
 ExSchedule

The eXSchedule tool is our approach to provide scheduling of appointments into your
application. The ExSchedule library lets the user changes its visual appearance using skins,
each one providing an additional visual experience that enhances viewing pleasure.

Features include:

Skinnable Interface support (ability to apply a skin to any background part)
Undo/Redo support
XML data support

 Unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the event's background.
Easy way to define the control's visual appearance in design mode, using XP-Theme
elements or EBN objects
Ability to enlarge or zooming the scheduler, from one year to minutes, using the middle
mouse button
Ability to smoothly navigate from one date to another by dragging the scheduler
Any major UI part of the scheduler can be drag and drop to any other side
Ability to customize the mouse+keys combinations for almost all UI operations such as
moving, resizing the events, zooming, and so on
Multiple selection support, or ability to remove, move or resize all selected
appointments/events at once
Multiple HTML lines Tooltip support
Display Multiple Schedules Side-by-Side, or ability to group or filter the events
Ability to define the one or more non-working parts of any day, week, month, ... with a
different pattern, colors, and so on, based on custom expressions
Repetitive events support, or scheduling something that occurs at the same time
multiple days
Ability to mark one or more zones with a different color, HTML text, pattern and so on
Define one or more timers, with the ability to change the UI attributes of meeting
events
Integrated Time Scales support, or ability to display one or more time scales, using
different time zones
All-Day Header support, or an all-day event that stretches over multiple days can be
displayed as a contiguously bar across those days
Ability to specify disabled dates (so the user can't select them), based on custom
expressions, or you can specify the range of date to display data from
Any Event can display one or more multiple-lines HTML captions, one or more pictures,
icons, aligned to any part of the event
The event's labels or tooltips may use custom expressions that shows the data such as

https://www.youtube.com/watch?v=bLrVTbENH5M

duration automatically once the event is moved or resized.
The Event may display the status or the body part, using different colors, EBN,
patterns, and so on
You can specify whether an event is selectable, movable, resizable to one or both
sides, what's are its margins or limits, and so on
Single / Multi-Day Appointment/Event support

Ž ExSchedule is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
The Column object uses the AlignmentEnum enumeration to align a column.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.

constants AllDayEventScrollEnum
The AllowAllDayEventScroll property gets or sets a value that specifies whether the all-day
event header supports scrolling. Use the ShowAllDayHeader property to show the
schedule's All-Day header so all All-Day evens are shown on this header. The
AllowCreateAllDayEvent property has effect only when the schedule displays no time scale.
The AllDayEventScrollEnum type supports the following flags:

Name Value Description
exAllDayEventNoScroll 0 The all-day event header supports no scroll.

exAllDayEventNoMin 0 The all-day event header displays events as many
as possible.

exAllDayEventMin4 4

The all-day event header displays at least 4 events.
This flag can be combined with
exAllDayEventScroll, exAllDayEventWheelScroll or
any Max flag

exAllDayEventMin8 8

The all-day event header displays at least 8 events.
This flag can be combined with
exAllDayEventScroll, exAllDayEventWheelScroll or
any Max flag

exAllDayEventMin12 12

The all-day event header displays at least 12
events. This flag can be combined with
exAllDayEventScroll, exAllDayEventWheelScroll or
any Max flag

exAllDayEventNoMax 16 The all-day event header displays events as many
as possible.

exAllDayEventMax4 64

The all-day event header displays at most 4 events.
This flag can be combined with
exAllDayEventScroll, exAllDayEventWheelScroll or
any Min flag

exAllDayEventMax8 128

The all-day event header displays at most 8 events.
This flag can be combined with
exAllDayEventScroll, exAllDayEventWheelScroll or
any Min flag

exAllDayEventMax12 192

The all-day event header displays at most 12
events. This flag can be combined with
exAllDayEventScroll, exAllDayEventWheelScroll or
any Min flag

exAllDayEventScroll 256 The all-day event header supports scrolling.

exAllDayEventWheelScroll 4352
The user can scroll the all-day event header by
rotating the mouse wheel, while the cursor hovers
the header. Remove this flag to disable scrolling
using the mouse wheel.

constants AllowKeysEnum
The AllowKeysEnum type specifies the keys to be combined in order to start an UI
operation. For instance, the AllowCreateEvent property of AllowKeysEnum type indicates
the keys combination to let user creates a new event at runtime. By default, this property is
set on exLeftClick, which means the user is able to create a new event by single left click. If
this property is set on exRightClick + exCRTLKey the user should press the CTRL key while
right clicking the control to start creating a new event. If the exDblClick flag is included, the
user requires to do a double click instead single click to perform the operation. The
exDisallow flag indicates that the operation is not allowed.

The AllowKeysEnum type supports the following values:

Name Value Description
exDisallow 0 The operation is not allowed.

exLeftClick 1 The operation starts once the user clicks the left
mouse button.

exRightClick 2 The operation starts if the user clicks the right
mouse button.

exMiddleClick 3 The operation starts if the user clicks the middle
mouse button.

exSHIFTKey 8 The operation may start only if the user presses the
SHIFT key.

exCTRLKey 16 The operation may start only if the user presses the
CTRL key.

exALTKey 32 The operation may start only if the user presses the
ALT key.

exDblClick 64 The operation starts only if the user double clicks,
instead single click.

constants AppearanceEnum
The AppearanceEnum type indicates the type of borders the control can show. The
Appearance property indicates the border the scheduler displays. The Appearance property
supports EBN objects, so actually, you can define your own type of border. The
Appearance property supports the following values:

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The BodyBackgroundExt property specifies the EBN
String format to be displayed on the event's background. The BodyBackgroundExtValue
property access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
BodyBackgroundExt property specifies the EBN
String format to be displayed on the object's
background. The Exontrol's eXButton WYSWYG
Builder helps you to generate or view the EBN
String Format, in the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

https://exontrol.com/exbutton.jsp

exBackColorExt 1

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates

exClientExt 2

the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The

about:blank

FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray
when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,

exTextExt 4

the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the

Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the

rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>

<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

exTextExtAlignment 6

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and
horizontally aligned on the left.
17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.

32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

exPatternExt 7

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants BackgroundPartEnum
The BackgroundPartEnum type indicates the UI parts of the control, whose background or
foreground colors can be changed. The background can be a solid color or an EBN object.
The Background property of the control specifies the background/foreground color of a
specified UI part of the control. The /NET or /WPF version of the control provides the
get_Background/get_Background32 properties to get a color for a specified UI part, and
set_Background/set_Background32 for changing the part's background or foreground
colors. The eXSchedule tool may display two panels, the calendar and the schedule panel.

The options that starts with exCalendar refer to a part of the Calendar panel as shown
bellow:

while if the option starts with exSchedule it refers an UI part of the schedule panel as:

The BackgroundPartEnum type supports the following values.

Name Value Description

exCalendarArrowUp 0 Specifies the visual appearance for the up arrow in
the calendar's header.

exCalendarArrowDown 1 Specifies the visual appearance for the down arrow
in the calendar's header.

exCalendarArrowLeft 2

Specifies the visual appearance for the left arrow in
the calendar's header. You can use the MinDate
property to limit the dates that the calendar can
show. When the calendar has no other dates to
show, the left or right arrows are not shown. The
MaxDate property indicates the upper margin that
the calendar can show.

exCalendarArrowRight 3

Specifies the visual appearance for the right arrow
in the calendar's header. You can use the MinDate
property to limit the dates that the calendar can
show. When the calendar has no other dates to
show, the left or right arrows are not shown. The
MaxDate property indicates the upper margin that
the calendar can show.

exCalendarBackColor 4

Specifies the calendar's background color. The
Background(exCalendarBackColor) property
changes the calendar's panel backcolor if not-zero,
else the BackColor property specifies the
calendar's background color.

exCalendarForeColor 5

Specifies the calendar's foreground color. The
Background(exCalendarForeColor) property
changes the calendar's panel foreground color. If
this option is not set, the control's ForeColor
property indicates the calendar's foreground color.

exCalendarDaysHeader 6 Specifies the visual appearance for the days
header.

exCalendarWeeksHeader 7 Specifies the visual appearance for the weeks
header.

exCalendarHeader 8 Specifies the visual appearance for the months
header in the calendar panel.

exCalendarTodayUp 9

Specifies the visual appearance for the today button
in the calendar panel, when it is up. Use the
ShowTodayButton property to hide the Today
button.

exCalendarTodayDown 10

Specifies the visual appearance for the today button
in the calendar panel, when it is down. Use the
ShowTodayButton property to hide the Today
button.

exCalendarScrollThumb 11

Specifies the visual appearance for the scrolling
thumb in the calendar panel. The ShowYearScroll
property indicates whether the calendar panel
displays an horizontal scroll bar to allow the user to
change the calendar's year.

exCalendarScrollRange 12

Specifies the visual appearance for the scrolling
range in the calendar panel. The ShowYearScroll
property indicates whether the calendar panel
displays an horizontal scroll bar to allow the user to
change the calendar's year.

exCalendarSplitBar 13 Specifies the visual appearance for the separator
bar in the calendar panel.

exCalendarMarkToday 14

Returns or sets a value that indicates the visual
appearance for Today date, in the calendar panel.
The exScheduleMarkTodayBackColor option
changes the visual appearance for Today date, in
the schedule panel.

exCalendarMonthSelect 15 Specifies the visual appearance for the selected
month in the months drop down window.

exCalendarMonthSelectForeColor16 Specifies the foreground color for the selected
month in the months drop down window.

exCalendarGridLineColor 17
Specifies the color to show the calendar's grid lines.
The ShowGridLines property indicates the type of
grid lines to be shown in the calendar.

exSplitBar 18 Specifies the visual appearance for control's vertical
split bar.

exCalendarSelBackColor 19

Specifies the calendar's background color for
selected dates. The AllowSelectDate property
specifies the keys combination that user can use to
select dates in the calendar panel. The
AllowSelectDateRect specifies the keys
combination so the user can do a rectangular
selection in the calendar panel.

exCalendarSelForeColor 20

Specifies the calendar's foreground color for
selected dates. The AllowSelectDate property
specifies the keys combination that user can use to
select dates in the calendar panel. The
AllowSelectDateRect specifies the keys
combination so the user can do a rectangular

selection in the calendar panel.

exCalendarHeaderForeColor 21 Specifies the foreground color to show the months
in the header.

exCalendarBorderLineColor 26 exCalendarBorderLineColor. Specifies the color to
show the calendar's border lines.

exCalendarCommentDate 27
exCalendarCommentDate. Specifies the visual
appearance to show the dates in the calendar with
a tooltip assigned.

exCalendarDaysHeaderForeColor28 Specifies the foreground color for the days header.

exCalendarWeeksHeaderForeColor29 Specifies the foreground color for the weeks
header.

exCalendarMarkTodayForeColor30

Specifies the foreground color for the today date, in
the calendar panel. The
exScheduleMarkTodayForeColor option changes
the visual appearance for Today date, in the
schedule panel.

exCalendarTodayForeColor 31
Specifies the foreground color for the Today button,
in the calendar panel. Use the ShowTodayButton
property to hide the Today button.

exCalendarFocusDate 32

Specifies visual appearance for the focused date, in
the calendar panel. The AllowFocusDate property
on exDisallow disables focusing a date that's not
being selected.

exCalendarFocusDateForeColor33

Specifies foreground color for the focused date, in
the calendar panel. The AllowFocusDate property
on exDisallow disables focusing a date that's not
being selected.

exScheduleBorderDateColor 34 Specifies color to display the border for the dates.
exScheduleBorderMonthColor 35 Specifies color to display the border for the months.

exScheduleBorderSelColor 36 Specifies color to display the border for selected
dates.

exScheduleBorderSelColorUnFocus37 Specifies color to display the border for selected
dates, when the control has not focus.

exScheduleBorderTimeScaleColor38 Specifies the color to display the border for time
scales.

exScheduleTimeScaleBackColor39 Specifies the color to display the time scale's
default background color.

exScheduleTimeScaleForeColor40 Specifies the foreground color to display the time
scale.

exScheduleDayHeaderBackColor41 Specifies the visual appearance of the header's day
in the schedule view.

exScheduleDayHeaderForeColor42 Specifies the foreground color of the header's day
in the schedule view.

exScheduleDayGroupBackColor43 Specifies the visual appearance of the group in the
header's day of the schedule view.

exScheduleDayGroupForeColor44 Specifies the foreground color of the group in the
header's day of the schedule view.

exScheduleDayTimeBackColor45 Specifies the visual appearance of the time scale in
the day of the schedule view.

exScheduleDayTimeForeColor46 Specifies the foreground color of the time scale in
the day of the schedule view.

exScheduleTimeScaleRulerBackColor47 Specifies the visual appearance of the time ruler.
exScheduleTimeScaleRulerForeColor48 Specifies the foreground color of the time ruler.

exScheduleTimeScaleMajorRulerColor49 Specifies the color to show the line of the major
time ruler.

exScheduleTimeScaleMajorRulerStyle50

Specifies the style of the line of the major time ruler.
The
Background(exScheduleTimeScaleMajorRulerStyle)
property indicates a LinesStyleEnum expression
that determines style of lines to be shown on major
rulers

exScheduleTimeScaleMinorRulerColor51 Specifies the color to show the line of the minor
time ruler.

exScheduleTimeScaleMinorRulerStyle52 Specifies the style of the line of the minor time ruler.

exScheduleMajorTimeRulerColor53 Specifies the color to show the line of the major
time ruler in the schedule panel.

exScheduleMajorTimeScaleStyle54 Specifies the style of the line of the major time ruler
in the schedule panel.

exScheduleMinorTimeScaleColor55 Specifies the color to show the line of the minor
time ruler in the schedule panel.

exScheduleMinorTimeScaleStyle56 Specifies the style of the line of the minor time ruler
in the schedule panel.

exScheduleBorderGroupColor57 Specifies color to display the border between
groups.

exScheduleGroupingButton 58 Specifies the visual appearance for the drop down
grouping button.

exGroupingBackColor 59 Specifies the background color for the drop down
grouping view.

exGroupingForeColor 60 Specifies the foreground color for the drop down
grouping view.

exGroupingSelBackColor 61 Specifies the visual appearance to display the
selected items in the drop down grouping view.

exGroupingSelForeColor 62 Specifies the foreground color to show the selected
items in the drop down grouping view.

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exCalendarSelBackColorUnFocus68 Specifies the background color for selected object
when the control loses the focus.

exCalendarSelForeColorUnFocus69 Specifies the foreground color for selected object
when the control loses the focus.

exCheckBoxState0 70 Specifies the visual appearance for the check box in
0 state (unchecked).

exCheckBoxState1 71 Specifies the visual appearance for the check box in
1 state (checked).

exCheckBoxState2 72 Specifies the visual appearance for the check box in
2 state (partial, not used).

exRadioButtonState0 73 Specifies the visual appearance for the radio button
in 0 state (unchecked).

exRadioButtonState1 74 Specifies the visual appearance for the radio button
in 1 state (checked).

exScheduleCreateEventBackColor75

Specifies the visual appearance of the event being
created. The CreateEventLabel property specifies
the label to be shown when the user creates a new
event. The CreateEventLabelAlign property
indicates the alignment of the label while user
creates new events. The Add method adds
programmatically a new event to the control.
Indicates the foreground color for the event being
created. The CreateEventLabel property specifies

exScheduleCreateEventForeColor76
the label to be shown when the user creates a new
event. The CreateEventLabelAlign property
indicates the alignment of the label while user
creates new events. The Add method adds
programmatically a new event to the control.

exScheduleEventContinuePrevDay77
Specifies the visual appearance of the sign that's
shown when the current event continues on the
previously day.

exScheduleEventContinueNextDay78
Specifies the visual appearance of the sign that's
shown when the current event continues on the next
day.

exScheduleUpdateEventsBackColor79 Specifies the visual appearance of the event being
moved or resized.

exScheduleUpdateEventsForeColor80 Indicates the foreground color for the event being
moved or resized.

exScheduleMarkTodayBackColor81 Specifies the background color for the today date,
in the schedule panel.

exScheduleMarkTodayForeColor82 Specifies the foreground color for the today date, in
the schedule panel.

exScheduleEditEventBackColor83
Specifies the background color while editing an
event. The Editable property indicates whether the
user can edit the event's label at runtime.

exScheduleEditEventForeColor84
Specifies the foreground color while editing an
event. The Editable property indicates whether the
user can edit the event's label at runtime.

exScheduleEventContinuePrevWeek85

Specifies the visual appearance of the sign that's
shown when the current all-day event continues on
the previously week. If this option is 0 (by default) a
left-arrow icon is being displayed. You can use this
option to specify the visual appearance using the
EBN objects.

exScheduleEventContinueNextWeek86

Specifies the visual appearance of the sign that's
shown when the current all-day event continues on
the next week. If this option is 0 (by default) a right-
arrow icon is being displayed. You can use this
option to specify the visual appearance using the
EBN objects.

exScheduleAllDayHeaderBackColor87
exScheduleAllDayHeaderBackColor. Specifies the
visual appearance of the control's All-Day header.

exScheduleOLEDropPosition 97

By default, the exScheduleOLEDropPosition is 0,
which means no effect. Specifies the visual
appearance of the dropping position inside the
schedule part of the control, when the control is
implied in a OLE Drag and Drop operation.
The exScheduleOLEDropPosition has effect only if
different than 0, and the OLEDropMode property is
not exOLEDropNone. For instance, set the
Background(exScheduleOLEDropPosition) property
on RGB(0,0,255), and a blue line is shown at the
date-time position when the cursor is hover the
schedule part of the control, during an OLE Drag
and Drop position. The OLEDragDrop event notifies
your application once an object is drop in the
control.

exContextMenuAppearance 99 Specifies the visual appearance of the control's
context menu.

exContextMenuBackColor 100 Specifies the solid background color for the
control's context menu.

exContextMenuForeColor 101 Specifies the text foreground color for the control's
context menu.

exContextMenuSelBackColor 102 Specifies the solid/EBN selection's background
color in the control's context menu.

exContextMenuSelBorderColor103 Specifies the solid color to show the selection in the
control's context menu.

exContextMenuSelForeColor 104 Specifies the selection's text foreground color in the
control's context menu.

exScheduleDayBackColorAlternate159 Specifies the visual appearance for alternate days.
exScheduleDayForeColorAlternate160 Specifies the foreground color for alternate days.

exScheduleAllDayEventScrollBackColor165

Specifies the visual appearance to put on the all-
day events header, when it contains scrolling
events. The AllowAllDayEventScroll property gets
or sets a value that specifies whether the all-day
event header supports scrolling.

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.

exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279
The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406
The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

The background part (exLowerBackPart and

exHSBackH 407 exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503 The thumb-extension part in normal state.
exVSThumbExtP 504 The thumb-extension part when it is pressed.
exVSThumbExtD 505 The thumb-extension part when it is disabled.
exVSThumbExtH 506 The thumb-extension when the cursor hovers it.
exHSThumbExt 507 The thumb-extension in normal state.
exHSThumbExtP 508 The thumb-extension when it is pressed.
exHSThumbExtD 509 The thumb-extension when it is disabled.
exHSThumbExtH 510 The thumb-extension when the cursor hovers it.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants ChangeOperationEnum
The ChangeOperationEnum type specifies the operation performed in the scheduler control.
The ChangeEvent event occurs when one of the following operation occurs. The
ChangeOperationEnum type supports the following values:

Name Value Description

exAddEvent 0
Notifies once a new event is added to the
scheduler. The ChangeEvent(exAddEvent) event is
equivalent with the AddEvent event.

exRemoveEvent 1
Notifies once an event is removed from the
scheduler. The ChangeEvent(exRemoveEvent)
event is equivalent with the RemoveEvent event.

exUpdateEvent 16

Notifies once any known properties of the event (
like start or ending position) is updated. The
exUpdateEvent flag is combined with one of the
EventKnownPropertyEnum value depending on
what property has been changed. For instance, the
exUpdateEvent + exEventEndDateTime (16 + 2 =
18) indicates that the ending position of the event is
changed, or the end margin of the event was
resized.

constants ContentAlignmentEnum
The ContentAlignmentEnum type specifies where the object is being displayed relative to its
holder. For instance, you can specify the event's label to be in the lower right margin, or in
the middle. There are a lot of align properties as follows:

CreateEventLabelAlign, specifies the alignment of the label to be displayed when the
user creates at runtime new events.
UpdateEventsLabelAlign, specifies the alignment of the label to be displayed when the
user creates at runtime new events.
Event.LabelAlign, specifies the alignment of the event's label.
Event.ExtraLabelAlign, specifies the alignment of the event's extra label.
Event.PicturesAlign, specifies the alignment of the event's pictures.
Event.ExtraPicturesAlign, specifies the alignment of the event's extra pictures.
TimeScale.CaptionAlign, specifies the alignment of the event's extra pictures.
and so on

The ContentAlignmentEnum type supports the following values:

Name Value Description

exTopLeft 0 Content is vertically aligned at the top, and
horizontally aligned on the left.

exTopCenter 1 Content is vertically aligned at the top, and
horizontally aligned at the center.

exTopRight 2 Content is vertically aligned at the top, and
horizontally aligned on the right.

exMiddleLeft 16 Content is vertically aligned in the middle, and
horizontally aligned on the left.

exMiddleCenter 17 Content is vertically aligned in the middle, and
horizontally aligned at the center.

exMiddleRight 18 Content is vertically aligned in the middle, and
horizontally aligned on the right.

exBottomLeft 32 Content is vertically aligned at the bottom, and
horizontally aligned on the left.

exBottomCenter 33 Content is vertically aligned at the bottom, and
horizontally aligned at the center.

exBottomRight 34 Content is vertically aligned at the bottom, and
horizontally aligned on the right.

constants DescriptionTypeEnum
The DescriptionTypeEnum type defines parts of the control whose default caption can be
changed. The Description property defines the default caption to be displayed on giving UI
part of the control.

Currently, the DescriptionTypeEnum type supports the following values:

Name Value Description

exGroupBarAll 0 Defines the caption of '(All)' in the group bar
window.

constants EditableCaptionEnum
The EditableCaptionEnum type indicates the event's property being edited when user
double clicks the event. The Editable property indicates the property of the event to be
edited when user double clicks the event. The AllowEditEvent property specifies the
combination of keys that the user can use so the event gets inline editing. The
EditableCaptionEnum type supports the following values:

Name Value Description
exNoEditable 0 The event's caption is not editable.
exEditCaption 1 The event's Caption property is editable.
exEditShortLabel 2 The event's ShortLabel property is editable.
exEditLongLabel 3 The event's LongLabel property is editable.

exEditExtraLabel 4 (Default). The event's ExtraLabel property is
editable.

exEditRepetitive 5 The event's Repetitive property is editable.

exEditAcceptsReturn 16
Specifies that the ENTER key inserts new lines
during edit. The exEditAcceptsReturn flag can be
combined with any other value.

constants EventKnownPropertyEnum
The EventKnowPropertyEnum defines the value in the "<%=%VALUE%>" expression that
can be used by label properties as follows:

DefaultEventLongLabel, defines the HTML labels for events, when it fit entirely in the
event's body.
DefaultEventShortLabel, defines the labels for events (no HTML attribute is applied),
when it does not fit the event's body
CreateEventLabel, defines the label when creating a new event by dragging
UpdateEventsLabel, defines the label of the events being moved or resized at runtime
Event.ShortLabel, defines the event's short label, or the label to be shown when the
LongLabel does not fit entirely the event's body. The ShortLabel displays no HTML tags
Event.LongLabel, defines the event's HTML long label, when it fits the body. If the
LongLabel does not fit entirely the event's body, the ShortLabel is displayed instead.
Event.ExtraLabel, defines the event's extra HTML label. The event's ExtraLabel is
displayed ONLY, if the LongLabel fits the event's body

For instance, the Event.ExtraLabel = "<%=%5%>, <%=%262%>", displays automatically
the event's caption and the group's label where the event belongs in the bottom side of the
control. If the caption or the owner group of the event is changed, the ExtraLabel is
automatically updated with the new values.

The known and supported values are:

Name Value Description

exEventStartDateTime 1

Indicates the starting date/time of the event. This
property gets or sets the Start property of the
event. The Start property defines the lower margin
of the event, and it includes the date and the time
values. The exEventStartDate specifies the DATE
value only, while the exEventStartTime includes the
TIME value only. For instance, the LabelProperty =
"<%=weekday(%1)%>" displays the day of the
week where the event starts.

(DATE expression)

Indicates the ending date/time of the event. This
property gets or sets the End property of the event.
The End property defines the upper margin of the
event, and it includes the date and the time values.
The exEventEndDate specifies the DATE value only,

exEventEndDateTime 2 while the exEventEndTime includes the TIME value
only. For instance, the LabelProperty = "
<%=weekday(%2)%>" gets the day of the week
where the event ends.

(DATE expression)

exEventAllDay 3

Indicates if the current event is an all day event.
This property is equivalent with the event's
AllDayEvent property which indicates if the current
event is an all-day event. This property may returns
a boolean value, or 0(False) and -1(True). For
instance, the LabelProperty = "<%=%3 ? `All-Day-
Event: `: ``%><%=%256%>", displays
automatically an "All-Day-Event: " prefix for all-day
events. If the event is not an all-day event, the
<%=%256%>, or exEventDisplayShortMargins,
short margins of the events are displayed.

(Boolean expression)

exEventGroupID 4

Indicates the identifier of the event's group. The
GroupID property of the event indicates the
identifier of the group that event belongs to. The
exEventGroupLabel property indicates the Caption
property of the Group's event. The
exEventGroupTitle property indicates the Title
property of the Group's event. For instance, the
LabelProperty = "<%=%4%>
<%=%256%>"
displays on the first line, the group's identifier, and
the short margins of the event on the second line.
The caption of the label is automatically updated
once an event is moved from a group to another.

(Long expression)

exEventCaption 5

Indicates the caption of the event. The Caption
property of the event specifies the custom caption
that can be displayed on the label, without having to
change the event's label. For instance, the
LabelProperty = "<%=%256%>
<%=%5%>"
displays on the first line, the event's short margins,
while on the second line displays the event's

caption. Once you update or edit the event's
Caption, the event's body automatically shows the
new caption.

(String expression)

exEventUserData 6

Indicates the extra data associated with the event.
The UserData property of the event indicates an
extra data associated with the event. For instance,
the LabelProperty = "<%=%256%>

<%=%6%>" displays on the first line, the event's
short margins, while on the second line displays the
event's user data. Once you update or edit the
event's UserData, the event's body automatically
shows the new label.

(Variant expression)

exEventDuration 7

Gets or sets the duration of the event. The returned
values is of float type, and it indicates the duration
of the event in days. For instance, the 1.5 indicates,
1 day and 12 hours. For instance, the
LabelProperty = "<%=%256%>
<%=
((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1
+ 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') +
(=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ?
=:1 + ' min(s)' : '')%>" displays on the first line, the
event's short margins, while on the second line
displays the event's durations in days, hours and
minutes. Once you update or edit the event's
margins, the event's body automatically shows the
new length. You can use the MoveBy method to
delay the current event with a specified value time.
You can use the KnownProperty(exEventDuration)
to change the event's duration.

(Float expression)

Specifies the repetitive expression of the event. The
Repetitive property of the event indicates the
expression that determines whether the event is
repetitive. For instance, the LabelProperty = "

exEventRepetitiveExpression 8 <%=%256%>
<%=len(%8)? `repetitive
event`:``%>" displays repetitive event for repetitive
events.

(String expression)

exEventShortLabel 9

Specifies the short label of the event. This value
returns the same value as ShortLabel property of
the Event object. The ShortLabel property is shown
if the event's body is too small. You can use this
flag to associate the event's ShortLabel property to
a field in the database, using the DataField
property, when the DataSource property is used.

(String Expression)

exEventLongLabel 10

Specifies the long label of the event. This value
returns the same value as LongLabel property of
the Event object. You can use this flag to associate
the event's LongLabel property to a field in the
database, using the DataField property, when the
DataSource property is used.

(String Expression)

exEventExtraLabel 11

Specifies the extra label of the event. This value
returns the same value as ExtraLabel property of
the Event object. You can use this flag to associate
the event's ExtraLabel property to a field in the
database, using the DataField property, when the
DataSource property is used.

(String Expression)

exEventID 12

Specifies the event's unique identifier. You can use
this flag to associate the event's identifier property
to a field in the database (usually the ID field in the
table), using the DataField property, when the
DataSource property is used.

(Long expression)

Specifies the background color or the visual

exEventBodyBackColor 13

appearance of the event (body), equivalent of
BodyBackColor property.

(Long expression)

exEventBodyForeColor 14

Specifies the foreground color of the event (body),
equivalent of BodyForeColor property.

(Long expression)

exEventBodyPattern 15

Specifies the pattern of the event (body), equivalent
of BodyPattern property.

(String expression)

exEventShowStatus 16

Specifies whether the current event shows or hides
its status, equivalent of ShowStatus property.

(Boolean expression)

exEventStatusColor 17

Specifies the color of the event's status, equivalent
of StatusColor property.

(Long expression)

exEventStatusPattern 18

Specifies the pattern to show the event's status,
equivalent of StatusPattern property.

(String expression)

exEventLabelAlign 19

Indicates the alignment of the event's long label,
equivalent of LabelAlign property.

(ContentAlignmentEnum expression)

exEventExtraLabelAlign 20

Indicates the alignment of the event's extra label,
equivalent of ExtraLabelAlign property.

(ContentAlignmentEnum expression)

Indicates the tooltip to be shown when the cursor
hovers the event, equivalent of ToolTip property.

exEventToolTip 21 (String expression)

exEventToolTipTitle 22

Indicates the title of the tooltip to be shown when
the cursor hovers the event, equivalent of
ToolTipTitle property.

(String expression)

exEventPictures 23

Specifies the list of pictures to be displayed on the
event, equivalent of Pictures property.

(String expression)

exEventPicturesAlign 24

Indicates the alignment of the event's picture,
equivalent of PicturesAlign property.

(ContentAlignmentEnum expression)

exEventExtraPictures 25

Specifies the list of extra pictures to be displayed
on the event, equivalent of ExtraPictures property.

(String expression)

exEventExtraPicturesAlign 26

Indicates the alignment of the event's extra picture,
equivalent of ExtraPicturesAlign property.

(ContentAlignmentEnum expression)

exEventEditable 27

Specifies whether the event's caption is editable,
equivalent of Editable property.

(EditableCaptionEnum expression)

exEventBodyBackgroundExt 28

Indicates additional colors, text, images that can be
displayed on the event's background using the EBN
string format, equivalent of BodyBackgroundExt
property.

(String expression)

EXEVENTMAX 29 Holds the count of properties (for internal use only)

exEventDisplayShortMargins 256

Displays the margins of the event in a short format
(read-only). The ShortDateFormat property defines
the short date format. The ShortTimeFormat
property defines the short time format.

(String expression)

exEventDisplayLongMargins 257

Displays the margins of the event in a long format
(read-only). The LongDateFormat property defines
the long date format. The LongTimeFormat
property defines the long time format.

(String expression)

exEventStartDate 258

Gets the starting date (not including the time) of
the current event (read-only). You can use this
property to get the starting date of the event.

(DATE expression)

exEventStartTime 259

Gets the starting time (not including the date) of
the current event (read-only). You can use this
property to get the starting time of the event.

(DATE expression, a value from 0 to 1)

exEventEndDate 260

Gets the ending date (not including the time) of the
current event (read-only). You can use this property
to get the ending date of the event.

(DATE expression)

exEventEndTime 261

Gets the ending time (not including the date) of the
current event (read-only). You can use this property
to get the ending time of the event.

(DATE expression, a value from 0 to 1)

Gets the label of the owner group (read-only). The
exEventGroupLabel property indicates the Caption
property of the Group's event. The GroupID
property of the event indicates the identifier of the
group that event belongs to. The exEventGroupTitle

exEventGroupLabel 262

property indicates the Title property of the Group's
event. For instance, the LabelProperty = "
<%=%262%>
<%=%256%>" displays on the
first line, the group's caption, and the short margins
of the event on the second line. The caption of the
label is automatically updated once an event is
moved from a group to another.

(String expression)

exEventGroupTitle 263

Gets the title of the owner group (read-only). The
exEventGroupTitle property indicates the Title
property of the Group's event. The
exEventGroupLabel property indicates the Caption
property of the Group's event. The GroupID
property of the event indicates the identifier of the
group that event belongs to. For instance, the
LabelProperty = "<%=%263%>
<%=%256%>"
displays on the first line, the group's caption, and
the short margins of the event on the second line.
The caption of the label is automatically updated
once an event is moved from a group to another.

(String expression)

exEventRepetitive 264

Indicates if the current event is a repetitive event.
(read-only). You can use this flag to specify
whether Repetitive property is not empty, and valid.

(Boolean expression)

exEventDataSourceBookmark265
exEventDataSourceBookmark. Indicates the
bookmark of the record associated with the current
event (DataSource, read-only).

constants EventResizableEnum
The EventResizableEnum type indicates the margins of the events that can be resized. The
Resizable event property indicates the margins of the event that user can resize at runtime.
The AllowResizeEvent property indicates the combination of the keys to let user resizes the
events. The AllowMoveEvent property indicates the combination of the keys to let user
moves the events. The Selectable property specifies whether the event can be selected at
runtime. The Movable property specifies whether the event can be moved at runtime.

The EventResizableEnum expression supports the following values:

Name Value Description
exNoResizable 0 The event can not be resized.
exResizableStart 1 Only the starting point of the event can be resized.
exResizableEnd 2 Only the ending point of the event can be resized.
exResizableBoth 3 The event is sizable.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc.

exCFBitmap 2 A bitmap compatible with Windows 2.x.

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed.

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB).

exCFPalette 9 A color-palette handle.
exCFEMetafile 14 A Windows enhanced metafile.

exCFFiles 15 A collection of files. Use Files property to get or set
the collection of files.

exCFRTF -16639A RTF document.

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled.

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648This one is not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality.

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code.

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants LayoutChangingEnum
Generally, the control fires the LayoutStartChanging / LayoutEndChanging event when an UI
operation is performed. The Operation parameter of the LayoutStartChanging /
LayoutEndChanging events support the values as listed:

Name Value Description

exLayoutResizePanels 0
One of the panels has been resized. The
PaneWidth property indicates the width of the
left/right panel.

exCalendarSelectionChange 1

Specifies whether the selection in the calendar
panel is changing/changed. The Selection property
of the Calendar returns a safe array of selected
dates. The /NET or /WPF version provides the
SelDates property of List<DateTime> type to get or
sets the new selection using a collection of
DateTime objects. The
LayoutStartChanging(exCalendarSelectionChange)
specifies that the user is about to change the
selection in the calendar panel, while the
LayoutEndChanging(exCalendarSelectionChange)
specifies whether the user changed the selection in
the calendar panel.

exCalendarFocusDateChange 2

Specifies whether the focused date in the calendar
panel is changing/changed. The FocusDate
property indicates the date being focused in the
calendar. The
LayoutStartChanging(exCalendarFocusDateChange)
specifies that a new date is about to be focused on
the calendar panel, while the LayoutEndChanging(
exCalendarFocusDateChange) specifies whether a
new date has been focused.

exCalendarDateChange 3

Specifies whether the browsing date in the calendar
panel is changing/changed. The Date property of
the Calendar object indicates the month date being
browsed in the calendar. The
LayoutStartChanging(exCalendarDateChange)
specifies that a new month is about to be shown on
the calendar panel, while the LayoutEndChanging(
exCalendarDateChange) specifies whether the new
month has been browsed. The
FirstVisibleDate/LastVisibleDate property indicates

the first visible date in the calendar panel.

exScheduleMove 4

Specifies whether the control is automatically
scrolled by drag and drop. By default, you can
press the SHIFT + Click and drag the schedule view
to a new position. The AllowMoveSchedule property
allows the user to move or navigate the schedule
view to a new position, without selecting a new date
in the calendar panel.

exScheduleResize 5

The user is zooming the dates in the control. By
default, you can click the middle mouse button, and
drag the cursor to a new position, so the schedule
view gets zoomed or resized. The
AllowResizeSchedule property indicates the keys
combination so the user can resize the schedule
view at runtime.

exScheduleResizeTimeScale 6

The user is resizing the time scale. The TimeScales
property access the control's TimeScale objects.
The Width property of the time scale indicates the
width in pixels of the time scale. The
AllowResizeTimeScale property indicates the keys
the user can resize at runtime the time scale.

exLayoutCalendarAutoHide 7

The calendar is auto shown or hidden. The
OnResizeControl property on exCalendarAutoHide
makes the calendar goes away if the cursor is not
in it. The PaneWidth property indicates the width of
the left/right panel. For instance, the
PaneWidth(False) on 0, indicates that the calendar
panel is hidden, or if it not zero, the calendar panel
is shown. You can call the FitSelToView method
during this operation so the schedule fits the
selected dates in its client area.

exScheduleCreateEvent 8

The user crates a new event by dragging the
mouse. The AddEvent event notifies your
application once a new event is added to the
schedule view.

exScheduleResizeGroup 9

The user resizes a group. The user can resize a
group by clicking the groups header between two
groups, and start dragging the cursor to a new
position, and so the group is being resized. The
AllowResizeGroup property specifies whether the
user can resize a group at runtime.

exScheduleSelectionChange 10

Specifies whether the selection in the schedule
panel is changing/changed. You can use the
AllowSelectEvent property to change the key to
allow the user select new events or you can prevent
selecting any event using exDisallow value. The
Selectable property of the event indicates whether
the event can be selected at runtime. The Selection
property gets or sets a safe array of selected
events. The /NET or /WPF version provides the
SelEvents property of List<Event> type to get or
sets the new selection using a collection of Event
objects.

exScheduleMoveEvent 11
Indicates whether the user moves the event. The
control fires the UpdateEvent event once the margin
of the events are being updated.

exScheduleResizeStartEvent 12
Indicates whether the user resizes the start of the
event. The control fires the UpdateEvent event once
the margin of the events are being updated.

exScheduleResizeEndEvent 13
Indicates whether the user resizes the end of the
event. The control fires the UpdateEvent event once
the margin of the events are being updated.

exScheduleMoveMarkTime 14

Indicates whether the user is about to move a
MarkTime object. The Movable property of the
MarkTime object indicates whether the user can
move at runtime the MarkTime object using the
Mouse. The MarkTimeFromPoint(-1,-1) property
indicates the MarkTime object from the cursor. You
can use the MarkTimeFromPoint(-1,-1) method
during the LayoutStartChanging(
exScheduleMoveMarkTime) to store the timer from
the cursor to a global member, and when
LayoutEndChanging(exScheduleMoveMarkTime)
occurs, you can use the previously stored member
to identify the timer being moved/updated at
runtime.

The user edit the event's caption. The event notifies
once the user starts inline editing an appointment.
The Editable property of the Event indicates the
property of the Event to be edited at runtime. You
can use the EventFromPoint(-1,-1) method during

exScheduleEditEvent 15 the LayoutStartChanging(exScheduleEditEvent) to
store the event from the cursor to a global
member, and when LayoutEndChanging(
exScheduleEditEvent) occurs, you can use the
previously stored member to identify the event
being edited.

exLayoutExchangePanels 16

The panels of the control has been exchanged. The
AllowExchangePanels property indicates the
combination of keys that user can use so it can
drag a panel from a position to another. The control
provides two panels, the calendar panel and the
schedule panel. By default, the calendar panel is
displayed on the left side, while the schedule view is
displayed on the right side. The OnResizeControl
property specifies when the calendar/schedule view
is displayed on left/right side of the control.

exScheduleScrollAllDayEvent 17

The user scrolls the all-day events. The
AllowAllDayEventScroll property gets or sets a
value that specifies whether the all-day event
header supports scrolling.

exScheduleMoveGroup 18
The user moves a group. The AllowMoveGroup
property specifies whether the user can move a
group at runtime.

exUndo 33
An Undo operation is performed. The
AllowUndoRedo property enables or disables the
control's Undo/Redo feature.

exRedo 34
A Redo operation is performed. The
AllowUndoRedo property enables or disables the
control's Undo/Redo feature.

exUndoRedoUpdate 32
The Undo/Redo queue is updated. The
AllowUndoRedo property enables or disables the
control's Undo/Redo feature.

constants LinesStyleEnum
The LinesStyleEnum type specifies the type of lines the control can show. For instance, the
BorderSelStyle property indicates the border to be shown in the schedule panel, around the
selected dates. The SelectEventStyle property specifies whether the control should show
lines to indicate the selected events. The LinesStyleEnum type supports the following
values:

Name Value Description
exNoLines -1 No lines are shown.
exLinesDot 0 The lines shows as dotted.
exLinesHDot4 1 The horizontal lines shows dotted.
exLinesVDot4 2 The vertical lines are shown as dotted.
exLinesDot4 3 The lines are shown as solid.
exLinesHDash 4 The horizontal lines are shown as dashed.
exLinesVDash 8 The vertical lines are shown as dashed.
exLinesDash 12 The lines are shown as dashed.
exLinesHSolid 16 The horizontal lines are shown as solid.
exLinesVSolid 32 The vertical lines are shown as solid.
exLinesSolid 48 The lines are shown as solid.

exLinesThick 256
The lines are shown ticker. This flag can be
combined with any other flags, so the line is shown
ticker.

exLinesThicker 768
The lines are shown ticker. This flag can be
combined with any other flags, so the line is shown
ticker.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the BodyBackgroundExtValue property indicates the index of the
part of the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG
Builder helps you to generate or view the EBN String Format, in the To String field. The
list of objects that compose the EBN are displayed on the left side of the Builder tool, and
the Index of the part is displayed on each item aligned to the right as shown in the
following screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BodyBackgroundExt property:

After calling the BodyBackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants OnResizeControlEnum
The OnResizeControlEnum type indicates the options you have to specify what the control
does when the control or a portion of the control is resized. The OnResizeControl property
specifies the operation that the control performs when the user resizes the component.

You can use the OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

disabling the control's vertical split bar (so user can not resize the fixed panel)
(OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exDisableSplitter Or OnResizeControlEnum.exCalendarFit)

The OnResizeControlEnum type supports the following values:

Name Value Description

exResizePanelLeft 0

Resizes the left panel of the control. If this flag is
set the calendar view is resized once the control is
resized, unless the exChangePanels flag is set, as
the schedule will be resized.

exResizePanelRight 1

Resizes the right panel of the control. If this flag is
set the schedule view is resized once the control is
resized, unless the exChangePanels flag is set, as
the calendar will be resized.

exDisableSplitter 128 Disables the splitter. The user can not resize the
panels using the control's vertical split bar.

exHideSplitter 256

Hides the splitter. This flag allows you to display a
single panel, the calendar or the schedule view at
once. If the exHideSplitter is used in combination
with the exChangePanels, the schedule view is
shown only, else the calendar panel is displayed
only/

exChangePanels 512
Exchanges the content of the panels. If this flag is
present, the schedule view is displayed on the left,
while the calendar panel is shown on the right side
of the component.

exCalendarFit 1024
Ensures that the calendar fits to the panel that
hosts it. If this flag is present, the Calendar panel
can not show its content partially.

exCalendarAutoHide 2048

Turns on or off the calendar panel when cursor
leaves the panels. The auto hide feature allows you
to hide the calendar panel, while the cursor is not in
it, so the schedule view gains the entire client area.

constants OnSelectDateEnum
The OnSelectDateEnum type specifies the action the control performs once a new date is
selected in the calendar panel. The OnSelectDate property indicates the operation to
perform when user selects a new date in the calendar panel. The OnSelectDateEnum type
supports the following values:

Name Value Description

exFitSelToView -1 The schedule view adjusts its size and position, so
all selected dates are visible in the view.

exNoViewChange 0 The control does nothing once the user selects new
dates in the calendar panel.

exEnsureVisibleDate 1 Ensures that the selected date is visible on the
schedule view without resizing the view.

constants PaddingEdgeEnum
The PaddingEdgeEnum type defines the left, top, right and bottom padding to display the
text. The DefaultEventPadding property defines the padding to display the text in the event's
body. The PaddingEdgeEnum type defines the following predefined values:

Name Value Description
exPaddingAll -1 Indicates all margins of the object.
exPaddingLeft 0 Indicates the left margin of the object.
exPaddingTop 1 Indicates the top margin of the object.
exPaddingRight 2 Indicates the right margin of the object.
exPaddingBottom 3 Indicates the bottom margin of the object.

constants PatternEnum
The PatternEnum type specifies the type of patterns that the element can fill with. The Type
property indicates the pattern to fill the element. The Color property indicates the color to fill
the element's pattern, while the FrameColor property indicates the color to show the
element's border/frame if the Type property includes the exPatternFrame flag.

The PatternEnum type supports the following values:

Name Value Description
exPatternEmpty 0 The pattern is not visible.
exPatternSolid 1
exPatternDot 2
exPatternShadow 3
exPatternNDot 4
exPatternFDiagonal 5
exPatternBDiagonal 6
exPatternDiagCross 7
exPatternVertical 8
exPatternHorizontal 9
exPatternCross 10
exPatternBrick 11
exPatternYard 12
exPatternF2Diagonal 13
exPatternB2Diagonal 14

exPatternFrame 256

. The
exPatternFrame can be combined with any other
value. The FrameColor property indicates the color
to show the frame.

exPatternFrameThick 768

. The
exPatternFrameThick can be combined with any
other value. The FrameColor property indicates the
color to show the frame.

constants PictureDisplayEnum
The PictureDisplayEnum type defines the way the control's Picture is arranged on the
control. The Picture property assign a picture to be displayed on the control's background.
The PictureDisplay property indicates how the picture is layout on the control's background.
The BackColor property specifies a solid color to be shown on the control's background.
The Background(exCalendarBackColor) property changes the calendar's panel backcolor if
not-zero.

The PictureDisplayEnum type supports the following values:

Name Value Description

UpperLeft 0 The picture is vertically aligned at the top, and
horizontally aligned on the left.

UpperCenter 1 The picture is vertically aligned at the top, and
horizontally aligned at the center.

UpperRight 2 The picture is vertically aligned at the top, and
horizontally aligned on the right.

MiddleLeft 16 The picture is vertically aligned in the middle, and
horizontally aligned on the left.

MiddleCenter 17 The picture is vertically aligned in the middle, and
horizontally aligned at the center.

MiddleRight 18 The picture is vertically aligned in the middle, and
horizontally aligned on the right.

LowerLeft 32 The picture is vertically aligned at the bottom, and
horizontally aligned on the left.

LowerCenter 33 The picture is vertically aligned at the bottom, and
horizontally aligned at the center.

LowerRight 34 The picture is vertically aligned at the bottom, and
horizontally aligned on the right.

Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollBars property to specify whether the vertical or horizontal scroll bar is visible or
hidden. Use the ScrollPartVisible property to specify the visible parts in the control's scroll
bars (this property may not be available yet).

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a control. The ScrollBars property of the control
specifies the scroll bars being visible in the control. By default, the ScrollBars property is
exBoth, which indicates that both scroll bars of the component are being displayed only
when they require

Name Value Description
exNoScroll 0 No scroll bars are shown
exHorizontal 1 The horizontal scroll bar is shown, if it is necessary.
exVertical 2 The vertical scroll bar is shown, if it is necessary.

exBoth 3 (default) Both horizontal and vertical scroll bars are
shown, if they are necessary.

exDisableNoHorizontal 5 The horizontal scroll bar is always shown, it is
disabled if it is unnecessary.

exDisableNoVertical 10 The vertical scroll bar is always shown, it is
disabled if it is unnecessary.

exDisableBoth 15 Both horizontal and vertical scroll bars are always
shown, disabled if they are unnecessary.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description
exExtentThumbPart 65536 The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SelectCalendarDateEnum
The SelectCalendarDateEnum type specifies the type of selection the Select method can
perform. The Select method selects programmatically the current year, month, week, week
day or focused day in the calendar panel. The
LayoutEndChanging(exCalendarSelectionChange) event occurs once the Select method is
invoked.

The SelectCalendarDateEnum type supports the following flags:

Name Value Description
exSelectNothing 0 The flag does nothing.

exSelectYear 1 The entire year is being selected. This flag can be
combined with the exSelectToggle.

exSelectMonth 2 The current month is being selected. This flag can
be combined with the exSelectToggle.

exSelectWeek 3 The current week is being selected. This flag can
be combined with the exSelectToggle.

exSelectWeekDay 4
The current week days of the current month are
selected. This flag can be combined with the
exSelectToggle.

exSelectFocusDay 5 The current focused day is selected. This flag can
be combined with the exSelectToggle.

exSelectToggle 16

The selection is toggled. For instance, the
exSelectFocusDay Or exSelectToggle can select or
unselect the focused date in the calendar panel. If
the flag exSelectToggle is present, the current
selection is not cleared. If the flag exSelectToggle is
used, the current selection is cleared.

constants SelectCreateEventEnum
The AllowSelectCreateEvent property specifies whether the newly created event gets
selected or highlighted. Use the ShowAllDayHeader property to show the schedule's All-
Day header so all All-Day evens are shown on this header. The AllowCreateAllDayEvent
property has effect only when the schedule displays no time scale. The AllDayEvent
property indicates an all-day event. You can use the AllowSelectEvent property to change
the key to allow the user select new events or you can prevent selecting any event using
exDisallow value. The SelectCreateEventEnum type supports the following values:

Name Value Description
exSelectCreateEventNone 0 No event is selected when it is first created.
exSelectCreateEvent 1 The event being created gets selected.

exHighlightCreateEvent 2 The event being created gets highlighted for s short
period of time (1 second).

constants ShowEventsEnum
The ShowEventsEnum type indicates the events to be displayed in the control. The
ShowEvents property indicates the type of the events which schedule displays. For
instance, the ShowEvents on 0 (zero), indicates no events are shown on the control. the
ShowEvents on 2 (two), indicates that the schedule view displays the repetitive events
only. The EventsTransparent property indicates the transparency to show the events on the
schedule view.

The ShowEventsEnum type supports one or a combination of the following flags:

Name Value Description
exShowAllEvents -1 Shows all events.
exShowRegularEvents 1 Shows the regular events.

exShowRepetitiveEvents 2

Shows the repetitive events. The
KnownProperty(exEventRepetitive) indicates
whether the event is an repetitive event. The
Repetitive property indicates the expression that
defines the dates where the event occurs.

constants ShowHighlightDateEnum
The ShowHighlightDateEnum type specifies the way the control can highlight the date in the
calendar and/or schedule panel. The ShowHighlightDate property indicates whether the
control highlights the date in the calendar and/or schedule panel. The ShowHighlightDate
property can be a combination of one or more of the following values. The HighlightDate
property indicates the color(s) to highlight the date. The ShowHighlightDateEnum type
supports the following values:

Name Value Description
exHideHighlightDate 0 No highlight for any date.

exShowHighlightDateCalendar1 The dates being highlighted are shown in the
calendar panel.

exShowHighlightDateSchedule2 The dates being highlighted are shown in the
schedule panel.

exShowHighlightDate 3 The dates being highlighted are shown in the
calendar and schedule panel.

exHighlightDateCalendarVertical16 The colors to highlight a date are vertically
displayed in the calendar panel.

exHighlightDateScheduleVertical32 The colors to highlight a date are vertically
displayed in the schedule panel.

exHighlightDateVertical 48 The colors to highlight a date are vertically
displayed.

exHighlightDateCalendarGradient256 The colors to highlight a date are shown on
gradient, for the calendar panel.

exHighlightDateScheduleGradient512 The colors to highlight a date are shown on
gradient, for the schedule panel.

exHighlightDateGradient 768 The colors to highlight a date are shown on
gradient.

exHighlightDateCalendarEllipticClip4096 Clips the highlight of the date in the calendar panel
to an ellipse around the date.

exHighlightDateScheduleEllipticClip8192 Clips the highlight of the date in the schedule panel
to an ellipse around the date.

exHighlightDateEllipticClip 12288 Clips the highlight of the date to an ellipse around
the date.

exHighlightGroupingEvents 65536 Highlights the date based on the grouping events.

constants ShowMarkZoneEnum
The ShowMarkZoneEnum type indicates how the time-zones are shown in the control. Use
the Add method of the MarkZones collection to add a new time-zone to the control. The
MarkZoneFromPoint property indicates the time-zone from the cursor.The ShowMarkZone
property shows or hides the added time-zones. Using the ShowMarkZone property the
mark zones can be shown:

hidden, exHideMarkZones
on the back of the other elements as events, and so on, exShowMarkZonesBack
on the front of the other elements as events, and so on, exShowMarkZonesFront (by
default)
using a semi-transparent color, exShowMarkZonesSemi (by default)

The ShowMarkZoneEnum type supports the following values:

Name Value Description
exHideMarkZones 0 No mark zone is shown.
exShowMarkZonesBack 1 The mark zones are shown on the background.
exShowMarkZonesFront 2 The mark zones are displayed on front.

exShowMarkZonesSemi 3 The schedule shows the mark zones using a semi-
transarent color.

constants ShowNonworkingTimeEnum
The ShowNonworkingTimeEnumtype indicates the way the control can display the non-
working time intervals. The ShowNonworkingTime property shows or hides the defined non-
working intervals. The Add method of the NonworkingTimes objects adds a new non-
working time interval. The NonworkingTimes collection is accessible through the
NonworkingTimes property of the control.

The ShowNonworkingTimeEnum type supports the following values:

Name Value Description
exHideNonworkingTime 0 The nonworking time of the date is not shown.

exShowNonworkingTimeBack 1 The nonworking time of the date is shown on the
background.

exShowNonworkingTimeFront 2 The nonworking time of the date is displayed on
front.

exShowNonworkingTimeSemi 3 The nonworking time of the date is displayed using
a semi-transparent color.

constants ShowViewCompactEnum
The ShowViewCompactEnum type indicates the way the control can show dates in the
schedule panel. The ShowViewCompact property specifies the way the control arranges
the dates in the schedule view.

Name Value Description

exViewCalendar 0 Default. The schedule view arranges the days as
they are shown in the calendar panel.

exViewCalendarCompact -1

The schedule view arranges the days as they are
shown in the calendar panel, excepts that the first
day of the month starts right after the last day of
the previously month, or start to a new row.

exViewSingleRow 1 The schedule view arranges all days to a single row
(horizontally).

exViewSingleColumn 2 The schedule view arranges all days to a single
column (vertically).

exViewSingleRowLockHeader3

The schedule view arranges all days to a single row
(horizontally), while the date header is
shown/locked on the top while the chart is vertically
scrolled.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme

constants WeekDayEnum
The WeekDayEnum type indicates the days in the week. The WeekDays property indicates
the name of the days in the week. The WeekDayEnum type includes the following values.

Name Value Description
exSunday 0 Sunday
exMonday 1 Monday
exTuesday 2 Tuesday
exWednesday 3 Wednesday
exThursday 4 Thursday
exFriday 5 Friday
exSaturday 6 Saturday

constants WeekNumberAsEnum
The WeekNumberAsEnum type specifies the ways the control displays the week number
for dates. The ShowWeeks property specifies whether the week number header is shown
or hidden. The DisplayWeekNumberAs property specifies the way the control displays the
week number. The FirstWeekDay property specifies the first day of the week where the
week begins. The WeekNumberAsEnum type supports the following values:

Name Value Description

exISO8601WeekNumber 0

Indicates that the week number is displayed
according to the ISO8601 standard, which specifies
that the first week of the year is the one that
includes the January the 4th (default)

exSimpleWeekNumber 1 The first week starts on January 1st of a given
year, week n+1 starts 7 days after week n

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The control provides the VisualDesign property that allows you to easily change the
control's visual appearance at design mode. Also, the VisualDesign property can be used at
runtime to specify a visual appearance, by setting the VisualDesign property with a new
generated value. The UseVisualTheme property indicates whether the current visual theme
is applied to parts of the control.

Here's a screen shot skins a few UI parts of the component, using the EBN objects :

The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows. Let's
say that the control requests painting the {10, 10, 30,
20} area, a rectangle with the width of 20 pixels, and
the height of 10 pixels, the skin will be displayed on
the {14,10,26,20} as each coordinates in the "CP"
syntax is added to the displayed rectangle, so the
skin looks smaller. This way you can apply different
effects to your objects in your control. The following
screen shot shows the control's header when using a
"CP:1 -6 -6 6 6", that displays the original skin on
larger rectanges .

the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The control provides the VisualDesign property that allows you to easily change the
control's visual appearance at design mode. Also, the VisualDesign property can be used at
runtime to specify a visual appearance, by setting the VisualDesign property with a new
generated value. The UseVisualTheme property indicates whether the current visual theme
is applied to parts of the control.

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The following samples applies the EBN (normal.ebn) to all events.

VBA (MS Access, Excell...)

