
 ExScrollBar

The Exontrol's newly exScrollBar control simulates vertical or horizontal scroll bar, slider,
track, volume or gauge controls. The exScrollBar component lets the user changes its visual
appearance using skins, each one providing an additional visual experience that enhances
viewing pleasure. Skins are relatively easy to build and put on any part of the control.

Features include:

Skinnable Interface support (ability to apply a skin to the any background part)
Windows XP Theme support
Owner Draw support
WYSWYG Template/Layout Editor support
Ability to have additional buttons above the up/left and down/right arrows
Multi-lines tooltip support
ScrollBar or Spin control support
Ability to put HTML text on any part of the control, includes icons or pictures

Ž ExScrollBar is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
The AlignmentEnum type defines the caption's alignment. Use the Caption property to
specify a text being displayed on any part of the control. Use the CaptionAlignment property
to specify the alignment of the text inside the part.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is left centered.
RightAlignment 2 The source is right aligned.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
border. See also the Appearance property.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum
The BackgroundPartEnum type defines the parts of the control in a specified state. Use the
Background property to change the visual appearance of a any part of the control in a
specified state. The following picture shows the parts of the control:

Use the VisiblePart or VisibleParts property to specify which part is visible and which part is
not visible. Use the EnablePart or EnableParts property to specify which part is enabled
and which part is disabled.

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar (Mode property is exVertical).

All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar (Mode property is exHorizontal).

Any BackgroundPartEnum expression that ends with P specifies a part of the control
when it is pressed.

Any BackgroundPartEnum expression that ends with D specifies a part of the control
when it is disabled.

Any BackgroundPartEnum expression that ends with H specifies a part of the control
when the cursor hovers it.

Any BackgroundPartEnum expression that ends with no H, P or D specifies a part of
the control in normal state.

Name Value Description

exToolTipAppearance 64
Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipWidth property to
specify the width of the tooltip window.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.
exVSUp 256 Specifies the up button (<) in normal state.

exVSUpP 257 Specifies the up button (<) when it is pressed.
exVSUpD 258 Specifies the up button (<) when it is disabled.

exVSUpH 259 Specifies the up button (<) when the cursor hovers
it.

exVSThumb 260 Specifies the thumb part (exThumbPart) in normal
state.

exVSThumbP 261 Specifies the thumb part (exThumbPart) when it is
pressed.

exVSThumbD 262 Specifies the thumb part (exThumbPart) when it is
disabled.

exVSThumbH 263 Specifies the thumb part (exThumbPart) when
cursor hovers it.

exVSDown 264 Specifies the down button (>) in normal state.
exVSDownP 265 Specifies the down button (>) when it is pressed.
exVSDownD 266 Specifies the down button (>) when it is disabled.

exVSDownH 267 Specifies the down button (>) when the cursor
hovers it.

exVSLower 268 Specifies the lower part (exLowerBackPart) in
normal state.

exVSLowerP 269 Specifies the lower part (exLowerBackPart) when
it is pressed.

exVSLowerD 270 Specifies the lower part (exLowerBackPart) when
it is disabled.

exVSLowerH 271 Specifies the lower part (exLowerBackPart) when
the cursor hovers it.

exVSUpper 272 Specifies the upper part (exUpperBackPart) in
normal state.

exVSUpperP 273 Specifies the upper part (exUpperBackPart) when
it is pressed.

exVSUpperD 274 Specifies the upper part (exUpperBackPart) when
it is disabled.

exVSUpperH 275 Specifies the upper part (exUpperBackPart) when
the cursor hovers it.

exVSBack 276 Specifies the background part (exLowerBackPart
and exUpperBackPart) in normal state.
Specifies the background part (exLowerBackPart

exVSBackP 277 and exUpperBackPart) when it is pressed.

exVSBackD 278 Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is disabled.

exVSBackH 279 Specifies the background part (exLowerBackPart
and exUpperBackPart) when the cursor hovers it.

exVSUp1 280 Specifies the first additional up button (L1) in normal
state.

exVSUp1P 281 Specifies the first additional up button (L1) when it
is pressed.

exVSUp1D 282 Specifies the first additional up button (L1) when it
is disabled.

exVSUp1H 283 Specifies the first additional up button (L1) when the
cursor hovers it.

exVSUp2 284 Specifies the second additional up button (L2) in
normal state.

exVSUp2P 285 Specifies the second additional up button (L2) when
it is pressed.

exVSUp2D 286 Specifies the second additional up button (L2) when
it is disabled.

exVSUp2H 287 Specifies the second additional up button (L2) when
the cursor hovers it.

exVSUp3 288 Specifies the third additional up button (L3) in
normal state.

exVSUp3P 289 Specifies the third additional up button (L3) when it
is pressed.

exVSUp3D 290 Specifies the third additional up button (L3) when it
is disabled.

exVSUp3H 291 Specifies the third additional up button (L3) when
the cursor hovers it.

exVSUp4 292 Specifies the forth additional up button (L4) in
normal state.

exVSUp4P 293 Specifies the forth additional up button (L4) when it
is pressed.

exVSUp4D 294 Specifies the forth additional up button (L4) when it
is disabled.

exVSUp4H 295 Specifies the forth additional up button (L4) when
the cursor hovers it.

exVSUp5 296
Specifies the fifth additional up button (L5) in normal
state.

exVSUp5P 297 Specifies the fifth additional up button (L5) when it
is pressed.

exVSUp5D 298 Specifies the fifth additional up button (L5) when it
is disabled.

exVSUp5H 299 Specifies the fifth additional up button (L5) when the
cursor hovers it.

exVSDown1 300 Specifies the first additional down button (R1) in
normal state.

exVSDown1P 301 Specifies the first additional down button (R1) when
it is pressed.

exVSDown1D 302 Specifies the first additional down button (R1) when
it is disabled.

exVSDown1H 303 Specifies the first additional down button (R1) when
the cursor hovers it.

exVSDown2 304 Specifies the second additional down button (R2) in
normal state.

exVSDown2P 305 Specifies the second additional down button (R2)
when it is pressed.

exVSDown2D 306 Specifies the second additional down button (R2)
when it is disabled.

exVSDown2H 307 Specifies the second additional down button (R2)
when the cursor hovers it.

exVSDown3 308 Specifies the third additional down button (R3) in
normal state.

exVSDown3P 309 Specifies the third additional down button (R3)
when it is pressed.

exVSDown3D 310 Specifies the third additional down button (R3)
when it is disabled.

exVSDown3H 311 Specifies the third additional down button (R3)
when the cursor hovers it.

exVSDown4 312 Specifies the forth additional down button (R4) in
normal state.

exVSDown4P 313 Specifies the forth additional down button (R4)
when it is pressed.

exVSDown4D 314 Specifies the forth additional down button (R4)
when it is disabled.

exVSDown4H 315 Specifies the forth additional down button (R4)
when the cursor hovers it.

exVSDown5 316 Specifies the fifth additional down button (R5) in
normal state.

exVSDown5P 317 Specifies the fifth additional down button (R5) when
it is pressed.

exVSDown5D 318 Specifies the fifth additional down button (R5) when
it is disabled.

exVSDown5H 319 Specifies the fifth additional down button (R5) when
the cursor hovers it..

exVSDown6 320 Specifies the sixth additional down button (R6) in
normal state.

exVSDown6P 321 Specifies the sixth additional down button (R6)
when it is pressed.

exVSDown6D 322 Specifies the sixth additional down button (R6)
when it is disabled.

exVSDown6H 323 Specifies the sixth additional down button (R6)
when the cursor hovers it.

exHSLeft 384 Specifies the left button (<) in normal state.
exHSLeftP 385 Specifies the left button (<) when it is pressed.
exHSLeftD 386 Specifies the left button (<) when it is disabled.

exHSLeftH 387 Specifies the left button (<) when the cursor hovers
it.

exHSThumb 388 Specifies the thumb part (exThumbPart) in normal
state.

exHSThumbP 389 Specifies the thumb part (exThumbPart) when it is
pressed.

exHSThumbD 390 Specifies the thumb part (exThumbPart) when it is
disabled.

exHSThumbH 391 Specifies the thumb part (exThumbPart) when the
cursor hovers it.

exHSRight 392 Specifies the right button (>) in normal state.

exHSRightP 393 Specifies the right button (>) when it is pressed.
exHSRightD 394 Specifies the right button (>) when it is disabled.

exHSRightH 395
Specifies the right button (>) when the cursor
hovers it.

exHSLower 396 Specifies the lower part (exLowerBackPart) in
normal state.

exHSLowerP 397 Specifies the lower part (exLowerBackPart) when it
is pressed.

exHSLowerD 398 Specifies the lower part (exLowerBackPart) when it
is disabled.

exHSLowerH 399 Specifies the lower part (exLowerBackPart) when
the cursor hovers it.

exHSUpper 400 Specifies the upper part (exUpperBackPart) in
normal state.

exHSUpperP 401 Specifies the upper part (exUpperBackPart) when it
is pressed.

exHSUpperD 402 Specifies the upper part (exUpperBackPart) when it
is disabled.

exHSUpperH 403 Specifies the upper part (exUpperBackPart) when
the cursor hovers it.

exHSBack 404 Specifies the background part (exLowerBackPart
and exUpperBackPart) in normal state.

exHSBackP 405 Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is pressed.

exHSBackD 406 Specifies the background part (exLowerBackPart
and exUpperBackPart) when it is disabled.

exHSBackH 407 Specifies the background part (exLowerBackPart
and exUpperBackPart) when the cursor hovers it.

exHSLeft1 408 Specifies the first additional left button (L1) in
normal state.

exHSLeft1P 409 Specifies the first additional left button (L1) when it
is pressed.

exHSLeft1D 410 Specifies the first additional left button (L1) when it
is disabled.

exHSLeft1H 411 Specifies the first additional left button (L1) when
the cursor hovers it.

exHSLeft2 412 Specifies the second additional left button (L2) in
normal state.

exHSLeft2P 413 Specifies the second additional left button (L2)
when it is pressed.

exHSLeft2D 414 Specifies the second additional left button (L2)
when it is disabled.

exHSLeft2H 415 Specifies the second additional left button (L2)
when the cursor hovers it.

exHSLeft3 416 Specifies the third additional left button (L3) in
normal state.

exHSLeft3P 417 Specifies the third additional left button (L3) when it
is pressed.

exHSLeft3D 418 Specifies the third additional left button (L3) when it
is disabled.

exHSLeft3H 419 Specifies the third additional left button (L3) when
the cursor hovers it.

exHSLeft4 420 Specifies the forth additional left button (L4) in
normal state.

exHSLeft4P 421 Specifies the forth additional left button (L4) when it
is pressed.

exHSLeft4D 422 Specifies the forth additional left button (L4) when it
is disabled.

exHSLeft4H 423 Specifies the forth additional left button (L4) when
the cursor hovers it.

exHSLeft5 424 Specifies the fifth additional left button (L5) in
normal state.

exHSLeft5P 425 Specifies the fifth additional left button (L5) when it
is pressed.

exHSLeft5D 426 Specifies the fifth additional left button (L5) when it
is disabled.

exHSLeft5H 427 Specifies the fifth additional left button (L5) when
the cursor hovers it.

exHSRight1 428 Specifies the first additional right button (R1) in
normal state.

exHSRight1P 429 Specifies the first additional right button (R1) when
it is pressed.

exHSRight1D 430 Specifies the first additional right button (R1) when
it is disabled.

exHSRight1H 431 Specifies the first additional right button (R1) when
the cursor hovers it.

exHSRight2 432 Specifies the second additional right button (R2) in
normal state.

exHSRight2P 433 Specifies the second additional right button (R2)
when it is pressed.

exHSRight2D 434 Specifies the second additional right button (R2)
when it is disabled.

exHSRight2H 435 Specifies the second additional right button (R2)
when the cursor hovers it.

exHSRight3 436 Specifies the third additional right button (R3) in
normal state.

exHSRight3P 437 Specifies the third additional right button (R3) when
it is pressed.

exHSRight3D 438 Specifies the third additional right button (R3) when
it is disabled.

exHSRight3H 439 Specifies the third additional right button (R3) when
the cursor hovers it.

exHSRight4 440 Specifies the forth additional right button (R4) in
normal state.

exHSRight4P 441 Specifies the forth additional right button (R4) when
it is pressed.

exHSRight4D 442 Specifies the forth additional right button (R4) when
it is disabled.

exHSRight4H 443 Specifies the forth additional right button (R4) when
the cursor hovers it.

exHSRight5 444 Specifies the fifth additional right button (R5) in
normal state.

exHSRight5P 445 Specifies the fifth additional right button (R5) when
it is pressed.

exHSRight5D 446 Specifies the fifth additional right button (R5) when
it is disabled.

exHSRight5H 447 Specifies the fifth additional right button (R5) when
the cursor hovers it.

exHSRight6 448 Specifies the sixth additional right button (R6) in
normal state.

exHSRight6P 449 Specifies the sixth additional right button (R6) when
it is pressed.

exHSRight6D 450
Specifies the sixth additional right button (R6) when
it is disabled.

exHSRight6H 451 Specifies the sixth additional right button (R6) when
the cursor hovers it.

exSBtn 324

Specifies all button parts (L1-L5, <, exThumbPart,
>, R1-R6), in normal state. Use this option the
same visual appearance for all buttons in the
control.

exSBtnP 325

Specifies all button parts (L1-L5, <, exThumbPart,
>, R1-R6), when it is pressed. Use this option the
same visual appearance for all buttons in the
control.

exSBtnD 326

Specifies all button parts (L1-L5, <, exThumbPart,
>, R1-R6), when it is disabled. Use this option the
same visual appearance for all buttons in the
control.

exSBtnH 327

Specifies all button parts (L1-L5, <, exThumbPart,
>, R1-R6), when the cursor hovers it . Use this
option the same visual appearance for all buttons in
the control.

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exScrollSizeGrip 511 Specifies the background of the control, when the
Mode is exSizeGrip.

constants ModeEnum
The ModeEnum type specifies the orientation of the control. Use the Mode property to
specify the control's orientation. By default, the control's Mode property is exvertical.

