
 ExShellView

Exontrol's new ExShellView component provides a file list view which is identical with the
right pane of your Windows Explorer. The ExShellView can be used in conjunction with
Exontrol's ExFolderView to create applications which have complete - or limited - explorer
capabilities. Using ExShellView you can easily present a list of files to users which they can,
optionally, be allowed to display as large icons, small icons, names, or complete details.
There is a FilePattern property you can use to select which files will be displayed. And, for
more demanding filtering requirements an event is fired for each item before it is displayed,
enabling you to determine on the fly which items to display. There is a pattern matching
method to help you filter names, and many other useful properties and events.

note The eXShellView and eXFolderVew controls adds Windows-Explorer functionality (
with the same look and behavior as your Explorer) to your forms. The main difference
between eXFileView and eXShellView or eXFolderView, is that eXFileView can customize
groups of files or folders with specified colors, fonts or icons, and the eXShellView and
eXFolderVew uses the Windows system to create the views, and so the look and behavior
is exactly like you would run your Windows Explorer in your form.

Ž ExShellView is a trademark of Exontrol. All Rights Reserved.

https://exontrol.com/exfolderview.jsp
https://exontrol.com/exfileview.jsp
https://exontrol.com/exfolderview.jsp

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AllowContextMenuEnum
The AllowContextMenuEnum type defines the value the AllowContextMenu property
supports. The AllowContextMenu property enables or disables the control's context-menu.
The AllowContextMenuEnum type supports the following values:

Name Value Description
exDisableContextMenu 0 Disable the control's context-menu.
exAllowContextMenu -1 Allow the control's context-menu.
exAllowListViewContextMenu 1 Allow the list-view's context-menu.
exAllowHeaderContextMenu 2 Allow the header's context-menu.

constants AppearanceEnum
Specifies the control's appearance. Use the Appearance property to specify the control's
appearance.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AttributesEnum
Indicates the attributes of the selected object. The Attribute property indicates the object's
attributes.

Name Value Description
CanCopy 1 The specified file objects or folders can be copied
CanMove 2 The specified file objects or folders can be moved

CanLink 4 It is possible to create shortcuts for the specified
file objects or folders

CanRename 16 The specified file objects or folders can be renamed
CanDelete 32 The specified file objects or folders can be deleted

HasPropSheet 64 The specified file objects or folders have property
sheets

DropTarget 256 The specified file objects or folders are drop
targets

Shortcut 65536 The specified file objects are shortcuts.
Share 131072The specified folders are shared.
ReadOnly 262144The specified file objects or folders are read-only
Hidden 524288The specified file objects are hidden
HasSubfolder -2147483648The specified folders have subfolders

IsFileSysAncestor 268435456The specified folders contain one or more file
system folders

IsFolder 536870912The specified items are folders

IsFileSystem 1073741824The specified folders or file objects are part of the
file system

Validate 16777216Validate cached information

Removable 33554432The specified file objects or folders are on
removable media

IsCompressed 67108864The specified items are compressed
IsBrowsable 134217728The specified items can be browsed in place
NonEnumerated 1048576The items are nonenumerated items
NewContent 2097152The objects contain new content

constants AttributesMask
Masks a collection of attributes. Use the Attributes property to retrieve specified attributes
based on giving mask.

Name Value Description
AllAttributes -1 All flags
CapabilityAttributes 375 This flag is a mask for the capability flags
DisplayAttributes 983040This flag is a mask for the display attributes
ContentsAttributes -2147483648This flag is a mask for the contents attributes
MiscellaneousAttributes -1048576This flag is a mask for the Miscellaneous attributes

constants FolderFlagsEnum
The FolderFlagsEnum type specifies the control's behavior. Use the ModifyFolderFlags
method to add or remove flags to the current view.

Name Value Description
NoFlag 0 None
AutoArrange 1 Automatically arrange the elements in the view
DesktopStyle 32 Make the folder behave like the desktop
SingleSel 64 Do not allow more than a single item to be selected
NoSubFolders 128 Do not show subfolders

Transparent 256 Draw transparently, This is used only for the
desktop

NoClientEdge 512 Do not add the WS_EX_CLIENTEDGE value to the
view

NoScroll 1024 Do not add scroll bars. This is used only for the
desktop

AlignLeft 2048 The view should be left-aligned
NoIcons 4096 The view should not display icons

constants IncludeObjectEnum
The IncludeObjectEnum type specifies the list of objects being included in the control's list.
Use the IncludeObjectType property to specify the object being included in the control's list.

Name Value Description
AllObjects 0 Don't send the IncludeObject event.

UserObjects 1 Send the IncludeObject event, and let the user to
choose.

FoldersOnly 2 Select only folders, and the send the IncludeObject
event to let the user to choose.

PatternObjects 3 Select all folders, and choose only files that
macthing with a given pattern.

constants ObjectTypeEnum
The ObjectTpeEnum type indicates the list of objects being requested. Use the Get method
to retrieve the collection of selected item as well as all items displayed in the current view.

Name Value Description
NoItems 0 Nothing to collect.
SelectedItems 1 Collects the list of files/folders being selected.
AllItems 2 Gets the entire collection of files/folders.

AsDisplayed 16
AsDisplayed flag can be combined with
SelectedItems or AllItems to get the selected/all
items as they are listed

constants SelectItemFlagsEnum
The SelectItemFlagsEnum type specifies the actions that SelectItem method may execute.

Name Value Description
Deselect 0 Deselect the specified item
EnsureVisible 8 Ensure the item is displayed on the screen.
Focused 16 The item should be given the focus.
Select 1 The item should be selected

constants SpecialFolderPathConstants
Indicates the list of common folders in your system. Use the SpecialFolder property to build
an ExShellFolder object based on a common folder.

Name Value Description

Desktop 0 Windows Desktop virtual folder that is the root of
the namespace.

Internet 1 Virtual folder representing the Internet

Programs 2
File system directory that contains the user's
program groups (which are also file system
directories).

ControlPanel 3 Virtual folder containing icons for the Control Panel
applications

Printers 4 Virtual folder containing installed printers

Personal 5 File system directory that serves as a common
repository for documents.

Favorites 6 File system directory that serves as a common
repository for the user's favorite items.

Startup 7

File system directory that corresponds to the user's
Startup program group. The system starts these
programs whenever any user logs onto Windows
NT or starts Windows 95.

Recent 8 File system directory that contains the user's most
recently used documents.

SendTo 9 File system directory that contains Send To menu
items.

Recycled 10 Virtual folder containing the objects in the user's
Recycle Bin

StartMenu 11 File system directory containing Start menu items.

DesktopDir 16

File system directory used to physically store file
objects on the desktop (not to be confused with the
desktop folder itself). A common path is
C:WINNTProfilesusernameDesktop

MyComputer 17

My Computer virtual folder containing everything on
the local computer: storage devices, printers, and
Control Panel. The folder may also contain mapped
network drives

Network 18 Network Neighborhood virtual folder representing
the top level of the network hierarchy

NetHood 19
File system directory containing objects that appear
in the network neighborhood. A common path is
C:WINNTProfilesusername etHood

Fonts 20 Virtual folder containing fonts.

Templates 21 File system directory that serves as a common
repository for document templates

CommonStartMenu 22

File system directory that contains the programs
and folders that appear on the Start menu for all
users. A common path is C:WINNTProfilesll
UsersStart Menu. Valid only for Windows NTŽ
systems

CommonPrograms 23

File system directory that contains the directories
for the common program groups that appear on the
Start menu for all users. A common path is
c:WINNTProfilesll UsersStart MenuPrograms. Valid
only for Windows NTŽ systems

CommonStartup 24

File system directory that contains the programs
that appear in the Startup folder for all users. A
common path is C:WINNTProfilesll UsersStart
MenuProgramsStartup. Valid only for Windows NTŽ
systems

CommonDesktopDir 25

File system directory that contains files and folders
that appear on the desktop for all users. A common
path is C:WINNTProfilesll UsersDesktop. Valid only
for Windows NTŽ systems

AppData 26
File system directory that serves as a common
repository for application-specific data. A common
path is C:WINNTProfilesusernamepplication Data

PrintHood 27
File system directory that serves as a common
repository for printer links. A common path is
C:WINNTProfilesusernamePrintHood

AltStartup 29 File system directory that corresponds to the user's
nonlocalized Startup program group

CommonAltStartup 30
File system directory that corresponds to the
nonlocalized Startup program group for all users.
Valid only for Windows NTŽ systems
File system directory that serves as a common

CommonFavorites 31 repository for all users' favorite items. Valid only for
Windows NTŽ systems

InternetCache 32

File system directory that serves as a common
repository for temporary Internet files. A common
path is C:WINNTProfilesusername emporary
Internet Files

Cookies 33
File system directory that serves as a common
repository for Internet cookies. A common path is
C:WINNTProfilesusernameCookies

History 34 File system directory that serves as a common
repository for Internet history items

constants StatesEnum
The StatesEnum type indicates the view's state that's being changed. The StateChange
event notifies your application whether the view is changing its state.

Name Value Description
SetFocusState 0 The focus has been set to the view
KillFocusState 1 The view has lost the focus
SelChangeState 2 The selection has changed
RenameState 3 An item has been renamed.

constants ViewModeType
The ViewModeType expression indicates how the control displays its items. Use the
ViewMode property to change the control's view mode.

Name Value Description
LargeIcons 1 The view should display large icons
SmallIcon 2 The view should display small icons
List 3 Object names are displayed in a list view

Details 4 Object names and other selected information, such
as the size or date last updated, are shown

Thumbnail 5 Shows the view as thumbnail
Tile 6 Shows the view as tiles
Thumbstrip 7 Shows the view as thumb strip
Content 8 Shows the view as content

Extra_Large_Icons 13 Shows the view as extra large icons (Available for
Windows Vista, Windows 7, ...)

Large_Icons 14 Shows the view as large icons (Available for
Windows Vista, Windows 7, ...)

Medium_Icons 15 Shows the view as medium icons (Available for
Windows Vista, Windows 7, ...)

ExShellFolder object
Contains information about a folder. The ExShellFolder object holds information about a
shell folder. This information includes the name, the path, and the ID of the contained shell
folder. The BrowseFolder property retrieves a ExShellFolder object that contains
information about browsed shell folder. The ID property returns a unique identifier
generated by Windows that represents this Folder object. This identifier is used by
Windows to represent any shell object. The Name property holds the name of the folder
and the path represents the path of the folder.

Name Description
ID Retrieves the Folder's ITEMIDLIST
Name Retrieves the name of the object.
Path Retrieves the full path of the source.

property ExShellFolder.ID as Variant
Retrieves the Folder's ITEMIDLIST

Type Description

Variant A Variant expression that indicates the identifier of the
folder.

The ID property retrieves a string that contains the unique shell object identifier. The
identifier is generated by Windows and is used to represent any shell object.

property ExShellFolder.Name as String
Retrieves the name of the object.