With Schedule1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(75) = &H1000000
 .Background(79) = &H1000000
 .BodyEventBackColor = &H1000000
End With

VB6

With Schedule1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"

 .Background(exScheduleCreateEventBackColor) = &H1000000
 .Background(exScheduleUpdateEventsBackColor) = &H1000000
 .BodyEventBackColor = &H1000000
End With

VB.NET

With Exschedule1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

.set_Background32(exontrol.EXSCHEDULELib.BackgroundPartEnum.exScheduleCreateEventBackColor,&H1000000)

.set_Background32(exontrol.EXSCHEDULELib.BackgroundPartEnum.exScheduleUpdateEventsBackColor,&H1000000)

 .BodyEventBackColor32 = &H1000000
End With

VB.NET for /COM

With AxSchedule1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

.set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleCreateEventBackColor,16777216)

.set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleUpdateEventsBackColor,16777216)

 .GetOcx().BodyEventBackColor = &H1000000
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->GetVisualAppearance()->Add(1,"c:\\exontrol\\images\\normal.ebn");
spSchedule1-
>PutBackground(EXSCHEDULELib::exScheduleCreateEventBackColor,0x1000000);
spSchedule1-
>PutBackground(EXSCHEDULELib::exScheduleUpdateEventsBackColor,0x1000000);
spSchedule1->PutBodyEventBackColor(0x1000000);

C++ Builder

Schedule1->VisualAppearance-
>Add(1,TVariant("c:\\exontrol\\images\\normal.ebn"));
Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exScheduleCreateEventBackColor]
 = 0x1000000;
Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exScheduleUpdateEventsBackColor]
 = 0x1000000;
Schedule1->BodyEventBackColor = 0x1000000;

C#

exschedule1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
exschedule1.set_Background32(exontrol.EXSCHEDULELib.BackgroundPartEnum.exScheduleCreateEventBackColor,0x1000000);

exschedule1.set_Background32(exontrol.EXSCHEDULELib.BackgroundPartEnum.exScheduleUpdateEventsBackColor,0x1000000);

exschedule1.BodyEventBackColor32 = 0x1000000;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
 Schedule1.Background(75) = 16777216;
 Schedule1.Background(79) = 16777216;
 Schedule1.BodyEventBackColor = 16777216;
</SCRIPT>

C# for /COM

axSchedule1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
axSchedule1.set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleCreateEventBackColor,0x1000000);

axSchedule1.set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleUpdateEventsBackColor,0x1000000);

(axSchedule1.GetOcx() as EXSCHEDULELib.Schedule).BodyEventBackColor =
0x1000000;

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exschedule1.VisualAppearance().Add(1,"c:\\exontrol\\images\\normal.ebn");
 exschedule1.Background(75/*exScheduleCreateEventBackColor*/,0x1000000);
 exschedule1.Background(79/*exScheduleUpdateEventsBackColor*/,0x1000000);
 exschedule1.BodyEventBackColor(0x1000000);
}

Delphi 8 (.NET only)

with AxSchedule1 do

begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');

set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleCreateEventBackColor,$1000000);

set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleUpdateEventsBackColor,$1000000);

 (GetOcx() as EXSCHEDULELib.Schedule).BodyEventBackColor := $1000000;
end

Delphi (standard)

with Schedule1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');
 Background[EXSCHEDULELib_TLB.exScheduleCreateEventBackColor] := $1000000;
 Background[EXSCHEDULELib_TLB.exScheduleUpdateEventsBackColor] :=
$1000000;
 BodyEventBackColor := $1000000;
end

VFP

with thisform.Schedule1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .Object.Background(75) = 0x1000000
 .Object.Background(79) = 0x1000000
 .BodyEventBackColor = 0x1000000
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oSchedule.Template = [Background(75) = 0x1000000] //

oSchedule.Background(75) = 0x1000000
oSchedule.Template = [Background(79) = 0x1000000] //
oSchedule.Background(79) = 0x1000000
oSchedule.BodyEventBackColor = 0x1000000

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oSchedule.Template = "Background(75) = 16777216" ' oSchedule.Background(75)
= 16777216
oSchedule.Template = "Background(79) = 16777216" ' oSchedule.Background(79)
= 16777216
oSchedule.BodyEventBackColor = 16777216

Visual Objects

oDCOCX_Exontrol1:VisualAppearance:Add(1,"c:\exontrol\images\normal.ebn")
oDCOCX_Exontrol1:[Background,exScheduleCreateEventBackColor] := 0x1000000
oDCOCX_Exontrol1:[Background,exScheduleUpdateEventsBackColor] := 0x1000000
oDCOCX_Exontrol1:BodyEventBackColor := 0x1000000

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oSchedule.Background(75,16777216 /*0x1000000*/)
oSchedule.Background(79,16777216 /*0x1000000*/)
oSchedule.BodyEventBackColor = 16777216 /*0x1000000*/

On Windows XP, the following table shows how the common controls are broken into parts

and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2
ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4

EP_EDITTEXT = 1 ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1

HSAS_SORTEDDOWN = 2
LISTVIEW LVP_EMPTYTEXT = 5

LVP_LISTDETAIL = 3

LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3

DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3

SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7

SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5
TTIBES_NORMAL = 1

TABP_TOPTABITEMBOTHEDGE = 8 TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5

TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3

MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3

RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The control provides the VisualDesign property that allows you to easily change the
control's visual appearance at design mode. Also, the VisualDesign property can be used at
runtime to specify a visual appearance, by setting the VisualDesign property with a new
generated value. The UseVisualTheme property indicates whether the current visual theme
is applied to parts of the control.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The control provides the VisualDesign property that allows you to easily change the
control's visual appearance at design mode. Also, the VisualDesign property can be used at
runtime to specify a visual appearance, by setting the VisualDesign property with a new
generated value. The UseVisualTheme property indicates whether the current visual theme
is applied to parts of the control.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the events' appearance, by using an EBN
object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BodyEventBackColor = &H1000000
End With

In the following screen shot the following objects display the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the event's property BodyBackColor is
0x10000FF

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"B" in Green (RGB(0,255,0), for instance the event's property BodyBackColor is
0x100FF00
"C" in Blue (RGB(0,0,255), for instance the event's property BodyBackColor is
0x1FF0000
"Default", no color is specified, for instance the event's property BodyBackColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BodyEventBackColor = &H1FF0000 is
displayed as would be BodyEventBackColor = &H1000000, so the 0xFF0000 color (
Blue color) is ignored. You can use this option to allow the control displays the EBN
colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BodyEventBackColor = &H1FF0000, applies the OR bit for the entire Blue channel, or
in other words, it applies a less Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BodyEventBackColor = &H1FF0000, applies the AND bit for the entire Blue channel, or
in other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BodyEventBackColor = &H1FF0000, applies a Blue color to the object. This option
could be used to specify any color for the part of the components, that support EBN
objects, not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Calendar object
The Calendar object indicates the calendar panel of the component like in the following
screen shot:

You can access the component's Calendar object using the Calendar property. Use the
OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

Name Description

AlignDate Specifies whether the January 1st or MinDate is aligned to
the top-left corner.

AllowFocusDate Specifies the combination of keys that allows the user to
focus a new date, in the calendar panel.

AllowSelectDate Specifies the combination of keys that allows the user to
select dates in the calendar panel.

AllowSelectDateRect
Specifies the combination of keys that allows the user to
select dates in the calendar panel, by dragging a
rectangle.

AllowToggleSelectKey Specifies the combination of keys to select multiple not-
contiguously dates.

AMPM Specifies the AM and PM indicators.

Date Retrieves or sets the date being displayed in the calendar
panel.

DateFromPoint Retrieves the date from the cursor, in the calendar panel.

DisableZoneFormat Returns or sets an expression that determines the dates
being disabled in the calendar/schedule panel.

DisplayWeekNumberAs Specifies the way the calendar displays the week number.

Events
Returns a safe array of dates with events, in a specified
group, where the Expression indicates the formula to
determine the dates being verified.

FirstVisibleDate Retrieves the first visible date, in the calendar panel.
FirstWeekDay Specifies the first day of the week.

FitSelToView
Specifies the list of additional dates to be shown on the
schedule view, when OnSelectDate property is
exFitSelToView.

FocusDate Retrieves the date being focused in the calendar panel.

GroupHighlightEvent
Highlights the date in the calendar panel using the
HighlightEvent property of each Group found on day's
events.

HeaderDayLabel Specifies the HTML date-format to be shown on the
calendar's header.

HideSel Specifies whether selected date appears selected when a
control loses focus.

HighlightEvent Gives access to the Highlight object, so you can customize
highlighting the events, in the calendar panel.

hWnd Retrieves the calendar's window handle.
LastVisibleDate Retrieves the last visible date, in the calendar panel.

LocAMPM Retrieves the time marker such as AM or PM using the
current user regional and language settings.

LocFirstWeekDay Indicates the first day of the week, as specified in the
regional settings.

LocMonthNames Retrieves the list of month names, as indicated in the
regional settings, separated by space.
Retrieves the list of names for each week day, as

LocWeekDays indicated in the regional settings, separated by space.

LongDateFormat Indicates the long date format.
LongTimeFormat Indicates the long time format.
MaxDate Retrieves or sets the max date.

MaxMonthX Specifies the maximum number of months horizontally
displayed.

MaxMonthY Specifies the maximum number of months vertically
displayed.

MinDate Retrieves or sets the min date.

MinMonthX Specifies the minimum number of months horizontally
displayed.

MinMonthY Specifies the minimum number of months vertically
displayed.

MonthNames Retrieves or sets a value that indicates the list of month
names, separated by space.

NonworkingDays Retrieves or sets a value that indicates the non-working
days, for each week day a bit.

NonworkingDaysColor Retrieves or sets a value that indicates the color to fill the
non-working days.

NonworkingDaysFrameColor Retrieves or sets a value that indicates the color to show
the non-working frame.

NonworkingDaysPattern Retrieves or sets a value that indicates the pattern being
used to fill non-working days.

OnSelectDate Specifies the action that the control does once the user
selects new dates in the calendar panel.

Parent Specifies the handle of the window that hosts the calendar
panel.

SelCount Indicates the number of dates being selected in the
calendar panel.

SelDate Gets the date being selected giving its index in the
selection.

Select Selects the current (focus) day, week, week day, month or
year in the calendar panel.

SelectDate Selects or unselects a date in the calendar panel.
Returns or sets a safe array of selected dates in the

Selection calendar panel.

ShortDateFormat Indicates the short date format.
ShortTimeFormat Indicates the short time format.
ShowGridLines Shows or hides the grid lines in the calendar panel.

ShowHighlightEvent Returns or sets a value that indicates whether the
calendar panel highlights days that contain events.

ShowNonMonthDays Specifies whether the control displays the dates that are
not part of the month.

ShowTodayButton Retrieves or sets a value that indicates whether the today
button is visible or hidden, in the calendar panel.

ShowWeeks Retrieves or sets a value that indicates whether the weeks
header is visible or hidden.

ShowYearScroll
Retrieves or sets a value that indicates whether the scroll
bar (in the calendar panel) to change the year is visible
or hidden.

SingleSel Returns or sets a value that indicates whether the user
can select one or more dates in the calendar panel.

TodayCaption Retrieves or sets a value that indicates the today button's
caption, in the calendar panel.

WeekDays Retrieves or sets a value that indicates the list of names
for each week day, separated by space.

property Calendar.AlignDate as Boolean
Specifies whether the January 1st or MinDate is aligned to the top-left corner.

Type Description

Boolean A Boolean expression that specifies whether January 1st
or MinDate is aligned to the top-left corner.

By default, the AlignDate property is True. This property has effect only if multiple months
are displayed in the calendar panel. Use the MinMonthX/MaxMonthX and
MinMonthY/MaxMonthY properties to specify the number of months to be displayed on the
calendar panel.

property Calendar.AllowFocusDate as AllowKeysEnum
Specifies the combination of keys that allows the user to focus a new date, in the calendar
panel.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the
combination of keys that allows the user to focus a new
date, in the calendar panel.

By default, the AllowFocusDate property is exRightClick. Changing the focus using this
option may show a different month, without selecting the focusing date. The control may
display only a single focused date, but it can display multiple selection dates. The
FocusDate property indicates the date being focused. The control fires the
LayoutStartChanging(exCalendarFocusDateChange) when the user is about to change the
focusing date, and the LayoutEndChanging(exCalendarFocusDateChange) notifies your
application once a new date is being focused. The Background(exCalendarFocusDate)
changes the visual appearance of the focused date, while the
Background(exCalendarFocusDateForeColor) changes the foreground color of the focused
date.

The AllowFocusDate property on exDisallow disables focusing a date that's not being
selected. The AllowSelectDate property indicates the keys combination so the user can
select new dates in the calendar panel, and so, new dates to be shown in the schedule
view. The Date property of the control browses a new month in the calendar panel.

Use the Selection/SelectDate property to change programmatically the dates being
selected in the calendar, including the dates to be shown in the schedule view. You can use
the Selection/SelCount/SelDate property to retrieve the selected dates.

property Calendar.AllowSelectDate as AllowKeysEnum
Specifies the combination of keys that allows the user to select dates in the calendar panel.

Type Description

AllowKeysEnum

An AllowKeysEnum expression that specifies the
combination of keys that allows the user to select new
dates, in the calendar panel, and so to display a different
dates in the schedule view.

By default, the AllowSelectDate property is exLeftClick. The exDisallow indicates the the
user can not select dates in the calendar panel. Once the user starts selecting a new date
in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs. The SingleSel property
indicates whether the user can select one or multiple dates. The AllowSelectDateRect
specifies the keys combination so the user can do a rectangular selection in the calendar
panel. Use the Selection/SelectDate property to change programmatically the dates being
selected in the calendar, including the dates to be shown in the schedule view. You can use
the Selection/SelCount/SelDate property to retrieve the selected dates.

The Background(exCalendarSelBackColor), Background(exCalendarSelForeColor)
property specifies the visual appearance of the selected dates, when the control has
the focus.
The Background(exCalendarSelBackColorUnFocus),
Background(exCalendarSelBackColorUnFocus) property specifies the visual
appearance of the selected dates, when the control has no focus.

The ClipToSel property indicates whether the control clips the schedule panel to view the
selected dates only. The FitSelToView method restores the view to fit the selected dates.

property Calendar.AllowSelectDateRect as AllowKeysEnum
Specifies the combination of keys that allows the user to select dates in the calendar panel,
by dragging a rectangle.

Type Description

AllowKeysEnum

An AllowKeysEnum expression that specifies the
combination of keys that allows the user to rectangular
select new dates, in the calendar panel, and so to display
a different dates in the schedule view.

By default, the AllowSelectDateRect property is exLeftClick + exALTKey, which means that
the user can hold the ALT key while pressing the left mouse button and so a rectangle is
shown, and each date that intersect the rectangular region will be selected by dragging the
mouse.

The exDisallow indicates the the user can not rectangular select dates in the calendar
panel. Once the user starts selecting a new date in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs. The SingleSel property
indicates whether the user can select one or multiple dates. The AllowSelectDate specifies
the keys combination so the user can do a selection in the calendar panel. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view. You can use the
Selection/SelCount/SelDate property to retrieve the selected dates. You can do the same
type of the selection in the schedule panel, by using the AllowSelectEventRect property.

The ClipToSel property indicates whether the control clips the schedule panel to view the
selected dates only. The FitSelToView method restores the view to fit the selected dates.

The following screen shot shows the rectangular selection, in the calendar panel:

property Calendar.AllowToggleSelectKey as AllowKeysEnum
Specifies the combination of keys to select multiple not-contiguously dates.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the
combination of keys to select multiple not-contiguously
dates.

By default, the AllowToggleSelectKey property is exCTRLKey. This indicates that the user
toggles the selected dates to unselected, and reverse by clicking the CTRL key. This
property should be used in combination with AllowSelectDate and AllowSelectDateRect
properties. Once the user starts selecting a new date in the calendar panel, the control fires
the LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view. You can use the
Selection/SelCount/SelDate property to retrieve the selected dates.

The samples shows how you can toggle the selection of dates, such the first click selects
the date, the second click unselects it, and so on.

VBA (MS Access, Excell...)

With Schedule1
 .OnResizeControl = 1281
 With .Calendar
 .AllowToggleSelectKey = 1
 .AllowSelectDate = 1
 .SingleSel = False
 End With
End With

VB6

With Schedule1
 .OnResizeControl = OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exHideSplitter Or OnResizeControlEnum.exCalendarFit
 With .Calendar
 .AllowToggleSelectKey = exLeftClick
 .AllowSelectDate = exLeftClick

 .SingleSel = False
 End With
End With

VB.NET

With Exschedule1
 .OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exHideSplitter Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarFit
 With .Calendar
 .AllowToggleSelectKey = exontrol.EXSCHEDULELib.AllowKeysEnum.exLeftClick
 .AllowSelectDate = exontrol.EXSCHEDULELib.AllowKeysEnum.exLeftClick
 .SingleSel = False
 End With
End With

VB.NET for /COM

With AxSchedule1
 .OnResizeControl = EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight Or
EXSCHEDULELib.OnResizeControlEnum.exHideSplitter Or
EXSCHEDULELib.OnResizeControlEnum.exCalendarFit
 With .Calendar
 .AllowToggleSelectKey = EXSCHEDULELib.AllowKeysEnum.exLeftClick
 .AllowSelectDate = EXSCHEDULELib.AllowKeysEnum.exLeftClick
 .SingleSel = False
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1-
>PutOnResizeControl(EXSCHEDULELib::OnResizeControlEnum(EXSCHEDULELib::exResizePanelRight
 | EXSCHEDULELib::exHideSplitter | EXSCHEDULELib::exCalendarFit));
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutAllowToggleSelectKey(EXSCHEDULELib::exLeftClick);
 var_Calendar->PutAllowSelectDate(EXSCHEDULELib::exLeftClick);
 var_Calendar->PutSingleSel(VARIANT_FALSE);

C++ Builder

Schedule1->OnResizeControl =
Exschedulelib_tlb::OnResizeControlEnum::exResizePanelRight |
Exschedulelib_tlb::OnResizeControlEnum::exHideSplitter |
Exschedulelib_tlb::OnResizeControlEnum::exCalendarFit;
Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->AllowToggleSelectKey =
Exschedulelib_tlb::AllowKeysEnum::exLeftClick;
 var_Calendar->AllowSelectDate = Exschedulelib_tlb::AllowKeysEnum::exLeftClick;
 var_Calendar->SingleSel = false;

C#

exschedule1.OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exHideSplitter |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarFit;
exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.AllowToggleSelectKey =
exontrol.EXSCHEDULELib.AllowKeysEnum.exLeftClick;
 var_Calendar.AllowSelectDate =
exontrol.EXSCHEDULELib.AllowKeysEnum.exLeftClick;

 var_Calendar.SingleSel = false;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.OnResizeControl = 1281;
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.AllowToggleSelectKey = 1;
 var_Calendar.AllowSelectDate = 1;
 var_Calendar.SingleSel = false;
</SCRIPT>

C# for /COM

axSchedule1.OnResizeControl =
EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight |
EXSCHEDULELib.OnResizeControlEnum.exHideSplitter |
EXSCHEDULELib.OnResizeControlEnum.exCalendarFit;
EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.AllowToggleSelectKey =
EXSCHEDULELib.AllowKeysEnum.exLeftClick;
 var_Calendar.AllowSelectDate = EXSCHEDULELib.AllowKeysEnum.exLeftClick;
 var_Calendar.SingleSel = false;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 exschedule1.OnResizeControl(1281/*exResizePanelRight | exHideSplitter |
exCalendarFit*/);
 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.AllowToggleSelectKey(1/*exLeftClick*/);
 com_Calendar.AllowSelectDate(1/*exLeftClick*/);
 com_Calendar.SingleSel(false);
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 OnResizeControl :=
Integer(EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight) Or
Integer(EXSCHEDULELib.OnResizeControlEnum.exHideSplitter) Or
Integer(EXSCHEDULELib.OnResizeControlEnum.exCalendarFit);
 with Calendar do
 begin
 AllowToggleSelectKey := EXSCHEDULELib.AllowKeysEnum.exLeftClick;
 AllowSelectDate := EXSCHEDULELib.AllowKeysEnum.exLeftClick;
 SingleSel := False;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 OnResizeControl := Integer(EXSCHEDULELib_TLB.exResizePanelRight) Or
Integer(EXSCHEDULELib_TLB.exHideSplitter) Or
Integer(EXSCHEDULELib_TLB.exCalendarFit);
 with Calendar do
 begin
 AllowToggleSelectKey := EXSCHEDULELib_TLB.exLeftClick;
 AllowSelectDate := EXSCHEDULELib_TLB.exLeftClick;
 SingleSel := False;
 end;

end

VFP

with thisform.Schedule1
 .OnResizeControl = 1281
 with .Calendar
 .AllowToggleSelectKey = 1
 .AllowSelectDate = 1
 .SingleSel = .F.
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
oSchedule.OnResizeControl = 1281 /*exResizePanelRight | exHideSplitter |
exCalendarFit*/
var_Calendar = oSchedule.Calendar
 var_Calendar.AllowToggleSelectKey = 1
 var_Calendar.AllowSelectDate = 1
 var_Calendar.SingleSel = false

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.OnResizeControl = 1281 'exResizePanelRight + exHideSplitter +
exCalendarFit
var_Calendar = oSchedule.Calendar
 var_Calendar.AllowToggleSelectKey = 1
 var_Calendar.AllowSelectDate = 1
 var_Calendar.SingleSel = .f.

Visual Objects

local var_Calendar as ICalendar

oDCOCX_Exontrol1:OnResizeControl := exResizePanelRight | exHideSplitter |
exCalendarFit
var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:AllowToggleSelectKey := exLeftClick
 var_Calendar:AllowSelectDate := exLeftClick
 var_Calendar:SingleSel := false

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
oSchedule.OnResizeControl = 1281 /*exResizePanelRight | exHideSplitter |
exCalendarFit*/
var_Calendar = oSchedule.Calendar
 var_Calendar.AllowToggleSelectKey = 1
 var_Calendar.AllowSelectDate = 1
 var_Calendar.SingleSel = false

property Calendar.AMPM as String
Specifies the AM and PM indicators.

Type Description

String A String expression that indicates the AM, PM time
indicators to be shown in the control, separated by space.

By default, the AMPM property is "AM PM". Use the LocAMPM property to get the locale
AM/PM indicators as indicated by current regional settings. The <%AM/PM%> HTML tag
indicates the twelve-hour clock with the uppercase letters "AM" or "PM", as appropriate set
by the AMPM property. The <%loc_AM/PM%> HTML tag indicates the time marker such
as AM or PM using the current user regional and language settings (LocAMPM property).
The FirstWeekDay property indicates the first day of the week. The MonthNames property
specifies the list of name of the months. The WeekDays property specifies the name of the
days in the week.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());

 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;

 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin

 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex

var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.Date as Date
Retrieves or sets the date being displayed in the calendar panel.

Type Description

Date A DATE expression that indicates the date (month) being
shown in the calendar panel.

The Date property indicates the date (month) being shown in the calendar panel. The
AllowSelectDate property indicates the keys combination so the user can select new dates
in the calendar panel, and so, new dates to be shown in the schedule view. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view. You can use the
Selection/SelCount/SelDate property to retrieve the selected dates. The DateFromPoint
property indicates the date from the cursor in the calendar panel. The DateTimeFromPoint
property indicates the date/time from the cursor on the schedule panel. The TimeFromPoint
property indicates the time from the cursor on the schedule panel. The
FirstVisibleDate/LastVisibleDate property indicates the first visible date in the calendar
panel.

property Calendar.DateFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Date
Retrieves the date from the cursor, in the calendar panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Date A Date expression that indicates the date from the cursor.

The DateFromPoint property indicates the date from the cursor in the calendar panel. The
DateTimeFromPoint property indicates the date/time from the cursor on the schedule panel.
The TimeFromPoint property indicates the time from the cursor on the schedule panel. You
can use the Selection/SelCount/SelDate property to retrieve the selected dates. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view. The
FirstVisibleDate/LastVisibleDate property indicates the first visible date in the calendar
panel.

The DateFromPoint property retrieves the value based on the X and Y parameters as
follows:

if X = -1 and Y = -1, the DateFromPoint property retrieves the date from the
cursor, shortly the DateFromPoint(-1,-1) returns the date from the cursor

The /NET and /WPF versions provide a DateFromPoint property (with no arguments), that
determines the date from the current mouse position, as the get_DateFromPoint(-1,-1)
returns.

property Calendar.DisableZoneFormat as String
Returns or sets an expression that determines the dates being disabled in the
calendar/schedule panel.

Type Description

String
A String expression that indicates the date to be disabled.
The DisableZoneFormat property supports value,
operators and predefined functions as listed bellow

By default, the DisableZoneFormat property is "", which means it has no effect. The
DisableZoneFormat property may be used to specify the dates to be shown as disabled.
The user can not update or create new events in a disabled zone, while the
AllowUpdateDisableZone property is False (by default). The DisableZoneFormat property
on "1" disables the entire schedule. A disabled zone always shows in gray. The MinDate
property specifies the lower margin that the calendar panel could show. The MaxDate
property specifies the upper margin that the calendar panel could show. The
AllowCreateEvent property indicates the combination of the keys to let user creates new
events. The AllowMoveEvent property indicates the combination of the keys to let user
moves the events. The AllowResizeEvent property indicates the combination of the keys to
let user resizes the events.

Here's a list of few samples:

"1", disables all dates in the schedule view.
"month(value) = 7" disables the dates in July
"weekday(value) in (0,6)" disables the Sunday and Saturday
"value in (#1/8/2001#,#1/9/2001#)" disables the 8 and 9 of January 2001
"not (month(value) = month(value+1))" disables the last day of each month
"(weekday(value) = 5) and not (month(value) = month(value+7))" disables the last
Friday of each month
"value < date(``)" disables all events that happened (the date(``) returns today, so all
days before today)
"value > date(``)" disables all events that will happen (the date(``) returns today, so all
days after today)

The following screen shot shows all dates as disabled (the entire month is selected) :

DisableZoneFormat = "1"

A disable zone, shows as grayed as in the following screen shot (only dates: 23, 24, and
25 are enabled, and the rest are disabled, the entire month is selected):

DisableZoneFormat = "not day(value) in (23,24,25)"

The value keyword indicates the date to be disabled, and the predefined operators and
functions are:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is

of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array

('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If

the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal

16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical

examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Calendar.DisplayWeekNumberAs as WeekNumberAsEnum
Specifies the way the control displays the week number.

Type Description

WeekNumberAsEnum A WeekNumberAsEnum expression that specifies the
ways the control displays the week number for dates.

By default, the DisplayWeekNumberAs property is exISO8601WeekNumber, which
indicates that the week number is displayed according to the ISO8601 standard, which
specifies that the first week of the year is the one that includes the January the 4th. The
ShowWeeks property specifies whether the week number header is shown or hidden. The
FirstWeekDay property specifies the first day of the week where the week begins.

The following screen show shows the calendar while using the DisplayWeekNumberAs
property on exISO8601WeekNumber (default):

The following screen show shows the calendar while using the DisplayWeekNumberAs
property on exSimpleWeekNumber:

property Calendar.Events ([Expression as Variant], [GroupID as Variant])
as Variant
Returns a safe array of dates with events, in a specified group, where the Expression
indicates the formula to determine the dates being verified.

Type Description

Expression as Variant

A String expression that determines the dates being
queried for events. The Expression parameter supports
value, operators and predefined functions as listed bellow.
If "1" is used, all dates within the browsed year is queried
for events.

GroupID as Variant
A long expression that specifies identifier of the group to
be queried. If missing, or -1, all events are searched,
rather than events within specified group.

Variant
A safe array of DATE expressions (VT_ARRAY |
VT_VARIANT) , or a collection of DATEs that contain
events.

The Events property gets a collection of DATEs that contain events. The Events property
can be used to determine the dates with events. The /NET and /WPF versions provide the
get_EventsAs of the List<DateTime> that is an equivalent with the get_Events excepts that
the returned type is a collection of DateTime objects. The DateEvents property returns a
collection of events in the specified date.

Here's a list of few samples:

Events("1"), gets all dates with events in the browsed year
Events("month(value) = 7") gets all dates with events from July
Events("value = int(date(``))") gets a non-zero value if there is any event today
Events("month(value) = month(int(date(``)))") gets the dates within the current month,
that contains any appointments

The following samples gets the dates within the current month, that contains any
appointments:

VB

Dim d As Variant
For Each d In Schedule1.Calendar.Events("month(value) = month(int(date(``)))")
 Debug.Print d
Next

VB/NET

Dim evs As List(Of Date) = Exschedule1.Calendar.get_EventsAs("month(value) =
month(int(date(``)))")
If Not evs Is Nothing Then
 For Each d As DateTime In evs
 Debug.Print(d.ToString())
 Next
End If

C#

List<DateTime> evs = exschedule1.Calendar.get_EventsAs("month(value) =
month(int(date(``)))");
if (evs != null)
 foreach (DateTime d in evs)
 System.Diagnostics.Debug.Print(d.ToString());

VFP

local d, evs as Object
evs = thisform.Schedule1.ExecuteTemplate("Calendar.Events(" + CHR(34) +
"month(value)=month(date(``))" + CHR(34) +")")
For Each d In evs
 WAIT WINDOW TTOC(d)
ENDFOR

C++

_variant_t selection = m_spSchedule->Calendar->Events["month(value) =
month(int(date(``)))"];
if (V_VT(&selection) == (VT_ARRAY | VT_VARIANT))
{
 BYTE* p = NULL;
 long nCount = 0;
 if (SUCCEEDED(SafeArrayGetUBound(V_ARRAY(&selection), 1, &nCount)))
 {
 if (SUCCEEDED(SafeArrayAccessData(V_ARRAY(&selection), (LPVOID*)&p)))
 {

 for (long i = 0; i < nCount + 1; i++, p += sizeof(VARIANT))
 {
 VARIANT* pValue = (VARIANT*)p;
 if (V_VT(pValue) == VT_DATE)
 {
 CString strMessage;
 strMessage.Format(_T("%f\r\n"), V_DATE(pValue));
 OutputDebugString(strMessage);
 }
 }
 SafeArrayUnaccessData(V_ARRAY(&selection));
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

The value keyword indicates the date being queried, and the predefined operators and
functions are:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)

= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if

the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language

Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)

day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Calendar.FirstVisibleDate as Date
Retrieves the first visible date, in the calendar panel.

Type Description

Date A DATE expression that specifies the first visible date in
the calendar panel.

The FirstVisibleDate property indicates the first visible date in the calendar panel. Use the
Date property to browse a new date/month in the calendar panel. The ShowNonMonthDays
property specifies whether the calendar panel displays the dates that are not part of the
month.

property Calendar.FirstWeekDay as WeekDayEnum
Specifies the first day of the week.

Type Description

WeekDayEnum A WeekDayEnum expression that specifies the first day of
the week

By default, the FirstWeekDay property is exSunday. Use the LocFirstWeekDay property to
get the locale first day of the week as indicated by current regional settings. The AMPM
property indicates the AM, PM time indicators to be shown in the control, separated by
space,. The MonthNames property specifies the list of name of the months. The WeekDays
property specifies the name of the days in the week.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;

 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays

 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.FitSelToView as Variant
Specifies the list of additional dates to be shown on the schedule view, when OnSelectDate
property is exFitSelToView.

Type Description

Variant A single date or a safe array of dates to be included in the
schedule chart when selection is changed.

By default, the FitSelToView property is empty. The FitSelToView property has effect only if
the OnSelectDate property is exFitSelToView. The FitSelToView property specifies the list
of additional dates (offset) to be included in the schedule view, when selection is changed.
By default, the OnSelectDate property is exFitSelToView, which indicates that the selected
date in the calendar panel, is enlarged so it fit the schedule view. For instance, your chart
need to display not just the selected date, but to include also one day before and after, so
you need to set the FitSelToView on Array(-1,1). Use the Selection property to select dates
in the calendar panel.

The following VB samples ensures that the schedule-view displays at least 3 days (a day
before selected date, the selected date , and a day after the selected date) when the user
selects a date in the calendar panel:

With Schedule1.Calendar
 .OnSelectDate = exFitSelToView
 .FitSelToView = Array(-1, 1)
End With

In other words, use the FitSelToView property to specify the dates to be included in the
schedule view when user changes the selection in the calendar panel.

property Calendar.FocusDate as Date
Retrieves the date being focused in the calendar panel.

Type Description
Date A DATE expression being focused in the calendar panel.

The FocusDate property indicates the date being focused. The control fires the
LayoutStartChanging(exCalendarFocusDateChange) when the user is about to change the
focusing date, and the LayoutEndChanging(exCalendarFocusDateChange) notifies your
application once a new date is being focused. The Background(exCalendarFocusDate)
changes the visual appearance of the focused date, while the
Background(exCalendarFocusDateForeColor) changes the foreground color of the focused
date. The control may display only a single focused date, but it can display multiple
selection dates. The AllowFocusDate property on exDisallow disables focusing a date that's
not being selected. The AllowSelectDate property indicates the keys combination so the
user can select new dates in the calendar panel, and so, new dates to be shown in the
schedule view. The Date property of the control browses a new month in the calendar
panel. The Select method can be used to select by code the current month, current week,
current week day and the current/focus day.

property Calendar.GroupHighlightEvent as Boolean
Highlights the date in the calendar panel using the CalendarHighlightEvent property of each
Group found on day's events.

Type Description

Boolean
A Boolean expression that specifies whether the dates in
the calendar panel using the Calendar HighlightEvent
property of each Group found on day's events

By default, the GroupHighlightEvent property is False. The GroupHighlightEvent property
specifies if events are highlighted using the HighlightEvent property (False), or using the
CalendarHighlightEvent property of the Group that event belongs to (True). The
ShowHighlightEvent property specifies whether the calendar panel highlights the events in
the calendar panel. The ScheduleHighlightEvent property specifies the visual appearance of
dates with events in the schedule panel. The GroupID property indicates the identifier of the
event's group.

The following screen shot shows the dates with events when GroupHighlightEvent property
is True:

property Calendar.HeaderDayLabel as String
Specifies the HTML date-format to be shown on the calendar's header.

Type Description

String A String expression that specifies the HTML date-format
to be shown on the calendar's header.

By default, the HeaderDayLabel property is "<%mmmm%> <%yyyy%>", which shows the
month and the year in the header of the calendar panel. The
HeaderDayLongLabel/HeaderDayShortLabel properties specifies the HTML date-format to
be displayed on the schedule view (by default, the right side panel). The
Background(exCalendarHeader) specifies the visual appearance of the calendar's header.
The Background(exCalendarHeaderForeColor) specifies the foreground color of the
calendar's header.

The following screen shot shows the calendar's header using the format "<sha>
<%mmmm%></sha> <sha><fgcolor=FF0000><%yyyy%></fgcolor></sha>"

The following screen shot shows the calendar's header (by default):

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text

<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The

about:blank

rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra

FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.

<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional

and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.

<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

property Calendar.HideSel as Boolean
Specifies whether selected date appears selected when a control loses focus.

Type Description

Boolean A Boolean expression that specifies whether the selected
dates shows as selected when the control loses the focus.

By default, the HideSel property is False, which means that the selected dates are still
shown when the control loses the focus. Use the HideSel property to show no selected
dates in the calendar panel, when the component loses the focus. If the HideSel property is
False (by default) , the Background(exCalendarSelBackColorUnFocus) specifies the visual
appearance of the selected dates when the component is not focused. The
Background(exCalendarSelForeColorUnFocus) property indicates the foreground color of
the selected dates when the control loses the focus. The FocusDate property indicates the
DATE in the calendar panel which is focused.

The AllowSelectDate property indicates the keys combination so the user can select new
dates in the calendar panel, and so, new dates to be shown in the schedule view. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view. You can use the
Selection/SelCount/SelDate property to retrieve the selected dates.

property Calendar.HighlightEvent as Highlight
Gives access to the Highlight object, so you can customize highlighting the events, in the
calendar panel.

Type Description
Highlight A Highlight object to customize the dates with events.

By default, the dates with events or appointments appear as bold in the calendar panel. You
can use the HighlightEvent object to highlight the dates with events in the calendar panel.
The ShowHighlightEvent property specifies whether the calendar panel highlights the events
in the calendar panel. The GroupHighlightEvent property specifies if events are highlighted
using the HighlightEvent property (False), or using the CalendarHighlightEvent property of
the Group that event belongs to (True). The ScheduleHighlightEvent property specifies the
visual appearance of dates with events in the schedule panel.

Using the Highlight object a date with events can combine one or more of the following
options:

bold, Bold property renders as bold text
italic, Italic property renders as italic text
underline, Underline property underlines the text
strikeout, StrikeOut property shows the text with a horizontal line through its center
change the font size, FontSize property indicates the size of the font to display the
text
change the font, using the Font property
change the text's foreground color, using the ForeColor property
change the text's background color, using the BackColor property
shows a pattern using the Pattern property

 The following screen shot shows the dates with events using a frame around:

The following screen shot shows the dates with events when GroupHighlightEvent property
is True:

property Calendar.hWnd as Long
Retrieves the calendar's window handle.

Type Description

Long A long expression that indicates the calendar's window
handle.

Use the hWnd property to get the handle of the calendar panel. Use the hWnd property to
get the handle of the control. The Microsoft Windows operating environment identifies each
form and control in an application by assigning it a handle, or hWnd. The hWnd property is
used with Windows API calls. Many Windows operating environment functions require the
hWnd of the active window as an argument. Use the Parent property to host the calendar
panel by another window.

property Calendar.LastVisibleDate as Date
Retrieves the last visible date, in the calendar panel.

Type Description

Date A DATE expression that specifies the last visible date in
the calendar panel.

The LastVisibleDate property indicates the last visible date in the calendar panel. Use the
Date property to browse a new date/month in the calendar panel. The ShowNonMonthDays
property specifies whether the calendar panel displays the dates that are not part of the
month.

property Calendar.LocAMPM as String
Retrieves the time marker such as AM or PM using the current user regional and language
settings.

Type Description

String
A String expression that indicates the time marker such as
AM or PM using the current user regional and language
settings.

The LocAMPM property gets the locale AM/PM indicators as indicated by current regional
settings. The <%AM/PM%> HTML tag indicates the twelve-hour clock with the uppercase
letters "AM" or "PM", as appropriate set by the AMPM property. The <%loc_AM/PM%>
HTML tag indicates the time marker such as AM or PM using the current user regional and
language settings (LocAMPM property). The LocFirstWeekDay property indicates the first
day of the week, using the current user regional and language settings. The
LocMonthNames property specifies the list of name of the months, using the current user
regional and language settings. The LocWeekDays property specifies the name of the days
in the week, using the current user regional and language settings.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays

 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();

EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.LocFirstWeekDay as WeekDayEnum
Indicates the first day of the week, as specified in the regional settings.

Type Description

WeekDayEnum A WeekDayEnum expression that specifies the first day of
the week, as specified in the regional settings.

The LocFirstWeekDay property indicates the first day of the week, using the current user
regional and language settings. The LocMonthNames property specifies the list of name of
the months, using the current user regional and language settings. The LocWeekDays
property specifies the name of the days in the week, using the current user regional and
language settings. The LocAMPM property gets the locale AM/PM indicators as indicated
by current regional settings.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;

 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays

 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.LocMonthNames as String
Retrieves the list of month names, as indicated in the regional settings, separated by
space.

Type Description

String
A String expression that indicates the name of the months
within the year, as indicated in the regional settings,
separated by space.

Use the LocMonthNames property to get the name of the months as indicated by current
regional settings. The <%m1%>, <%m2%>, <%m3%>, <%mmmm%> HTML tags
indicate the name of the month, as appropriate set by the MonthNames property. The
<%loc_m1%>, <%loc_m2%>, <%loc_m3%>, <%loc_mmmm%> HTML tags indicate the
month using the current user regional and language settings (LocMonthNames property).
The LocFirstWeekDay property indicates the first day of the week, as indicated in the
regional settings. The LocAMPM property specifies specifies the AM and PM indicators, as
indicated in the regional settings. The LocWeekDays property specifies the name of the
days in the week, as indicated in the regional settings.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays

 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();

EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.LocWeekDays as String
Retrieves the list of names for each week day, as indicated in the regional settings,
separated by space.

Type Description

String
A String expression that indicates the list of names for
each week day, as indicated in the regional settings,
separated by space.

The LocWeekDays property gets the locale list of names for each week day as indicated
by current regional settings. The <%d1%>, <%d2%>, <%d3%>, <%ddd%> or
<%dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property. The <%loc_d1%>, <%loc_d2%>, <%loc_d3%>, <%loc_ddd%> or
<%loc_dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property, using the current user regional and language settings (LocAMPM property). The
LocFirstWeekDay property indicates the first day of the week, using the current user
regional and language settings. The LocMonthNames property specifies the list of name of
the months, using the current user regional and language settings. The LocAMPM property
specifies the AM/PM time indicators, using the current user regional and language settings.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames

 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-

>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P

Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.LongDateFormat as String
Indicates the long date format.

Type Description

String A String expression that defines the long date format. The
LongDateFormat suports tags as described bellow.

By default, the LongDateFormat property is "<%loc_ldate%>", so the format of the long
date as defined in the regional settings is currently used. The
KnownProperty(exEventDisplayLongMargins) property uses the LongDateFormat property
to display the event's margins in a long date format. For instance, an all-day event (
AllDayEvent property) displays the starting and ending margins of the event in a long date
format. The ShortDateFormat property defines the short date format to be used when label
properties includes the <%=%256%> TAG.

In conclusion, the LongDateFormat property defines the long date format being used to
display the event's margins, when the <%=%257%> is included in the label properties such
as:

DefaultEventLongLabel, defines the HTML labels for events, when it fit entirely in the
event's body.
DefaultEventShortLabel, defines the labels for events (no HTML attribute is applied),
when it does not fit the event's body
CreateEventLabel, defines the label when creating a new event by dragging
UpdateEventsLabel, defines the label of the events being moved or resized at runtime
Event.ShortLabel, defines the event's short label, or the label to be shown when the
LongLabel does not fit entirely the event's body.
Event.LongLabel, defines the event's HTML long label, when it fits the body. If the
LongLabel does not fit entirely the event's body, the ShortLabel is displayed instead.
Event.ExtraLabel, defines the event's extra HTML label. The event's ExtraLabel is
displayed ONLY, if the LongLabel fits the event's body

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)

<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).

<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user

settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

property Calendar.LongTimeFormat as String
Indicates the long time format.

Type Description

String A String expression that defines the long time format. The
LongTimeFormat supports tags as described bellow.

By default, the LongTimeFormat property is "<%hh%>:<%nn%>:<%ss%> <%AM/PM%>",
as 08:15:00 AM. The KnownProperty(exEventDisplayLongMargins) property uses the
LongTimeFormat property to display the event's margins in a long time format. The
LongTimeFormat property is used by label properties if <%=%257%> TAG is included as
explained bellow. The ShortTimeFormat property defines the short time format to be used
when label properties includes the <%=%256%> TAG.

In conclusion, the LongTimeFormat property defines the short time format being used to
display the event's margins, when the <%=%257%> is included in the label properties such
as:

DefaultEventLongLabel, defines the HTML labels for events, when it fit entirely in the
event's body.
DefaultEventShortLabel, defines the labels for events (no HTML attribute is applied),
when it does not fit the event's body
CreateEventLabel, defines the label when creating a new event by dragging
UpdateEventsLabel, defines the label of the events being moved or resized at runtime
Event.ShortLabel, defines the event's short label, or the label to be shown when the
LongLabel does not fit entirely the event's body. The ShortLabel displays no HTML tags
Event.LongLabel, defines the event's HTML long label, when it fits the body. If the
LongLabel does not fit entirely the event's body, the ShortLabel is displayed instead.
Event.ExtraLabel, defines the event's extra HTML label. The event's ExtraLabel is
displayed ONLY, if the LongLabel fits the event's body

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays

property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).

<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.

<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

property Calendar.MaxDate as Date
Retrieves or sets the max date.

Type Description

Date A DATE expression that specifies the upper margin that
the calendar can browse.

By default, the MaxDate is 12/31/9999. You can use the MaxDate property to limit the
dates that the calendar can show. When the calendar has no other dates to show, the left
or right arrows are not shown. The MinDate property indicates the lower margin that the
calendar can show. The Background(exCalendarArrowLeft) and
Background(exCalendarArrowRight) indicates the visual aspect of the left and right arrows
in the calendar panel. The MinDate property of the Event can be used to specify the lower
limit of the event when it is resized or moved. The MaxDate property of the Event can be
used to specify the upper limit of the event when it is resized or moved. The
DisableZoneFormat property may be used to specify the dates to be shown as disabled.

The samples shows how you can limit the schedule view to a single month.

VBA (MS Access, Excell...)

With Schedule1
 .ScrollBars = 0
 .AllowMoveSchedule = 0
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#
 End With
End With

VB6

With Schedule1
 .ScrollBars = exNoScroll
 .AllowMoveSchedule = exDisallow
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#

 End With
End With

VB.NET

With Exschedule1
 .ScrollBars = exontrol.EXSCHEDULELib.ScrollBarsEnum.exNoScroll
 .AllowMoveSchedule = exontrol.EXSCHEDULELib.AllowKeysEnum.exDisallow
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#
 End With
End With

VB.NET for /COM

With AxSchedule1
 .ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exNoScroll
 .AllowMoveSchedule = EXSCHEDULELib.AllowKeysEnum.exDisallow
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-

>GetControlUnknown();
spSchedule1->PutScrollBars(EXSCHEDULELib::exNoScroll);
spSchedule1->PutAllowMoveSchedule(EXSCHEDULELib::exDisallow);
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutSelection("1/10/2001");
 var_Calendar->PutMinDate("1/1/2001");
 var_Calendar->PutMaxDate("1/31/2001");

C++ Builder

Schedule1->ScrollBars = Exschedulelib_tlb::ScrollBarsEnum::exNoScroll;
Schedule1->AllowMoveSchedule = Exschedulelib_tlb::AllowKeysEnum::exDisallow;
Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->set_Selection(TVariant(TDateTime(2001,1,10).operator double()));
 var_Calendar->MinDate = TDateTime(2001,1,1).operator double();
 var_Calendar->MaxDate = TDateTime(2001,1,31).operator double();

C#

exschedule1.ScrollBars = exontrol.EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
exschedule1.AllowMoveSchedule =
exontrol.EXSCHEDULELib.AllowKeysEnum.exDisallow;
exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.Selection =
Convert.ToDateTime("1/10/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MinDate =
Convert.ToDateTime("1/1/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MaxDate =
Convert.ToDateTime("1/31/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.ScrollBars = 0;
 Schedule1.AllowMoveSchedule = 0;
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.Selection = "1/10/2001";
 var_Calendar.MinDate = "1/1/2001";
 var_Calendar.MaxDate = "1/31/2001";
</SCRIPT>

C# for /COM

axSchedule1.ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
axSchedule1.AllowMoveSchedule = EXSCHEDULELib.AllowKeysEnum.exDisallow;
EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.Selection =
Convert.ToDateTime("1/10/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MinDate =
Convert.ToDateTime("1/1/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MaxDate =
Convert.ToDateTime("1/31/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 exschedule1.ScrollBars(0/*exNoScroll*/);
 exschedule1.AllowMoveSchedule(0/*exDisallow*/);
 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;

com_Calendar.Selection(COMVariant::createFromDate(str2Date("1/10/2001",213)));
 com_Calendar.MinDate(str2Date("1/1/2001",213));
 com_Calendar.MaxDate(str2Date("1/31/2001",213));
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 ScrollBars := EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
 AllowMoveSchedule := EXSCHEDULELib.AllowKeysEnum.exDisallow;
 with Calendar do
 begin
 Selection := '1/10/2001';
 MinDate := '1/1/2001';
 MaxDate := '1/31/2001';
 end;
end

Delphi (standard)

with Schedule1 do
begin
 ScrollBars := EXSCHEDULELib_TLB.exNoScroll;
 AllowMoveSchedule := EXSCHEDULELib_TLB.exDisallow;
 with Calendar do
 begin
 Selection := '1/10/2001';
 MinDate := '1/1/2001';
 MaxDate := '1/31/2001';
 end;
end

VFP

with thisform.Schedule1
 .ScrollBars = 0
 .AllowMoveSchedule = 0
 with .Calendar
 .Selection = {^2001-1-10}
 .MinDate = {^2001-1-1}
 .MaxDate = {^2001-1-31}
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
oSchedule.ScrollBars = 0
oSchedule.AllowMoveSchedule = 0
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = "01/10/2001"
 var_Calendar.MinDate = "01/01/2001"
 var_Calendar.MaxDate = "01/31/2001"

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.ScrollBars = 0
oSchedule.AllowMoveSchedule = 0
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = {01/10/2001}
 var_Calendar.MinDate = {01/01/2001}
 var_Calendar.MaxDate = {01/31/2001}

Visual Objects

local var_Calendar as ICalendar

oDCOCX_Exontrol1:ScrollBars := exNoScroll
oDCOCX_Exontrol1:AllowMoveSchedule := exDisallow
var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:Selection := SToD("20010110")
 var_Calendar:MinDate := SToD("20010101")
 var_Calendar:MaxDate := SToD("20010131")

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
oSchedule.ScrollBars = 0
oSchedule.AllowMoveSchedule = 0
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = 2001-01-10
 var_Calendar.MinDate = 2001-01-01
 var_Calendar.MaxDate = 2001-01-31

property Calendar.MaxMonthX as Long
Specifies the maximum number of months horizontally displayed.

Type Description

Long A long expression that specifies the number of months that
the calendar panel may display horizontally.

By default, the MaxMonthX property is 1, which indicates that a single month is being
displayed horizontally. You can use the MinMonthX/MaxMonthX, MinMonthY/MaxMonthY to
specify the months to be displayed on the calendar panel. The OnResizeControl property
on OnResizeControlEnum.exHideSplitter Or OnResizeControlEnum.exChangePanels hides
the calendar panel.

property Calendar.MaxMonthY as Long
Specifies the maximum number of months vertically displayed.

Type Description

Long A long expression that specifies the number of months that
the calendar panel may display vertically.

By default, the MaxMonthX property is 1, which indicates that a single month is being
displayed horizontally. You can use the MinMonthX/MaxMonthX, MinMonthY/MaxMonthY to
specify the months to be displayed on the calendar panel. The OnResizeControl property
on OnResizeControlEnum.exHideSplitter Or OnResizeControlEnum.exChangePanels hides
the calendar panel.

property Calendar.MinDate as Date
Retrieves or sets the min date.

Type Description

Date A DATE expression that specifies the upper margin that
the calendar can browse.

By default, the MinDate is 1/1/100. You can use the MinDate property to limit the dates that
the calendar can show. When the calendar has no other dates to show, the left or right
arrows are not shown. The MaxDate property indicates the upper margin that the calendar
can show. The Background(exCalendarArrowLeft) and Background(exCalendarArrowRight)
indicates the visual aspect of the left and right arrows in the calendar panel. The MinDate
property of the Event can be used to specify the lower limit of the event when it is resized
or moved. The MaxDate property of the Event can be used to specify the upper limit of the
event when it is resized or moved. The DisableZoneFormat property may be used to
specify the dates to be shown as disabled.

The samples shows how you can limit the schedule view to a single month.

VBA (MS Access, Excell...)

With Schedule1
 .ScrollBars = 0
 .AllowMoveSchedule = 0
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#
 End With
End With

VB6

With Schedule1
 .ScrollBars = exNoScroll
 .AllowMoveSchedule = exDisallow
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#

 End With
End With

VB.NET

With Exschedule1
 .ScrollBars = exontrol.EXSCHEDULELib.ScrollBarsEnum.exNoScroll
 .AllowMoveSchedule = exontrol.EXSCHEDULELib.AllowKeysEnum.exDisallow
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#
 End With
End With

VB.NET for /COM

With AxSchedule1
 .ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exNoScroll
 .AllowMoveSchedule = EXSCHEDULELib.AllowKeysEnum.exDisallow
 With .Calendar
 .Selection = #1/10/2001#
 .MinDate = #1/1/2001#
 .MaxDate = #1/31/2001#
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-

>GetControlUnknown();
spSchedule1->PutScrollBars(EXSCHEDULELib::exNoScroll);
spSchedule1->PutAllowMoveSchedule(EXSCHEDULELib::exDisallow);
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutSelection("1/10/2001");
 var_Calendar->PutMinDate("1/1/2001");
 var_Calendar->PutMaxDate("1/31/2001");

C++ Builder

Schedule1->ScrollBars = Exschedulelib_tlb::ScrollBarsEnum::exNoScroll;
Schedule1->AllowMoveSchedule = Exschedulelib_tlb::AllowKeysEnum::exDisallow;
Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->set_Selection(TVariant(TDateTime(2001,1,10).operator double()));
 var_Calendar->MinDate = TDateTime(2001,1,1).operator double();
 var_Calendar->MaxDate = TDateTime(2001,1,31).operator double();

C#

exschedule1.ScrollBars = exontrol.EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
exschedule1.AllowMoveSchedule =
exontrol.EXSCHEDULELib.AllowKeysEnum.exDisallow;
exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.Selection =
Convert.ToDateTime("1/10/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MinDate =
Convert.ToDateTime("1/1/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MaxDate =
Convert.ToDateTime("1/31/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.ScrollBars = 0;
 Schedule1.AllowMoveSchedule = 0;
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.Selection = "1/10/2001";
 var_Calendar.MinDate = "1/1/2001";
 var_Calendar.MaxDate = "1/31/2001";
</SCRIPT>

C# for /COM

axSchedule1.ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
axSchedule1.AllowMoveSchedule = EXSCHEDULELib.AllowKeysEnum.exDisallow;
EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.Selection =
Convert.ToDateTime("1/10/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MinDate =
Convert.ToDateTime("1/1/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Calendar.MaxDate =
Convert.ToDateTime("1/31/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 exschedule1.ScrollBars(0/*exNoScroll*/);
 exschedule1.AllowMoveSchedule(0/*exDisallow*/);
 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;

com_Calendar.Selection(COMVariant::createFromDate(str2Date("1/10/2001",213)));
 com_Calendar.MinDate(str2Date("1/1/2001",213));
 com_Calendar.MaxDate(str2Date("1/31/2001",213));
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 ScrollBars := EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
 AllowMoveSchedule := EXSCHEDULELib.AllowKeysEnum.exDisallow;
 with Calendar do
 begin
 Selection := '1/10/2001';
 MinDate := '1/1/2001';
 MaxDate := '1/31/2001';
 end;
end

Delphi (standard)

with Schedule1 do
begin
 ScrollBars := EXSCHEDULELib_TLB.exNoScroll;
 AllowMoveSchedule := EXSCHEDULELib_TLB.exDisallow;
 with Calendar do
 begin
 Selection := '1/10/2001';
 MinDate := '1/1/2001';
 MaxDate := '1/31/2001';
 end;
end

VFP

with thisform.Schedule1
 .ScrollBars = 0
 .AllowMoveSchedule = 0
 with .Calendar
 .Selection = {^2001-1-10}
 .MinDate = {^2001-1-1}
 .MaxDate = {^2001-1-31}
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
oSchedule.ScrollBars = 0
oSchedule.AllowMoveSchedule = 0
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = "01/10/2001"
 var_Calendar.MinDate = "01/01/2001"
 var_Calendar.MaxDate = "01/31/2001"

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.ScrollBars = 0
oSchedule.AllowMoveSchedule = 0
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = {01/10/2001}
 var_Calendar.MinDate = {01/01/2001}
 var_Calendar.MaxDate = {01/31/2001}

Visual Objects

local var_Calendar as ICalendar

oDCOCX_Exontrol1:ScrollBars := exNoScroll
oDCOCX_Exontrol1:AllowMoveSchedule := exDisallow
var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:Selection := SToD("20010110")
 var_Calendar:MinDate := SToD("20010101")
 var_Calendar:MaxDate := SToD("20010131")

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
oSchedule.ScrollBars = 0
oSchedule.AllowMoveSchedule = 0
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = 2001-01-10
 var_Calendar.MinDate = 2001-01-01
 var_Calendar.MaxDate = 2001-01-31

property Calendar.MinMonthX as Long
Specifies the minimum number of months horizontally displayed.

Type Description

Long A long expression that specifies the number of months that
the calendar panel may display horizontally.

By default, the MaxMonthX property is 1, which indicates that a single month is being
displayed horizontally. You can use the MinMonthX/MaxMonthX, MinMonthY/MaxMonthY to
specify the months to be displayed on the calendar panel. The OnResizeControl property
on OnResizeControlEnum.exHideSplitter Or OnResizeControlEnum.exChangePanels hides
the calendar panel.

property Calendar.MinMonthY as Long
Specifies the minimum number of months vertically displayed.

Type Description

Long A long expression that specifies the number of months that
the calendar panel may display vertically.

By default, the MaxMonthX property is 1, which indicates that a single month is being
displayed horizontally. You can use the MinMonthX/MaxMonthX, MinMonthY/MaxMonthY to
specify the months to be displayed on the calendar panel. The OnResizeControl property
on OnResizeControlEnum.exHideSplitter Or OnResizeControlEnum.exChangePanels hides
the calendar panel.

property Calendar.MonthNames as String
Retrieves or sets a value that indicates the list of month names, separated by space.

Type Description

String A String expression that indicates the name of the months
within the year, separated by space.

By default, the MonthNames property is "January February March April May June July
August September October November December". Use the LocMonthNames property to
get the name of the months as indicated by current regional settings. The <%m1%>,
<%m2%>, <%m3%>, <%mmmm%> HTML tags indicate the name of the month, as
appropriate set by the MonthNames property. The <%loc_m1%>, <%loc_m2%>,
<%loc_m3%>, <%loc_mmmm%> HTML tags indicate the month using the current user
regional and language settings (LocMonthNames property). The FirstWeekDay property
indicates the first day of the week. The AMPM property specifies specifies the AM and PM
indicators. The WeekDays property specifies the name of the days in the week.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With

End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());

 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;

 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

property Calendar.NonworkingDays as Long
Retrieves or sets a value that indicates the non-working days, for each week day a bit.

Type Description

Long A long expression that indicates the non-working days in a
week.

By default, the NonworkingDays property is 65 (Saturday(s) and Sunday(s)). The
NonworkingDaysPattern and the NonworkingDaysColor which defines the pattern and the
color to show the non-working days. The FirstWeekDay property indicates the first day of
the week. The NonworkingTimes collection defines the non-working time for days. The
NonworkingPatterns collection holds the pattern to be shown when a non-working time is
displayed. By default, the nonworking days are not highlighted in the schedule panel. In
order, to highlight the non-working days in the schedule panel, you have to add at least one
element to the NonworkingTimes collection as shown in the samples bellow. If the
NonworkingDaysPattern property is exPatternEmpty or NonworkingDays property is 0 the
non-working days are not highlighted in the calendar panel.

You can select the non-working week days in the following table (In Internet Explorer, you
have to allow running the script on this page).

Saturday Friday Thursday Wednesday Tuesday Monday Sunday
Value 64 32 16 8 4 2 1

Bit

Click the Bit row for non-working week days and the value for property is:
0

The following samples sets the Sundays as being non-working and also shows it on the
schedule panel as in the above screen shot:

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .NonworkingDays = 1
 .Selection = "value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 .FirstWeekDay = 1
 End With
 .NonworkingTimes.Add 1,"00:00","00:00",-1
End With

VB6

With Schedule1
 With .Calendar
 .NonworkingDays = 1
 .Selection = "value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 .FirstWeekDay = exMonday
 End With
 .NonworkingTimes.Add 1,"00:00","00:00",-1
End With

VB.NET

With Exschedule1
 With .Calendar
 .NonworkingDays = 1
 .Selection = "value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 .FirstWeekDay = exontrol.EXSCHEDULELib.WeekDayEnum.exMonday
 End With
 .NonworkingTimes.Add(1,"00:00","00:00",-1)
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .NonworkingDays = 1
 .Selection = "value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"

 .FirstWeekDay = EXSCHEDULELib.WeekDayEnum.exMonday
 End With
 .NonworkingTimes.Add(1,"00:00","00:00",-1)
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutNonworkingDays(1);
 var_Calendar->PutSelection("value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)");
 var_Calendar->PutFirstWeekDay(EXSCHEDULELib::exMonday);
spSchedule1->GetNonworkingTimes()->Add(L"1",L"00:00",L"00:00",-1);

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->NonworkingDays = 1;
 var_Calendar->set_Selection(TVariant("value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"));
 var_Calendar->FirstWeekDay = Exschedulelib_tlb::WeekDayEnum::exMonday;
Schedule1->NonworkingTimes->Add(L"1",L"00:00",L"00:00",-1);

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;

 var_Calendar.NonworkingDays = 1;
 var_Calendar.Selection = "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)";
 var_Calendar.FirstWeekDay = exontrol.EXSCHEDULELib.WeekDayEnum.exMonday;
exschedule1.NonworkingTimes.Add(1.ToString(),"00:00","00:00",-1);

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.NonworkingDays = 1;
 var_Calendar.Selection = "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)";
 var_Calendar.FirstWeekDay = 1;
 Schedule1.NonworkingTimes.Add(1,"00:00","00:00",-1);
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.NonworkingDays = 1;
 var_Calendar.Selection = "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)";
 var_Calendar.FirstWeekDay = EXSCHEDULELib.WeekDayEnum.exMonday;
axSchedule1.NonworkingTimes.Add(1.ToString(),"00:00","00:00",-1);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.NonworkingDays(1);
 com_Calendar.Selection("value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)");
 com_Calendar.FirstWeekDay(1/*exMonday*/);
 exschedule1.NonworkingTimes().Add(1,"00:00","00:00",-1);
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 NonworkingDays := 1;
 Selection := 'value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)';
 FirstWeekDay := EXSCHEDULELib.WeekDayEnum.exMonday;
 end;
 NonworkingTimes.Add(1,'00:00','00:00',-1);
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 NonworkingDays := 1;
 Selection := 'value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)';
 FirstWeekDay := EXSCHEDULELib_TLB.exMonday;
 end;
 NonworkingTimes.Add(1,'00:00','00:00',-1);
end

VFP

with thisform.Schedule1
 with .Calendar
 .NonworkingDays = 1
 .Selection = "value in (#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 .FirstWeekDay = 1
 endwith
 .NonworkingTimes.Add(1,"00:00","00:00",-1)
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.NonworkingDays = 1
 var_Calendar.Selection = "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 var_Calendar.FirstWeekDay = 1
oSchedule.NonworkingTimes.Add(Str(1),"00:00","00:00",-1)

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.NonworkingDays = 1
 var_Calendar.Selection = "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 var_Calendar.FirstWeekDay = 1
oSchedule.NonworkingTimes.Add(1,"00:00","00:00",-1)

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:NonworkingDays := 1
 var_Calendar:Selection := "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 var_Calendar:FirstWeekDay := exMonday
oDCOCX_Exontrol1:NonworkingTimes:Add(AsString(1),"00:00","00:00",-1)

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.NonworkingDays = 1
 var_Calendar.Selection = "value in
(#6/14/2012#,#6/15/2012#,#6/16/2012#,#6/17/2012#)"
 var_Calendar.FirstWeekDay = 1
oSchedule.NonworkingTimes.Add(String(1),"00:00","00:00",-1)

property Calendar.NonworkingDaysColor as Color
Retrieves or sets a value that indicates the color to fill the non-working days.