Name Value Description
exVertical 0 The control is vertically oriented.
exHorizontal 1 The control is horizontally oriented.
exSizeGrip 2 The control displays a size grip.

exThumbProgress 16 The control displays the thumb/scroll box as a
progress bar.

constants PartEnum
The PartEnum type defines the parts in the control. Use the VisiblePart or VisibleParts
property to specify the parts being shown or hidden in the control. Use the EnablePart or
EnableParts property to specify enable or disable parts. Use the OwnerDrawPart property
to specify parts that are responsible for its painting. The BtnWidth or BtnHeight property
specifies the size of the button. The ThumbSize property specifies the size of the thumb.
The parts in the control are explained bellow:

Name Value Description
exExtentThumbPart 65536 exExtentThumbPart. The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden.

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner
Tile 48 Tiles the picture on the source.
Stretch 49 Tiles the picture on the source.

constants ScrollEnum
The ScrollEnum type specifies the actions that Scroll method can perform.

Name Value Description

exScrollLeft 0
Scrolls left/up by one unit. (SmallChange property
indicates the unit). Simulates a single click in the
control's left/up button.

exScrollRight 1
Scrolls right by one unit. (SmallChange property
indicates the unit). Simulates a single click in the
control's right/down button.

exScrollPageLeft 2
Scrolls left/up by one page. (LargeChange
property indicates the page). Simulates a single
click in the control's exLowerBackPart part.

exScrollPageRight 3
Scrolls right/down by one page. (LargeChange
property indicates the page). Simulates a single
click in the control's exUpperBackPart part.

exScrollToPosition 4 Scrolls the control to specified position. Simulates
click the thumb and drags to a new position.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. Use the Background property to
assign a skin or a color to any part of the control in a specified state.

For instance, the Background(exVSThumbP) = RGB(255,0,0) defines the thumb in a red
color, when it is pressed. The skin method, in it's simplest form, uses a single graphic file
(*.ebn) assigned to a part of the control, when the "XP:" prefix is not specified in the Skin
parameter (available for Windows XP systems). By using a collection of objects laid over

the graphic, it is possible to define which sections of the graphic will be used as borders,
corners and other possible elements, fixing them to their proper position regardless of the
size of the part. Use the Remove method to remove a specific skin from the control. Use
the Clear method to remove all skins in the control. Use the BeginUpdate and EndUpdate
methods to maintain performance while do multiple changes to the control.

The identifier you choose for the skin is very important to be used in the
background properties like explained bellow. Shortly, the color properties (Background
property) uses 4 bytes (DWORD, double WORD, and so on) to hold a RGB value. More
than that, the first byte (most significant byte in the color) is used only to specify system
color. if the first bit in the byte is 1, the rest of bits indicates the index of the system color
being used. So, we use the last 7 bits in the high significant byte of the color to indicates
the identifier of the skin being used. So, since the 7 bits can cover 127 values, excluding 0,
we have 126 possibilities to store an identifier in that byte. This way, a DWORD expression
indicates the background color stored in RRGGBB format and the index of the skin (ID
parameter) in the last 7 bits in the high significant byte of the color. For instance, the
Background(exThumbPart) = Background(exThumbPart) Or &H2000000 indicates that we
apply the skin with the index 2 using the old color, to the thumb part.

In the following samples, we have used the following skin file:

The following VB sample changes the visual appearance of the thumb, in the vertical
scrollbar:

With ScrollBar1
 .VisualAppearance.Add 1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn"
 .Background(exVSThumb) = &H1000000
End With

The following VB sample changes the visual appearance of the thumb (when it is pressed
), in the vertical scrollbar:

With ScrollBar1
 .VisualAppearance.Add 1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn"
 .Background(exVSThumbP) = &H1000000
End With

The following C++ sample changes the visual appearance of the thumb, in the vertical
scrollbar:

m_scrollbar.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_scrollbar.SetBackground(260 /*exVSThumb*/, 0x01000000);

The following C++ sample changes the visual appearance of the thumb (when it is
pressed), in the vertical scrollbar:

m_scrollbar.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_scrollbar.SetBackground(261 /*exVSThumbP*/, 0x01000000);

The following VB.NET sample changes the visual appearance of the thumb, in the vertical
scrollbar:

With AxScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumb, &H1000000)
End With

The following VB.NET sample changes the visual appearance of the thumb (when it is
pressed), in the vertical scrollbar:

With AxScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumbP, &H1000000)
End With

The following C# sample changes the visual appearance of the thumb, in the vertical
scrollbar:

axScrollBar1.VisualAppearance.Add(1,
"D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn");
axScrollBar1.set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumb,
0x1000000);

The following C# sample changes the visual appearance of the thumb (when it is pressed
), in the vertical scrollbar:

axScrollBar1.VisualAppearance.Add(1,
"D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn");
axScrollBar1.set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumbP,
0x1000000);

The following VFP sample changes the visual appearance of the thumb, in the vertical
scrollbar:

with thisform.ScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .Background(260) = 0x1000000
endwith

The following VFP sample changes the visual appearance of the thumb (when it is
pressed), in the vertical scrollbar:

with thisform.ScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .Background(261) = 0x1000000
endwith

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part. The skin method may change the visual appearance for any part
of the control, in any state.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part. The skin method may change the visual appearance
for any part of the control, in any state.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

ScrollBar object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {5DE2B956-5AB5-47EE-8225-6AB7F9B4FC18}. The object's program identifier is: "Exontrol.ScrollBar".
The /COM object module is: "ExScrollBar.dll"

The ScrollBar component supports the following properties and methods:

Name Description
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate This method prevents the control from painting until the
EndUpdate method is called.

BtnHeight Specifies the height of the button in the control.
BtnWidth Specifies the width of the button in the control.
Caption Specifies the caption of the part of the control.
CaptionAlignment Specifies the alignment of the part's caption.
CaptionIndentX Indents the caption on x axis.
CaptionIndentY Indents the caption on y axis.

DisableNoScroll Disables the scroll bar instead of removing it, if the scroll
bar's new parameters make the scroll bar unnecessary.

Enabled Enables or disables the control.

EnablePart Indicates whether the specified part is enabled or
disabled.

EnableParts Specifies the parts of the control to be enabled or
disabled.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

hWndMouseWheel Associates a window with the current scroll bar when
using the mouse wheel over or while it is focused.

IgnoreLargeChange Ignores the large change value when getting the maximum
value.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

LargeChange
The amount by which the scroll box position changes when
the user clicks in the scroll bar or presses the PAGE UP or
PAGE DOWN keys.

Maximum The upper limit value of the scrollable range.
Minimum The lower limit value of the scrollable range.
Mode Specifies the control's Mode.
OrderParts Specifies the order of the parts in the scroll-bar.

OwnerDrawPart Indicates which part of the control is responsible for its
drawing.

PartFromPoint Retrieves the part from the point.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

Scroll Scrolls programmatically the control.

ScrollDelay Specifies the time in ms, to delay the next scroll event,
when the user clicks the scrollbar's parts.

SendMessage Specifies whether the control sends scroll messages to
the parent window.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

SmallChange The amount by which the scroll box position changes when
the user clicks a scroll arrow or presses an arrow key.

StartScrollDelay
Specifies the time in ms, to wait until contiguously scroll
begins once the user presses the up/down or left/right

buttons.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

TemplateResult Gets the result of the last Template call.
TemplateResultN Gets the result of the last Template call, as double.
TemplateResultS Gets the result of the last Template call, as string.
ThumbSize Specifies the width or the height of the thumb.
ToolTipFont Retrieves or sets the tooltip's font.
ToolTipText Specifies the control's tooltip text.
ToolTipTitle Specifies the title of the control's tooltip.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

ToolTipX Indicates an expression that determines the horizontal-
position of the tooltip, in screen coordinates.

ToolTipY Indicates an expression that determines the vertical-
position of the tooltip, in screen coordinates.

UserData Associates an extra data to a part of the control.
Value The value that the scroll box position represents.
ValueFromPoint Retrieves the value from the point.
Version Retrieves the control's version.
VisiblePart Indicates whether the specified part is visible or hidden.
VisibleParts Specifies the parts of the control being visible.
VisualAppearance Retrieves the control's appearance.

WheelChange The amount by which the scroll box position changes when
the user rolls the mouse wheel.

property ScrollBar.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The buttons and thumb are
always shown in the control's client area. The skin
may contain transparent objects, and so you can
define round corners. The frame.ebn file contains
such of objects. Use the eXButton's Skin builder to
view or change this file

By default, the control displays no border. Use the VisualAppearance property to add new
skins to the control. Use the Background property to change the visual appearance for a
specific part of the control.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With ScrollBar1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\frame.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxScrollBar1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\frame.ebn")
 .Appearance = &H16000000

https://exontrol.com/exbutton.jsp

 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axScrollBar1.BeginUpdate();
axScrollBar1.VisualAppearance.Add(0x16, "c:\\temp\\frame.ebn");
axScrollBar1.Appearance = (EXSCROLLBARLib.AppearanceEnum)0x16000000;
axScrollBar1.BackColor = Color.FromArgb(250, 250, 250);
axScrollBar1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_scrollBar.BeginUpdate();
m_scrollBar.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\frame.ebn"));
m_scrollBar.SetAppearance(0x16000000);
m_scrollBar.SetBackColor(RGB(250,250,250));
m_scrollBar.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.ScrollBar1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\frame.ebn")
 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method ScrollBar.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ScrollBar1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ScrollBar.BackColor as Color
Specifies the control's background color.

Type Description
Color A Color expression that indicates the

Use the BackColor property to specify the control's background color. This property does
not affect the visual appearance of the control applied using the Background property. Use
the Picture property to assign a picture on the control's background. Use the ForeColor
property to specify the control's foreground color. The Caption property assigns a text on
any part of the control.

property ScrollBar.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates the part
and the state whose visual appearance is changed.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while multiple changes
are applied. Use the VisiblePart or VisibleParts property to specify visible parts in the
control. Use the OrderParts to specify the order of the buttons in the scroll bar.

In the following samples, we have used the following skin file:

The following VB sample changes the visual appearance of the thumb, in the vertical
scrollbar:

With ScrollBar1
 .VisualAppearance.Add 1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn"
 .Background(exVSThumb) = &H1000000
End With

The following VB sample changes the visual appearance of the thumb (when it is pressed
), in the vertical scrollbar:

With ScrollBar1
 .VisualAppearance.Add 1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn"
 .Background(exVSThumbP) = &H1000000
End With

The following C++ sample changes the visual appearance of the thumb, in the vertical
scrollbar:

m_scrollbar.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_scrollbar.SetBackground(260 /*exVSThumb*/, 0x01000000);

The following C++ sample changes the visual appearance of the thumb (when it is
pressed), in the vertical scrollbar:

m_scrollbar.GetVisualAppearance().Add(1, COleVariant(
_T("D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn")));
m_scrollbar.SetBackground(261 /*exVSThumbP*/, 0x01000000);

The following VB.NET sample changes the visual appearance of the thumb, in the vertical
scrollbar:

With AxScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumb, &H1000000)
End With

The following VB.NET sample changes the visual appearance of the thumb (when it is
pressed), in the vertical scrollbar:

With AxScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumbP, &H1000000)
End With

The following C# sample changes the visual appearance of the thumb, in the vertical
scrollbar:

axScrollBar1.VisualAppearance.Add(1,
"D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn");
axScrollBar1.set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumb,
0x1000000);

The following C# sample changes the visual appearance of the thumb (when it is pressed
), in the vertical scrollbar:

axScrollBar1.VisualAppearance.Add(1,
"D:\\Exontrol\\ExScrollBar\\sample\\VB\\Gauge\\Vertical 2\\thumb.ebn");
axScrollBar1.set_Background(EXSCROLLBARLib.BackgroundPartEnum.exVSThumbP,
0x1000000);

The following VFP sample changes the visual appearance of the thumb, in the vertical
scrollbar:

with thisform.ScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .Background(260) = 0x1000000
endwith

The following VFP sample changes the visual appearance of the thumb (when it is
pressed), in the vertical scrollbar:

with thisform.ScrollBar1
 .VisualAppearance.Add(1, "D:\Exontrol\ExScrollBar\sample\VB\Gauge\Vertical
2\thumb.ebn")
 .Background(261) = 0x1000000
endwith

method ScrollBar.BeginUpdate ()
This method prevents the control from painting until the EndUpdate method is called.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of making your changes, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

property ScrollBar.BtnHeight as Long
Specifies the height of the button in the control.

Type Description

Long A long expression that defines the height of the button in a
vertical scroll bar.

By default, the BtnHeight property is -1. If the BtnHeight property is -1, the control gets the
default's button height from the system. If the BtnHeight property is greater than 0, it
indicates in pixels the height of the button in a vertical scroll bar. Use the Mode property to
specify whether the control is vertically or horizontally oriented. Use the BtnWidth property
to specify the width of the buttons in a horizontal scroll bar.

The BtnHeight property assigns the height for the following buttons:

L1 to L5
<
>
R1 to R6

Use the ThumbSize property to define a static size for the control's scrollbox.

property ScrollBar.BtnWidth as Long
Specifies the width of the button in the control.

Type Description

Long A long expression that defines the width of the button in a
horizontal scroll bar.

By default, the BtnWidth property is -1. If the BtnWidth property is -1, the control gets the
default's button width from the system. If the BtnWidth property is greater than 0, it
indicates in pixels the width of the button in a horizontal scroll bar. Use the Mode property to
specify whether the control is vertically or horizontally oriented. Use the BtnHeight property
to specify the width of the buttons in a vertical scroll bar.

The BtnWidth property assigns the width for the following buttons:

L1 to L5
<
>
R1 to R6

Use the ThumbSize property to define a static size for the control's scrollbox.

property ScrollBar.Caption(Part as PartEnum) as String
Specifies the caption of the part of the control.

Type Description

Part as PartEnum A PartEnum expression that specifies the part where the
text is displayed.

