent e)
{
}

Sl void OnKeyUp(short FAR* KeyCode,short Shift)

{
}

void _ fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

C++
Builder

|}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

R procedure KeyUpEvent(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLIb._ISliderEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_KeyUpEvent) Handles KeyUpEvent

End Sub
Y=Yl Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub
Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub
LPARAMETERS KeyCode,Shift
PROCEDURE OnKeyUp(oSlider,KeyCode,Shift)

RETURN

Syntax for KeyUp event, /ICOM version (0thers) qn.

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

| </scripT>

Y3l Procedure OnComKeyUp Short IIKeyCode Short lIShift
Data. . Forward Send OnComKeyUp IIKeyCode lIShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

Visual
Objects

Y void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)

{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user presses a mouse button.

An integer that identifies the button that was pressed to

Button as Integer cause the event

An integer that corresponds to the state of the SHIFT,
Shift as Integer CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The X value is always expressed in container
coordinates.

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ClickPart event notifies your application that the user clicks a part
of the control. The ClickingPart event is fired continuously while the user keeps clicking a
part of the control. The PartFromPoint property specifies the part of the control from the
cursor. Use the ValueFromPoint property to determine the value from the cursor.

Syntax for MouseDown event, /INET version, on:

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)

{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

Syntax for MouseDown event, /COM version, on:
private void MouseDownEvent(object sender,

AXEXSLIDERLib._ISliderEvents_MouseDownEvent e)

{
}

S void OnMouseDown(short Button,short Shift,long X,long Y)

{
}

void _ fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
Builder

{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

R procedure MouseDownEvent(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLib._ISliderEvents_ MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Powe...

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oSlider,Button,Shift,X,Y)
RETURN

Syntax for MouseDown event, /COM version (Others) o

<SCRIPT EVENT="MouseDown(Button,Shift X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

VAP Procedure OnComMouseDown Short lIButton Short [IShift OLE_XPOS_PIXELS IIX
mcictt®| OLE_YPOS_PIXELS IlY
Forward Send OnComMouseDown |[Button lIShift [IX IIY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

PR void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)

{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Slider.1:OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Slider.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

The following VB sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

‘ Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As

Single)
With Slider1
If (0 <> (.PartFromPoint(-1, -1) And exBackgroundPart)) Then
Value = ValueFromPoint(-1, -1)
End If
End With
End Sub

The following VB sample jumps to the value from the point when the user clicks the button:

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)

Slider1.Value = Slider1.ValueFromPoint(-1, -1)
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
upper or lower part of the control:

Private Sub AxSlider1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_MouseDownEvent) Handles AxSlider1.MouseDownEvent
With AxSlider1
If (0 <> (.get_PartFromPoint(-1, -1) And EXSLIDERLib.PartEnum.exBackgroundPart))
Then
Malue = .get_ValueFromPoint(-1, -1)
End If
End With
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
button:

Private Sub AxSlider1_MouseDownEvent(ByVal sender As System.Object, ByVal e As

AXEXSLIDERLib._ISliderEvents_MouseDownEvent) Handles AxSlider1.MouseDownEvent
AxSlider1.Value = AxSlider1.get_ValueFromPoint(-1, -1)

End Sub

The following C++ sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

void OnMouseDownSlider1(short Button, short Shift, long X, long Y)

{
if (m_slider.GetPartFromPoint(-1,-1) & 640)

m_slider.SetValue(m_slider.GetValueFromPoint(-1,-1));

}

The following C++ sample jumps to the value from the point when the user clicks the button:

void OnMouseDownSlider1(short Button, short Shift, long X, long Y)
{

m_slider.SetValue(m_slider.GetValueFromPoint(-1,-1));

}

The following C# sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

private void axSlider1_MouseDownEvent(object sender,
AXEXSLIDERLib._ISliderEvents MouseDownEvent e)
{
if (0 != (axSlider1.get_PartFromPoint(-1,-1) &
EXSLIDERLib.PartEnum.exBackgroundPart))
axSlider1.Value = axSlider1.get_ValueFromPoint(-1, -1);

}

The following C# sample jumps to the value from the point when the user clicks the button:

private void axSlider1_MouseDownEvent(object sender,
AXEXSLIDERLib._ISliderEvents MouseDownEvent e)

{

axSlider1.Value = axSlider1.get_ValueFromPoint(-1, -1);