Type Description

Color A Color expression that indicates the color to show the
non-working days in the calendar panel.

 The NonworkingDaysColor property specifies the color being used to fill the non-working
days. Use he NonworkingDaysPattern property to specify the brush to fill the nonworking
days area. Use the NonworkingDays property to specify the nonworking days. Use the
NonworkingDaysPattern property to specify the pattern to fill non-working days. If the
NonworkingDaysPattern property is exPatternEmpty or NonworkingDays property is 0 the
non-working days are not highlighted. If the NonworkingDaysPattern property includes the
exPatternFrame, the NonworkingDaysFrameColor property indicates the color to show the
frame around nonworking days.

property Calendar.NonworkingDaysFrameColor as Color
Retrieves or sets a value that indicates the color to show the non-working frame.

Type Description

Color A Color expression that specifies the color to show the
frame on non-working dates on the calendar panel.

If the NonworkingDaysPattern property includes the exPatternFrame, the
NonworkingDaysFrameColor property indicates the color to show the frame around
nonworking days. The NonworkingDaysFrameColor property has no effect if the
NonworkingDaysPattern property includes NO exPatternFrame flag. Use the
NonworkingDays property to specify the nonworking days. Use the NonworkingDaysPattern
property to specify the pattern to fill non-working days. If the NonworkingDaysPattern
property is exPatternEmpty or NonworkingDays property is 0 the non-working days are not
highlighted. The NonworkingDaysColor property specifies the color being used to fill the
non-working days.

property Calendar.NonworkingDaysPattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill non-working days.

Type Description

PatternEnum A PatternEnum expression that indicates the pattern to fill
non working days.

By default, the NonworkingDaysPattern property is exPatternBDiagonal. Use the
NonworkingDaysPattern property to specify the brush to fill the nonworking days area. Use
the NonworkingDays property to specify the nonworking days. Use the
NonworkingDaysPattern property to specify the pattern to fill non-working days. If the
NonworkingDaysPattern property is exPatternEmpty or NonworkingDays property is 0 the
non-working days are not highlighted. The NonworkingDaysColor property specifies the
color being used to fill the non-working days. If the NonworkingDaysPattern property
includes the exPatternFrame, the NonworkingDaysFrameColor property indicates the color
to show the frame around nonworking days.

property Calendar.OnSelectDate as OnSelectDateEnum
Specifies the action that the control does once the user selects new dates in the calendar
panel.

Type Description

OnSelectDateEnum
An OnSelectDateEnum expression that specifies the
operation to perform when user selects a date in the
calendar panel.

By default, the OnSelectDate property is exFitSelToView, which indicates that the selected
date in the calendar panel, is enlarged so it fit the schedule view. Use the OnSelectDate
property to prevent changing the selected date in the schedule view, when user clicks or
selects a new date in the calendar panel. The OnSelectDate property supports the
following values:

exFitSelToView (default), that indicates that the selected dates fits the schedule view.
In this case the schedule view may be magnified or shrink and move to a new position.
The FitSelToView property specifies the list of additional dates to be included in the
schedule view, when selection is changed.
exNoViewChange, indicates that no action is taken when user clicks or selects a date
in the calendar panel
exEnsureVisibleDate, ensures that the selected date fit the schedule view, without
zooming the schedule view. This option does not zoom the schedule view. The
EnsureVisible method ensures that giving date fits the schedule's view.

The DayViewWidth property specifies the width, in pixels, of the date in the schedule panel.
The DayViewOffsetX property indicates the horizontal scroll position of the schedule's view.
The DayViewHeight property specifies the height, in pixels, of the date in the schedule
panel. The DayViewOffsetY property indicates the vertical scroll position of the schedule's
view.

property Calendar.Parent as Long
Specifies the handle of the window that hosts the calendar panel.

Type Description

Long A long expression that specifies the handle of the window
that hosts the calendar panel.

By default, the Parent property is 0, which indicates that the calendar is hosted by the
scheduler itself. Use the Parent property to move the calendar panel outside of the
scheduler. The Parent property retrieves the handle of the window that hosts the calendar
panel. If the Parent property is non-zero, the calendar panel fits the window's host client
area. You can call or set the Parent property multiple time, and if necessary the calendar
panel is resized to fit the new window space. In other words, if you resize the window that
hosts the calendar, you can call set again the Parent property, and so the calendar panel is
resized so it fits the host's client area. By default, the calendar panel of the component can
be placed to the left or right of the component. For instance, the calendar panel can not be
placed on the top or bottom side of the component, so in this case you can use the Parent
property to place the calendar panel anywhere on your form/dialog.

If setting the Parent property to a

zero value, the calendar is re-attached to the scheduler, so it becomes internal. In this
case the OnResizeControl property specifies the position of the calendar panel, the
auto-hide option, and so on.
non-zero handle, it indicates the handle of the window that will display or host the
calendar panel. In this case, the calendar panel becomes external. The
OnResizeControl property has no effect, when the calendar panel is external. The
value being passed to the Parent property usually comes from a hWnd property.

Here's how you can place the scheduler and the calendar to different places:

Insert two eXSchedule components to the same form, with names: Schedule1 and
Schedule2
Handle the Load event of the form/dialog and call the following code:

Private Sub Form_Load()
 Schedule1.Calendar.Parent = Schedule2.hWnd
End Sub

This way the second scheduler component acts as a host for the calendar panel of the first
schedule component. Any action on the schedule or calendar will be reflected on both.
When a window hosts the calendar panel, it fits the entire client area. In case you re-size

the window that hosts the calendar panel, you can re-assign the Calendar.Parent property,
so the calendar panel updates its size so it fits the new client area of the host.

property Calendar.SelCount as Long
Indicates the number of dates being selected in the calendar panel.

Type Description

Long A long expression that specifies the number of selected
dates in the calendar panel.

The SelCount property counts the dates being selected in the calendar panel. The SingleSel
property indicates whether the user can select one or multiple dates. If the SingleSel
property is True, the SelCount property always returns 1. The SelDate property can be
used to get the selected date giving its index in the selection dates collection. The
AllowSelectDate property indicates the keys combination so the user can select new dates
in the calendar panel, and so, new dates to be shown in the schedule view. Once the user
starts selecting a new date in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs.

You can use the SelCount/SelDate or Selection to enumerate the selected dates. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view.

The following VB sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If Operation = exCalendarSelectionChange Then
 Dim i As Long
 With Schedule1.Calendar
 For i = 0 To .SelCount() - 1
 Debug.Print "Select: " & .SelDate(i)
 Next
 End With
 End If
End Sub

The following VB/NET sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles

Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 Dim i As Long = 0
 With Exschedule1.Calendar
 For i = 0 To .SelCount - 1
 Debug.Print("Select: " & .get_SelDate(i))
 Next
 End With
 End If
End Sub

The following C# sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 {
 for (int i = 0; i < exschedule1.Calendar.SelCount; i++)
 System.Diagnostics.Debug.Print("Select: " +
exschedule1.Calendar.get_SelDate(i).ToString());
 }
}

The following VFP sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

*** ActiveX Control Event ***
LPARAMETERS operation
* 1 ' exCalendarSelectionChange
 If Operation = 1 Then
 for i = 0 to thisform.Schedule1.Calendar.SelCount() - 1
 wait window TToC(thisform.Schedule1.Calendar.SelDate(i))
 next
 EndIf

The following C++ sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

void LayoutEndChangingSchedule1(long Operation)
{
 if (Operation == EXSCHEDULELib::exCalendarSelectionChange)
 {
 for (int i = 0; i < m_spSchedule->Calendar->SelCount; i++)
 {
 CString sMessage;
 sMessage.Format(_T("Select: %f\r\n"), m_spSchedule->Calendar->SelDate[i]);
 OutputDebugString(sMessage);
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

property Calendar.SelDate (Index as Long) as Date
Gets the date being selected giving its index in the selection.

Type Description

Index as Long A Long expression that specifies the index of the selected
date to be retrieved.

Date A DATE expression that specifies the selected date, or
ZERO, if index is not correct.

The SelDate property can be used to get the selected date giving its index in the selection
dates collection. The SelCount property counts the dates being selected in the calendar
panel. The SingleSel property indicates whether the user can select one or multiple dates. If
the SingleSel property is True, the SelCount property always returns 1. IN this case, you
can always use the SelDate(0) to get the selected date. The AllowSelectDate property
indicates the keys combination so the user can select new dates in the calendar panel, and
so, new dates to be shown in the schedule view. Once the user starts selecting a new date
in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs. The Select method can be
used to select by code the current month, current week, current week day and the
current/focus day.

You can use the SelCount/SelDate or Selection to enumerate the selected dates. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view.

The following VB sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If Operation = exCalendarSelectionChange Then
 Dim i As Long
 With Schedule1.Calendar
 For i = 0 To .SelCount() - 1
 Debug.Print "Select: " & .SelDate(i)
 Next
 End With
 End If
End Sub

The following VB/NET sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 Dim i As Long = 0
 With Exschedule1.Calendar
 For i = 0 To .SelCount - 1
 Debug.Print("Select: " & .get_SelDate(i))
 Next
 End With
 End If
End Sub

The following C# sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 {
 for (int i = 0; i < exschedule1.Calendar.SelCount; i++)
 System.Diagnostics.Debug.Print("Select: " +
exschedule1.Calendar.get_SelDate(i).ToString());
 }
}

The following VFP sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

*** ActiveX Control Event ***
LPARAMETERS operation
* 1 ' exCalendarSelectionChange
 If Operation = 1 Then

 for i = 0 to thisform.Schedule1.Calendar.SelCount() - 1
 wait window TToC(thisform.Schedule1.Calendar.SelDate(i))
 next
 EndIf

The following C++ sample shows how you can enumerate the selected dates using the
SelCount and SelDate properties once the selection is changed:

void LayoutEndChangingSchedule1(long Operation)
{
 if (Operation == EXSCHEDULELib::exCalendarSelectionChange)
 {
 for (int i = 0; i < m_spSchedule->Calendar->SelCount; i++)
 {
 CString sMessage;
 sMessage.Format(_T("Select: %f\r\n"), m_spSchedule->Calendar->SelDate[i]);
 OutputDebugString(sMessage);
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

method Calendar.Select (newVal as SelectCalendarDateEnum)
Select the current (focus) day, week, month, year or week day in the calendar panel.

Type Description
newVal as
SelectCalendarDateEnum

A SelectCalendarDate expression that specifies the
selection should be made.

The Select method can be used to select by code/programmatically the current year,
month, week, week day and the current/focus day. The FocusDate property indicates the
current or the focused day. The Select method does not change the FocusDate property.
The user can change the focused date using the mouse or the keyboard. Also, the
Selection or the SelectDate changes programatically the selection/focused date by code.
The LayoutEndChanging(exCalendarSelectionChange) event occurs once the Select method
is invoked.

property Calendar.SelectDate(Date as Date) as Boolean
Selects or unselects a date in the calendar panel.

Type Description
Date as Date A DATE expression to be selected or unselected

Boolean A Boolean expression that specifies whether the date is
selected (True) or unselected (False)

The SelectDate property can be used to programmatically select or unselect the giving
date. An alternative to SelectDate is using the Selection that can uses an expression to
indicate the dates to be selected. The Selection = "0" unselects all dates in the calendar
panel. The Select method can be used to select by code the current month, current week,
current week day and the current/focus day.

The SelCount property counts the dates being selected in the calendar panel. The SingleSel
property indicates whether the user can select one or multiple dates. If the SingleSel
property is True, the SelCount property always returns 1. The SelDate property can be
used to get the selected date giving its index in the selection dates collection. The
AllowSelectDate property indicates the keys combination so the user can select new dates
in the calendar panel, and so, new dates to be shown in the schedule view. Once the user
starts selecting a new date in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs. The DateFromPoint
property indicates the date in the calendar panel from the cursor.

The following samples shows how programmatically you can select a single date:

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .Selection = "0"
 .SelectDate(#1/1/2012#) = True
 End With
End With

VB6

With Schedule1
 With .Calendar
 .Selection = "0"

 .SelectDate(#1/1/2012#) = True
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .Selection = "0"
 .set_SelectDate(#1/1/2012#,True)
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .Selection = "0"
 .SelectDate(#1/1/2012#) = True
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutSelection("0");
 var_Calendar->PutSelectDate("1/1/2012",VARIANT_TRUE);

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->set_Selection(TVariant("0"));
 var_Calendar->set_SelectDate(TDateTime(2012,1,1).operator double(),true);

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.Selection = "0";

var_Calendar.set_SelectDate(Convert.ToDateTime("1/1/2012",System.Globalization.CultureInfo.GetCultureInfo(
US")),true);

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.Selection = "0";
 var_Calendar.SelectDate("1/1/2012") = true;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.Selection = "0";

var_Calendar.set_SelectDate(Convert.ToDateTime("1/1/2012",System.Globalization.CultureInfo.GetCultureInfo(
US")),true);

X++ (Dynamics Ax 2009)

public void init()

{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.Selection("0");
 com_Calendar.SelectDate(str2Date("1/1/2012",213),true);
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 Selection := '0';
 SelectDate['1/1/2012'] := True;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 Selection := '0';
 SelectDate['1/1/2012'] := True;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar

 .Selection = "0"
 .SelectDate({^2012-1-1}) = .T.
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = "0"
 // var_Calendar.SelectDate("01/01/2012") = true
 with (oSchedule)
 TemplateDef = [Dim var_Calendar]
 TemplateDef = var_Calendar
 Template = [var_Calendar.SelectDate("01/01/2012") = true]
 endwith

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = "0"
 ' var_Calendar.SelectDate({01/01/2012}) = .t.
 oSchedule.TemplateDef = "Dim var_Calendar"
 oSchedule.TemplateDef = var_Calendar
 oSchedule.Template = "var_Calendar.SelectDate(#01/01/2012#) = True"

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:Selection := "0"
 var_Calendar:[SelectDate,SToD("20120101")] := true

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.Selection = "0"
 var_Calendar.SelectDate(2012-01-01,true)

property Calendar.Selection as Variant
Returns or sets a safe array of selected dates in the calendar panel.

Type Description

Variant

A safe array of dates to be selected, or a string
expression that indicates the date to be selected. When
passing a string the Selection property supports value,
operators and predefined functions as listed bellow

The Selection property of the Calendar object can be used to set or get the current
selection (dates) in the control's calendar panel. The Selection property of control can be
used to set or get the current selection (events) in the control's schedule panel.

The SingleSel property indicates whether the user can select one or multiple dates. As an
alternative, you can use the SelCount/SelDate property to retrieve the collection of selected
dates in the calendar panel. The AllowSelectDate property indicates the keys combination
so the user can select new dates in the calendar panel, and so, new dates to be shown in
the schedule view. Once the user starts selecting a new date in the calendar panel, the
control fires the LayoutStartChanging(exCalendarSelectionChange). Once a new date is
selected, the LayoutEndChanging(exCalendarSelectionChange) event occurs. The
DateFromPoint property indicates the date in the calendar panel from the cursor. The /NET
and /WPF configurations provides the SelDates property equivalent of Selection, instead
the SelDates returns a collection od DateTime objects (public virtual List<DateTime>
SelDates). The ClipToSel property indicates whether the control clips the schedule panel to
view the selected dates only.

The following sample shows how you can enumerate the selected dates, in the
calendar panel, once the LayoutEndChanging(exCalendarSelectionChange) event
occurs.
The following sample shows how you can use an expression to select dates in the
calendar panel.
The Selection = "(int((yearday(value) -1- ((7-weekday(value - yearday(value) + 1)) mod
7))/7) = int((yearday(date(``))-1)/7))" selects the current week.

The Selection property gets the selection as:

a DATE expression, if the SingleSel property is True
a safe or array of DATEs (collection), if the SingleSel property is True (VT_ARRAY |
VT_VARIANT).

The Selection property sets the selection based on the SingleSel property as follows:

if the SingleSel property is True, the Value being passes could be a VARIANT

expression that indicates the date to be selected. In other words, the value could be a
DATE expression, as string expression that will be converted to a DATE, and so on.
Example: Selection = #1/1/2001#, which specifies that a single date is being selected
if the SingleSel property is False, the Value could be

a DATE expression, that indicates the newly selected date. Example: Selection =
#1/1/2001#, which specifies that a single date is being selected
a safe array of DATE expressions, that indicates the newly selected dates.
Example: Selection = Array(#1/1/2001#,#1/2/2001#,#1/3/2001#), which
specifies that a collection of dates is being selected
a string expression that specifies the date to be selected. Example: Selection = "
(int((yearday(value) -1- ((7-weekday(value - yearday(value) + 1)) mod 7))/7) =
int((yearday(date(``))-1)/7))", which indicates an expression that determines the
dates to be selected. In this particular sample, it selects the current week, so 7
days are being selected.

When using the string format (as Selection = "month(value) = 5"), the value keyword
indicates the date being queried for selection, and the expression supports the following
predefined operators and functions.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)

>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not

greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)

weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The following sample shows how you can enumerate the selected dates, in the calendar
panel, once the LayoutEndChanging(exCalendarSelectionChange) event occurs.

VB

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If Operation = exCalendarSelectionChange Then
 Dim d As Variant
 For Each d In Schedule1.Calendar.Selection
 Debug.Print "Select: " & d
 Next
 End If
End Sub

VB/NET

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 For Each d As DateTime In Exschedule1.Calendar.SelDates
 Debug.Print(d.ToString())
 Next
 End If
End Sub

or:

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =

exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 For Each d As DateTime In Exschedule1.Calendar.Selection
 Debug.Print(d.ToString())
 Next
 End If
End Sub

C#

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 {
 foreach (DateTime d in exschedule1.Calendar.SelDates)
 System.Diagnostics.Debug.Print(d.ToString());
 }
}

or:

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 {
 foreach (DateTime d in exschedule1.Calendar.Selection as Array)
 System.Diagnostics.Debug.Print(d.ToString());
 }
}

VFP

*** ActiveX Control Event ***
LPARAMETERS operation
* 1 ' exCalendarSelectionChange

 If Operation = 1 Then
 for i = 0 to thisform.Schedule1.Calendar.SelCount() - 1
 wait window TToC(thisform.Schedule1.Calendar.SelDate(i))
 next
 EndIf

C++

void LayoutEndChangingSchedule1(long Operation)
{
 if (Operation == EXSCHEDULELib::exCalendarSelectionChange)
 {
 _variant_t selection = m_spSchedule->Calendar->Selection;
 if (V_VT(&selection) == (VT_ARRAY | VT_VARIANT))
 {
 BYTE* p = NULL;
 long nCount = 0;
 if (SUCCEEDED(SafeArrayGetUBound(V_ARRAY(&selection), 1, &nCount)))
 {
 if (SUCCEEDED(SafeArrayAccessData(V_ARRAY(&selection), (LPVOID*)&p)))
 {
 for (long i = 0; i < nCount + 1; i++, p += sizeof(VARIANT))
 {
 VARIANT* pValue = (VARIANT*)p;
 if (V_VT(pValue) == VT_DATE)
 {
 CString strMessage;
 strMessage.Format(_T("Select: %f\r\n"), V_DATE(pValue));
 OutputDebugString(strMessage);
 }
 }
 SafeArrayUnaccessData(V_ARRAY(&selection));
 }
 }
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

The following sample selects the last three days (today, yesterday, and a day before):

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .NonworkingDays = 0
 .ShowNonMonthDays = False
 .FirstWeekDay = 0
 .Selection = "(int(date(``)) - value) in (1,2,0)"
 End With
 .BorderSelStyle = -1
 .Background(81) = RGB(240,240,240)
End With

VB6

With Schedule1
 With .Calendar
 .NonworkingDays = 0
 .ShowNonMonthDays = False
 .FirstWeekDay = exSunday
 .Selection = "(int(date(``)) - value) in (1,2,0)"
 End With
 .BorderSelStyle = exNoLines
 .Background(exScheduleMarkTodayBackColor) = RGB(240,240,240)
End With

VB.NET

With Exschedule1
 With .Calendar
 .NonworkingDays = 0
 .ShowNonMonthDays = False
 .FirstWeekDay = exontrol.EXSCHEDULELib.WeekDayEnum.exSunday
 .Selection = "(int(date(``)) - value) in (1,2,0)"
 End With

 .BorderSelStyle = exontrol.EXSCHEDULELib.LinesStyleEnum.exNoLines

.set_Background(exontrol.EXSCHEDULELib.BackgroundPartEnum.exScheduleMarkTodayBackColor,

End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .NonworkingDays = 0
 .ShowNonMonthDays = False
 .FirstWeekDay = EXSCHEDULELib.WeekDayEnum.exSunday
 .Selection = "(int(date(``)) - value) in (1,2,0)"
 End With
 .BorderSelStyle = EXSCHEDULELib.LinesStyleEnum.exNoLines

.set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleMarkTodayBackColor,15790320)

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutNonworkingDays(0);
 var_Calendar->PutShowNonMonthDays(VARIANT_FALSE);
 var_Calendar->PutFirstWeekDay(EXSCHEDULELib::exSunday);
 var_Calendar->PutSelection("(int(date(``)) - value) in (1,2,0)");

spSchedule1->PutBorderSelStyle(EXSCHEDULELib::exNoLines);
spSchedule1-
>PutBackground(EXSCHEDULELib::exScheduleMarkTodayBackColor,RGB(240,240,240));

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->NonworkingDays = 0;
 var_Calendar->ShowNonMonthDays = false;
 var_Calendar->FirstWeekDay = Exschedulelib_tlb::WeekDayEnum::exSunday;
 var_Calendar->set_Selection(TVariant("(int(date(``)) - value) in (1,2,0)"));
Schedule1->BorderSelStyle = Exschedulelib_tlb::LinesStyleEnum::exNoLines;
Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exScheduleMarkTodayBackColor]
 = RGB(240,240,240);

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.NonworkingDays = 0;
 var_Calendar.ShowNonMonthDays = false;
 var_Calendar.FirstWeekDay = exontrol.EXSCHEDULELib.WeekDayEnum.exSunday;
 var_Calendar.Selection = "(int(date(``)) - value) in (1,2,0)";
exschedule1.BorderSelStyle = exontrol.EXSCHEDULELib.LinesStyleEnum.exNoLines;
exschedule1.set_Background(exontrol.EXSCHEDULELib.BackgroundPartEnum.exScheduleMarkTodayBackColor,

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;

 var_Calendar.NonworkingDays = 0;
 var_Calendar.ShowNonMonthDays = false;
 var_Calendar.FirstWeekDay = 0;
 var_Calendar.Selection = "(int(date(``)) - value) in (1,2,0)";
 Schedule1.BorderSelStyle = -1;
 Schedule1.Background(81) = 15790320;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.NonworkingDays = 0;
 var_Calendar.ShowNonMonthDays = false;
 var_Calendar.FirstWeekDay = EXSCHEDULELib.WeekDayEnum.exSunday;
 var_Calendar.Selection = "(int(date(``)) - value) in (1,2,0)";
axSchedule1.BorderSelStyle = EXSCHEDULELib.LinesStyleEnum.exNoLines;
axSchedule1.set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleMarkTodayBackColor,
(uint)ColorTranslator.ToWin32(Color.FromArgb(240,240,240)));

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.NonworkingDays(0);
 com_Calendar.ShowNonMonthDays(false);
 com_Calendar.FirstWeekDay(0/*exSunday*/);
 com_Calendar.Selection("(int(date(``)) - value) in (1,2,0)");
 exschedule1.BorderSelStyle(-1/*exNoLines*/);

exschedule1.Background(81/*exScheduleMarkTodayBackColor*/,WinApi::RGB2int(240,240,240));

}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 NonworkingDays := 0;
 ShowNonMonthDays := False;
 FirstWeekDay := EXSCHEDULELib.WeekDayEnum.exSunday;
 Selection := '(int(date(``)) - value) in (1,2,0)';
 end;
 BorderSelStyle := EXSCHEDULELib.LinesStyleEnum.exNoLines;

set_Background(EXSCHEDULELib.BackgroundPartEnum.exScheduleMarkTodayBackColor,$f0f0f0);

end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 NonworkingDays := 0;
 ShowNonMonthDays := False;
 FirstWeekDay := EXSCHEDULELib_TLB.exSunday;
 Selection := '(int(date(``)) - value) in (1,2,0)';
 end;
 BorderSelStyle := EXSCHEDULELib_TLB.exNoLines;
 Background[EXSCHEDULELib_TLB.exScheduleMarkTodayBackColor] := $f0f0f0;
end

VFP

with thisform.Schedule1

 with .Calendar
 .NonworkingDays = 0
 .ShowNonMonthDays = .F.
 .FirstWeekDay = 0
 .Selection = "(int(date(``)) - value) in (1,2,0)"
 endwith
 .BorderSelStyle = -1
 .Object.Background(81) = RGB(240,240,240)
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.NonworkingDays = 0
 var_Calendar.ShowNonMonthDays = false
 var_Calendar.FirstWeekDay = 0
 var_Calendar.Selection = "(int(date(``)) - value) in (1,2,0)"
oSchedule.BorderSelStyle = -1
oSchedule.Template = [Background(81) = 0xf0f0f0] // oSchedule.Background(81)
= 0xf0f0f0

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.NonworkingDays = 0
 var_Calendar.ShowNonMonthDays = .f.
 var_Calendar.FirstWeekDay = 0
 var_Calendar.Selection = "(int(date(``)) - value) in (1,2,0)"
oSchedule.BorderSelStyle = -1
oSchedule.Template = "Background(81) = 15790320" ' oSchedule.Background(81)

= 15790320

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:NonworkingDays := 0
 var_Calendar:ShowNonMonthDays := false
 var_Calendar:FirstWeekDay := exSunday
 var_Calendar:Selection := "(int(date(``)) - value) in (1,2,0)"
oDCOCX_Exontrol1:BorderSelStyle := exNoLines
oDCOCX_Exontrol1:[Background,exScheduleMarkTodayBackColor] :=
RGB(240,240,240)

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.NonworkingDays = 0
 var_Calendar.ShowNonMonthDays = false
 var_Calendar.FirstWeekDay = 0
 var_Calendar.Selection = "(int(date(``)) - value) in (1,2,0)"
oSchedule.BorderSelStyle = -1
oSchedule.Background(81,RGB(240,240,240))

property Calendar.ShortDateFormat as String
Indicates the short date format.

Type Description

String A String expression that defines the short date format. The
ShortDateFormat suports tags as described bellow.

By default, the ShortDateFormat property is "<%loc_sdate%>", so the format of the long
date as defined in the regional settings is currently used. The
KnownProperty(exEventDisplayShortMargins) property uses the ShortDateFormat property
to display the event's margins in a short date format. For instance, an all-day event (
AllDayEvent property) can display the starting and ending margins of the event in a short
date format. The LongDateFormat property defines the long date format to be used when
label properties includes the <%=%257%> TAG.

In conclusion, the ShortDateFormat property defines the long date format being used to
display the event's margins, when the <%=%256%> is included in the label properties such
as:

DefaultEventLongLabel, defines the HTML labels for events, when it fit entirely in the
event's body.
DefaultEventShortLabel, defines the labels for events (no HTML attribute is applied),
when it does not fit the event's body
CreateEventLabel, defines the label when creating a new event by dragging
UpdateEventsLabel, defines the label of the events being moved or resized at runtime
Event.ShortLabel, defines the event's short label, or the label to be shown when the
LongLabel does not fit entirely the event's body.
Event.LongLabel, defines the event's HTML long label, when it fits the body. If the
LongLabel does not fit entirely the event's body, the ShortLabel is displayed instead.
Event.ExtraLabel, defines the event's extra HTML label. The event's ExtraLabel is
displayed ONLY, if the LongLabel fits the event's body

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)

<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).

<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user

settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

property Calendar.ShortTimeFormat as String
Indicates the short time format.

Type Description

String A String expression that defines the short time format. The
ShortTimeFormat supports tags as described bellow.

By default, the ShortTimeFormat property is "<%h%>:<%nn%> <%AM/PM%>", as 8:15
AM. The KnownProperty(exEventDisplayShortMargins) property uses the ShortTimeFormat
property to display the event's margins in a short time format. The ShortTimeFormat
property is used by label properties if <%=%256%> TAG is included as explained bellow.
The LongTimeFormat property defines the long time format to be used when label
properties includes the <%=%257%> TAG. The MajorTimeLabel property defines the
format of the time to be displayed on the control's time scale.

The following screen shot shows the short time format using the AM/PM time indicators (by
default, "<%h%>:<%nn%> <%AM/PM%>"):

The following screen shot shows the short time format using no AM/PM time indicators ("
<%h%>:<%nn%>"):

In conclusion, the ShortTimeFormat property defines the short time format being used to
display the event's margins, when the <%=%256%> is included in the label properties such
as:

DefaultEventLongLabel, defines the HTML labels for events, when it fit entirely in the
event's body.
DefaultEventShortLabel, defines the labels for events (no HTML attribute is applied),
when it does not fit the event's body
CreateEventLabel, defines the label when creating a new event by dragging
UpdateEventsLabel, defines the label of the events being moved or resized at runtime
Event.ShortLabel, defines the event's short label, or the label to be shown when the
LongLabel does not fit entirely the event's body. The ShortLabel displays no HTML tags
Event.LongLabel, defines the event's HTML long label, when it fits the body. If the
LongLabel does not fit entirely the event's body, the ShortLabel is displayed instead.
Event.ExtraLabel, defines the event's extra HTML label. The event's ExtraLabel is
displayed ONLY, if the LongLabel fits the event's body

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)

<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).

<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user

settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

property Calendar.ShowGridLines as LinesStyleEnum
Shows or hides the grid lines in the calendar panel.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the grid lines
to be shown in the calendar panel.

By default, the ShowGridLines property is exLinesDot. Use the ShowGridLines property to
hide the calendar's grid lines. The Background(exCalendarGridLineColor) property specifies
the color to show the calendar's grid lines.

property Calendar.ShowHighlightEvent as Boolean
Returns or sets a value that indicates whether the calendar panel highlights days that
contain events.

Type Description

Boolean A Boolean expression that specifies whether the calendar
panel highlights the dates with events or appointments

By default, the ShowHighlightEvent property is true, which indicates that the dates with
events or appointments appear as bold in the calendar panel. You can use the
ShowHighlightEvent property to prevent highlighting the the dates with events or
appointments. You can use the HighlightEvent object to highlight the dates with events or
appointments in the calendar panel. The GroupHighlightEvent property specifies if events
are highlighted using the HighlightEvent property (False), or using the
CalendarHighlightEvent property of the Group that event belongs to (True). The
ScheduleHighlightEvent property specifies the visual appearance of dates with events in the
schedule panel.

Using the Highlight object a date with events can combine one or more of the following
options:

bold, Bold property renders as bold text
italic, Italic property renders as italic text
underline, Underline property underlines the text
strikeout, StrikeOut property shows the text with a horizontal line through its center
change the font size, FontSize property indicates the size of the font to display the
text
change the font, using the Font property
change the text's foreground color, using the ForeColor property
change the text's background color, using the BackColor property
shows a pattern using the Pattern property

property Calendar.ShowNonMonthDays as Boolean
Specifies whether the calendar panel displays the dates that are not part of the month.

Type Description

Boolean
A boolean expression that specifies whether dates that
belongs to another months are displayed on the calendar
panel.

By default, the ShowNonMonthDays property is True. You can use the ShowNonMonthDays
property to hide dates that are not belonging to the browsing month.

The following screen shot shows May 2012, while 29, 30 are from April, and 1 - 9 from
June, non month days, (ShowNonMonthDays is True, by default):

The following screen shot shows only May 2012, (ShowNonMonthDays is False):

property Calendar.ShowTodayButton as Boolean
Retrieves or sets a value that indicates whether the today button is visible or hidden, in the
calendar panel.

Type Description

Boolean A Boolean expression that specifies whether the Today
button is visible or hidden, in the calendar panel.

By default, the ShowTodayButton property is True. Use the ShowTodayButton property to
hide the Today button. The TodayCaption property indicates the caption to be displayed on
the Today's button. The ShowYearScroll property indicates whether the calendar panel
displays an horizontal scroll bar to allow the user to change the calendar's year. The
Background(exCalendarTodayForeColor) property indicates the Today's button foreground
color.

Background(exCalendarTodayUp) and Background(exCalendarTodayDown) properties
indicate the visual appearance of the Today's button.
Background(exCalendarMarkToday) and
Background(exCalendarMarkTodayForeColor) properties indicates the background
and foreground colors of the today date, in the calendar panel.
Background(exScheduleMarkTodayBackColor) and
Background(exScheduleMarkTodayForeColor) properties indicates the background and
foreground colors of the today date, in the schedule panel.

property Calendar.ShowWeeks as Boolean
Retrieves or sets a value that indicates whether the weeks header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the weeks
header is visible or hidden.

Use the ShowWeeks property to show the weeks header. The weeks header displays the
week number into the year. If the SingleSel is False, by clicking into the weeks header, the
entire week is selected. The DisplayWeekNumberAs property specifies the way the control
displays the week number. Use the ShowNonMonthDays property to specify whether the
dates that are not part of the month are visible or hidden.

In [ISO8601], the week number is defined by:

weeks start on a monday
week 1 of a given year is the one that includes the first Thursday of that year. (or,
equivalently, week 1 is the week that includes 4 January.)

property Calendar.ShowYearScroll as Boolean
Retrieves or sets a value that indicates whether the scroll bar (in the calendar panel) to
change the year is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the
calendar's scroll is visible or hidden.

By default, the ShowYearScroll property is False. The Background(exCalendarScrollRange)
and Background(exCalendarScrollThumb) properties define the visual appearance of the
scroll range and the thumb on the scroll. Use the ShowTodayButton property to hide the
Today button. The TodayCaption property indicates the caption to be displayed on the
Today's button.

property Calendar.SingleSel as Boolean
Returns or sets a value that indicates whether the user can select one or more dates in the
calendar panel.

Type Description

Boolean A Boolean expression that specifies whether the control
supports single or multiple selection.

By default, the SingleSel property is False, which means that the user can select multiple
dates. The SelCount property counts the dates being selected in the calendar panel. The
AllowSelectDate property indicates the keys combination so the user can select new dates
in the calendar panel, and so, new dates to be shown in the schedule view. The
AllowSelectDateRect specifies the keys combination so the user can do a rectangular
selection in the calendar panel. Use the Selection/SelectDate property to change
programmatically the dates being selected in the calendar, including the dates to be shown
in the schedule view. You can use the Selection/SelCount/SelDate property to retrieve the
selected dates. Once the user starts selecting a new date in the calendar panel, the
control fires the LayoutStartChanging(exCalendarSelectionChange). Once a new date is
selected, the LayoutEndChanging(exCalendarSelectionChange) event occurs. The
DateFromPoint property indicates the date in the calendar panel from the cursor. The /NET
and /WPF configurations provides the SelDates property equivalent of Selection, instead
the SelDates returns a collection od DateTime objects (public virtual List<DateTime>
SelDates). The ClipToSel property indicates whether the control clips the schedule panel to
view the selected dates only.

The following samples show how you can enumerate the selected dates, in the calendar
panel, once the LayoutEndChanging(exCalendarSelectionChange) event occurs.

VB

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If Operation = exCalendarSelectionChange Then
 Dim d As Variant
 For Each d In Schedule1.Calendar.Selection
 Debug.Print "Select: " & d
 Next
 End If
End Sub

VB/NET

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 For Each d As DateTime In Exschedule1.Calendar.SelDates
 Debug.Print(d.ToString())
 Next
 End If
End Sub

or:

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 For Each d As DateTime In Exschedule1.Calendar.Selection
 Debug.Print(d.ToString())
 Next
 End If
End Sub

C#

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 {
 foreach (DateTime d in exschedule1.Calendar.SelDates)
 System.Diagnostics.Debug.Print(d.ToString());
 }
}

or:

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 {
 foreach (DateTime d in exschedule1.Calendar.Selection as Array)
 System.Diagnostics.Debug.Print(d.ToString());
 }
}

VFP

*** ActiveX Control Event ***
LPARAMETERS operation
* 1 ' exCalendarSelectionChange
 If Operation = 1 Then
 for i = 0 to thisform.Schedule1.Calendar.SelCount() - 1
 wait window TToC(thisform.Schedule1.Calendar.SelDate(i))
 next
 EndIf

C++

void LayoutEndChangingSchedule1(long Operation)
{
 if (Operation == EXSCHEDULELib::exCalendarSelectionChange)
 {
 _variant_t selection = m_spSchedule->Calendar->Selection;
 if (V_VT(&selection) == (VT_ARRAY | VT_VARIANT))
 {
 BYTE* p = NULL;
 long nCount = 0;
 if (SUCCEEDED(SafeArrayGetUBound(V_ARRAY(&selection), 1, &nCount)))
 {
 if (SUCCEEDED(SafeArrayAccessData(V_ARRAY(&selection), (LPVOID*)&p)))
 {
 for (long i = 0; i < nCount + 1; i++, p += sizeof(VARIANT))

 {
 VARIANT* pValue = (VARIANT*)p;
 if (V_VT(pValue) == VT_DATE)
 {
 CString strMessage;
 strMessage.Format(_T("Select: %f\r\n"), V_DATE(pValue));
 OutputDebugString(strMessage);
 }
 }
 SafeArrayUnaccessData(V_ARRAY(&selection));
 }
 }
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

property Calendar.TodayCaption as String
Retrieves or sets a value that indicates the today button's caption, in the calendar panel.

Type Description

String A String expression that specifies the caption to be
displayed on the Today's button

By default, the TodayCaption property is "Today". The TodayCaption property indicates the
caption to be displayed on the Today's button. Use the ShowTodayButton property to hide
the Today button. The ShowYearScroll property indicates whether the calendar panel
displays an horizontal scroll bar to allow the user to change the calendar's year. The
Background(exCalendarTodayForeColor) property indicates the Today's button foreground
color. The Background(exCalendarTodayUp) and Background(exCalendarTodayDown)
properties indicate the visual appearance of the Today's button.

property Calendar.WeekDays as String
Retrieves or sets a value that indicates the list of names for each week day, separated by
space.

Type Description

String A String expression that indicates list of names for each
week day, separated by space.

By default, the WeekDays property is "Sunday Monday Tuesday Wednesday Thursday
Friday Saturday". Use the LocWeekDays property to get the locale list of week days as
indicated by current regional settings. The <%d1%>, <%d2%>, <%d3%>, <%ddd%> or
<%dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property. The <%loc_d1%>, <%loc_d2%>, <%loc_d3%>, <%loc_ddd%> or
<%loc_dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property, using the current user regional and language settings (LocAMPM property). The
FirstWeekDay property indicates the first day of the week. The MonthNames property
specifies the list of name of the months. The AMPM property specifies the AM and PM
indicators.

The following samples set the current view to display the locate date/time as set in the
current regional settings.

VBA (MS Access, Excell...)

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB6

With Schedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays

 .AMPM = .LocAMPM
 End With
End With

VB.NET

With Exschedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

VB.NET for /COM

With AxSchedule1
 With .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();

EXSCHEDULELib::ICalendarPtr var_Calendar = spSchedule1->GetCalendar();
 var_Calendar->PutFirstWeekDay(var_Calendar->GetLocFirstWeekDay());
 var_Calendar->PutMonthNames(var_Calendar->GetLocMonthNames());
 var_Calendar->PutWeekDays(var_Calendar->GetLocWeekDays());
 var_Calendar->PutAMPM(var_Calendar->GetLocAMPM());

C++ Builder

Exschedulelib_tlb::ICalendarPtr var_Calendar = Schedule1->Calendar;
 var_Calendar->FirstWeekDay = var_Calendar->LocFirstWeekDay;
 var_Calendar->MonthNames = var_Calendar->LocMonthNames;
 var_Calendar->WeekDays = var_Calendar->LocWeekDays;
 var_Calendar->AMPM = var_Calendar->LocAMPM;

C#

exontrol.EXSCHEDULELib.Calendar var_Calendar = exschedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Calendar = Schedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;
</SCRIPT>

C# for /COM

EXSCHEDULELib.Calendar var_Calendar = axSchedule1.Calendar;
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay;
 var_Calendar.MonthNames = var_Calendar.LocMonthNames;
 var_Calendar.WeekDays = var_Calendar.LocWeekDays;
 var_Calendar.AMPM = var_Calendar.LocAMPM;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Calendar;
 anytype var_Calendar;
 ;

 super();

 var_Calendar = exschedule1.Calendar(); com_Calendar = var_Calendar;
 com_Calendar.FirstWeekDay(com_Calendar.LocFirstWeekDay());
 com_Calendar.MonthNames(com_Calendar.LocMonthNames());
 com_Calendar.WeekDays(com_Calendar.LocWeekDays());
 com_Calendar.AMPM(com_Calendar.LocAMPM());
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 with Calendar do
 begin
 FirstWeekDay := LocFirstWeekDay;
 MonthNames := LocMonthNames;
 WeekDays := LocWeekDays;
 AMPM := LocAMPM;
 end;
end

VFP

with thisform.Schedule1
 with .Calendar
 .FirstWeekDay = .LocFirstWeekDay
 .MonthNames = .LocMonthNames
 .WeekDays = .LocWeekDays
 .AMPM = .LocAMPM
 endwith
endwith

dBASE Plus

local oSchedule,var_Calendar

oSchedule = form.Activex1.nativeObject
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Calendar as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Visual Objects

local var_Calendar as ICalendar

var_Calendar := oDCOCX_Exontrol1:Calendar
 var_Calendar:FirstWeekDay := var_Calendar:LocFirstWeekDay
 var_Calendar:MonthNames := var_Calendar:LocMonthNames
 var_Calendar:WeekDays := var_Calendar:LocWeekDays
 var_Calendar:AMPM := var_Calendar:LocAMPM

PowerBuilder

OleObject oSchedule,var_Calendar

oSchedule = ole_1.Object
var_Calendar = oSchedule.Calendar
 var_Calendar.FirstWeekDay = var_Calendar.LocFirstWeekDay
 var_Calendar.MonthNames = var_Calendar.LocMonthNames
 var_Calendar.WeekDays = var_Calendar.LocWeekDays
 var_Calendar.AMPM = var_Calendar.LocAMPM

Event object
The Event object indicates an appointment in the schedule panel. The Add method adds
programmatically a new event to the schedule. The ShowEvents property specifies the type
of events the control display. The ShowEventLabels property indicates whether the events
display ShortLabel, LongLabel / ExtraLabel properties of the event. The ShowEventPictures
property shows or hides the event's pictures.

The Event object supports the following properties and method.

Name Description
AllDayEvent Indicates whether the event is an all day event.

BodyBackColor Specifies the background color or the visual appearance
of the event (body).

BodyBackgroundExt
Indicates additional colors, text, images that can be
displayed on the event's background using the EBN string
format.

BodyBackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

BodyForeColor Specifies the foreground color of the event (body).
BodyPattern Specifies the pattern of the event (body).
Caption Indicates the caption to be displayed on the event's label.

ClearShowStatus
Clears the status flag, so the ShowStatusEvent property
indicates whether the current event shows or hides its
status.

ClearStatusColor Clears the status color flag, so the StatusEventColor
property indicates the color to show the event's status.

Client Returns the client area of the event.
Editable Specifies whether the event's caption is editable.
End Specifies the ending date/time of the event.

EndUpdateEvent Adds programmatically updated properties of the
calendar-event to undo/redo queue.

EnsureVisible Scrolls the control to ensure that the current calendar-
event fits the control's visible area.

ExtraLabel Specifies the extra label to be displayed on the event.
ExtraLabelAlign Indicates the alignment of the event's extra label.

Specifies the list of extra pictures to be displayed on the

ExtraPictures event.

ExtraPicturesAlign Indicates the alignment of the event's extra picture.

GroupID Specifies the identifier of the group where the Event object
belongs.

Handle Gets handle of the Event object.

KnownProperty Specifies the value for the Event's property giving its
identifier.

LabelAlign Indicates the alignment of the event's long label.
LongLabel Specifies the long label to be displayed on the event.
MaxDate Indicates the max date for the event.
MinDate Indicates the min date for the event.
Movable Specifies whether the user can move the event.
MoveBy Moves the event by specified time.
Pictures Specifies the list of pictures to be displayed on the event.
PicturesAlign Indicates the alignment of the event's picture.

Repetitive Returns or sets the expression to determine the repetitive
event.

Resizable Specifies whether the user can resizes the event at
runtime.

Selectable Specifies whether the user can selects the event.
Selected Selects or unselects the current event.
ShortLabel Specifies the short label to be displayed on the event.

ShowStatus Specifies whether the current event shows or hides its
status.

Start Specifies the starting date/time of the event.

StartUpdateEvent
Starts changing properties of the calendar-event, so
EndUpdateEvent method adds programmatically updated
properties to undo/redo queue.

StatusColor Specifies the color of the event's status.
StatusPattern Specifies the pattern of the event (status)

ToolTip Indicates the tooltip to be shown when the cursor hovers
the event.

ToolTipTitle Indicates the title of the tooltip to be shown when the

cursor hovers the event.
UserData Indicates any extra data associated with the Event object.

property Event.AllDayEvent as Boolean
Indicates whether the event is an all day event.

Type Description

Boolean A boolean expression that indicates whether the event is
an all-day event.

The AllDayEvent property indicates whether the time section of the event's margins are
ignored. The Start/End properties indicates the event's margins. The Start and End
properties may be identical, if the AllDayEvent property is True. The
AllowCreateAllDayEvent property indicates whether the user can create all-day events at
runtime. The user can create automatically All-Day events only, when the control displays no
time scale (the schedule could be zoomed using AllowResizeSchedule, so no time scale is
shown). Use the ShowAllDayHeader property to show the schedule's All-Day header so all
All-Day evens are shown on this header. The AllowAllDayEventScroll property gets or sets
a value that specifies whether the all-day event header supports scrolling. The
AllowSelectCreateEvent property specifies whether the newly created event gets selected
or highlighted.

The KnownProperty(exEventAllDay) property indicates the AllDayEvent property on a label
property such as: DefaultEventLongLabel, DefaultEventShortLabel, CreateEventLabel,
UpdateEventsLabel, ShortLabel, LongLabel and ExtraLabel. You can use the
KnownProperty(exEventStartDate) property to extract the starting date of the event. You
can use the KnownProperty(exEventEndDate) property to extract the ending date of the
event.

property Event.BodyBackColor as Color
Specifies the background color or the visual appearance of the event (body).

Type Description

Color

A Color expression that specifies the background color to
show the event's body. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

By default, the BodyBackColor property is 0. The BodyBackColor property has effect only,
if it is not-zero. The BodyBackColor property specifies the background color of the event's
body. The BodyEventBackColor property specifies the background color to show the body
for all events. The EventBackColor property specifies the event's background color if it
belongs to a group. The BodyForeColor property specifies the foreground color to show the
labels on the event. The BodyPattern property gives access to the pattern to be shown on
the event's body. The StatusColor property indicates the color show the event's status. Use
the BodyBackgroundExt property to apply multiple colors, texts, icons, images, patterns or
frames to the event's background.

property Event.BodyBackgroundExt as String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BodyBackgroundExt property is empty. Using the BodyBackgroundExt
property you have unlimited options to show any HTML text, images, colors, EBNs,
patterns, frames anywhere on the object's background. For instance, let's say you need to
display more colors on the object's background, or just want to display an additional
caption or image to a specified location on the object's background. The EBN String
Format defines the parts of the EBN to be applied on the object's background. The EBN is
a set of UI elements that are built as a tree where each element is anchored to its parent
element. Use the BodyBackgroundExtValue property to change at runtime any UI property
for any part that composes the EBN String Format. The BodyBackgroundExt property is
applied right after setting the object's backcolor, and before drawing the default object's
captions, icons or pictures.

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BodyBackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="

https://exontrol.com/exbutton.jsp

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BodyBackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BodyBackgroundExt property such as "left[10%]
(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Event.BodyBackgroundExtValue(Index as IndexExtEnum,
Property as BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BodyBackgroundExtValue property to change at runtime any UI property for any
part that composes the EBN String Format. The BodyBackgroundExtValue property has no
effect if the BodyBackgroundExt property is empty (by default). The idea is as follows:
first you need to decide the layout of the UI to put on the object's background, using the

BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BodyBackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant

expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BodyBackgroundExtValue(1,2) on "25%",
where 1 indicates the first element after root, and 2 indicates the exClientExt property, we
get:

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"

.BodyBackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Event.BodyForeColor as Color
Specifies the foreground color of the event (body).

Type Description

Color A Color expression that specifies the event's foreground
color.

By default, the BodyForeColor property is 0. The BodyForeColor property specifies the
foreground color to show the labels on the event. The BodyBackColor property specifies
the background color of the event's body. The BodyEventForeColor property specifies the
foreground color to show the body for all events. The EventForeColor property specifies the
event's foreground color if it belongs to a group. The BodyPattern property gives access to
the pattern to be shown on the event's body. The StatusColor property indicates the color
show the event's status.

property Event.BodyPattern as Pattern
Specifies the pattern of the event (body).

Type Description
Pattern A Pattern object associated with the event's body.

By default, the BodyPattern.Type property exPatternEmpty which indicates that no pattern
is shown, on the event's body. The Color property indicates the color to display the pattern.
The FrameColor property indicates the color to show the frame, if the exPatternFrame flag
is included in the Type property. The EventPattern property indicates the pattern to be
shown when events belongs to different groups. The StatusPattern property specifies the
pattern to be shown on the event's status.

property Event.Caption as String
Indicates the caption to be displayed on the event's label.

Type Description

String
A String expression that indicates the event's caption. The
string expression in the Caption property does not support
HTML tags. It is a plain text.

The Caption of the event/appointment is displayed only if the <%=%5%> tag is included in
the any of the following label properties: ShortLabel, LongLabel, ExtraLabel or ToolTip. In
case you need HTML tags to be displayed on the event's body, you should use the
LongLabel and ExtraLabel properties of the Event object.

By default, the ShortLabel is displayed only when the event's client area is small. If enough
space the LongLabel and ExtraLabel may be displayed separately. The ShortLabel can not
display HTML tags, instead the ExtraLabel and LongLabel can. In conclusion, you can
define arbitrary labels for any event, you can have an automated label to be displayed for
each event with different results based on the KnowProperty values.

There are two samples on how you can use the Caption property like

combined with the Label properties
just the caption.

The following samples shows how to use the Caption property of the Event.

VBA (MS Access, Excell...)

With Schedule1
 .DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 With .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#)
 .LongLabel = ""
 .ExtraLabel = "<%=%5%>"
 .Caption = "caption 2"
 End With
 With .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#)

 .LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 .Caption = "caption 3"
 End With
 End With
End With

VB6

With Schedule1
 .DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 With .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#)
 .LongLabel = ""
 .ExtraLabel = "<%=%5%>"
 .Caption = "caption 2"
 End With
 With .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#)
 .LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 .Caption = "caption 3"
 End With
 End With
End With

VB.NET

With Exschedule1
 .DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"

 With .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#)
 .LongLabel = ""
 .ExtraLabel = "<%=%5%>"
 .Caption = "caption 2"
 End With
 With .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#)
 .LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 .Caption = "caption 3"
 End With
 End With
End With

VB.NET for /COM

With AxSchedule1
 .DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 With .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#)
 .LongLabel = ""
 .ExtraLabel = "<%=%5%>"
 .Caption = "caption 2"
 End With
 With .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#)
 .LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 .Caption = "caption 3"
 End With
 End With
End With

C++

/*

 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->PutDefaultEventLongLabel(L"<%=%256%>
<%=%5%>");
spSchedule1->PutDefaultEventShortLabel(spSchedule1-
>GetDefaultEventLongLabel());
spSchedule1->GetCalendar()->PutSelection("6/20/2012");
EXSCHEDULELib::IEventsPtr var_Events = spSchedule1->GetEvents();
 var_Events->Add("6/20/2012 9:00:00 AM","6/20/2012 11:00:00 AM")-
>PutCaption(L"caption 1");
 EXSCHEDULELib::IEventPtr var_Event = var_Events->Add("6/20/2012 11:00:00
AM","6/20/2012 1:00:00 PM");
 var_Event->PutLongLabel(L"");
 var_Event->PutExtraLabel(L"<%=%5%>");
 var_Event->PutCaption(L"caption 2");
 EXSCHEDULELib::IEventPtr var_Event1 = var_Events->Add("6/20/2012 1:00:00
PM","6/20/2012 3:00:00 PM");
 var_Event1->PutLongLabel(L"<%=%256%>
<%=%5%>

<fgcolor=808080>another text");
 var_Event1->PutCaption(L"caption 3");

C++ Builder

Schedule1->DefaultEventLongLabel = L"<%=%256%>
<%=%5%>";
Schedule1->DefaultEventShortLabel = Schedule1->DefaultEventLongLabel;
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2012,6,20).operator
double()));
Exschedulelib_tlb::IEventsPtr var_Events = Schedule1->Events;
 var_Events->Add(TVariant(TDateTime(2012,6,20,9,00,00,0).operator
double()),TVariant(TDateTime(2012,6,20,11,00,00,0).operator double()))->Caption =

L"caption 1";
 Exschedulelib_tlb::IEventPtr var_Event = var_Events-
>Add(TVariant(TDateTime(2012,6,20,11,00,00,0).operator
double()),TVariant(TDateTime(2012,6,20,13,00,00,0).operator double()));
 var_Event->LongLabel = L"";
 var_Event->ExtraLabel = L"<%=%5%>";
 var_Event->Caption = L"caption 2";
 Exschedulelib_tlb::IEventPtr var_Event1 = var_Events-
>Add(TVariant(TDateTime(2012,6,20,13,00,00,0).operator
double()),TVariant(TDateTime(2012,6,20,15,00,00,0).operator double()));
 var_Event1->LongLabel = L"<%=%256%>
<%=%5%>

<fgcolor=808080>another text";
 var_Event1->Caption = L"caption 3";

C#

exschedule1.DefaultEventLongLabel = "<%=%256%>
<%=%5%>";
exschedule1.DefaultEventShortLabel = exschedule1.DefaultEventLongLabel;
exschedule1.Calendar.Selection =
Convert.ToDateTime("6/20/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exontrol.EXSCHEDULELib.Events var_Events = exschedule1.Events;
 var_Events.Add(Convert.ToDateTime("6/20/2012 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
1";
 exontrol.EXSCHEDULELib.Event var_Event =
var_Events.Add(Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event.LongLabel = "";
 var_Event.ExtraLabel = "<%=%5%>";
 var_Event.Caption = "caption 2";
 exontrol.EXSCHEDULELib.Event var_Event1 =

var_Events.Add(Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 3:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event1.LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text";
 var_Event1.Caption = "caption 3";

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.DefaultEventLongLabel = "<%=%256%>
<%=%5%>";
 Schedule1.DefaultEventShortLabel = Schedule1.DefaultEventLongLabel;
 Schedule1.Calendar.Selection = "6/20/2012";
 var var_Events = Schedule1.Events;
 var_Events.Add("6/20/2012 9:00:00 AM","6/20/2012 11:00:00 AM").Caption =
"caption 1";
 var var_Event = var_Events.Add("6/20/2012 11:00:00 AM","6/20/2012 1:00:00
PM");
 var_Event.LongLabel = "";
 var_Event.ExtraLabel = "<%=%5%>";
 var_Event.Caption = "caption 2";
 var var_Event1 = var_Events.Add("6/20/2012 1:00:00 PM","6/20/2012 3:00:00
PM");
 var_Event1.LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text";
 var_Event1.Caption = "caption 3";
</SCRIPT>

C# for /COM

axSchedule1.DefaultEventLongLabel = "<%=%256%>
<%=%5%>";
axSchedule1.DefaultEventShortLabel = axSchedule1.DefaultEventLongLabel;
axSchedule1.Calendar.Selection =

Convert.ToDateTime("6/20/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
EXSCHEDULELib.Events var_Events = axSchedule1.Events;
 var_Events.Add(Convert.ToDateTime("6/20/2012 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
1";
 EXSCHEDULELib.Event var_Event =
var_Events.Add(Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event.LongLabel = "";
 var_Event.ExtraLabel = "<%=%5%>";
 var_Event.Caption = "caption 2";
 EXSCHEDULELib.Event var_Event1 =
var_Events.Add(Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 3:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event1.LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text";
 var_Event1.Caption = "caption 3";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Event,com_Event1,com_Events;
 anytype var_Event,var_Event1,var_Events;
 ;

 super();

 exschedule1.DefaultEventLongLabel("<%=%256%>
<%=%5%>");

 exschedule1.DefaultEventShortLabel(exschedule1.DefaultEventLongLabel());

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("6/20/2012",213)));

 var_Events = exschedule1.Events(); com_Events = var_Events;
 var_Event =
COM::createFromObject(com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime(
 9:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
11:00:00",213)))); com_Event = var_Event;
 com_Event.Caption("caption 1");
 var_Event =
com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
11:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
13:00:00",213))); com_Event = var_Event;
 com_Event.LongLabel("");
 com_Event.ExtraLabel("<%=%5%>");
 com_Event.Caption("caption 2");
 var_Event1 =
com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
13:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
15:00:00",213))); com_Event1 = var_Event1;
 com_Event1.LongLabel("<%=%256%>
<%=%5%>

<fgcolor=808080>another text");
 com_Event1.Caption("caption 3");
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 DefaultEventLongLabel := '<%=%256%>
<%=%5%>';
 DefaultEventShortLabel := DefaultEventLongLabel;
 Calendar.Selection := '6/20/2012';
 with Events do
 begin
 Add('6/20/2012 9:00:00 AM','6/20/2012 11:00:00 AM').Caption := 'caption 1';
 with Add('6/20/2012 11:00:00 AM','6/20/2012 1:00:00 PM') do

 begin
 LongLabel := '';
 ExtraLabel := '<%=%5%>';
 Caption := 'caption 2';
 end;
 with Add('6/20/2012 1:00:00 PM','6/20/2012 3:00:00 PM') do
 begin
 LongLabel := '<%=%256%>
<%=%5%>

<fgcolor=808080>another text';
 Caption := 'caption 3';
 end;
 end;
end

Delphi (standard)

with Schedule1 do
begin
 DefaultEventLongLabel := '<%=%256%>
<%=%5%>';
 DefaultEventShortLabel := DefaultEventLongLabel;
 Calendar.Selection := '6/20/2012';
 with Events do
 begin
 Add('6/20/2012 9:00:00 AM','6/20/2012 11:00:00 AM').Caption := 'caption 1';
 with Add('6/20/2012 11:00:00 AM','6/20/2012 1:00:00 PM') do
 begin
 LongLabel := '';
 ExtraLabel := '<%=%5%>';
 Caption := 'caption 2';
 end;
 with Add('6/20/2012 1:00:00 PM','6/20/2012 3:00:00 PM') do
 begin
 LongLabel := '<%=%256%>
<%=%5%>

<fgcolor=808080>another text';
 Caption := 'caption 3';
 end;
 end;

end

VFP

with thisform.Schedule1
 .DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = {^2012-6-20}
 with .Events
 .Add({^2012-6-20 9:00:00},{^2012-6-20 11:00:00}).Caption = "caption 1"
 with .Add({^2012-6-20 11:00:00},{^2012-6-20 13:00:00})
 .LongLabel = ""
 .ExtraLabel = "<%=%5%>"
 .Caption = "caption 2"
 endwith
 with .Add({^2012-6-20 13:00:00},{^2012-6-20 15:00:00})
 .LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 .Caption = "caption 3"
 endwith
 endwith
endwith

dBASE Plus

local oSchedule,var_Event,var_Event1,var_Event2,var_Events

oSchedule = form.Activex1.nativeObject
oSchedule.DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
oSchedule.DefaultEventShortLabel = oSchedule.DefaultEventLongLabel
oSchedule.Calendar.Selection = "06/20/2012"
var_Events = oSchedule.Events
 // var_Events.Add("06/20/2012 09:00:00","06/20/2012 11:00:00").Caption
= "caption 1"
 var_Event = var_Events.Add("06/20/2012 09:00:00","06/20/2012 11:00:00")
 with (oSchedule)
 TemplateDef = [Dim var_Event]
 TemplateDef = var_Event

 Template = [var_Event.Caption = "caption 1"]
 endwith
 var_Event1 = var_Events.Add("06/20/2012 11:00:00","06/20/2012 13:00:00")
 var_Event1.LongLabel = ""
 var_Event1.ExtraLabel = "<%=%5%>"
 var_Event1.Caption = "caption 2"
 var_Event2 = var_Events.Add("06/20/2012 13:00:00","06/20/2012 15:00:00")
 var_Event2.LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 var_Event2.Caption = "caption 3"

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Event as P
Dim var_Event1 as P
Dim var_Event2 as P
Dim var_Events as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
oSchedule.DefaultEventShortLabel = oSchedule.DefaultEventLongLabel
oSchedule.Calendar.Selection = {06/20/2012}
var_Events = oSchedule.Events
 ' var_Events.Add({06/20/2012 09:00:00},{06/20/2012 11:00:00}).Caption =
"caption 1"
 var_Event = var_Events.Add({06/20/2012 09:00:00},{06/20/2012 11:00:00})
 oSchedule.TemplateDef = "Dim var_Event"
 oSchedule.TemplateDef = var_Event
 oSchedule.Template = "var_Event.Caption = \"caption 1\""

 var_Event1 = var_Events.Add({06/20/2012 11:00:00},{06/20/2012 13:00:00})
 var_Event1.LongLabel = ""
 var_Event1.ExtraLabel = "<%=%5%>"
 var_Event1.Caption = "caption 2"
 var_Event2 = var_Events.Add({06/20/2012 13:00:00},{06/20/2012 15:00:00})

 var_Event2.LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 var_Event2.Caption = "caption 3"

Visual Objects

local var_Event,var_Event1 as IEvent
local var_Events as IEvents

oDCOCX_Exontrol1:DefaultEventLongLabel := "<%=%256%>

<%=%5%>"
oDCOCX_Exontrol1:DefaultEventShortLabel :=
oDCOCX_Exontrol1:DefaultEventLongLabel
oDCOCX_Exontrol1:Calendar:Selection := SToD("20120620")
var_Events := oDCOCX_Exontrol1:Events
 var_Events:Add(SToD("20120620 09:00:00"),SToD("20120620 11:00:00")):Caption
:= "caption 1"
 var_Event := var_Events:Add(SToD("20120620 11:00:00"),SToD("20120620
13:00:00"))
 var_Event:LongLabel := ""
 var_Event:ExtraLabel := "<%=%5%>"
 var_Event:Caption := "caption 2"
 var_Event1 := var_Events:Add(SToD("20120620 13:00:00"),SToD("20120620
15:00:00"))
 var_Event1:LongLabel := "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 var_Event1:Caption := "caption 3"

PowerBuilder

OleObject oSchedule,var_Event,var_Event1,var_Events

oSchedule = ole_1.Object
oSchedule.DefaultEventLongLabel = "<%=%256%>
<%=%5%>"
oSchedule.DefaultEventShortLabel = oSchedule.DefaultEventLongLabel
oSchedule.Calendar.Selection = 2012-06-20

var_Events = oSchedule.Events
 var_Events.Add(DateTime(2012-06-20,09:00:00),DateTime(2012-06-
20,11:00:00)).Caption = "caption 1"
 var_Event = var_Events.Add(DateTime(2012-06-20,11:00:00),DateTime(2012-06-
20,13:00:00))
 var_Event.LongLabel = ""
 var_Event.ExtraLabel = "<%=%5%>"
 var_Event.Caption = "caption 2"
 var_Event1 = var_Events.Add(DateTime(2012-06-20,13:00:00),DateTime(2012-06-
20,15:00:00))
 var_Event1.LongLabel = "<%=%256%>
<%=%5%>

<fgcolor=808080>another text"
 var_Event1.Caption = "caption 3"

The following sample uses and display just the Caption of the event.