String
A String expression that indicates the text being displayed.
The Caption property support built-in HTML format as
explained bellow.

Use the Caption property to specify a caption on any part of the control. Use the Font
property to specify the control's font. Use the ForeColor property to specify the caption's
color, if the <fgcolor> tag is not used. Use the Value property to specify the control's value.
The CaptionAlignment property specifies the alignment of the caption in the part area. Use
the CaptionIndentX property to indent the caption on the part, on the X axis. Use the
CaptionIndentY property to indent the caption of the part on the Y axis. Use the
Background property to change the visual appearance for any part of the control, in any
state.

The Caption property supports the following built-in HTML tags:

 bold bolds a part of the caption.
<u> underline </u> specifies that the portion should appear as underlined.
<s> strikeout </s> specifies that the portion should appear as strikeout.
<i> italic </i> specifies that the portion should appear as italic.
<fgcolor=FF0000>fgcolor</fgcolor> changes the foreground color for a portion.
<bgcolor=FF0000>bgcolor</bgcolor> changes the background color for a portion.

 breaks a line.
<solidline> draws a solid line. If has no effect for a single line caption.
<dotline> draws a dotted line. If has no effect for a single line caption.
<upline> draws the line to the top of the text line
<r> aligns the rest of the text line to the right side. It has no effect if the caption
contains a single line.
number[:width] inserts an icon inside the cell's caption. The number
indicates the index of the icon being inserted. The width is optional and indicates the
width of the icon being inserted. Using the width option you can overwrite multiple icons
getting a nice effect. By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture being loaded using the
HTMLPicture property. The Key parameter indicates the key of the picture being
displayed. The Width parameter indicates a custom size, if you require to stretch the
picture, else the original size of the picture is used.

For instance, the following VB sample prints the control's Value on the control's thumb:

Private Sub ScrollBar1_Change()
 With ScrollBar1
 .Caption(exThumbPart) = .Value
 End With
End Sub

The following C++ sample prints the control's Value on the control's thumb:

void OnChangeScrollbar1()
{
 CString strFormat;
 strFormat.Format(_T("%i"), m_scrollbar.GetValue());
 m_scrollbar.SetCaption(256, strFormat);
}

The following VB.NET sample prints the control's Value on the control's thumb:

With AxScrollBar1
 .set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart, .Value.ToString())
End With

The following C# sample prints the control's Value on the control's thumb:

private void axScrollBar1_Change(object sender, EventArgs e)
{
 axScrollBar1.set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart,
axScrollBar1.Value.ToString());
}

The following VFP sample prints the control's Value on the control's thumb:

*** ActiveX Control Event ***

with thisform.ScrollBar1
 .Caption(256) = .Value
endwith

property ScrollBar.CaptionAlignment(Part as PartEnum) as
AlignmentEnum
Specifies the alignment of the part's caption.

Type Description

Part as PartEnum A PartEnum expression that specifies the part where the
text is displayed.

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption.

By default, the CaptionAlignment property is CenterAlignment. Use the CaptionIndentX
property to indent the caption on the part, on the X axis. Use the CaptionIndentY property
to indent the caption of the part on the Y axis. Use the Caption property to specify a caption
on any part of the control. Use the Font property to specify the control's font. Use the
ForeColor property to specify the caption's color, if the <fgcolor> tag is not used. Use the
Value property to specify the control's value.

The Caption property supports the following built-in HTML tags:

 bold bolds a part of the caption.
<u> underline </u> specifies that the portion should appear as underlined.
<s> strikeout </s> specifies that the portion should appear as strikeout.
<i> italic </i> specifies that the portion should appear as italic.
<fgcolor=FF0000>fgcolor</fgcolor> changes the foreground color for a portion.
<bgcolor=FF0000>bgcolor</bgcolor> changes the background color for a portion.

 breaks a line.
<solidline> draws a solid line. If has no effect for a single line caption.
<dotline> draws a dotted line. If has no effect for a single line caption.
<upline> draws the line to the top of the text line
<r> aligns the rest of the text line to the right side. It has no effect if the caption
contains a single line.
number[:width] inserts an icon inside the cell's caption. The number
indicates the index of the icon being inserted. The width is optional and indicates the
width of the icon being inserted. Using the width option you can overwrite multiple icons
getting a nice effect. By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture being loaded using the
HTMLPicture property. The Key parameter indicates the key of the picture being
displayed. The Width parameter indicates a custom size, if you require to stretch the
picture, else the original size of the picture is used.

property ScrollBar.CaptionIndentX(Part as PartEnum) as Long
Indents the caption on x axis.

Type Description

Part as PartEnum A PartEnum expression that specifies the part where the
text is displayed.

Long A long expression that specifies the indentation of the
caption.

By default, the CaptionIndentX property is 0. Use the CaptionIndentX property to indent the
caption on the part, on the X axis. Use the CaptionIndentY property to indent the caption of
the part on the Y axis. Use the CaptionAlignment property to align the caption of the part.
Use the Caption property to specify a caption on any part of the control. Use the Font
property to specify the control's font. Use the ForeColor property to specify the caption's
color, if the <fgcolor> tag is not used. Use the Value property to specify the control's value.

property ScrollBar.CaptionIndentY(Part as PartEnum) as Long
Indents the caption on y axis.

Type Description

Part as PartEnum A PartEnum expression that specifies the part where the
text is displayed.

Long A long expression that specifies the indentation of the
caption.

By default, the CaptionIndentX property is 0. Use the CaptionIndentY property to indent the
caption of the part on the Y axis. Use the CaptionIndentX property to indent the caption on
the part, on the X axis. Use the CaptionAlignment property to align the caption of the part.
Use the Caption property to specify a caption on any part of the control. Use the Font
property to specify the control's font. Use the ForeColor property to specify the caption's
color, if the <fgcolor> tag is not used. Use the Value property to specify the control's value.

property ScrollBar.DisableNoScroll as Boolean
Disables the scroll bar instead of removing it, if the scroll bar's new parameters make the
scroll bar unnecessary.

Type Description

Boolean A Boolean expression that indicates whether
DisableNoScroll feature is off or on.

By default, the DisableNoScroll property is False. If the DisableNoScroll property is True,
the left/up or right/down buttons are enabled only if they required, else they are disabled.
For instance, if the Value property is equal with the Minimum property, the left/up button is
disabled. Also, if both buttons are not required, the thumb part is not shown. Use the
EnablePart property to enable or disable a specified part. Use the VisiblePart property to
specify which parts are visible or hidden. Use the Background property to change the visual
appearance for a button or a part in a specified state.

property ScrollBar.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A Boolean expression that indicates whether the control is
enabled or disabled.

By default, the Enabled property is True. Use the EnablePart or EnableParts property to
specify a disabled part. If the Enabled property is False, all visible parts of the control are
displayed in disabled state. Use the VisiblePart property to specify which parts are visible
or hidden. Use the Background property to apply a visual effect on any part of the control in
any state.

property ScrollBar.EnablePart(Part as PartEnum) as Boolean
Indicates whether the specified part is enabled or disabled.

Type Description

Part as PartEnum A PartEnum expression that specifies the part being
enabled or disabled.

Boolean A Boolean expression that specifies whether the part is
enabled or diasable.

By default, when a part becomes visible, automatically the EnablePart is called. Use the
EnablePart property to disable parts of the control. A disabled part can't be clicked, and
shows the disabled state. Use the Background property to apply a visual effect on any part
of the control. The EnableParts property is similar with the EnablePart property. Use the
VisiblePart property to specify which parts are visible or hidden. The ClickPart or
ClickingPart event is fired only if the user clicked in an enabled part. Use the OrderParts to
specify the order of the buttons in the scroll bar.

By default, the following parts are enabled:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

property ScrollBar.EnableParts as Long
Specifies the parts of the control to be enabled or disabled.

Type Description

Long
A long expression that specifies an OR combination of
PartEnum values that indicates which parts are visible and
which parts are not shown.

By default, the EnableParts property is 1984 (that's a OR combination of exLeftBPart,
exLowerBackPart, exThumbPart, exUpperBackPart and exRightBPart). The VisiblePart
property specifies which part is visible and which part is hidden. By default, when a part
becomes visible, automatically the EnablePart is called. Use the EnablePart property to
disable parts of the control. A disabled part can't be clicked, and shows the disabled state.
Use the Background property to apply a visual effect on any part of the control. The
EnableParts property is similar with the EnablePart property. Use the OrderParts to specify
the order of the buttons in the scroll bar.

By default, the following parts are enabled:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

method ScrollBar.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of making your changes, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

property ScrollBar.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method ScrollBar.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that
the AttachTemplate can add handlers to the control events.

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print ScrollBar1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ScrollBar.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint captions.

Use the Font property to specify the font being used when a part displays its caption. Use
the Caption property to specify a text in any part of the control. Use the ForeColor property
to specify the caption's color, if the <fgcolor> tag is not used. Use the Value property to
specify the control's value. The CaptionAlignment property specifies the alignment of the
caption in the part ar

property ScrollBar.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to specify the control's foreground color. The Caption property
assigns a text on any part of the control. Use the BackColor property to specify the
control's background color. This property does not affect the visual appearance of the
control applied using the Background property. Use the Picture property to assign a picture
on the control's background.

property ScrollBar.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). Use the Caption property to specify a caption on
any part of the control. Use the Background property to change the visual appearance for
any part of the control, in any state.

https://exontrol.com/eximages.jsp

property ScrollBar.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

property ScrollBar.hWndMouseWheel as Long
Associates a window with the current scroll bar when using the mouse wheel over or while
it is focused.

Type Description

Long

A Long expression that specifies the handle of the window
to be associated with the current scroll bar. If -1, the
mouse wheel works anywhere on the form, or the scroll
bar's value is changed every time the user rolls the mouse
wheel, no matter what field is focused.

By default, the hWndMouseWheel property is 0, which indicates no window associated with
the scroll bar. If non-zero, this property indicates that handle of the window to be
associated with the current scroll bar, so while this window has the focus, rotating the
mouse wheel will be forward to the scroll bar to change the current value. For instance, let's
say we have a text-box and we want to be able to change the value inside while the user
rotates the mouse wheel.

property ScrollBar.IgnoreLargeChange as Boolean
Ignores the large change value when getting the maximum value.

Type Description

Boolean
A boolen expression that indicates the whether the
LargeChange property counts in getting the maximum
value.

By default, the IgnoreLargeChange property is False. The LargeChange property gets or
sets a value to be added to or subtracted from the Value property when the scroll box is
moved a large distance. The SmallChange property gets or sets the value added to or
subtracted from the Value property when the thumb is moved a small distance.

The Value property goes from:

Minimum to Maximum values, if the IgnoreLargeChange property is True, or the
LargeChange property is 0.
Minimum to ((Maximum - LargeChange) + 1), if the IgnoreLargeChange property is
False and the LargeChange property is not 0.

method ScrollBar.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

Use the Images method to add icons being displayed in any part of the control using the
Caption property. The ImageSize property defines the size (width/height) of the icons within
the control's Images collection. Use the ReplaceIcon method to add, remove or clear icons
in the control's images collection. Use the Caption property to specify the part's caption.
Use the HTMLPicture property to display custom size pictures in any part of the control.

property ScrollBar.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property ScrollBar.LargeChange as Long
The amount by which the scroll box position changes when the user clicks in the scroll bar
or presses the PAGE UP or PAGE DOWN keys.

Type Description

Long
A long expression that indicates the value being added or
subtracted from the control's Value when the user clicks
the scroll's box upper or lower area.

By default, the LargeChange property is 10. The LargeChange property gets or sets a
value to be added to or subtracted from the Value property when the scroll box is moved a
large distance. The SmallChange property gets or sets the value added to or subtracted
from the Value property when the thumb is moved a small distance. If the LargeChange
property is 0, the Value property is not changed when clicking the the upper or lower part of
the control. Use the Minimum and Maximum properties to specify the range's value. Use the
Caption property to put a HTML text on any part of the control.

The Value property goes from:

Minimum to Maximum values, if the IgnoreLargeChange property is True, or the
LargeChange property is 0.
Minimum to ((Maximum - LargeChange) + 1), if the IgnoreLargeChange property is
False and the LargeChange property is not 0.

property ScrollBar.Maximum as Long
The upper limit value of the scrollable range.

Type Description

Long A long expression that indicates the upper limit value of the
scrollable range.

By default, the Maximum property is 100. The Value property specifies the control's value.
The Minimum property specifies the lower limit value of the scrollable range. The
LargeChange property gets or sets a value to be added to or subtracted from the Value
property when the scroll box is moved a large distance. The SmallChange property gets or
sets the value added to or subtracted from the Value property when the thumb is moved a
small distance.

The Value property goes from:

Minimum to Maximum values, if the IgnoreLargeChange property is True, or the
LargeChange property is 0.
Minimum to ((Maximum - LargeChange) + 1), if the IgnoreLargeChange property is
False and the LargeChange property is not 0.

property ScrollBar.Minimum as Long
The lower limit value of the scrollable range.

Type Description

Long A long expression that indicates the lower limit value of the
scrollable range.

By default, the Minimum property is 0. The Value property specifies the control's value. The
Maximum property specifies the upper limit value of the scrollable range. The LargeChange
property gets or sets a value to be added to or subtracted from the Value property when
the scroll box is moved a large distance. The SmallChange property gets or sets the value
added to or subtracted from the Value property when the thumb is moved a small distance.

The Value property goes from:

Minimum to Maximum values, if the IgnoreLargeChange property is True, or the
LargeChange property is 0.
Minimum to ((Maximum - LargeChange) + 1), if the IgnoreLargeChange property is
False and the LargeChange property is not 0.

property ScrollBar.Mode as ModeEnum
Specifies the control's Mode.

Type Description

ModeEnum A ModeEnum expression that indicates the control's
orientation.

By default, the Mode property is exVertical. Use the Mode property to change the control's
orientation. Use the Value property to specify the control's value. Use the SendMessage
property to specify whether the control sends scroll messages to the parent window. If the
SendMessage property is True, the control sends scroll bar related messages to the parent
window of the control, when certain actions occurs in the control. For instance, if the user
clicks the left button in an horizontal message, the control sends the WM_HSCROLL
message with the code SB_LINELEFT. Use the SendMessage property only when you
need to handle messages in your parent window.

property ScrollBar.OrderParts as String
Specifies the order of the parts in the scroll-bar.