Type Description
String Indicates the folder's name.

This property holds the name of the folder, that is the same as folder's name on a disk.

property ExShellFolder.Path as String
Retrieves the full path of the source.

Type Description

String A String expression that indicates the full path of the
folder.

This property holds the path of the folder. Since each ExShellFolder object is usually a file
on a disk, this property determines where it is stored.

ExShellObject object
Holds information about an individual shell object. The ExShellObject is an element of the
ExShellObjects collection. The ExShellObject holds information about a shell object. It
contains a name, a path and atributes of the contained shell object. The ExShellObject
object can be retrieved using the Item property of ExShellObjects collection. For instance,
when the you want to get the collection of selected items, you need to get a reference to
ExShellObjects collection by using the Objects property of ExShellView control. Once that
you have this reference, you have to ask the collection for selected items by calling the
Get(SelectedItems) method of ExShellObjects collection. Now, the ExShellObjects contains
a collection files and folders selected. To determine the type of a shell object, you use the
Attribute property.

Name Description
Attribute Check if anAttribute is set for this object
Attributes Retrieve the attributes of this object

InvokeCommand Invokes a specified command from the object's context
menu.

InvokeRename Renames a shell object at runtime.
Name Return the name of object, relative to parent folder
Path Retrieve the full path of one object

SelectItem Changes the selection state of one item within the shell
view window.

property ExShellObject.Attribute (Attribute as AttributesEnum) as
Boolean
property Attribute - Check if anAttribute is set for this object

Type Description

Attribute as AttributesEnum A constant value that is used to determine an object's
attribute.

Boolean A Boolean expression that indicates whether selected
object contains specified attribute.

Use this property to determine if the current object is, a Folder, a short-cut, is visible, can
be deleted, and so on.

property ExShellObject.Attributes (Mask as AttributesMask) as Long
property Attributes - Retrieve the attributes of this object

Type Description

Mask as AttributesMask A constant value that is used to determine the object's
combination of attributes

Long A long expression that indicates the attributes being
requested.

This property returns one or more of an object's attributes. The return value will be a
combination of all the object's attributes.

method ExShellObject.InvokeCommand (CommandName as String)
Invokes a specified command from the object's context menu.

Type Description

CommandName as String A String expression that indicates the name of the
command being executed.

The InvokeCommand method executes a command from the object's context menu. Use the
InvokeRename method to rename an object at runtime. Use the Get(SelectedItems)
method to retrieve the selected objects in the current view.

Here's the list of the identifiers for some known items in the object's context menu :

Create Shortcut (17)
Delete (18)
Properties (20)
Cut (25)
Copy (26)

The following VB sample displays the object's Properties dialog, when the user presses the
F2 key:

Private Sub ExShellView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyF2 Then
 ExShellView1.Objects.Get (SelectedItems)
 With ExShellView1.Objects
 If (.Count > 0) Then
 .Item(0).InvokeCommand ("Properties")
 End If
 End With
 End If
End Sub

method ExShellObject.InvokeRename ()
Renames a shell object at runtime.

Type Description

Call the InvokeRename method to call renaming an folder or a file, at run-time. Use the
Get(SelectedItems) method to retrieve the selected objects in the current view. The rename
operation starts only if the selected shell object supports renaming. For instance, if you try
to rename the Recycle Bin folder, it is not allowed, since it doesn't support renaming. The
view is focused, when the InvokeRename method is executed. Use the InvokeCommand
method to execute a command from the object's context menu.

The following VB sample starts renaming the selected object, when the user presses the F2
key:

Private Sub ExShellView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyF2 Then
 ExShellView1.Objects.Get (SelectedItems)
 With ExShellView1.Objects
 If (.Count > 0) Then
 .Item(0).InvokeRename
 End If
 End With
 End If
End Sub

property ExShellObject.Name as String
Return the name of object, relative to parent folder

Type Description
String A String expression that specified the object's name.

Since every item needs to have it's name, this property holds it. This value is the same text
as seen in eXShellView when browsed.

property ExShellObject.Path as String
Retrieve the full path of one object

Type Description
String A string expression that indicates the path to the object.

Indicates the path where the object is stored. This property returns complete (absolute)
path of referred item. If only short (relative) path is needed, Name property should be used.

method ExShellObject.SelectItem (Flags as SelectItemFlagsEnum)
Changes the selection state of one item within the shell view window.

Type Description
Flags as
SelectItemFlagsEnum

A SelectItemFlagsEnum expression that specifies the
action being executed.

Use the SelectItem property to ensure that a specified item is visible.

ExShellObjects object
Holds a collection of ExShellObject objects. Use the Objects property to get the entire list
of browsed items, or selected items, and so on.

Name Description
Count Counts the element from collection.
Get Refreshes the Objects collection.
Item Retrieves the ExShellObject object given its index.

property ExShellObjects.Count as Long
Counts the element from collection.

Type Description

Long A long expression that specifies the count of elements in
the collection.

This read-only property returns the number if elements in the ExShellObjects collection. Use
the Item property to access an element in the collection. Use the Get method before
accession the Count or Item property to retrieve the specific files or folders.

method ExShellObjects.Get (objectType as ObjectTypeEnum)
Refreshes the Objects collection.

Type Description
objectType as
ObjectTypeEnum

An ObjectTypeEnum expression that specifies the list of
items being requested.

The Get method fills the ExShellObjects collection with specific files/folders (selection or all
items). The Get method can clear the collection, fill it with selected items, or fill it with all
files/folders in the control. The Count property indicates the number of elements within the
collection. The Item property retrieves a specific member in the collection.

The Get method gets:

nothing, if the objectType parameter is NoItems

all files or folders being listed in the current view, if the objectType parameter is
AllItems

all files or folders being listed in the current view, as they are displayed, if the
objectType parameter is AllItems Or AsDisplayed

selected files or folders, if the objectType parameter is SelectedItems

selected files or folders as they are displayed, if the objectType parameter is
SelectedItems or AsDisplayed

The following VB sample gets the files being selected as they are displayed (sorted, ...)

With ExShellView1
 .Objects.Get (SelectedItems Or AsDisplayed)
 For i = 0 To .Objects.Count - 1
 Debug.Print .Objects(i).Name
 Next
End With

The following VB.NET sample shows how to get the selected files/folder for /NET assembly
version:

Dim i As Long = 0, s As String = ""
With Exshellview1
 .Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)

 With .Objects
 For i = 0 To .Count - 1
 Dim sel As exontrol.EXSHELLVIEWLib.exshellobject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")
Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /NET assembly
version:

string s = "";
exshellview1.Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < exshellview1.Objects.Count; i++)
{
 exontrol.EXSHELLVIEWLib.exshellobject sel = exshellview1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

The following VB.NET sample shows how to get the selected files/folder for /COM on
Window.Forms version:

Dim i As Long = 0, s As String = ""
With AxExShellView1
 .Objects.Get(EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1

 Dim sel As EXSHELLVIEWLib.ExShellObject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")
Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /COM on
Window.Forms version:

string s = "";
axExShellView1.Objects.Get(EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < axExShellView1.Objects.Count; i++)
{
 EXSHELLVIEWLib.ExShellObject sel = axExShellView1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

The following VB6 sample shows how to get the selected files/folder for /COM version:

Dim i As Long, s As String
s = ""
With ExShellView1
 .Objects.Get (EXSHELLVIEWLibCtl.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As EXSHELLVIEWLibCtl.ExShellObject
 Set sel = .Item(i)

 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If Len(s) > 0 Then
 MsgBox s, , "Selection"
Else
 MsgBox "Empty", , "Selection"
End If

The following Access sample shows how to get the selected files/folder for /COM version:

Dim i As Long, s As String
s = ""
With ExShellView1
 .Objects.Get (EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As EXSHELLVIEWLib.ExShellObject
 Set sel = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If Len(s) > 0 Then
 MsgBox s, , "Selection"
Else
 MsgBox "Empty", , "Selection"
End If

The following VPF sample shows how to get the selected files/folder for /COM version:

local sel
s = ""
with thisform.ExShellView1
 .Objects.Get(1)

 for i = 0 to .Objects.Count - 1
 sel = .Objects.Item(i)
 s = s + sel.Name + chr(13)+chr(10)
 next
endwith
messagebox(s)

The following C++ sample shows how to get the selected files/folder for /COM version:

CString s;
CExShellObjects objects = m_shellView.GetObjects();
objects.Get(1);
for (long i = 0; i < objects.GetCount(); i++)
{
 CExShellObject sel = objects.GetItem(COleVariant(i));
 s = s + sel.GetName() + _T("\r\n");

}
if (s.GetLength() > 0)
 MessageBox(s, _T("Selection"));
else
 MessageBox(_T("Empty"), _T("Selection"));

property ExShellObjects.Item (Index as Variant) as ExShellObject
Retrieves the ExShellObject object given its index.

Type Description

Index as Variant A Long expression that specifies the index of the object
being requested

ExShellObject An ExShellObject object being requested.

This objects are created internally and the user cannot add or remove them. The Item
property retrieves an object based on its index. Use the Get method to fill the Objects
collection with specified files or folders.

The following VB sample displays all browsed objects:

ExShellView1.Objects.Get AllItems
With ExShellView1.Objects
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
End With

ExShellView object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {B4E1F234-AF0D-4EAD-8113-A563B40E71CA}. The object's program identifier is: "Exontrol.ShellView".
The /COM object module is: "ExShellView.dll"

Exontrol's new ExShellView component provides a file list view which is identical with the
right pane of your Windows Explorer. The control supports the following properties and
methods:

Name Description

AlignToGrid Specifies whether in icon view, icons automatically snap
into a grid.

AllowContextMenu Enables or disables the control's context-menu.

Appearance Returns or sets a value that determines the appearance of
the object.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoArrange Specifies whether the files are automatically kept
arranged in icon and small icon view.

BrowseFiles Specifies a list (separated by | character) or safe array
of files to be shown in the shell view.

BrowseFolder Retrieves or sets the browsed folder using a path, a
special folder constant or another Folder object.

CancelObjectSelect Cancels opening the object being double clicked (aka
folder or zip files) during the ObjectSelect event.

CanRename Retrieves or sets a value indicating whether the user can
rename files/folders at runtime.

ColumnNames Defines a list of column's name replacements, separated
by comma as 'Name1(NewName1),...'

CurrentFolder Retrieves or sets the folder to be browsed.

DefaultMenuItems Retrieves or sets a value that indicates whether the
control allows default shell context menu items.

DisableDragDrop Disables the OLE Drag and Drop within the control.

DrawGridLines Specifies whether the control shows the grid lines around
items, when the control's view is details.