}

The following VFP sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.slider1
if (O # bitand(.PartFromPoint(-1,-1), 640))

Value = ValueFromPoint(-1,-1)

endif
endwith

The following VFP sample jumps to the value from the point when the user clicks the button:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.slider
Value = ValueFromPoint(-1,-1)
endwith

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

A single that specifies the current X location of the mouse
X as OLE _XPOS PIXELS pointer. The x values is always expressed in container
coordinates

Button as Integer

Shift as Integer

A single that specifies the current X location of the mouse
Y as OLE_YPOS PIXELS pointer. The x values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The ClickPart event notifies your
application that the user clicks a part of the control. The ClickingPart event is fired
continuously while the user keeps clicking a part of the control. The PartFromPoint property
specifies the part of the control from the cursor. Use the ValueFromPoint property to
determine the value from the cursor.

Syntax for MouseMove event, INET version, on:

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

Syntax for MouseMove event, /COM version, on:

private void MouseMoveEvent(object sender,
AXEXSLIDERLib._ISliderEvents MouseMoveEvent e)

{

|}

S void OnMouseMove(short Button,short Shift,long X,long Y)

{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
Builder

{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

R procedure MouseMoveEvent(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLib._ISliderEvents_ MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Powe...

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oSlider,Button,Shift,X,Y)

| RETURN

Syntax for MouseMove event, /COM version (Others) .

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

VAR Procedure OnComMouseMove Short [IButton Short lIShift OLE_XPOS_PIXELS [IX
il OLE_YPOS_PIXELS IlY
Forward Send OnComMouseMove lIButton IIShift [IX [IY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

Y void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)

{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Slider.1::OLE_XPOS_PIXELS)Y as
OLE:Exontrol.Slider.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

The following VB sample prints the Value from the point:

Private Sub Slider1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
Debug.Print Slider1.PartFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)

End Sub

The following VB.NET sample prints the Value from the point:

Private Sub AxSlider1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As

AXEXSLIDERLib._ISliderEvents MouseMoveEvent) Handles AxSlider1.MouseMoveEvent
Debug.WriteLine(AxSlider1.get_PartFromPoint(e.x, e.y).ToString())

End Sub

The following C++ sample prints the Value from the point:

void OnMouseMoveSlider1(short Button, short Shift, long X, long Y)

{
CString strFormat;

strFormat.Format(_T("%i"), m_slider.GetPartFromPoint(X, Y));
OutputDebugString(strFormat);

}

The following C# sample prints the Value from the point:

private void axSlider1_MouseMoveEvent(object sender,
AXEXSLIDERLib._ISliderEvents_ MouseMoveEvent e)

{
System.Diagnostics.Debug.WriteLine(axSlider1.get_PartFromPoint(e.x, e.y).ToString());

}

The following VFP sample prints the Value from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

wait window nowait Itrim(str(thisform.slider1.PartFromPoint(x,y)))

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

An integer that identifies the button that was pressed to

Button as Integer cause the event

An integer that corresponds to the state of the SHIFT,
Shift as Integer CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The X value is always expressed in container
coordinates.

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ClickPart event notifies your application that the user clicks a part
of the control. The ClickingPart event is fired continuously while the user keeps clicking a
part of the control. The PartFromPoint property specifies the part of the control from the
cursor. Use the ValueFromPoint property to determine the value from the cursor.

Syntax for MouseUp event, INET version, on:

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)

{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

Syntax for MouseUp event, /COM version, on:
private void MouseUpEvent(object sender,

AXEXSLIDERLib._ISliderEvents_MouseUpEvent e)

{
}

S void OnMouseUp(short Button,short Shift,long X,long Y)

{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
Builder

{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

R procedure MouseUpEvent(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLib._ISliderEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Powe...

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer, X As Single,Y As Single)
End Sub

VB6

YW Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

w3 | PARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oSlider,Button,Shift,X,Y)
RETURN

Syntax for MouseUp event, /COM version (Others) o

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

S| Procedure OnComMouseUp Short lIButton Short [IShift OLE_XPOS_PIXELS IIX
nckalsl| OLE_YPOS_PIXELS IIY
Forward Send OnComMouseUp lIButton lIShift IIX IIY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

PR void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N, X as
OLE::Exontrol.Slider.1:OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Slider.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

event OwnerDrawEnd (Part as PartEnum, hDC as Long)

Ends painting the owner draw part.