Type Description

String

A String expression that indicates the order of the parts.
The list includes expressions like l, l1, ..., l5, t, r, r1, ..., r6
separated by comma, each expression indicating a part of
the control, and its position indicating the displaying order.

Use the OrderParts to customize the order of the buttons in the scroll bar. By default, the
OrderParts property is empty. If the OrderParts property is empty the default order of the
parts in the control are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
VisiblePart or VisibleParts property to specify whether a part in the scrollbar is visible or
hidden. Use the EnablePart property to enable or disable a part in the scroll bar. Use the
Caption property to assign a caption to a button in the scroll bar.

Use the OrderParts property to change the order of the parts in the control. For instance,
"l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1 and r1
buttons right after the thumb area. If the parts are not specified in the OrderParts property,
automatically they are added to the end.

The list of supported literals in the OrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.
r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.

r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property ScrollBar.OwnerDrawPart(Part as PartEnum) as Boolean
Indicates which part of the control is responsible for its drawing.

Type Description
Part as PartEnum A PartEnum expression that's responsible for its drawing

Boolean A Boolean expression that indicates whether the user is
responsible for drawing the specified part, or not.

By default, the OwnerDrawPart property is 0. The control fires the OwnerDrawStart and
OwnerDrawEnd events when the control requires drawing the owner draw part. These
events are fired only for visible parts, that have the OwnerDrawPart property on True. The
VisiblePart or VisibleParts property specifies the part being visible or hidden. For instance,
the VisiblePart(exLeftB1Part or exLeftB2Part) = True adds two new buttons left/up to the
control.

The control paints the parts in the following order (only if visible):

exBackgroundPart
exLowerBackPart
exUpperBackPart
exLeftBPart.
exLeftB1Part
exLeftB2Part
exLeftB3Part
exLeftB4Part
exLeftB5Part
exRightBPart
exRightB1Part
exRightB2Part
exRightB3Part
exRightB4Part
exRightB5Part
exRightB6Part

For instance, the following VB sample draws the lower part in red, and the upper part in
green (as in the screen shot) :

With ScrollBar1
 .OwnerDrawPart(exLowerBackPart Or exUpperBackPart) = True
End With

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, lpRect As RECT) As
Long
Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, lpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub ScrollBar1_OwnerDrawEnd(ByVal Part As EXSCROLLBARLibCtl.PartEnum, ByVal
hdc As Long)
 Dim r As RECT, h As Long
 GetClipBox hdc, r
 r.Left = r.Left + 4
 r.Right = r.Right - 4
 If Part = exLowerBackPart Then
 h = CreateSolidBrush(RGB(255, 0, 0))
 FillRect hdc, r, h
 DeleteObject (h)
 Else
 If Part = exUpperBackPart Then
 h = CreateSolidBrush(RGB(0, 255, 0))
 FillRect hdc, r, h
 DeleteObject (h)
 End If
 End If

End Sub

The following C++ sample draws the lower part in red, and the upper part in green (as in
the screen shot) :

m_scrollbar.SetOwnerDrawPart(128 /*exUpperBackPart*/, TRUE);
m_scrollbar.SetOwnerDrawPart(512 /*exLowerBackPart*/, TRUE);

void OnOwnerDrawEndScrollbar1(long Part, long hDC)
{
 HDC h = (HDC)hDC;
 RECT rtPart = {0}; GetClipBox(h, &rtPart);
 InflateRect(&rtPart, -4, 0);
 switch (Part)
 {
 case 128: /*exUpperBackPart*/
 {
 HBRUSH hB = CreateSolidBrush(RGB(0,255,0));
 FillRect(h, &rtPart, hB);
 DeleteObject(hB);
 break;
 }
 case 512: /*exLowerBackPart*/
 {
 HBRUSH hB = CreateSolidBrush(RGB(255,0,0));
 FillRect(h, &rtPart, hB);
 DeleteObject(hB);
 break;
 }
 }
}

property ScrollBar.PartFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as PartEnum
Retrieves the part from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

PartEnum A PartEnum expression that indicates the part from the
point.

The PartFromPoint property specifies the part of the control from the cursor. Use the
ValueFromPoint property to determine the value from the cursor. Use the VisiblePart or
VisibleParts property to specify the visible parts of the control.

The following VB sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

Private Sub ScrollBar1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ScrollBar1
 If (0 <> (.PartFromPoint(-1, -1) And exBackgroundPart)) Then
 .Value = .ValueFromPoint(-1, -1)
 End If
 End With
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
upper or lower part of the control:

Private Sub AxScrollBar1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent) Handles
AxScrollBar1.MouseDownEvent
 With AxScrollBar1
 If (0 <> (.get_PartFromPoint(-1, -1) And
EXSCROLLBARLib.PartEnum.exBackgroundPart)) Then

 .Value = .get_ValueFromPoint(-1, -1)
 End If
 End With
End Sub

The following C++ sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

void OnMouseDownScrollbar1(short Button, short Shift, long X, long Y)
{
 if (m_scrollbar.GetPartFromPoint(-1,-1) & 640)
 m_scrollbar.SetValue(m_scrollbar.GetValueFromPoint(-1,-1));
}

The following C# sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

private void axScrollBar1_MouseDownEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent e)
{
 if (0 != (axScrollBar1.get_PartFromPoint(-1,-1) &
EXSCROLLBARLib.PartEnum.exBackgroundPart))
 axScrollBar1.Value = axScrollBar1.get_ValueFromPoint(-1, -1);
}

The following VFP sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.scrollbar1
 if (0 # bitand(.PartFromPoint(-1,-1), 640))
 .Value = .ValueFromPoint(-1,-1)
 endif
endwith

property ScrollBar.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
BackColor property to change the control's background color. Use the Background property
to change the visual appearance for any part of the control in any state.

property ScrollBar.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. Use the PictureDisplay property specifies
how the Picture is displayed on the control's background. If the control has no picture
associated the PictureDisplay property has no effect. Use the BackColor property to
change the control's background color. Use the Background property to change the visual
appearance for any part of the control in any state.

method ScrollBar.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection. Use the Caption property
to specify the part's caption. Use the HTMLPicture property to display custom size pictures
in any part of the control.

The following VB sample adds a new icon to control's images list:

 i = ExScrollBar1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExScrollBar1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExScrollBar1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExScrollBar1.ReplaceIcon 0, -1

method ScrollBar.Scroll (Action as ScrollEnum, ToPosition as Long)
Scrolls programmatically the control.

Type Description

Action as ScrollEnum A ScrollEnum expression that specifies the action to
perform.

ToPosition as Long A long expression that indicates the new position, when
the Action is is exScrollToPosition

use the Scroll method to simulate actions when some parts are clicked. For instance,
Scroll(exScrollLeft) simulates a single click in the control's left/up button, so the Value
property is decreased with the SmallChange value. The Scroll method does not fire events
like ClickPart or ClickingPart. Use the Value property to specify the control's value.

property ScrollBar.ScrollDelay as Long
Specifies the time in ms, to delay the next scroll event, when the user clicks the scrollbar's
parts.

Type Description

Long A Long expression that defines the time in ms, to delay the
next scroll event.

By default, the ScrollDelay property is 0, which means that no delay occurs till next scroll
event. In other words, you can use the ScrollDelay property to define the delay between
two Change events. Use the StartScrollDelay property to specify the time in ms, to wait
until contiguously scroll begins once the user presses the up/down or left/right buttons.

property ScrollBar.SendMessage as Boolean
Specifies whether the control sends scroll messages to the parent window.

Type Description

Boolean
A Boolean expression that specifies whether the control
sends scroll bar related messages to the parent window
of the control.

Use the SendMessage property to specify whether the control sends scroll messages to
the parent window. If the SendMessage property is True, the control sends scroll bar
related messages to the parent window of the control, when certain actions occurs in the
control. For instance, if the user clicks the left button in an horizontal message, the control
sends the WM_HSCROLL message with the code SB_LINELEFT. Use the SendMessage
property only when you need to handle messages in your parent window. Use the Mode
property to specify the control's orientation.

property ScrollBar.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the ScrollBar control.
Use the ReplaceIcon method to add, remove or clear icons in the control's images
collection. Use the HTMLPicture property to display custom size picture in any part of the
control.

property ScrollBar.SmallChange as Long
The amount by which the scroll box position changes when the user clicks a scroll arrow or
presses an arrow key.

Type Description

Long
A long expression that indicates the value added to or
subtracted from the Value property when the thumb is
moved a small distance.

By default, the SmallChange property is 1. The SmallChange property gets or sets the
value added to or subtracted from the Value property when the thumb is moved a small
distance. If the SmallChange property is 0, the Value property is not changed when clicking
the left/up or down/right buttons of the control. The LargeChange property gets or sets a
value to be added to or subtracted from the Value property when the scroll box is moved a
large distance. Use the Minimum and Maximum properties to specify the range's value. Use
the Caption property to put a HTML text on any part of the control.

property ScrollBar.StartScrollDelay as Long
Specifies the time in ms, to wait until contiguously scroll begins once the user presses the
up/down or left/right buttons.

Type Description

Long
A Long expression that defines the time in ms, to wait until
contiguously scroll begins once the user presses the
up/down or left/right buttons.

By default, the StartScrollDelay property is 500, which means that the scrolling begins after
1/2 seconds once the user clicks any up/down or left/right buttons. Use the ScrollDelay
property to define the delay in ms, between two Change events.

property ScrollBar.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
The TemplateResult property returns the result of the last Template call. Use the
ExecuteTemplate property to execute a template script and gets the result. The advantage
of the AttachTemplate relative to Template / ExecuteTemplate is that the AttachTemplate
can add handlers to the control events.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by

commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ScrollBar.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ScrollBar.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ScrollBar.TemplateResult as Variant
Gets the result of the last Template call.

Type Description

Variant

A VARIANT expression that indicates the result of the last
Template call. The TemplateResultN property gets the
result as number (double expression). The
TemplateResultS property gets the result as string.

The TemplateResult, TemplateResultN, TemplateResultS property returns the result of the
last Template call, as variant, numeric (double) or as string. The Template property takes a
string called x-script, and executes it. For instance, you can use the TemplateDef, Template,
TemplateResult or ExecuteTemplate to work with x-script. It is known that programming
languages such as dBASE Plus, XBasic from AlphaFive, Wonderware, does not support
setting a property with multiple parameters. In other words, these programming languages
does not support something like Property(Parameters) = Value, so our controls provide an
alternative using the TemplateDef method.

For instance, the Wonderware does not support parameters for events, or parameters of
any event are not defined during the event, so in this case, you require an alternative in
order to get the value for these parameters. Let's say the Select event, which has one
parameter ID of long type, which indicates the identifier of the item being selected. The
EventParam property gets the value for any parameter of a specified event. The same, the
EventParam requires parameters so Wonderware won't support it, in this case, the
Template and TemplateResult can be used to get the ID parameter of the Select event as
follows:

DIM id As Message
#exMenu1.Template = "EventParam(0)";
id = #exMenu1.TemplateResultS;
MessageBox(id, "Identifier", 0);

This code must be called during the Select event, else the EventParam has no effect.

The Template script (x-script) is composed by lines of instructions. Instructions are
separated by "\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.

https://exontrol.com/content/products/exmenu/help/_IMenuEvents_Select.htm

The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ScrollBar.TemplateResultN as Double
Gets the result of the last Template call, as double.

Type Description

Double

A Double expression that indicates the result of the last
Template call. The TemplateResult property gets the result
as variant. The TemplateResultS property gets the result
as string.

The TemplateResult, TemplateResultN, TemplateResultS property returns the result of the
last Template call, as variant, numeric (double) or as string. The Template property takes a
string called x-script, and executes it. For instance, you can use the TemplateDef, Template,
TemplateResult or ExecuteTemplate to work with x-script. It is known that programming
languages such as dBASE Plus, XBasic from AlphaFive, Wonderware, does not support
setting a property with multiple parameters. In other words, these programming languages
does not support something like Property(Parameters) = Value, so our controls provide an
alternative using the TemplateDef method.

For instance, the Wonderware does not support parameters for events, or parameters of
any event are not defined during the event, so in this case, you require an alternative in
order to get the value for these parameters. Let's say the Select event, which has one
parameter ID of long type, which indicates the identifier of the item being selected. The
EventParam property gets the value for any parameter of a specified event. The same, the
EventParam requires parameters so Wonderware won't support it, in this case, the
Template and TemplateResult can be used to get the ID parameter of the Select event as
follows:

DIM id As Message
#exMenu1.Template = "EventParam(0)";
id = #exMenu1.TemplateResultS;
MessageBox(id, "Identifier", 0);

This code must be called during the Select event, else the EventParam has no effect.

The Template script (x-script) is composed by lines of instructions. Instructions are
separated by "\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.

https://exontrol.com/content/products/exmenu/help/_IMenuEvents_Select.htm

The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ScrollBar.TemplateResultS as String
Gets the result of the last Template call, as string.

Type Description

String

A String expression that indicates the result of the last
Template call. The TemplateResultN property gets the
result as number (double expression). The
TemplateResult property gets the result as variant.

The TemplateResult, TemplateResultN, TemplateResultS property returns the result of the
last Template call, as variant, numeric (double) or as string. The Template property takes a
string called x-script, and executes it. For instance, you can use the TemplateDef, Template,
TemplateResult or ExecuteTemplate to work with x-script. It is known that programming
languages such as dBASE Plus, XBasic from AlphaFive, Wonderware, does not support
setting a property with multiple parameters. In other words, these programming languages
does not support something like Property(Parameters) = Value, so our controls provide an
alternative using the TemplateDef method.