Enabled Retrieves or sets a value indicating whether the control
responds to the user-generated events.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

FilePattern Retrieves or sets a string value that indicates the file
pattern used to include files. "*.jpg *.bmp "

Font Retrieves or sets a Font object used to paint the items.
HeaderVisible Specifies whether the view's header is visible or hidden.

HideFileNames Specifies whether the files hides the names in icon and
small icon view.

HideToolTips Specifies whether the file displays a tooltip when the
cursor hovers the shellview.

hWnd Retrieves the window handle.

IncludeObjectType Retrieves or sets the way how the control will filter the
objects.

MatchPattern Checks if the given word matches the given mask.

ModifyFolderFlags Adds or removes flags that indicates the options for
browsed folder.

Objects Retrieves a collection of ExShellObject objects that
indicates the current selection, or all items from the view.

OverlayIcons Retrieves or sets a value indicating whether the control
displays the overlay icons.

Refresh Refreshes the content of the browsed folder.

SelectAll Selects or unselects all files in the control when the
multiple selection is enabled.

ShellFolder Retrieves a Folder object based on a path, on a special
folder constant or on an ID property.

SpecialFolder Retrieves a Folder object given a special folder constant.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

UpOneLevel Browses the parent of current browsed folder.
Version Retrieves the Version of the control.
ViewFolderFlags Retrieves the flags for the browsed folder.

ViewMode Returns or changes the current view of the control.

property ExShellView.AlignToGrid as Boolean
Specifies whether in icon view, icons automatically snap into a grid.

Type Description

Boolean A Boolean expression that indicates whether the view
aligns the files up to a grid.

By default, the AlignToGrid property is False. Use the AlignToGrid property to specifies
whether in icon view, icons automatically snap into a grid. The AutoArrange property
specifies whether the files are automatically kept arranged in icon and small icon view.

The AlignToGrid property has effect if the control's ViewMode property is:

LargeIcons
SmallIcon
Thumbnail
Tile
Extra_Large_Icons
Large_Icons
Medium_Icons

The AlignToGrid property has NO effect if the control's ViewMode property is:

List
Details

property ExShellView.AllowContextMenu as AllowContextMenuEnum
Enables or disables the control's context-menu.

Type Description

AllowContextMenuEnum An AllowContextMenuEnum expression that specifies flags
to apply

By default, the AllowContextMenu property is -1 (exAllowContextMenu), which indicates
that the control's context-menu is allowed. The control's context-menu is shown once the
user right clicks the control. The AllowContextMenu property on 0 (exDisableContextMenu)
disables the control's context-menu, so the user can't show the control's context-menu when
user right-clicks the control or press the Context key.

property ExShellView.Appearance as AppearanceEnum
Returns or sets a value that determines the appearance of the object.

Type Description

AppearanceEnum An AppearanceEnum expression that specifies the
control's appearance.

Use the Appearance property to change the control's appearance.

method ExShellView.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ExShellView1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ExShellView.AutoArrange as Boolean
Specifies whether the files are automatically kept arranged in icon and small icon view.

Type Description

Boolean A Boolean expression that indicates whether the files are
automatically kept arranged in icon and small icon view.

By default, the AutoArrange property is False. The AutoArrange property specifies whether
the files are automatically kept arranged in icon and small icon view. Use the AlignToGrid
property to specifies whether in icon view, icons automatically snap into a grid.

The AutoArrange property has effect if the control's ViewMode property is:

LargeIcons
SmallIcon
Thumbnail
Tile
Extra_Large_Icons
Large_Icons
Medium_Icons

The AutoArrange property has NO effect if the control's ViewMode property is:

List
Details

property ExShellView.BrowseFiles as Variant
Specifies a list of files (separated by | character) to be displayed in the shell view.

Type Description

Variant

The parameter could be one of the following:

A String expression that indicates the list of files to be
shown in the shell view. The list of files is separated
by | character. You can specify existing files or non-
existing files. If the file exists its view is based on its
content, while if the file is not-existing, the extension
of the file specifies what icon is displayed in the view.
Each existing file can display a different icon, if
specifying a different extension after the > character.
Each file can have a different extension, by adding >
extension to the name of the file, such as
"C:\exontrol\images\auction.gif>PNG" which will show
the auction item with the PNG associated icon. The
"C:\Program Files\Microsoft Visual FoxPro
9\vfp9.exe|C:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE\devenv.exe" shows the VFP9 and
DEVENV tools in the same view
A Safe array of files to be shown on the shell view.
Each file can have a different extension, by adding >
extension to the name of the file. For instance, the
Array("document.doc", "text.txt", "executable.exe")
displays a three items

The BrowseFiles property displays files from different folders in the same view. The
ViewMode property specifies the current's view mode. The Objects.Get(AllItems) property
to get the collection of files/folders being shown in the shell view. The
Objects.Get(SelectedItems) property to get a collection of selected files/folders. The
ObjectSelected event notifies your application that a new items in the list is selected. The
HeaderVisible property specifies whether the shell view shows or hides the control's
header. The DrawGridLines property indicates whether the control shows or hides the grid
lines around the items. The BrowseFolder property specifies the folder to be shown on the
shell view.

The following VB sample shows files giving a safe array:

With ExShellView1

 .ViewMode = Thumbnail
 .BrowseFiles = Array("A.txt", "B.txt", "C.txt")
End With

The following VB sample shows the files giving a string:

With ExShellView1
 .ViewMode = Thumbnail
 .BrowseFiles = "A.txt|B.txt|C.txt"
End With

property ExShellView.BrowseFolder as Variant
Retrieves or sets the browsed folder using a path, a special folder constant or another
Folder object.

Type Description
Variant A reference to the folder object that is currently browsed.

The BrowseFolder property can be used to specify a different folder to be browsed or can
be used to link controls as: ExShellView, ExFolderView, ExFileView and so on. Use the
CurrentFolder property to specify the current/browsed folder giving the path as string.
BrowseFolder property holds a reference to the ExShellFolder object being browsed, which
keeps information about the current folder name, path and so on. The BrowseFolder
property is automatically updated as soon as the user browses for a new folder. For
instance, double click a folder. The BrowseFolder does not return the selected shell
objects, instead use the Objects property as shown bellow. Use the ShellFolder or
SpecialFolder properties to create ExShellFolder objects based on path, identifier. The
ViewMode property specifies the current's view mode. The Objects.Get(SelectedItems)
property to get a collection of selected files/folders. The BrowseFolderChange event
notifies your application once the user changes the current folder.

Use the BrowseFiles property to display files from different folders in the same view.

For instance, the following VB sample browses the c:\temp folder:

With ExShellView1
 .BrowseFolder = .ShellFolder("c:\temp")
End With

of the following VB sample browses the Control Panel objects:

With ExShellView1
 .BrowseFolder = .SpecialFolder(ControlPanel)
End With

The following sample VB sample displays the path of the selected shell object (file or folder
) (single selected object):

With ExShellView1
 .Objects.Get SelectedItems
 With .Objects
 If .Count > 0 Then

 Debug.Print .Item(0).Path
 End If
 End With
End With

The following sample VB sample displays the path for all selected shell objects (file or
folder) (multiple selected objects):

Dim i As Long
With ExShellView1
 .Objects.Get SelectedItems
 With .Objects
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Path
 Next
 End With
End With

method ExShellView.CancelObjectSelect ()
Cancels opening the object being double clicked (aka folder or zip files) during the
ObjectSelect event.

Type Description

The CancelObjectSelect method has effect only if it is called during the ObjectSelect event.
Use the CancelObjectSelect method to prevent opening or browsing for folder items being
double clicked. By default, if a folder item is being double clicked, the folder gets browsed.
If a file is being double clicked, nothing is happen.

The following VB sample prevents opening a zip file (which is considered a folder item):

Private Sub ExShellView1_ObjectSelect(ByVal Object As
EXSHELLVIEWLibCtl.IExShellObject)
 If Object.Name Like "*.zip" Then
 ExShellView1.CancelObjectSelect
 End If
End Sub

property ExShellView.CanRename as Boolean
Retrieves or sets a value indicating whether the user can rename files/folders at runtime.

Type Description

Boolean A Boolean expression that specifies whether the user can
rename the files/folders at runtime.

By default, the CanRename property is False. Use the CanRename property on False, to
prevent renaming the files / folders when user browsing a folder. Use the Refresh method
to update the view and its settings.

property ExShellView.ColumnNames as String
Defines a list of column's name replacements, separated by comma as
'Name1(NewName1),...'

Type Description

String A string expression that defines the column-names to
rename

By default, the ColumnNames property is "" (empty string). The ColumnNames property
renames the column's name. For instance, the "Name(Ime),Date modified(Datum),Item
type(Tip),Size(Velikost)" renames the following columns to:

"Name" to "Ime"
"Date modified" to "Datum"
"Item type" to "Tip"
"Size" to "Velikost"

The following screen show shows the default control:

and with columns renamed:

property ExShellView.CurrentFolder as String
Retrieves or sets the folder to be browsed.

Type Description
String A String expression that specifies the current folder.

The CurrentFolder property indicates the path of the folder being browsed. Use the
CurrentFolder property to specify the current/browsed folder giving the path as string. Use
the BrowseFolder property to specify a browsed folder or to link the ExShellView control
with ExFileView or ExFolderView controls. The CurrentFolder property can be seen as a
simpler method of BrowseFolder property. The ViewMode property specifies the current's
view mode. The Objects.Get(SelectedItems) property to get a collection of selected
files/folders. The BrowseFolderChange event notifies your application once the user
changes the current folder.

property ExShellView.DefaultMenuItems as Boolean
Retrieves or sets a value that indicates whether the control allows default shell context
menu items.

Type Description

Boolean A Boolean expression that indicates whether the control
displays the shell context menu.

By default, the DefaultMenuItems property is True. Use the DefaultMenuItems property to
disable showing the control's shell context menu when user right clicks the list. Use the
QueryContextMenu event to add new items to the default shell context menu. The
InvokeItemMenu event notifies the application once the user selects a command by
identifier in the context menu.

property ExShellView.DisableDragDrop as Boolean
Disables the OLE Drag and Drop within the control.

Type Description

Boolean A Boolean expression that specifies whether the OLE
Drag and Drop within the control is enabled or disabled.

By default, the DisableDragDrop property is False. You can use the DisableDragDrop
property to disable OLE Drag and Drop within the control.

property ExShellView.DrawGridLines as Boolean
Specifies whether the control shows the grid lines arround items, when the control's view is
details.

Type Description

Boolean A Boolean expression that specifies whether the control
shows the grid lines around items/files/folders.

By default, the DrawGridLines property is False, which indicates that no grid lines are
displayed around the items. The DrawGridLines property has effect while the control's
ViewMode property is Details.

The following screen shot shows the view with grid lines around the files/folders:

The following samples shows the grid lines around the files/folders:

VBA (MS Access, Excell...)