A PartEnum expression that indicates the part being

Part as PartEnum :
painted

A long expression that indicates the handle to the painting

hDC as Long device context (HDC)

The OwnerDrawEnd event occurs after the default painting of the part is done, so it lets the
user to paint additional pieces on the default part, if case . The OwnerDrawEnd event is
fired only for owner draw parts. Use the OwnerDrawPart property to specify which part is
owner draw and which part is not. Use the OwnerDrawStart event to perform painting part
before default implementation is called. For instance, if the owner part paints a transparent
or lucent skin, the OwnerDrawStart event lets you paint the part before putting the default
skin. The rectangle that should be painted in the device context can be retrieved
using the GetClipBox API function. The VisiblePart or VisibleParts property specifies the
part being visible or hidden.

Syntax for OwnerDrawEnd event, INET version, on:
private void OwnerDrawEnd(object sender,exontrol. EXSLIDERLib.PartEnum Part,int
hDC)

{
}

Private Sub OwnerDrawEnd(ByVal sender As System.Object,ByVal Part As
exontrol.EXSLIDERLib.PartEnum,ByVal hDC As Integer) Handles OwnerDrawEnd
End Sub

Syntax for OwnerDrawEnd event, /COM version, on:

private void OwnerDrawEnd(object sender,
AXEXSLIDERLib._ISliderEvents_OwnerDrawEndEvent e)

{
}

| void OnOwnerDrawEnd(long Part,long hDC)
{

}
S| void _ fastcall OwnerDrawEnd(TObject *Sender,Exsliderlib_tlb::PartEnum Part,long
Builder hDC)
{
}
procedure OwnerDrawEnd(ASender: TObject; Part : PartEnum;hDC : Integer);
begin
end;

R procedure OwnerDrawEnd(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLib._ISliderEvents_ OwnerDrawEndEvent);
begin
end;

begin event OwnerDrawEnd(long Part,long hDC)
end event OwnerDrawEnd

Powe...

Private Sub OwnerDrawEnd(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_OwnerDrawEndEvent) Handles OwnerDrawEnd
End Sub

VY3l Private Sub OwnerDrawEnd(ByVal Part As EXSLIDERLibCtl.PartEnum,ByVal hDC As
Long)
End Sub

Private Sub OwnerDrawEnd(ByVal Part As Long,ByVal hDC As Long)
End Sub

LPARAMETERS Part,hDC

PROCEDURE OnOwnerDrawEnd(oSlider,Part,nDC)
RETURN

Syntax for OwnerDrawEnd event, /COM version (others) on:

<SCRIPT EVENT="0OwnerDrawEnd(Part,hDC)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OwnerDrawEnd(Part,hDC)
End Function
</SCRIPT>

NSl Procedure OnComOwnerDrawEnd OLEPartEnum lIPart Integer IIhDC
saumd| Forward Send OnComOwnerDrawEnd lIPart IlhDC
End_Procedure

METHOD OCX_OwnerDrawEnd(Part,nDC) CLASS MainDialog
RETURN NIL

Visual
Objects

N void onEvent_OwnerDrawEnd(int _Part,int _hDC)

{
}

function OwnerDrawEnd as v (Part as OLE::Exontrol.Slider.1::PartEnum,hDC as N)
end function

function nativeObject_OwnerDrawEnd(Part,hDC)
return

For instance, the following VB sample draws the lower part in red, and the upper part in
green (as in the screen shot) :

With Slider
.OwnerDrawPart(exLowerBackPart Or exUpperBackPart) = True

End With

Private Type RECT

Left As Long

Top As Long

Right As Long

Bottom As Long
End Type
Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, IpRect As RECT) As
Long
Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, IpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub Slider1_OwnerDrawEnd(ByVal Part As EXSLIDERLibCtl.PartEnum, ByVal hdc As
Long)
Dim r As RECT, h As Long
GetClipBox hdc, r
rLeft = rlLeft + 4
rRight = rRight - 4
If Part = exLowerBackPart Then
h = CreateSolidBrush(RGB(255, 0, 0))
FillRect hdc, r, h
DeleteObject (h)
Else
If Part = exUpperBackPart Then
h = CreateSolidBrush(RGB(0, 255, 0))
FillRect hdc, r, h
DeleteObject (h)
End If
End If
End Sub