VBA (MS Access, Excell...)

With Schedule1
 .DefaultEventLongLabel = "<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#).Caption = "caption
2"
 .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#).Caption = "caption 3"
 End With
End With

VB6

With Schedule1
 .DefaultEventLongLabel = "<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#

 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#).Caption = "caption
2"
 .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#).Caption = "caption 3"
 End With
End With

VB.NET

With Exschedule1
 .DefaultEventLongLabel = "<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#).Caption = "caption
2"
 .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#).Caption = "caption 3"
 End With
End With

VB.NET for /COM

With AxSchedule1
 .DefaultEventLongLabel = "<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = #6/20/2012#
 With .Events
 .Add(#6/20/2012 9:00:00 AM#,#6/20/2012 11:00:00 AM#).Caption = "caption
1"
 .Add(#6/20/2012 11:00:00 AM#,#6/20/2012 1:00:00 PM#).Caption = "caption
2"
 .Add(#6/20/2012 1:00:00 PM#,#6/20/2012 3:00:00 PM#).Caption = "caption 3"
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->PutDefaultEventLongLabel(L"<%=%5%>");
spSchedule1->PutDefaultEventShortLabel(spSchedule1-
>GetDefaultEventLongLabel());
spSchedule1->GetCalendar()->PutSelection("6/20/2012");
EXSCHEDULELib::IEventsPtr var_Events = spSchedule1->GetEvents();
 var_Events->Add("6/20/2012 9:00:00 AM","6/20/2012 11:00:00 AM")-
>PutCaption(L"caption 1");
 var_Events->Add("6/20/2012 11:00:00 AM","6/20/2012 1:00:00 PM")-
>PutCaption(L"caption 2");
 var_Events->Add("6/20/2012 1:00:00 PM","6/20/2012 3:00:00 PM")-
>PutCaption(L"caption 3");

C++ Builder

Schedule1->DefaultEventLongLabel = L"<%=%5%>";
Schedule1->DefaultEventShortLabel = Schedule1->DefaultEventLongLabel;
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2012,6,20).operator
double()));
Exschedulelib_tlb::IEventsPtr var_Events = Schedule1->Events;
 var_Events->Add(TVariant(TDateTime(2012,6,20,9,00,00,0).operator
double()),TVariant(TDateTime(2012,6,20,11,00,00,0).operator double()))->Caption =
L"caption 1";
 var_Events->Add(TVariant(TDateTime(2012,6,20,11,00,00,0).operator
double()),TVariant(TDateTime(2012,6,20,13,00,00,0).operator double()))->Caption =
L"caption 2";

 var_Events->Add(TVariant(TDateTime(2012,6,20,13,00,00,0).operator
double()),TVariant(TDateTime(2012,6,20,15,00,00,0).operator double()))->Caption =
L"caption 3";

C#

exschedule1.DefaultEventLongLabel = "<%=%5%>";
exschedule1.DefaultEventShortLabel = exschedule1.DefaultEventLongLabel;
exschedule1.Calendar.Selection =
Convert.ToDateTime("6/20/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exontrol.EXSCHEDULELib.Events var_Events = exschedule1.Events;
 var_Events.Add(Convert.ToDateTime("6/20/2012 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
1";
 var_Events.Add(Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
2";
 var_Events.Add(Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 3:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
3";

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.DefaultEventLongLabel = "<%=%5%>";
 Schedule1.DefaultEventShortLabel = Schedule1.DefaultEventLongLabel;

 Schedule1.Calendar.Selection = "6/20/2012";
 var var_Events = Schedule1.Events;
 var_Events.Add("6/20/2012 9:00:00 AM","6/20/2012 11:00:00 AM").Caption =
"caption 1";
 var_Events.Add("6/20/2012 11:00:00 AM","6/20/2012 1:00:00 PM").Caption =
"caption 2";
 var_Events.Add("6/20/2012 1:00:00 PM","6/20/2012 3:00:00 PM").Caption =
"caption 3";
</SCRIPT>

C# for /COM

axSchedule1.DefaultEventLongLabel = "<%=%5%>";
axSchedule1.DefaultEventShortLabel = axSchedule1.DefaultEventLongLabel;
axSchedule1.Calendar.Selection =
Convert.ToDateTime("6/20/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
EXSCHEDULELib.Events var_Events = axSchedule1.Events;
 var_Events.Add(Convert.ToDateTime("6/20/2012 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
1";
 var_Events.Add(Convert.ToDateTime("6/20/2012 11:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
2";
 var_Events.Add(Convert.ToDateTime("6/20/2012 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("6/20/2012 3:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Caption = "caption
3";

X++ (Dynamics Ax 2009)

public void init()

{
 COM com_Event,com_Events;
 anytype var_Event,var_Events;
 ;

 super();

 exschedule1.DefaultEventLongLabel("<%=%5%>");
 exschedule1.DefaultEventShortLabel(exschedule1.DefaultEventLongLabel());

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("6/20/2012",213)));

 var_Events = exschedule1.Events(); com_Events = var_Events;
 var_Event =
COM::createFromObject(com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime(
 9:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
11:00:00",213)))); com_Event = var_Event;
 com_Event.Caption("caption 1");
 var_Event =
COM::createFromObject(com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime(
 11:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
13:00:00",213)))); com_Event = var_Event;
 com_Event.Caption("caption 2");
 var_Event =
COM::createFromObject(com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime(
 13:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("6/20/2012
15:00:00",213)))); com_Event = var_Event;
 com_Event.Caption("caption 3");
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 DefaultEventLongLabel := '<%=%5%>';
 DefaultEventShortLabel := DefaultEventLongLabel;
 Calendar.Selection := '6/20/2012';

 with Events do
 begin
 Add('6/20/2012 9:00:00 AM','6/20/2012 11:00:00 AM').Caption := 'caption 1';
 Add('6/20/2012 11:00:00 AM','6/20/2012 1:00:00 PM').Caption := 'caption 2';
 Add('6/20/2012 1:00:00 PM','6/20/2012 3:00:00 PM').Caption := 'caption 3';
 end;
end

Delphi (standard)

with Schedule1 do
begin
 DefaultEventLongLabel := '<%=%5%>';
 DefaultEventShortLabel := DefaultEventLongLabel;
 Calendar.Selection := '6/20/2012';
 with Events do
 begin
 Add('6/20/2012 9:00:00 AM','6/20/2012 11:00:00 AM').Caption := 'caption 1';
 Add('6/20/2012 11:00:00 AM','6/20/2012 1:00:00 PM').Caption := 'caption 2';
 Add('6/20/2012 1:00:00 PM','6/20/2012 3:00:00 PM').Caption := 'caption 3';
 end;
end

VFP

with thisform.Schedule1
 .DefaultEventLongLabel = "<%=%5%>"
 .DefaultEventShortLabel = .DefaultEventLongLabel
 .Calendar.Selection = {^2012-6-20}
 with .Events
 .Add({^2012-6-20 9:00:00},{^2012-6-20 11:00:00}).Caption = "caption 1"
 .Add({^2012-6-20 11:00:00},{^2012-6-20 13:00:00}).Caption = "caption 2"
 .Add({^2012-6-20 13:00:00},{^2012-6-20 15:00:00}).Caption = "caption 3"
 endwith
endwith

dBASE Plus

local oSchedule,var_Event,var_Event1,var_Event2,var_Events

oSchedule = form.Activex1.nativeObject
oSchedule.DefaultEventLongLabel = "<%=%5%>"
oSchedule.DefaultEventShortLabel = oSchedule.DefaultEventLongLabel
oSchedule.Calendar.Selection = "06/20/2012"
var_Events = oSchedule.Events
 // var_Events.Add("06/20/2012 09:00:00","06/20/2012 11:00:00").Caption
= "caption 1"
 var_Event = var_Events.Add("06/20/2012 09:00:00","06/20/2012 11:00:00")
 with (oSchedule)
 TemplateDef = [Dim var_Event]
 TemplateDef = var_Event
 Template = [var_Event.Caption = "caption 1"]
 endwith
 // var_Events.Add("06/20/2012 11:00:00","06/20/2012 13:00:00").Caption
= "caption 2"
 var_Event1 = var_Events.Add("06/20/2012 11:00:00","06/20/2012 13:00:00")
 with (oSchedule)
 TemplateDef = [Dim var_Event1]
 TemplateDef = var_Event1
 Template = [var_Event1.Caption = "caption 2"]
 endwith
 // var_Events.Add("06/20/2012 13:00:00","06/20/2012 15:00:00").Caption
= "caption 3"
 var_Event2 = var_Events.Add("06/20/2012 13:00:00","06/20/2012 15:00:00")
 with (oSchedule)
 TemplateDef = [Dim var_Event2]
 TemplateDef = var_Event2
 Template = [var_Event2.Caption = "caption 3"]
 endwith

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Event as P

Dim var_Event1 as P
Dim var_Event2 as P
Dim var_Events as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.DefaultEventLongLabel = "<%=%5%>"
oSchedule.DefaultEventShortLabel = oSchedule.DefaultEventLongLabel
oSchedule.Calendar.Selection = {06/20/2012}
var_Events = oSchedule.Events
 ' var_Events.Add({06/20/2012 09:00:00},{06/20/2012 11:00:00}).Caption =
"caption 1"
 var_Event = var_Events.Add({06/20/2012 09:00:00},{06/20/2012 11:00:00})
 oSchedule.TemplateDef = "Dim var_Event"
 oSchedule.TemplateDef = var_Event
 oSchedule.Template = "var_Event.Caption = \"caption 1\""

 ' var_Events.Add({06/20/2012 11:00:00},{06/20/2012 13:00:00}).Caption =
"caption 2"
 var_Event1 = var_Events.Add({06/20/2012 11:00:00},{06/20/2012 13:00:00})
 oSchedule.TemplateDef = "Dim var_Event1"
 oSchedule.TemplateDef = var_Event1
 oSchedule.Template = "var_Event1.Caption = \"caption 2\""

 ' var_Events.Add({06/20/2012 13:00:00},{06/20/2012 15:00:00}).Caption =
"caption 3"
 var_Event2 = var_Events.Add({06/20/2012 13:00:00},{06/20/2012 15:00:00})
 oSchedule.TemplateDef = "Dim var_Event2"
 oSchedule.TemplateDef = var_Event2
 oSchedule.Template = "var_Event2.Caption = \"caption 3\""

Visual Objects

local var_Events as IEvents

oDCOCX_Exontrol1:DefaultEventLongLabel := "<%=%5%>"

oDCOCX_Exontrol1:DefaultEventShortLabel :=
oDCOCX_Exontrol1:DefaultEventLongLabel
oDCOCX_Exontrol1:Calendar:Selection := SToD("20120620")
var_Events := oDCOCX_Exontrol1:Events
 var_Events:Add(SToD("20120620 09:00:00"),SToD("20120620 11:00:00")):Caption
:= "caption 1"
 var_Events:Add(SToD("20120620 11:00:00"),SToD("20120620 13:00:00")):Caption
:= "caption 2"
 var_Events:Add(SToD("20120620 13:00:00"),SToD("20120620 15:00:00")):Caption
:= "caption 3"

PowerBuilder

OleObject oSchedule,var_Events

oSchedule = ole_1.Object
oSchedule.DefaultEventLongLabel = "<%=%5%>"
oSchedule.DefaultEventShortLabel = oSchedule.DefaultEventLongLabel
oSchedule.Calendar.Selection = 2012-06-20
var_Events = oSchedule.Events
 var_Events.Add(DateTime(2012-06-20,09:00:00),DateTime(2012-06-
20,11:00:00)).Caption = "caption 1"
 var_Events.Add(DateTime(2012-06-20,11:00:00),DateTime(2012-06-
20,13:00:00)).Caption = "caption 2"
 var_Events.Add(DateTime(2012-06-20,13:00:00),DateTime(2012-06-
20,15:00:00)).Caption = "caption 3"

method Event.ClearShowStatus ()
Clears the status flag, so the ShowStatusEvent property indicates whether the current
event shows or hides its status.

Type Description

The ClearShowStatus method clears the ShowStatus flag, if previously the ShowStatus
property has been set. By default, the ShowStatusEvent property shows or hides the status
part for all events. The ShowStatus property shows or hides the status part of giving event.
Use the ClearShowStatus method to allow the ShowStatusEvent property to display the
event's status, rather than ShowStatus property.

You can:

show the status part for all events (ShowStatusEvent on True), and use the
ShowStatus (ShowStatus on False) property to hide the status part for specified
events only.
hide the status part for all events (ShowStatusEvent on False), and use the
ShowStatus (ShowStatus on True) property to show the status part for specified
events only.

method Event.ClearStatusColor ()
Clears the status color flag, so the StatusEventColor property indicates the color to show
the event's status.

Type Description

The ClearStatusColor method clears the StatusColor property, if previously has been set.
By default, the StatusEventColor property indicates the visual appearance to show the
status part of all events. The StatusColor property indicates the color to show the status for
a giving event. The ClearStatusColor method allows the StatusEventColor property to
specify the event's status color, rather than StatusColor property. The ShowStatus property
indicates whether the event displays the status part. The ShowEventStatus property
indicates whether all events shows the status part.

property Event.Client as Variant
Returns the client area of the event.

Type Description

Variant Returns a safe array array of [x,y,width,height] type,
relative to the control's top-left corner of the control

The Client property gets the event's client rectangle as a safe array of [x,y,width,height]
type, relative to the control's top-left corner. The Client property returns the [0,0,0,0] safe
array If the event is not visible.

property Event.Editable as EditableCaptionEnum
Specifies whether the event's caption is editable.

Type Description

EditableCaptionEnum
An EditableCaptionEnum expression that specifies the
property of the event being edited when event performs an
inline editing.

By default, the Editable property is exEditExtraLabel, which means that the event's
ExtraLabel property is edited. The Editable property indicates the property of the event to
be edited when user double clicks the event. The AllowEditEvent property specifies the
combination of keys that the user can use so the event gets inline editing. The
LayoutStartChanging(exScheduleEditEvent) event notifies your application once the inline
editing starts. The LayoutEndChanging(exScheduleEditEvent) event notifies your application
once the inline editing starts. The control fires the AddEvent event which can be used to
initialize the Editable property with a different value.

You can use the EventFromPoint(-1,-1) metod during the LayoutStartChanging(
exScheduleEditEvent) to store the event from the cursor to a global member, and when
LayoutEndChanging(exScheduleEditEvent) occurs, you can use the previously stored
member to identify the event being edited like in the following snippet of code:

Private evEdit As Object

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleEditEvent) Then
 Set evEdit = Schedule1.EventFromPoint(-1, -1)
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleEditEvent) Then
 If Not evEdit Is Nothing Then
 Debug.Print "Event: " & evEdit.Handle & " has been edited, and the new caption is:
" & evEdit.ExtraLabel
 End If
 End If

End Sub

The following sample edit and displays the event's LongLabel property only. During the
AddEvent event you should call the Ev.Editable on 3, in case you need to be applied for
any new event created.

VBA (MS Access, Excell...)

' AddEvent event - Notifies your application once the a new event is added.
Private Sub Schedule1_AddEvent(ByVal Ev As Object)
End Sub

With Schedule1
 .SelectEventStyle = 48
 .DefaultEventLongLabel = ""
 .DefaultEventShortLabel = ""
 .CreateEventLabel = ""
 .Calendar.Selection = #1/10/2001#
 .OnResizeControl = 3073
 With .Events
 With .Add(#1/10/2001 9:00:00 AM#,#1/10/2001 0:30:00 PM#)
 .Editable = 3
 .LongLabel = "just your label"
 End With
 With .Add(#1/10/2001 10:00:00 AM#,#1/10/2001 1:00:00 PM#)
 .Editable = 3
 .LongLabel = "just another label"
 End With
 End With
End With

VB6

' AddEvent event - Notifies your application once the a new event is added.
Private Sub Schedule1_AddEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
End Sub

With Schedule1
 .SelectEventStyle = exLinesSolid

 .DefaultEventLongLabel = ""
 .DefaultEventShortLabel = ""
 .CreateEventLabel = ""
 .Calendar.Selection = #1/10/2001#
 .OnResizeControl = OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide
 With .Events
 With .Add(#1/10/2001 9:00:00 AM#,#1/10/2001 0:30:00 PM#)
 .Editable = exEditLongLabel
 .LongLabel = "just your label"
 End With
 With .Add(#1/10/2001 10:00:00 AM#,#1/10/2001 1:00:00 PM#)
 .Editable = exEditLongLabel
 .LongLabel = "just another label"
 End With
 End With
End With

VB.NET

' AddEvent event - Notifies your application once the a new event is added.
Private Sub Exschedule1_AddEvent(ByVal sender As System.Object,ByVal Ev As
exontrol.EXSCHEDULELib.Event) Handles Exschedule1.AddEvent
End Sub

With Exschedule1
 .SelectEventStyle = exontrol.EXSCHEDULELib.LinesStyleEnum.exLinesSolid
 .DefaultEventLongLabel = ""
 .DefaultEventShortLabel = ""
 .CreateEventLabel = ""
 .Calendar.Selection = #1/10/2001#
 .OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarFit Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide
 With .Events
 With .Add(#1/10/2001 9:00:00 AM#,#1/10/2001 0:30:00 PM#)

 .Editable = exontrol.EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel
 .LongLabel = "just your label"
 End With
 With .Add(#1/10/2001 10:00:00 AM#,#1/10/2001 1:00:00 PM#)
 .Editable = exontrol.EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel
 .LongLabel = "just another label"
 End With
 End With
End With

VB.NET for /COM

' AddEvent event - Notifies your application once the a new event is added.
Private Sub AxSchedule1_AddEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_AddEventEvent) Handles
AxSchedule1.AddEvent
End Sub

With AxSchedule1
 .SelectEventStyle = EXSCHEDULELib.LinesStyleEnum.exLinesSolid
 .DefaultEventLongLabel = ""
 .DefaultEventShortLabel = ""
 .CreateEventLabel = ""
 .Calendar.Selection = #1/10/2001#
 .OnResizeControl = EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight Or
EXSCHEDULELib.OnResizeControlEnum.exCalendarFit Or
EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide
 With .Events
 With .Add(#1/10/2001 9:00:00 AM#,#1/10/2001 0:30:00 PM#)
 .Editable = EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel
 .LongLabel = "just your label"
 End With
 With .Add(#1/10/2001 10:00:00 AM#,#1/10/2001 1:00:00 PM#)
 .Editable = EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel
 .LongLabel = "just another label"
 End With
 End With

End With

C++

// AddEvent event - Notifies your application once the a new event is added.
void OnAddEventSchedule1(LPDISPATCH Ev)
{
}

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->PutSelectEventStyle(EXSCHEDULELib::exLinesSolid);
spSchedule1->PutDefaultEventLongLabel(L"");
spSchedule1->PutDefaultEventShortLabel(L"");
spSchedule1->PutCreateEventLabel(L"");
spSchedule1->GetCalendar()->PutSelection("1/10/2001");
spSchedule1-
>PutOnResizeControl(EXSCHEDULELib::OnResizeControlEnum(EXSCHEDULELib::exResizePanelRight
 | EXSCHEDULELib::exCalendarFit | EXSCHEDULELib::exCalendarAutoHide));
EXSCHEDULELib::IEventsPtr var_Events = spSchedule1->GetEvents();
 EXSCHEDULELib::IEventPtr var_Event = var_Events->Add("1/10/2001 9:00:00
AM","1/10/2001 12:30:00 PM");
 var_Event->PutEditable(EXSCHEDULELib::exEditLongLabel);
 var_Event->PutLongLabel(L"just your label");
 EXSCHEDULELib::IEventPtr var_Event1 = var_Events->Add("1/10/2001 10:00:00
AM","1/10/2001 1:00:00 PM");
 var_Event1->PutEditable(EXSCHEDULELib::exEditLongLabel);
 var_Event1->PutLongLabel(L"just another label");

C++ Builder

// AddEvent event - Notifies your application once the a new event is added.
void __fastcall TForm1::Schedule1AddEvent(TObject *Sender,Exschedulelib_tlb::IEvent
*Ev)
{
}

Schedule1->SelectEventStyle = Exschedulelib_tlb::LinesStyleEnum::exLinesSolid;
Schedule1->DefaultEventLongLabel = L"";
Schedule1->DefaultEventShortLabel = L"";
Schedule1->CreateEventLabel = L"";
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2001,1,10).operator
double()));
Schedule1->OnResizeControl =
Exschedulelib_tlb::OnResizeControlEnum::exResizePanelRight |
Exschedulelib_tlb::OnResizeControlEnum::exCalendarFit |
Exschedulelib_tlb::OnResizeControlEnum::exCalendarAutoHide;
Exschedulelib_tlb::IEventsPtr var_Events = Schedule1->Events;
 Exschedulelib_tlb::IEventPtr var_Event = var_Events-
>Add(TVariant(TDateTime(2001,1,10,9,00,00,0).operator
double()),TVariant(TDateTime(2001,1,10,12,30,00,0).operator double()));
 var_Event->Editable =
Exschedulelib_tlb::EditableCaptionEnum::exEditLongLabel;
 var_Event->LongLabel = L"just your label";
 Exschedulelib_tlb::IEventPtr var_Event1 = var_Events-
>Add(TVariant(TDateTime(2001,1,10,10,00,00,0).operator
double()),TVariant(TDateTime(2001,1,10,13,00,00,0).operator double()));
 var_Event1->Editable =
Exschedulelib_tlb::EditableCaptionEnum::exEditLongLabel;
 var_Event1->LongLabel = L"just another label";

C#

// AddEvent event - Notifies your application once the a new event is added.
private void exschedule1_AddEvent(object sender,exontrol.EXSCHEDULELib.Event Ev)
{

}
//this.exschedule1.AddEvent += new
exontrol.EXSCHEDULELib.exg2antt.AddEventEventHandler(this.exschedule1_AddEvent);

exschedule1.SelectEventStyle =
exontrol.EXSCHEDULELib.LinesStyleEnum.exLinesSolid;
exschedule1.DefaultEventLongLabel = "";
exschedule1.DefaultEventShortLabel = "";
exschedule1.CreateEventLabel = "";
exschedule1.Calendar.Selection =
Convert.ToDateTime("1/10/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exschedule1.OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarFit |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide;
exontrol.EXSCHEDULELib.Events var_Events = exschedule1.Events;
 exontrol.EXSCHEDULELib.Event var_Event =
var_Events.Add(Convert.ToDateTime("1/10/2001 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("1/10/2001 12:30:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event.Editable =
exontrol.EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel;
 var_Event.LongLabel = "just your label";
 exontrol.EXSCHEDULELib.Event var_Event1 =
var_Events.Add(Convert.ToDateTime("1/10/2001 10:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("1/10/2001 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event1.Editable =
exontrol.EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel;
 var_Event1.LongLabel = "just another label";

JavaScript

<SCRIPT FOR="Schedule1" EVENT="AddEvent(Ev)" LANGUAGE="JScript">
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.SelectEventStyle = 48;
 Schedule1.DefaultEventLongLabel = "";
 Schedule1.DefaultEventShortLabel = "";
 Schedule1.CreateEventLabel = "";
 Schedule1.Calendar.Selection = "1/10/2001";
 Schedule1.OnResizeControl = 3073;
 var var_Events = Schedule1.Events;
 var var_Event = var_Events.Add("1/10/2001 9:00:00 AM","1/10/2001 12:30:00
PM");
 var_Event.Editable = 3;
 var_Event.LongLabel = "just your label";
 var var_Event1 = var_Events.Add("1/10/2001 10:00:00 AM","1/10/2001 1:00:00
PM");
 var_Event1.Editable = 3;
 var_Event1.LongLabel = "just another label";
</SCRIPT>

C# for /COM

// AddEvent event - Notifies your application once the a new event is added.
private void axSchedule1_AddEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_AddEventEvent e)
{
}
//this.axSchedule1.AddEvent += new
AxEXSCHEDULELib._IScheduleEvents_AddEventEventHandler(this.axSchedule1_AddEvent);

axSchedule1.SelectEventStyle = EXSCHEDULELib.LinesStyleEnum.exLinesSolid;
axSchedule1.DefaultEventLongLabel = "";

axSchedule1.DefaultEventShortLabel = "";
axSchedule1.CreateEventLabel = "";
axSchedule1.Calendar.Selection =
Convert.ToDateTime("1/10/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
axSchedule1.OnResizeControl =
EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight |
EXSCHEDULELib.OnResizeControlEnum.exCalendarFit |
EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide;
EXSCHEDULELib.Events var_Events = axSchedule1.Events;
 EXSCHEDULELib.Event var_Event =
var_Events.Add(Convert.ToDateTime("1/10/2001 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("1/10/2001 12:30:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event.Editable = EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel;
 var_Event.LongLabel = "just your label";
 EXSCHEDULELib.Event var_Event1 =
var_Events.Add(Convert.ToDateTime("1/10/2001 10:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("1/10/2001 1:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event1.Editable = EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel;
 var_Event1.LongLabel = "just another label";

X++ (Dynamics Ax 2009)

// AddEvent event - Notifies your application once the a new event is added.
void onEvent_AddEvent(COM _Ev)
{
 ;
}

public void init()
{
 COM com_Event,com_Event1,com_Events;

 anytype var_Event,var_Event1,var_Events;
 ;

 super();

 exschedule1.SelectEventStyle(48/*exLinesSolid*/);
 exschedule1.DefaultEventLongLabel("");
 exschedule1.DefaultEventShortLabel("");
 exschedule1.CreateEventLabel("");

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("1/10/2001",213)));

 exschedule1.OnResizeControl(3073/*exResizePanelRight | exCalendarFit |
exCalendarAutoHide*/);
 var_Events = exschedule1.Events(); com_Events = var_Events;
 var_Event =
com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime("1/10/2001
9:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("1/10/2001
12:30:00",213))); com_Event = var_Event;
 com_Event.Editable(3/*exEditLongLabel*/);
 com_Event.LongLabel("just your label");
 var_Event1 =
com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime("1/10/2001
10:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("1/10/2001
13:00:00",213))); com_Event1 = var_Event1;
 com_Event1.Editable(3/*exEditLongLabel*/);
 com_Event1.LongLabel("just another label");
}

Delphi 8 (.NET only)

// AddEvent event - Notifies your application once the a new event is added.
procedure TWinForm1.AxSchedule1_AddEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_AddEventEvent);
begin
end;

with AxSchedule1 do
begin
 SelectEventStyle := EXSCHEDULELib.LinesStyleEnum.exLinesSolid;
 DefaultEventLongLabel := '';
 DefaultEventShortLabel := '';
 CreateEventLabel := '';
 Calendar.Selection := '1/10/2001';
 OnResizeControl :=
Integer(EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight) Or
Integer(EXSCHEDULELib.OnResizeControlEnum.exCalendarFit) Or
Integer(EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide);
 with Events do
 begin
 with Add('1/10/2001 9:00:00 AM','1/10/2001 12:30:00 PM') do
 begin
 Editable := EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel;
 LongLabel := 'just your label';
 end;
 with Add('1/10/2001 10:00:00 AM','1/10/2001 1:00:00 PM') do
 begin
 Editable := EXSCHEDULELib.EditableCaptionEnum.exEditLongLabel;
 LongLabel := 'just another label';
 end;
 end;
end

Delphi (standard)

// AddEvent event - Notifies your application once the a new event is added.
procedure TForm1.Schedule1AddEvent(ASender: TObject; Ev : IEvent);
begin
end;

with Schedule1 do
begin
 SelectEventStyle := EXSCHEDULELib_TLB.exLinesSolid;
 DefaultEventLongLabel := '';

 DefaultEventShortLabel := '';
 CreateEventLabel := '';
 Calendar.Selection := '1/10/2001';
 OnResizeControl := Integer(EXSCHEDULELib_TLB.exResizePanelRight) Or
Integer(EXSCHEDULELib_TLB.exCalendarFit) Or
Integer(EXSCHEDULELib_TLB.exCalendarAutoHide);
 with Events do
 begin
 with Add('1/10/2001 9:00:00 AM','1/10/2001 12:30:00 PM') do
 begin
 Editable := EXSCHEDULELib_TLB.exEditLongLabel;
 LongLabel := 'just your label';
 end;
 with Add('1/10/2001 10:00:00 AM','1/10/2001 1:00:00 PM') do
 begin
 Editable := EXSCHEDULELib_TLB.exEditLongLabel;
 LongLabel := 'just another label';
 end;
 end;
end

VFP

*** AddEvent event - Notifies your application once the a new event is added. ***
LPARAMETERS Ev

with thisform.Schedule1
 .SelectEventStyle = 48
 .DefaultEventLongLabel = ""
 .DefaultEventShortLabel = ""
 .CreateEventLabel = ""
 .Calendar.Selection = {^2001-1-10}
 .OnResizeControl = 3073
 with .Events
 with .Add({^2001-1-10 9:00:00},{^2001-1-10 12:30:00})
 .Editable = 3
 .LongLabel = "just your label"

 endwith
 with .Add({^2001-1-10 10:00:00},{^2001-1-10 13:00:00})
 .Editable = 3
 .LongLabel = "just another label"
 endwith
 endwith
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 AddEvent = class::nativeObject_AddEvent
endwith
*/
// Notifies your application once the a new event is added.
function nativeObject_AddEvent(Ev)
 local oSchedule
 oSchedule = form.Activex1.nativeObject
return

local oSchedule,var_Event,var_Event1,var_Events

oSchedule = form.Activex1.nativeObject
oSchedule.SelectEventStyle = 48
oSchedule.DefaultEventLongLabel = ""
oSchedule.DefaultEventShortLabel = ""
oSchedule.CreateEventLabel = ""
oSchedule.Calendar.Selection = "01/10/2001"
oSchedule.OnResizeControl = 3073 /*exResizePanelRight | exCalendarFit |
exCalendarAutoHide*/
var_Events = oSchedule.Events
 var_Event = var_Events.Add("01/10/2001 09:00:00","01/10/2001 12:30:00")
 var_Event.Editable = 3
 var_Event.LongLabel = "just your label"
 var_Event1 = var_Events.Add("01/10/2001 10:00:00","01/10/2001 13:00:00")
 var_Event1.Editable = 3

 var_Event1.LongLabel = "just another label"

XBasic (Alpha Five)

' Notifies your application once the a new event is added.
function AddEvent as v (Ev as OLE::Exontrol.Schedule.1::IEvent)
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
end function

Dim oSchedule as P
Dim var_Event as P
Dim var_Event1 as P
Dim var_Events as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.SelectEventStyle = 48
oSchedule.DefaultEventLongLabel = ""
oSchedule.DefaultEventShortLabel = ""
oSchedule.CreateEventLabel = ""
oSchedule.Calendar.Selection = {01/10/2001}
oSchedule.OnResizeControl = 3073 'exResizePanelRight + exCalendarFit +
exCalendarAutoHide
var_Events = oSchedule.Events
 var_Event = var_Events.Add({01/10/2001 09:00:00},{01/10/2001 12:30:00})
 var_Event.Editable = 3
 var_Event.LongLabel = "just your label"
 var_Event1 = var_Events.Add({01/10/2001 10:00:00},{01/10/2001 13:00:00})
 var_Event1.Editable = 3
 var_Event1.LongLabel = "just another label"

Visual Objects

METHOD OCX_Exontrol1AddEvent(Ev) CLASS MainDialog
 // AddEvent event - Notifies your application once the a new event is
added.

RETURN NIL

local var_Event,var_Event1 as IEvent
local var_Events as IEvents

oDCOCX_Exontrol1:SelectEventStyle := exLinesSolid
oDCOCX_Exontrol1:DefaultEventLongLabel := ""
oDCOCX_Exontrol1:DefaultEventShortLabel := ""
oDCOCX_Exontrol1:CreateEventLabel := ""
oDCOCX_Exontrol1:Calendar:Selection := SToD("20010110")
oDCOCX_Exontrol1:OnResizeControl := exResizePanelRight | exCalendarFit |
exCalendarAutoHide
var_Events := oDCOCX_Exontrol1:Events
 var_Event := var_Events:Add(SToD("20010110 09:00:00"),SToD("20010110
12:30:00"))
 var_Event:Editable := exEditLongLabel
 var_Event:LongLabel := "just your label"
 var_Event1 := var_Events:Add(SToD("20010110 10:00:00"),SToD("20010110
13:00:00"))
 var_Event1:Editable := exEditLongLabel
 var_Event1:LongLabel := "just another label"

PowerBuilder

/*begin event AddEvent(oleobject Ev) - Notifies your application once the a new
event is added.*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
*/
/*end event AddEvent*/

OleObject oSchedule,var_Event,var_Event1,var_Events

oSchedule = ole_1.Object
oSchedule.SelectEventStyle = 48

oSchedule.DefaultEventLongLabel = ""
oSchedule.DefaultEventShortLabel = ""
oSchedule.CreateEventLabel = ""
oSchedule.Calendar.Selection = 2001-01-10
oSchedule.OnResizeControl = 3073 /*exResizePanelRight | exCalendarFit |
exCalendarAutoHide*/
var_Events = oSchedule.Events
 var_Event = var_Events.Add(DateTime(2001-01-10,09:00:00),DateTime(2001-01-
10,12:30:00))
 var_Event.Editable = 3
 var_Event.LongLabel = "just your label"
 var_Event1 = var_Events.Add(DateTime(2001-01-10,10:00:00),DateTime(2001-01-
10,13:00:00))
 var_Event1.Editable = 3
 var_Event1.LongLabel = "just another label"

property Event.End as Date
Specifies the ending date/time of the event.

Type Description

Date A DATE expression that specifies the upper margin of the
event

The End property of the Event indicates the date/time when the event or the appointment
ends. The End parameter of the Add method indicates the ending point of the event at
adding time. The Start property of the event indicates the starting point of the event. The
Start and End properties may be identical if the AllDayEvent property is True. The
UpdateEvent event is fired once the End property is changed. The Resizable property of the
Event indicates whether the user can resize the event at runtime (start, end or both). The
Movable property of the Event indicates whether the user can move the event at runtime.
You can use the MinDate/MaxDate property specifies the range of dates where the
Start/End can be shown. You can use the MoveBy method to delay the current event with a
specified value time. You can use the KnownProperty(exEventDuration) to change the
event's duration.

The KnownProperty(exEventEndDateTime) property indicates the End property on a label
property such as: DefaultEventLongLabel, DefaultEventShortLabel, CreateEventLabel,
UpdateEventsLabel, ShortLabel, LongLabel and ExtraLabel.

You can use the KnownProperty(exEventStartDate)/KnownProperty(exEventStartTime)
property to extract the starting date/time of the event.
You can use the KnownProperty(exEventEndDate)/KnownProperty(exEventEndTime)
property to extract the ending date/time of the event.
You can use the KnownProperty(exEventDuration) property to specifies the
duration/length of the event.

method Event.EndUpdateEvent (StartUpdateEvent as Long)
Adds programmatically updated properties of the calendar-event to undo/redo queue.

Type Description

StartUpdateEvent as Long A long expression that specifies the handle being returned
by the StartUpdateEvent property

The StartUpdateEvent/EndUpdateEvent methods record and add changes of the current
calendar-event to the control's Undo/Redo queue. You can use the StartBlockUndoRedo /
EndBlockUndoRedo methods to group multiple Undo/Redo operations into a single-block.
The AllowUndoRedo property specifies whether the control supports undo/redo operations
for objects (calendar-events). No entry is added to the Undo/Redo queue if no property is
changed for the current calendar-event. Each call of the StartUpdateEvent must be
succeeded by a EndUpdateEvent call. The UndoListAction property lists the Undo actions
that can be performed in the chart. The RedoListAction property lists the Redo actions that
can be performed in the chart.

The StartUpdateEvent/EndUpdateEvent methods can record changes for all properties from
1 (exEventStartDateTime) to EXEVENTMAX listed by EventKnownPropertyEnum type.

The Undo/Redo records show as:

"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

within the UndoListAction/RedoListAction result

method Event.EnsureVisible ()
Scrolls the control to ensure that the current calendar-event fits the control's visible area.

Type Description

The EnsureVisible method scrolls the control to ensure that the current calendar-event fits
the control's visible area.

property Event.ExtraLabel as String
Specifies the extra label to be displayed on the event.

Type Description

String A string expression that specifies the extended HTML
label, to be displayed on the event's body.

By default, the ExtraLabel property is empty, which indicates no extra label is being
displayed. The event displays the ExtraLabel, only if the LongLabel property is displayed.
The LongLabel property is displayed only if it fits the event's body, else the ShortLabel
property is shown. For instance, the ShortLabel property is shown if the event's body is too
small. The AddEvent event occurs once a new event is added to the Events collection. You
can handle the AddEvent event to initialize the ExtraLabel with a different value. The
Editable property of the event indicates the property of the event being inline edited. BY
default, the event's ExtraLabel property is inline edited when the user double clicks the
event. The ExtraLabelAlign property specifies the alignment of the extra label. The
DefaultEventPadding property indicates the padding of the labels on the event, relative to
event's borders. The KnowProperty(exEventExtraLabel) is equivalent with the ExtraLabel
property.

Here's a few samples:

"new", simple new text is shown.
"<a no>title", displays a clickable text such as title, and AnchorClick can be used
to determine whether the no anchor has been clicked.
"<a>pic1:32", displays a click able image, the AnchorClick can be
used to determine whether the anchor has been clicked. We would recommend using
the Pictures or ExtraPictures property to assign pictures to an event.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration

of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line
"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the ExtraLabel property on "Start: <%=time(%1)
replace `AM` with ``%>" displays the time when the event starts with no AM time
indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property

defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)

> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not

greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)

weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using

about:blank

the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the

offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Event.ExtraLabelAlign as ContentAlignmentEnum
Indicates the alignment of the event's extra label.

Type Description

ContentAlignmentEnum

A ContentAlignmentEnum expression that specifies the
alignment of the ExtraLabel property of the Event. The
ExtraLabelAlign property supports additionally the
following flag:

exWidth (4), to distribute the text on the element's
width

By default, the ExtraLabelAlign property is exBottomLeft. The ExtraLabelAlign property
aligns the event's ExtraLabel property on the event's body. The event displays the
ExtraLabel, only if the LongLabel property is displayed. The LongLabel property is
displayed only if it fits the event's body, else the ShortLabel property is shown. For
instance, the ShortLabel property is shown if the event's body is too small. The AddEvent
event occurs once a new event is added to the Events collection. You can handle the
AddEvent event to initialize the ExtraLabel/ExtraLabelAlign with a different value.

property Event.ExtraPictures as String
Specifies the list of extra pictures to be displayed on the event.

Type Description

String

A string expression that specifies the list of pictures to be
shown on the event's body. The event's body can display
one ore more pictures at the time, on different lines. For
instance: "1,2/pic1" displays the 1 and 2 icons on the first
line, while pic2 is displayed on the second line.

By default, the ExtraPictures property is "", which means that initially no pictures are being
displayed on the event. The Pictures or/and ExtraPictures property displays a collection of
icons, pictures in the event's body. The pictures are shown on the event's body only if they
fit the event's body. For instance, if the event is too small, the ShortLabel is displayed, and
no icons or pictures are displayed. The ExtraPicturesAlign property indicates the alignment
of the extra pictures relative to the event's borders.

The Images method loads icons to the control, HTMLPicture assigns a key to a picture
object, and the Pictures collection handles the identifiers of the pictures that can be used in
the Pictures or ExtraPictures properties. The AddEvent event notifies your application once
a new event is added. You can use this event to initialize the Pictures/PicturesAlign or
ExtraPictures/ExtraPicturesAlign properties.

In conclusion, in order to display an icon or a picture in the control you need first to load the
icons or the pictures you plan to display, using the Images method, HTMLPicture, or Add
method of the ExPictures collection. The Images collection can display only 16x16 icons,
while the HTMLPicture, or Add method can load and display custom sized pictures. The
Width/Height property specifies the width and height of the picture to be displayed in the
event's body.

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can not display images or HTML font
attributes. If the tag is included in a <a> HTML tag, you have a clickable image
through the AnchorClick event. This option can be used to display a default icon or
picture for all events in the control using the DefaultEventLongLabel property.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture

from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Picture and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

property Event.ExtraPicturesAlign as ContentAlignmentEnum
Indicates the alignment of the event's extra picture.

Type Description

ContentAlignmentEnum
A ContentAlignmentEnum expression that specifies the
alignment of the pictures being displayed by the
ExtraPictures property.

By default, the ExtraPicturesAlign property is exTopRight, which means any extra picture
associated to the event is displayed on the top-right corner of the event. The
ExtraPicturesAlign property has effect only if the ExtraPictures property refers valid
pictures, and the event's body has enough space to display the pictures. The AddEvent
event notifies your application once a new event is added. You can use this event to initialize
the Pictures/PicturesAlign or ExtraPictures/ExtraPicturesAlign properties. The Width/Height
property specifies the width and height of the picture to be displayed in the event's body.

property Event.GroupID as Long
Specifies the identifier of the group where the Event object belongs.

Type Description

Long A Long expression that specifies the identifier of the group
where the event belongs.

By default the GroupID property is 1. The GroupID property has effect when you need to
display events or appointments on different groups. The Item property of the Groups
collection can be used to access the Group object based on its identifier. The associated
Group of the event may handle the colors, patter to display the event using the
EventBackColor, EventForeColor , EventPattern properties. The group colors are being
applied if the ApplyGroupingColors property is True. When the user moves an event from a
group to another, at runtime, the GroupID property may be changed, and the UpdateEvent
event occurs.

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects. Use the Add method of the Groups collection to add new groups to the
control.
The Groups collection contains visible elements (Visible on True)

If the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime. The AllowMoveEventToOtherGroup property on False,
prevents moving events from a group to another, at runtime.

property Event.Handle as Long
Gets handle of the Event object.

Type Description
Long A Long expression that specifies the handle of the event.

The Handle property indicates the handle of the event, and it is unique while the event is
living. The Handle value is automatically allocated by the control as soon as the event is
being created. The AddEvent event occurs once a new event is created/added. The
Start/End properties of the event specifies the margins of the event. The Handle property is
read only, so the user can not change it. You can use the UserData property to associate
any extra data to the event. The KnownProperty(exEventID) property specifies the event's
identifier. The Handle is automatically generated by the control, and can not be changed,
while the IDentifier can be set by the user.

property Event.KnownProperty(Property as EventKnownPropertyEnum)
as Variant
Specifies the value for the Event's property giving its identifier.

Type Description
Property as
EventKnownPropertyEnum A Property being requested

Variant A VARIANT expression that specifies the value of the
requested property.

The KnownProperty property may access a property of the event giving its identifier. For
instance, the KnownProperty(exEventRepetitive) property indicates whether the current
event is repetitive or not. The property returns True, if the Repetitive property is not empty
and valid.

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>, in any of the following label properties

DefaultEventLongLabel, defines the HTML labels for events, when it fit entirely in the
event's body.
DefaultEventShortLabel, defines the labels for events (no HTML attribute is applied),
when it does not fit the event's body
CreateEventLabel, defines the label when creating a new event by dragging
UpdateEventsLabel, defines the label of the events being moved or resized at runtime
Event.ShortLabel, defines the event's short label, or the label to be shown when the
LongLabel does not fit entirely the event's body. The ShortLabel displays no HTML tags
Event.LongLabel, defines the event's HTML long label, when it fits the body. If the
LongLabel does not fit entirely the event's body, the ShortLabel is displayed instead.
Event.ExtraLabel, defines the event's extra HTML label. The event's ExtraLabel is
displayed ONLY, if the LongLabel fits the event's body

The label properties supports the following identifiers. These identifiers can be used in
FORMULA expression:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.

%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

For instance, the LongLabel = "Start: <%=%1%>
End: <%=%2%>", displays the
starting margin of the event on the first line, while on the second line it displays the ending
point of the event.

property Event.LabelAlign as ContentAlignmentEnum
Indicates the alignment of the event's long label.

Type Description

ContentAlignmentEnum

An ContentAlignmentEnum expression that specifies the
ShortLabel/LongLabel alignment. The LabelAlign property
supports additionally the following flag:

exWidth (4), to distribute the text on the element's
width

By default, the LabelAlign property is exTopLeft. The LabelAlign property aligns the event's
ShortLabel/LongLabel property on the event's body. The ShortLabel property is shown if the
event's body is too small. The event displays the ExtraLabel, only if the LongLabel property
is displayed. The LongLabel property is displayed only if it fits the event's body, else the
ShortLabel property is shown. The AddEvent event occurs once a new event is added to
the Events collection. You can handle the AddEvent event to initialize the LabelAlign with a
different value.

The CreateEventLabelAlign property aligns the label being shown when the user creates a
new event. The UpdateEventsLabelAlign property aligns the label being shown when the
user moves or resizes the events.

property Event.LongLabel as String
Specifies the long label to be displayed on the event.

Type Description

String A string expression that specifies the extended HTML
label, to be displayed on the event's body.

By default, the LongLabel property is initialized with the value of the DefaultEventLongLabel
property. The LongLabel property is displayed only if it fits the event's body, else the
ShortLabel property is shown. For instance, the ShortLabel property is shown if the event's
body is too small. The event displays the ExtraLabel, only if the LongLabel property is
displayed. The AddEvent event occurs once a new event is added to the Events collection.
The LabelAlign property specifies the alignment of the long label. The DefaultEventPadding
property indicates the padding of the labels on the event, relative to event's borders. The
KnowProperty(exEventLongLabel) is equivalent with the LongLabel property.

Here's a few samples:

"new", simple new text is shown.
"<a no>title", displays a clickable text such as title, and AnchorClick can be used
to determine whether the no anchor has been clicked.
"<a>pic1:32", displays a click able image, the AnchorClick can be
used to determine whether the anchor has been clicked. We would recommend using
the Pictures or ExtraPictures property to assign pictures to an event.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :

'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line
"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the Label property on "Start: <%=time(%1)
replace `AM` with ``%>" displays the time when the event starts with no AM time
indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE

type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and

Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters

proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)

min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

about:blank

<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Event.MaxDate as Date
Indicates the max date for the event.

Type Description

Date A DATE expression that specifies the upper limit of the
event.

By default, the MaxDate property is 12/31/9999. The MaxDate property indicates the upper
limit of the event. In other words, the Start or End properties of the Event can not be
greater than the MaxDate property. You can use the MinDate/MaxDate property to limit the
area where the event could occur. The Resizable property of the Event indicates whether
the user can resize the event at runtime (start, end or both). The Movable property of the
Event indicates whether the user can move the event at runtime. You can use the
MinDate/MaxDate property of the Calendar object to limit the dates that the calendar can
show.

property Event.MinDate as Date
Indicates the min date for the event.

Type Description

Date A DATE expression that specifies the lower limit of the
event.

By default, the MinDate property is 1/1/100. The MinDate property indicates the lower limit
of the event. In other words, the Start or End properties of the Event can not be less than
the MinDate property. You can use the MinDate/MaxDate property to limit the area where
the event could occur. The Resizable property of the Event indicates whether the user can
resize the event at runtime (start, end or both). The Movable property of the Event
indicates whether the user can move the event at runtime. You can use the
MinDate/MaxDate property of the Calendar object to limit the dates that the calendar can
show.

property Event.Movable as Boolean
Specifies whether the user can move the event.

Type Description

Boolean A boolean expression that specifies whether an event can
be moved at runtime.

By default, the Movable property of the Event is True. The Movable property indicates
whether the user can move the event at runtime. The MinDate/MaxDate properties of the
Event indicates the lower or upper margins where the event can be moved. The
UpdateEvent event occurs once an event is resized or moved. The AllowMoveEvent
property indicates the combination of the keys to let user moves the events. The
AllowMoveEventToOtherGroup property indicates whether an event can be moved from a
group to another.

The UpdateEventsLabel property indicates the HTML format to be shown on the label when
the user moves the events. The UpdateEventsLabelAlign property aligns the label being
shown when the user moves the event. The
Background(exScheduleUpdateEventsBackColor) and
Background(exScheduleUpdateEventsForeColor) specifies the visual appearance of the
event being moved. The AllowCreateEvent property indicates the combination of the keys to
let user creates new events. The AllowResizeEvent property indicates the combination of
the keys to let user resizes the events. The Selectable property specifies whether the event
can be selected at runtime. The Resizable property specifies whether the event can be
resized at runtime.

For instance, the The AllowMoveEvent property on exDisallow, indicates that no event can
be moved at runtime.

method Event.MoveBy (By as Variant)
Moves the event by specified time.

Type Description

By as Variant

A double expression that specifies the delay to move the
current event, or a string expression that indicates the
hour and minutes to delay the current event. For instance,
MoveBy("00:15") moves the current event 15 minutes
later.

The MoveBy method moves the current event to a new position. The MoveBy method adds
the specified delay to Start and End properties of the event. The UpdateEvent event is fired
once the margins of the events are updated. You can use the KnownProperty(
exEventDuration) to change the event's duration. The MoveBy method can be used to
programmatically move the specified event. You can use the MinDate/MaxDate property
specifies limit of the event where it should occur.

The following samples move the specified event back with 15 minutes:

VBA (MS Access, Excell...)

With Schedule1
 .BeginUpdate
 .Calendar.Selection = #5/24/2012#
 .Events.Add(#5/24/2012 10:00:00 AM#,#5/24/2012 0:00:00 PM#).MoveBy
"-00:15"
 .EndUpdate
End With

VB6

With Schedule1
 .BeginUpdate
 .Calendar.Selection = #5/24/2012#
 .Events.Add(#5/24/2012 10:00:00 AM#,#5/24/2012 0:00:00 PM#).MoveBy
"-00:15"
 .EndUpdate
End With

VB.NET

With Exschedule1
 .BeginUpdate()
 .Calendar.Selection = #5/24/2012#
 .Events.Add(#5/24/2012 10:00:00 AM#,#5/24/2012 0:00:00
PM#).MoveBy("-00:15")
 .EndUpdate()
End With

VB.NET for /COM

With AxSchedule1
 .BeginUpdate()
 .Calendar.Selection = #5/24/2012#
 .Events.Add(#5/24/2012 10:00:00 AM#,#5/24/2012 0:00:00
PM#).MoveBy("-00:15")
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->BeginUpdate();
spSchedule1->GetCalendar()->PutSelection("5/24/2012");
spSchedule1->GetEvents()->Add("5/24/2012 10:00:00 AM","5/24/2012 12:00:00
PM")->MoveBy("-00:15");
spSchedule1->EndUpdate();

C++ Builder

Schedule1->BeginUpdate();
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2012,5,24).operator
double()));
Schedule1->Events->Add(TVariant(TDateTime(2012,5,24,10,00,00,0).operator
double()),TVariant(TDateTime(2012,5,24,12,00,00,0).operator double()))-
>MoveBy(TVariant("-00:15"));
Schedule1->EndUpdate();

C#

exschedule1.BeginUpdate();
exschedule1.Calendar.Selection =
Convert.ToDateTime("5/24/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exschedule1.Events.Add(Convert.ToDateTime("5/24/2012 10:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 12:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).MoveBy("-00:15");
exschedule1.EndUpdate();

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.BeginUpdate();
 Schedule1.Calendar.Selection = "5/24/2012";
 Schedule1.Events.Add("5/24/2012 10:00:00 AM","5/24/2012 12:00:00
PM").MoveBy("-00:15");
 Schedule1.EndUpdate();
</SCRIPT>

C# for /COM

axSchedule1.BeginUpdate();

axSchedule1.Calendar.Selection =
Convert.ToDateTime("5/24/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
axSchedule1.Events.Add(Convert.ToDateTime("5/24/2012 10:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 12:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).MoveBy("-00:15");
axSchedule1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Event;
 anytype var_Event;
 ;

 super();

 exschedule1.BeginUpdate();

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("5/24/2012",213)));

 var_Event =
COM::createFromObject(exschedule1.Events()).Add(COMVariant::createFromUtcDateTime(str2Datetime(
 10:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("5/24/2012
12:00:00",213))); com_Event = var_Event;
 com_Event.MoveBy("-00:15");
 exschedule1.EndUpdate();
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 BeginUpdate();
 Calendar.Selection := '5/24/2012';

 Events.Add('5/24/2012 10:00:00 AM','5/24/2012 12:00:00 PM').MoveBy('-00:15');
 EndUpdate();
end

Delphi (standard)

with Schedule1 do
begin
 BeginUpdate();
 Calendar.Selection := '5/24/2012';
 Events.Add('5/24/2012 10:00:00 AM','5/24/2012 12:00:00 PM').MoveBy('-00:15');
 EndUpdate();
end

VFP

with thisform.Schedule1
 .BeginUpdate
 .Calendar.Selection = {^2012-5-24}
 .Events.Add({^2012-5-24 10:00:00},{^2012-5-24 12:00:00}).MoveBy("-00:15")
 .EndUpdate
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = "05/24/2012"
oSchedule.Events.Add("05/24/2012 10:00:00","05/24/2012
12:00:00").MoveBy("-00:15")
oSchedule.EndUpdate()

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = {05/24/2012}
oSchedule.Events.Add({05/24/2012 10:00:00},{05/24/2012
12:00:00}).MoveBy("-00:15")
oSchedule.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Calendar:Selection := SToD("20120524")
oDCOCX_Exontrol1:Events:Add(SToD("20120524 10:00:00"),SToD("20120524
12:00:00")):MoveBy("-00:15")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = 2012-05-24
oSchedule.Events.Add(DateTime(2012-05-24,10:00:00),DateTime(2012-05-
24,12:00:00)).MoveBy("-00:15")
oSchedule.EndUpdate()

property Event.Pictures as String
Specifies the list of pictures to be displayed on the event.

Type Description

String

A string expression that specifies the list of pictures to be
shown on the event's body. The event's body can display
one ore more pictures at the time, on different lines. For
instance: "1,2/pic1" displays the 1 and 2 icons on the first
line, while pic2 is displayed on the second line.

By default, the Pictures property is "", which means that initially no pictures are being
displayed on the event. The Pictures or/and ExtraPictures property displays a collection of
icons, pictures in the event's body. The pictures are shown on the event's body only if they
fit the event's body. For instance, if the event is too small, the ShortLabel is displayed, and
no icons or pictures are displayed. The PicturesAlign property indicates the alignment of the
pictures relative to the event's borders.

The Images method loads icons to the control, HTMLPicture assigns a key to a picture
object, and the Pictures collection handles the identifiers of the pictures that can be used in
the Pictures or ExtraPictures properties. The AddEvent event notifies your application once
a new event is added. You can use this event to initialize the Pictures/PicturesAlign or
ExtraPictures/ExtraPicturesAlign properties.

In conclusion, in order to display an icon or a picture in the control you need first to load the
icons or the pictures you plan to display, using the Images method, HTMLPicture, or Add
method of the ExPictures collection. The Images collection can display only 16x16 icons,
while the HTMLPicture, or Add method can load and display custom sized pictures. The
Width/Height property specifies the width and height of the picture to be displayed in the
event's body.

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can not display images or HTML font
attributes. If the tag is included in a <a> HTML tag, you have a clickable image
through the AnchorClick event. This option can be used to display a default icon or
picture for all events in the control using the DefaultEventLongLabel property.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture

from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Picture and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

property Event.PicturesAlign as ContentAlignmentEnum
Indicates the alignment of the event's picture.

Type Description

ContentAlignmentEnum
A ContentAlignmentEnum expression that specifies the
alignment of the pictures being displayed by the Pictures
property.