With ExShellView1
 .ViewMode = 4
 .DrawGridLines = True
 .Refresh
End With

VB6

With ExShellView1
 .ViewMode = Details
 .DrawGridLines = True
 .Refresh

End With

VB.NET

With Exshellview1
 .ViewMode = exontrol.EXSHELLVIEWLib.ViewModeType.Details
 .DrawGridLines = True
 .Refresh()
End With

VB.NET for /COM

With AxExShellView1
 .ViewMode = EXSHELLVIEWLib.ViewModeType.Details
 .DrawGridLines = True
 .Refresh()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSHELLVIEWLib' for the library: 'ExShellView 1.0 Control
Library'

 #import <ExShellView.dll>
 using namespace EXSHELLVIEWLib;
*/
EXSHELLVIEWLib::IExShellViewPtr spExShellView1 = GetDlgItem(IDC_EXSHELLVIEW1)-
>GetControlUnknown();
spExShellView1->PutViewMode(EXSHELLVIEWLib::Details);
spExShellView1->PutDrawGridLines(VARIANT_TRUE);
spExShellView1->Refresh();

C++ Builder

ExShellView1->ViewMode = Exshellviewlib_tlb::ViewModeType::Details;
ExShellView1->DrawGridLines = true;

ExShellView1->Refresh();

C#

exshellview1.ViewMode = exontrol.EXSHELLVIEWLib.ViewModeType.Details;
exshellview1.DrawGridLines = true;
exshellview1.Refresh();

JScript/JavaScript

<BODY onload='Init()'>
<OBJECT CLASSID="clsid:B4E1F234-AF0D-4EAD-8113-A563B40E71CA"
id="ExShellView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ExShellView1.ViewMode = 4;
 ExShellView1.DrawGridLines = true;
 ExShellView1.Refresh();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload='Init()'>
<OBJECT CLASSID="clsid:B4E1F234-AF0D-4EAD-8113-A563B40E71CA"
id="ExShellView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ExShellView1
 .ViewMode = 4
 .DrawGridLines = True

 .Refresh
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axExShellView1.ViewMode = EXSHELLVIEWLib.ViewModeType.Details;
axExShellView1.DrawGridLines = true;
axExShellView1.Refresh();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exshellview1.ViewMode(4/*Details*/);
 exshellview1.DrawGridLines(true);
 exshellview1.Refresh();
}

Delphi 8 (.NET only)

with AxExShellView1 do
begin
 ViewMode := EXSHELLVIEWLib.ViewModeType.Details;
 DrawGridLines := True;
 Refresh();
end

Delphi (standard)

with ExShellView1 do

begin
 ViewMode := EXSHELLVIEWLib_TLB.Details;
 DrawGridLines := True;
 Refresh();
end

VFP

with thisform.ExShellView1
 .ViewMode = 4
 .DrawGridLines = .T.
 .Refresh
endwith

dBASE Plus

local oExShellView

oExShellView = form.Activex1.nativeObject
oExShellView.ViewMode = 4
oExShellView.DrawGridLines = true
oExShellView.Refresh()

XBasic (Alpha Five)

Dim oExShellView as P

oExShellView = topparent:CONTROL_ACTIVEX1.activex
oExShellView.ViewMode = 4
oExShellView.DrawGridLines = .t.
oExShellView.Refresh()

Visual Objects

oDCOCX_Exontrol1:ViewMode := Details
oDCOCX_Exontrol1:DrawGridLines := true

oDCOCX_Exontrol1:Refresh()

PowerBuilder

OleObject oExShellView

oExShellView = ole_1.Object
oExShellView.ViewMode = 4
oExShellView.DrawGridLines = true
oExShellView.Refresh()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComViewMode to OLEDetails
 Set ComDrawGridLines to True
 Send ComRefresh
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oExShellView

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oExShellView := XbpActiveXControl():new(oForm:drawingArea)

 oExShellView:CLSID := "Exontrol.ShellView.1" /*{B4E1F234-AF0D-4EAD-8113-
A563B40E71CA}*/
 oExShellView:create(,, {10,60},{610,370})

 oExShellView:ViewMode := 4/*Details*/
 oExShellView:DrawGridLines := .T.
 oExShellView:Refresh()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property ExShellView.Enabled as Boolean
Retrieves or sets a value indicating whether the control responds to the user-generated
events.

Type Description

Boolean A Boolean expression that specifies whether the control is
enabled or disabled.

This property determines if the control responds to user-generated events at run-time. The
Enabled property allows ExShellView to be enabled or disabled at run-time. If control is
disabled, no user-generated events are reported to ExShellView. Disabling ExShellView is
possible, for display purposes, such as if you want only to provide read-only information.

property ExShellView.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method ExShellView.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

For instance, the following sample retrieves the the handle of the first visible item:

Debug.Print ExShellView1.ExecuteTemplate("Items.FirstVisibleItem()")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExShellView.FilePattern as String
Retrieves or sets a string value that indicates the file pattern used to include files. "*.jpg
*.bmp "

Type Description

String A string expression that specifies the pattern that is used
to filter files.

The FilePattern Property the enables user to filter out and show only specific items in the
control. Typical wildcard expressions should be used to select a pattern. For example,

 ExShellView1.FilePattern = "*.zip"

would display only items whose filename ends with ".zip' part (aka ZIP files). Also, any valid
(wildcard) expression can be used. Please note that the FilePattern Property is valid only
when the IncludeObjectType Property is set to the 'PatternObjects' constant.

property ExShellView.Font as IFontDisp
Retrieves or sets a Font object used to paint the items.

Type Description
IFontDisp A Font object being used to display items in the control.

Use the Font property to change the control's font.

property ExShellView.HeaderVisible as Boolean
Specifies whether the view's header is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the control's
header is visible or hidden.

By default, the HeaderVisible property is True. Use the HeaderVisible property to hide the
control's header. The ViewMode property indicates the shell's view mode. The AutoArrange
property specifies whether the files are automatically kept arranged in icon and small icon
view. Use the AlignToGrid property to specifies whether in icon view, icons automatically
snap into a grid. The HideFileNames property specifies whether the view shows the names
for the files.

property ExShellView.HideFileNames as Boolean
Specifies whether the files hides the names in icon and small icon view.

Type Description

Boolean A boolean expression that indicates whether the files hides
the names in icon and small icon view.

By default, the HideFileNames property is False. Use the HideFileNames property to hide
the names of the files in the view. The HideToolTips property specifies whether the control
display a tooltip when the cursor hovers a file or folder. The HeaderVisible property
specifies whether the shell displays its header (columns part on top side of the control)

This option may be available on newer version such as: Windows Vista, Windows 7, ...

The following screen shot shows a view with HideFileNames property is True:

and, the following screen shot shows a view with HideFileNames property is False,

property ExShellView.HideToolTips as Boolean
Specifies whether the file displays a tooltip when the cursor hovers the shellview.

Type Description
Boolean A Boolean expression that

By default, the HideToolTips property is True, which means that the tooltips are shown when
the cursor hovers a file. Use the HideToolTips property to hide the tooltips whenever the
cursor is hovering a file or folder. The HeaderVisible property specifies whether the shell
displays its header (columns part on top side of the control) The ViewMode property
indicates the shell's view mode. The AutoArrange property specifies whether the files are
automatically kept arranged in icon and small icon view. Use the AlignToGrid property to
specifies whether in icon view, icons automatically snap into a grid.

property ExShellView.hWnd as Long
Retrieves the window handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

property ExShellView.IncludeObjectType as IncludeObjectEnum
Retrieves or sets the way how the control will filter the objects.

Type Description

IncludeObjectEnum An IncludeObjectEnum expression that indicates the object
being included in the list.

The IncludeObjectType property determines which files should be displayed on the screen
when a folder is browsed. Depending on values showed below, it can show all objects, only
folders, only user-defined objects (user determines which object should be shown run-time),
and only ones that match given pattern with FilePattern property.

property ExShellView.MatchPattern (strPattern as String, strWord as
String) as Boolean
Checks if the given word matches the given mask.

Type Description

strPattern as String A string expression that represents the pattern that will be
used to test given string (ie. "*.*","?.exe" etc..

strWord as String A string expression that is to be tested with given pattern

Boolean A Boolean expression that specifies whether the specified
word matches the giving pattern.

It might be pretty hard to test if certain text applies to a given pattern. Therefore, we
included this method for you, so this test is done internally. This method will test if given
string matches any pattern given by strPattern.

For example, this part of code will return True (tested in VB):

 Debug.Print ExShellView1.MatchPattern("*.zip", "test.zip")
 Debug.Print ExShellView1.MatchPattern("te*", "test.zip")
 Debug.Print ExShellView1.MatchPattern("?es*", "test.zip")
 Debug.Print ExShellView1.MatchPattern("t*p", "test.zip")

because 'test.zip' can by intentified by any of above patterns. Obviously, code

 Debug.Print ExShellView1.MatchPattern("*.zip", "test.exe")

will return False, because this is not a valid match.

method ExShellView.ModifyFolderFlags (Add as FolderFlagsEnum,
Remove as FolderFlagsEnum)
Adds or removes flags that indicates the options for browsed folder.

Type Description

Add as FolderFlagsEnum A combination of FolderFlagsEnum value that indicates the
flags being added to current view.

Remove as
FolderFlagsEnum

A combination of FolderFlagsEnum value that indicates the
flags being removed from the current view.

This method determines custom flags that can apply to ExShellView determining its
appearance. For example, reset the 'SingleSel' flag, and so the current view supports
selecting multiple items. By default, the control supports selecting a single item. Use the
ObjectSelected event to notify your application when the user selects an item. The
ViewFloderFlags property is used to determine custom flags that are applied to the control
determining its appearance. Use the SelectAll method to select all files in the control's view.

The following VB/NET sample shows how to enable multiple selection within the view:

Exshellview1.ViewFolderFlags = Exshellview1.ViewFolderFlags And Not
exontrol.EXSHELLVIEWLib.FolderFlagsEnum.SingleSel

The following C# sample shows how to enable multiple selection within the view:

exshellview1.ViewFolderFlags = exshellview1.ViewFolderFlags & ~
((int)exontrol.EXSHELLVIEWLib.FolderFlagsEnum.SingleSel);

The following VB.NET sample shows how to get the selected files/folder for /NET assembly
version:

Dim i As Long = 0, s As String = ""
With Exshellview1
 .Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As exontrol.EXSHELLVIEWLib.exshellobject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With

End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")
Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /NET assembly
version:

string s = "";
exshellview1.Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < exshellview1.Objects.Count; i++)
{
 exontrol.EXSHELLVIEWLib.exshellobject sel = exshellview1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

property ExShellView.Objects as ExShellObjects
Retrieves a collection of ExShellObject objects that indicates the current selection, or all
items from the view.

Type Description

ExShellObjects An ExShellObjects collection that holds a collection of
ExShellObject objects.