The following C++ sample draws the lower part in red, and the upper part in green (as in
the screen shot) :

m_slider.SetOwnerDrawPart(128 /*exUpperBackPart*/, TRUE);

m_slider.SetOwnerDrawPart(512 /*exLowerBackPart*/, TRUE);

void OnOwnerDrawEndSlider1(long Part, long hDC)
{
HDC h = (HDC)hDC;
RECT rtPart = {0}; GetClipBox(h, &rtPart);
InflateRect(&rtPart, -4, 0);
switch (Part)

{
case 128: /*exUpperBackPart*/

{
HBRUSH hB = CreateSolidBrush(RGB(0,255,0));
FillRect(h, &rtPart, hB);
DeleteObject(hB);
break;
}

case 512: /*exLowerBackPart*/
{
HBRUSH hB = CreateSolidBrush(RGB(255,0,0));
FillRect(h, &rtPart, hB);
DeleteObject(hB);
break;

event OwnerDrawStart (Part as PartEnum, hDC as Long, ByRef
DefaultPainting as Boolean)

Starts painting the owner draw part.

A PartEnum expression that indicates the part being

Part as PartEnum .
painted

A long expression that indicates the handle to the painting
hDC as Long device context (HDC)

(By Reference) A Boolen expression that indicates
whether the default painting should be performed or not. If

DefaultPainting as Boolean the DefaultPainting parameter is True, the control paints
the part as default, else the part is not painted by the
control so the user should draw the entire part.

The OwnerDrawStart event is fired when a part requires to be painted. The
OwnerDrawStart event is fired only for owner draw parts. Use the OwnerDrawPart
property to specify which part is owner draw and which part is not. You can use the
OwnerDrawStart event to avoid painting any part using the DefaultPainting parameter. The
control fires the OwnerDrawEnd event when painting the part is done. Use the
OwnerDrawStart event to perform painting part before default implementation is called. For
instance, if the owner part pains a transparent or lucent skin, the OwnerDrawStart event
lets you paint the part before putting the default skin. The rectangle that should be
painted in the device context can be retrieved using the GetClipBox API function.
The VisiblePart or VisibleParts property specifies the part being visible or hidden.

Syntax for OwnerDrawStart event, INET version, on:

private void OwnerDrawStart(object sender,exontrol. EXSLIDERLib.PartEnum
Part,int hDC, ref bool DefaultPainting)

{

}

Private Sub OwnerDrawStart(ByVal sender As System.Object,ByVal Part As
exontrol. EXSLIDERLib.PartEnum,ByVal hDC As Integer,ByRef DefaultPainting As
Boolean) Handles OwnerDrawStart
End Sub

Syntax for OwnerDrawStart event, /COM version, on:

private void OwnerDrawStart(object sender,
AXEXSLIDERLib._ISliderEvents_ OwnerDrawStartEvent e)

{
}

Sl void OnOwnerDrawsStart(long Part,long hDC,BOOL FAR* DefaultPainting)

{
}

void _ fastcall OwnerDrawStart(TObject *Sender,Exsliderlib_tlb::PartEnum
Lkl Part,long hDC,VARIANT_BOOL * DefaultPainting)

{
}

procedure OwnerDrawStart(ASender: TObject; Part : PartEnum;hDC : Integer;var
DefaultPainting : WordBool);
begin
end;

R procedure OwnerDrawStart(sender: System.Object; e:
((-)EE/)T AXEXSLIDERLib._ISliderEvents_ OwnerDrawStartEvent);
begin
end;

begin event OwnerDrawStart(long Part,long hDC,boolean DefaultPainting)
end event OwnerDrawStart

Powe...

Private Sub OwnerDrawStart(ByVal sender As System.Object, ByVal e As
AXEXSLIDERLib._ISliderEvents_OwnerDrawStartEvent) Handles OwnerDrawStart
End Sub

VB6

Private Sub OwnerDrawStart(ByVal Part As EXSLIDERLibCtl.PartEnum,ByVal hDC As
Long,DefaultPainting As Boolean)
End Sub

Private Sub OwnerDrawStart(ByVal Part As Long,ByVal hDC As
Long,DefaultPainting As Boolean)
End Sub

LPARAMETERS Part,hDC,DefaultPainting

PROCEDURE OnOwnerDrawsStart(oSlider,Part,nDC,DefaultPainting)
RETURN

Syntax for OwnerDrawStart event, /COM version (Others) qn.