By default, the PicturesAlign property is exBottomRight, which means any picture
associated to the event is displayed on the bottom-right corner of the event. The
PicturesAlign property has effect only if the Pictures property refers valid pictures, and the
event's body has enough space to display the pictures. The AddEvent event notifies your
application once a new event is added. You can use this event to initialize the
Pictures/PicturesAlign or ExtraPictures/ExtraPicturesAlign properties. The Width/Height
property specifies the width and height of the picture to be displayed in the event's body.

property Event.Repetitive as String
Returns or sets the expression to determine the repetitive event.

Type Description

String

A String expression that defines the formula to determine
the recurrence of the current event. The Repetitive
property supports the value keyword and operators and
expressions like defined bellow.

By default, the Repetitive property is "", which indicates that the event is not a repetitive
event. If You specify a not empty and valid formula for the Repetitive property, the time part
of the Start and End properties determines the time to start and end the repetitive event.
The date part is determined by the Repetitive expression. You can use the KnownProperty(
exEventRepetitive) property to determine whether the current event is repetitive or not. The
property returns True, if the Repetitive property is not empty and valid, and False, if the
Repetitive property is empty or not valid.

Starting with the version 12.1, the control supports two ways of representing a
Repetitive/Recurrence event:

Value format, when using the value keyword. For instance, "weekday(value) = 1", the
event occurs every Monday
ICalendar format, as described in RFC 5545. For instance,
"FREQ=WEEKLY;BYDAY=MO", the event occurs every Monday

The FREQ property determines whether the Repetitive property uses the Value or
ICalendar format. In other words, if the Repetitive property contains the FREQ keyword,
the ICalendar format is using, else the Value format.

Here's a few samples of Repetitive expressions:

"0", no occurrence
"1", the event occurs every day
"weekday(value) = 1", the event occurs every Monday
"weekday(value) in (1,2) and month(value) = 6", the event occurs every Monday and
Tuesday, on June only.
"value in (#6/8/2012#,#6/11/2012#,#6/20/2012#)", the event occurs on 6/8/2012,
6/11/2012 and 6/20/2012
"value >= #6/1/2012# and ((value - #6/1/2012#) mod 5 = 0)", the event starts on
6/1/2012, and shows up every 5 days
"(value >= (0:=#6/1/2012#)) and ((value - =:0) mod (1:=5) = 0) and (value-=:0) <
(3*=:1)", the event starts on 6/1/2012, occurs every 5 days, for 3 times. You can
change 6/1/2012 with your date to indicates the starting date, changes 5 to indicate the

https://tools.ietf.org/html/rfc5545

n-occurrence and change 3 to indicate the m-times, so the event is shown every n-days
for m-times.
"not(month(value) in (3,4,5)) ? 0 : (floor(value)=(2:=floor(date(dateS('3/1/' +
year(value)) + ((1:=(((255 - 11 * (year(value) mod 19)) - 21) mod 30) + 21) + (=:1 > 48
? -1 : 0) + 6 - ((year(value) + int(year(value) / 4)) + =:1 + (=:1 > 48 ? -1 : 0) + 1) mod
7)))))", indicates the Easter- Sunday, so the event shows every year on Easter sunday.

The Repetitive property supports the value keyword which indicates the date being
queried, and the following predefined operators and functions.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in

operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string

endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The BNF syntax for ICalendar format is:

recur = recur-rule-part *(";" recur-rule-part)

 ;
 ; The rule parts are not ordered in any
 ; particular sequence.
 ;
 ; The FREQ rule part is REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 ; The UNTIL or COUNT rule parts are OPTIONAL,
 ; but they MUST NOT occur in the same 'recur'.
 ;
 ; The other rule parts are OPTIONAL,
 ; but MUST NOT occur more than once.

recur-rule-part = ("FREQ" "=" freq)
 / ("UNTIL" "=" enddate)
 / ("COUNT" "=" 1*DIGIT)
 / ("INTERVAL" "=" 1*DIGIT)
 / ("BYSECOND" "=" byseclist)
 / ("BYMINUTE" "=" byminlist)
 / ("BYHOUR" "=" byhrlist)
 / ("BYDAY" "=" bywdaylist)
 / ("BYMONTHDAY" "=" bymodaylist)
 / ("BYYEARDAY" "=" byyrdaylist)
 / ("BYWEEKNO" "=" bywknolist)
 / ("BYMONTH" "=" bymolist)
 / ("BYSETPOS" "=" bysplist)
 / ("WKST" "=" weekday)

freq = "SECONDLY" / "MINUTELY" / "HOURLY" / "DAILY"
 / "WEEKLY" / "MONTHLY" / "YEARLY"
enddate = date / date-time
byseclist = (seconds *("," seconds))
seconds = 1*2DIGIT ;0 to 60
byminlist = (minutes *("," minutes))
minutes = 1*2DIGIT ;0 to 59
byhrlist = (hour *("," hour))
hour = 1*2DIGIT ;0 to 23

bywdaylist = (weekdaynum *("," weekdaynum))
weekdaynum = [[plus / minus] ordwk] weekday
plus = "+"
minus = "-"
ordwk = 1*2DIGIT ;1 to 53
weekday = "SU" / "MO" / "TU" / "WE" / "TH" / "FR" / "SA" ;Corresponding to SUNDAY,
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY days of the week.
bymodaylist = (monthdaynum *("," monthdaynum))
monthdaynum = [plus / minus] ordmoday
ordmoday = 1*2DIGIT ;1 to 31
byyrdaylist = (yeardaynum *("," yeardaynum))
yeardaynum = [plus / minus] ordyrday
ordyrday = 1*3DIGIT ;1 to 366
bywknolist = (weeknum *("," weeknum))
weeknum = [plus / minus] ordwk
bymolist = (monthnum *("," monthnum))
monthnum = 1*2DIGIT ;1 to 12
bysplist = (setposday *("," setposday))
setposday = yeardaynum

This value type is a structured value consisting of a list of one or more recurrence grammar
parts. Each rule part is defined by a NAME=VALUE pair. The rule parts are separated
from each other by the SEMICOLON character. The rule parts are not
ordered in any particular sequence. Individual rule parts MUST only be specified once.
Compliant applications MUST accept rule parts ordered in any sequence, but to ensure
backward compatibility with applications that pre-date this revision of iCalendar the FREQ
rule part MUST be the first rule part specified in a RECUR value.

The FREQ rule part identifies the type of recurrence rule. This rule part MUST be specified
in the recurrence rule. Valid values include SECONDLY, to specify repeating events based
on an interval of a second or more; MINUTELY, to specify repeating events based on an
interval of a minute or more; HOURLY, to specify repeating events based on an interval of
an hour or more; DAILY, to specify repeating events based on an interval of a day or more;
WEEKLY, to specify repeating events based on an interval of a week or more; MONTHLY,
to specify repeating events based on an interval of a month or more; and YEARLY, to
specify repeating events based on an interval of a year or more.

The INTERVAL rule part contains a positive integer representing at which intervals the
recurrence rule repeats. The default value is "1", meaning every second for a SECONDLY
rule, every minute for a MINUTELY rule, every hour for an HOURLY rule, every day for a

DAILY rule, every week for a WEEKLY rule, every month for a MONTHLY rule, and every
year for a YEARLY rule. For example, within a DAILY rule, a value of "8" means every eight
days.

The UNTIL rule part defines a DATE or DATE-TIME value that bounds the recurrence rule in
an inclusive manner. If the value specified by UNTIL is synchronized with the specified
recurrence, this DATE or DATE-TIME becomes the last instance of the recurrence. The
value of the UNTIL rule part MUST have the same value type as the "DTSTART" property.
Furthermore, if the "DTSTART" property is specified as a date with local time, then the
UNTIL rule part MUST also be specified as a date with local time. If the "DTSTART"
property is specified as a date with UTC time or a date with local time and time zone
reference, then the UNTIL rule part MUST be specified as a date with UTC time. In the
case of the "STANDARD" and "DAYLIGHT" sub-components the UNTIL rule part MUST
always be specified as a date with UTC time. If specified as a DATE-TIME value, then it
MUST be specified in a UTC time format. If not present, and the COUNT rule part is also
not present, the "RRULE" is considered to repeat forever.

The COUNT rule part defines the number of occurrences at which to range-bound the
recurrence. The "DTSTART" property value always counts as the first occurrence.

The BYSECOND rule part specifies a COMMA-separated list of seconds within a minute.
Valid values are 0 to 60. The BYMINUTE rule part specifies a COMMA-separated list of
minutes within an hour. Valid values are 0 to 59. The BYHOUR rule part specifies a
COMMA- separated list of hours of the day. Valid values are 0 to 23. The BYSECOND,
BYMINUTE and BYHOUR rule parts MUST NOT be specified when the associated
"DTSTART" property has a DATE value type. These rule parts MUST be ignored in RECUR
value that violate the above requirement (e.g., generated by applications that pre-date this
revision of iCalendar).

The BYDAY rule part specifies a COMMA-separated list of days of the week; SU indicates
Sunday; MO indicates Monday; TU indicates Tuesday; WE indicates Wednesday; TH
indicates Thursday; FR indicates Friday; and SA indicates Saturday. Each BYDAY value can
also be preceded by a positive (+n) or negative (-n) integer. If present, this indicates the nth
occurrence of a specific day within the MONTHLY or YEARLY "RRULE".
For example, within a MONTHLY rule, +1MO (or simply 1MO) represents the first Monday
within the month, whereas -1MO represents the last Monday of the month. The numeric
value in a BYDAY rule part with the FREQ rule part set to YEARLY corresponds to an
offset within the month when the BYMONTH rule part is present, and corresponds to an
offset within the year when the BYWEEKNO or BYMONTH rule parts are present. If an
integer modifier is not present, it means all days of this type within the specified frequency.
For example, within a MONTHLY rule, MO represents all Mondays within the month. The
BYDAY rule part MUST NOT be specified with a numeric value when the FREQ rule part is
not set to MONTHLY or YEARLY. Furthermore, the BYDAY rule part MUST NOT be
specified with a numeric value with the FREQ rule part set to YEARLY when the

BYWEEKNO rule part is specified.

The BYMONTHDAY rule part specifies a COMMA-separated list of days of the month. Valid
values are 1 to 31 or -31 to -1. For example, -10 represents the tenth to the last day of the
month. The BYMONTHDAY rule part MUST NOT be specified when the FREQ rule part is
set to WEEKLY.

The BYYEARDAY rule part specifies a COMMA-separated list of days of the year. Valid
values are 1 to 366 or -366 to -1. For example, -1 represents the last day of the year
(December 31st) and -306 represents the 306th to the last day of the year (March 1st).
The BYYEARDAY rule part MUST NOT be specified when the FREQ rule part is set to
DAILY, WEEKLY, or MONTHLY.

The BYWEEKNO rule part specifies a COMMA-separated list of ordinals specifying weeks
of the year. Valid values are 1 to 53 or -53 to -1. This corresponds to weeks according to
week numbering as defined in [ISO.8601.2004]. A week is defined as a seven day period,
starting on the day of the week defined to be the week start (see WKST). Week number
one of the calendar year is the first week that contains at least four (4) days in that
calendar year. This rule part MUST NOT be used when the FREQ rule part is set to
anything other than YEARLY. For example, 3 represents the third week of the year.

Note: Assuming a Monday week start, week 53 can only occur when Thursday is
January 1 or if it is a leap year and Wednesday is January 1.

The BYMONTH rule part specifies a COMMA-separated list of months of the year. Valid
values are 1 to 12.

The WKST rule part specifies the day on which the workweek starts. Valid values are MO,
TU, WE, TH, FR, SA, and SU. This is significant when a WEEKLY "RRULE" has an interval
greater than 1, and a BYDAY rule part is specified. This is also significant when in a
YEARLY "RRULE" when a BYWEEKNO rule part is specified. The default value is MO.

The BYSETPOS rule part specifies a COMMA-separated list of values that corresponds to
the nth occurrence within the set of recurrence instances specified by the rule. BYSETPOS
operates on a set of recurrence instances in one interval of the recurrence rule. For
example, in a WEEKLY rule, the interval would be one week A set of recurrence instances
starts at the beginning of the interval defined by the FREQ rule part. Valid values are 1 to
366 or -366 to -1. It MUST only be used in conjunction with another BYxxx rule part. For
example "the last work day of the month" could be represented as:

FREQ=MONTHLY;BYDAY=MO,TU,WE,TH,FR;BYSETPOS=-1

Each BYSETPOS value can include a positive (+n) or negative (-n) integer. If present, this
indicates the nth occurrence of the specific occurrence within the set of occurrences
specified by the rule.

Recurrence rules may generate recurrence instances with an invalid date (e.g., February
30) or nonexistent local time (e.g., 1:30 AM on a day where the local time is moved forward
by an hour at 1:00 AM). Such recurrence instances MUST be ignored and MUST NOT be
counted as part of the recurrence set. Information, not contained in the rule, necessary to
determine the various recurrence instance start time and dates are derived from the Start
Time ("DTSTART") component attribute. For example, "FREQ=YEARLY;BYMONTH=1"
doesn't specify a specific day within the month or a time. This information would be the
same as what is specified for "DTSTART".

property Event.Resizable as EventResizableEnum
Specifies whether the user can resizes the event at runtime.

Type Description

EventResizableEnum An EventResizableEbum expression that specifies whether
an event can be resized at runtime.

BY default, the Resizable property is exResizableBoth, which indicates that the starting or
ending margins of the event can be resized at runtime. The Resizable property indicates
whether an event can be resized or what margin of the event can be resized. The
MinDate/MaxDate properties of the Event indicates the lower or upper margins where the
event can be moved. The UpdateEvent event occurs once an event is resized or moved.
The AllowResizeEvent property indicates the combination of the keys to let user resizes the
events. The UpdateEventsLabel property indicates the HTML format to be shown on the
label when the user moves the events. The UpdateEventsLabelAlign property aligns the
label being shown when the user moves the event. The
Background(exScheduleUpdateEventsBackColor) and
Background(exScheduleUpdateEventsForeColor) specifies the visual appearance of the
event being moved. The AllowCreateEvent property indicates the combination of the keys to
let user creates new events. The AllowMoveEvent property indicates the combination of the
keys to let user moves the events. The Selectable property specifies whether the event can
be selected at runtime. The Movable property specifies whether the event can be moved at
runtime.

For instance, the The AllowMoveEvent property on exDisallow, indicates that no event can
be moved at runtime.

property Event.Selectable as Boolean
Specifies whether the user can selects the event.

Type Description

Boolean A boolean expression that specifies whether an event can
be selected at runtime.

By default, the Selectable property of the Event is True. The Selectable property indicates
whether the user can select the event at runtime. The Selected property of the Event
indicates whether the current event is selected or unselected. The AllowSelectEvent
property indicates the combination of the keys to let user selects the events. The
LayoutStartChanging(exScheduleSelectionChange) event occurs once the selection in the
schedule view is about to be changed. The
LayoutEndChanging(exScheduleSelectionChange) event once the selection in the schedule
view is changed. The Selection property gets or sets a safe array of selected events. The
/NET or /WPF version provides the SelEvents property of List<Event> type to get or sets
the new selection using a collection of Event objects. The SelectEventStyle property
indicates the way the selected events are shown. The SelectEventColor property specifies
the visual appearance of the selected event. The SelectEventTextColor property specifies
the foreground color of the selected event.

The AllowCreateEvent property indicates the combination of the keys to let user creates
new events. The AllowResizeEvent property indicates the combination of the keys to let
user resizes the events. The Movable property specifies whether the event can be moved
at runtime. The Resizable property specifies whether the event can be resized at runtime.

For instance, the The AllowSelectEvent property on exDisallow, indicates that no event can
be moved at runtime.

property Event.Selected as Boolean
Selects or unselects the current event.

Type Description

Boolean A boolean expression that specifies whether an event is
selected or unselected.

By default, the Selected property of the Event is False. The Selected property indicates
whether the event is selected or unselected. The Selectable property of the Event indicates
whether the event can be selected at runtime. The AllowSelectEvent property indicates the
combination of the keys to let user selects the events. The LayoutStartChanging(
exScheduleSelectionChange) event occurs once the selection in the schedule view is about
to be changed. The LayoutEndChanging(exScheduleSelectionChange) event once the
selection in the schedule view is changed. The Selection property gets or sets a safe array
of selected events. The /NET or /WPF version provides the SelEvents property of
List<Event> type to get or sets the new selection using a collection of Event objects. The
SelectEventStyle property indicates the way the selected events are shown. The
SelectEventColor property specifies the visual appearance of the selected event. The
SelectEventTextColor property specifies the foreground color of the selected event.

The AllowCreateEvent property indicates the combination of the keys to let user creates
new events. The AllowResizeEvent property indicates the combination of the keys to let
user resizes the events. The Movable property specifies whether the event can be moved
at runtime. The Resizable property specifies whether the event can be resized at runtime.

For instance, the The AllowSelectEvent property on exDisallow, indicates that no event can
be moved at runtime.

property Event.ShortLabel as String
Specifies the short label to be displayed on the event.

Type Description

String
A string expression that specifies the extended HTML
label, to be displayed on the event's body. The images, or
any font HTML attribute is ignored.

By default, the ShortLabel property is initialized with the value of the
DefaultEventShortLabel property. The ShortLabel property is shown if the event's body is
too small. The LongLabel property is displayed only if it fits the event's body, else the
ShortLabel property is shown.. The event displays the ExtraLabel, only if the LongLabel
property is displayed. The AddEvent event occurs once a new event is added to the Events
collection. The LabelAlign property specifies the alignment of the long label. The
DefaultEventPadding property indicates the padding of the labels on the event, relative to
event's borders. The ShortLabel property displays (ignores) NO images such as , or
font HTML attributes such as , <i>, ... The KnowProperty(exEventShortLabel) is
equivalent with the ShortLabel property.

Here's a few samples:

"new", simple new text is shown.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line

"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the ShortLabel property on "Start: <%=time(%1) replace
`AM` with ``%>" displays the time when the event starts with no AM time indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.

%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements

could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.

If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string

rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Event.ShowStatus as Boolean
Specifies whether the current event shows or hides its status.

Type Description

Boolean A Boolean expression that specifies whether the event
shows its status part.

By default, the ShowStatus property is True. The ShowStatus property can be used to
show or hide the status part of a specified event. The ClearShowStatus method clears the
ShowStatus flag, if previously the ShowStatus property has been set. By default, the
ShowStatusEvent property shows or hides the status part for all events. The ShowStatus
property shows or hides the status part of giving event. Use the ClearShowStatus method
to allow the ShowStatusEvent property to display the event's status, rather than
ShowStatus property.

You can:

show the status part for all events (ShowStatusEvent on True), and use the
ShowStatus (ShowStatus on False) property to hide the status part for specified
events only.
hide the status part for all events (ShowStatusEvent on False), and use the
ShowStatus (ShowStatus on True) property to show the status part for specified
events only.

property Event.Start as Date
Specifies the starting date/time of the event.

Type Description

Date A DATE expression that specifies the lower margin of the
event

The Start property of the Event indicates the date/time when the event or the appointment
begins. The Start parameter of the Add method indicates the starting point of the event at
adding time. The End property of the event indicates the ending point of the event. The
Start and End properties may be identical if the AllDayEvent property is True. The
UpdateEvent event is fired once the Start property is changed. The Resizable property of
the Event indicates whether the user can resize the event at runtime (start, end or both).
The Movable property of the Event indicates whether the user can move the event at
runtime. You can use the MinDate/MaxDate property specifies the range of dates where the
Start/End can be shown. You can use the MoveBy method to delay the current event with a
specified value time. You can use the KnownProperty(exEventDuration) to change the
event's duration.

The KnownProperty(exEventEndDateTime) property indicates the End property on a label
property such as: DefaultEventLongLabel, DefaultEventShortLabel, CreateEventLabel,
UpdateEventsLabel, ShortLabel, LongLabel and ExtraLabel.

You can use the KnownProperty(exEventStartDate)/KnownProperty(
exEventStartTime) property to extract the starting date/time of the event.
You can use the KnownProperty(exEventEndDate)/KnownProperty(exEventEndTime)
property to extract the ending date/time of the event.
You can use the KnownProperty(exEventDuration) property to specifies the
duration/length of the event.

property Event.StartUpdateEvent as Long
Starts changing properties of the calendar-event, so EndUpdateEvent method adds
programmatically updated properties to undo/redo queue.

Type Description

Long

A Long expression that specifies the handle to be passed
to EndUpdateEvent so the updated properties of the bar
are added to the Undo/Redo queue of the chart, so they
can be used in undo/redo operations.

The StartUpdateEvent/EndUpdateEvent methods record and add changes of the current
calendar-event to the control's Undo/Redo queue. You can use the StartBlockUndoRedo /
EndBlockUndoRedo methods to group multiple Undo/Redo operations into a single-block.
The AllowUndoRedo property specifies whether the control supports undo/redo operations
for objects (calendar-events). No entry is added to the Undo/Redo queue if no property is
changed for the current calendar-event. Each call of the StartUpdateEvent must be
succeeded by a EndUpdateEvent call. The UndoListAction property lists the Undo actions
that can be performed in the chart. The RedoListAction property lists the Redo actions that
can be performed in the chart.

The StartUpdateEvent/EndUpdateEvent methods can record changes for all properties from
1 (exEventStartDateTime) to EXEVENTMAX listed by EventKnownPropertyEnum type.

The Undo/Redo records show as:

"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

within the UndoListAction/RedoListAction result.

property Event.StatusColor as Color
Specifies the color of the event's status.

Type Description

Color

A Color expression that specifies the background color to
show the status part of the event. The last 7 bits in the
high significant byte of the color to indicates the identifier
of the skin being used. Use the Add method to add new
skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the background's part.

By default, the StatusColor property is 0. By default, StatusEventColor property indicates
the color to show the event's status, while the StatusColor property is zero. The
StatusColor property indicates the color to show the status part of a specified event. The
StatusEventColor property indicates the color to show the status part of the events. The
StatusEventSize property specify the size in pixels of the event's status.

You can:

show the status part for all events (ShowStatusEvent on True), and use the
ShowStatus (ShowStatus on False) property to hide the status part for specified
events only.
hide the status part for all events (ShowStatusEvent on False), and use the
ShowStatus (ShowStatus on True) property to show the status part for specified
events only.

property Event.StatusPattern as Pattern
Specifies the pattern of the event (status)

Type Description
Pattern A Pattern object associated with the event's status.

By default, the StatusPattern.Type property exPatternEmpty which indicates that no pattern
is shown, on the event's status. The Color property indicates the color to display the
pattern. The FrameColor property indicates the color to show the frame, if the
exPatternFrame flag is included in the Type property. The EventPattern property indicates
the pattern to be shown when events belongs to different groups. The BodyPattern
property specifies the pattern to be shown on the event's body. The ShowStatusEvent
property shows or hides the status part of all events. The ShowStatus property shows or
hides the status part of giving event.

property Event.ToolTip as String
Indicates the tooltip to be shown when the cursor hovers the event.

Type Description

String
A String expression that defines the extended HTML
format to be displayed when the cursor hovers the
appointments.

By default, the ToolTip property is initialized with the value of the DefaultEventTooltip
property. The ShowToolTip method can be used during the MouseMove event to display a
custom tooltip. The ToolTipTitle property defines the title of the event's tootip. Use the
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipFont property to change the
tooltip's font.

Here's a few samples:

"new", simple new text is shown.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the ToolTip property on "Start: <%=time(%1)
replace `AM` with ``%>" displays the time when the event starts with no AM time
indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the

collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string

9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.

Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the

result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

about:blank

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Event.ToolTipTitle as String
Indicates the title of the tooltip to be shown when the cursor hovers the event.

Type Description

String A String expression that defines the title of the event's
tooltip

By default, the The ToolTipTitle property is "", which means that no title is associated with
the tooltip of the event. The ToolTip property indicates the tooltip to be shown when the
cursor hovers the event. The ToolTipTitle property defines the title of the event's tootip. The
ShowToolTip method can be used during the MouseMove event to display a custom tooltip.

property Event.UserData as Variant
Indicates any extra data associated with the Event object.

Type Description

Variant A VARIANT expression that specifies any extra data
associated with the event

By default, the UserData property is empty. You can use the UserData property to
associate any extra data to the current event. You can display the event's UserData as
string on the body of the event, if the ShortLabel, LongLabel, ExtraLabel or ToolTip
properties of the Event includes the <%=%6%> TAG. The RemoveEvent event notifies your
application once an event is removed from the Events collection. You can use the
RemoveEvent event to release any extra data that has been allocated to the event during
creation. The UserData property of the Event, or for any other object is provided to let you
associate any extra data to the object. For instance, the UserData property can hold any
event related data that is not displayed, like a primary key of an event in database.

Events object
The Events collection holds the control's events/appointments. The Events collection can be
accessed through the Events property of the control. The AddEvent event occurs once a
new event is added to the Events collection. The RemoveEvent event occurs once an event
is removed. The UpdateEvent event occurs once the margins of the event are updated.

The following screen shot shows the schedule view, which displaying the Events of the
control:

The Events collection supports the following properties and methods:

Name Description

Add Adds an Event object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific Event of the Events collection, giving its
handle.

Remove Removes a specific member from the Events collection,
giving its handle or reference.

method Events.Add (Start as Variant, End as Variant)
Adds an Event object to the collection and returns a reference to the newly created object.

Type Description

Start as Variant A DATE expressions that specifies the starting point of the
event.

End as Variant A DATE expressions that specifies the ending point of the
event.

Return Description
Event An Event object being created.

The Add method adds programmatically a new event/appointment to the control. The
AddEvent event occurs once a new event is added to the Events collection. The
UpdateEvent event occurs once the margins of the event are updated. The
LayoutStartCreating(exScheduleCreateEvent) event occurs once a new event is creating
using the mouse. The LayoutEndCreating(exScheduleCreateEvent) event occurs once the
event has been created at runtime using the mouse. The Start/End properties of the Event
indicate the margins of the appointment. The Repetitive property indicates the expression
that shows the same event repeatedly in different dates. The Selection property of the
Calendar object indicates the date being browsed in the schedule view. Use the Remove
method to remove programmatically an event from the control.

The AllowCreateEvent property indicates the combination of keys that user can use to
create a new event at runtime. The CreateEventLabel property specifies the label to be
shown when the user creates a new event. The CreateEventLabelAlign property indicates
the alignment of the label while user creates new events. The
Background(exScheduleCreateEventBackColor) and
Background(exScheduleCreateEventForeColor) properties indicate the visual aspect of the
label being shown to create new events.

The following VB sample combines the AddEvent,
LayoutStartCreating(exScheduleCreateEvent) and
LayoutEndCreating(exScheduleCreateEvent), to ask the user if he wants to keep the newly
created event, and if not, removes it:

Dim iCreatingEvent As Long

Private Sub Schedule1_AddEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
 If Not (iCreatingEvent = 0) Then
 If Not MsgBox("Do you allow creating this new event?", vbQuestion Or

vbYesNoCancel) = vbYes Then
 Schedule1.Events.Remove (Ev.Handle)
 End If
 End If
End Sub

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleCreateEvent) Then
 iCreatingEvent = iCreatingEvent + 1
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleCreateEvent) Then
 iCreatingEvent = iCreatingEvent - 1
 End If
End Sub

method Events.Clear ()
Removes all objects in a collection.

Type Description

The Clear method of the Events collection clears the events collection. In other words,
calling the Clear method erases all elements in the Events collection. The control fires the
RemoveEvent each time an event is removed, including when all events are removed, so the
RemoveEvent event is fired for each event to be removed. The Remove method removes
the specified event. The RemoveSelection method removes or erases all selected events in
the schedule view. The ClearAll method clear all objects in the control, including the events.
Any of these methods invoke calling of the RemoveEvent event. Use the GroupID property
of the Event object to move a (remove/add) an Event from a Group to another. You can
use the Events.Clear method to remove any previously event from the scheduler before
calling the LoadXML method, which does not remove any event before. You can use the
ShowEvents property to indicates whether the regular/repetitive events are shown in the
view.

property Events.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that specifies the number of events in
the schedule.

The Count property gets the number of Event objects in the Events collection. The Add
method of the Events collection adds a new event/appointment to the eXSchedule control,
so the Count property is increased. The Clear method clears all events in the collection, and
so the Count property is set on 0. The Item property access an individual element of the
collection. You can use the Remove method to remove a specific event, so the Count
property is decreased.

In order to enumerate the events we recommend using the for each statement, instead for i
- 0 to Count - 1 as in the following samples.

The following VB sample shows how you can enumerate all events in the control:

Dim e As EXSCHEDULELibCtl.Event
For Each e In Schedule1.Events
 Debug.Print "Event: " & e.Start & " to " & e.End
Next

The following VB/NET sample shows how you can enumerate all events in the control:

For Each ev As exontrol.EXSCHEDULELib.Event In Exschedule1.Events
 Debug.Print("Event: " & ev.Start.ToString() & " " & ev.End.ToString())
Next

The following C# sample shows how you can enumerate all events in the control:

foreach (exontrol.EXSCHEDULELib.Event ev in exschedule1.Events)
 System.Diagnostics.Debug.Print("Event: " + ev.Start.ToString() + " " + ev.End.ToString());

The following VFP sample shows how you can enumerate all events in the control:

*** ActiveX Control Event ***
LPARAMETERS operation
* 1 ' exCalendarSelectionChange
 If Operation = 1 Then

 local d
 For Each d In thisform.Schedule1.Calendar.Selection
 WAIT WINDOW "Select: " + TTOC(d)
 ENDFOR
 EndIf

The following C++ sample shows how you can enumerate all events in the control:

IEnumVARIANTPtr spEnum = m_spSchedule->Events->_NewEnum;
if (spEnum != NULL)
{
 spEnum->Reset();
 unsigned long n = 0;
 _variant_t vtElement;
 while(SUCCEEDED(spEnum->Next(1, &vtElement, &n)) && (n != 0))
 {
 EXSCHEDULELib::IEventPtr spEvent = V_DISPATCH(&vtElement);
 if (spEvent != NULL)
 {
 CString sMessage;
 sMessage.Format(_T("Event: %f %f\r\n"), spEvent->Start, spEvent->End);
 OutputDebugString(sMessage);
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

property Events.Item (Handle as Variant) as Event
Returns a specific Event of the Events collection, giving its handle.

Type Description

Handle as Variant

A long expression that indicates the handle of the
event. The Handle identifies unique the event, and is is
allocated by the control. The Handle property of the
event specifies the event's handle.
A double/float expression that specifies the event's
identifier. The KnownProperty(exEventID) property
specifies the event's identifier. The Handle is
automatically generated by the control, and can not
be changed, while the IDentifier can be set by the
user.

Event An Event object associated with the giving Handle.

The Item property access an individual element of the collection. The Count property gets
the number of Event objects in the Events collection. The Add method of the Events
collection adds a new event/appointment to the eXSchedule control, so the Count property
is increased. The Clear method clears all events in the collection, and so the Count property
is set on 0. You can use the Remove method to remove a specific event, so the Count
property is decreased.

The following VB sample accesses/prints the Event's user data giving its handle:

With Schedule1.Events
 Debug.Print .Item(h).UserData
End With

The following VB sample accesses/prints the Event's user data giving its identifier:

With Schedule1.Events
 Debug.Print .Item(CDbl(i)).UserData
End With

where the h and i variables are of long type as in the following statement:

Dim h As Long
Dim i As Long

Private Sub Form_Load()
 i = 100
 With Schedule1.Events.Add(#4/5/2014 10:00:00 AM#, #4/5/2014 2:00:00 PM#)
 .KnownProperty(exEventID) = i
 .UserData = "this is a bit of text associated with the event"
 h = .Handle
 End With
End Sub

Shortly, the h member is generated by the control in the Handle property (read-only), while
i member can be set by the user.

In order to enumerate the events we recommend using the for each statement, instead for i
- 0 to Count - 1 as in the following samples.

The following VB sample shows how you can enumerate all events in the control:

Dim e As EXSCHEDULELibCtl.Event
For Each e In Schedule1.Events
 Debug.Print "Event: " & e.Start & " to " & e.End
Next

The following VB/NET sample shows how you can enumerate all events in the control:

For Each ev As exontrol.EXSCHEDULELib.Event In Exschedule1.Events
 Debug.Print("Event: " & ev.Start.ToString() & " " & ev.End.ToString())
Next

The following C# sample shows how you can enumerate all events in the control:

foreach (exontrol.EXSCHEDULELib.Event ev in exschedule1.Events)
 System.Diagnostics.Debug.Print("Event: " + ev.Start.ToString() + " " + ev.End.ToString());

The following VFP sample shows how you can enumerate all events in the control:

For Each e as Object In thisform.Schedule1.Events
 LOCAL ee as Object
 ee = thisform.Schedule1.Events(e)
 WAIT WINDOW"Event " + TTOC(ee.Start) + " " + TTOC(ee.End)

ENDFOR

The following C++ sample shows how you can enumerate all events in the control:

IEnumVARIANTPtr spEnum = m_spSchedule->Events->_NewEnum;
if (spEnum != NULL)
{
 spEnum->Reset();
 unsigned long n = 0;
 _variant_t vtElement;
 while(SUCCEEDED(spEnum->Next(1, &vtElement, &n)) && (n != 0))
 {
 EXSCHEDULELib::IEventPtr spEvent = V_DISPATCH(&vtElement);
 if (spEvent != NULL)
 {
 CString sMessage;
 sMessage.Format(_T("Event: %f %f\r\n"), spEvent->Start, spEvent->End);
 OutputDebugString(sMessage);
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

method Events.Remove (Handle as Variant)
Removes a specific member from the Events collection, giving its handle or reference.

Type Description

Handle as Variant

A long expression that indicates the handle of the event.
The Handle identifies unique the event, and is is allocated
by the control. The Handle property of the event specifies
the event's handle. A double/float expression that specifies
the event's identifier. The KnownProperty(exEventID)
property specifies the event's identifier. The Handle is
automatically generated by the control, and can not be
changed, while the IDentifier can be set by the user.

The Remove method removes the specified event. The Handle property of the Event object
indicates the handle of the event to be removed. The Handle is automatically generated to
be unique for any event, and it can not be changed. In other words, the Handle indicates the
key to specify an event. You can use the UserData property of the Event to associate any
extra data with your event. If the Remove method is called during the AddEvent event, use
the Ev.Handle to remove the event. The control fires the Remove event once an Event is
being removed. You can use the Remove any extra data associated with the event. The
user can create new events using the mouse, if the AllowCreateEvent is not zero, using the
Events.Add method or loading a XML document using the LoadXML method. The
RemoveSelection method removes or erases all selected events in the schedule view. The
Clear method of the Events collection clears all events in the schedule component. The
ClearAll method clear all objects in the control, including the events. Use the GroupID
property of the Event object to move a (remove/add) an Event from a Group to another.

The following VB sample asks the user if he wants to keep the newly created event, and if
not, removes it:

Dim iCreatingEvent As Long

Private Sub Schedule1_AddEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
 If Not (iCreatingEvent = 0) Then
 If Not MsgBox("Do you allow creating this new event?", vbQuestion Or
vbYesNoCancel) = vbYes Then
 Schedule1.Events.Remove (Ev.Handle)
 End If
 End If
End Sub

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleCreateEvent) Then
 iCreatingEvent = iCreatingEvent + 1
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleCreateEvent) Then
 iCreatingEvent = iCreatingEvent - 1
 End If
End Sub

ExDataObject object
The OleDragDrop event notifies your application that the user drags some data on the
control. Defines the object that contains OLE drag and drop information. The ExDataObject
object supports the following method and properties:

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations.

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object
The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property. The OleDragDrop event notifies your
application that the user drags some data on the control. The ExDataObjectFiles object
supports the following properties and methods:

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index.
String A string value that indicates the filename.

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames,.

ExPicture object
The ExPicture object identifies an icon or a picture to be displayed using the Pictures or
ExtraPictures property of the Event object. The ExPictures collection is accessible through
the Pictures property of the control. The ExPicture object supports the following properties
and methods:

Name Description
Content Indicates the picture's content as it was previously added.

Enabled Indicates whether the picture shows as enabled or
disabled.

Height Specifies the height of the picture, in pixels.
Icon Specifies the index of the icon to be shown.
Key Indicates the key of the picture.
Picture Retrieves or sets a graphic to be displayed in the picture.

ShowHandCursor Indicates whether the hand cursor is shown if the cursor
hovers the picture.

Width Specifies the width of the picture, in pixels.

property ExPicture.Content as Variant
Indicates the picture's content as it was previously added.

Type Description

Variant
A VARIANT expression that specifies the content of the
picture, as being added by the Add method using the
Picture parameter,

The Content property indicates the content of the picture, as being added by the Add
method using the Picture parameter. This property is read-only, instead you can replace the
picture's content using the Add method, with the same key or passing a different
PictureDisp object to Picture property. The Key property indicates the key of the picture.
The Icon property indicates the index of the icon in the Images collection to be used instead
for displaying the picture object.

property ExPicture.Enabled as Boolean
Indicates whether the picture shows as enabled or disabled.

Type Description

Boolean A Boolean expression that specifies whether the containing
picture is displayed enabled or as disabled.

By default, the Enabled property is True, which makes the loaded picture to be shown as
enabled. Use the Enabled property to show the containing picture as disabled. A disabled
picture shows as grayed. The ShowHandCursor property indicates whether the hand cursor
is shown when the cursor hovers a picture in the event's body.

property ExPicture.Height as Long
Specifies the height of the picture, in pixels.

Type Description

Long A Long expression that specifies the height of the picture
to be displayed, in pixels.

The Height property is initialized with the height of the loaded picture, once the Add method
is called. You can use the Height/Width property to change the size of the picture when it is
displayed on the event's body using the Pictures and ExtraPictures properties. If using the
 HTML tag to display the pictures/icons, the pic1:32, the 32 indicates
that the size 32x32 should be used to display the image.

property ExPicture.Icon as Long
Specifies the index of the icon to be shown.

Type Description

Long A Long expression that specifies the index of the icon to
be displayed by the ExPicture object

By default, the Icon property is 0, which indicates no icon is displayed. If the Icon property
is set to a value different than zero, it indicates the index of the icon to be displayed. The
Images method of the control loads a collection of icons to be used in the control. No icon is
displayed, if the index if not valid. Once the Icon property is set, the old content of the
picture is unloaded. Setting the Icon property changes the Width and Height properties of
the ExPicture object to 16.

property ExPicture.Key as String
Indicates the key of the picture.

Type Description
String A String expression that indicates the key of the picture.

The Key property specifies the key of the picture to be displayed if included in the Pictures
or ExtraPictures property of the Event object. The Key property is read-only. You need to
remove and add a new ExPicture object, to replace the picture's key. The Key property is
being identified with the Key parameter being used once the Add method is called.

property ExPicture.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the picture.

Type Description

IPictureDisp A PictureDisp object that describes the image of the
picture to be displayed.

You can use the Picture property to replace the picture's representation, without replacing
the picture using the Add method. The Content property is read-only, instead you can
replace the picture's content using the Add method, with the same key or passing a
different PictureDisp object to Picture property. The Content property indicates the content
of the picture, as being added by the Add method using the Picture parameter. The Key
property indicates the key of the picture. The Icon property indicates the index of the icon in
the Images collection to be used instead for displaying the picture object.

property ExPicture.ShowHandCursor as Boolean
Indicates whether the hand cursor is shown if the cursor hovers the picture.

Type Description

Boolean
A Boolean expression that specifies whether the control
shows a hand cursor when the mouse is hovering the
picture.

By default, the ShowHandCursor property is True. You can use the ShowHandCursor
property to add clickable pictures to your event/appointment. The PictureClick event notifies
your application once a picture is clicked in the event's body. The PictureFromPoint property
indicates the key of the picture from the cursor. You can use the EventFromPoint property
to get the Event object from the cursor. Also, the control displays the hand cursor when the
mouse hovers an anchor element <a>.

property ExPicture.Width as Long
Specifies the width of the picture, in pixels.

Type Description

Long A Long expression that specifies the width of the picture to
be displayed, in pixels.

The Width property is initialized with the width of the loaded picture, once the Add method
is called. You can use the Height/Width property to change the size of the picture when it is
displayed on the event's body using the Pictures and ExtraPictures properties. If using the
 HTML tag to display the pictures/icons, the pic1:32, the 32 indicates
that the size 32x32 should be used to display the image.

ExPictures object
The ExPictures collection holds a collection of icons, pictures that can be displayed using
the Pictures and ExtraPictures properties of the Event object. The Images method loads
icons to the control, HTMLPicture assigns a key to a picture object. The ExPictures
collection can be accessed through the Pictures property of the control.

The control can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The ExPictures collection supports the following methods and properties:

Name Description

Add Adds a Picture object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific Picture of the Picture collection, giving
its key.

Remove Removes a specific member from the Pictures collection.

method ExPictures.Add (Key as String, Picture as Variant)
Adds a Picture object to the collection and returns a reference to the newly created object.

Type Description

Key as String
A String expression that indicates the key of the image to
be added. If Key and Picture parameters are both empty,
the Pictures collection is cleared.

Picture as Variant

The Picture expression can be one of the followings:

a long expression that specifies the index of the icon
to be displayed instead. The Images method loads
icons to the control
a string expression that indicates the path to the
picture file, being loaded, BMP, JPG, PNG, GIF and
so on/
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist no picture is
added.

Return Description

ExPicture An ExPicture object being created, that holds the picture
being loaded.

The Images method loads icons to the control, HTMLPicture assigns a key to a picture
object, and the Pictures collection handles the identifiers of the pictures that can be used in
the Pictures or ExtraPictures properties.

In order to display an icon or a picture in the control you need first to load the icons or the
pictures you plan to display, using the Images method, HTMLPicture, or Add method of the
ExPictures collection. The Images collection can display only 16x16 icons, while the
HTMLPicture, or Add method can load and display custom sized pictures. The
Width/Height property specifies the width and height of the picture to be displayed in the
event's body.

https://exontrol.com/eximages.jsp

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Pictures and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

The following samples displays a picture on the event's body:

VBA (MS Access, Excell...)

With Schedule1
 .Calendar.Selection = #5/24/2012#
 .Pictures.Add "pic1","c:\exontrol\images\zipdisk.gif"
 .Events.Add(#5/24/2012 9:00:00 AM#,#5/24/2012 2:00:00 PM#).Pictures = "pic1"
End With

VB6

With Schedule1
 .Calendar.Selection = #5/24/2012#

 .Pictures.Add "pic1","c:\exontrol\images\zipdisk.gif"
 .Events.Add(#5/24/2012 9:00:00 AM#,#5/24/2012 2:00:00 PM#).Pictures = "pic1"
End With

VB.NET

With Exschedule1
 .Calendar.Selection = #5/24/2012#
 .Pictures.Add("pic1","c:\exontrol\images\zipdisk.gif")
 .Events.Add(#5/24/2012 9:00:00 AM#,#5/24/2012 2:00:00 PM#).Pictures = "pic1"
End With

VB.NET for /COM

With AxSchedule1
 .Calendar.Selection = #5/24/2012#
 .Pictures.Add("pic1","c:\exontrol\images\zipdisk.gif")
 .Events.Add(#5/24/2012 9:00:00 AM#,#5/24/2012 2:00:00 PM#).Pictures = "pic1"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->GetCalendar()->PutSelection("5/24/2012");
spSchedule1->GetPictures()->Add(L"pic1","c:\\exontrol\\images\\zipdisk.gif");
spSchedule1->GetEvents()->Add("5/24/2012 9:00:00 AM","5/24/2012 2:00:00 PM")-
>PutPictures(L"pic1");

C++ Builder

Schedule1->Calendar->set_Selection(TVariant(TDateTime(2012,5,24).operator
double()));
Schedule1->Pictures->Add(L"pic1",TVariant("c:\\exontrol\\images\\zipdisk.gif"));
Schedule1->Events->Add(TVariant(TDateTime(2012,5,24,9,00,00,0).operator
double()),TVariant(TDateTime(2012,5,24,14,00,00,0).operator double()))->Pictures =
L"pic1";

C#

exschedule1.Calendar.Selection =
Convert.ToDateTime("5/24/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exschedule1.Pictures.Add("pic1","c:\\exontrol\\images\\zipdisk.gif");
exschedule1.Events.Add(Convert.ToDateTime("5/24/2012 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 2:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Pictures = "pic1";

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.Calendar.Selection = "5/24/2012";
 Schedule1.Pictures.Add("pic1","c:\\exontrol\\images\\zipdisk.gif");
 Schedule1.Events.Add("5/24/2012 9:00:00 AM","5/24/2012 2:00:00 PM").Pictures
= "pic1";
</SCRIPT>

C# for /COM

axSchedule1.Calendar.Selection =
Convert.ToDateTime("5/24/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
axSchedule1.Pictures.Add("pic1","c:\\exontrol\\images\\zipdisk.gif");

axSchedule1.Events.Add(Convert.ToDateTime("5/24/2012 9:00:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 2:00:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Pictures = "pic1";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Event;
 anytype var_Event;
 ;

 super();

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("5/24/2012",213)));

 exschedule1.Pictures().Add("pic1","c:\\exontrol\\images\\zipdisk.gif");
 var_Event =
COM::createFromObject(exschedule1.Events()).Add(COMVariant::createFromUtcDateTime(str2Datetime(
 9:00:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("5/24/2012
14:00:00",213))); com_Event = var_Event;
 com_Event.Pictures("pic1");
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 Calendar.Selection := '5/24/2012';
 Pictures.Add('pic1','c:\exontrol\images\zipdisk.gif');
 Events.Add('5/24/2012 9:00:00 AM','5/24/2012 2:00:00 PM').Pictures := 'pic1';
end

Delphi (standard)

with Schedule1 do
begin
 Calendar.Selection := '5/24/2012';
 Pictures.Add('pic1','c:\exontrol\images\zipdisk.gif');
 Events.Add('5/24/2012 9:00:00 AM','5/24/2012 2:00:00 PM').Pictures := 'pic1';
end

VFP

with thisform.Schedule1
 .Calendar.Selection = {^2012-5-24}
 .Pictures.Add("pic1","c:\exontrol\images\zipdisk.gif")
 .Events.Add({^2012-5-24 9:00:00},{^2012-5-24 14:00:00}).Pictures = "pic1"
endwith

dBASE Plus

local oSchedule,var_Event

oSchedule = form.Activex1.nativeObject
oSchedule.Calendar.Selection = "05/24/2012"
oSchedule.Pictures.Add("pic1","c:\exontrol\images\zipdisk.gif")
// oSchedule.Events.Add("05/24/2012 09:00:00","05/24/2012
14:00:00").Pictures = "pic1"
var_Event = oSchedule.Events.Add("05/24/2012 09:00:00","05/24/2012 14:00:00")
with (oSchedule)
 TemplateDef = [Dim var_Event]
 TemplateDef = var_Event
 Template = [var_Event.Pictures = "pic1"]
endwith

XBasic (Alpha Five)

Dim oSchedule as P
Dim var_Event as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex

oSchedule.Calendar.Selection = {05/24/2012}
oSchedule.Pictures.Add("pic1","c:\exontrol\images\zipdisk.gif")
' oSchedule.Events.Add({05/24/2012 09:00:00},{05/24/2012
14:00:00}).Pictures = "pic1"
var_Event = oSchedule.Events.Add({05/24/2012 09:00:00},{05/24/2012 14:00:00})
oSchedule.TemplateDef = "Dim var_Event"
oSchedule.TemplateDef = var_Event
oSchedule.Template = "var_Event.Pictures = \"pic1\""

Visual Objects

oDCOCX_Exontrol1:Calendar:Selection := SToD("20120524")
oDCOCX_Exontrol1:Pictures:Add("pic1","c:\exontrol\images\zipdisk.gif")
oDCOCX_Exontrol1:Events:Add(SToD("20120524 09:00:00"),SToD("20120524
14:00:00")):Pictures := "pic1"

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.Calendar.Selection = 2012-05-24
oSchedule.Pictures.Add("pic1","c:\exontrol\images\zipdisk.gif")
oSchedule.Events.Add(DateTime(2012-05-24,09:00:00),DateTime(2012-05-
24,14:00:00)).Pictures = "pic1"

method ExPictures.Clear ()
Removes all objects in a collection.

Type Description

The Clear method clears the ExPictures collection. The Clear method unloads the pictures
being added through the Add method, but does not remove or clear any Pictures or
ExtraPictures property of the Event object. The Clear method does not unload the icons
being loaded using the Images method. The Remove method of the collection removes a
specific picture from the collection. You can use the Add method, to replace an exiting
picture, when using the same key. The ShowEventPictures property indicates whether the
control displays the event's pictures associated using the Pictures or ExtraPictures
property.

property ExPictures.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that specifies the number of ExPicture
object in the ExPictures collection.

The Count property counts the number of ExPicture object in the ExPictures collection. The
Clear method clears or remove all elements in the ExPictures collection, so the Count will
be 0.

property ExPictures.Item (Key as Variant) as ExPicture
Returns a specific Picture of the Picture collection, giving its key.

Type Description

Key as Variant A string expression that specifies the key of the picture
being accessed.

ExPicture An ExPicture object being requested.

The Item property can be used to access the ExPicture object using its key. For instance,
you can use the PictureFromPoint property to get the identifier of the picture from the
cursor. Also, the PictureClick event notifies once a picture is being clicked. The Key
parameter of the PictureClick event indicates the key of the picture being clicked.

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can not display images or HTML font
attributes. If the tag is included in a <a> HTML tag, you have a clickable image
through the AnchorClick event. This option can be used to display a default icon or
picture for all events in the control using the DefaultEventLongLabel property.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Picture and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

method ExPictures.Remove (Key as Variant)
Removes a specific member from the Pictures collection.

Type Description

Key as Variant A string expression that specifies the key of the picture to
be removed.

The Remove method of the collection removes a specific picture from the collection. The
Clear method clears the ExPictures collection. The Remove/Clear method unloads the
pictures being added through the Add method, but does not remove or clear any Pictures or
ExtraPictures property of the Event object. The Clear method does not unload the icons
being loaded using the Images method. You can use the Add method, to replace an exiting
picture, when using the same key. The ShowEventPictures property indicates whether the
control displays the event's pictures associated using the Pictures or ExtraPictures
property.

Group object
A Group object holds information about the event's group. The control can display events on
different groups aligned on columns. The Add method of the Groups collection adds a new
group to the control. The GroupID property of the Event specifies the identifier of the Group
that hosts the event. The Groups collection is accessible through the Groups property of
the control.

The Group object supports the following properties and methods.

Name Description

Alignment Indicates the alignment of the caption/title of the Group
object.

CalendarHighlightEvent Gives access to the Highlight object, so you can customize
highlighting the events of this group, in the calendar panel.

Caption Specifies the HTML caption of the group.

EventBackColor Specifies the background color or the visual appearance
of the events in the same group.

EventForeColor Specifies the foreground color of the events in the same
group.

EventPattern Specifies the pattern to display the events in the same
group.

HeaderBackColor Specifies the background color or the visual appearance
of the header's group.

HeaderForeColor Specifies the foreground color of the header's group.
HeaderPattern Specifies the pattern to show the group's header
ID Gets or sets the identifier of the current group.

Index Indicates the index of the Group object in the Groups
collection.

Position Gets or sets the position of the current group.

ScheduleHighlightEvent Gives access to the Highlight object, so you can customize
highlighting the events of this group, in the schedule panel.

Title Indicates the title of the group.
ToolTip Indicates the tooltip of the group.
UserData Indicates any extra data associated with the Group object.
Visible Indicates whether the group is visible or hidden.
Width Gets or sets the width of the current group.

property Group.Alignment as ContentAlignmentEnum
Indicates the alignment of the caption/title of the Group object.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
alignment of the caption/title of the Group.

By default, the Alignment property is exTopCenter. The Alignment property is applied to
group's client area not to the group's header only. In other words, if you set the Alignment
to exBottomCenter, the group's title/caption is being displayed on the bottom of the group,
instead of the group's header. The HeaderGroupHeight property indicates the height of the
group's header relative to the control's font height. The group's header does not clip its
caption or title to the header section, to allow displaying the HTML text or pictures on the
Group's client as in the following screen shot. The Caption property indicates the HTML
caption to be displayed on the Group's header. The Title property indicates the title to be
shown when the user drop down the grouping button. The control displays Caption or Title
on the control's header based on the date's size. If the date is too small, the title may be
displayed instead caption. By default, You can resize the schedule view, by dragging the
mouse while clicking the middle mouse button.

property Group.CalendarHighlightEvent as Highlight
Gives access to the Highlight object, so you can customize highlighting the events of this
group, in the calendar panel.

Type Description
Highlight A Highlight object to customize the dates with events.

The CalendarHighlightEvent property indicates the visual aspect of the dates with events in
the same group, in the calendar panel. The CalendarHighlightEvent property has effect only,
the the GroupHighlightEvent property is True. The GroupHighlightEvent property specifies if
events are highlighted using the HighlightEvent property (False), or using the
CalendarHighlightEvent property of the Group that event belongs to. The GroupID property
indicates the identifier of the event's group. The ScheduleHighlightEvent property specifies
the visual appearance of dates with events in the schedule panel.

Using the CalendarHighlightEvent object a date with events can combine one or more of
the following options:

bold, Bold property renders as bold text
italic, Italic property renders as italic text
underline, Underline property underlines the text
strikeout, StrikeOut property shows the text with a horizontal line through its center
change the font size, FontSize property indicates the size of the font to display the
text
change the font, using the Font property
change the text's foreground color, using the ForeColor property
change the text's background color, using the BackColor property
shows a pattern using the Pattern property

The following screen shot shows the dates with events when GroupHighlightEvent property
is True:

property Group.Caption as String
Specifies the HTML caption of the group.

Type Description

String A String expression that specifies the HTML caption to be
displayed on the group's header.

By default, the Caption property is "". The Caption parameter of the Add method indicates
the caption to be shown on the group's header. At adding time, the Title property is
initialized with the Caption property with no HTML tags. You can include icons or pictures in
the group's Caption using the HTML tags. The HeaderGroupHeight property
indicates the height of the group's header relative to the control's font height. The Title
property indicates the title to be shown when the user drop down the grouping button. The
control displays Caption or Title on the control's header based on the date's size. If the date
is too small, the title may be displayed instead caption. By default, You can resize the
schedule view, by dragging the mouse while clicking the middle mouse button. The
ShortLabel, LongLabel or ExtraLabel property of the Event may display automatically the
group's Caption if the <%=%262%> tag is included in the label.

The Caption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>

about:blank

anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Group.EventBackColor as Color
Specifies the background color or the visual appearance of the events in the same group.

Type Description

Color

A Color expression that specifies the background color to
show the event's body. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

The EventBackColor property specifies the event's background color if it belongs to a
group. The ApplyGroupingColors property indicates whether the EventForeColor,
EventBackColor and EventPattern properties of the Group object are being applied to
events. The BodyBackColor property specifies the background color of the event's body.
The BodyEventBackColor property specifies the background color to show the body for all
events. The GroupID property of the Event specifies the identifier of the Group that owns
the event. The HeaderBackColor property can be used to specify a different visual
appearance of the group's header.

The control displays groups if

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

property Group.EventForeColor as Color
Specifies the foreground color of the events in the same group.

Type Description

Color A Color expression that specifies the event's foreground
color.

By default, the EventForeColor property is 0. The EventForeColor property has effect only
if it is not-zero. The EventForeColor property specifies the event's foreground color if it
belongs to a group. The BodyForeColor property specifies the foreground color to show the
labels on the event. The ApplyGroupingColors property indicates whether the
EventForeColor, EventBackColor and EventPattern, properties of the Group object are
being applied to events. The HeaderForeColor property can be used to specify a different
foreground color on the group's header.

The control displays groups if

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

property Group.EventPattern as Pattern
Specifies the pattern to display the events in the same group.

Type Description

Pattern A Pattern object that can be accessed to specify a
different pattern to be shown on events of the group.

The EventPattern property specifies the event's pattern color if it belongs to a group. The
ApplyGroupingColors property indicates whether the EventForeColor, EventBackColor and
EventPattern, properties of the Group object are being applied to events. The BodyPattern
property specifies the pattern of the event's body. The GroupID property of the Event
specifies the identifier of the Group that owns the event. The HeaderPattern property can
be used to specify a different pattern on the group's header.

The control displays groups if

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

property Group.HeaderBackColor as Color
Specifies the background color or the visual appearance of the header's group.

Type Description

Color

A Color expression that specifies the background color to
show on the group's header. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

The HeaderBackColor property specifies the background color of the group's header. The
HeaderForeColor property specifies the group's header foreground color. The
EventBackColor property specifies the colors to be applied on the events of the group. The
HeaderGroupHeight property indicates the height of the group's header relative to the
control's font height. The group's header does not clip its caption or title to the header
section, to allow displaying the HTML text or pictures on the Group's client as in the
following screen shot. The Caption property indicates the HTML caption to be displayed on
the Group's header. The Title property indicates the title to be shown when the user drop
down the grouping button. The control displays Caption or Title on the control's header
based on the date's size. If the date is too small, the title may be displayed instead caption.
By default, You can resize the schedule view, by dragging the mouse while clicking the
middle mouse button.

property Group.HeaderForeColor as Color
Specifies the foreground color of the header's group.

Type Description

Color A Color expression that specifies the foreground color to
show the caption or the group's title.

The HeaderForeColor property specifies the background color of the group's header. The
HeaderBackColor property specifies the group's header background color. The
EventForeColor property specifies the colors to be applied on the events of the group. The
HeaderGroupHeight property indicates the height of the group's header relative to the
control's font height. The group's header does not clip its caption or title to the header
section, to allow displaying the HTML text or pictures on the Group's client as in the
following screen shot. The Caption property indicates the HTML caption to be displayed on
the Group's header. The Title property indicates the title to be shown when the user drop
down the grouping button. The control displays Caption or Title on the control's header
based on the date's size. If the date is too small, the title may be displayed instead caption.
By default, You can resize the schedule view, by dragging the mouse while clicking the
middle mouse button.

property Group.HeaderPattern as Pattern
Specifies the pattern to show the group's header

Type Description

Pattern A Pattern object to specify the pattern to be shown on the
group's header.

By default, the Type property of the HeaderPattern property is exPatternEmpty which
indicates that no pattern is shown. The Type property indicates the pattern to display on the
group's header. The Color property indicates the color to display the pattern. The
FrameColor property indicates the color to show the frame, if the exPatternFrame flag is
included in the Type property. The EventPattern property gives access to the group's
Header pattern. The HeaderGroupHeight property indicates the height of the group's
header relative to the control's font height. The group's header does not clip its caption or
title to the header section, to allow displaying the HTML text or pictures on the Group's
client as in the following screen shot. The Caption property indicates the HTML caption to
be displayed on the Group's header. The Title property indicates the title to be shown when
the user drop down the grouping button. The control displays Caption or Title on the
control's header based on the date's size. If the date is too small, the title may be displayed
instead caption. By default, You can resize the schedule view, by dragging the mouse while
clicking the middle mouse button.

property Group.ID as Long
Gets or sets the identifier of the current group.

Type Description

Long A Long expression that specifies the identifier of the Group
object,

The ID property indicates the identifier of the Group. A Group object may hosts multiple
Event objects, when the GroupID for each event is the same as the ID property. The ID
parameter of the Add method indicates the ID of the Group being added. You can use the
Item property of the Groups collection to access a group giving its identifier. Use the
GroupID property of the NonworkingTime object to apply the non-working time to the
specified groups.

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

If the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime. Use the Add method of the Groups collection to add new
groups to the control.

property Group.Index as Long
Indicates the index of the Group object in the Groups collection.

Type Description

Long A Long expression that specifies the index of the Group
object in the Groups collection.