Use the Objects property to access the collection of selected items or all items. Use the
Get method to fill the Objects collection with specified elements (selected or all items in the
current view).

The Objects.Get method gets:

nothing, if the objectType parameter is NoItems

all files or folders being listed in the current view, if the objectType parameter is
AllItems

all files or folders being listed in the current view, as they are displayed, if the
objectType parameter is AllItems Or AsDisplayed

selected files or folders, if the objectType parameter is SelectedItems

selected files or folders as they are displayed, if the objectType parameter is
SelectedItems or AsDisplayed

The following VB6 sample gets a collection of selected items (in case your control allows
multiple selection):

Private Sub ExShellView1_StateChange(ByVal newState As EXSHELLVIEWLibCtl.StatesEnum)
 If (newState = SelChangeState) Then
 ExShellView1.Objects.Get SelectedItems
 With ExShellView1.Objects
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
 End With
 End If
End Sub

In case your control supports single selection, you can use the ObjectSelected event to

notify when a new item/object is selected:

Private Sub ExShellView1_ObjectSelected(ByVal Object As
EXSHELLVIEWLibCtl.IExShellObject)
 If Not (Object Is Nothing) Then
 Debug.Print Object.Name
 End If
End Sub

The following C++ sample displays a message box with the Name of all selected files and
folders:

#import <ExShellView.dll>
using namespace EXSHELLVIEWLib;

void GetSelectedObjects(EXSHELLVIEWLib::IExShellView* pShellView)
{
 pShellView->GetObjects()->Get(EXSHELLVIEWLib::SelectedItems);
 EXSHELLVIEWLib::IExShellObjectsPtr spObjects = pShellView->GetObjects();
 for (long i = 0; i < spObjects->Count; i++)
 ::MessageBox(NULL, spObjects->GetItem(i)->Name, NULL, NULL);
}

The following VB.NET sample shows how to get the selected files/folder for /NET assembly
version:

Dim i As Long = 0, s As String = ""
With Exshellview1
 .Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As exontrol.EXSHELLVIEWLib.exshellobject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")

Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /NET assembly
version:

string s = "";
exshellview1.Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < exshellview1.Objects.Count; i++)
{
 exontrol.EXSHELLVIEWLib.exshellobject sel = exshellview1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

property ExShellView.OverlayIcons as Boolean
Retrieves or sets a value indicating whether the control displays the overlay icons.

Type Description

Boolean A Boolean expression that specifies whether the control
shows or hides the overlay icons.

By default, the OverlayIcons property is True, which indicates that the control displays the
overlay icons. Windows uses Overlay-ed icons to notify the user that some item has special
function or attribute. For example, shortcut icons have a small arrow in lower-left corner,
shared folders have a hand that shows that folder is shared, etc. The ViewMode property
indicates the way the shell displays the files/folders inside.

The following screen shot shows the shell view with overlay icons:

while the next screen shot shows the shell view with no overlay icons:

method ExShellView.Refresh ()
Refreshes the content of the browsed folder.

Type Description

Forces reloading the current view as well as refreshing the current view.

property ExShellView.SelectAll as Boolean
Selects or unselects all files in the control when the multiple selection is enabled.

Type Description

Boolean A Boolean expression that specifies whether the method
selects all items (true) or unselect all items (false)

The SelectAll property is write only. The SelectAll on True, selects all items, while the
SelectAll on False, unselects all items in the control's view. The SelectAll property has
effect only if the control allows multiple selection. The ViewFloderFlags property is used to
determine custom flags that are applied to the control determining its appearance. Use the
ModifyFolderFlags method to add or remove flags on the current view, including enabling
single or multiple selection.

The following VB/NET sample shows how to enable multiple selection within the view:

Exshellview1.ViewFolderFlags = Exshellview1.ViewFolderFlags And Not
exontrol.EXSHELLVIEWLib.FolderFlagsEnum.SingleSel

The following C# sample shows how to enable multiple selection within the view:

exshellview1.ViewFolderFlags = exshellview1.ViewFolderFlags & ~
((int)exontrol.EXSHELLVIEWLib.FolderFlagsEnum.SingleSel);

The following VB.NET sample shows how to get the selected files/folder for /NET assembly
version:

Dim i As Long = 0, s As String = ""
With Exshellview1
 .Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As exontrol.EXSHELLVIEWLib.exshellobject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")

Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /NET assembly
version:

string s = "";
exshellview1.Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < exshellview1.Objects.Count; i++)
{
 exontrol.EXSHELLVIEWLib.exshellobject sel = exshellview1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

property ExShellView.ShellFolder (Path as Variant) as ExShellFolder
Retrieves a Folder object based on a path, on a special folder constant or on an ID
property.

Type Description

Path as Variant A string expression that represents a path of folder whose
IShellFolder is needed.

ExShellFolder An ExShellFolder object being created based on the path.

This property is mostly used for creating ExShellView's ExShellFolder. All of ExShellView's
browsing strategy is based on such objects. Since we're dealing with the objects here, it is
not enough just to specify Path to be set for browsing. This property helps us to generate
appropriate object based on a given path. The SpecialFolder property indicates a common
folder in your Windows.

Therefore, instead of doing something like this

 ExShellView1.Path = "C:\WINDOWS" ' Bad!

you should write this line

 ExShellView1.BrowseFolder = ExShellView1.ShellFolder("C:\WINDOWS")

so, ShellFolder property created ExShellFolder object for us based on a path, and we used
that object to set new folder using BrowseFolder property

property ExShellView.SpecialFolder (SpecialFolder as
SpecialFolderPathConstants) as ExShellFolder
Retrieves a Folder object given a special folder constant.

Type Description
SpecialFolder as
SpecialFolderPathConstants

A constant value that is used to determine path so specific
shell folder

ExShellFolder An ExShellFolder object that specifies the special folder.

Windows OS has several folders that are called 'shell folders'. For example, those are
'Program files','Recycle Bin', etc. Since these folders may be different among different
PC's, this property is used to determine path to such folders on a local computer. Using this
value, instead of constant path ensures portability of your software among different
Windows OS'es. Use the BrowseFolder property to browse for another folder.

property ExShellView.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ToTemplate property to generate the control's content to template format. Use the
ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier. For instance, the following
code creates an ADOR.Recordset and pass it to the control using the DataSource
property:

The following sample loads the Orders table:

Dim rs
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExExShellView\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs

property ExShellView.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExShellView.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExShellView.UpOneLevel ()
Browses the parent of current browsed folder.

Type Description

This method browses the parent folder. As in most Explorer-based applications, there is a
'Up one level' button that sets parent folder as current, this method does the same. For
example, if 'My Computer' folder is currently browsed, using this method will result in setting
'Desktop' folder as browsed.

property ExShellView.Version as String
Retrieves the Version of the control.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property ExShellView.ViewFolderFlags as Long
Retrieves the flags for the browsed folder.

Type Description

Long
A Long expression that indicates the flags that determines
the control's appearance. This value is a combination of
FolderFlagsEnum values.

This property is used to determine custom flags that are applied to the control determining
its appearance. You can use the ModifyFolderFlags method to add or remove specified
flags to the current view. The most common option is single or multiple selection.

The following VB/NET sample shows how to enable multiple selection within the view (/NET
Assembly):

Exshellview1.ViewFolderFlags = Exshellview1.ViewFolderFlags And Not
exontrol.EXSHELLVIEWLib.FolderFlagsEnum.SingleSel

The following C# sample shows how to enable multiple selection within the view (/NET
Assembly):

exshellview1.ViewFolderFlags = exshellview1.ViewFolderFlags & ~
((int)exontrol.EXSHELLVIEWLib.FolderFlagsEnum.SingleSel);

The following VB/NET sample shows how to enable multiple selection within the view (
/COM on Window.Forms):

AxExShellView1.ViewFolderFlags = AxExShellView1.ViewFolderFlags And Not
EXSHELLVIEWLib.FolderFlagsEnum.SingleSel

The following C# sample shows how to enable multiple selection within the view (/COM on
Window.Forms):

axExShellView1.ViewFolderFlags = axExShellView1.ViewFolderFlags & ~
((int)EXSHELLVIEWLib.FolderFlagsEnum.SingleSel);

The following VFP sample shows how to enable multiple selection within the view (/COM
on Window.Forms):

thisform.Exshellview1.ViewFolderFlags = bitand(thisform.Exshellview1.ViewFolderFlags,
bitnot(64))

The following C++ sample shows how to enable multiple selection within the view (/COM
on Window.Forms):

m_shellView.SetViewFolderFlags(m_shellView.GetViewFolderFlags() & ~64);

The following VB.NET sample shows how to get the selected files/folder for /NET assembly
version:

Dim i As Long = 0, s As String = ""
With Exshellview1
 .Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As exontrol.EXSHELLVIEWLib.exshellobject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")
Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /NET assembly
version:

string s = "";
exshellview1.Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < exshellview1.Objects.Count; i++)
{
 exontrol.EXSHELLVIEWLib.exshellobject sel = exshellview1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else

 MessageBox.Show("Empty", "Selection");

property ExShellView.ViewMode as ViewModeType
Returns or changes the current view mode of the control.

Type Description

ViewModeType A constant value that determine the view mode for the
current folder.

As in standard Explorer, there are several commonly used viewmode's for representing
folder's objects. Mostly is used 'Large Icons', but there are also other modes, as SmallIcon,
List, Details or Thumbnail. On Windows Vista, Windows 7, there are also Extra Large
Icons, Large Icons and Medium Icons view modes. The AutoArrange property specifies
whether the files are automatically kept arranged in icon and small icon view. Use the
AlignToGrid property to specifies whether in icon view, icons automatically snap into a grid.
The HideFileNames property specifies whether the view shows the names for the files. The
Objects.Get(SelectedItems) property to get a collection of selected files/folders. The
DrawGridLines property specifies whether the control shows or hides the grid lines around
the files/folders.

The view's Extra_Large_Icons mode may shows as:

The view's Large_Icons mode may shows as:

The view's Medium_Icons mode may shows as:

ExShellView events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {B4E1F234-AF0D-4EAD-8113-A563B40E71CA}. The object's program identifier is: "Exontrol.ShellView".
The /COM object module is: "ExShellView.dll"

The eXShellView supports the following events:

Name Description
BrowseFolderChange Fired after a new folder was browsed.

Click Occurs when the user presses and then releases the left
mouse button over the tree control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.
IncludeObject Fired during loading items, to filter the item objects.

InvokeItemMenu Notifies the application once the user selects a command
in the context menu.

InvokeMenuCommand Fired when the user selects an item context menu that has
been added during QueryContextMenu event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

ObjectSelect Fired when the user selects a new object for browsing.
ObjectSelected Fired when a new object was selected.

QueryContextMenu Fired when the context menu is about to be active. You
can supply new items to the context menu.

StateChange Fired when the list's state has been changed: focus,
selection.