For instance, the Wonderware does not support parameters for events, or parameters of
any event are not defined during the event, so in this case, you require an alternative in
order to get the value for these parameters. Let's say the Select event, which has one
parameter ID of long type, which indicates the identifier of the item being selected. The
EventParam property gets the value for any parameter of a specified event. The same, the
EventParam requires parameters so Wonderware won't support it, in this case, the
Template and TemplateResult can be used to get the ID parameter of the Select event as
follows:

DIM id As Message
#exMenu1.Template = "EventParam(0)";
id = #exMenu1.TemplateResultS;
MessageBox(id, "Identifier", 0);

This code must be called during the Select event, else the EventParam has no effect.

The Template script (x-script) is composed by lines of instructions. Instructions are
separated by "\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.

https://exontrol.com/content/products/exmenu/help/_IMenuEvents_Select.htm

The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ScrollBar.ThumbSize as Long
Specifies the width or the height of the thumb.

Type Description

Long A long expression that defines the size of the control's
thumb.

By default, the ThumbSize property is -1. If the ThumbSize property is -1, the control
automatically computes its size based on Maximum, Minimum, LargeChange and related
properties. If the ThumbSize property is greater than 0, it indicates in pixels the size of the
thumb. Use the Mode property to specify whether the control is vertically or horizontally
oriented. Use the BtnHeight property to specify the width of the buttons in a vertical scroll
bar. Use the BtnWidth property to specify the width of the buttons in a horizontal scroll bar.

You can use the ThumbSize property on 0, to allow the control acts like a spin control. The
Change event occurs when the control's Value property is changed, or the user clicks the
up/down, left/right buttons. The ClickPart(Part) event notifies once the user clicks a part of
the control. The ClickingPart(Part) event is fired continuously while the user keeps clicking
the part of the control.

property ScrollBar.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip

Use the ToolTipFont property to assign a font for the control's tooltip.

property ScrollBar.ToolTipText as String
Specifies the control's tooltip text.

Type Description

String
A String expression that specifies the tooltip being
displayed when the user clicks and moves the control's
thumb.

Use the ToolTipText property to assign a tooltip to be displayed when the user clicks and
moves the thumb part of the control. Use the ToolTipTitle property to assign a title for the
tooltip. The tooltip shows up only when the user clicks and moves the thumb, and the
ToolTipText or ToolTipTitle property is not empty. Use the Value property to specify the
control's value. Use the Minimum and Maximum properties to specify the range's value. The
control fires the Change event property when the user changes the position of the thumb.

The following VB sample displays a tooltip when user moves the thumb:

Private Sub ScrollBar1_Change()
 With ScrollBar1
 .Object.ToolTipText = "Record " & .Value & "/" & .Maximum
 .ToolTipTitle = "Position"
 End With
End Sub

The following VB/NET sample displays a tooltip when user moves the thumb:

Private Sub AxScrollBar1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxScrollBar1.Change
 With AxScrollBar1
 .ToolTipText = "Record " & .Value.ToString() & "/" & .Maximum.ToString()
 .ToolTipTitle = "Position"
 End With
End Sub

The following C# sample displays a tooltip when user moves the thumb:

private void axScrollBar1_Change(object sender, EventArgs e)
{
 axScrollBar1.ToolTipText = "Record " + axScrollBar1.Value.ToString() + "/" +
axScrollBar1.Maximum.ToString();

 axScrollBar1.ToolTipTitle = "Position";
}

The following C++ sample displays a tooltip when user moves the thumb:

void OnChangeScrollbar1()
{
 CString strFormat;
 strFormat.Format(_T("Record %i/%i"), m_scrollbar.GetValue(),
m_scrollbar.GetMaximum());
 m_scrollbar.SetToolTipText(strFormat);
 m_scrollbar.SetToolTipTitle("Position");
}

The following VFP sample displays a tooltip when user moves the thumb:

*** ActiveX Control Event ***

with thisform.ScrollBar1
 .Object.ToolTipText = "Record " + ltrim(str(.Value)) + "/" + ltrim(str(.Maximum))
 .ToolTipTitle = "Position"
endwith

property ScrollBar.ToolTipTitle as String
Specifies the title of the control's tooltip.

Type Description

String
A String expression that specifies the title of the tooltip
being displayed when the user clicks and moves the
control's thumb.

Use the ToolTipTitle property to assign a title for the tooltip. Use the ToolTipText property to
assign a tooltip to be displayed when the user clicks and moves the thumb part of the
control. The tooltip shows up only when the user clicks and moves the thumb, and the
ToolTipText or ToolTipTitle property is not empty. Use the Value property to specify the
control's value. Use the Minimum and Maximum properties to specify the range's value. The
control fires the Change event property when the user changes the position of the thumb.

The following VB sample displays a tooltip when user moves the thumb:

Private Sub ScrollBar1_Change()
 With ScrollBar1
 .Object.ToolTipText = "Record " & .Value & "/" & .Maximum
 .ToolTipTitle = "Position"
 End With
End Sub

The following VB/NET sample displays a tooltip when user moves the thumb:

Private Sub AxScrollBar1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxScrollBar1.Change
 With AxScrollBar1
 .ToolTipText = "Record " & .Value.ToString() & "/" & .Maximum.ToString()
 .ToolTipTitle = "Position"
 End With
End Sub

The following C# sample displays a tooltip when user moves the thumb:

private void axScrollBar1_Change(object sender, EventArgs e)
{
 axScrollBar1.ToolTipText = "Record " + axScrollBar1.Value.ToString() + "/" +
axScrollBar1.Maximum.ToString();

 axScrollBar1.ToolTipTitle = "Position";
}

The following C++ sample displays a tooltip when user moves the thumb:

void OnChangeScrollbar1()
{
 CString strFormat;
 strFormat.Format(_T("Record %i/%i"), m_scrollbar.GetValue(),
m_scrollbar.GetMaximum());
 m_scrollbar.SetToolTipText(strFormat);
 m_scrollbar.SetToolTipTitle("Position");
}

The following VFP sample displays a tooltip when user moves the thumb:

*** ActiveX Control Event ***

with thisform.ScrollBar1
 .Object.ToolTipText = "Record " + ltrim(str(.Value)) + "/" + ltrim(str(.Maximum))
 .ToolTipTitle = "Position"
endwith

property ScrollBar.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description.

property ScrollBar.ToolTipX as String
Indicates an expression that determines the horizontal-position of the tooltip, in screen
coordinates.

Type Description

String A String expression that defines the position (x-position is
screen coordinate), where the tooltip will be shown.

By default, the ToolTipX property is empty, which indicates that the tooltip is shown at its
default position. The ToolTipX property indicates an expression that determines the
horizontal-position of the tooltip, in screen coordinates. The expression supports predefined
keys such as value, x, y, width and height among other general constants, operators and
functions. The value indicates the current horizontal-position the tooltip is shown, in screen
coordinates. The x, y indicates the horizontal/vertical position the tooltip is shown expressed
in screen coordinates. The width an height keywords specifies the size of the tooltip is
about to be shown.

For instance:

ToolTipX = "value + 16", indicates that the tooltip should be shown 16-pixels right to the
default position
ToolTipX = "128" specifies a fixed horizontal-position for the tooltip, no matter where
the thumb is dragged
ToolTipX = "1024 - width" shows the tooltip left to 1024 x-coordinate.

The ToolTipX property supports the following keywords:

value keyword, specifies the x-position is screen coordinate, where the tooltip is
currently displayed
x keyword, specifies the x-position is screen coordinate, where the tooltip is currently
displayed
y keyword, specifies the y-position is screen coordinate, where the tooltip is currently
displayed
width keyword, specifies the width in pixels, the current tooltip is shown.
height keyword, specifies the height in pixels, the current tooltip is shown.

Also, this property supports all constants, operators and functions defined here.

property ScrollBar.ToolTipY as String
Indicates an expression that determines the vertical-position of the tooltip, in screen
coordinates.

Type Description

String A String expression that defines the position (x-position is
screen coordinate), where the tooltip will be shown.

By default, the ToolTipY property is empty, which indicates that the tooltip is shown at its
default position. ToolTipY property indicates an expression that determines the vertical-
position of the tooltip, in screen coordinates. The expression supports predefined keys such
as value, x, y, width and height among other general constants, operators and functions.
The value indicates the current vertical-position the tooltip is shown, in screen coordinates.
The x, y indicates the horizontal/vertical position the tooltip is shown expressed in screen
coordinates. The width an height keywords specifies the size of the tooltip is about to be
shown.

For instance:

ToolTipY = "value + 16", indicates that the tooltip should be shown 16-pixels down to
the default position
ToolTipY = "128" specifies a fixed vertical-position for the tooltip, no matter where the
thumb is dragged
ToolTipY = "1024 - height" shows the tooltip up to the 1024 y-coordinate.

The ToolTipX property supports the following keywords:

value keyword, specifies the y-position is screen coordinate, where the tooltip is
currently displayed
x keyword, specifies the x-position is screen coordinate, where the tooltip is currently
displayed
y keyword, specifies the y-position is screen coordinate, where the tooltip is currently
displayed
width keyword, specifies the width in pixels, the current tooltip is shown.
height keyword, specifies the height in pixels, the current tooltip is shown.

Also, this property supports all constants, operators and functions defined here.

property ScrollBar.UserData(Part as PartEnum) as Variant
Associates an extra data to a part of the control.

Type Description

Part as PartEnum A PartEnum expression that specifies the part to assign an
extra data.

Variant A Variant expression that indicates the extra data being
assigned to a part of the control.

use the UserData property to assign an extra data to a part of the control. Use the Caption
property to specify the part's caption. Use the Background property to change the visual
appearance of any part of the control. Use the VisiblePart or VisibleParts property to
specify visible parts in the control. Use the EnablePart or EnableParts property to specify
which parts are enabled or disabled. Use the OwnerDrawPart property to specify an owner
draw part.

property ScrollBar.Value as Long
The value that the scroll box position represents.

Type Description
Long A long expression that indicates the control's value.

The Value property specifies the control's value. The control fires the Change event after
user changes the control's value. The control fires the Changing property before changing
the control's value. Use the Minimum and Maximum properties to specify the range's value.
Use the Caption property to put a HTML text on any part of the control. The SmallChange
property gets or sets the value added to or subtracted from the Value property when the
thumb is moved a small distance. The LargeChange property gets or sets a value to be
added to or subtracted from the Value property when the scroll box is moved a large
distance. Use the Background property to change the visual appearance for any part of the
control, in any state. . The WheelChange property indicates the amount by which the scroll
box position changes when the user rolls the mouse wheel.

The Value property goes from:

Minimum to Maximum values, if the IgnoreLargeChange property is True, or the
LargeChange property is 0.
Minimum to ((Maximum - LargeChange) + 1), if the IgnoreLargeChange property is
False and the LargeChange property is not 0.

For instance, the following VB sample prints the control's Value on the control's thumb:

Private Sub ScrollBar1_Change()
 With ScrollBar1
 .Caption(exThumbPart) = .Value
 End With
End Sub

The following C++ sample prints the control's Value on the control's thumb:

void OnChangeScrollbar1()
{
 CString strFormat;
 strFormat.Format(_T("%i"), m_scrollbar.GetValue());
 m_scrollbar.SetCaption(256, strFormat);
}

The following VB.NET sample prints the control's Value on the control's thumb:

With AxScrollBar1
 .set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart, .Value.ToString())
End With

The following C# sample prints the control's Value on the control's thumb:

private void axScrollBar1_Change(object sender, EventArgs e)
{
 axScrollBar1.set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart,
axScrollBar1.Value.ToString());
}

The following VFP sample prints the control's Value on the control's thumb:

*** ActiveX Control Event ***

with thisform.ScrollBar1
 .Caption(256) = .Value
endwith

property ScrollBar.ValueFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the value from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long A long expression that indicates the value from the point.

Use the ValueFromPoint property to determine the value from the cursor. The
PartFromPoint property specifies the part of the control from the cursor. Use the VisiblePart
or VisibleParts property to specify the visible parts of the control.

The following VB sample jumps to the value from the point when the user clicks the button:

Private Sub ScrollBar1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 ScrollBar1.Value = ScrollBar1.ValueFromPoint(-1, -1)
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
button:

Private Sub AxScrollBar1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent) Handles
AxScrollBar1.MouseDownEvent
 AxScrollBar1.Value = AxScrollBar1.get_ValueFromPoint(-1, -1)
End Sub

The following C++ sample jumps to the value from the point when the user clicks the button:

void OnMouseDownScrollbar1(short Button, short Shift, long X, long Y)
{
 m_scrollbar.SetValue(m_scrollbar.GetValueFromPoint(-1,-1));
}

The following C# sample jumps to the value from the point when the user clicks the button:

private void axScrollBar1_MouseDownEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent e)
{
 axScrollBar1.Value = axScrollBar1.get_ValueFromPoint(-1, -1);
}

The following VFP sample jumps to the value from the point when the user clicks the button:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.scrollbar1
 .Value = .ValueFromPoint(-1,-1)
endwith

property ScrollBar.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property ScrollBar.VisiblePart(Part as PartEnum) as Boolean
Indicates whether the specified part is visible or hidden.