The Index property indicates the index of the Group object in the Groups collection. You can
use the ItemByIndex property of the Groups collection to access a group giving its index.
The Index and ID properties are different. The Index property goes from 0 to Count - 1,
while ID property is chosen by the user. The Index property is a read only property.

property Group.Position as Long
Gets or sets the position of the current group.

Type Description

Long

A Long expression that specifies the position of the Group
when displaying in the control. The position starts at 0, as
being the first visible, group, 1, the second visible group
and so on.

The Position property can be used to programmatically change the Group's position by
code. You can enumerate the Group as being displayed using the ItemByPos property of
Groups collection. By default, the user can change the Group's position by dragging the
Group's Header to a new position. The AllowMoveGroup property specifies the combination
of keys so user can move the Groups at runtime. The Visible property of the Group
specifies whether the Group is visible in the schedule view, and un-checked, in the drop
down grouping panel. The AllowResizeGroup property specifies whether the user can
resize a group at runtime.

property Group.ScheduleHighlightEvent as Highlight
Gives access to the Highlight object, so you can customize highlighting the events of this
group, in the schedule panel.

Type Description
Highlight A Highlight object to customize the dates with events.

The ScheduleHighlightEvent property specifies the visual appearance of dates with events in
the schedule panel. The HighlightEvent property and CalendarHighlightEvent property
highlights the dates in the calendar panel only. The ScheduleHighlightEvent property has
effect only when the schedule view is resized to the minimum (no date header is shown, no
time scale is shown, the entire year is visible).

Using the CalendarHighlightEvent object a date with events can combine one or more of
the following options:

bold, Bold property renders as bold text
italic, Italic property renders as italic text
underline, Underline property underlines the text
strikeout, StrikeOut property shows the text with a horizontal line through its center
change the font size, FontSize property indicates the size of the font to display the
text
change the font, using the Font property
change the text's foreground color, using the ForeColor property
change the text's background color, using the BackColor property
shows a pattern using the Pattern property

The following screen shot shows the dates with events of the same group (gray only):

The following screen shot shows the dates with events of the same group (red only):

The following screen shot shows the dates with events of different groups (combined):

property Group.Title as String
Indicates the title of the group.

Type Description

String
A String expression that specifies the HTML title to be
displayed on the drop down panel, when user clicks the
grouping button.

By default, the Title property is initialized with the Caption parameter of the Add method,
with no HTML tags. The Title property indicates the title to be shown when the user drop
down the grouping button. The control displays Caption or Title on the control's header
based on the date's size. If the date is too small, the title may be displayed instead caption.
By default, You can resize the schedule view, by dragging the mouse while clicking the
middle mouse button. The ShortLabel, LongLabel or ExtraLabel property of the Event may
display automatically the group's Title if the <%=%263%> tag is included in the label. The
DisplayGroupingButton property indicates whether the header of the date displays the
grouping button. The list of available groups is displayed on a drop down panel, once the
user clicks the grouping/filtering button. The drop down list shows the Title for each group
found.

property Group.ToolTip as String
Indicates the tooltip of the group.

Type Description

String A String expression that specifies the HTML tooltip to be
shown when the cursor hovers the Group's header.

By default, the ToolTip property is "", which indicates no tooltip is being shown if the cursor
hovers the group's header. The ToolTip property indicates the tooltip to be shown when the
cursor hovers the event. The ShowToolTip method can be used during the MouseMove
event to display a custom tooltip. Use the ToolTipPopDelay property specifies the period in
ms of time the ToolTip remains visible if the mouse pointer is stationary within a control. Use
the ToolTipFont property to change the tooltip's font.

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Group.UserData as Variant
Indicates any extra data associated with the Group object.

Type Description

Variant A VARIANT expression that specifies any extra data to be
associated with the group.

By default, the UserData property is empty or nothing. You can use the UserData property
to assign any extra data to your Group object.

property Group.Visible as Boolean
Indicates whether the group is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the Group is
visible or hidden in the schedule view.

By default, the Visible property is False. The Visible property of the Group specifies
whether the Group is visible in the schedule view, and un-checked, in the drop down
grouping panel. The AllowMoveGroup property specifies the combination of keys so user
can move the Groups at runtime. The AllowResizeGroup property specifies whether the
user can resize a group at runtime. The EventBackColor, EventForeColor or EventPattern
property specifies the colors to be applied on the events of the group. The
ApplyGroupingColors property indicates whether the EventForeColor, EventBackColor and
EventPattern properties of the Group object are being applied to events. You can use the
Width property to change the width of the Group by code.

The control displays groups if

ShowGroupingEvents property is True
The Groups collection has visible elements. By default, the Groups collection contains
no Group objects (Visible on True)

property Group.Width as Long
Gets or sets the width of the current group.

Type Description

Long A Long expression that specifies the width of the group, in
pixels.

By default, the schedule view splits the groups in equal parts. You can use the Width
property to change the width of the Group by code. The Visible property specifies whether
a group is shown or hidden. The Width property has no effect if the Group is not visible.
The AllowResizeGroup property indicates whether the user can change the width of the
group at runtime,

Groups object
The Groups collection holds a collection of Group objects. The control can displays events
on different columns, each column being identified as a Group. The Groups collection is
accessible through the Groups property.

The following sample shows the grouping header and the grouping panel:

The Groups collection supports the following properties and methods:

Name Description

Add Adds a Group object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific Group of the Groups collection, giving
its identifier.

ItemByIndex Returns a specific Group of the Groups collection, giving
its index.

ItemByPos Returns a specific Group of the Groups collection, giving
its position.

Remove Removes a specific member from the Groups collection.

method Groups.Add (ID as Long, Caption as String)
Adds a Group object to the collection and returns a reference to the newly created object.

Type Description

ID as Long

A Long expression that specifies the identifier of the
Group. In order to assign an event to the same group you
need to use the same identifier in the GroupID property of
the Event.

Caption as String A String expression that indicates the HTML format to be
shown on the Group's header.

Return Description
Group A Group object being created.

Use the Add method of the Groups collection to add new groups to the control. Use the
Visible property to make the group visible in the schedule panel. The DisplayGroupingButton
property indicates whether the header of the date displays the grouping button. The list of
available groups is displayed on a drop down panel, once the user clicks the
grouping/filtering button. The drop down list shows the Title for each group found. The
ShowGroupingEvents property indicates whether the control displays events grouped by its
GroupID property. The ApplyGroupingColors property specifies whether the control uses
the Group's EventBackColor / EventForeColor / EventPattern properties to show the events
in the groups. The SingleGroupingView property specifies whether the drop down panel
shows radio buttons, instead check boxes, so the user can see all groups or only one group
at the time. The GroupID property specifies the identifier of the group where the event
belongs. If the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime.

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.
The Groups collection contains visible element, or Group object with the Visible
property on True.

The following Background properties change the visual appearance of the drop down
grouping panel:

Background(exGroupingBackColor) / Background(exGroupingForeColor) changes the
background and the foreground color of the panel.

Background(exGroupingSelBackColor) / Background(exGroupingSelForeColor)
changes the background and the foreground color of the selection in the panel.
Background(exCheckBoxState0), Background(exCheckBoxState1),
Background(exCheckBoxState2) changes the visual appearance for the control's check
boxes.
Background(exRadioButtonState0), Background(exRadioButtonState1), changes the
visual appearance for the control's radio buttons.

The Description(exGroupBarAll) property changes the "(All)" predefined string, being
displayed on the top of the drop down grouping/filtering panel.

method Groups.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all Group objects in the Groups collection. The Remove method
removes a specific Group object. The ApplyGroupingColors property specifies whether the
control uses the Group's EventBackColor / EventForeColor / EventPattern properties to
show the events in the groups. The AllowMoveEventToOtherGroup property specifies
whether the user can move an event from a group to another at runtime. Use the Visible
property to show or hide a group in the schedule panel.

property Groups.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of Group
objects in the Groups collection.

The Count property counts the number of Group objects in the Groups collection. The
ItemByIndex/Count properties can be used to enumerate the Groups as they has been
added. The ItemByPos/Count properties can be used to enumerate the Groups as they
are displayed. The Visible property specifies whether a Group is visible or hidden. The
ItemByPos property gives the Group by position, no matter if it is visible or hidden. The
Item property can be used to access a Group object giving its identifier. Use the Add
method of the Groups collection to add new groups to the control. The Groups collection
supports for each statement, so you can enumerate the groups using a code like for each
g in Groups.

property Groups.Item (ID as Variant) as Group
Returns a specific Group of the Groups collection, giving its identifier.

Type Description

ID as Variant A long expression that specifies the identifier of the group
to be accessed.

Group The Group object based on its identifier.

The Item property can be used to access a Group object giving its identifier. Use the Add
method of the Groups collection to add new groups to the control. The ItemByPos/Count
properties can be used to enumerate the Groups as they are displayed. The Visible
property specifies whether a Group is visible or hidden. The ItemByPos property gives the
Group by position, no matter if it is visible or hidden. The ItemByIndex/Count properties
can be used to enumerate the Groups as they has been added. The Count property counts
the number of Group objects in the Groups collection.

property Groups.ItemByIndex (Index as Long) as Group
Returns a specific Group of the Groups collection, giving its index.

Type Description

Index as Long A long expression that specifies the index of the Group
being requested

Group A Group object being requested

The ItemByIndex/Count properties can be used to enumerate the Groups as they has been
added. The Count property counts the number of Group objects in the Groups collection.
The ItemByPos/Count properties can be used to enumerate the Groups as they are
displayed. The Visible property specifies whether a Group is visible or hidden. The
ItemByPos property gives the Group by position, no matter if it is visible or hidden. The
Item property can be used to access a Group object giving its identifier. Use the Add
method of the Groups collection to add new groups to the control.

property Groups.ItemByPos (Position as Long) as Group
Returns a specific Group of the Groups collection, giving its position.

Type Description

Position as Long A long expression that specifies the position of the Group
being requested

Group The Group object being requested

The ItemByPos/Count properties can be used to enumerate the Groups as they are
displayed. The Visible property specifies whether a Group is visible or hidden. The
ItemByPos property gives the Group by position, no matter if it is visible or hidden. The
ItemByIndex/Count properties can be used to enumerate the Groups as they has been
added. The Count property counts the number of Group objects in the Groups collection.
The Item property can be used to access a Group object giving its identifier. Use the Add
method of the Groups collection to add new groups to the control.

method Groups.Remove (ID as Variant)
Removes a specific member from the Groups collection.

Type Description

ID as Variant A Long expression that specifies the identifier of the Group
to be removed.

The Remove method removes a specific Group object. Use the Visible property to show or
hide a group in the schedule panel. The Clear method removes all Group objects in the
Groups collection. The ApplyGroupingColors property specifies whether the control uses
the Group's EventBackColor / EventForeColor / EventPattern properties to show the events
in the groups. The AllowMoveEventToOtherGroup property specifies whether the user can
move an event from a group to another at runtime.

Highlight object
The following properties uses a Highlight object:

HighlightEvent property customizes visual appearance of the events, in the calendar
panel
CalendarHighlightEvent property customizes visual appearance of the events in the
same group, in the calendar panel
ScheduleHighlightEvent property specifies the visual appearance of dates with events
in the schedule panel.

The Highlight object supports the following properties:

Name Description
BackColor Specifies the element's background color.
Bold Renders as bold text.
Font Retrieves or sets the text's font.
FontSize Indicates the size of the font to display the text.
ForeColor Specifies the element's foreground color.
Italic Renders as italic text.
Pattern Gives access to the element's Pattern object.
StrikeOut Specifies that the text should appear as strikeout.
Underline Underlines the text.

property Highlight.BackColor as Color
Specifies the element's background color.

Type Description

Color

A color expression that indicates the element's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

By default, the BackColor property is 0, which means no background color is applied to the
object. The BackColor property has effect only if a non-zero value is used. The ForeColor
property specifies the element's foreground color.

The following screen shot displays the objects with this element set:

property Highlight.Bold as Boolean
Renders as bold text.

Type Description

Boolean A boolean expression that indicates whether the element's
text shows as bold.

By default, the Bold property is True. The Bold property indicates whether the element's
text shows as bold. You can use the Font property to change the element's font, including
name, size, attributes and so on. You can use the FontSize property to display the element
with the same font of a different size.

The following screen shot displays the objects with this element set:

property Highlight.Font as IFontDisp
Retrieves or sets the text's font.

Type Description
IFontDisp A Font object to be applied to the element.

By default, the Font property is set to nothing, which means no different font is is applied to
the object. The Font property has effect only if specified a valid font. The FontSize property
specifies the size of the font, with no changing of the font face.

The following screen shot displays the objects with this element set:

property Highlight.FontSize as Long
Indicates the size of the font to display the text.

Type Description
Long A long expression that specifies the size of the font.

By default, the FontSize property is 0, which has no effect . The Font property has effect
only if specified a value different than 0. The Font property specifies a different font face to
be applied to the element.

The following screen shot displays the objects with this element set:

property Highlight.ForeColor as Color
Specifies the element's foreground color.

Type Description

Color A Color expression that indicates the foreground color to
be applied.

By default, the ForeColor property is 0. The BackColor property specifies the element's
background color or its visual appearance using the EBN objects.

The following screen shot displays the objects with this element set:

property Highlight.Italic as Boolean
Renders as italic text.

Type Description

Boolean A boolean expression that indicates whether the element's
text shows as italic.

By default, the Italic property is False. The Italic property indicates whether the element's
text shows as italic. You can use the Font property to change the element's font, including
name, size, attributes and so on. You can use the FontSize property to display the element
with the same font of a different size.

The following screen shot displays the objects with this element set:

property Highlight.Pattern as Pattern
Gives access to the element's Pattern object.

Type Description

Pattern A Pattern object that specifies the pattern to be shown on
the element.

By default, the Pattern.Type property is exPatternEmpty which indicates no pattern is
shown.

The following screen shot displays the objects with this element set:

property Highlight.StrikeOut as Boolean
Specifies that the text should appear as strikeout.

Type Description

Boolean A boolean expression that indicates whether the element's
text shows as strikeout.

By default, the StrikeOut property is False. The StrikeOut property indicates whether the
element's text shows with a line in center. You can use the Font property to change the
element's font, including name, size, attributes and so on. You can use the FontSize
property to display the element with the same font of a different size.

The following screen shot displays the objects with this element set:

property Highlight.Underline as Boolean
Underlines the text.

Type Description

Boolean A boolean expression that indicates whether the element's
text is underlined.

By default, the Underline property is False. The Underline property indicates whether the
element's text is underlined. You can use the Font property to change the element's font,
including name, size, attributes and so on. You can use the FontSize property to display the
element with the same font of a different size.

The following screen shot displays the objects with this element set:

MarkTime object
The MarkTime object indicates a line in the schedule view, at a specified time. The Add
method of MarkTimes collection adds a new timer to the schedule view. The MarkTimes
collection is accessible through the MarkTimes property of the control.

The MarkTime object, also called timer, can be used to:

show a line of different styles on the schedule view, at specified time
show a HTML label at specified time
highlights the events that intersect with the timer

A time-zone (MarkZone object) requires the Start/End to define the zone, while a timer (
MarkTime object) requires a Time, that indicates where the timer is shown.

The MarkTime object supports the following properties and methods:

Name Description

BackColor Specifies the background color or the visual appearance
of the MarkTime object.

BodyEventBackColor Specifies the background color or the visual appearance
of the events (body) that intersect the timer.

BodyEventForeColor Specifies the foreground color of the events (body) that
intersect the timer.

BodyEventPattern Specifies the pattern of the events (body) that intersect
the timer.

ForeColor Specifies the foreground color of the MarkTime object.
Key Indicates the key of the marking time.
Label Specifies the label to be displayed on the timer.
LabelAlign Indicates the alignment of the timer's label.
Line Indicates the style of the line to be shown.
LineColor Specifies the color to show the timer's line.

Movable Returns or sets a value that indicates whether the user
can click the timer and drag it to a new position.

Pattern Gives access to the element's Pattern object.

StatusEventBackColor Specifies the background color or the visual appearance
of the events (status) that intersect the timer.

StatusEventForeColor Specifies the foreground color of the events (status) that
intersect the timer.

StatusEventPattern Specifies the pattern of the events (status) that intersect
the timer.

Time Specifies the date/time of the marking time.

TimeScaleBackColor Specifies the background color or the visual appearance
of the MarkTime object, in the time scale.

TimeScaleForeColor Specifies the foreground color of the MarkTime object, in
the time scale.

TimeScaleLabel Specifies the label to be displayed on the timer, on the
time scale part.

TimeScaleLabelAlign Indicates the alignment of the timer's label, on the time
scale part.

TimeScaleLine Indicates the style of the line to be shown, on the control's
time scale.

TimeScaleLineColor Specifies the color to show the timer's line, in the time
scale.

TimeScalePattern Gives access to the element's Pattern object, being shown
in the time scale.

UserData Indicates any extra data associated with the MarkTime
object.

property MarkTime.BackColor as Color
Specifies the background color or the visual appearance of the MarkTime object.

Type Description

Color

A Color expression that specifies the background color to
show the timer. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the BackColor property is 0, which means that no effect. The BackColor
property has effect only, if set to a non-zero value. The BackColor property can be used to
display a solid color or an EBN object on the timer's background. The BackColor property is
applied to the part of the timer that shows dates section (no time scale portion of the
schedule view). The Line property indicates the line to be shown. You can use the Line
property on exNoLines to hide the timer's line. The TimeScaleBackColor property indicates
the background color to be applied on the time scale portion of the control.

The following screen shot shows a timer with a different line, using the EBN object:

property MarkTime.BodyEventBackColor as Color
Specifies the background color or the visual appearance of the events (body) that intersect
the timer.

Type Description

Color

A Color expression that specifies the background color to
show the body for the events that intersect the timer. The
last 7 bits in the high significant byte of the color to
indicates the identifier of the skin being used. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the BodyEventBackColor property is 0, which means it has no effect. The
BodyEventBackColor property has effect only if it is set on a non-zero value, and it changes
the event's body background color (BodyBackColor property) for all events that intersect
with the current timer. The StatusEventBackColor property change the event's status
background color.

The following screen shot shows the events from the timer, with a different background
color:

property MarkTime.BodyEventForeColor as Color
Specifies the foreground color of the events (body) that intersect the timer.

Type Description

Color A Color expression that specifies the foreground color to
show the body for the events that intersect the timer.

By default, the BodyEventForeColor property is 0, which means it has no effect. The
BodyEventForeColor property has effect only if it is set on a non-zero value, and it changes
the event's body foreground color (BodyForeColor property) for all events that intersect
with the current timer. The BodyEventBackColor property changes the background color for
events that intersects with the current timer. The StatusEventBackColor property change
the event's status background color.

The following screen shot shows the events from the timer, with a different foreground
color:

property MarkTime.BodyEventPattern as Pattern
Specifies the pattern of the events (body) that intersect the timer.

Type Description

Pattern
A Pattern object to specify the pattern to be displayed on
the body part of the events that intersect with the current
timer.

By default, the BodyEventPattern.Type property is exPatternEmpty which indicates that no
pattern is shown. The Type property indicates the pattern to display on the status. The
Color property indicates the color to display the pattern. The FrameColor property indicates
the color to show the frame, if the exPatternFrame flag is included in the Type property. The
BodyEventBackColor property change the event's body background color. The
StatusEventBackColor property specifies the pattern of the events (status) that intersect
the timer.

The following screen shot shows the events from the timer, with a different pattern, on the
body part:

property MarkTime.ForeColor as Color
Specifies the foreground color of the MarkTime object.

Type Description

Color A Color expression that specifies the color to show the
label of the timer.

By default, the ForeColor property is 0. The ForeColor property specifies the foreground
color to show the timer's Label. The Label property may include <fgcolor> HTML tag, which
indicates that a portion of the label is being displayed with a different foreground color. So,
if changing the timer's ForeColor is not showing any difference, please check the Label
property if it contains any color attributes like <fgcolor>, <bgcolor>. The Label property
specifies the label to be displayed on the timer. The LabelAlign property specifies the
alignment of the label. The TimeScaleForeColor property indicates the foreground color to
show the timer's TimeScaleLabel property on the time scale portion of the scheduler. You
can use the <bgcolor> HTML tag to indicate a different background color for the label.

property MarkTime.Key as String
Indicates the key of the marking time.

Type Description
String A String expression that specifies the key pf the timer.

The Key parameter of the Add method initializes the Key property of the newly created
timer. The MarkTimes collection can not contain two separate MarkTime objects with the
same key, so the key should be unique. If you need to change the timer's key you can
remove and add a new timer with a different key. The Remove method removes the
specified timer. The Item property may be used to access the timer object based on its key.
The MarkTimeFromPoint property indicates the timer from the cursor. Calling the Add
method with the same key, changes the Time property of the timer.

property MarkTime.Label as String
Specifies the label to be displayed on the timer.

Type Description

String A String expression that support extended HTML format,
to display a caption on the timer.

By default, the Label property is "", which indicates that no label or caption is displayed on
the timer (on the dates section of the schedule view). The TimeScaleLabel property
indicates the label to be displayed on the timer in the time scale section of the schedule
view. The ForeColor property indicates the color to show the label, unless the <fgcolor> is
not specified in the label property. The LabelAlign property aligns the timer's label.

Here's a few samples on how you can use the label property:

"text", an hard coded text
"<%hh%>:<%nn%>", hour and minute of the timer, in the 24-hours format
"<%loc_sdate%>
<c><%hh%>:<%nn%>" displays the timer's date on the
first line, while on the second line it displays the timer's time.

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.

<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).

<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.

<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the

about:blank

anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;

(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property MarkTime.LabelAlign as ContentAlignmentEnum
Indicates the alignment of the timer's label.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
alignment of the timer's label.

By default, the LabelAlign property is exMiddleRight. The LabelAlign property has effect
only if the Label property is not empty. The Label property indicates the caption to be
displayed on the timer. The TimeScaleLabelAlign property aligns the timer's label to be
shown in the time scale part of the schedule view.

property MarkTime.Line as LinesStyleEnum
Indicates the style of the line to be shown.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the type of the
line to be shown at specified time.

By default, the Line property is exSolidLine. The LineColor property specifies the color to
display the timer's line. The BackColor property can be used to display a solid color or an
EBN object on the timer's background. The BackColor property is applied to the part of the
timer that shows dates section (no time scale portion of the schedule view). The
TimeScaleLine property indicates the line to be shown on the time scale part of the control.

property MarkTime.LineColor as Color
Specifies the color to show the timer's line.

Type Description

Color A Color expression that specifies the color to show the
timer's line.

The LineColor property specifies the color to display the timer's line. The Line property
indicates the style of the line to be shown by the timer. The BackColor property can be
used to display a solid color or an EBN object on the timer's background. The BackColor
property is applied to the part of the timer that shows dates section (no time scale portion
of the schedule view). The TimeScaleLine property indicates the line to be shown on the
time scale part of the control.

property MarkTime.Movable as Boolean
Returns or sets a value that indicates whether the user can click the timer and drag it to a
new position.

Type Description

Boolean A Boolean expression that specifies whether the user can
move by dragging the timer at runtime.

By default, the Movable property is False. If the Movable property on True, the hand cursor
is shown when the mouse is hovering the timer object, and the user can click and drag the
timer to a new position/time. The Time property indicates the date/time to show the timer.
The AllowMoveMarkTime property indicates the keys to allow user to move timers (with
the Movable property on True). The MarkTimeFromPoint property indicates the timer from
the cursor.

In conclusion, the control supports:

fixed timers, so the user can not click and drag the timer to a new position/time, if the
Movable property is False.
movable timers, so the user can move the timer by clicking it and drag to a new
position/time, if the Movable property is True.

The LayoutStartChanging(exScheduleMoveMarkTime) event notifies once the user is about
to move a timer. The MarkTimeFromPoint property indicates the timer from the cursor. The
LayoutEndChanging(exScheduleMoveMarkTime) event notifies your application once a
MarkTime object is moved, at runtime.

The following snippet of code shows how to get notified once the user moves at runtime
the timer. The sample holds the timer from the cursor once the LayoutStartChanging(
exScheduleMoveMarkTime) event occurs, and when the LayoutEndChanging(
exScheduleMoveMarkTime) event is fired, the previously saved timer, is displayed with
the new time.

Dim mtChange As MarkTime

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleMoveMarkTime) Then
 Set mtChange = Schedule1.MarkTimeFromPoint(-1, -1)
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleMoveMarkTime) Then
 If Not (mtChange Is Nothing) Then
 Debug.Print "Timer has been moved to " & mtChange.Time
 End If
 End If
End Sub

property MarkTime.Pattern as Pattern
Gives access to the element's Pattern object.

Type Description

Pattern A Pattern object to change the pattern to be displayed on
the timer's background.

By default, the Pattern.Type property exPatternEmpty which indicates that no pattern is
shown, on the timer's background. The Color property indicates the color to display the
pattern. The FrameColor property indicates the color to show the frame, if the
exPatternFrame flag is included in the Type property. The TimeScalePattern property
indicates the pattern to be shown on the timer on the time scale section of schedule view.

property MarkTime.StatusEventBackColor as Color
Specifies the background color or the visual appearance of the events (status) that intersect
the timer.

Type Description

Color

A Color expression that specifies the background color to
show the status of the events that intersect the timer. The
last 7 bits in the high significant byte of the color to
indicates the identifier of the skin being used. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the StatusEventBackColor property is 0, which means it has no effect. The
StatusEventBackColor property has effect only if it is set on a non-zero value, and it
changes the event's status background color (StatusColor property) for all events that
intersect with the current timer. The StatusEventPattern property specifies the pattern to be
shown on the status part of the event. The BodyEventBackColor property change the
event's body background color. The ShowStatus property shows or hides the status part of
the event.

The following screen shot shows the events from the timer, with a different background
color, for the status part:

property MarkTime.StatusEventForeColor as Color
Specifies the foreground color of the events (status) that intersect the timer.

Type Description

Color A Color expression that specifies the event's foreground
color.

Currently, the StatusEventForeColor property is not supported. The StatusEventBackColor
property change the event's status background color. The BodyEventBackColor property
change the event's body background color. The ShowStatus property shows or hides the
status part of the event.

property MarkTime.StatusEventPattern as Pattern
Specifies the pattern of the events (status) that intersect the timer.

Type Description

Pattern
A Pattern object to specify the pattern to be displayed on
the status part of the events that intersect with the current
timer.

By default, the StatusEventPattern.Type property is exPatternEmpty which indicates that no
pattern is shown. The Type property indicates the pattern to display on the status. The
Color property indicates the color to display the pattern. The FrameColor property indicates
the color to show the frame, if the exPatternFrame flag is included in the Type property. The
BodyEventBackColor property change the event's body background color. The ShowStatus
property shows or hides the status part of the event.

The following screen shot shows the events from the timer, with a different pattern, on the
status part:

property MarkTime.Time as Date
Specifies the date/time of the marking time.

Type Description

Date A DATE expression that specifies the date and time where
the timer should be displayed.

The Time parameter of the Add method initializes the Time property. The Time property
indicates the date and time to display the timer, or it indicates the position in the schedule
view. You can display the timer's DATE and Time using the Label property. For instance the
Label on "<%loc_sdate%> at <%hh%>:<%nn%>", displays the timer's DATE and TIME.
The Movable property indicates whether the timer is moveable or fixed. The
AllowMoveMarkTime property indicates the keys to allow user to move timers (with the
Movable property on True). The LayoutStartChanging(exScheduleMoveMarkTime) event
notifies once the user is about to move a timer. The MarkTimeFromPoint property indicates
the timer from the cursor. The LayoutEndChanging(exScheduleMoveMarkTime) event
notifies your application once a MarkTime object is moved, at runtime.

The following snippet of code shows how to get notified once the user moves at runtime
the timer. The sample holds the timer from the cursor once the LayoutStartChanging(
exScheduleMoveMarkTime) event occurs, and when the LayoutEndChanging(
exScheduleMoveMarkTime) event is fired, the previously saved timer, is displayed with
the new time.

Dim mtChange As MarkTime

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleMoveMarkTime) Then
 Set mtChange = Schedule1.MarkTimeFromPoint(-1, -1)
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleMoveMarkTime) Then
 If Not (mtChange Is Nothing) Then
 Debug.Print "Timer has been moved to " & mtChange.Time
 End If
 End If

End Sub

property MarkTime.TimeScaleBackColor as Color
Specifies the background color or the visual appearance of the MarkTime object, in the time
scale.

Type Description

Color

A Color expression that specifies the background color to
show the timer, on the time scale part of the schedule
view. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

By default, the TimeScaleBackColor property is 0, which means that no effect. The
TimeScaleBackColor property has effect only, if set to a non-zero value. The
TimeScaleBackColor property can be used to display a solid color or an EBN object on the
timer's background. The TimeScaleBackColor property is applied on the time scale portion
of the schedule view. The TimeScaleLine property indicates the line to be shown. You can
use the TimeScaleLine property on exNoLines to hide the timer's line. The BackColor
property indicates the background color to be applied on the dates portion of the control.

The following screen shot shows a timer with a different line, using the EBN object:

property MarkTime.TimeScaleForeColor as Color
Specifies the foreground color of the MarkTime object, in the time scale.

Type Description

Color
A Color expression that specifies the color to show the
label of the timer in the time scale part of the schedule
view.

By default, the TimeScaleForeColor property is 0. The TimeScaleForeColor property
specifies the foreground color to show the timer's TimeScaleLabel. The TimeScaleLabel
property may include <fgcolor> HTML tag, which indicates that a portion of the label is
being displayed with a different foreground color. So, if changing the timer's
TimeScaleForeColor is not showing any difference, please check the TimeScaleLabel
property if it contains any color attributes like <fgcolor>, <bgcolor>. The TimeScaleLabel
property specifies the label to be displayed on the timer, in the time scale part of the
schedule view. The TimeScaleLabelAlign property specifies the alignment of the label. The
ForeColor property indicates the foreground color to show the timer's Label property. You
can use the <bgcolor> HTML tag to indicate a different background color for the label.

property MarkTime.TimeScaleLabel as String
Specifies the label to be displayed on the timer, on the time scale part.

Type Description

String A String expression that support extended HTML format,
to display a caption on the timer.

By default, the TimeScaleLabel property is "<fgcolor=FF0000><%hh%>:<%nn%>
<%AM/PM%>", which shows the hour and the minute of the timer, using the AM/PM time
indicators. The TimeScaleLabel property displays the label on the time scale portion of the
schedule view. The Label property indicates the label to be displayed on the dates part of
the control. The TimeScaleForeColor property indicates the color to show the label, unless
the <fgcolor> is not specified in the label property. The TimeScaleLabelAlign property aligns
the timer's label.

Here's a few samples on how you can use the label property:

"text", an hard coded text
"<%hh%>:<%nn%>", hour and minute of the timer, in the 24-hours format
"<%loc_sdate%>
<c><%hh%>:<%nn%>" displays the timer's date on the
first line, while on the second line it displays the timer's time.

The property supports the following TAGs:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.

<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).

<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the

current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property MarkTime.TimeScaleLabelAlign as ContentAlignmentEnum
Indicates the alignment of the timer's label, on the time scale part.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
alignment of the timer's label.

By default, the TimeScaleLabelAlign property is exMiddleCenter. The TimeScaleLabelAlign
property has effect only if the TimeScaleLabel property is not empty. The TimeScaleLabel
property indicates the caption to be displayed on the timer, in the time scale part of the
schedule view. The LabelAlign property aligns the timer's label to be shown in the dates
part of the schedule view.

property MarkTime.TimeScaleLine as LinesStyleEnum
Indicates the style of the line to be shown, on the control's time scale.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the type of the
line to be shown at specified time.

By default, the TimeScaleLine property is exSolidLine. The TimeScaleLineColor property
specifies the color to display the timer's line. The TimeScaleBackColor property can be
used to display a solid color or an EBN object on the timer's background, on the time scale
portion of the schedule view. The Line property indicates the line to be shown on the dates
part of the control.

property MarkTime.TimeScaleLineColor as Color
Specifies the color to show the timer's line, in the time scale.

Type Description

Color A Color expression that specifies the color to show the
timer's line.

The TimeScaleLineColor property specifies the color to display the timer's line. The
TimeScaleLine property indicates the style of the line to be shown by the timer. The
TimeScaleBackColor property can be used to display a solid color or an EBN object on the
timer's background. The TimeScaleBackColor property is applied to the part of the timer
that shows in time scale of the schedule section. The Line property indicates the line to be
shown on the time scale part of the control.

property MarkTime.TimeScalePattern as Pattern
Gives access to the element's Pattern object, being shown in the time scale.

Type Description

Pattern A Pattern object to change the pattern to be displayed on
the timer's background.

By default, the TimeScalePattern.Type property exPatternEmpty which indicates that no
pattern is shown, on the timer's background. The Color property indicates the color to
display the pattern. The FrameColor property indicates the color to show the frame, if the
exPatternFrame flag is included in the Type property. The Pattern property indicates the
pattern to be shown on the timer on dates section of schedule view.

property MarkTime.UserData as Variant
Indicates any extra data associated with the MarkTime object.

Type Description

Variant A VARIANT expression that specifies any extra data
associated with the timer object.

By default, the UserData property is empty or nothing. You can use the UserData property
to associate or assign any extra data to the timer. The Label property specifies the label to
be shown on the timer.

MarkTimes object
The MarkTimes collection holds MarkTime objects, also called timers. The MarkTimes
collection is accessible through the MarkTimes property of the control.

The MarkTime object, also called timer, can be used to:

show a line of different styles on the schedule view, at specified time
show a HTML label at specified time
highlights the events that intersect with the timer

The following sample shows a timer on the control:

The MarkTimes collection supports the following properties and methods:

Name Description

Add Adds a MarkTime object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific MarkTime of the MarkTimes collection,
giving its key.

Remove Removes a specific member from the MarkTimes
collection.

method MarkTimes.Add (Key as String, Time as Date)
Adds a MarkTime object to the collection and returns a reference to the newly created
object.

Type Description

Key as String
A String expression that specifies the key of the timer to
be added. Once the newly timer is created, the Key
property indicates the key of the timer.

Time as Date
A DATE expression that specifies the date/time where the
timers should be displayed. The Time property indicates
the date/time where the timer is shown.

Return Description
MarkTime A MarkTime object being created.

The Add method of MarkTimes collection adds a new timer to the schedule view. The Time
property indicates the date/time where the timer is shown. The MarkTimes collection is
accessible through the MarkTimes property of the control. The ShowMarkTime property
indicates whether the schedule view displays timers. The AllowMoveMarkTime property
indicates the keys to allow user to move timers (with the Movable property on True). The
MarkTimeFromPoint property indicates the timer from the cursor.

The MarkTime object, also called timer, can be used to:

show a line of different styles on the schedule view, at specified time
show a HTML label at specified time
highlights the events that intersect with the timer

The following screen shot shows the control's timers (red and black/blue arrow):

method MarkTimes.Clear ()
Removes all objects in a collection.

Type Description

The Clear method release all added timers. The Clear method remove all timers objects.
You can use ShowMarkTime property to show or hide the schedule's timers. The Remove
method removes a specific timer. The AllowMoveMarkTime property indicates the keys to
allow user to move timers (with the Movable property on True).

property MarkTimes.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of MarkTime
objects in the control.

The Count property gets the number of the MarkTime objects in the MarkTimes collection.
The Item property accesses a MarkTime object based on its index. The
AllowMoveMarkTime property indicates the keys to allow user to move timers (with the
Movable property on True). The MarkTimeFromPoint property indicates the timer from the
cursor. The for each statement is supported by the MarkTimes collection, so the
MarkTimes collection can be enumerated using a sample like for each mt in MarkTimes

property MarkTimes.Item (Key as Variant) as MarkTime
Returns a specific MarkTime of the MarkTimes collection, giving its key.

Type Description

Key as Variant A Key expression that indicates the key of the timer object
being requested.

MarkTime
A MarkTime object, called timer, to be requested, or
empty/nothing/NULL, if no timer with specified key has
been found.

The Item property gives the timer object based on its key. The Count property gets the
number of the MarkTime objects in the MarkTimes collection. The Add method of
MarkTimes collection adds a new timer to the schedule view, with a specified key. The
ShowMarkTime property indicates whether the schedule view displays timers. The
AllowMoveMarkTime property indicates the keys to allow user to move timers (with the
Movable property on True). The MarkTimeFromPoint property indicates the timer from the
cursor. The for each statement is supported by the MarkTimes collection, so the
MarkTimes collection can be enumerated using a sample like for each mt in MarkTimes

method MarkTimes.Remove (Key as Variant)
Removes a specific member from the MarkTimes collection.

Type Description

Key as Variant A String expression that specifies the key of the timer to
be removed.

The Remove method removes a specific timer. The Clear method remove all timers objects.
You can use ShowMarkTime property to show or hide the schedule's timers. The
AllowMoveMarkTime property indicates the keys to allow user to move timers (with the
Movable property on True). The MarkTimeFromPoint property indicates the timer from the
cursor.

MarkZone object
A MarkZone object holds information about a time-zone. A time-zone is identified by a
Start/End date time, what can be highlighted in the schedule view. The MarkZones
collection contains a collection of the MarkZone objects. The MarkZones collection is
accessible through the MarkZones property of the control.

The MarkZone object can:

show a HTML caption on a specified time-zone
highlight a time-zone with a different background, pattern and so on, to indicate a
restricted zone for instance.

A time-zone (MarkZone object) requires the Start/End to define the zone, while a timer (
MarkTime object) requires a Time, that indicates where the timer is shown.

The MarkZone object supports the following properties and methods:

Name Description

BackColor Specifies the background color or the visual appearance
of the MarkZone object.

End Specifies the ending date/time of the marking zone.
ForeColor Specifies the foreground color of the MarkZone object.

GroupID Specifies the identifier of the group where the MarkZone
object should be shown.

Key Indicates the key of the marking zone.

LongLabel Specifies the long label to be displayed on the marking
zone.

Pattern Specifies the pattern to show the MarkZone object

ShortLabel Specifies the short label to be displayed on the marking
zone.

Start Specifies the starting date/time of the marking zone.

property MarkZone.BackColor as Color
Specifies the background color or the visual appearance of the MarkZone object.

Type Description

Color

A Color expression that specifies the background color to
show the time-zone. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the BackColor property is 0, which means that no effect. The BackColor
property has effect only, if set to a non-zero value. The BackColor property can be used to
display a solid color or an EBN object on the time-zone's background. The Color property
indicates the color to display the pattern, while the Pattern. Type property is not
exPatternEmpty. The Pattern.FrameColor property indicates the color to show the frame, if
the exPatternFrame flag is included in the Pattern.Type property.

The following screen shot shows the time-zone on all groups:

property MarkZone.End as Date
Specifies the ending date/time of the marking zone.

Type Description

Date A DATE expression that specifies the ending point of the
time-zone.

The time-zone is identified on the schedule view by the Start (starting point) and End (
ending point). The End parameter of the Add method initializes the End property of the
time-zone. You can use the End property to programmatically extend the time-zone. The
Start should be less than End property, else the time-zone is not visible.

property MarkZone.ForeColor as Color
Specifies the foreground color of the MarkZone object.

Type Description

Color A Color expression that specifies the color to show the
label of the time-zone.

By default, the ForeColor property is 0. The ForeColor property specifies the foreground
color to show the time-zone's ShortLabel/LongLabel. The label property may include
<fgcolor> HTML tag, which indicates that a portion of the label is being displayed with a
different foreground color. So, if changing the time-zone's ForeColor is not showing any
difference, please check the Label property if it contains any color attributes like <fgcolor>,
<bgcolor>. The Label property specifies the label to be displayed on the time-zone.

property MarkZone.GroupID as Long
Specifies the identifier of the group where the MarkZone object should be shown.

Type Description

Long A long expression that specifies the identifier of the group
where the time-zone should be shown.

By default, the GroupID property is -1, which means that the time-zone is not assigned to
any group. Use a positive value to assign the time-zone to a specific group. Use the Add
method of the Groups collection to add new groups to the control. The
DisplayGroupingButton property indicates whether the header of the date displays the
grouping button. The list of available groups is displayed on a drop down panel, once the
user clicks the grouping/filtering button. The GroupID property specifies the identifier of the
group where the event belongs. If the control displays groups the GroupID property of the
newly created event is automatically updated with the group where the event has been
created. The AllowMoveEventToOtherGroup property specifies whether the user can move
an event from a group to another at runtime.

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.
The Groups collection contains visible groups (Visible property on True)

The following screen shot shows time-zones on different groups:

property MarkZone.Key as String
Indicates the key of the marking zone.

Type Description

String A String expression that specifies the key of the time-
zone.

The Key parameter of the Add method initializes the Key property of the newly created
time-zone. The MarkZones collection can not contain two separate MarkZone objects with
the same key, so the key should be unique. If you need to change the time-zone's key you
can remove and add a new time-zone with a different key. The Remove method removes
the specified time-zone. The Item property may be used to access the time-zone object
based on its key. The MarkZoneFromPoint property indicates the time-zone from the
cursor.

property MarkZone.LongLabel as String
Specifies the long label to be displayed on the marking zone.

Type Description

String A String expression that specifies the HTML caption to be
displayed on the time-zone.

By default, the LongLabel property is "", which indicates no caption is being displayed on
the time-zone. The time-zone may display the ShortLabel or LongLabel. The LongLabel of
the time-zone is shown if its width fits the time-zone's width, else the ShortLabel property is
displayed. The LongLabel property supports HTML format. You can use the
 HTML tag
to print the caption on multiple lines. You can use the HTML tag to display icons or
pictures on the time-zone. The ForeColor property indicates the foreground color to show
the time-zone's label, unless the <fgcolor> HTML tag is not used in the label property.

Here's a few samples on how you can use the label property:

"text", an hard coded text
"pic1
<c>text", displays the a picture on the first line, and text on the
second line.

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a

about:blank

;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color

being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of

the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property MarkZone.Pattern as Pattern
Specifies the pattern to show the MarkZone object

Type Description

Pattern A Pattern object to change the pattern to be displayed on
the time-zone's background.

By default, the Pattern.Type property exPatternHorizontal. Use the Pattern.Type property to
change the pattern to be displayed on the time-zone's background. The Color property
indicates the color to display the pattern. The FrameColor property indicates the color to
show the frame, if the exPatternFrame flag is included in the Type property.

property MarkZone.ShortLabel as String
Specifies the short label to be displayed on the marking zone.

Type Description

String A String expression that specifies the caption to be
displayed on the time-zone.

By default, the ShortLabel property is "", which indicates no caption is being displayed on
the time-zone. The time-zone may display the ShortLabel or LongLabel. The LongLabel of
the time-zone is shown if its width fits the time-zone's width, else the ShortLabel property is
displayed. The ShortLabel property displays no HTML format. The ForeColor property
indicates the foreground color to show the time-zone's label, unless the <fgcolor> HTML tag
is not used in the label property.

property MarkZone.Start as Date
Specifies the starting date/time of the marking zone.

Type Description

Date A DATE expression that specifies the starting point of the
time-zone.

The time-zone is identified on the schedule view by the Start (starting point) and End (
ending point). The Start parameter of the Add method initializes the Start property of the
time-zone. You can use the Start property to programmatically extend the time-zone. The
Start should be less than End property, else the time-zone is not visible.

MarkZones object
The MarkZones collection holds a collection of MarkZone objects, also called time-zone.

The MarkZone object can:

show a HTML/Image caption on a specified time-zone
highlight a time-zone with a different background, pattern and so on, to indicate a
restricted zone for instance.

A time-zone (MarkZone object) requires the Start/End to define the zone, while a timer (
MarkTime object) requires a Time, that indicates where the timer is shown.

The following screen shot shows a time-zone on the control:

The MarkZones collection supports the following properties and methods:

Name Description

Add Adds a MarkZone object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific MarkZone of the MarkZones collection,
giving its key.
Removes a specific member from the MarkZones

Remove collection.

method MarkZones.Add (Key as String, Start as Variant, End as Variant)
Adds a MarkZone object to the collection and returns a reference to the newly created
object.

Type Description

Key as String
A String expression that indicates the key of the time-zone
to be added. The Key property of the MarkZone object
indicates the key of the newly added time-zone.

Start as Variant
A DATE expression that specifies the starting point of the
time-zone. The Start property indicates the starting point
of the time-zone.

End as Variant
A DATE expression that specifies the ending point of the
time-zone. The End property indicates the ending point of
the time-zone.

Return Description
MarkZone A MarkZone object being added.

Use the Add method of the MarkZones collection to add a new time-zone to the control.
The Start property indicates the starting date/time of the time-zone. The End property
indicates the starting date/time of the time-zone. The MarkZones property gets the
MarkZones collection. The MarkZones collection holds a set of MarkZone objects (also
called time-zone). A MarkZone object holds information about a time-zone. A time-zone is
identified by a Start/End date time, what can be highlighted in the schedule view. The
MarkZoneFromPoint property indicates the time-zone from the cursor. The Start should be
less than End property, else the time-zone is not visible.

The MarkZone object can:

show a HTML/Image caption on a specified time-zone
highlight a time-zone with a different background, pattern and so on, to indicate a
restricted zone for instance.

A time-zone (MarkZone object) requires the Start/End to define the zone, while a timer (
MarkTime object) requires a Time, that indicates where the timer is shown.

method MarkZones.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all elements in the MarkZones collection, or clears all time-
zones. The ShowMarkZone property shows or hides the added time-zones. The Remove
method removes a specific time-zone. The MarkZoneFromPoint property indicates the time-
zone from the cursor. Use the Add method of the MarkZones collection to add a new time-
zone to the control.

property MarkZones.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of time-
zones.

The Count property indicates the number of MarkZone objects in the MarkZones collection.
The Item property gets a time-zone based on its key. The Start property indicates the
starting date/time of the time-zone. The End property indicates the starting date/time of the
time-zone. The for each statement is supported by the MarkZones collection, so the
MarkZones collection can be enumerated using a sample like for each mz in MarkZones

property MarkZones.Item (Key as Variant) as MarkZone
Returns a specific MarkZone of the MarkZones collection, giving its key.

Type Description

Key as Variant A String expression that specifies the key of the time-zone
to be accessed.

MarkZone
A MarkZone object associated with the specified key, or
empty/nothing/NULL if no time-zone associated to the
giving key.

The Item property gets a time-zone based on its key. The Count property indicates the
number of MarkZone objects in the MarkZones collection. The Start property indicates the
starting date/time of the time-zone. The End property indicates the starting date/time of the
time-zone. The for each statement is supported by the MarkZones collection, so the
MarkZones collection can be enumerated using a sample like for each mz in MarkZones

method MarkZones.Remove (Key as Variant)
Removes a specific member from the MarkZones collection.

Type Description

Key as Variant A String expression that specifies the key of the time-zone
to be removed.

The Remove method removes a specific time-zone. The MarkZoneFromPoint property
indicates the time-zone from the cursor. The ShowMarkZone property shows or hides the
added time-zones. The Clear method removes all elements in the MarkZones collection, or
clears all time-zones. Use the Add method of the MarkZones collection to add a new time-
zone to the control.

NonworkingPattern object
The NonworkingPattern object holds the colors/pattern to display a non-working time-
interval. The NonworkingTime object defines the non-working time-interval. Each
NonworkingTime object can associate a NonworkingPattern object to define the
colors/pattern to display the non-working time-interval. The ID property of
NonworkingPattern defines the identifier of the pattern/color. The IDNonworkingPattern
property of the NonworkingTime object indicates the identifier of the NonworkingPattern
object to be displayed on the non-working interval.

The NonworkingPattern object supports the following properties and methods:

Name Description
BackColor Specifies the non-working's background color.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the pattern's background using the EBN
string format.

ID Gets identifier of the current NonworkingPattern object.
Pattern Specifies the pattern to show the non-working part

property NonworkingPattern.BackColor as Color
Specifies the non-working's background color.

Type Description

Color

A Color expression that specifies the background color to
show the non-working time-interval. The last 7 bits in the
high significant byte of the color to indicates the identifier
of the skin being used. Use the Add method to add new
skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the background's part.

By default, the BackColor property is 0, which means that no effect. The BackColor
property has effect only, if set to a non-zero value. The BackColor property can be used to
display a solid color or an EBN object on the non-working time-interval's background. The
Pattern.Color property indicates the color to display the pattern, while the Pattern. Type
property is not exPatternEmpty. The Pattern.FrameColor property indicates the color to
show the frame, if the exPatternFrame flag is included in the Pattern.Type property. The
BackgroundExt property specifies additional colors, text, images that can be displayed on
the pattern's background using the EBN string format.

property NonworkingPattern.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the pattern's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is empty. Using the BackgroundExt property you
have unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the non-working time-interval's background. The BackColor property can be
used to display a solid color or an EBN object on the non-working time-interval's
background.

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]

(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BodyBackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"

https://exontrol.com/exbutton.jsp

<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

property NonworkingPattern.ID as Long
Gets identifier of the current NonworkingPattern object.

Type Description

Long A long expression that defines the identifier of the
colors/pattern to be used by a non-working time-interval.

The ID property is a a read-only property. The ID property is initialized by the ID parameter
of the Add method. The IDNonworkingPattern property of the NonworkingTime object
indicates the identifier of the NonworkingPattern object to be displayed on the non-working
interval. In order to change the ID property, you can remove the object and add a new
NonworkingPattern object using the Add method with a different identifier. The Remove
method removes a NonworkingPattern object based on identifier.

property NonworkingPattern.Pattern as Pattern
Specifies the pattern to show the non-working part

Type Description

Pattern A Pattern object that specifies the pattern to be displayed
on a non-working time-interval.

The the Pattern. Type property is initialized with the value of Type property of the Add
method. The BackColor property can be used to display a solid color or an EBN object on
the non-working time-interval's background. The Pattern.Color property indicates the color
to display the pattern, while the Pattern. Type property is not exPatternEmpty. The
Pattern.FrameColor property indicates the color to show the frame, if the exPatternFrame
flag is included in the Pattern.Type property. The BackgroundExt property specifies
additional colors, text, images that can be displayed on the pattern's background using the
EBN string format.

NonworkingPatterns object
The NonworkingPatterns collection holds a list of NonworkingPattern objects. The
NonworkingPatterns collection defines the patterns/colors to be used by non-working time
intervals. In other words, each NonworkingTime object can associate a NonworkingPattern
object that specifies the colors and the pattern to show the non-working zone. The
ShowNonworkingTime property shows or hides the defined non-working intervals. The
NonworkingTimeFromPoint property gets the non-working object from the cursor. The
NonworkingPatterns collection is accessible through the NonworkingPatterns property of the
control.

The ID property defines the identifier of the pattern/color. The IDNonworkingPattern
property indicates the identifier of the NonworkingPattern object to be displayed on the non-
working interval.

The NonworkingDays property of the calendar defines the days to be non-working in the
calendar. The NonworkingDaysPattern and the NonworkingDaysColor which defines the
pattern and the color to show the non-working days. The FirstWeekDay property indicates
the first day of the week. The Add method of the NonworkingTimes objects adds a new
non-working time interval.

The NonworkingPatterns collection supports the following properties and methods:

Name Description

Add Adds a NonworkingPattern object to the collection and
returns a reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific NonworkingPattern of the
NonworkingPatterns collection, giving its identifier.

Remove Removes a specific member from the NonworkingPatterns
collection.

method NonworkingPatterns.Add (ID as Long, Type as PatternEnum)
Adds a NonworkingPattern object to the collection and returns a reference to the newly
created object.

Type Description

ID as Long
A Long expression that defines the identifier of the
colors/pattern to be used to show a non-working time-
interval.

Type as PatternEnum A PatternEnum expression specifies the type of the
pattern to be assigned to non-working time-interval.

Return Description
NonworkingPattern A NonworkingPattern object being created.

The Add method adds a color/pattern to be displayed on a non-working time-interval. The
ID property of the NonworkingTime object defines the identifier of the pattern/color. The
IDNonworkingPattern property indicates the identifier of the NonworkingPattern object to be
displayed on the non-working interval. Each NonworkingTime object can associate a
NonworkingPattern object that specifies the colors and the pattern to show the non-working
zone. The ShowNonworkingTime property shows or hides the defined non-working intervals.
The NonworkingTimeFromPoint property gets the non-working object from the cursor. The
NonworkingPatterns collection is accessible through the NonworkingPatterns property of the
control. The Add method of the NonworkingTimes objects adds a new non-working time
interval.

The NonworkingTime's advantages are:

highlight the interval of time as non-working with a different patterns, colors.
any/all day can display different intervals of time as non-working
you can specify the non-working interval using an expression, that defines the days
where the non-working interval is shown.

method NonworkingPatterns.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all defined NonworkingPattern objects. The Remove method
removes a NonworkingPattern object based on its identifier. The Count property counts the
number of NonworkingPattern objects in the NonworkingPatterns collection. The Item
property accesses a NonworkingPattern object based on its identifier. The ID property
indicates the identifier of the NonworkingPattern object. The IDNonworkingPattern property
of the NonworkingTime object indicates the identifier of the NonworkingPattern object to be
displayed on the non-working interval.

property NonworkingPatterns.Count as Long
Returns the number of objects in a collection.

Type Description

Long
A long expression that defines the number of the
NonworkingPattern objects in the NonworkingPatterns
collection.

The Count property counts the number of NonworkingPattern objects in the
NonworkingPatterns collection. The Item property accesses a NonworkingPattern object
based on its identifier. The ID property indicates the identifier of the NonworkingPattern
object. The IDNonworkingPattern property of the NonworkingTime object indicates the
identifier of the NonworkingPattern object to be displayed on the non-working interval. The
Remove method removes a NonworkingPattern object based on its identifier. The Clear
method removes all defined NonworkingPattern objects. The for each statement is
supported by NonworkingPatterns collection, so the NonworkingPatterns collection can be
enumerated using a sample like for each nw in NonworkingPatterns

property NonworkingPatterns.Item (ID as Variant) as NonworkingPattern
Returns a specific NonworkingPattern of the NonworkingPatterns collection, giving its
identifier.

Type Description

ID as Variant A long expression that defines the identifier of the
NonworkingPattern object.

NonworkingPattern
A NonworkingPattern object associated with the giving
identifier, or empty/nothing/NULL, if no object is
associated with the specified identifier.

The Item property accesses a NonworkingPattern object based on its identifier. The Count
property counts the number of NonworkingPattern objects in the NonworkingPatterns
collection. The ID property indicates the identifier of the NonworkingPattern object. The
IDNonworkingPattern property of the NonworkingTime object indicates the identifier of the
NonworkingPattern object to be displayed on the non-working interval. The Remove method
removes a NonworkingPattern object based on its identifier. The Clear method removes all
defined NonworkingPattern objects. The for each statement is supported by
NonworkingPatterns collection, so the NonworkingPatterns collection can be enumerated
using a sample like for each nw in NonworkingPatterns

method NonworkingPatterns.Remove (ID as Variant)
Removes a specific member from the NonworkingPatterns collection.

Type Description

ID as Variant A long expression that specifies the identifier of the
NonworkingPattern object to be removed.

The Remove method removes a NonworkingPattern object based on its identifier. The
Clear method removes all defined NonworkingPattern objects. The Count property counts
the number of NonworkingPattern objects in the NonworkingPatterns collection. The Item
property accesses a NonworkingPattern object based on its identifier. The ID property
indicates the identifier of the NonworkingPattern object. The IDNonworkingPattern property
of the NonworkingTime object indicates the identifier of the NonworkingPattern object to be
displayed on the non-working interval.

NonworkingTime object
The NonworkingTime object defines the non-working time-interval. Each NonworkingTime
object can associate a NonworkingPattern object to define the colors/pattern to display the
non-working time-interval. The NonworkingPattern object holds the colors/pattern to display
a non-working time-interval. The ID property of NonworkingPattern defines the identifier of
the pattern/color. The IDNonworkingPattern property of the NonworkingTime object
indicates the identifier of the NonworkingPattern object to be displayed on the non-working
interval.

The NonworkingPattern object supports the following properties and methods:

Name Description
EndTime Indicates the end time of the non-working zone.

Expression Indicates the expression that defines the non-working
zone.

GroupID Specifies the ID of Group objects to apply the nonworking-
time.

Handle Gets handle of the NonworkingTime object.
IDNonworkingPattern Indicates the pattern to show the non-working zone.

Index Gets the index of the NonworkingTime object in its
collection.

IsValid Specifies the giving expression is valid, so the non-working
zone is applicable.

NonworkingPattern Indicates the current pattern to display the non-working
zone.

StartTime Indicates the start time of the non-working zone.

property NonworkingTime.EndTime as String
Indicates the end time of the non-working zone.

Type Description

String

A String expression that defines the time to end of the
non-working time-interval. For instance, the "08:00"
indicates the an 8 AM, while the "16:15" indicates the 8:15
PM

The EndTime property is initialized with the EndTime parameter of the Add method. The
EndTime property can be used to programmatically extends the non-working time-interval.
The StartTime/EndTime properties defines the interval of time the non-working part is
shown. The IsValid property indicates whether the non-working time-interval is valid, and so
if it is visible or hidden. The Expression property defines the expression that specifies the
days where the non-working time-interval is displayed. The IDNonworkingPattern property
specifies the identifier of the NonworkingPattern object associated with the current non-
working time-interval.

property NonworkingTime.Expression as String
Indicates the expression that defines the non-working zone.

Type Description

String A String expression that defines the formula to determine
when the non-working time-interval is displayed.

The Expression property is initialized with the Expression parameter of the Add method.
The Expression property supports the value keyword and predefined operators and
functions like explained bellow. The IsValid property indicates whether the non-working
time-interval is valid, and so if it is visible or hidden. The Expression property defines the
expression that specifies the days where the non-working time-interval is displayed. The
IDNonworkingPattern property specifies the identifier of the NonworkingPattern object
associated with the current non-working time-interval.

Here's a few samples of expressions:

"0", the non-working time-interval is hidden
"1", the non-working time-interval is shown every day
"weekday(value) = 1", the non-working time-interval is shown every Monday
"weekday(value) in (1,2) and month(value) = 6", the non-working time-interval is shown
every Monday and Tuesday, on June only.
"value in (#6/8/2012#,#6/11/2012#,#6/20/2012#)", the non-working time-interval is
shown on 6/8/2012, 6/11/2012 and 6/20/2012
"value >= #6/1/2012# and ((value - #6/1/2012#) mod 5 = 0)", the schedule view
displays the non-working time-interval starting from 6/1/2012, and shows up every 5
days
"(value >= (0:=#6/1/2012#)) and ((value - =:0) mod (1:=5) = 0) and (value-=:0) <
(3*=:1)", the schedule view displays the non-working time-interval starting from
6/1/2012, and shows up every 5 days, for 3 times You can change 6/1/2012 with your
date to indicates the starting date, changes 5 to indicate the n-occurrence and change
3 to indicate the m-times, so the event is shown every n-days for m-times.

The Expression property supports the value keyword which indicates the date being
queried, and the following predefined operators and functions.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)

- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case

(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the

expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char

17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3

to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property NonworkingTime.GroupID as Variant
Specifies the ID of Group objects to apply the nonworking-time.

Type Description

Variant

Could be a numeric expression, a string of numbers
separated by comma, or a one-dimensional safe array of
values that indicates the ID of the Group objects to apply
the current nonworking time object.

By default, the GroupID is empty, which indicates that the non-working time is applied to all
groups. The GroupID property specifies the list of groups that displays the current non-
working time. Use the GroupID property to specify a different non-working time for different
groups. The ID property of the Group object indicates the identifier of the group to be
displayed on the scheduler. Use the Add method to add new groups to the control.

property NonworkingTime.Handle as Long
Gets handle of the NonworkingTime object.

Type Description

Long A Long expression that specifies the handle of the
NonworkingTime object.