C#

VB

private void BrowseFolderChange(object sender)
{
}

Private Sub BrowseFolderChange(ByVal sender As System.Object) Handles
BrowseFolderChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void BrowseFolderChange(object sender, EventArgs e)
{
}

void OnBrowseFolderChange()
{
}

void __fastcall BrowseFolderChange(TObject *Sender)
{
}

procedure BrowseFolderChange(ASender: TObject;);
begin
end;

procedure BrowseFolderChange(sender: System.Object; e: System.EventArgs);
begin
end;

event BrowseFolderChange ()
Fired after a new folder was browsed.

Type Description

It indicates that the control's changed the currently browsed folder. Use the CurrentFolder /
BrowseFolder property to get the current folder. The programmer might put some
initialization code here, or update it's variables, etc.

Syntax for BrowseFolderChange event, /NET version, on:

Syntax for BrowseFolderChange event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event BrowseFolderChange()
end event BrowseFolderChange

Private Sub BrowseFolderChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BrowseFolderChange
End Sub

Private Sub BrowseFolderChange()
End Sub

Private Sub BrowseFolderChange()
End Sub

LPARAMETERS nop

PROCEDURE OnBrowseFolderChange(oExShellView)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="BrowseFolderChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BrowseFolderChange()
End Function
</SCRIPT>

Procedure OnComBrowseFolderChange
 Forward Send OnComBrowseFolderChange
End_Procedure

METHOD OCX_BrowseFolderChange() CLASS MainDialog
RETURN NIL

void onEvent_BrowseFolderChange()
{

Syntax for BrowseFolderChange event, /COM version (others), on:

XBasic

dBASE

}

function BrowseFolderChange as v ()
end function

function nativeObject_BrowseFolderChange()
return

For instance, the following VB6 sample changes the browsing path for ExFolderView and
ExFolderCombo components:

Private Sub ExShellView1_BrowseFolderChange()
 ExFolderCombo1.OpenedFolder = ExShellView1.BrowseFolder
 ExFolderView1.SelectedFolder = ExShellView1.BrowseFolder
End Sub

For instance, the following VB.NET displays the name of browsed folder:

Private Sub Exshellview1_BrowseFolderChange(ByVal sender As System.Object) Handles
Exshellview1.BrowseFolderChange
 With Exshellview1
 Dim b As exontrol.EXSHELLVIEWLib.exshellfolder = .BrowseFolder
 Debug.Print("Exshellview1_BrowseFolderChange " & b.Path)
 End With
End Sub

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Fired when the user clicks on the control area.

Type Description

The Click event is fired when the user releases the left mouse button over the control. You
can use the QueryContextMenu event to be notified when the user right clicks the control's
view. The Objects property specifies the collection of all or selected files/folders in the
control. Use the Get method to update the Objects collection with all or selected files or
folders, and then you can enumerate the files in the collection using the Count and Item
properties.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oExShellView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

The following VB sample displays the file/folder being clicked:

Private Sub ExShellView1_Click()
 With ExShellView1
 .Objects.Get (SelectedItems Or AsDisplayed)
 With .Objects
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Path
 Next
 End With
 End With
End Sub

C#

VB

private void DblClick(object sender)
{
}

Private Sub DblClick(ByVal sender As System.Object) Handles DblClick
End Sub

C#

C++

C++
Builder

Delphi

private void DblClick(object sender, EventArgs e)
{
}

void OnDblClick()
{
}

void __fastcall DblClick(TObject *Sender)
{
}

procedure DblClick(ASender: TObject;);
begin
end;

event DblClick ()
Fired when the user dblclicks on the control area.

Type Description

The DblClick event notifies your application when the user double clicks an object in the
shell view control. The Objects property specifies the collection of all or selected
files/folders in the control. Use the Get method to update the Objects collection with all or
selected files or folders, and then you can enumerate the files in the collection using the
Count and Item properties.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure DblClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event DblClick()
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles DblClick
End Sub

Private Sub DblClick()
End Sub

Private Sub DblClick()
End Sub

LPARAMETERS nop

PROCEDURE OnDblClick(oExShellView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="DblClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick()
End Function
</SCRIPT>

Procedure OnComDblClick
 Forward Send OnComDblClick

Syntax for DblClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_DblClick() CLASS MainDialog
RETURN NIL

void onEvent_DblClick()
{
}

function DblClick as v ()
end function

function nativeObject_DblClick()
return

The following VB6 sample opens the file being double clicked.

Private Sub ExShellView1_DblClick()
 With ExShellView1
 .Objects.Get (SelectedItems)
 With ExShellView1.Objects
 If (.Count > 0) Then
 Dim i As EXSHELLVIEWLibCtl.ExShellObject
 Set i = .Item(0)
 If (Not i.Attribute(IsFolder)) Then
 i.InvokeCommand ("Open")
 End If
 End If
 End With
 End With
End Sub

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exgantt1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

MouseDown/-605(1 , 0 , 102 , 644)
SelChange/2
MouseMove/-606(1 , 0 , 105 , 646)

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender, AxEXEDITLib._IShellViewEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXEDITLib._IShellViewEvents_EventEvent);
begin
end;

begin event Event(long EventID)

end event Event

MouseUp/-607(1 , 0 , 128 , 682)
Click/-600

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXEDITLib._IShellViewEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oShellView,EventID)

RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void IncludeObject(object sender,object Obj,ref object Include)
{
}

Private Sub IncludeObject(ByVal sender As System.Object,ByVal Obj As
Object,ByRef Include As Object) Handles IncludeObject
End Sub

C#

C++

C++
Builder

private void IncludeObject(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_IncludeObjectEvent e)
{
}

void OnIncludeObject(LPDISPATCH Object,VARIANT FAR* Include)
{
}

void __fastcall IncludeObject(TObject *Sender,IDispatch *Object,Variant * Include)
{

event IncludeObject (Object as Object, ByRef Include as Variant)
Fired during loading items, to filter the item objects.

Type Description

Object as Object Reference to ExShellObject that should or shouldn't be
visible.

Include as Variant (By Reference) A boolean expression that makes object
visible (True), or hides it (False).

When user selects some folder to browse, he also sets type of files that needs to be
shown. Usually, this is done using FilePattern property, and IncludeObjectType property.
This event is fired only if user set IncludeObjectType property to value 'UserObjects'. Each
time eXShellView needs to determine if particular item should be visible or not, this event is
fired. User should set Include variable to either True, or False, depending if he chooses to
show or hide that item.

Syntax for IncludeObject event, /NET version, on:

Syntax for IncludeObject event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure IncludeObject(ASender: TObject; Object : IDispatch;var Include :
OleVariant);
begin
end;

procedure IncludeObject(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_IncludeObjectEvent);
begin
end;

begin event IncludeObject(oleobject Object,any Include)
end event IncludeObject

Private Sub IncludeObject(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_IncludeObjectEvent) Handles
IncludeObject
End Sub

Private Sub IncludeObject(ByVal Object As Object,Include As Variant)
End Sub

Private Sub IncludeObject(ByVal Object As Object,Include As Variant)
End Sub

LPARAMETERS Object,Include

PROCEDURE OnIncludeObject(oExShellView,Object,Include)
RETURN

Java…

VBSc…

<SCRIPT EVENT="IncludeObject(Object,Include)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for IncludeObject event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function IncludeObject(Object,Include)
End Function
</SCRIPT>

Procedure OnComIncludeObject Variant llObject Variant llInclude
 Forward Send OnComIncludeObject llObject llInclude
End_Procedure

METHOD OCX_IncludeObject(Object,Include) CLASS MainDialog
RETURN NIL

void onEvent_IncludeObject(COM _Object,COMVariant /*variant*/ _Include)
{
}

function IncludeObject as v (Object as P,Include as A)
end function

function nativeObject_IncludeObject(Object,Include)
return

C#

VB

private void InvokeItemMenu(object sender,int Command)
{
}

Private Sub InvokeItemMenu(ByVal sender As System.Object,ByVal Command As
Integer) Handles InvokeItemMenu
End Sub

C#

C++

C++
Builder

Delphi

private void InvokeItemMenu(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_InvokeItemMenuEvent e)
{
}

void OnInvokeItemMenu(long Command)
{
}

void __fastcall InvokeItemMenu(TObject *Sender,long Command)
{
}

procedure InvokeItemMenu(ASender: TObject; Command : Integer);
begin

event InvokeItemMenu (Command as Long)
Notifies the application once the user selects a command in the context menu.

Type Description

Command as Long A Long expression that indicates the identifier of the
command being selected.

The InvokeItemMenu event notifies the application once the user selects an item from the
control's context menu. For instance, you can use the InvokeItemMenu event to be notified
when the user changes the view mode. The ViewMode property determines the current
view mode. Use the InvokeMenuCommand event to be notifies when the user selects a
custom command that previously was added using the QueryContextMenu event.

Syntax for InvokeItemMenu event, /NET version, on:

Syntax for InvokeItemMenu event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure InvokeItemMenu(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_InvokeItemMenuEvent);
begin
end;

begin event InvokeItemMenu(long Command)
end event InvokeItemMenu

Private Sub InvokeItemMenu(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_InvokeItemMenuEvent) Handles
InvokeItemMenu
End Sub

Private Sub InvokeItemMenu(ByVal Command As Long)
End Sub

Private Sub InvokeItemMenu(ByVal Command As Long)
End Sub

LPARAMETERS Command

PROCEDURE OnInvokeItemMenu(oExShellView,Command)
RETURN

Java…

VBSc…

<SCRIPT EVENT="InvokeItemMenu(Command)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function InvokeItemMenu(Command)
End Function
</SCRIPT>

Syntax for InvokeItemMenu event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComInvokeItemMenu Integer llCommand
 Forward Send OnComInvokeItemMenu llCommand
End_Procedure

METHOD OCX_InvokeItemMenu(Command) CLASS MainDialog
RETURN NIL

void onEvent_InvokeItemMenu(int _Command)
{
}

function InvokeItemMenu as v (Command as N)
end function

function nativeObject_InvokeItemMenu(Command)
return

The following VB sample displays a message box when the user changes the view mode:

Dim nVM As EXSHELLVIEWLibCtl.ViewModeType

Private Sub ExShellView1_InvokeItemMenu(ByVal Command As Long)

 If (nVM <> ExShellView1.ViewMode) Then
 nVM = ExShellView1.ViewMode
 MsgBox "ViewMode changed to " & nVM
 End If

End Sub

Private Sub Form_Load()
 nVM = ExShellView1.ViewMode
End Sub

The sample holds the current view mode when the application starts on nVM variable. Once
the InvokeItemMenu event occurs, the nVM variable is checked with the current view mode,

and if it changed, a message box is displayed that the user has changed the view mode.