Type Description

Part as PartEnum A PartEnum expression or a combination of PartEnum
expressions being shown or hidden

Boolean A boolean expression that indicates whether the part is
visible or hidden

The VisiblePart property specifies which part is visible and which part is hidden. The
VisibleParts property is similar to VisiblePart property, excepts that all parts must be
specified. By default, when a part becomes visible, the EnablePart property is automatically
called, so it becomes enabled. The control fires the ClickPart event when the user clicks a
part of the control. The ClickingPart event is fired continuously while the user keeps clicking
the part of the control. Use the Background property to specify a visual appearance for a
specified part of the control in a certain state. Use the OrderParts to specify the order of
the buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

For instance the following VB sample adds two additional buttons to the left/up side of the
control:

With ScrollBar1
 .VisiblePart(exLeftB1Part Or exLeftB2Part) = True
End With

The following VB sample displays a message when the user clicks the exLeftB1Part part of
the control:

Private Sub ScrollBar1_ClickPart(ByVal Part As EXSCROLLBARLibCtl.PartEnum)
 If (Part = exLeftB1Part) Then
 MsgBox ("Click")
 End If
End Sub

For instance the following VB.NET sample adds two additional buttons to the left/up side of
the control:

With AxScrollBar1
 .set_VisiblePart(EXSCROLLBARLib.PartEnum.exLeftB1Part Or
EXSCROLLBARLib.PartEnum.exLeftB2Part, True)
End With

The following VB.NET sample displays a message when the user clicks the exLeftB1Part
part of the control:

Private Sub AxScrollBar1_ClickPart(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent) Handles AxScrollBar1.ClickPart
 If (e.part = EXSCROLLBARLib.PartEnum.exLeftB1Part) Then
 MsgBox("Click")
 End If
End Sub

For instance the following C++ sample adds two additional buttons to the left/up side of the
control:

m_scrollbar.SetVisiblePart(32768 /*exLeftB1Part*/ | 16384 /*exLeftB2Part*/, TRUE);

The following C++ sample displays a message when the user clicks the exLeftB1Part part
of the control:

void OnClickPartScrollbar1(long Part)
{
 if (Part == 32768 /*exLeftB1Part*/)
 MessageBox("Click");
}

For instance the following C# sample adds two additional buttons to the left/up side of the
control:

axScrollBar1.set_VisiblePart(EXSCROLLBARLib.PartEnum.exLeftB1Part |
EXSCROLLBARLib.PartEnum.exLeftB2Part, true);

The following C# sample displays a message when the user clicks the exLeftB1Part part of
the control:

private void axScrollBar1_ClickPart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent e)
{
 if (e.part == EXSCROLLBARLib.PartEnum.exLeftB1Part)
 MessageBox.Show("Click");
}

For instance the following VFP sample adds two additional buttons to the left/up side of the
control:

with thisform.ScrollBar1
 .VisiblePart(bitor(32768,16384)) = .t.
endwith

The following VFP sample displays a message when the user clicks the exLeftB1Part part
of the control:

*** ActiveX Control Event ***
LPARAMETERS part

if (part = 32768)
 wait window "click"
endif

property ScrollBar.VisibleParts as Long
Specifies the parts of the control being visible.

Type Description

Long
A long expression that specifies an OR combination of
PartEnum values that indicates which parts are visible and
which parts are not shown.

By default, the VisibleParts property is 1984 (that's a OR combination of exLeftBPart,
exLowerBackPart, exThumbPart, exUpperBackPart and exRightBPart). The VisiblePart
property specifies which part is visible and which part is hidden. By default, when a part
becomes visible, the EnablePart property is automatically called, so it becomes enabled.
Use the Background property to specify a visual appearance for a specified part of the
control in a certain state. Use the OrderParts to specify the order of the buttons in the scroll
bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The control fires the ClickPart event when the user clicks a part of the control. The
ClickingPart event is fired continuously while the user keeps clicking the part of the control.

The following VB sample displays a message when the user clicks the exLeftB1Part part of
the control:

Private Sub ScrollBar1_ClickPart(ByVal Part As EXSCROLLBARLibCtl.PartEnum)
 If (Part = exLeftB1Part) Then
 MsgBox ("Click")
 End If
End Sub

The following VB.NET sample displays a message when the user clicks the exLeftB1Part
part of the control:

Private Sub AxScrollBar1_ClickPart(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent) Handles AxScrollBar1.ClickPart
 If (e.part = EXSCROLLBARLib.PartEnum.exLeftB1Part) Then
 MsgBox("Click")
 End If
End Sub

The following C++ sample displays a message when the user clicks the exLeftB1Part part
of the control:

void OnClickPartScrollbar1(long Part)
{
 if (Part == 32768 /*exLeftB1Part*/)
 MessageBox("Click");
}

The following C# sample displays a message when the user clicks the exLeftB1Part part of
the control:

private void axScrollBar1_ClickPart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent e)
{
 if (e.part == EXSCROLLBARLib.PartEnum.exLeftB1Part)
 MessageBox.Show("Click");
}

The following VFP sample displays a message when the user clicks the exLeftB1Part part
of the control:

*** ActiveX Control Event ***
LPARAMETERS part

if (part = 32768)
 wait window "click"
endif

property ScrollBar.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. The control supports skinning any part,
using the Background property.

property ScrollBar.WheelChange as Long
The amount by which the scroll box position changes when the user rolls the mouse wheel.

Type Description

Long
A Long expression that indicates the amount by which the
scroll box position changes when the user rolls the mouse
wheel.

By default, the WheelChange property is 1. The WheelChange property indicates the
amount by which the scroll box position changes when the user rolls the mouse wheel. The
Value property specifies the current scroll position/value.

ExScrollBar events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {5DE2B956-5AB5-47EE-8225-6AB7F9B4FC18}. The object's program identifier is: "Exontrol.ScrollBar".
The /COM object module is: "ExScrollBar.dll"

The component supports the following events:

Name Description
Change Occurs when the value of the control is changed.
Changing Occurs when the value of the control is about to change.

Click Occurs when the user presses and then releases the left
mouse button over the control.

ClickingPart Occurs while the user keeps clicking the part.
ClickPart Fired when the user clicks a part of the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OwnerDrawEnd Ends painting the owner draw part.
OwnerDrawStart Starts painting the owner draw part.

C#

VB

private void Change(object sender)
{
}

Private Sub Change(ByVal sender As System.Object) Handles Change
End Sub

C#

C++

C++
Builder

Delphi

private void Change(object sender, EventArgs e)
{
}

void OnChange()
{
}

void __fastcall Change(TObject *Sender)
{
}

procedure Change(ASender: TObject;);
begin
end;

event Change ()
Occurs when the value of the control is changed.

Type Description

Use the Change event to notify your application when the control's Value is changed. The
Value property of the control specifies the value of the control. Use the Minimum and
Maximum properties to specify the range's value. The control fires Changing event just
before changing the control's value. Use the Caption property to put a HTML text on any
part of the control.

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Change(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Change()
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Change
End Sub

Private Sub Change()
End Sub

Private Sub Change()
End Sub

LPARAMETERS nop

PROCEDURE OnChange(oScrollBar)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Change()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change()
End Function
</SCRIPT>

Procedure OnComChange
 Forward Send OnComChange

Syntax for Change event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Change() CLASS MainDialog
RETURN NIL

void onEvent_Change()
{
}

function Change as v ()
end function

function nativeObject_Change()
return

For instance, the following VB sample prints the control's Value on the control's thumb:

Private Sub ScrollBar1_Change()
 With ScrollBar1
 .Caption(exThumbPart) = .Value
 End With
End Sub

The following C++ sample prints the control's Value on the control's thumb:

void OnChangeScrollbar1()
{
 CString strFormat;
 strFormat.Format(_T("%i"), m_scrollbar.GetValue());
 m_scrollbar.SetCaption(256, strFormat);
}

The following VB.NET sample prints the control's Value on the control's thumb:

With AxScrollBar1
 .set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart, .Value.ToString())
End With

The following C# sample prints the control's Value on the control's thumb:

private void axScrollBar1_Change(object sender, EventArgs e)
{
 axScrollBar1.set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart,
axScrollBar1.Value.ToString());
}

The following VFP sample prints the control's Value on the control's thumb:

*** ActiveX Control Event ***

with thisform.ScrollBar1
 .Caption(256) = .Value
endwith

C#

VB

private void Changing(object sender,int OldValue,ref int NewValue)
{
}

Private Sub Changing(ByVal sender As System.Object,ByVal OldValue As
Integer,ByRef NewValue As Integer) Handles Changing
End Sub

C#

C++

private void Changing(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ChangingEvent e)
{
}

void OnChanging(long OldValue,long FAR* NewValue)
{
}

event Changing (OldValue as Long, ByRef NewValue as Long)
Occurs when the value of the control is about to change.

Type Description

OldValue as Long A long expression that indicates the control's Value before
performing the change.

NewValue as Long (By Reference) (by reference) A long expression that
indicates the control's newly value.

The Changing event notifies your application just before changing the control's Value. Use
the Changing event to prevent specified values, since the NewValue parameter is passed by
reference so you can change during the handler. The control fires the Change event after
user changes the value. Use the Minimum and Maximum properties to specify the range's
value. Use the Caption property to put a HTML text on any part of the control. The
SmallChange property gets or sets the value added to or subtracted from the Value
property when the thumb is moved a small distance. The LargeChange property gets or
sets a value to be added to or subtracted from the Value property when the scroll box is
moved a large distance.

Syntax for Changing event, /NET version, on:

Syntax for Changing event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Changing(TObject *Sender,long OldValue,long * NewValue)
{
}

procedure Changing(ASender: TObject; OldValue : Integer;var NewValue : Integer);
begin
end;

procedure Changing(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_ChangingEvent);
begin
end;

begin event Changing(long OldValue,long NewValue)
end event Changing

Private Sub Changing(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ChangingEvent) Handles Changing
End Sub

Private Sub Changing(ByVal OldValue As Long,NewValue As Long)
End Sub

Private Sub Changing(ByVal OldValue As Long,NewValue As Long)
End Sub

LPARAMETERS OldValue,NewValue

PROCEDURE OnChanging(oScrollBar,OldValue,NewValue)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Changing(OldValue,NewValue)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for Changing event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function Changing(OldValue,NewValue)
End Function
</SCRIPT>

Procedure OnComChanging Integer llOldValue Integer llNewValue
 Forward Send OnComChanging llOldValue llNewValue
End_Procedure

METHOD OCX_Changing(OldValue,NewValue) CLASS MainDialog
RETURN NIL

void onEvent_Changing(int _OldValue,COMVariant /*long*/ _NewValue)
{
}

function Changing as v (OldValue as N,NewValue as N)
end function

function nativeObject_Changing(OldValue,NewValue)
return

The following VB samples prints the old and the new value on the thumb part of the control:

Private Sub ScrollBar1_Changing(ByVal OldValue As Long, NewValue As Long)
 With ScrollBar1
 .Caption(exThumbPart) = "" & OldValue & " - " & NewValue
 End With
End Sub

The following VB.NET samples prints the old and the new value on the thumb part of the
control:

Private Sub AxScrollBar1_Changing(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ChangingEvent) Handles AxScrollBar1.Changing
 With AxScrollBar1
 .set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart, "" +
e.oldValue.ToString() + " - " + e.newValue.ToString())
 End With

End Sub

The following C++ samples prints the old and the new value on the thumb part of the
control:

void OnChangingScrollbar1(long OldValue, long FAR* NewValue)
{
 CString strFormat;
 strFormat.Format(_T("%i - %i"), OldValue, *NewValue);
 m_scrollbar.SetCaption(256, strFormat);
}

The following C# samples prints the old and the new value on the thumb part of the control:

private void axScrollBar1_Changing(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ChangingEvent e)
{
 axScrollBar1.set_Caption(EXSCROLLBARLib.PartEnum.exThumbPart, "" +
e.oldValue.ToString() + " - " + e.newValue.ToString());
}

The following VFP samples prints the old and the new value on the thumb part of the
control:

*** ActiveX Control Event ***
LPARAMETERS oldvalue, newvalue

with thisform.ScrollBar1
 .Caption(256) = "" + ltrim(Str(oldvalue)) + " - " + ltrim(Str(newvalue))
endwith

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. The
ClickPart event notifies your application that the user clicks a part of the control. The
ClickingPart event is fired continuously while the user keeps clicking a part of the control.
The PartFromPoint property specifies the part of the control from the cursor. Use the
ValueFromPoint property to determine the value from the cursor. Use a MouseDown or
MouseUp event procedure to specify actions that will occur when a mouse button is
pressed or released. Unlike the Click and DblClick events, MouseDown and MouseUp
events lets you distinguish between the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oScrollBar)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ClickingPart(object sender,exontrol.EXSCROLLBARLib.PartEnum Part)
{
}

Private Sub ClickingPart(ByVal sender As System.Object,ByVal Part As
exontrol.EXSCROLLBARLib.PartEnum) Handles ClickingPart
End Sub

C#

C++

C++
Builder

Delphi

private void ClickingPart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ClickingPartEvent e)
{
}

void OnClickingPart(long Part)
{
}

void __fastcall ClickingPart(TObject *Sender,Exscrollbarlib_tlb::PartEnum Part)
{
}

procedure ClickingPart(ASender: TObject; Part : PartEnum);
begin

event ClickingPart (Part as PartEnum)
Occurs while the user keeps clicking the part.

Type Description
Part as PartEnum A PartEnum expression being clicked.

The ClickingPart event is fired continuously while the user keeps clicking the part of the
control. The ClickPart event is fired when the user clicks and releases the left mouse button
over the part of the control. The VisibleParts property is similar to VisiblePart property,
excepts that all parts must be specified. By default, when a part becomes visible, the
EnablePart property is automatically called, so it becomes enabled. Use the Background
property to specify a visual appearance for a specified part of the control in a certain state.