Each NonworkingTime object has assigned an unique handle, which is allocated at creating
time. The Handle property can not be changed at runtime. The Index property may be used
to identify a NonworkingTime object based on its index in the NonworkingTimes collection.
The ShowNonworkingTime property shows or hides the defined non-working intervals. The
NonworkingTimeFromPoint property gets the non-working object from the cursor. The Item
property can access a NonworkingTime object based on its handle, reference or index.

property NonworkingTime.IDNonworkingPattern as Long
Indicates the pattern to show the non-working zone.

Type Description

Long
A Long expression that defines the identifier of the
NonworkingPattern object to be displayed on the non-
working time-interval.

The IDNonworkingPattern property indicates the identifier of the NonworkingPattern object
to be displayed on the non-working interval. The ID property of NonworkingPattern defines
the identifier of the pattern/color. The NonworkingPattern property of the NonworkingTime
object gives access directly to the associated NonworkingPattern object. You can still
access the NonworkingPattern object using the Item property based on the identifier. You
can use the IDNonworkingPattern property to programmatically change the visual
appearance of the non-working time-interval.

property NonworkingTime.Index as Long
Gets the index of the NonworkingTime object in its collection.

Type Description

Long A Long expression that defines the index of the
NonworkingTime object in its collection

The Index property of the NonworkingTime object indicates the INDEX of the object within
its collection, NOT the identifier that should be used on the IDNonworkingPattern property.
The Item property can access a NonworkingTime object based on its handle, reference or
index. The Count property indicates the number of NonworkingTime object in the
NonworkingTimes collection. The for each statement is supported by the
NonworkingTimes collection, so the NonworkingTimes collection can be enumerated using a
sample like for each nw in NonworkingTimes

property NonworkingTime.IsValid as Boolean
Specifies the giving expression is valid, so the non-working zone is applicable.

Type Description

Boolean
A Boolean expression that specifies whether the
Expression of the non-working object is valid (syntactically
correct)

The IsValid property gets True, if the Expression property is syntactically correct. If the
Expression property is not valid or is syntactically incorrect, the IsValid property returns
False, The non-working time interval is visible ONLY, if the IsValid property is True. In other
words, you can use the Expression to define whether a non-working time-interval is visible
or hidden. For instance, you can add add an "A" character at the start of the Expression,
and so the expression is not valid, and so no shown. NExt, remove the "A" character in
front, and the non-working time-interval will be visible again.

property NonworkingTime.NonworkingPattern as NonworkingPattern
Indicates the current pattern to display the non-working zone.

Type Description

NonworkingPattern A NonworkingPattern object associated with the current
non-working time-interval

The NonworkingPattern property of the NonworkingTime object gives access directly to the
associated NonworkingPattern object. You can still access the NonworkingPattern object
using the Item property based on the identifier. The IDNonworkingPattern property indicates
the identifier of the NonworkingPattern object to be displayed on the non-working interval.
The ID property of NonworkingPattern defines the identifier of the pattern/color. You can
use the IDNonworkingPattern property to programmatically change the visual appearance
of the non-working time-interval.

property NonworkingTime.StartTime as String
Indicates the start time of the non-working zone.

Type Description

String

A String expression that defines the time to start of the
non-working time-interval. For instance, the "08:00"
indicates the an 8 AM, while the "16:15" indicates the 8:15
PM

The StartTime property is initialized with the StartTime parameter of the Add method. The
StartTime property can be used to programmatically extends the non-working time-interval.
The StartTime/EndTime properties defines the interval of time the non-working part is
shown. The IsValid property indicates whether the non-working time-interval is valid, and so
if it is visible or hidden. The Expression property defines the expression that specifies the
days where the non-working time-interval is displayed. The IDNonworkingPattern property
specifies the identifier of the NonworkingPattern object associated with the current non-
working time-interval.

NonworkingTimes object
The NonworkingTimes object holds a collection of NonworkingTime objects. The
NonworkingTime object indicates a time interval to be shown as non-working. Each
NonworkingTime object can associate a NonworkingPattern object that specifies the colors
and the pattern to show the non-working zone. The NonworkingTimes collection is
accessible through the NonworkingTimes property of the control. The NonworkingPatterns
collection is accessible through the NonworkingPatterns property of the control. The
NonworkingDays property of the calendar defines the days to be non-working in the
calendar. The ShowNonworkingTime property shows or hides the defined non-working
intervals.

The NonworkingTime's advantages are:

highlight the interval of time as non-working with a different patterns, colors.
any/all day can display different intervals of time as non-working
you can specify the non-working interval using an expression, that defines the days
where the non-working interval is shown.

The following screen shot shows different days with different non-working area:

The NonworkingTimes object supports the following properties and methods:

Name Description

Add Adds a NonworkingTime object to the collection and
returns a reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific NonworkingTime of the
NonworkingTimes collection, giving its handle or index.

Remove Removes a specific member from the NonworkingTimes
collection, giving its index, handle or reference.

method NonworkingTimes.Add (Expression as String, StartTime as
String, EndTime as String, IDNonworkingPattern as Long)
Adds a NonworkingTime object to the collection and returns a reference to the newly
created object.

Type Description

Expression as String

A String expression that defines the days where the non-
working time-interval is shown. For instance, the
"weekday(value) = 1" indicates that the non-working time-
interval should be displayed on Mondays . The Expression
property supports value keyword among with a lot of
operators and predefined functions.

StartTime as String
A String expression that specifies the time to start the non-
working time-interval. For instance, the "08:00" indicates
the an 8 AM, while the "16:15" indicates the 8:15 PM

EndTime as String
A String expression that specifies the time to end the non-
working time-interval. For instance, the "08:00" indicates
the an 8 AM, while the "16:15" indicates the 8:15 PM

IDNonworkingPattern as
Long

A Long expression that specifies the identifier of the
NonworkingPattern object that will be associated with the
newly created non-working time-interval

Return Description
NonworkingTime A NonworkingTime object being created.

The Add method of the NonworkingTimes objects adds a new non-working time interval.
The Expression property indicates the expression that defines the dates to include the
specified non-working interval. The IsValid property indicates whether the non-working
expression is valid, and so, if it is visible or hidden. The StartTime/EndTime property
defines the time to start/end the non-working time-zone. The ShowNonworkingTime
property shows or hides the defined non-working intervals. The NonworkingTimeFromPoint
property gets the non-working object from the cursor.

The NonworkingTimes object holds a collection of NonworkingTime objects. The
NonworkingTime object indicates a time interval to be shown as non-working. Each
NonworkingTime object can associate a NonworkingPattern object that specifies the colors
and the pattern to show the non-working zone. The NonworkingPatterns collection is
accessible through the NonworkingPatterns property of the control. The NonworkingDays
property of the calendar defines the days to be non-working in the calendar.

The NonworkingTime's advantages are:

highlight the interval of time as non-working with a different patterns, colors.
any/all day can display different intervals of time as non-working
you can specify the non-working interval using an expression, that defines the days
where the non-working interval is shown.

method NonworkingTimes.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all elements in the NonworkingTimes collection, or clears all
non-working time-intervals. The ShowNonworkingTime property shows or hides the added
non-working time-intervals. The Remove method removes a specific non-working time-zone.
The NonworkingTimeFromPoint property gets the non-working object from the cursor. The
Add method of the NonworkingTimes objects adds a new non-working time interval.

property NonworkingTimes.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long indicates the number of NonworkingTime object in
the NonworkingTimes collection

The Count property indicates the number of NonworkingTime object in the NonworkingTimes
collection. The Item property can access a NonworkingTime object based on its handle,
reference or index. The for each statement is supported by the NonworkingTimes
collection, so the NonworkingTimes collection can be enumerated using a sample like for
each nw in NonworkingTimes

property NonworkingTimes.Item (Handle as Variant) as NonworkingTime
Returns a specific NonworkingTime of the NonworkingTimes collection, giving its handle or
index.

Type Description

Handle as Variant A Long expression that specifies the index or the handle of
the NonworkingTime object being accessed.

NonworkingTime
A NonworkingTime object being requested, or
empty/nothing/NULL if no object found with associated
index of handle.

The Item property can access a NonworkingTime object based on its handle, reference or
index. The Count property indicates the number of NonworkingTime object in the
NonworkingTimes collection. The for each statement is supported by the
NonworkingTimes collection, so the NonworkingTimes collection can be enumerated using a
sample like for each nw in NonworkingTimes

method NonworkingTimes.Remove (Handle as Variant)
Removes a specific member from the NonworkingTimes collection, giving its index, handle
or reference.

Type Description

Handle as Variant
A long expression that specifies the handle or the index of
the NonworkingTime object to be removed. You can pass
also the NonworkingTime object reference to be removed.

The Remove method removes a specific non-working time-zone. The Clear method
removes all elements in the NonworkingTimes collection, or clears all non-working time-
intervals. The ShowNonworkingTime property shows or hides the added non-working time-
intervals. The NonworkingTimeFromPoint property gets the non-working object from the
cursor. The Add method of the NonworkingTimes objects adds a new non-working time
interval.

Pattern object
The Pattern object can be used to apply a pattern and a frame with different colors on an
UI element. For instance, the Calendar.HighlightEvent.Pattern property indicates the pattern
to be applied on the calendar panel for dates with events. The Event.BodyPattern property
indicates the pattern to be shown on the event's body. The Pattern object supports the
following properties:

Name Description
Color Specifies the pattern color.
FrameColor Specifies the pattern's frame color.

Type Retrieves or sets a value that indicates the pattern to fill
the element.

property Pattern.Color as Color
Specifies the pattern color.

Type Description

Color A Color expression that specifies the color to show the
pattern.

By default, the Color property is 0 (black). The Color property indicates the color to
display the pattern. The Type property indicates the type of the pattern to be shown. The
FrameColor property indicates the color to show the frame, if the exPatternFrame flag is
included in the Type property.

property Pattern.FrameColor as Color
Specifies the pattern's frame color.

Type Description

Color A Color expression that specifies the color to show the
frame.

By default, the FrameColor property is 0 (black). The FrameColor property indicates the
color to show the frame, if the exPatternFrame flag is included in the Type property. The
Type property indicates the type of the pattern to be shown. The Color property indicates
the color to display the pattern.

property Pattern.Type as PatternEnum
Retrieves or sets a value that indicates the pattern to fill the element.

Type Description

PatternEnum A PatternEnum expression that specifies the type of the
pattern to fill the element.

By default, the Type property is exPatternEmpty which indicates that no pattern is shown.
The Type property indicates the pattern to display on the element. The Color property
indicates the color to display the pattern. The FrameColor property indicates the color to
show the frame, if the exPatternFrame flag is included in the Type property.

Schedule object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {9B09E13D-7A88-4299-9DBE-383380435377}. The object's program identifier is: "Exontrol.Schedule".
The /COM object module is: "ExSchedule.dll"

The Calendar property returns the calendar panel of the schedule view. Use the
OnResizeControl property on exCalendarAutoHide, to auto hide the calendar's panel.

The following screen shot shows the control with a picture on its background (tiled):

The Schedule object supports the following properties and methods:

Name Description

AllowAllDayEventScroll Gets or sets a value that specifies whether the all-day
event header supports scrolling.

AllowCreateAllDayEvent Specifies whether the user can create all day events.

AllowCreateEvent Specifies keys combination that allows the user to create
events in the schedule view.

AllowEditEvent Specifies keys combination that allows the user to edit the
event's caption in the schedule view.

AllowExchangePanels Exchanges the panels when the user clicks the giving keys
combination and drag the panel to a new position.

AllowMoveEvent Specifies the combination of keys that allows the user to
move the event.

AllowMoveEventToOtherGroupSpecifies if the event can ve moved from a group to
another when dragging.

AllowMoveGroup Specifies the combination of keys that allows the user to
move the group.

AllowMoveMarkTime Specifies the combination of keys that allows the user to
move a mark time.

AllowMoveSchedule Specifies the combination of keys that allows the user to
move the schedule view.

AllowMoveTimeScale Specifies the combination of keys to move the control's
time scale.

AllowMultiDaysEvent Specifies whether the user can create events that may
start on a day and ends on other.

AllowRefineMoveKey
Specifies the combination of keys to refine the start and
end of events when creating, moving or resizing the
events.

AllowResizeEvent Specifies the combination of keys that allows the user to
resize the event.

AllowResizeGroup Specifies the combination of keys that allows the user to
resize the group.

AllowResizeSchedule Specifies the combination of keys that allows the user to
resize the schedule view.

AllowResizeTimeScale Specifies the combination of keys that allows the user to
resize the time scale.

AllowSelectCreateEvent Specifies whether the newly created event gets selected
or highlighted

AllowSelectEvent Specifies the combination of keys that allows the user to
select events in the schedule panel.

AllowSelectEventRect
Specifies the combination of keys that allows the user to
select events in the schedule panel, by dragging a
rectangle.

AllowToggleSchedule Toggles the schedule view when user double clicks it.

AllowToggleSelectKey Specifies the combination of keys to select multiple not-
contiguously events.

AllowUndoRedo Enables or disables the Undo/Redo feature.

AllowUpdateAllDayFlag
Indicates if the All-Day flag for the events being moved
using drop and drop are updated once the user drops the
selection.

AllowUpdateDisableZone Indicates whether the user can updates the events in the
disabled part of the schedule.

AnchorFromPoint Retrieves the identifier of the anchor from point.

Appearance Retrieves or sets the control's appearance.

ApplyGroupingColors Specifies whether the schedule view shows the events
using the colors of owner groups.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BodyEventBackColor Specifies the default visual appearance of the events.
BodyEventForeColor Specifies the default foreground color of the events.
BorderDateStyle Specifies the style to display the border for the dates.

BorderGroupStyle Specifies the style to display the border between groups
within the date.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderMonthStyle Specifies the style to display the border for the months.

BorderSelStyle Specifies the style to display the border for selected
dates.

BorderTimeScaleStyle Specifies the style to display the border for time scales.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

Calendar Gets the schedule's calendar object.

CanRedo Retrieves a value that indicates whether the surface can
perform a Redo operation.

CanUndo Retrieves a value that indicates whether the surface can
perform an Undo operation.

ClearAll Clears all control's collections, including the events.

ClipToSel Specifies whether the schedule view displays the selection
only.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.

CreateEventLabel Specifies the label to be shown while creating events.

CreateEventLabelAlign Specifies the alignment of the label to be shown while
creating events.

DataField Automatically updates / synchronizes the known property
of the event with the associated data field and reverse.

DataSource Retrieves or sets a value that indicates the data source for
object.

DateEvents Returns a safe array of Event objects in a giving date.

DateTimeFromPoint Retrieves the date/time from the cursor, in the schedule
panel.

DayEndTime Indicates the day end time.
DayStartTime Indicates the day start time.

DayViewHeight Indicates the height of the day's view in the schedule
panel.

DayViewOffsetX Indicates the horizontal scroll position of the schedule's
view.

DayViewOffsetY Indicates the vertical scroll position of the schedule's view.
DayViewWidth Indicates the width of the day's view in the schedule panel.
DefaultEventLongLabel Indicates the default long label for events.

DefaultEventPadding Returns or sets a value that indicates the padding of the
events in the control.

DefaultEventShortLabel Indicates the default short label for events.
DefaultEventTooltip Indicates the default tooltip for events.
Description Changes descriptions for control objects.

DisplayGroupingButton Gets or sets a value that indicates whether the grouping
button is displayed in the date header.

EditContextMenuItems Specifies the control's context menu, while editing the
event.

Enabled Enables or disables the control.

EndBlockUndoRedo
Ends recording the UI operations and adds the undo/redo
operations as a block, so they all can be restored at once,
if Undo method is performed.
Resumes painting the control after painting is suspended

EndUpdate by the BeginUpdate method.

EnsureVisible Ensures that the specified date fits the client area of the
schedule view.

EventFromPoint Gets the Event object from the cursor, in the schedule
panel.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

Events Gets the Events collection of the scheduler.

EventsFont Retrieves or sets the font to display the events in the
schedule view.

EventsTransparent Specifies the percent of transparency to show the events
in the schedule panel.

ExecuteTemplate Executes a template and returns the result.
FitSelToView Fits the selected dates to the current view.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

GroupFromPoint Retrieves the Group object from the cursor, in the
schedule panel.

GroupHeaderFromPoint Retrieves the Group's header from the cursor, in the
schedule panel.

GroupHighlightEvent
Highlights the date in the schedule panel using the
HighlightEvent property of each Group found on day's
events.

Groups Retrieves the Groups collection of the scheduler.

GroupUndoRedoActions Groups the next to current Undo/Redo Actions in a single
block.

HeaderAllDayEventHeight Specifies the height of the All-Day events being displayed
on the control's All-Day header.

HeaderDayHeight Indicates the height of the day's header.
HeaderDayLongLabel Specifies the long label for header days.
HeaderDayShortLabel Specifies the short label for header days.
HeaderGroupHeight Indicates the height of the group's header.

HighlightDate Highlights the specified date.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

Layout
Saves or loads the control's layout, such selection in
calendar/schedule panels, scroll bars, grouping, and so
on.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MarkTimeFromPoint Gets the MarkTime object from the cursor, in the schedule
panel.

MarkTimes Gets the MarkTimes collection of the scheduler.

MarkZoneFromPoint Retrieves the MarkZone from the cursor, in the schedule
panel.

MarkZones Retrieves the MarkZones collection of the scheduler.

NonworkingPatterns Retrieves the NonworkingPatterns collection of the
scheduler.

NonworkingTimeFromPoint Retrieves the NonworkingTime from the cursor, in the
schedule panel.

NonworkingTimes
Retrieves the NonworkingTimes collection of the
scheduler, to specify different non-working time for
different days.

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

OnResizeControl Specifies which panel is resized when the control is
resized.

PaneMinWidth Specifies the minimum width for the left or right panel.
PaneWidth Specifies the width for the left or right panel.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PictureFromPoint
Retrieves the identifier of the picture from the point (
Event.Pictures or Event.ExtraPictures).

Pictures Gets the Pictures collection of the scheduler.
Redo Redoes the next action in the surface's Redo queue.

RedoListAction Lists the Redo actions that can be performed on the
surface.

RedoRemoveAction Removes the first redo actions that can be performed on
the surface.

Refresh Refreshes the control.
RemoveSelection Removes the selected events.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

ScrollBars Returns or sets a value that determines whether the
control has horizontal and/or vertical scroll bars.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.
ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.
Indicates the number of events being selected in the

SelCount schedule panel.

SelectAll Selects all events in the control.
SelectEventColor Indicates the color to show the selected events.
SelectEventStyle Specifies the style to display the selected event.
SelectEventTextColor Indicates the color to show the text for selected events.

Selection Returns or sets a safe array of selected events in the
schedule panel.

SelEvent Gets the event being selected giving its index in the
selection.

ShowAllDayHeader Specifies whether the control shows or hides the header
for All-Day events.

ShowEventLabels Indicates whether the Label or ExtraLabel of the events
are being shown or hidden.

ShowEventPictures Indicates whether the Pictures or ExtraPictures of the
events are being shown or hidden.

ShowEvents Indicates the type of the events which schedule displays.

ShowGroupingEvents Specifies whether the schedule view shows grouped
events.

ShowHighlightDate Returns or sets a value that indicates whether the control
shows the highlighted dates.

ShowHighlightEvent Returns or sets a value that indicates whether the
schedule panel highlights days that contain events.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowMarkTime Indicates whether the schedule shows the mark times.
ShowMarkZone Indicates how the schedule panel shows the mark zones.

ShowNonworkingTime Returns or sets a value that indicates whether the
schedule panel displays nonworking time.

ShowSelectEvent Specifies whether the selected events are highlighted.

ShowStatusEvent Gets or sets a value that specifies whether the event's
status is visible or hidden.

ShowTimeScale Specifies whether the control's time scale is shown on the
schedule panel.

ShowToolTip Shows the specified tooltip at given position.

ShowViewCompact
Indicates whether the schedule view is compact, so the
first day of the month starts right after the last day of the
previously month, or start to a new row.

SingleGroupingView Indicates whether the schedule shows single or multiple
groups of events at once.

StartBlockUndoRedo Starts recording the UI operations as a block of undo/redo
operations.

StatusEventColor Indicates the default visual appearance for the event's
status.

StatusEventSize Indicates the size of the event's status.

Synchronize
Synchronizes the control' events with the records, while
the control is bounded to a recordset, using the
DataSource property.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

TimeFromPoint Retrieves the time from the cursor, in the schedule panel.

TimeScaleFont Retrieves or sets the font to display the time scales in the
schedule view.

TimeScaleFromPoint Retrieves the TimeScale object from the cursor, in the
schedule panel.

TimeScales Gets the schedule's time scales collection.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

Undo Performs the last Undo operation.

UndoListAction Lists the Undo actions that can be performed on the
surface.

UndoRedoQueueLength Gets or sets the maximum number of Undo/Redo actions
that may be stored to the surface's queue.

UndoRemoveAction Removes the last undo actions that can be performed on
the surface.

UpdateEventsLabel Specifies the label to be shown while moving or resizing
the events.

UpdateEventsLabelAlign Specifies the alignment of the label to be shown while
moving or resizing events.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
VerticalScrollWheel Indicates the distance to scroll using the mouse wheel.
VisualAppearance Retrieves the control's appearance.
VisualDesign Invokes the control's VisualAppearance designer.

property Schedule.AllowAllDayEventScroll as AllDayEventScrollEnum
Gets or sets a value that specifies whether the all-day event header supports scrolling.

Type Description

AllDayEventScrollEnum An AllDayEventScrollEnum expression that specifies
whether the all-day header supports scrolling.

By default, the AllowAllDayEventScroll property is exAllDayEventWheelScroll. The
AllowAllDayEventScroll property gets or sets a value that specifies whether the all-day
event header supports scrolling. Use the ShowAllDayHeader property to show the
schedule's All-Day header so all All-Day evens are shown on this header. The
AllowCreateAllDayEvent property has effect only when the schedule displays no time scale.
At runtime, the user can create all-day events, if the schedule view displays no time scale.
When the schedule view shows several dates (or it is resized to the minimum), so no
time scale is available, the user can create all-day events by clicking a date and dragging
the mouse to the day where the event should end. The AddEvent event is fired once the
user creates a new event. The AllDayEvent property indicates an all-day event. The
AllowSelectCreateEvent property specifies whether the newly created event gets selected
or highlighted.

property Schedule.AllowCreateAllDayEvent as Boolean
Specifies whether the user can create all day events.

Type Description

Boolean A Boolean expression that specifies whether the user can
create all-day events at runtime.

By default, the AllowCreateAllDayEvent property is True. The AllowCreateAllDayEvent
property has effect only when the schedule displays no time scale. At runtime, the user can
create all-day events, if the schedule view displays no time scale. When the schedule
view shows several dates (or it is resized to the minimum), so no time scale is available,
the user can create all-day events by clicking a date and dragging the mouse to the day
where the event should end. Use the ShowAllDayHeader property to show the schedule's
All-Day header so all All-Day evens are shown on this header. The AddEvent event is fired
once the user creates a new event. The UpdateEvent event is fired once the margins of the
event is being changed. The Start and End properties of the Event indicates the margins of
the event. The AllDayEvent property indicates an all-day event. The AllowAllDayEventScroll
property gets or sets a value that specifies whether the all-day event header supports
scrolling. The AllowSelectCreateEvent property specifies whether the newly created event
gets selected or highlighted.

 The AllowCreateEvent property specifies the keys combination that allows the user to
create events in the schedule view. The AllowMultiDaysEvent property indicates whether
the user can create events that may start on a day and ends on other. The
CreateEventLabel property indicates the HTML format to be shown on the label when the
user creates a new event. The CreateEventLabelAlign property aligns the label being shown
when the user creates a new event.

The following screen shot shows the control with no time scale (the schedule view has
been resized using the MIDDLE mouse button):

Newly created events have the AllDayEvent property on True, as the time scale is not
available

The following screen shot shows the control with time scale (the schedule view has been
resized using the MIDDLE mouse button):

Newly created events have the AllDayEvent property on False, as the time scale is shown

property Schedule.AllowCreateEvent as AllowKeysEnum
Specifies keys combination that allows the user to create events in the schedule view.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys
combination so user can create new events at runtime.

By default, the AllowCreateEvent property is exLeftClick, which indicates that the user can
press the left mouse button to start creating a new event. The AllowCreateEvent property
on exDisallow indicates that user can not creates new events. The AllowCreateEvent
property indicates the combination of the keys to let user creates new events. The
AddEvent event is fired once the user creates a new event. The AllowCreateAllDayEvent
property specifies whether the user can create all day events, at runtime. The
AllowMultiDaysEvent property indicates whether the user can create events that may start
on a day and ends on other. The AllowRefineMoveKey property specifies whether the
margins of the events being updated are aligned to minor/major rulers of the control's time
scale.

The CreateEventLabel property indicates the HTML format to be shown on the label when
the user creates a new event. The CreateEventLabelAlign property aligns the label being
shown when the user creates a new event. The AllowMoveEvent property indicates the
combination of the keys to let user moves the events. The AllowResizeEvent property
indicates the combination of the keys to let user resizes the events.

The Background(exScheduleCreateEventBackColor) and
Background(exScheduleCreateEventForeColor) specifies the visual appearance of the
event being created.

property Schedule.AllowEditEvent as AllowKeysEnum
Specifies keys combination that allows the user to edit the event's caption in the schedule
view.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys to
start inline editing.

By default, the AllowEditEvent property is exLeftClick + exDblClick, which means that the
user can double click an event so the inline editing starts. The AllowEditEvent property
specifies the combination of keys that the user can use so the event gets inline editing. The
AllowEditEvent property on exDisallow, specifies that the user can not use inline editing.
The Editable property indicates the property of the event to be edited when user double
clicks the event. The LayoutStartChanging(exScheduleEditEvent) event notifies your
application once the inline editing starts. The LayoutEndChanging(exScheduleEditEvent)
event notifies your application once the inline editing starts. You can use the
EventFromPoint(-1,-1) method during the LayoutStartChanging(exScheduleEditEvent) to
store the event from the cursor to a global member, and when LayoutEndChanging(
exScheduleEditEvent) occurs, you can use the previously stored member to identify the
event being edited.

You can specify an event being not editable, using the Editable property on exNoEditable,
or you can set the AllowEditEvent property on exDisallow, to prevent editing any of the
schedule's events.

The AllowEditEvent property uses the same keys combination as AllowToggleSchedule
property, so if you double click an event, the inline editing is performed, else if clicking
outside of the event the toggling the schedule view is performed.

property Schedule.AllowExchangePanels as AllowKeysEnum
Exchanges the panels when the user clicks the giving keys combination and drag the panel
to a new position.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys the
user can exchange the position of the calendar/schedule
view.

By default, the AllowExchangePanels property is exLeftClick + exSHIFTKey + exCTRLKey.
The AllowExchangePanels property specifies whether the user can drag and drop a panel (
calendar panel or schedule panel) to a new position/alignment. For instance, the
AllowExchangePanels allows the user to move the calendar panel to the right side of the
control at runtime, if the user clicks the calendar panel while pressing the SHIFT + CTRL
keys, and drag the mouse to the ride side of the schedule view. The OnResizeControl
property is changed once the user drags a panel to a new position. The
AllowExchangePanels property on exDisallow prevents exchanging the panels at runtime.

Also, you can use the OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

disabling the control's vertical split bar (so user can not resize the fixed panel)
(OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exDisableSplitter Or OnResizeControlEnum.exCalendarFit)

property Schedule.AllowMoveEvent as AllowKeysEnum
Specifies the combination of keys that allows the user to move the event.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies keys that
allows the user to move the events from the cursor.

By default, the AllowMoveEvent property is exLeftClick, which indicates that the user can
press the left mouse button inside an event or selection, to start moving one or more
events. The AllowMoveEvent property on exDisallow indicates that user can not move the
events. The AllowMoveEvent property indicates the combination of the keys to let user
moves the events. The Movable property of the Event indicates whether an event can be
moved at runtime. The MinDate/MaxDate properties of the Event indicates the lower or
upper margins where the event can be moved. The UpdateEvent event occurs once an
event is resized or moved. The AllowMoveEventToOtherGroup property indicates whether
an event can be moved from a group to another. The AllowRefineMoveKey property
specifies whether the margins of the events being updated are aligned to minor/major
rulers of the control's time scale.

The UpdateEventsLabel property indicates the HTML format to be shown on the label when
the user moves the events. The UpdateEventsLabelAlign property aligns the label being
shown when the user moves the event. The
Background(exScheduleUpdateEventsBackColor) and
Background(exScheduleUpdateEventsForeColor) specifies the visual appearance of the
event being moved. The AllowCreateEvent property indicates the combination of the keys to
let user creates new events. The AllowResizeEvent property indicates the combination of
the keys to let user resizes the events.

property Schedule.AllowMoveEventToOtherGroup as Boolean
Specifies if the event can ve moved from a group to another when dragging.

Type Description

Boolean A Boolean expression that specifies whether the user can
move an event from a group to another.

By default, the AllowMoveEventToOtherGroup property is True. The
AllowMoveEventToOtherGroup property has effect only, if the control displays the events by
groups (columns). The GroupID property of the Event specifies the identifier of the Group
that hosts the event. If the control displays groups the GroupID property of the newly
created event is automatically updated with the group where the event has been created.
When the user moves an event from a group to another, at runtime, the GroupID property
may be changed, and the UpdateEvent event occurs. The AllowMoveEventToOtherGroup
property on False, prevents moving events from a group to another, at runtime.

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects. Use the Add method of the Groups collection to add new groups to the
control.
The Groups collection contains visible elements (Visible on True)

property Schedule.AllowMoveGroup as AllowKeysEnum
Specifies the combination of keys that allows the user to move the group.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys to
change the Group's position at runtime.

By default, The AllowMoveGroup property is exLeftClick, which means the user can change
the Group's position by dragging the Group's Header to a new position. The Position
property can be used to programmatically change the Group's position by code. You can
enumerate the Group as being displayed using the ItemByPos property of Groups
collection. The Visible property of the Group specifies whether the Group is visible in the
schedule view, and un-checked, in the drop down grouping panel. For instance, the
AllowMoveGroup on exDisallow indicates that the user can not change the position of the
group at runtime. The AllowResizeGroup property specifies whether the user can resize a
group at runtime. The LayoutStartChanging(exScheduleMoveGroup) event occurs once the
user starts moving a group. The LayoutEndChanging(exScheduleMoveGroup) event occurs
the user moves a group.

property Schedule.AllowMoveMarkTime as AllowKeysEnum
Specifies the combination of keys that allows the user to move a mark time.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the
combination of keys the user can use so it can change the
position/time of Movable timers.

By default, the AllowMoveMarkTime property is exLeftClick, which indicates that the user
can move a timer by dragging it to a new position when clicking the left mouse button on a
timer object. The AllowMoveMarkTime property indicates the keys to allow user to move
timers (with the Movable property on True). The ShowMarkTime property indicates
whether the schedule view displays timers. The MarkTimeFromPoint property indicates the
timer from the cursor. The MarkTimes property gets a collection of MarkTime objects, also
called timers. The MarkTime object indicates a line in the schedule view, at a specified time.
The Add method of MarkTimes collection adds a new timer to the schedule view. The
MarkTimes collection is accessible through the MarkTimes property of the control.

The MarkTime object, also called timer, can be used to:

show a line of different styles on the schedule view, at specified time
show a HTML label at specified time
highlights the events that intersect with the timer

property Schedule.AllowMoveSchedule as AllowKeysEnum
Specifies the combination of keys that allows the user to move the schedule view.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can navigate the entire calendar
without selecting dates in the calendar panel.

By default, the AllowMoveSchedule property is exLeftClick + exSHIFTKey, which indicates
that the user can navigate the entire scheduler by clicking the left mouse button and
pressing the SHIFT key. The AllowMoveSchedule property allows the user to move or
navigate the schedule view to a new position, without selecting a new date in the calendar
panel. This options gives you the ability to go to neighbor view with just a click. The
AllowResizeSchedule property allows you to magnify the schedule view to view more dates
without selecting new dates in the calendar panel. The AllowExchangePanels property
allows the user to move a panel from a side to another. The
LayoutStartChanging(exScheduleMove) event occurs once the user starts navigating the
schedule view to a new position. The LayoutEndChanging(exScheduleMove) event occurs
once the user moved the schedule view to a new position. The FitSelToView method
restores the view to fit the selected dates. The ClipToSel property indicates whether the
control clips the schedule panel to view the selected dates only.

The following screen shot shows the schedule view at initial position:

The following screen shot shows the schedule view at a new position:

property Schedule.AllowMoveTimeScale as AllowKeysEnum
Specifies the combination of keys to move the control's time scale.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that indicates the keys the
user can move at runtime the time scale from a side to
another.

By default, the AllowMoveTimeScale property is exLeftClick + exSHIFTKey + exCTRLKey,
which indicates that the user can move the position of the time scale, by dragging the
mouse, if the user left clicking the mouse on the time scale and the SHIFT + CTRL keys are
pressed. The AllowMoveTimeScale property indicates the keys the user can move at
runtime the time scale from a side to another. The AlignLeft and Position properties may be
changed if the user moves the time scale position to a new side, while the
AllowMoveTimeScale property is not exDisallow (0). The AlignLeft property can be used to
programmatically change the time scale alignment. The Position property indicates the
position of the time scale as they are displayed.

The AllowMoveTimeScale property on exDisallow indicates that the user can not change the
time scale position at runtime.

property Schedule.AllowMultiDaysEvent as Boolean
Specifies whether the user can create events that may start on a day and ends on other.

Type Description

Boolean A Boolean expression that specifies whether the user can
create multiple-days event.

By default, the AllowMultiDaysEvent property is True. The AllowMultiDaysEvent property
indicates whether the user can create events that may start on a day and ends on other.
The AllowCreateAllDayEvent property specifies whether the user can create all day events,
at runtime. The AddEvent event is fired once the user creates a new event. The
UpdateEvent event is fired once the margins of the event is being changed. The Start and
End properties of the Event indicates the margins of the event. The AllowMultiDaysEvent
property on False, prevents creating events that starts in a day and ends on other.

The CreateEventLabel property indicates the HTML format to be shown on the label when
the user creates a new event. The CreateEventLabelAlign property aligns the label being
shown when the user creates a new event.

property Schedule.AllowRefineMoveKey as AllowKeysEnum
Specifies the combination of keys to refine the start and end of events when creating,
moving or resizing the events.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys that
allows the user to refine the creating, moving or resizing
the events.

By default, the AllowRefineMoveKey property is exDisallow, which means that the property
has no effect. The AllowRefineMoveKey property specifies whether the margins of the
events being updated are aligned to minor/major rulers of the control's time scale. In other
words, if the AllowRefineMoveKey property is exDisallow (by default), the margins of the
events are always aligned to the minor/major rulers of the time scale when it is updated. If
the AllowRefineMoveKey property is NOT exDisallow, the user can move, resize or create
events at arbitrary times, not necessary aligned to the minor/major rulers of the time scale.
The AllowCreateEvent property specifies the keys combination that allows the user to
create events in the schedule view. The AllowMoveEvent property indicates the combination
of the keys to let user moves the events. The AllowResizeEvent property indicates the
combination of the keys to let user resizes the events.

For instance, you can use the AllowRefineMoveKey property on exLeftClick, so the
margins of the events while updating are always arbitrary. Instead if you are using a
combination such as exLeftClick + exCTRLKey the arbitrary margins are allowed for the
updating events while the CTRL key is down, and aligned to the control's time scale(s)
when no CTRL key is pressed.

property Schedule.AllowResizeEvent as AllowKeysEnum
Specifies the combination of keys that allows the user to resize the event.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies keys that
allows the user to resize the events from the cursor.

By default, the AllowResizeEvent property is exLeftClick, which indicates that the user can
press the left mouse button on the event's lower or upper margin, to start resizing one or
more events (selection). The AllowResizeEvent property on exDisallow indicates that user
can not resize the events. The AllowResizeEvent property indicates the combination of the
keys to let user resizes the events. The Resizable property of the Event indicates whether
an event can be resized at runtime. The MinDate/MaxDate properties of the Event indicates
the lower or upper margins where the event can be resized. The UpdateEvent event occurs
once an event is resized or moved. The AllowRefineMoveKey property specifies whether
the margins of the events being updated are aligned to minor/major rulers of the control's
time scale.

The UpdateEventsLabel property indicates the HTML format to be shown on the label when
the user resizes the events. The UpdateEventsLabelAlign property aligns the label being
shown when the user resizes the event. The
Background(exScheduleUpdateEventsBackColor) and
Background(exScheduleUpdateEventsForeColor) specifies the visual appearance of the
event being moved. The AllowCreateEvent property indicates the combination of the keys to
let user creates new events. The AllowMoveEvent property indicates the combination of the
keys to let user moves the events.

property Schedule.AllowResizeGroup as AllowKeysEnum
Specifies the combination of keys that allows the user to resize the group.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys
combination so the user can resize a group.

By default, the AllowResizeGroup property is True, which means that the user can resize a
group by left clicking the area between two groups, and dragging to a new position. The
AllowResizeGroup property on exDisallow, prevents resizing the groups at runtime. The
AllowMoveGroup property specifies whether the user can move a group from one position
to another. The LayoutStartChanging(exScheduleResizeGroup) event occurs once the user
starts resizing a group. The LayoutEndChanging(exScheduleResizeGroup) event occurs
the user resizes a group. The GroupHeaderFromPoint property indicates the group from the
cursor, in the header part. You can use the Width property to change the width of the Group
by code.

property Schedule.AllowResizeSchedule as AllowKeysEnum
Specifies the combination of keys that allows the user to resize the schedule view.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can magnify or shrink (zooming)
the scheduler view.

By default, the AllowResizeSchedule property is exMiddleClick, which indicates that the
user magnify or shrink (zooming) the scheduler view if dragging the mouse while the
MIDDLE mouse button is pressed. The AllowResizeSchedule property allows the user to
magnify or shrink (zooming) the scheduler view with a click. The AllowMoveSchedule
property allows the user to move or navigate the schedule view to a new position, without
selecting a new date in the calendar panel. The AllowExchangePanels property allows the
user to move a panel from a side to another. The LayoutStartChanging(exScheduleResize)
event occurs once the user starts resizing the schedule view. The
LayoutEndChanging(exScheduleResize) event occurs once the user resized the schedule
view. The FitSelToView method restores the view to fit the selected dates. The ClipToSel
property indicates whether the control clips the schedule panel to view the selected dates
only.

The following screen shot shows the schedule view at initial position:

The following screen shot shows the schedule view being shrink:

property Schedule.AllowResizeTimeScale as AllowKeysEnum
Specifies the combination of keys that allows the user to resize the time scale.

Type Description

AllowKeysEnum An AllowKeysEnum expression that indicates the keys the
user can resize at runtime the time scale.

The AllowResizeTimeScale property indicates the keys the user can resize at runtime the
time scale. The AllowResize property may specify whether a time scale is resizable or not,
while AllowResizeTimeScale property on exDisallow may specify that no time scale can be
resized at runtime. The MinWidth property indicates the minimum width for the time scale,
and the MaxWidth indicates the maximum size of the time scale. The Width property of the
time scale indicates the width in pixels of the time scale. The LayoutStartChanging(
exScheduleResizeTimeScale) and LayoutEndChanging(exScheduleResizeTimeScale)
properties notifies your application once the user resizes a time scale. The Width property
may be changed while the user resizes the time scale.

property Schedule.AllowSelectCreateEvent as SelectCreateEventEnum
Specifies whether the newly created event gets selected or highlighted

Type Description

SelectCreateEventEnum
A SelectCreateEventEnum expression that specifies
whether the control selects or highlights the newly created
event.

By default, the AllowSelectCreateEvent property is exSelectCreateEventNone, which
means that nothing happen if the user creates a new event. The AllowSelectCreateEvent
property specifies whether the newly created event gets selected or highlighted. Use the
ShowAllDayHeader property to show the schedule's All-Day header so all All-Day evens are
shown on this header. The AllowCreateAllDayEvent property has effect only when the
schedule displays no time scale. The AllDayEvent property indicates an all-day event. You
can use the AllowSelectEvent property to change the key to allow the user select new
events or you can prevent selecting any event using exDisallow value. The SelectEventColor
/ SelectEventTextColor indicates the background / foreground colors to be applied on the
event's body when the control just highlights the event being created.

property Schedule.AllowSelectEvent as AllowKeysEnum
Specifies the combination of keys that allows the user to select events in the schedule
panel.

Type Description

AllowKeysEnum An AllowKeysEnum expression that specifies the keys to
allow the user to select events in the schedule view.

By default, the AllowSelectEvent property is exLeftClick, which means that the event gets
selected as soon as the user clicks it (using the left mouse button). You can use the
AllowSelectEvent property to change the key to allow the user select new events or you
can prevent selecting any event using exDisallow value. The
LayoutStartChanging(exScheduleSelectionChange) event occurs once the user is about to
change the selection (of events), in the schedule view. The LayoutEndChanging(
exScheduleSelectionChange) event occurs once the user changed the selection (of events
), in the schedule view. The Selectable property of the event indicates whether the event
can be selected at runtime. The Selected property of the Event indicates whether the
current event is selected or unselected. The SelectEventStyle property indicates the way
the selected events are shown. The SelectEventColor property specifies the visual
appearance of the selected event. The SelectEventTextColor property specifies the
foreground color of the selected event. The AllowSelectEventRect property indicates
whether the user can select multiple events by dragging a rectangle. The
AllowToggleSelectKey property indicates the key to be used so the user can toggle a
selected event.

The Selection property gets or sets a safe array of selected events. The /NET or /WPF
version provides the SelEvents property of List<Event> type to get or sets the new
selection using a collection of Event objects.

The AllowSelectEvent property on exDisallow specifies that no selection is allowed in the
schedule view, so no event can be selected. Use the Selectable property of the Event on
False, to specify whether the event is selectable or not .

property Schedule.AllowSelectEventRect as AllowKeysEnum
Specifies the combination of keys that allows the user to select events in the schedule
panel, by dragging a rectangle.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys to
allow the user to select events using a dragging rectangle,
in the schedule view.

By default, the AllowSelectEventRect property is exLeftClick + exALTKey, which indicates
that the user can select multiple events by dragging a rectangle if the user clicks and keeps
the ALT key pressed. You can use the AllowSelectEvent property to change the key to
allow the user select new events or you can prevent selecting any event using exDisallow
value. The LayoutStartChanging(exScheduleSelectionChange) event occurs once the user
is about to change the selection (of events), in the schedule view. The
LayoutEndChanging(exScheduleSelectionChange) event occurs once the user changed the
selection (of events), in the schedule view. The Selectable property of the event indicates
whether the event can be selected at runtime. The Selected property of the Event indicates
whether the current event is selected or unselected. The SelectEventStyle property
indicates the way the selected events are shown. The SelectEventColor property specifies
the visual appearance of the selected event. The SelectEventTextColor property specifies
the foreground color of the selected event. The AllowToggleSelectKey property indicates
the key to be used so the user can toggle a selected event.

You can do the same type of the selection in the calendar panel, by using the
AllowSelectDateRect property.

The following screen shot shows the rectangular selection, in the schedule panel:

property Schedule.AllowToggleSchedule as AllowKeysEnum
Toggles the schedule view when user double clicks it.

Type Description

AllowKeysEnum An AllowKeysEnum expression that defines the keys to
toggle the schedule view.

By default, the AllowToggleSchedule property is exLeftClick + exDblClick, which means a
double click will toggle the schedule view. The AllowEditEvent property uses the same keys
combination as AllowToggleSchedule property, so if you double click an event, the inline
editing is performed, else if clicking outside of the event the toggling the schedule view is
performed. By toggling the schedule view we mean that for instance, if you select the entire
month to be viewed, a double click on a date will bring the date to be shown on the
schedule view, and the next double click will restore the month view. You can specify an
event being not editable, using the Editable property on exNoEditable, or you can set the
AllowEditEvent property on exDisallow, to prevent editing any of the schedule's events.

property Schedule.AllowToggleSelectKey as AllowKeysEnum
Specifies the combination of keys to select multiple not-contiguously events.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys to
allow the user to select/unselect an event, in the schedule
view

By default, the AllowToggleSelectKey property is exCTRLKey, which indicates that the user
can unselect/select an event by pressing the left mouse button and keeping the CTRL key
down. The AllowToggleSelectKey property indicates the key to be used so the user can
toggle a selected event. You can use the AllowSelectEvent property to change the key to
allow the user select new events or you can prevent selecting any event using exDisallow
value. The AllowSelectEventRect property indicates whether the user can select multiple
events by dragging a rectangle.

The LayoutEndChanging(exScheduleSelectionChange) event occurs once the user changed
the selection (of events), in the schedule view. The Selectable property of the event
indicates whether the event can be selected at runtime. The Selected property of the Event
indicates whether the current event is selected or unselected. The SelectEventStyle
property indicates the way the selected events are shown. The SelectEventColor property
specifies the visual appearance of the selected event. The SelectEventTextColor property
specifies the foreground color of the selected event.

For instance, you can set the AllowToggleSelectKey property on exDisallow which indicates
that no toggle selection is allowed. If the AllowToggleSelectKey property on exLeftClick, the
first click selects the event, the next click unselect the event, and so on.

property Schedule.AllowUndoRedo as Boolean
Enables or disables the Undo/Redo feature.

Type Description

Boolean A boolean expression that specifies whether the control
supports Undo/Redofeature

By default, the AllowUndoRedo property is false, which indicates that the Undo/Redo
feature us disabled. The Undo and Redo features let you remove or repeat single or
multiple actions, but all actions must be undone or redone in the order you did or undid them
 you cant skip actions. For example, if you added three calendar-events and then decide
you want to undo the first change you made, you must undo all three changes. To undo an
action you need to press Ctrl+Z, while for to redo something you've undone, press Ctrl+Y.
The CanUndo property retrieves a value that indicates whether the control may perform the
last Undo operation. The CanRedo property retrieves a value that specifies whether the
control can execute the next operation in the control's Redo queue. Call the Undo method to
Undo the last control operation. The Redo redoes the next action in the control's redo
queue. The UndoRedoQueueLength property gets or sets the maximum number of
Undo/Redo actions that may be stored to the control's queue, or in other words how many
operations the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Schedule.AllowUpdateAllDayFlag as Boolean
Indicates if the All-Day flag for the events being moved using drop and drop are updated
once the user drops the selection.

Type Description

Boolean

A Boolean expression that specifies whether the
AllDayEvent property is changed when the user drags and
drops an event from All-Day header to Time-Scale section
of the schedule view, and reverse.

By default, the AllowUpdateAllDayFlag property is True, which means that the AllDayEvent
property of the event being dragged is updated once the user drops the event to All-Day
header or Time-Scale part of the schedule view. The AllowUpdateAllDayFlag property has
effect only if the ShowAllDayHeader property is True. The AllowAllDayEventScroll property
gets or sets a value that specifies whether the all-day event header supports scrolling.

The following screen shot shows the All-Day events on the All-Day header (
ShowAllDayHeader property is True):

property Schedule.AllowUpdateDisableZone as Boolean
Indicates whether the user can updates the events in the disabled part of the schedule.

Type Description
Boolean A Boolean expression that specifies whether the

By default, the the AllowUpdateDisableZone property is False, so the user can not update
or create new events in a disabled zone. The DisableZoneFormat property of the Calendar
returns or sets an expression that determines the dates being disabled in the
calendar/schedule panel. The AllowUpdateDisableZone property on True, lets user to
update the disabled zones. The AllowCreateEvent property indicates the combination of the
keys to let user creates new events. The AllowMoveEvent property indicates the
combination of the keys to let user moves the events. The AllowResizeEvent property
indicates the combination of the keys to let user resizes the events.

The following screen shot shows all dates as disabled (the entire month is selected) :

DisableZoneFormat = "1"

A disable zone, shows as grayed as in the following screen shot (only dates: 23, 24, and
25 are enabled, and the rest are disabled, the entire month is selected):

property Schedule.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor

the AnchorFromPoint property to determine the identifier of the anchor from the point. Use
the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires the
AnchorClick event when the user clicks an anchor element. Use the ShowToolTip method
to show the specified tooltip at given or cursor coordinates. The MouseMove event is
generated continually as the mouse pointer moves across the control. For instance, if the
user clicks the anchor <a1>anchor, the control fires the AnchorClick event, where the
AnchorID parameter is 1, and the Options parameter is empty. Also, if the user clicks the
anchor <a 1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event
is 1, and the Options parameter is "yourextradata".

The LongLabel, ExtraLabel properties of the Event supports <a> elements.

property Schedule.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy/chart,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The hot.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips.

The following samples shows the control's borders using the hot.ebn file:

VBA (MS Access, Excell...)

https://exontrol.com/exbutton.jsp

With Schedule1
 .VisualAppearance.Add 1,"c:\exontrol\images\hot.ebn"
 .Appearance = 16777216
End With

VB6

With Schedule1
 .VisualAppearance.Add 1,"c:\exontrol\images\hot.ebn"
 .Appearance = &H1000000
End With

VB.NET

With Exschedule1
 .VisualAppearance.Add(1,"c:\exontrol\images\hot.ebn")
 .Appearance = &H1000000
End With

VB.NET for /COM

With AxSchedule1
 .VisualAppearance.Add(1,"c:\exontrol\images\hot.ebn")
 .Appearance = &H1000000
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->GetVisualAppearance()->Add(1,"c:\\exontrol\\images\\hot.ebn");

spSchedule1->PutAppearance(EXSCHEDULELib::AppearanceEnum(0x1000000));

C++ Builder

Schedule1->VisualAppearance->Add(1,TVariant("c:\\exontrol\\images\\hot.ebn"));
Schedule1->Appearance = Exschedulelib_tlb::AppearanceEnum(0x1000000);

C#

exschedule1.VisualAppearance.Add(1,"c:\\exontrol\\images\\hot.ebn");
exschedule1.Appearance = (exontrol.EXSCHEDULELib.AppearanceEnum)0x1000000;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.VisualAppearance.Add(1,"c:\\exontrol\\images\\hot.ebn");
 Schedule1.Appearance = 16777216;
</SCRIPT>

C# for /COM

axSchedule1.VisualAppearance.Add(1,"c:\\exontrol\\images\\hot.ebn");
axSchedule1.Appearance = (EXSCHEDULELib.AppearanceEnum)0x1000000;

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exschedule1.VisualAppearance().Add(1,"c:\\exontrol\\images\\hot.ebn");
 exschedule1.Appearance(16777216);
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\hot.ebn');
 Appearance := EXSCHEDULELib.AppearanceEnum($1000000);
end

Delphi (standard)

with Schedule1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\hot.ebn');
 Appearance := EXSCHEDULELib_TLB.AppearanceEnum($1000000);
end

VFP

with thisform.Schedule1
 .VisualAppearance.Add(1,"c:\exontrol\images\hot.ebn")
 .Appearance = 16777216
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.VisualAppearance.Add(1,"c:\exontrol\images\hot.ebn")
oSchedule.Appearance = 16777216 /*0x1000000 | */

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.VisualAppearance.Add(1,"c:\exontrol\images\hot.ebn")
oSchedule.Appearance = 16777216 '16777216 +

Visual Objects

oDCOCX_Exontrol1:VisualAppearance:Add(1,"c:\exontrol\images\hot.ebn")
oDCOCX_Exontrol1:Appearance := 0x1000000 |

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.VisualAppearance.Add(1,"c:\exontrol\images\hot.ebn")
oSchedule.Appearance = 16777216 /*16777216 /*0x1000000*/ | */

property Schedule.ApplyGroupingColors as Boolean
Specifies whether the schedule view shows the events using the colors of owner groups.

Type Description

Boolean A Boolean expression that specifies whether the events
change the colors based on the owner groups.

By default, the ApplyGroupingColors property is True. Use the ApplyGroupingColors
property to prevent showing the events with different colors specified by the groups'
EventForeColor and EventBackColor properties. The ApplyGroupingColors property
indicates whether the EventForeColor and EventBackColor, properties of the Group object
are being applied to events. The DisplayGroupingButton property shows or hides the
grouping button being displayed in the date's header. The ShowGroupingEvents property
indicates whether the events are displayed on groups columns. The SingleGroupingView
property specifies whether the drop down panel shows radio buttons, instead check boxes,
so the user can see all groups or only one group at the time. The GroupID property
specifies the identifier of the group where the event belongs. If the control displays groups
the GroupID property of the newly created event is automatically updated with the group
where the event has been created. The AllowMoveEventToOtherGroup property specifies
whether the user can move an event from a group to another at runtime. Use the Add
method of the Groups collection to add new groups to the control.

method Schedule.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Schedule1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Schedule.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that specifies the control's background
color.

The BackColor property changes the control's background color as well as the calendar's
background color, if the Background(exCalendarBackColor) is zero (by default). The
Background(exCalendarBackColor) property changes the calendar's panel backcolor if not-
zero. The Background(exCalendarForeColor) property changes the calendar's panel
foreground color. The ForeColor property changes the control's foreground color. Use the
Picture property of the control to show a picture on the control's background. The
BodyEventBackColor property specifies the background color to show the body for all
events. The EventBackColor property specifies the event's background color if it belongs to
a group.

property Schedule.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following screen shot shows the control's scroll bars with a different visual
appearance:

The following samples changes the background color for selected dates in the calendar
panel, so always is the same no matter if the control loses the focus.

VBA (MS Access, Excell...)

With Schedule1
 .Background(68) = .Background(19)
 .Background(69) = .Background(20)
End With

VB6

With Schedule1
 .Background(exCalendarSelBackColorUnFocus) =
.Background(exCalendarSelBackColor)
 .Background(exCalendarSelForeColorUnFocus) =
.Background(exCalendarSelForeColor)
End With

VB.NET

With Exschedule1

.set_Background(exontrol.EXSCHEDULELib.BackgroundPartEnum.exCalendarSelBackColorUnFocus,.

.set_Background(exontrol.EXSCHEDULELib.BackgroundPartEnum.exCalendarSelForeColorUnFocus,.

End With

VB.NET for /COM

With AxSchedule1

.set_Background(EXSCHEDULELib.BackgroundPartEnum.exCalendarSelBackColorUnFocus,.

.set_Background(EXSCHEDULELib.BackgroundPartEnum.exCalendarSelForeColorUnFocus,.

End With

C++

/*

 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1-
>PutBackground(EXSCHEDULELib::exCalendarSelBackColorUnFocus,spSchedule1-
>GetBackground(EXSCHEDULELib::exCalendarSelBackColor));
spSchedule1-
>PutBackground(EXSCHEDULELib::exCalendarSelForeColorUnFocus,spSchedule1-
>GetBackground(EXSCHEDULELib::exCalendarSelForeColor));

C++ Builder

Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exCalendarSelBackColorUnFocus]
 = Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exCalendarSelBackColor];
Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exCalendarSelForeColorUnFocus]
 = Schedule1-
>Background[Exschedulelib_tlb::BackgroundPartEnum::exCalendarSelForeColor];

C#

exschedule1.set_Background(exontrol.EXSCHEDULELib.BackgroundPartEnum.exCalendarSelBackColorUnFocus,exschedule1.

exschedule1.set_Background(exontrol.EXSCHEDULELib.BackgroundPartEnum.exCalendarSelForeColorUnFocus,exschedule1.

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.Background(68) = Schedule1.Background(19);
 Schedule1.Background(69) = Schedule1.Background(20);
</SCRIPT>

C# for /COM

axSchedule1.set_Background(EXSCHEDULELib.BackgroundPartEnum.exCalendarSelBackColorUnFocus,axSchedule1.

axSchedule1.set_Background(EXSCHEDULELib.BackgroundPartEnum.exCalendarSelForeColorUnFocus,axSchedule1.

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

exschedule1.Background(68/*exCalendarSelBackColorUnFocus*/,exschedule1.Background

exschedule1.Background(69/*exCalendarSelForeColorUnFocus*/,exschedule1.Background

}

Delphi 8 (.NET only)

with AxSchedule1 do
begin

set_Background(EXSCHEDULELib.BackgroundPartEnum.exCalendarSelBackColorUnFocus,

set_Background(EXSCHEDULELib.BackgroundPartEnum.exCalendarSelForeColorUnFocus,

end

Delphi (standard)

with Schedule1 do
begin
 Background[EXSCHEDULELib_TLB.exCalendarSelBackColorUnFocus] :=
Background[EXSCHEDULELib_TLB.exCalendarSelBackColor];
 Background[EXSCHEDULELib_TLB.exCalendarSelForeColorUnFocus] :=
Background[EXSCHEDULELib_TLB.exCalendarSelForeColor];
end

VFP

with thisform.Schedule1
 .Object.Background(68) = .Background(19)
 .Object.Background(69) = .Background(20)
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.Template = [Background(68) = Background(19)] //
oSchedule.Background(68) = oSchedule.Background(19)
oSchedule.Template = [Background(69) = Background(20)] //
oSchedule.Background(69) = oSchedule.Background(20)

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex

oSchedule.Template = "Background(68) = Background(19)" '
oSchedule.Background(68) = oSchedule.Background(19)
oSchedule.Template = "Background(69) = Background(20)" '
oSchedule.Background(69) = oSchedule.Background(20)

Visual Objects

oDCOCX_Exontrol1:[Background,exCalendarSelBackColorUnFocus] :=
oDCOCX_Exontrol1:[Background,exCalendarSelBackColor]
oDCOCX_Exontrol1:[Background,exCalendarSelForeColorUnFocus] :=
oDCOCX_Exontrol1:[Background,exCalendarSelForeColor]

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.Background(68,oSchedule.Background(19))
oSchedule.Background(69,oSchedule.Background(20))

method Schedule.BeginUpdate ()
Maintains performance when items are added to the control one at a time. This method
prevents the control from painting until the EndUpdate method is called.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your events, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. You can use
the Refresh method to refresh the control's content.

property Schedule.BodyEventBackColor as Color
Specifies the default visual appearance of the events.

Type Description

Color

A Color expression that specifies the background color to
show the event's body. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

The BodyEventBackColor property specifies the background color to show the body for all
events. The BodyBackColor property specifies the background color of the event's body.
The EventBackColor property specifies the event's background color if it belongs to a
group. The BodyForeColor property specifies the foreground color to show the labels on
the event. The BodyPattern property gives access to the pattern to be shown on the event's
body. The StatusColor property indicates the color show the event's status. The
ShowEvents property specifies what events the control should show. The
EventsTransparent property indicates the transparency to show the events on the schedule
view.

property Schedule.BodyEventForeColor as Color
Specifies the default foreground color of the events.

Type Description

Color A Color expression that specifies the foreground color to
show the event's body.

The BodyEventForeColor property specifies the foreground color to show the body for all
events. The BodyForeColor property specifies the foreground color of the event's body. The
EventForeColor property specifies the event's foreground color if it belongs to a group. The
BodyBackColor property specifies the background color of the event's body. The
EventBackColor property specifies the event's background color if it belongs to a group.
The StatusColor property indicates the color show the event's status. The ShowEvents
property specifies what events the control should show. The EventsTransparent property
indicates the transparency to show the events on the schedule view.

property Schedule.BorderDateStyle as LinesStyleEnum
Specifies the style to display the border for the dates.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies whether the
lines are shown between dates.

By default, the BorderDateStyle property specifies the lines to be shown between dates, in
the schedule view. The Background property indicates the color to show the border lines.
For instance, the Background(exScheduleBorderSelColor),
Background(exScheduleBorderSelColorUnFocus) indicates the color to show the border
around the selection dates in the schedule view.

The control supports the following border properties:

BorderDateStyle property specifies the lines to be shown between dates
BorderGroupStyle property indicates the lines between groups. This property has
effect only, if the schedule view displaying groups.
BorderMonthStyle property specifies the style of lines to show the margins of the
month. The effect of this property can be seen when entire month is shown in the
schedule view.
BorderSelStyle property specifies the type of lines to be shown around the selected
dates. Use the BorderSelStyle property on exNoLines to show no lines for any
selected date in the schedule view.
BorderTimeScaleStyle property specifies the lines to delimit the control's time scales.