<SCRIPT EVENT="OwnerDrawsStart(Part,hDC,DefaultPainting)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OwnerDrawStart(Part,hDC,DefaultPainting)

End Function
</SCRIPT>

S| Procedure OnComOwnerDrawStart OLEPartEnum IIPart Integer IIhDC Boolean
sl |[DefaultPainting
Forward Send OnComOwnerDrawsStart lIPart [IhDC lIDefaultPainting
End_Procedure

METHOD OCX_OwnerDrawStart(Part,hDC,DefaultPainting) CLASS MainDialog
RETURN NIL

Visual
Objects

void onEvent_OwnerDrawStart(int _Part,int _hDC,COMVariant /*bool*/
_DefaultPainting)

{

|}

function OwnerDrawsStart as v (Part as OLE::Exontrol.Slider.1::PartEnum,hDC as
N,DefaultPainting as L)
end function

function nativeObject_OwnerDrawStart(Part,hDC,DefaultPainting)
return

For instance, the following VB sample draws the lower part in red, and the upper part in
green (as in the screen shot) :

With Slider
.OwnerDrawPart(exLowerBackPart Or exUpperBackPart) = True
End With

Private Type RECT

Left As Long

Top As Long

Right As Long

Bottom As Long
End Type
Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, IpRect As RECT) As
Long
Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, IpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub Slider1_OwnerDrawEnd(ByVal Part As EXSLIDERLibCtl.PartEnum, ByVal hdc As
Long)

Dim r As RECT, h As Long

GetClipBox hdc, r

rLeft = rlLeft + 4

rRight = rRight - 4

If Part = exLowerBackPart Then

h = CreateSolidBrush(RGB(255, 0, 0))

FillRect hdc, r, h
DeleteObject (h)
Else
If Part = exUpperBackPart Then
h = CreateSolidBrush(RGB(0, 255, 0))
FillRect hdc, r, h
DeleteObject (h)
End If
End If
End Sub

The following C++ sample draws the lower part in red, and the upper part in green (as in
the screen shot) :

m_slider.SetOwnerDrawPart(128 /*exUpperBackPart*/, TRUE);
m_slider.SetOwnerDrawPart(512 /*exLowerBackPart*/, TRUE);

void OnOwnerDrawEndSlider1(long Part, long hDC)
{
HDC h = (HDC)hDC;
RECT rtPart = {0}; GetClipBox(h, &rtPart);
InflateRect(&rtPart, -4, 0);
switch (Part)

{
case 128: /*exUpperBackPart*/

{
HBRUSH hB = CreateSolidBrush(RGB(0,255,0));
FillRect(h, &rtPart, hB);
DeleteObject(hB);
break;
}

case 512: /*exLowerBackPart*/
{
HBRUSH hB = CreateSolidBrush(RGB(255,0,0));
FillRect(h, &rtPart, hB);
DeleteObject(hB);
break;

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method

	Slider
	AllowFloat property
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	Caption property
	CaptionAlignment property
	CaptionIndentX property
	CaptionIndentY property
	Enabled property
	EnablePart property
	EnableParts property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	Font property
	ForeColor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	LabelTick property
	LargeChange property
	LargeChangeF property
	Maximum property
	MaximumF property
	Minimum property
	MinimumF property
	NotifyParent property
	Orientation property
	OwnerDrawPart property
	PartFromPoint property (readonly)
	Picture property
	PictureDisplay property
	ReplaceIcon method
	SelectRange property
	SelLength property
	SelStart property
	ShowFocusRect property
	ShowImageList property
	ShowThumbProgress property
	ShowToolTip method
	SmallChange property
	SmallChangeF property
	Template property
	TemplateDef property
	TemplatePut method
	ThumbSize property
	TickColor property
	TickFrequency property
	TickFrequencyF property
	TickStyle property
	ToolTipFont property
	ToolTipText property
	ToolTipTitle property
	ToolTipWidth property
	ToolTipX property
	ToolTipY property
	UserData property
	Value property
	ValueF property
	ValueFromPoint property (readonly)
	ValueFromPointF property (readonly)
	Version property
	VisiblePart property
	VisibleParts property
	VisualAppearance property (readonly)

	ExSlider events
	Change event
	Changing event
	Click event
	ClickingPart event
	ClickPart event
	DblClick event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	OwnerDrawEnd event
	OwnerDrawStart event