The following C# sample displays a message box once the user changes the control's view
mode:

public Form1()
{
 InitializeComponent();

 nVM = exshellview1.ViewMode;
}

exontrol.EXSHELLVIEWLib.ViewModeType nVM =
exontrol.EXSHELLVIEWLib.ViewModeType.Details;
private void exshellview1_InvokeItemMenu(object sender, int Command)
{
 if (nVM != exshellview1.ViewMode)
 {
 nVM = exshellview1.ViewMode;
 MessageBox.Show("ViewMode changed to " + nVM.ToString());
 }
}

The Values for the Command parameter are determined by the system, and are the same
for any Windows version. For instance, the 30995 indicates a Rename operation, while the
30996 command invokes the Properties dialog of selected file or folder.

The following VB sample displays the command being performed:

Private Sub ExShellView1_InvokeItemMenu(ByVal Command As Long)
 Debug.Print Command
End Sub

C#

VB

private void InvokeMenuCommand(object sender,string Command)
{
}

Private Sub InvokeMenuCommand(ByVal sender As System.Object,ByVal
Command As String) Handles InvokeMenuCommand
End Sub

C#

C++

C++
Builder

private void InvokeMenuCommand(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_InvokeMenuCommandEvent e)
{
}

void OnInvokeMenuCommand(LPCTSTR Command)
{
}

void __fastcall InvokeMenuCommand(TObject *Sender,BSTR Command)
{
}

event InvokeMenuCommand (Command as String)
Fired when the user selects an item context menu that has been added during
QueryContextMenu event.

Type Description

Command as String A String expression that indicates the caption of the
custom command being executed.

Use the InvokeMenuCommand event to notify your application when the user selects a
custom command, that was previously added using the QueryContextMenu event. The
InvokeItemMenu event notifies the application once the user selects a command by
identifier in the context menu. Use the DefaultMenuItems property to specify whether the
context menu shows the default menu items. The InvokeMenuCommand event is not fired if
user clicks a default command. It is fired only for items being added using the
QueryContextMenu event.

Syntax for InvokeMenuCommand event, /NET version, on:

Syntax for InvokeMenuCommand event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure InvokeMenuCommand(ASender: TObject; Command : WideString);
begin
end;

procedure InvokeMenuCommand(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_InvokeMenuCommandEvent);
begin
end;

begin event InvokeMenuCommand(string Command)
end event InvokeMenuCommand

Private Sub InvokeMenuCommand(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_InvokeMenuCommandEvent) Handles
InvokeMenuCommand
End Sub

Private Sub InvokeMenuCommand(ByVal Command As String)
End Sub

Private Sub InvokeMenuCommand(ByVal Command As String)
End Sub

LPARAMETERS Command

PROCEDURE OnInvokeMenuCommand(oExShellView,Command)
RETURN

Java…

VBSc…

<SCRIPT EVENT="InvokeMenuCommand(Command)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function InvokeMenuCommand(Command)
End Function
</SCRIPT>

Syntax for InvokeMenuCommand event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComInvokeMenuCommand String llCommand
 Forward Send OnComInvokeMenuCommand llCommand
End_Procedure

METHOD OCX_InvokeMenuCommand(Command) CLASS MainDialog
RETURN NIL

void onEvent_InvokeMenuCommand(str _Command)
{
}

function InvokeMenuCommand as v (Command as C)
end function

function nativeObject_InvokeMenuCommand(Command)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_KeyDownEvent e)
{
}

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the And operator with the shift argument to test whether the condition is greater than 0,
indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oExShellView,KeyCode,Shift)
RETURN

Syntax for KeyDown event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

The following VB sample displays the object's Properties dialog, when the user presses the
F2 key:

Private Sub ExShellView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyF2 Then
 ExShellView1.Objects.Get (SelectedItems)
 With ExShellView1.Objects
 If (.Count > 0) Then
 .Item(0).InvokeCommand ("Properties")
 End If
 End With

 End If
End Sub

The following VB sample starts renaming the selected object, when the user presses the F2
key:

Private Sub ExShellView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyF2 Then
 ExShellView1.Objects.Get (SelectedItems)
 With ExShellView1.Objects
 If (.Count > 0) Then
 .Item(0).InvokeRename
 End If
 End With
 End If
End Sub

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

Delphi

private void KeyPressEvent(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

event KeyPress (ByRef KeyAscii as Integer)
Fired when an user presses a key.

Type Description

KeyAscii as Integer (By Reference) An integer value that represents the ASCII
code for a pressed key.

Every time user pressed any key, this event is fired. KeyAscii variable holds ASCII value of
pressed.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPressEvent(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oExShellView,KeyAscii)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii

Syntax for KeyPress event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oExShellView,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void ObjectSelect(object sender,exontrol.EXSHELLVIEWLib.ExShellObject
Obj)
{
}

Private Sub ObjectSelect(ByVal sender As System.Object,ByVal Obj As
exontrol.EXSHELLVIEWLib.ExShellObject) Handles ObjectSelect
End Sub

C#

C++

C++
Builder

Delphi

private void ObjectSelect(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_ObjectSelectEvent e)
{
}

void OnObjectSelect(LPDISPATCH Object)
{
}

void __fastcall ObjectSelect(TObject *Sender,Exshellviewlib_tlb::IExShellObject
*Object)
{
}

procedure ObjectSelect(ASender: TObject; Object : IExShellObject);

event ObjectSelect (Object as ExShellObject)
Fired when the user selects a new object for browsing.

Type Description
Object as ExShellObject A reference to the ExShellObject being selected.

This event is fired when the user double-clicks or presses Enter key on any object in the
browser. By default, if a folder item is being double clicked, the folder gets browsed. If a
file is being double clicked, nothing is happen. Use the CancelObjectSelect method to
prevent opening or browsing the folder being double clicked (or any other type of object).

Syntax for ObjectSelect event, /NET version, on:

Syntax for ObjectSelect event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure ObjectSelect(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_ObjectSelectEvent);
begin
end;

begin event ObjectSelect(oleobject Object)
end event ObjectSelect

Private Sub ObjectSelect(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_ObjectSelectEvent) Handles ObjectSelect
End Sub

Private Sub ObjectSelect(ByVal Object As EXSHELLVIEWLibCtl.IExShellObject)
End Sub

Private Sub ObjectSelect(ByVal Object As Object)
End Sub

LPARAMETERS Object

PROCEDURE OnObjectSelect(oExShellView,Object)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ObjectSelect(Object)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ObjectSelect(Object)
End Function
</SCRIPT>

Syntax for ObjectSelect event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComObjectSelect Variant llObject
 Forward Send OnComObjectSelect llObject
End_Procedure

METHOD OCX_ObjectSelect(Object) CLASS MainDialog
RETURN NIL

void onEvent_ObjectSelect(COM _Object)
{
}

function ObjectSelect as v (Object as OLE::Exontrol.ShellView.1::IExShellObject)
end function

function nativeObject_ObjectSelect(Object)
return

The following VB sample prevents opening a zip file (which is considered a folder item):

Private Sub ExShellView1_ObjectSelect(ByVal Object As
EXSHELLVIEWLibCtl.IExShellObject)
 If Object.Name Like "*.zip" Then
 ExShellView1.CancelObjectSelect
 End If
End Sub

C#

VB

private void ObjectSelected(object sender,exontrol.EXSHELLVIEWLib.ExShellObject
Obj)
{
}

Private Sub ObjectSelected(ByVal sender As System.Object,ByVal Obj As
exontrol.EXSHELLVIEWLib.ExShellObject) Handles ObjectSelected
End Sub

C#

C++

C++
Builder

Delphi

private void ObjectSelected(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_ObjectSelectedEvent e)
{
}

void OnObjectSelected(LPDISPATCH Object)
{
}

void __fastcall ObjectSelected(TObject *Sender,Exshellviewlib_tlb::IExShellObject
*Object)
{
}

procedure ObjectSelected(ASender: TObject; Object : IExShellObject);
begin

event ObjectSelected (Object as ExShellObject)
Fired when a new object is selected.

Type Description
Object as ExShellObject A reference to the ExShellObject being selected.

The ObjectSelected event notifies your application that a new items in the list is
selected. The StateChange event notifies your application whether the control loses or
gains the focus, when the user renamed an item, or whether the user selects a new item.

Syntax for ObjectSelected event, /NET version, on:

Syntax for ObjectSelected event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ObjectSelected(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_ObjectSelectedEvent);
begin
end;

begin event ObjectSelected(oleobject Object)
end event ObjectSelected

Private Sub ObjectSelected(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_ObjectSelectedEvent) Handles
ObjectSelected
End Sub

Private Sub ObjectSelected(ByVal Object As EXSHELLVIEWLibCtl.IExShellObject)
End Sub

Private Sub ObjectSelected(ByVal Object As Object)
End Sub

LPARAMETERS Object

PROCEDURE OnObjectSelected(oExShellView,Object)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ObjectSelected(Object)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ObjectSelected(Object)
End Function
</SCRIPT>

Syntax for ObjectSelected event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComObjectSelected Variant llObject
 Forward Send OnComObjectSelected llObject
End_Procedure

METHOD OCX_ObjectSelected(Object) CLASS MainDialog
RETURN NIL

void onEvent_ObjectSelected(COM _Object)
{
}

function ObjectSelected as v (Object as OLE::Exontrol.ShellView.1::IExShellObject)
end function

function nativeObject_ObjectSelected(Object)
return

In case your control supports single selection, you can use the ObjectSelected event to
notify when a new item/object is selected:

Private Sub ExShellView1_ObjectSelected(ByVal Object As
EXSHELLVIEWLibCtl.IExShellObject)
 If Not (Object Is Nothing) Then
 Debug.Print Object.Name
 End If
End Sub

The following sample gets a collection of selected items (in case your control allows
multiple selection):

Private Sub ExShellView1_StateChange(ByVal newState As EXSHELLVIEWLibCtl.StatesEnum)
 If (newState = SelChangeState) Then
 ExShellView1.Objects.Get SelectedItems
 With ExShellView1.Objects
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name

 Next
 End With
 End If
End Sub

C#

VB

private void QueryContextMenu(object sender,ref string Items,ref string
Separator)
{
}

Private Sub QueryContextMenu(ByVal sender As System.Object,ByRef Items As
String,ByRef Separator As String) Handles QueryContextMenu
End Sub

C#

C++

private void QueryContextMenu(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_QueryContextMenuEvent e)
{
}

void OnQueryContextMenu(LPCTSTR FAR* Items,LPCTSTR FAR* Separator)
{
}

event QueryContextMenu (ByRef Items as String, ByRef Separator as
String)
Fired when the context menu is about to be shown.

Type Description

Items as String (By Reference) A String expression that indicates the list
of custom commands being added.

Separator as String
(By Reference) A String expression that indicates the
separator for the list of commands in the Items
parameter.