Syntax for ClickingPart event, /NET version, on:

Syntax for ClickingPart event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickingPart(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_ClickingPartEvent);
begin
end;

begin event ClickingPart(long Part)
end event ClickingPart

Private Sub ClickingPart(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ClickingPartEvent) Handles ClickingPart
End Sub

Private Sub ClickingPart(ByVal Part As EXSCROLLBARLibCtl.PartEnum)
End Sub

Private Sub ClickingPart(ByVal Part As Long)
End Sub

LPARAMETERS Part

PROCEDURE OnClickingPart(oScrollBar,Part)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ClickingPart(Part)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ClickingPart(Part)
End Function
</SCRIPT>

Procedure OnComClickingPart OLEPartEnum llPart
 Forward Send OnComClickingPart llPart

Syntax for ClickingPart event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_ClickingPart(Part) CLASS MainDialog
RETURN NIL

void onEvent_ClickingPart(int _Part)
{
}

function ClickingPart as v (Part as OLE::Exontrol.ScrollBar.1::PartEnum)
end function

function nativeObject_ClickingPart(Part)
return

The following VB sample displays a message when the user clicks the exLeftB1Part part of
the control:

Private Sub ScrollBar1_ClickPart(ByVal Part As EXSCROLLBARLibCtl.PartEnum)
 If (Part = exLeftB1Part) Then
 MsgBox ("Click")
 End If
End Sub

The following VB.NET sample displays a message when the user clicks the exLeftB1Part
part of the control:

Private Sub AxScrollBar1_ClickPart(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent) Handles AxScrollBar1.ClickPart
 If (e.part = EXSCROLLBARLib.PartEnum.exLeftB1Part) Then
 MsgBox("Click")
 End If
End Sub

The following C++ sample displays a message when the user clicks the exLeftB1Part part
of the control:

void OnClickPartScrollbar1(long Part)
{

 if (Part == 32768 /*exLeftB1Part*/)
 MessageBox("Click");
}

The following C# sample displays a message when the user clicks the exLeftB1Part part of
the control:

private void axScrollBar1_ClickPart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent e)
{
 if (e.part == EXSCROLLBARLib.PartEnum.exLeftB1Part)
 MessageBox.Show("Click");
}

The following VFP sample displays a message when the user clicks the exLeftB1Part part
of the control:

*** ActiveX Control Event ***
LPARAMETERS part

if (part = 32768)
 wait window "click"
endif

C#

VB

private void ClickPart(object sender,exontrol.EXSCROLLBARLib.PartEnum Part)
{
}

Private Sub ClickPart(ByVal sender As System.Object,ByVal Part As
exontrol.EXSCROLLBARLib.PartEnum) Handles ClickPart
End Sub

C#

C++

C++
Builder

Delphi

private void ClickPart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent e)
{
}

void OnClickPart(long Part)
{
}

void __fastcall ClickPart(TObject *Sender,Exscrollbarlib_tlb::PartEnum Part)
{
}

procedure ClickPart(ASender: TObject; Part : PartEnum);
begin

event ClickPart (Part as PartEnum)
Fired when the user clicks a part of the control.

Type Description
Part as PartEnum A PartEnum expression being clicked.

The ClickPart event notifies your application that the user clicks a part of the control. The
ClickPart event is fired only after releasing the mouse. The ClickingPart event is fired
continuously while the user keeps clicking a part of the control. The VisiblePart or
VisibleParts property specifies the part being visible or hidden. For instance, the
VisiblePart(exLeftB1Part or exLeftB2Part) = True adds two new buttons left/up to the
control.

Syntax for ClickPart event, /NET version, on:

Syntax for ClickPart event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickPart(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent);
begin
end;

begin event ClickPart(long Part)
end event ClickPart

Private Sub ClickPart(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent) Handles ClickPart
End Sub

Private Sub ClickPart(ByVal Part As EXSCROLLBARLibCtl.PartEnum)
End Sub

Private Sub ClickPart(ByVal Part As Long)
End Sub

LPARAMETERS Part

PROCEDURE OnClickPart(oScrollBar,Part)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ClickPart(Part)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ClickPart(Part)
End Function
</SCRIPT>

Procedure OnComClickPart OLEPartEnum llPart
 Forward Send OnComClickPart llPart

Syntax for ClickPart event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_ClickPart(Part) CLASS MainDialog
RETURN NIL

void onEvent_ClickPart(int _Part)
{
}

function ClickPart as v (Part as OLE::Exontrol.ScrollBar.1::PartEnum)
end function

function nativeObject_ClickPart(Part)
return

The following VB sample displays a message when the user clicks the exLeftB1Part part of
the control:

Private Sub ScrollBar1_ClickPart(ByVal Part As EXSCROLLBARLibCtl.PartEnum)
 If (Part = exLeftB1Part) Then
 MsgBox ("Click")
 End If
End Sub

The following VB.NET sample displays a message when the user clicks the exLeftB1Part
part of the control:

Private Sub AxScrollBar1_ClickPart(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent) Handles AxScrollBar1.ClickPart
 If (e.part = EXSCROLLBARLib.PartEnum.exLeftB1Part) Then
 MsgBox("Click")
 End If
End Sub

The following C++ sample displays a message when the user clicks the exLeftB1Part part
of the control:

void OnClickPartScrollbar1(long Part)
{

 if (Part == 32768 /*exLeftB1Part*/)
 MessageBox("Click");
}

The following C# sample displays a message when the user clicks the exLeftB1Part part of
the control:

private void axScrollBar1_ClickPart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_ClickPartEvent e)
{
 if (e.part == EXSCROLLBARLib.PartEnum.exLeftB1Part)
 MessageBox.Show("Click");
}

The following VFP sample displays a message when the user clicks the exLeftB1Part part
of the control:

*** ActiveX Control Event ***
LPARAMETERS part

if (part = 32768)
 wait window "click"
endif

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. The PartFromPoint property
specifies the part of the control from the cursor. Use the ValueFromPoint property to
determine the value from the cursor. Use the VisibleParts or VisiblePart property to specify
which part of the control is visible or hidden.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oScrollBar,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.ScrollBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ScrollBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays the part from the cursor:

Private Sub ScrollBar1_DblClick(Shift As Integer, X As Single, Y As Single)
 Debug.Print ScrollBar1.PartFromPoint(X / Screen.TwipsPerPixelX, Y /
Screen.TwipsPerPixelY)
End Sub

The following VB.NET sample displays the part from the cursor:

Private Sub AxScrollBar1_DblClick(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_DblClickEvent) Handles AxScrollBar1.DblClick
 Debug.WriteLine(AxScrollBar1.get_PartFromPoint(e.x, e.y).ToString())
End Sub

The following C++ sample displays the part from the cursor:

void OnDblClickScrollbar1(short Shift, long X, long Y)
{
 CString strFormat;
 strFormat.Format(_T("%i"), m_scrollbar.GetPartFromPoint(X, Y));
 OutputDebugString(strFormat);
}

The following C# sample displays the part from the cursor:

private void axScrollBar1_DblClick(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_DblClickEvent e)
{
 System.Diagnostics.Debug.WriteLine(axScrollBar1.get_PartFromPoint(e.x, e.y).ToString());
}

The following VB sample displays the part from the cursor:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

wait window nowait ltrim(str(thisform.scrollbar1.PartFromPoint(x,y)))

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exscrollbar1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exscrollbar1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exscrollbar1.Items().EnableItem(exscrollbar1.EventParam(2 /*NewItem*/)))
 exscrollbar1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oScrollBar,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oScrollBar,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oScrollBar,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oScrollBar,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ClickPart event notifies your application that the user clicks a part
of the control. The ClickingPart event is fired continuously while the user keeps clicking a
part of the control. The PartFromPoint property specifies the part of the control from the
cursor. Use the ValueFromPoint property to determine the value from the cursor.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseDown(oScrollBar,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.ScrollBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ScrollBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

Private Sub ScrollBar1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ScrollBar1
 If (0 <> (.PartFromPoint(-1, -1) And exBackgroundPart)) Then
 .Value = .ValueFromPoint(-1, -1)
 End If
 End With
End Sub

The following VB sample jumps to the value from the point when the user clicks the button:

Private Sub ScrollBar1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 ScrollBar1.Value = ScrollBar1.ValueFromPoint(-1, -1)
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
upper or lower part of the control:

Private Sub AxScrollBar1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent) Handles
AxScrollBar1.MouseDownEvent
 With AxScrollBar1
 If (0 <> (.get_PartFromPoint(-1, -1) And
EXSCROLLBARLib.PartEnum.exBackgroundPart)) Then
 .Value = .get_ValueFromPoint(-1, -1)
 End If
 End With
End Sub

The following VB.NET sample jumps to the value from the point when the user clicks the
button:

Private Sub AxScrollBar1_MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent) Handles
AxScrollBar1.MouseDownEvent
 AxScrollBar1.Value = AxScrollBar1.get_ValueFromPoint(-1, -1)
End Sub

The following C++ sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

void OnMouseDownScrollbar1(short Button, short Shift, long X, long Y)
{
 if (m_scrollbar.GetPartFromPoint(-1,-1) & 640)
 m_scrollbar.SetValue(m_scrollbar.GetValueFromPoint(-1,-1));
}

The following C++ sample jumps to the value from the point when the user clicks the button:

void OnMouseDownScrollbar1(short Button, short Shift, long X, long Y)
{
 m_scrollbar.SetValue(m_scrollbar.GetValueFromPoint(-1,-1));
}

The following C# sample jumps to the value from the point when the user clicks the upper or
lower part of the control:

private void axScrollBar1_MouseDownEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent e)
{
 if (0 != (axScrollBar1.get_PartFromPoint(-1,-1) &
EXSCROLLBARLib.PartEnum.exBackgroundPart))
 axScrollBar1.Value = axScrollBar1.get_ValueFromPoint(-1, -1);
}

The following C# sample jumps to the value from the point when the user clicks the button:

private void axScrollBar1_MouseDownEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_MouseDownEvent e)
{
 axScrollBar1.Value = axScrollBar1.get_ValueFromPoint(-1, -1);
}

The following VFP sample jumps to the value from the point when the user clicks the upper
or lower part of the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.scrollbar1
 if (0 # bitand(.PartFromPoint(-1,-1), 640))
 .Value = .ValueFromPoint(-1,-1)
 endif
endwith

The following VFP sample jumps to the value from the point when the user clicks the button:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.scrollbar1
 .Value = .ValueFromPoint(-1,-1)
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_MouseMoveEvent e)
{

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The ClickPart event notifies your
application that the user clicks a part of the control. The ClickingPart event is fired
continuously while the user keeps clicking a part of the control. The PartFromPoint property
specifies the part of the control from the cursor. Use the ValueFromPoint property to
determine the value from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseMove(oScrollBar,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.ScrollBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ScrollBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the Value from the point:

Private Sub ScrollBar1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 Debug.Print ScrollBar1.PartFromPoint(X / Screen.TwipsPerPixelX, Y /
Screen.TwipsPerPixelY)
End Sub

The following VB.NET sample prints the Value from the point:

Private Sub AxScrollBar1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseMoveEvent) Handles
AxScrollBar1.MouseMoveEvent
 Debug.WriteLine(AxScrollBar1.get_PartFromPoint(e.x, e.y).ToString())
End Sub

The following C++ sample prints the Value from the point:

void OnMouseMoveScrollbar1(short Button, short Shift, long X, long Y)
{
 CString strFormat;
 strFormat.Format(_T("%i"), m_scrollbar.GetPartFromPoint(X, Y));
 OutputDebugString(strFormat);
}

The following C# sample prints the Value from the point:

private void axScrollBar1_MouseMoveEvent(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_MouseMoveEvent e)
{
 System.Diagnostics.Debug.WriteLine(axScrollBar1.get_PartFromPoint(e.x, e.y).ToString());
}

The following VFP sample prints the Value from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

wait window nowait ltrim(str(thisform.scrollbar1.PartFromPoint(x,y)))

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ClickPart event notifies your application that the user clicks a part
of the control. The ClickingPart event is fired continuously while the user keeps clicking a
part of the control. The PartFromPoint property specifies the part of the control from the
cursor. Use the ValueFromPoint property to determine the value from the cursor.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXSCROLLBARLib._IScrollBarEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseUp(oScrollBar,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.ScrollBar.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ScrollBar.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void OwnerDrawEnd(object sender,exontrol.EXSCROLLBARLib.PartEnum
Part,int hDC)
{
}

Private Sub OwnerDrawEnd(ByVal sender As System.Object,ByVal Part As
exontrol.EXSCROLLBARLib.PartEnum,ByVal hDC As Integer) Handles
OwnerDrawEnd
End Sub

event OwnerDrawEnd (Part as PartEnum, hDC as Long)
Ends painting the owner draw part.

Type Description

Part as PartEnum A PartEnum expression that indicates the part being
painted

hDC as Long A long expression that indicates the handle to the painting
device context (HDC)

The OwnerDrawEnd event occurs after the default painting of the part is done, so it lets the
user to paint additional pieces on the default part, if case . The OwnerDrawEnd event is
fired only for owner draw parts. Use the OwnerDrawPart property to specify which part is
owner draw and which part is not. Use the OwnerDrawStart event to perform painting part
before default implementation is called. For instance, if the owner part paints a transparent
or lucent skin, the OwnerDrawStart event lets you paint the part before putting the default
skin. The rectangle that should be painted in the device context can be retrieved
using the GetClipBox API function. The VisiblePart or VisibleParts property specifies the
part being visible or hidden. For instance, the VisiblePart(exLeftB1Part or exLeftB2Part) =
True adds two new buttons left/up to the control.