Use the QueryContextMenu to supply new items to the control's context menu. Use the
QueryContextMenu event to display your own popup/context menu. The DefaultMenuItems
property specifies whether the control displays the default context menu. The
InvokeMenuCommand event notifies your application that the user selects a custom
command. If you need to provide your own context menu, set the DefaultMenuItems
property on False, and handle the QueryContextMenu event when your context menu to be
shown.

Syntax for QueryContextMenu event, /NET version, on:

Syntax for QueryContextMenu event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall QueryContextMenu(TObject *Sender,BSTR * Items,BSTR * Separator)
{
}

procedure QueryContextMenu(ASender: TObject; var Items : WideString;var
Separator : WideString);
begin
end;

procedure QueryContextMenu(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_QueryContextMenuEvent);
begin
end;

begin event QueryContextMenu(string Items,string Separator)
end event QueryContextMenu

Private Sub QueryContextMenu(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_QueryContextMenuEvent) Handles
QueryContextMenu
End Sub

Private Sub QueryContextMenu(Items As String,Separator As String)
End Sub

Private Sub QueryContextMenu(Items As String,Separator As String)
End Sub

LPARAMETERS Items,Separator

PROCEDURE OnQueryContextMenu(oExShellView,Items,Separator)
RETURN

Java… <SCRIPT EVENT="QueryContextMenu(Items,Separator)" LANGUAGE="JScript">
</SCRIPT>

Syntax for QueryContextMenu event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function QueryContextMenu(Items,Separator)
End Function
</SCRIPT>

Procedure OnComQueryContextMenu String llItems String llSeparator
 Forward Send OnComQueryContextMenu llItems llSeparator
End_Procedure

METHOD OCX_QueryContextMenu(Items,Separator) CLASS MainDialog
RETURN NIL

void onEvent_QueryContextMenu(COMVariant /*string*/ _Items,COMVariant
/*string*/ _Separator)
{
}

function QueryContextMenu as v (Items as C,Separator as C)
end function

function nativeObject_QueryContextMenu(Items,Separator)
return

For instance the following VB sample adds 3 more items in the control's default context
menu:

Private Sub ExShellView1_QueryContextMenu(Items As String, Separator As String)
 Separator = ","
 Items = ",First,Second,Third"
End Sub

and so the control's context menu shows three more items as in the following screen shot:

and if the DefaultMenuItems property is set on False, the context menu shows only the new
three items:

The first separator item in the context menu is not shown because we have used Items =
"First,Second,Third" instead Items = ",First,Second,Third"

C#

VB

private void StateChange(object sender,exontrol.EXSHELLVIEWLib.StatesEnum
NewState)
{
}

Private Sub StateChange(ByVal sender As System.Object,ByVal NewState As

event StateChange (NewState as StatesEnum)
Fired when the list's state has been changed: focus, selection.

Type Description

NewState as StatesEnum A StatesEnum expression that represents the current
state.

This event is fired each time current state is changed. The ViewFolderFlags property may
be used to enable multiple items selection.

It is fired when one of the following operation occurs:

1. When eXShellView control got the focus,
2. When eXShellView lost the focus,
3. When current selection was changed,
4. When item was renamed.

Depending on newState variable, user can make certain actions. Use the Objects property
to retrieve the collection of all or selected items.

The Objects.Get method gets:

nothing, if the objectType parameter is NoItems

all files or folders being listed in the current view, if the objectType parameter is
AllItems

all files or folders being listed in the current view, as they are displayed, if the
objectType parameter is AllItems Or AsDisplayed

selected files or folders, if the objectType parameter is SelectedItems

selected files or folders as they are displayed, if the objectType parameter is
SelectedItems or AsDisplayed

Syntax for StateChange event, /NET version, on:

exontrol.EXSHELLVIEWLib.StatesEnum) Handles StateChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void StateChange(object sender,
AxEXSHELLVIEWLib._IExShellViewEvents_StateChangeEvent e)
{
}

void OnStateChange(long NewState)
{
}

void __fastcall StateChange(TObject *Sender,Exshellviewlib_tlb::StatesEnum
NewState)
{
}

procedure StateChange(ASender: TObject; NewState : StatesEnum);
begin
end;

procedure StateChange(sender: System.Object; e:
AxEXSHELLVIEWLib._IExShellViewEvents_StateChangeEvent);
begin
end;

begin event StateChange(long NewState)
end event StateChange

Private Sub StateChange(ByVal sender As System.Object, ByVal e As
AxEXSHELLVIEWLib._IExShellViewEvents_StateChangeEvent) Handles StateChange
End Sub

Private Sub StateChange(ByVal NewState As EXSHELLVIEWLibCtl.StatesEnum)
End Sub

Syntax for StateChange event, /COM version, on:

VBA

VFP

Xbas…

Private Sub StateChange(ByVal NewState As Long)
End Sub

LPARAMETERS NewState

PROCEDURE OnStateChange(oExShellView,NewState)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="StateChange(NewState)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function StateChange(NewState)
End Function
</SCRIPT>

Procedure OnComStateChange OLEStatesEnum llNewState
 Forward Send OnComStateChange llNewState
End_Procedure

METHOD OCX_StateChange(NewState) CLASS MainDialog
RETURN NIL

void onEvent_StateChange(int _NewState)
{
}

function StateChange as v (NewState as OLE::Exontrol.ShellView.1::StatesEnum)
end function

function nativeObject_StateChange(NewState)
return

Syntax for StateChange event, /COM version (others), on:

The following VB6 sample gets a collection of selected items (in case your control allows
multiple selection):

Private Sub ExShellView1_StateChange(ByVal newState As EXSHELLVIEWLibCtl.StatesEnum)
 If (newState = SelChangeState) Then
 ExShellView1.Objects.Get SelectedItems
 With ExShellView1.Objects
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
 End With
 End If
End Sub

In case your control supports single selection, you can use the ObjectSelected event to
notify when a new item/object is selected:

Private Sub ExShellView1_ObjectSelected(ByVal Object As
EXSHELLVIEWLibCtl.IExShellObject)
 If Not (Object Is Nothing) Then
 Debug.Print Object.Name
 End If
End Sub

The following VB.NET sample shows how to get the selected files/folder for /NET assembly
version:

Dim i As Long = 0, s As String = ""
With Exshellview1
 .Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As exontrol.EXSHELLVIEWLib.exshellobject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then

 MessageBox.Show(s, "Selection")
Else
 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /NET assembly
version:

string s = "";
exshellview1.Objects.Get(exontrol.EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < exshellview1.Objects.Count; i++)
{
 exontrol.EXSHELLVIEWLib.exshellobject sel = exshellview1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

The following VB.NET sample shows how to get the selected files/folder for /COM on
Window.Forms version:

Dim i As Long = 0, s As String = ""
With AxExShellView1
 .Objects.Get(EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As EXSHELLVIEWLib.ExShellObject = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If s.Length > 0 Then
 MessageBox.Show(s, "Selection")
Else

 MessageBox.Show("Empty", "Selection")
End If

The following C# sample shows how to get the selected files/folder for /COM on
Window.Forms version:

string s = "";
axExShellView1.Objects.Get(EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems);
for (int i = 0; i < axExShellView1.Objects.Count; i++)
{
 EXSHELLVIEWLib.ExShellObject sel = axExShellView1.Objects[i];
 // * The sel indicates the shell object being selected *
 s = s + sel.Name + "\r\n";
}
if (s.Length > 0)
 MessageBox.Show(s, "Selection");
else
 MessageBox.Show("Empty", "Selection");

The following VB6 sample shows how to get the selected files/folder for /COM version:

Dim i As Long, s As String
s = ""
With ExShellView1
 .Objects.Get (EXSHELLVIEWLibCtl.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As EXSHELLVIEWLibCtl.ExShellObject
 Set sel = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If Len(s) > 0 Then
 MsgBox s, , "Selection"
Else
 MsgBox "Empty", , "Selection"

End If

The following Access sample shows how to get the selected files/folder for /COM version:

Dim i As Long, s As String
s = ""
With ExShellView1
 .Objects.Get (EXSHELLVIEWLib.ObjectTypeEnum.SelectedItems)
 With .Objects
 For i = 0 To .Count - 1
 Dim sel As EXSHELLVIEWLib.ExShellObject
 Set sel = .Item(i)
 ' * The sel indicates the shell object being selected *
 s = s + sel.Name + vbCrLf
 Next
 End With
End With
If Len(s) > 0 Then
 MsgBox s, , "Selection"
Else
 MsgBox "Empty", , "Selection"
End If

The following VPF sample shows how to get the selected files/folder for /COM version:

local sel
s = ""
with thisform.ExShellView1
 .Objects.Get(1)
 for i = 0 to .Objects.Count - 1
 sel = .Objects.Item(i)
 s = s + sel.Name + chr(13)+chr(10)
 next
endwith
messagebox(s)

The following C++ sample shows how to get the selected files/folder for /COM version:

CString s;

CExShellObjects objects = m_shellView.GetObjects();
objects.Get(1);
for (long i = 0; i < objects.GetCount(); i++)
{
 CExShellObject sel = objects.GetItem(COleVariant(i));
 s = s + sel.GetName() + _T("\r\n");

}
if (s.GetLength() > 0)
 MessageBox(s, _T("Selection"));
else
 MessageBox(_T("Empty"), _T("Selection"));

	Information
	How to get support?
	ExShellFolder
	ID property (readonly)
	Name property (readonly)
	Path property (readonly)

	ExShellObject
	Attribute property (readonly)
	Attributes property (readonly)
	InvokeCommand method
	InvokeRename method
	Name property (readonly)
	Path property (readonly)
	SelectItem method

	ExShellObjects
	Count property (readonly)
	Get method
	Item property (readonly)

	ExShellView
	AlignToGrid property
	AllowContextMenu property
	Appearance property
	AttachTemplate method
	AutoArrange property
	BrowseFiles property
	BrowseFolder property
	CancelObjectSelect method
	CanRename property
	ColumnNames property
	CurrentFolder property
	DefaultMenuItems property
	DisableDragDrop property
	DrawGridLines property
	Enabled property
	EventParam property
	ExecuteTemplate method
	FilePattern property
	Font property
	HeaderVisible property
	HideFileNames property
	HideToolTips property
	hWnd property (readonly)
	IncludeObjectType property
	MatchPattern property (readonly)
	ModifyFolderFlags method
	Objects property (readonly)
	OverlayIcons property
	Refresh method
	SelectAll property
	ShellFolder property (readonly)
	SpecialFolder property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	UpOneLevel method
	Version property
	ViewFolderFlags property
	ViewMode property

	ExShellView events
	BrowseFolderChange event
	Click event
	DblClick event
	Event event
	IncludeObject event
	InvokeItemMenu event
	InvokeMenuCommand event
	KeyDown event
	KeyPress event
	KeyUp event
	ObjectSelect event
	ObjectSelected event
	QueryContextMenu event
	StateChange event