Syntax for OwnerDrawEnd event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void OwnerDrawEnd(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_OwnerDrawEndEvent e)
{
}

void OnOwnerDrawEnd(long Part,long hDC)
{
}

void __fastcall OwnerDrawEnd(TObject *Sender,Exscrollbarlib_tlb::PartEnum
Part,long hDC)
{
}

procedure OwnerDrawEnd(ASender: TObject; Part : PartEnum;hDC : Integer);
begin
end;

procedure OwnerDrawEnd(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_OwnerDrawEndEvent);
begin
end;

begin event OwnerDrawEnd(long Part,long hDC)
end event OwnerDrawEnd

Private Sub OwnerDrawEnd(ByVal sender As System.Object, ByVal e As
AxEXSCROLLBARLib._IScrollBarEvents_OwnerDrawEndEvent) Handles
OwnerDrawEnd
End Sub

Private Sub OwnerDrawEnd(ByVal Part As EXSCROLLBARLibCtl.PartEnum,ByVal
hDC As Long)
End Sub

Private Sub OwnerDrawEnd(ByVal Part As Long,ByVal hDC As Long)

Syntax for OwnerDrawEnd event, /COM version, on:

VFP

Xbas…

End Sub

LPARAMETERS Part,hDC

PROCEDURE OnOwnerDrawEnd(oScrollBar,Part,hDC)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OwnerDrawEnd(Part,hDC)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OwnerDrawEnd(Part,hDC)
End Function
</SCRIPT>

Procedure OnComOwnerDrawEnd OLEPartEnum llPart Integer llhDC
 Forward Send OnComOwnerDrawEnd llPart llhDC
End_Procedure

METHOD OCX_OwnerDrawEnd(Part,hDC) CLASS MainDialog
RETURN NIL

void onEvent_OwnerDrawEnd(int _Part,int _hDC)
{
}

function OwnerDrawEnd as v (Part as OLE::Exontrol.ScrollBar.1::PartEnum,hDC as
N)
end function

function nativeObject_OwnerDrawEnd(Part,hDC)
return

Syntax for OwnerDrawEnd event, /COM version (others), on:

For instance, the following VB sample draws the lower part in red, and the upper part in
green (as in the screen shot) :

With ScrollBar1
 .OwnerDrawPart(exLowerBackPart Or exUpperBackPart) = True
End With

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, lpRect As RECT) As
Long
Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, lpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub ScrollBar1_OwnerDrawEnd(ByVal Part As EXSCROLLBARLibCtl.PartEnum, ByVal
hdc As Long)
 Dim r As RECT, h As Long
 GetClipBox hdc, r
 r.Left = r.Left + 4
 r.Right = r.Right - 4
 If Part = exLowerBackPart Then
 h = CreateSolidBrush(RGB(255, 0, 0))
 FillRect hdc, r, h
 DeleteObject (h)
 Else
 If Part = exUpperBackPart Then
 h = CreateSolidBrush(RGB(0, 255, 0))
 FillRect hdc, r, h
 DeleteObject (h)
 End If
 End If
End Sub

The following C++ sample draws the lower part in red, and the upper part in green (as in

the screen shot) :

m_scrollbar.SetOwnerDrawPart(128 /*exUpperBackPart*/, TRUE);
m_scrollbar.SetOwnerDrawPart(512 /*exLowerBackPart*/, TRUE);

void OnOwnerDrawEndScrollbar1(long Part, long hDC)
{
 HDC h = (HDC)hDC;
 RECT rtPart = {0}; GetClipBox(h, &rtPart);
 InflateRect(&rtPart, -4, 0);
 switch (Part)
 {
 case 128: /*exUpperBackPart*/
 {
 HBRUSH hB = CreateSolidBrush(RGB(0,255,0));
 FillRect(h, &rtPart, hB);
 DeleteObject(hB);
 break;
 }
 case 512: /*exLowerBackPart*/
 {
 HBRUSH hB = CreateSolidBrush(RGB(255,0,0));
 FillRect(h, &rtPart, hB);
 DeleteObject(hB);
 break;
 }
 }
}

C# private void OwnerDrawStart(object sender,exontrol.EXSCROLLBARLib.PartEnum
Part,int hDC,ref bool DefaultPainting)

event OwnerDrawStart (Part as PartEnum, hDC as Long, ByRef
DefaultPainting as Boolean)
Starts painting the owner draw part.

Type Description

Part as PartEnum A PartEnum expression that indicates the part being
painted

hDC as Long A long expression that indicates the handle to the painting
device context (HDC)

DefaultPainting as Boolean

(By Reference) A Boolen expression that indicates
whether the default painting should be performed or not. If
the DefaultPainting parameter is True, the control paints
the part as default, else the part is not painted by the
control so the user should draw the entire part.

The OwnerDrawStart event is fired when a part requires to be painted. The
OwnerDrawStart event is fired only for owner draw parts. Use the OwnerDrawPart
property to specify which part is owner draw and which part is not. You can use the
OwnerDrawStart event to avoid painting any part using the DefaultPainting parameter. The
control fires the OwnerDrawEnd event when painting the part is done. Use the
OwnerDrawStart event to perform painting part before default implementation is called. For
instance, if the owner part pains a transparent or lucent skin, the OwnerDrawStart event
lets you paint the part before putting the default skin. The rectangle that should be
painted in the device context can be retrieved using the GetClipBox API function.
The VisiblePart or VisibleParts property specifies the part being visible or hidden. For
instance, the VisiblePart(exLeftB1Part or exLeftB2Part) = True adds two new buttons
left/up to the control.

Syntax for OwnerDrawStart event, /NET version, on:

VB

{
}

Private Sub OwnerDrawStart(ByVal sender As System.Object,ByVal Part As
exontrol.EXSCROLLBARLib.PartEnum,ByVal hDC As Integer,ByRef DefaultPainting
As Boolean) Handles OwnerDrawStart
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OwnerDrawStart(object sender,
AxEXSCROLLBARLib._IScrollBarEvents_OwnerDrawStartEvent e)
{
}

void OnOwnerDrawStart(long Part,long hDC,BOOL FAR* DefaultPainting)
{
}

void __fastcall OwnerDrawStart(TObject *Sender,Exscrollbarlib_tlb::PartEnum
Part,long hDC,VARIANT_BOOL * DefaultPainting)
{
}

procedure OwnerDrawStart(ASender: TObject; Part : PartEnum;hDC : Integer;var
DefaultPainting : WordBool);
begin
end;

procedure OwnerDrawStart(sender: System.Object; e:
AxEXSCROLLBARLib._IScrollBarEvents_OwnerDrawStartEvent);
begin
end;

begin event OwnerDrawStart(long Part,long hDC,boolean DefaultPainting)
end event OwnerDrawStart

Private Sub OwnerDrawStart(ByVal sender As System.Object, ByVal e As

Syntax for OwnerDrawStart event, /COM version, on:

VB6

VBA

VFP

Xbas…

AxEXSCROLLBARLib._IScrollBarEvents_OwnerDrawStartEvent) Handles
OwnerDrawStart
End Sub

Private Sub OwnerDrawStart(ByVal Part As EXSCROLLBARLibCtl.PartEnum,ByVal
hDC As Long,DefaultPainting As Boolean)
End Sub

Private Sub OwnerDrawStart(ByVal Part As Long,ByVal hDC As
Long,DefaultPainting As Boolean)
End Sub

LPARAMETERS Part,hDC,DefaultPainting

PROCEDURE OnOwnerDrawStart(oScrollBar,Part,hDC,DefaultPainting)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OwnerDrawStart(Part,hDC,DefaultPainting)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OwnerDrawStart(Part,hDC,DefaultPainting)
End Function
</SCRIPT>

Procedure OnComOwnerDrawStart OLEPartEnum llPart Integer llhDC Boolean
llDefaultPainting
 Forward Send OnComOwnerDrawStart llPart llhDC llDefaultPainting
End_Procedure

METHOD OCX_OwnerDrawStart(Part,hDC,DefaultPainting) CLASS MainDialog
RETURN NIL

void onEvent_OwnerDrawStart(int _Part,int _hDC,COMVariant /*bool*/

Syntax for OwnerDrawStart event, /COM version (others), on:

XBasic

dBASE

_DefaultPainting)
{
}

function OwnerDrawStart as v (Part as OLE::Exontrol.ScrollBar.1::PartEnum,hDC as
N,DefaultPainting as L)
end function

function nativeObject_OwnerDrawStart(Part,hDC,DefaultPainting)
return

For instance, the following VB sample draws the lower part in red, and the upper part in
green (as in the screen shot) :

With ScrollBar1
 .OwnerDrawPart(exLowerBackPart Or exUpperBackPart) = True
End With

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Private Declare Function GetClipBox Lib "gdi32" (ByVal hdc As Long, lpRect As RECT) As
Long
Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, lpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub ScrollBar1_OwnerDrawEnd(ByVal Part As EXSCROLLBARLibCtl.PartEnum, ByVal
hdc As Long)
 Dim r As RECT, h As Long
 GetClipBox hdc, r
 r.Left = r.Left + 4
 r.Right = r.Right - 4

 If Part = exLowerBackPart Then
 h = CreateSolidBrush(RGB(255, 0, 0))
 FillRect hdc, r, h
 DeleteObject (h)
 Else
 If Part = exUpperBackPart Then
 h = CreateSolidBrush(RGB(0, 255, 0))
 FillRect hdc, r, h
 DeleteObject (h)
 End If
 End If
End Sub

The following C++ sample draws the lower part in red, and the upper part in green (as in
the screen shot) :

m_scrollbar.SetOwnerDrawPart(128 /*exUpperBackPart*/, TRUE);
m_scrollbar.SetOwnerDrawPart(512 /*exLowerBackPart*/, TRUE);

void OnOwnerDrawEndScrollbar1(long Part, long hDC)
{
 HDC h = (HDC)hDC;
 RECT rtPart = {0}; GetClipBox(h, &rtPart);
 InflateRect(&rtPart, -4, 0);
 switch (Part)
 {
 case 128: /*exUpperBackPart*/
 {
 HBRUSH hB = CreateSolidBrush(RGB(0,255,0));
 FillRect(h, &rtPart, hB);
 DeleteObject(hB);
 break;
 }
 case 512: /*exLowerBackPart*/
 {
 HBRUSH hB = CreateSolidBrush(RGB(255,0,0));
 FillRect(h, &rtPart, hB);
 DeleteObject(hB);

 break;
 }
 }
}

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds two numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
date(value) format `MMM d, yyyy` , returns the date such as Sep 2, 2023, for English
format
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and

https://exontrol.com/expression.jsp

programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,
0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the

in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.

a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by
2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats a numeric value with specified flags. The
format method formats numeric or date expressions (depends on the type of the value,
explained at operators for dates). If flags is empty, the number is displayed as shown
in the field "Number" in the "Regional and Language Options" from the Control Panel.
For instance the "1000 format ''" displays 1,000.00 for English format, while 1.000,00
is displayed for German format. "1000 format '2|.|3|,'" will always displays 1,000.00 no
matter of the settings in your control panel. If formatting the number fails for some
invalid parameter, the value is displayed with no formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with
the following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the

field "No. of digits after decimal" from "Regional and Language Options" is
using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left
of the decimal separator. Values in the range 0 through 9 and 32 are valid.
The most significant grouping digit indicates the number of digits in the least
significant group immediately to the left of the decimal separator. Each
subsequent grouping digit indicates the next significant group of digits to the
left of the previous group. If the last value supplied is not 0, the remaining
groups repeat the last group. Typical examples of settings for this member
are: 0 to group digits as in 123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as in 12,34,56,789.00. If the flag is
missing, the field "Digit grouping" from "Regional and Language Options"
indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the
field "Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing,
the field "Negative number format" from "Regional and Language Options" is
using. The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If
the flag is missing, the field "Display leading zeros" from "Regional and
Language Options" is using. The valid values are 0, 1

 The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"

trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (
0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15
value format 'flags' (binary operator) formats a date expression with specified flags.
The format method formats numeric (depends on the type of the value, explained at
operators for numbers) or date expressions. If not supported, the value is formatted as
a number (the date format is supported by newer version only). The flags specifies the
format picture string that is used to form the date. Possible values for the format
picture string are defined below. For instance, the date(value) format `MMM d, yyyy`

returns "Sep 2, 2023"

The following table defines the format types used to represent days:

d, day of the month as digits without leading zeros for single-digit days (8)
dd, day of the month as digits with leading zeros for single-digit days (08)
ddd, abbreviated day of the week as specified by the current locale ("Mon" in
English)
dddd, day of the week as specified by the current locale ("Monday" in
English)

The following table defines the format types used to represent months:

M, month as digits without leading zeros for single-digit months (4)
MM, month as digits with leading zeros for single-digit months (04)
MMM, abbreviated month as specified by the current locale ("Nov" in English)
MMMM, month as specified by the current locale ("November" for English)

The following table defines the format types used to represent years:

y, year represented only by the last digit (3)
yy, year represented only by the last two digits. A leading zero is added for
single-digit years (03)
yyy, year represented by a full four or five digits, depending on the calendar
used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other
supported calendars. Calendars that have single-digit or two-digit years, such
as for the Japanese Emperor era, are represented differently. A single-digit
year is represented with a leading zero, for example, "03". A two-digit year is
represented with two digits, for example, "13". No additional leading zeros are
displayed.
yyyy, behaves identically to "yyyy"

The following table defines the format types used to represent era:

g, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)
gg, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)

The following table defines the format types used to represent hours:

h, hours with no leading zero for single-digit hours; 12-hour clock
hh, hours with leading zero for single-digit hours; 12-hour clock
H, hours with no leading zero for single-digit hours; 24-hour clock

HH, hours with leading zero for single-digit hours; 24-hour clock

The following table defines the format types used to represent minutes:

m, minutes with no leading zero for single-digit minutes
mm, minutes with leading zero for single-digit minutes

The following table defines the format types used to represent seconds:

s, seconds with no leading zero for single-digit seconds
ss, seconds with leading zero for single-digit seconds

The following table defines the format types used to represent time markers:

t, one character time marker string, such as A or P
tt, multi-character time marker string, such as AM or PM

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	ScrollBar
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	BtnHeight property
	BtnWidth property
	Caption property
	CaptionAlignment property
	CaptionIndentX property
	CaptionIndentY property
	DisableNoScroll property
	Enabled property
	EnablePart property
	EnableParts property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	Font property
	ForeColor property
	HTMLPicture property
	hWnd property (readonly)
	hWndMouseWheel property
	IgnoreLargeChange property
	Images method
	ImageSize property
	LargeChange property
	Maximum property
	Minimum property
	Mode property
	OrderParts property
	OwnerDrawPart property
	PartFromPoint property (readonly)
	Picture property
	PictureDisplay property
	ReplaceIcon method
	Scroll method
	ScrollDelay property
	SendMessage property
	ShowImageList property
	SmallChange property
	StartScrollDelay property
	Template property
	TemplateDef property
	TemplatePut method
	TemplateResult property (readonly)
	TemplateResultN property (readonly)
	TemplateResultS property (readonly)
	ThumbSize property
	ToolTipFont property
	ToolTipText property
	ToolTipTitle property
	ToolTipWidth property
	ToolTipX property
	ToolTipY property
	UserData property
	Value property
	ValueFromPoint property (readonly)
	Version property
	VisiblePart property
	VisibleParts property
	VisualAppearance property (readonly)
	WheelChange property

	ExScrollBar events
	Change event
	Changing event
	Click event
	ClickingPart event
	ClickPart event
	DblClick event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	OwnerDrawEnd event
	OwnerDrawStart event