All of these properties may be visible only on the schedule panel, not in the calendar panel.

property Schedule.BorderGroupStyle as LinesStyleEnum
Specifies the style to display the border between groups within the date.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies whether the
lines are shown between groups.

The BorderGroupStyle property indicates the lines between groups, in the schedule view.
This property has effect only, if the schedule view displaying groups. The Background
property indicates the color to show the border lines. For instance, the
Background(exScheduleBorderSelColor), Background(exScheduleBorderSelColorUnFocus)
indicates the color to show the border around the selection dates in the schedule view.

The control supports the following border properties:

BorderDateStyle property specifies the lines to be shown between dates
BorderGroupStyle property indicates the lines between groups. This property has
effect only, if the schedule view displaying groups.
BorderMonthStyle property specifies the style of lines to show the margins of the
month. The effect of this property can be seen when entire month is shown in the
schedule view.
BorderSelStyle property specifies the type of lines to be shown around the selected
dates. Use the BorderSelStyle property on exNoLines to show no lines for any
selected date in the schedule view.
BorderTimeScaleStyle property specifies the lines to delimit the control's time scales.

All of these properties may be visible only on the schedule panel, not in the calendar panel.

property Schedule.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that specifies the height of the border
being applied to the top and bottom side of the control.

By default, the BorderHeight property is 0. The BorderHeight property specifies the height
of the border in pixels, being applied to the top and bottom side of the control. The
BorderWidth property specifies the width of the border on the left and right side of the
control. The borders delimit the margin of the control and the client area, where the
calendar and the schedule panel is displayed.

property Schedule.BorderMonthStyle as LinesStyleEnum
Specifies the style to display the border for the months.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the style of
lines to show the margins of the month.

By default, the BorderMonthStyle property specifies the style of lines to show the margins
of the month, in the schedule view. The effect of this property can be seen when entire
month is shown in the schedule view. The Background property indicates the color to show
the border lines. For instance, the Background(exScheduleBorderSelColor),
Background(exScheduleBorderSelColorUnFocus) indicates the color to show the border
around the selection dates in the schedule view.

The control supports the following border properties:

BorderDateStyle property specifies the lines to be shown between dates
BorderGroupStyle property indicates the lines between groups. This property has
effect only, if the schedule view displaying groups.
BorderMonthStyle property specifies the style of lines to show the margins of the
month.
BorderSelStyle property specifies the type of lines to be shown around the selected
dates. Use the BorderSelStyle property on exNoLines to show no lines for any
selected date in the schedule view.
BorderTimeScaleStyle property specifies the lines to delimit the control's time scales.

All of these properties may be visible only on the schedule panel, not in the calendar panel.

property Schedule.BorderSelStyle as LinesStyleEnum
Specifies the style to display the border for selected dates.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the type of
lines to be shown around the selected dates.

By default, the BorderSelStyle property specifies the type of lines to be shown around the
selected dates, in the schedule view. Use the BorderSelStyle property on exNoLines to
show no lines for any selected date in the schedule view. The Background property
indicates the color to show the border lines. For instance, the
Background(exScheduleBorderSelColor), Background(exScheduleBorderSelColorUnFocus)
indicates the color to show the border around the selection dates in the schedule view.

The control supports the following border properties:

BorderDateStyle property specifies the lines to be shown between dates
BorderGroupStyle property indicates the lines between groups. This property has
effect only, if the schedule view displaying groups.
BorderMonthStyle property specifies the style of lines to show the margins of the
month. The effect of this property can be seen when entire month is shown in the
schedule view.
BorderSelStyle property specifies the type of lines to be shown around the selected
dates.
BorderTimeScaleStyle property specifies the lines to delimit the control's time scales.

All of these properties may be visible only on the schedule panel, not in the calendar panel.

property Schedule.BorderTimeScaleStyle as LinesStyleEnum
Specifies the style to display the border for time scales.

Type Description

LinesStyleEnum A LinesStyleEnum expression that specifies the lines to
delimit the control's time scales.

By default, the BorderTimeScaleStyle property specifies the lines to delimit the control's
time scales, in the schedule view. The Background property indicates the color to show the
border lines. For instance, the Background(exScheduleBorderSelColor),
Background(exScheduleBorderSelColorUnFocus) indicates the color to show the border
around the selection dates in the schedule view.

The control supports the following border properties:

BorderDateStyle property specifies the lines to be shown between dates
BorderGroupStyle property indicates the lines between groups. This property has
effect only, if the schedule view displaying groups.
BorderMonthStyle property specifies the style of lines to show the margins of the
month. The effect of this property can be seen when entire month is shown in the
schedule view.
BorderSelStyle property specifies the type of lines to be shown around the selected
dates. Use the BorderSelStyle property on exNoLines to show no lines for any
selected date in the schedule view.
BorderTimeScaleStyle property specifies the lines to delimit the control's time scales.

All of these properties may be visible only on the schedule panel, not in the calendar panel.

property Schedule.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that specifies the width of the border
being applied to the left and right side of the control.

By default, the BorderWidth property is 0. The BorderWidth property specifies the width of
the border in pixels, being applied to the left and right side of the control. The BorderHeight
property specifies the height of the border on the top and bottom side of the control. The
borders delimit the margin of the control and the client area, where the calendar and the
schedule panel is displayed.

property Schedule.Calendar as Calendar
Gets the schedule's calendar object.

Type Description

Calendar A Calendar object that holds information about the
calendar panel of the control.

The Calendar property gives access to the calendar panel of the control. For instance, the
FirstWeekDay property specifies the first day of the week. The SingleSel property indicates
whether the user can select one or multiple dates. As an alternative, you can use the
SelCount/SelDate property to retrieve the collection of selected dates in the calendar panel.
Once the user starts selecting a new date in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs.

Use the OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

property Schedule.CanRedo as Boolean
Retrieves a value that indicates whether the control can perform a Redo operation.

Type Description

Boolean A boolean expression that specifies whether the control
can perform a Redo operation

The CanRedo method indicates whether the control can perform a Redo operation. The
AllowUndoRedo property enables or disables the Undo/Redo feature. The Redo redoes the
next action in the control's redo queue. The Undo method undoes the last control operation.
The UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo
actions that may be stored to the control's queue, or in other words how many operations
the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Schedule.CanUndo as Boolean
Retrieves a value that indicates whether the control can perform an Undo operation.

Type Description

Boolean A boolean expression that specifies whether the control
can perform an Undo operation

The CanUndo method indicates whether the control can perform an Undo operation. The
AllowUndoRedo property enables or disables the Undo/Redo feature. The Undo method
undoes the last control operation. The Redo redoes the next action in the control's redo
queue. The UndoRedoQueueLength property gets or sets the maximum number of
Undo/Redo actions that may be stored to the control's queue, or in other words how many
operations the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

method Schedule.ClearAll ()
Clears all control's collections, including the events.

Type Description

The ClearAll method clears all control's collection as listed bellow. Usually, you can call this
method prior to a LoadXML method for a fresh and empty control.

The ClearAll method clears the following collections:

TimeScales collection. The TimeScales collection can be accessed through the
component's TimeScales property. This is a particular case, when not the entire
collection is emptied, as the first element in the collection, is not removed when the
ClearAll method is called. In other words, the default TimeScale object being displayed,
is not removed, just any additional TimeScale objects. You can use the Clear method of
the TimeScales collection to remove all TimeScales objects. As the default, TimeScale
object is not being removed or deleted, the TimeZone or any other property that has
been changed, will not be changed to its default value.
Groups collection. The Groups collection can be accessed through the component's
Groups property.
NonworkingPatterns collection. The NonworkingPatterns collection can be accessed
through the component's NonworkingPatterns property.
NonworkingTimes collection. The NonworkingTimes collection can be accessed through
the component's NonworkingTimes property.
MarkZones collection. The MarkZones collection can be accessed through the
component's MarkZones property.
MarkTimes collection. The MarkTimes collection can be accessed through the
component's MarkTimes property.
ExPictures collection. The ExPictures collection can be accessed through the
component's Pictures property.
Images/Icons list. The Images list contains the icons of the component, and can be
accessed through the Images method.
Events collection. The Events collection can be accessed through the component's
Events property.

property Schedule.ClipToSel as Boolean
Specifies whether the schedule view displays the selection only.

Type Description

Boolean A boolean expression that specifies whether the schedule
view displays the selected dates only.

The ClipToSel property indicates whether the control clips the schedule panel to view the
selected dates only. The FitSelToView method restores the view to fit the selected dates.
Use the Selection/SelectDate property to change programmatically the dates being
selected in the calendar, including the dates to be shown in the schedule view. You can use
the Selection/SelCount/SelDate property to retrieve the selected dates. The
AllowResizeSchedule property allows you to magnify the schedule view to view more dates
without selecting new dates in the calendar panel. The AllowMoveSchedule property allows
the user to move or navigate the schedule view to a new position, without selecting a new
date in the calendar panel.

Once the user starts selecting a new date in the calendar panel, the control fires the
LayoutStartChanging(exCalendarSelectionChange). Once a new date is selected, the
LayoutEndChanging(exCalendarSelectionChange) event occurs.

method Schedule.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats

The CopyTo method copies the control's content to a file. The SaveXML method saves the
control's data to a file.

property Schedule.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant

A boolean expression that indicates whether the File was
successful saved, if the File parameter is not empty, or a
one dimension safe array of bytes, if the File parameter is
empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a EMF file:

If (Control.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Control.CopyTo("")
 Debug.Print i
Next

property Schedule.CreateEventLabel as String
Specifies the label to be shown while creating events.

Type Description

String
A String expression that defines the label to be displayed
when the user creates new events. The CreateEventLabel
supports extended HTML format as explained bellow.

By default, the CreateEventLabel property is: "<%=%256%>
<%=((1:=int(0:=
(date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 +
1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60))
!= 0 ? =:1 + ' min(s)' : '')%>" which displays the margins of the event being created on the
first line, while on the second line it displays the duration of the newly event. The
CreateEventLabel property indicates the HTML format to be shown on the label when the
user creates a new event. The CreateEventLabelAlign property aligns the label being shown
when the user creates a new event. The AllowCreateEvent property indicates the
combination of keys that allows the user to create new events in the control. The
AllowMoveEvent property indicates the combination of the keys to let user moves the
events. The AllowResizeEvent property indicates the combination of the keys to let user
resizes the events. The Background(exScheduleCreateEventBackColor) and
Background(exScheduleCreateEventForeColor) specifies the visual appearance of the
event being created. The AddEvent event occurs once a new event is added to the Events
collection. The DefaultEventPadding property indicates the padding of the labels on the
event, relative to event's borders.

Here's a few samples:

"new", simple new text is shown.
"<a no>title", displays a clickable text such as title, and AnchorClick can be used
to determine whether the no anchor has been clicked.
"<a>pic1:32", displays a click able image, the AnchorClick can be
used to determine whether the anchor has been clicked. We would recommend using
the Pictures or ExtraPictures property to assign pictures to an event.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the

"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line
"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the CreateEventLabel property on "Start:
<%=time(%1) replace `AM` with ``%>" displays the time when the event starts with no AM
time indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.

%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended

using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.

year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in

about:blank

underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR

character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Schedule.CreateEventLabelAlign as ContentAlignmentEnum
Specifies the alignment of the label to be shown while creating events.

Type Description

ContentAlignmentEnum
A ContentAlignmentEnum expression that specifies the
alignment of the label being shown when the user creates
new events.

The CreateEventLabelAlign property aligns the label being shown when the user creates a
new event. The CreateEventLabel property indicates the HTML format to be shown on the
label when the user creates a new event. The UpdateEventsLabelAlign property aligns the
label being shown when the user moves or resizes the events.

property Schedule.DataField(Property as EventKnownPropertyEnum) as
Variant
Automatically updates / synchronizes the known property of the event with the associated
data field and reverse.

Type Description
Property as
EventKnownPropertyEnum A Property to be associated with a field in the record set

Variant
A String expression that specifies the name of the field to
be associated with the Property. A Long expression that
specifies the index of the field in the recordset.

By default, the DataField(exEventStartDateTime) property is "Start" and the
DataField(exEventEndDateTime) is "End". Use the DataField property to associate the
exEventStartDateTime and exEventEndDateTime or exEventDuration with the fields in your
data source. The DataField property must be called before calling the DataSource property.
The DataSource property binds a recordset to your control. Use the DataField property to
associate a property of the event with a field in the database. This way when the property
is changed it is updated in the associated field. The control fires the Error event if any error
occurs when handling the data source. The Syncronize method ensures that each record
has associated an event, and each event has associated a record.

The following samples shows how you can bound the control to a data source:

VBA

' Error event - Fired when an internal error occurs.
Private Sub Schedule1_Error(ByVal Error As Long,ByVal Description As String)
 With Schedule1
 Debug.Print(Description)
 End With
End Sub

With Schedule1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3
 End With
 .BeginUpdate

 .Calendar.Selection = #11/11/2013#
 .DataField(1) = "Start"
 .DataField(2) = "End"
 .DataField(11) = "Extra"
 .DataSource = rs
 .EndUpdate
End With

VB6

' Error event - Fired when an internal error occurs.
Private Sub Schedule1_Error(ByVal Error As Long,ByVal Description As String)
 With Schedule1
 Debug.Print(Description)
 End With
End Sub

With Schedule1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3
 End With
 .BeginUpdate
 .Calendar.Selection = #11/11/2013#
 .DataField(exEventStartDateTime) = "Start"
 .DataField(exEventEndDateTime) = "End"
 .DataField(exEventExtraLabel) = "Extra"
 .DataSource = rs
 .EndUpdate
End With

VB.NET

' Error event - Fired when an internal error occurs.
Private Sub Exschedule1_Error(ByVal sender As System.Object,ByVal Err As Integer,ByVal
Description As String) Handles Exschedule1.Error
 With Exschedule1

 Debug.Print(Description)
 End With
End Sub

Dim rs
With Exschedule1
 rs = New ADODB.Recordset()
 With rs
 .Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
 End With
 .BeginUpdate()
 .Calendar.Selection = #11/11/2013#

.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,

.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,"End"

.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,"Extra"

 .DataSource = rs
 .EndUpdate()
End With

VB.NET for /COM

' Error event - Fired when an internal error occurs.
Private Sub AxSchedule1_Error(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent) Handles AxSchedule1.Error
 With AxSchedule1
 Debug.Print(e.description)
 End With
End Sub

Dim rs

With AxSchedule1
 rs = CreateObject("ADOR.Recordset")
 With rs
 .Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
 End With
 .BeginUpdate()
 .Calendar.Selection = #11/11/2013#

.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,"Start")
 .set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,"End")
 .set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,"Extra")
 .DataSource = rs
 .EndUpdate()
End With

C++

// Error event - Fired when an internal error occurs.
void OnErrorSchedule1(long Error,LPCTSTR Description)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'
 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 OutputDebugStringW(L"Description");
}

EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
/*
 Includes the definition for CreateObject function like follows:

 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };

*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'ADODB' for the library: 'Microsoft ActiveX Data Objects 6.0
Library'

 #import <msado15.dll> rename("EOF","REOF")
*/
ADODB::_RecordsetPtr rs = ::CreateObject(L"ADOR.Recordset");
 rs->Open("Events",_bstr_t("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",ADODB::adOpenStatic,ADODB::adLockOptimistic,0);

spSchedule1->BeginUpdate();
spSchedule1->GetCalendar()->PutSelection("11/11/2013");
spSchedule1->PutDataField(EXSCHEDULELib::exEventStartDateTime,"Start");
spSchedule1->PutDataField(EXSCHEDULELib::exEventEndDateTime,"End");
spSchedule1->PutDataField(EXSCHEDULELib::exEventExtraLabel,"Extra");
spSchedule1->PutDataSource(((ADODB::_RecordsetPtr)(rs)));
spSchedule1->EndUpdate();

C++ Builder

// Error event - Fired when an internal error occurs.
void __fastcall TForm1::Schedule1Error(TObject *Sender,long Error,BSTR Description)
{
 OutputDebugString(L"Description");
}

/*
 Select the Component\Import Component...\Import a Type Library,
 to import the following Type Library:

 Microsoft ActiveX Data Objects 6.0 Library

 TypeLib: C:\Program Files\Common Files\System\ado\msado15.dll

 to define the namespace: Adodb_tlb
*/
//#include "ADODB_TLB.h"
Adodb_tlb::_RecordsetPtr rs = Variant::CreateObject(L"ADOR.Recordset");
 rs->Open(TVariant("Events"),TVariant(String("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb"),Adodb_tlb::CursorTypeEnum::adOpenStatic,Adodb_tlb::LockTypeEnum::adLockOptimistic,0);

Schedule1->BeginUpdate();
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2013,11,11).operator
double()));
Schedule1-
>DataField[Exschedulelib_tlb::EventKnownPropertyEnum::exEventStartDateTime] =
TVariant("Start");
Schedule1-
>DataField[Exschedulelib_tlb::EventKnownPropertyEnum::exEventEndDateTime] =
TVariant("End");
Schedule1->DataField[Exschedulelib_tlb::EventKnownPropertyEnum::exEventExtraLabel]
= TVariant("Extra");
Schedule1->DataSource = (IDispatch*)rs;
Schedule1->EndUpdate();

C#

// Error event - Fired when an internal error occurs.
private void exschedule1_Error(object sender,int Err,string Description)
{
 System.Diagnostics.Debug.Print(Description.ToString());

}
//this.exschedule1.Error += new
exontrol.EXSCHEDULELib.exg2antt.ErrorEventHandler(this.exschedule1_Error);

// Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
ADODB.Recordset rs = new ADODB.Recordset();
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",exontrol.ADODB.CursorTypeEnum.adOpenStatic,exontrol.ADODB.LockTypeEnum.adLockOptimistic,0);

exschedule1.BeginUpdate();
exschedule1.Calendar.Selection =
Convert.ToDateTime("11/11/2013",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exschedule1.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,

exschedule1.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,

exschedule1.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,

exschedule1.DataSource = (rs as ADODB.Recordset);
exschedule1.EndUpdate();

JavaScript

<SCRIPT FOR="Schedule1" EVENT="Error(Error,Description)" LANGUAGE="JScript">
 alert(Description);
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377" id="Schedule1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 var rs = new ActiveXObject("ADOR.Recordset");
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",3,3,null);
 Schedule1.BeginUpdate();
 Schedule1.Calendar.Selection = "11/11/2013";

 Schedule1.DataField(1) = "Start";
 Schedule1.DataField(2) = "End";
 Schedule1.DataField(11) = "Extra";
 Schedule1.DataSource = rs;
 Schedule1.EndUpdate();
</SCRIPT>

C# for /COM

// Error event - Fired when an internal error occurs.
private void axSchedule1_Error(object sender,
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent e)
{
 System.Diagnostics.Debug.Print(e.description.ToString());
}
//this.axSchedule1.Error += new
AxEXSCHEDULELib._IScheduleEvents_ErrorEventHandler(this.axSchedule1_Error);

// Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
ADODB.Recordset rs = new ADODB.Recordset();
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",ADODB.CursorTypeEnum.adOpenStatic,ADODB.LockTypeEnum.adLockOptimistic,0);

axSchedule1.BeginUpdate();
axSchedule1.Calendar.Selection =
Convert.ToDateTime("11/11/2013",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
axSchedule1.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,

axSchedule1.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,

axSchedule1.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,"Extra"

axSchedule1.DataSource = (rs as ADODB.Recordset);
axSchedule1.EndUpdate();

X++ (Dynamics Ax 2009)

// Error event - Fired when an internal error occurs.
void onEvent_Error(int _Error,str _Description)
{
 ;
 print(_Description);
}

public void init()
{
 anytype rs;
 str var_s;
 ;

 super();

 // Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
 rs = COM::createFromObject(new ADODB.Recordset()); rs = rs;
 var_s = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb";

rs.Open("Events",COMVariant::createFromStr(var_s),3/*adOpenStatic*/,3/*adLockOptimistic*/

 exschedule1.BeginUpdate();

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("11/11/2013",213)));

 exschedule1.DataField(1/*exEventStartDateTime*/,"Start");
 exschedule1.DataField(2/*exEventEndDateTime*/,"End");
 exschedule1.DataField(11/*exEventExtraLabel*/,"Extra");
 exschedule1.DataSource(rs);
 exschedule1.EndUpdate();
}

VFP

*** Error event - Fired when an internal error occurs. ***
LPARAMETERS Error,Description

 with thisform.Schedule1
 DEBUGOUT(Description)
 endwith

with thisform.Schedule1
 rs = CreateObject("ADOR.Recordset")
 with rs
 .Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
 endwith
 .BeginUpdate
 .Calendar.Selection = {^2013-11-11}
 .Object.DataField(1) = "Start"
 .Object.DataField(2) = "End"
 .Object.DataField(11) = "Extra"
 .DataSource = rs
 .EndUpdate
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 Error = class::nativeObject_Error
endwith
*/
// Fired when an internal error occurs.
function nativeObject_Error(Error,Description)
 local oSchedule
 oSchedule = form.Activex1.nativeObject
 ? Str(Description)
return

local oSchedule,rs

oSchedule = form.Activex1.nativeObject
rs = new OleAutoClient("ADOR.Recordset")

 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = "11/11/2013"
oSchedule.Template = [DataField(1) = "Start"] // oSchedule.DataField(1) = "Start"
oSchedule.Template = [DataField(2) = "End"] // oSchedule.DataField(2) = "End"
oSchedule.Template = [DataField(11) = "Extra"] // oSchedule.DataField(11) = "Extra"
oSchedule.DataSource = rs
oSchedule.EndUpdate()

XBasic (Alpha Five)

' Fired when an internal error occurs.
function Error as v (Error as N,Description as C)
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 ? Description
end function

Dim oSchedule as P
Dim rs as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
rs = OLE.Create("ADOR.Recordset")
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = {11/11/2013}
oSchedule.Template = "DataField(1) = \"Start\"" ' oSchedule.DataField(1) = "Start"
oSchedule.Template = "DataField(2) = \"End\"" ' oSchedule.DataField(2) = "End"
oSchedule.Template = "DataField(11) = \"Extra\"" ' oSchedule.DataField(11) = "Extra"
oSchedule.DataSource = rs
oSchedule.EndUpdate()

Delphi 8 (.NET only)

// Error event - Fired when an internal error occurs.
procedure TWinForm1.AxSchedule1_Error(sender: System.Object; e:

AxEXSCHEDULELib._IScheduleEvents_ErrorEvent);
begin
 with AxSchedule1 do
 begin
 OutputDebugString(e.description);
 end
end;

with AxSchedule1 do
begin
 rs := (ComObj.CreateComObject(ComObj.ProgIDToClassID('ADOR.Recordset')) as
ADODB.Recordset);
 with rs do
 begin
 Open('Events','Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb',3,3,Nil);
 end;
 BeginUpdate();
 Calendar.Selection := '11/11/2013';

set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,'Start');
 set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,'End');
 set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,'Extra');
 DataSource := (rs as ADODB.Recordset);
 EndUpdate();
end

Delphi (standard)

// Error event - Fired when an internal error occurs.
procedure TForm1.Schedule1Error(ASender: TObject; Error : Integer;Description :
WideString);
begin
 with Schedule1 do
 begin
 OutputDebugString(Description);
 end

end;

with Schedule1 do
begin
 rs :=
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('ADOR.Recordset'))) as
ADODB_TLB.Recordset);
 with rs do
 begin
 Open('Events','Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb',3,3,Null);
 end;
 BeginUpdate();
 Calendar.Selection := '11/11/2013';
 DataField[EXSCHEDULELib_TLB.exEventStartDateTime] := 'Start';
 DataField[EXSCHEDULELib_TLB.exEventEndDateTime] := 'End';
 DataField[EXSCHEDULELib_TLB.exEventExtraLabel] := 'Extra';
 DataSource := (IUnknown(rs) as ADODB_TLB.Recordset);
 EndUpdate();
end

Visual Objects

METHOD OCX_Exontrol1Error(Error,Description) CLASS MainDialog
 // Error event - Fired when an internal error occurs.
 OutputDebugString(String2Psz(AsString(Description)))
RETURN NIL

local rs as _Recordset

// Generate Source for 'Microsoft ActiveX Data Objects 6.0 Library' server from
Tools\Automation Server...
rs := _Recordset{"ADOR.Recordset"}
 rs:Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3,0)
oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Calendar:Selection := SToD("20131111")

oDCOCX_Exontrol1:[DataField,exEventStartDateTime] := "Start"
oDCOCX_Exontrol1:[DataField,exEventEndDateTime] := "End"
oDCOCX_Exontrol1:[DataField,exEventExtraLabel] := "Extra"
oDCOCX_Exontrol1:DataSource := _Recordset{rs}
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event Error(long Error,string Description) - Fired when an internal error occurs.*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
 MessageBox("Information",string(String(Description)))
*/
/*end event Error*/

OleObject oSchedule,rs

oSchedule = ole_1.Object
rs = CREATE OLEObject
rs.ConnectToNewObject("ADOR.Recordset")
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = 2013-11-11
oSchedule.DataField(1,"Start")
oSchedule.DataField(2,"End")
oSchedule.DataField(11,"Extra")
oSchedule.DataSource = rs
oSchedule.EndUpdate()

Visual DataFlex

// Fired when an internal error occurs.
Procedure OnComError Integer llError String llDescription
 Forward Send OnComError llError llDescription
 Showln llDescription
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Variant rs
 Get Comcreateobject "ADOR.Recordset" to rs
 Send ComOpen "Events" "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Program Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb"
OLEadOpenStatic OLEadLockOptimistic Nothing
 Send ComBeginUpdate
 Variant voCalendar
 Get ComCalendar to voCalendar
 Handle hoCalendar
 Get Create (RefClass(cComCalendar)) to hoCalendar
 Set pvComObject of hoCalendar to voCalendar
 Set ComSelection of hoCalendar to "11/11/2013"
 Send Destroy to hoCalendar
 Set ComDataField OLEexEventStartDateTime to "Start"
 Set ComDataField OLEexEventEndDateTime to "End"
 Set ComDataField OLEexEventExtraLabel to "Extra"
 Set ComDataSource to rs
 Send ComEndUpdate
End_Procedure

Xbase++

PROCEDURE OnError(oSchedule,Error,Description)
 DevOut(Transform(Description,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oSchedule
 LOCAL rs

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSchedule := XbpActiveXControl():new(oForm:drawingArea)
 oSchedule:CLSID := "Exontrol.Schedule.1" /*{9B09E13D-7A88-4299-9DBE-
383380435377}*/
 oSchedule:create(,, {10,60},{610,370})

 oSchedule:Error := {|Error,Description| OnError(oSchedule,Error,Description)} /*Fired
when an internal error occurs.*/

 rs := CreateObject("ADOR.Recordset")
 rs:Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3/*adOpenStatic*/,3/*adLockOptimistic*/

 oSchedule:BeginUpdate()
 oSchedule:Calendar():Selection := "11/11/2013"
 oSchedule:SetProperty("DataField",1/*exEventStartDateTime*/,"Start")
 oSchedule:SetProperty("DataField",2/*exEventEndDateTime*/,"End")
 oSchedule:SetProperty("DataField",11/*exEventExtraLabel*/,"Extra")
 oSchedule:DataSource := rs
 oSchedule:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Schedule.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description

Object
An Object that defines the control's data. Currently, the
control accepts ADO.Recordset, ADODB.Recordset
objects, DAO recordsets

The DataSource property binds the control to an ADO.Recordset, ADODB.Recordset
objects, DAO recordsets. Before calling the DataSource property, the DataField property
must associate the start/end of the events to fields in the database. In other words, the
DataField(exEventStartDateTime) and DataField(exEventEndDateTime) or
DataField(exEventDuration) must be associated with fields in the database. Use the
DataField property to associate a property of the event with a field in the database. This
way when the property is changed it is updated in the associated field. The control fires the
Error event if any error occurs when handling the data source. The Syncronize method
ensures that each record has associated an event, and each event has associated a
record.

The following samples shows how you can bound the control to a data source:

VBA

' Error event - Fired when an internal error occurs.
Private Sub Schedule1_Error(ByVal Error As Long,ByVal Description As String)
 With Schedule1
 Debug.Print(Description)
 End With
End Sub

With Schedule1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3
 End With
 .BeginUpdate
 .Calendar.Selection = #11/11/2013#
 .DataField(1) = "Start"
 .DataField(2) = "End"

 .DataField(11) = "Extra"
 .DataSource = rs
 .EndUpdate
End With

VB6

' Error event - Fired when an internal error occurs.
Private Sub Schedule1_Error(ByVal Error As Long,ByVal Description As String)
 With Schedule1
 Debug.Print(Description)
 End With
End Sub

With Schedule1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3
 End With
 .BeginUpdate
 .Calendar.Selection = #11/11/2013#
 .DataField(exEventStartDateTime) = "Start"
 .DataField(exEventEndDateTime) = "End"
 .DataField(exEventExtraLabel) = "Extra"
 .DataSource = rs
 .EndUpdate
End With

VB.NET

' Error event - Fired when an internal error occurs.
Private Sub Exschedule1_Error(ByVal sender As System.Object,ByVal Err As Integer,ByVal
Description As String) Handles Exschedule1.Error
 With Exschedule1
 Debug.Print(Description)
 End With
End Sub

Dim rs
With Exschedule1
 rs = New ADODB.Recordset()
 With rs
 .Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
 End With
 .BeginUpdate()
 .Calendar.Selection = #11/11/2013#

.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,

.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,"End"

.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,"Extra"

 .DataSource = rs
 .EndUpdate()
End With

VB.NET for /COM

' Error event - Fired when an internal error occurs.
Private Sub AxSchedule1_Error(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent) Handles AxSchedule1.Error
 With AxSchedule1
 Debug.Print(e.description)
 End With
End Sub

Dim rs
With AxSchedule1
 rs = CreateObject("ADOR.Recordset")
 With rs

 .Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
 End With
 .BeginUpdate()
 .Calendar.Selection = #11/11/2013#

.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,"Start")
 .set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,"End")
 .set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,"Extra")
 .DataSource = rs
 .EndUpdate()
End With

C++

// Error event - Fired when an internal error occurs.
void OnErrorSchedule1(long Error,LPCTSTR Description)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'
 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 OutputDebugStringW(L"Description");
}

EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
/*
 Includes the definition for CreateObject function like follows:

 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)

 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };

*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'ADODB' for the library: 'Microsoft ActiveX Data Objects 6.0
Library'

 #import <msado15.dll> rename("EOF","REOF")
*/
ADODB::_RecordsetPtr rs = ::CreateObject(L"ADOR.Recordset");
 rs->Open("Events",_bstr_t("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",ADODB::adOpenStatic,ADODB::adLockOptimistic,0);

spSchedule1->BeginUpdate();
spSchedule1->GetCalendar()->PutSelection("11/11/2013");
spSchedule1->PutDataField(EXSCHEDULELib::exEventStartDateTime,"Start");
spSchedule1->PutDataField(EXSCHEDULELib::exEventEndDateTime,"End");
spSchedule1->PutDataField(EXSCHEDULELib::exEventExtraLabel,"Extra");
spSchedule1->PutDataSource(((ADODB::_RecordsetPtr)(rs)));
spSchedule1->EndUpdate();

C++ Builder

// Error event - Fired when an internal error occurs.
void __fastcall TForm1::Schedule1Error(TObject *Sender,long Error,BSTR Description)
{
 OutputDebugString(L"Description");
}

/*
 Select the Component\Import Component...\Import a Type Library,

 to import the following Type Library:

 Microsoft ActiveX Data Objects 6.0 Library

 TypeLib: C:\Program Files\Common Files\System\ado\msado15.dll

 to define the namespace: Adodb_tlb
*/
//#include "ADODB_TLB.h"
Adodb_tlb::_RecordsetPtr rs = Variant::CreateObject(L"ADOR.Recordset");
 rs->Open(TVariant("Events"),TVariant(String("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb"),Adodb_tlb::CursorTypeEnum::adOpenStatic,Adodb_tlb::LockTypeEnum::adLockOptimistic,0);

Schedule1->BeginUpdate();
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2013,11,11).operator
double()));
Schedule1-
>DataField[Exschedulelib_tlb::EventKnownPropertyEnum::exEventStartDateTime] =
TVariant("Start");
Schedule1-
>DataField[Exschedulelib_tlb::EventKnownPropertyEnum::exEventEndDateTime] =
TVariant("End");
Schedule1->DataField[Exschedulelib_tlb::EventKnownPropertyEnum::exEventExtraLabel]
= TVariant("Extra");
Schedule1->DataSource = (IDispatch*)rs;
Schedule1->EndUpdate();

C#

// Error event - Fired when an internal error occurs.
private void exschedule1_Error(object sender,int Err,string Description)
{
 System.Diagnostics.Debug.Print(Description.ToString());
}
//this.exschedule1.Error += new
exontrol.EXSCHEDULELib.exg2antt.ErrorEventHandler(this.exschedule1_Error);

// Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
ADODB.Recordset rs = new ADODB.Recordset();
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",exontrol.ADODB.CursorTypeEnum.adOpenStatic,exontrol.ADODB.LockTypeEnum.adLockOptimistic,0);

exschedule1.BeginUpdate();
exschedule1.Calendar.Selection =
Convert.ToDateTime("11/11/2013",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exschedule1.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,

exschedule1.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,

exschedule1.set_DataField(exontrol.EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,

exschedule1.DataSource = (rs as ADODB.Recordset);
exschedule1.EndUpdate();

JavaScript

<SCRIPT FOR="Schedule1" EVENT="Error(Error,Description)" LANGUAGE="JScript">
 alert(Description);
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377" id="Schedule1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 var rs = new ActiveXObject("ADOR.Recordset");
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",3,3,null);
 Schedule1.BeginUpdate();
 Schedule1.Calendar.Selection = "11/11/2013";
 Schedule1.DataField(1) = "Start";
 Schedule1.DataField(2) = "End";
 Schedule1.DataField(11) = "Extra";

 Schedule1.DataSource = rs;
 Schedule1.EndUpdate();
</SCRIPT>

C# for /COM

// Error event - Fired when an internal error occurs.
private void axSchedule1_Error(object sender,
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent e)
{
 System.Diagnostics.Debug.Print(e.description.ToString());
}
//this.axSchedule1.Error += new
AxEXSCHEDULELib._IScheduleEvents_ErrorEventHandler(this.axSchedule1_Error);

// Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
ADODB.Recordset rs = new ADODB.Recordset();
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb",ADODB.CursorTypeEnum.adOpenStatic,ADODB.LockTypeEnum.adLockOptimistic,0);

axSchedule1.BeginUpdate();
axSchedule1.Calendar.Selection =
Convert.ToDateTime("11/11/2013",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
axSchedule1.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,

axSchedule1.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,

axSchedule1.set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,"Extra"

axSchedule1.DataSource = (rs as ADODB.Recordset);
axSchedule1.EndUpdate();

X++ (Dynamics Ax 2009)

// Error event - Fired when an internal error occurs.
void onEvent_Error(int _Error,str _Description)
{

 ;
 print(_Description);
}

public void init()
{
 anytype rs;
 str var_s;
 ;

 super();

 // Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
 rs = COM::createFromObject(new ADODB.Recordset()); rs = rs;
 var_s = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExSchedule\\Sample\\Access2007\\datasource.accdb";

rs.Open("Events",COMVariant::createFromStr(var_s),3/*adOpenStatic*/,3/*adLockOptimistic*/

 exschedule1.BeginUpdate();

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("11/11/2013",213)));

 exschedule1.DataField(1/*exEventStartDateTime*/,"Start");
 exschedule1.DataField(2/*exEventEndDateTime*/,"End");
 exschedule1.DataField(11/*exEventExtraLabel*/,"Extra");
 exschedule1.DataSource(rs);
 exschedule1.EndUpdate();
}

VFP

*** Error event - Fired when an internal error occurs. ***
LPARAMETERS Error,Description
 with thisform.Schedule1
 DEBUGOUT(Description)
 endwith

with thisform.Schedule1
 rs = CreateObject("ADOR.Recordset")
 with rs
 .Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
 endwith
 .BeginUpdate
 .Calendar.Selection = {^2013-11-11}
 .Object.DataField(1) = "Start"
 .Object.DataField(2) = "End"
 .Object.DataField(11) = "Extra"
 .DataSource = rs
 .EndUpdate
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 Error = class::nativeObject_Error
endwith
*/
// Fired when an internal error occurs.
function nativeObject_Error(Error,Description)
 local oSchedule
 oSchedule = form.Activex1.nativeObject
 ? Str(Description)
return

local oSchedule,rs

oSchedule = form.Activex1.nativeObject
rs = new OleAutoClient("ADOR.Recordset")
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
oSchedule.BeginUpdate()

oSchedule.Calendar.Selection = "11/11/2013"
oSchedule.Template = [DataField(1) = "Start"] // oSchedule.DataField(1) = "Start"
oSchedule.Template = [DataField(2) = "End"] // oSchedule.DataField(2) = "End"
oSchedule.Template = [DataField(11) = "Extra"] // oSchedule.DataField(11) = "Extra"
oSchedule.DataSource = rs
oSchedule.EndUpdate()

XBasic (Alpha Five)

' Fired when an internal error occurs.
function Error as v (Error as N,Description as C)
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 ? Description
end function

Dim oSchedule as P
Dim rs as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
rs = OLE.Create("ADOR.Recordset")
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = {11/11/2013}
oSchedule.Template = "DataField(1) = \"Start\"" ' oSchedule.DataField(1) = "Start"
oSchedule.Template = "DataField(2) = \"End\"" ' oSchedule.DataField(2) = "End"
oSchedule.Template = "DataField(11) = \"Extra\"" ' oSchedule.DataField(11) = "Extra"
oSchedule.DataSource = rs
oSchedule.EndUpdate()

Delphi 8 (.NET only)

// Error event - Fired when an internal error occurs.
procedure TWinForm1.AxSchedule1_Error(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent);
begin
 with AxSchedule1 do

 begin
 OutputDebugString(e.description);
 end
end;

with AxSchedule1 do
begin
 rs := (ComObj.CreateComObject(ComObj.ProgIDToClassID('ADOR.Recordset')) as
ADODB.Recordset);
 with rs do
 begin
 Open('Events','Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb',3,3,Nil);
 end;
 BeginUpdate();
 Calendar.Selection := '11/11/2013';

set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventStartDateTime,'Start');
 set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventEndDateTime,'End');
 set_DataField(EXSCHEDULELib.EventKnownPropertyEnum.exEventExtraLabel,'Extra');
 DataSource := (rs as ADODB.Recordset);
 EndUpdate();
end

Delphi (standard)

// Error event - Fired when an internal error occurs.
procedure TForm1.Schedule1Error(ASender: TObject; Error : Integer;Description :
WideString);
begin
 with Schedule1 do
 begin
 OutputDebugString(Description);
 end
end;

with Schedule1 do

begin
 rs :=
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('ADOR.Recordset'))) as
ADODB_TLB.Recordset);
 with rs do
 begin
 Open('Events','Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb',3,3,Null);
 end;
 BeginUpdate();
 Calendar.Selection := '11/11/2013';
 DataField[EXSCHEDULELib_TLB.exEventStartDateTime] := 'Start';
 DataField[EXSCHEDULELib_TLB.exEventEndDateTime] := 'End';
 DataField[EXSCHEDULELib_TLB.exEventExtraLabel] := 'Extra';
 DataSource := (IUnknown(rs) as ADODB_TLB.Recordset);
 EndUpdate();
end

Visual Objects

METHOD OCX_Exontrol1Error(Error,Description) CLASS MainDialog
 // Error event - Fired when an internal error occurs.
 OutputDebugString(String2Psz(AsString(Description)))
RETURN NIL

local rs as _Recordset

// Generate Source for 'Microsoft ActiveX Data Objects 6.0 Library' server from
Tools\Automation Server...
rs := _Recordset{"ADOR.Recordset"}
 rs:Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3,0)
oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Calendar:Selection := SToD("20131111")
oDCOCX_Exontrol1:[DataField,exEventStartDateTime] := "Start"
oDCOCX_Exontrol1:[DataField,exEventEndDateTime] := "End"
oDCOCX_Exontrol1:[DataField,exEventExtraLabel] := "Extra"

oDCOCX_Exontrol1:DataSource := _Recordset{rs}
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event Error(long Error,string Description) - Fired when an internal error occurs.*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
 MessageBox("Information",string(String(Description)))
*/
/*end event Error*/

OleObject oSchedule,rs

oSchedule = ole_1.Object
rs = CREATE OLEObject
rs.ConnectToNewObject("ADOR.Recordset")
 rs.Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3,3)
oSchedule.BeginUpdate()
oSchedule.Calendar.Selection = 2013-11-11
oSchedule.DataField(1,"Start")
oSchedule.DataField(2,"End")
oSchedule.DataField(11,"Extra")
oSchedule.DataSource = rs
oSchedule.EndUpdate()

Visual DataFlex

// Fired when an internal error occurs.
Procedure OnComError Integer llError String llDescription
 Forward Send OnComError llError llDescription
 Showln llDescription
End_Procedure

Procedure OnCreate
 Forward Send OnCreate

 Variant rs
 Get Comcreateobject "ADOR.Recordset" to rs
 Send ComOpen "Events" "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Program Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb"
OLEadOpenStatic OLEadLockOptimistic Nothing
 Send ComBeginUpdate
 Variant voCalendar
 Get ComCalendar to voCalendar
 Handle hoCalendar
 Get Create (RefClass(cComCalendar)) to hoCalendar
 Set pvComObject of hoCalendar to voCalendar
 Set ComSelection of hoCalendar to "11/11/2013"
 Send Destroy to hoCalendar
 Set ComDataField OLEexEventStartDateTime to "Start"
 Set ComDataField OLEexEventEndDateTime to "End"
 Set ComDataField OLEexEventExtraLabel to "Extra"
 Set ComDataSource to rs
 Send ComEndUpdate
End_Procedure

Xbase++

PROCEDURE OnError(oSchedule,Error,Description)
 DevOut(Transform(Description,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oSchedule
 LOCAL rs

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.

 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oSchedule := XbpActiveXControl():new(oForm:drawingArea)
 oSchedule:CLSID := "Exontrol.Schedule.1" /*{9B09E13D-7A88-4299-9DBE-
383380435377}*/
 oSchedule:create(,, {10,60},{610,370})

 oSchedule:Error := {|Error,Description| OnError(oSchedule,Error,Description)} /*Fired
when an internal error occurs.*/

 rs := CreateObject("ADOR.Recordset")
 rs:Open("Events","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExSchedule\Sample\Access2007\datasource.accdb",3/*adOpenStatic*/,3/*adLockOptimistic*/

 oSchedule:BeginUpdate()
 oSchedule:Calendar():Selection := "11/11/2013"
 oSchedule:SetProperty("DataField",1/*exEventStartDateTime*/,"Start")
 oSchedule:SetProperty("DataField",2/*exEventEndDateTime*/,"End")
 oSchedule:SetProperty("DataField",11/*exEventExtraLabel*/,"Extra")
 oSchedule:DataSource := rs
 oSchedule:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Schedule.DateEvents (Date as Variant) as Variant
Returns a safe array of Event objects in a giving date.

Type Description

Date as Variant A DATE expression that specifies the date/day to be
queried for events

Variant A Safe array of Event objects being shown in the specified
date.

The DateEvents property returns a collection of events in the specified date. The /NET and
/WPF versions of the component provide the get_DateEvents function that retrieves a
collection of Event objects, as List<Event>. The Start/End properties of the Event object
indicates the margins of the events. Once the user starts selecting a new date in the
calendar panel, the control fires the LayoutStartChanging(exCalendarSelectionChange).
Once a new date is selected, the LayoutEndChanging(exCalendarSelectionChange) event
occurs. The SingleSel property indicates whether the user can select one or multiple dates.
The Events property of the Calendar object gets the date that hosts appointments/events.
The VFP uses the TemplateDef and ExecuteTemplate methods to call the control's
properties with parameters, as shown bellow at VFP section.

The following sample shows how you can enumerate the events within the selected date,
once the LayoutEndChanging(exCalendarSelectionChange) event occurs.

VB

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If Operation = exCalendarSelectionChange Then
 Dim d As Variant
 If (Schedule1.Calendar.SelCount = 1) Then
 For Each d In Schedule1.DateEvents(Schedule1.Calendar.SelDate(0))
 Debug.Print "Event: " & d.Start & " " & d.End
 Next
 End If
 End If
End Sub

VB/NET

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal

Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 If (Exschedule1.Calendar.SelCount > 0) Then
 Dim evs As List(Of exontrol.EXSCHEDULELib.Event) =
Exschedule1.get_DateEvents(Exschedule1.Calendar.get_SelDate(0))
 If Not evs Is Nothing Then
 For Each d As exontrol.EXSCHEDULELib.Event In evs
 Debug.Print("Event: " & d.Start & " " & d.End)
 Next
 End If
 End If
 End If
End Sub

or:

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange Then
 If (Exschedule1.Calendar.SelCount > 0) Then
 Dim evs As List(Of exontrol.EXSCHEDULELib.Event) =
Exschedule1.get_DateEvents(Exschedule1.Calendar.get_SelDate(0))
 If Not evs Is Nothing Then
 For Each d As exontrol.EXSCHEDULELib.Event In evs
 Debug.Print("Event: " & d.Start & " " & d.End)
 Next
 End If
 End If
 End If
End Sub

C#

private void exschedule1_LayoutEndChanging(object sender,

exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exCalendarSelectionChange)
 if (exschedule1.Calendar.SelCount == 1)
 {
 List<exontrol.EXSCHEDULELib.Event> evs =
exschedule1.get_DateEvents(exschedule1.Calendar.get_SelDate(0));
 if (evs != null)
 foreach (exontrol.EXSCHEDULELib.Event d in evs)
 System.Diagnostics.Debug.Print("Event: " + d.Start.ToString() + " " +
d.Start.ToString());
 }
}

VFP

*** ActiveX Control Event ***
LPARAMETERS operation
* 1 ' exCalendarSelectionChange
 If Operation = 1 Then
 IF (thisform.Schedule1.Calendar.SelCount = 1) Then
 local e, evs as Object

 thisform.Schedule1.TemplateDef = "dim d"
 thisform.Schedule1.TemplateDef = thisform.Schedule1.Calendar.SelDate(0)
 evs = thisform.Schedule1.ExecuteTemplate("DateEvents(d)")
 For Each e In evs
 LOCAL ee as Object
 ee = thisform.Schedule1.Events(e)
 WAIT WINDOW TTOC(ee.Start) + " " + TTOC(ee.End)
 ENDFOR
 ENDif
 EndIf

C++

void LayoutEndChangingSchedule1(long Operation)

{
 if (Operation == EXSCHEDULELib::exCalendarSelectionChange)
 if (m_spSchedule->Calendar->SelCount == 1)
 {
 _variant_t evs;
 if (SUCCEEDED(m_spSchedule->get_DateEvents(_variant_t(m_spSchedule-
>Calendar->SelDate[0], VT_DATE), &evs)))
 if (V_VT(&evs) == (VT_ARRAY | VT_VARIANT))
 {
 BYTE* p = NULL;
 long nCount = 0;
 if (SUCCEEDED(SafeArrayGetUBound(V_ARRAY(&evs), 1, &nCount)))
 {
 if (SUCCEEDED(SafeArrayAccessData(V_ARRAY(&evs), (LPVOID*)&p)))
 {
 for (long i = 0; i < nCount + 1; i++, p += sizeof(VARIANT))
 {
 VARIANT* pValue = (VARIANT*)p;
 if (V_VT(pValue) == VT_DISPATCH)
 {
 EXSCHEDULELib::IEventPtr spEvent = V_DISPATCH(pValue);
 CString strMessage;
 strMessage.Format(_T("Event: %f %f\r\n"), spEvent->Start, spEvent-
>End);
 OutputDebugString(strMessage);
 }
 }
 SafeArrayUnaccessData(V_ARRAY(&evs));
 }
 }
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

property Schedule.DateTimeFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Date
Retrieves the date/time from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Date A Date expression that indicates the date from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates. The DateTimeFromPoint
property gets the date including the time. You can use any function that gets the integer
part of the date, to get the date only, not including the time, such as Fix, DateValue, ... in
VB. For instance, the VB has a Fix method that gets the integer part of the number. So, the
Fix(DateTimeFromPoint(-1,-1)) gets the date from the cursor, not including the time as
shown in the time scale.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.

NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

property Schedule.DayEndTime as String
Indicates the day end time.

Type Description

String
A String expression that indicates the ending time of the
day. For instance, the "08:00" indicates 08:00 AM, while
the "16:00" indicates the 08:00 PM.

By default, the DayEndTime property is "16:00", which indicates that the day ends at 8:00
PM. The DayStartTime property specifies the time to start the day. The TimeZone property
can be used to programmatically update the time zone. The MajorTimeRuler property
indicates the time to increment the major rulers, while the MinorTimeRuler property
specifies the time to increment the minor rulers. The DateTimeFromPoint/TimeFromPoint
properties can be used to get the date/time from the cursor.

property Schedule.DayStartTime as String
Indicates the day start time.

Type Description

String
A String expression that indicates the starting time of the
day. For instance, the "08:00" indicates 08:00 AM, while
the "16:00" indicates the 08:00 PM.

By default, the DayStartTime property is "08:00", which indicates that the day starts at 8:00
AM. The DayEndTime property specifies the time to end the day. The TimeZone property
can be used to programmatically update the time zone. The MajorTimeRuler property
indicates the time to increment the major rulers, while the MinorTimeRuler property
specifies the time to increment the minor rulers. The DateTimeFromPoint/TimeFromPoint
properties can be used to get the date/time from the cursor.

property Schedule.DayViewHeight as Long
Indicates the height of the day's view in the schedule panel.

Type Description

Long A Long expression that specifies the height of the date in
the schedule view.

The DayViewHeight property specifies the height, in pixels, of the date in the schedule
panel. If setting the DayViewHeight property on -1 (negative value), the date fits vertically
the schedule view.

The DayViewOffsetX property indicates the horizontal scroll position of the schedule's view.
The DayViewWidth property specifies the width, in pixels, of the date in the schedule panel.
The DayViewOffsetY property indicates the vertical scroll position of the schedule's view.
You can use the DayViewWidth, DayViewHeight, DayViewOffsetX and DayViewOffsetY
properties to save and restore the schedule view position. The EnsureVisible method
ensures that giving date fits the schedule's view.

property Schedule.DayViewOffsetX as Long
Indicates the horizontal scroll position of the schedule's view.

Type Description

Long A Long expression that specifies the horizontal scroll
position of the schedule's view

The DayViewOffsetX property indicates the horizontal scroll position of the schedule's view.
If setting the DayViewOffsetX property on -1 (negative value), the schedule view scrolls to
the end (horizontally).

The DayViewWidth property specifies the width, in pixels, of the date in the schedule panel.
The DayViewHeight property specifies the height, in pixels, of the date in the schedule
panel. The DayViewOffsetY property indicates the vertical scroll position of the schedule's
view. You can use the DayViewWidth, DayViewHeight, DayViewOffsetX and
DayViewOffsetY properties to save and restore the schedule view position. The
EnsureVisible method ensures that giving date fits the schedule's view.

property Schedule.DayViewOffsetY as Long
Indicates the vertical scroll position of the schedule's view.

Type Description

Long A Long expression that specifies the vertical scroll position
of the schedule's view

The DayViewOffsetY property indicates the vertical scroll position of the schedule's view. If
setting the DayViewOffsetY property on -1 (negative value), the schedule view scrolls to
the end (vertically).

The DayViewWidth property specifies the width, in pixels, of the date in the schedule panel.
The DayViewHeight property specifies the height, in pixels, of the date in the schedule
panel. The DayViewOffsetX property indicates the horizontal scroll position of the
schedule's view. You can use the DayViewWidth, DayViewHeight, DayViewOffsetX and
DayViewOffsetY properties to save and restore the schedule view position. The
EnsureVisible method ensures that giving date fits the schedule's view.

property Schedule.DayViewWidth as Long
Indicates the width of the day's view in the schedule panel.

Type Description

Long A Long expression that specifies the width of the date in
the schedule view.

The DayViewWidth property specifies the width, in pixels, of the date in the schedule panel.
If setting the DayViewWidth property on -1 (negative value), the date fits horizontally the
schedule view.

The DayViewOffsetX property indicates the horizontal scroll position of the schedule's view.
The DayViewHeight property specifies the height, in pixels, of the date in the schedule
panel. The DayViewOffsetY property indicates the vertical scroll position of the schedule's
view. You can use the DayViewWidth, DayViewHeight, DayViewOffsetX and
DayViewOffsetY properties to save and restore the schedule view position. The
EnsureVisible method ensures that giving date fits the schedule's view.

property Schedule.DefaultEventLongLabel as String
Indicates the default long label for events.

Type Description

String A string expression that specifies the extended HTML
label, to be displayed on the event's body.

By default, the DefaultEventLongLabel property is "<%=%256%>", which indicates that the
events displays its margins in a short format. The DefaultEventLongLabel property indicates
the default long label for events. The LongLabel property is displayed only if it fits the
event's body, else the ShortLabel property is shown. For instance, the ShortLabel property
is shown if the event's body is too small. The event displays the ExtraLabel, only if the
LongLabel property is displayed. The AddEvent event occurs once a new event is added to
the Events collection.

The DefaultEventPadding property indicates the padding of the labels on the event, relative
to event's borders. The DefaultEventShortLabel property defines the initial value for the
event's ShortLabel property. The DefaultEventTooltip property defines the event's tooltip.

Here's a few samples:

"new", simple new text is shown.
"<a no>title", displays a clickable text such as title, and AnchorClick can be used
to determine whether the no anchor has been clicked.
"<a>pic1:32", displays a click able image, the AnchorClick can be
used to determine whether the anchor has been clicked. We would recommend using
the Pictures or ExtraPictures property to assign pictures to an event.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '

day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line
"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the Label property on "Start: <%=time(%1)
replace `AM` with ``%>" displays the time when the event starts with no AM time
indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE

type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2

value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string

lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -

Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is

about:blank

present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>

HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Schedule.DefaultEventPadding(Edge as PaddingEdgeEnum) as
Long
Returns or sets a value that indicates the padding of the events in the control.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that indicates the edge to
be modified.

Long A long expression that defines the padding.

The DefaultEventPadding property indicates the padding of the labels on the event, relative
to event's borders. The DefaultEventLongLabel property indicates the default long label for
events. The DefaultEventShortLabel property defines the initial value for the event's
ShortLabel property. The DefaultEventTooltip property defines the event's tooltip. The
LongLabel property is displayed only if it fits the event's body, else the ShortLabel property
is shown. For instance, the ShortLabel property is shown if the event's body is too small.
The event displays the ExtraLabel, only if the LongLabel property is displayed. The
AddEvent event occurs once a new event is added to the Events collection.

property Schedule.DefaultEventShortLabel as String
Indicates the default short label for events.

Type Description

String
A string expression that specifies the extended HTML
label, to be displayed on the event's body. The images, or
any font HTML attribute is ignored.

By default, the DefaultEventShortLabel property is "<%=%256%>", which means that the
event's body displays the margins of events in short format . The DefaultEventShortLabel
property defines the initial value for event's ShortLabel property. The ShortLabel property is
shown if the event's body is too small. The LongLabel property is displayed only if it fits the
event's body, else the ShortLabel property is shown.. The event displays the ExtraLabel,
only if the LongLabel property is displayed. The AddEvent event occurs once a new event is
added to the Events collection. The LabelAlign property specifies the alignment of the long
label. The DefaultEventShortLabel/ShortLabel property displays (ignores) NO images such
as , or font HTML attributes such as , <i>, ...

The DefaultEventPadding property indicates the padding of the labels on the event, relative
to event's borders. The DefaultEventLongLabel property defines the initial value for the
event's LongLabel property. The DefaultEventTooltip property defines the event's tooltip.

Here's a few samples:

"new", simple new text is shown.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +

' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line
"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the ShortLabel property on "Start: <%=time(%1) replace
`AM` with ``%>" displays the time when the event starts with no AM time indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE

type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and

Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters

proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)

min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Schedule.DefaultEventTooltip as String
Indicates the default tooltip for events.

Type Description

String
A String expression that defines the extended HTML
format to be displayed when the cursor hovers the
appointments.

By default, the DefaultEventTooltip property is "Start: <%=%1%>
End: <%=%2%>

Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ? ' ' :
'') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>", which indicates that the
tooltip of the event shows the start, end and the duration of the event. The
DefaultEventTooltip property defines the event's tooltip, or the initial value for the event's
ToolTip. The ShowToolTip method can be used during the MouseMove event to display a
custom tooltip.

The DefaultEventPadding property indicates the padding of the labels on the event, relative
to event's borders. The DefaultEventShortLabel property defines the initial value for the
event's ShortLabel property. The DefaultEventLongLabel property defines the initial value
for the event's LongLabel property. Use the ToolTipPopDelay property specifies the period
in ms of time the ToolTip remains visible if the mouse pointer is stationary within a control.
Use the ToolTipFont property to change the tooltip's font.

Here's a few samples:

"new", simple new text is shown.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.
"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.

"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the ToolTip property on "Start: <%=time(%1)
replace `AM` with ``%>" displays the time when the event starts with no AM time
indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive
property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE

type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in

operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string

endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics

<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank

line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or

blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Schedule.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for control objects.

Type Description
Type as
DescriptionTypeEnum

A DescriptionTypeEnum expression that defines the UI
part to change its caption.

String A string expression that defines the new caption for the
giving UI part.

The Description property defines the default caption to be displayed on giving UI part of the
control. For instance, you can use the Description property to change the "All" caption being
displayed on the groups filter.

The following samples translate "All" in the drop down filter of the groups to "Todos":

VBA (MS Access, Excell...)

With Schedule1
 .Description(0) = "(todos)"
 .DisplayGroupingButton = True
 .ShowGroupingEvents = True
 .Groups.Add 1,"Pro"
End With

VB6

With Schedule1
 .Description(exGroupBarAll) = "(todos)"
 .DisplayGroupingButton = True
 .ShowGroupingEvents = True
 .Groups.Add 1,"Pro"
End With

VB.NET

With Exschedule1
 .set_Description(exontrol.EXSCHEDULELib.DescriptionTypeEnum.exGroupBarAll,"
(todos)")
 .DisplayGroupingButton = True
 .ShowGroupingEvents = True

 .Groups.Add(1,"Pro")
End With

VB.NET for /COM

With AxSchedule1
 .set_Description(EXSCHEDULELib.DescriptionTypeEnum.exGroupBarAll,"(todos)")
 .DisplayGroupingButton = True
 .ShowGroupingEvents = True
 .Groups.Add(1,"Pro")
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->PutDescription(EXSCHEDULELib::exGroupBarAll,L"(todos)");
spSchedule1->PutDisplayGroupingButton(VARIANT_TRUE);
spSchedule1->PutShowGroupingEvents(VARIANT_TRUE);
spSchedule1->GetGroups()->Add(1,L"Pro");

C++ Builder

Schedule1->Description[Exschedulelib_tlb::DescriptionTypeEnum::exGroupBarAll] =
L"(todos)";
Schedule1->DisplayGroupingButton = true;
Schedule1->ShowGroupingEvents = true;
Schedule1->Groups->Add(1,L"Pro");

C#

exschedule1.set_Description(exontrol.EXSCHEDULELib.DescriptionTypeEnum.exGroupBarAll,
(todos)");
exschedule1.DisplayGroupingButton = true;
exschedule1.ShowGroupingEvents = true;
exschedule1.Groups.Add(1,"Pro");

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.Description(0) = "(todos)";
 Schedule1.DisplayGroupingButton = true;
 Schedule1.ShowGroupingEvents = true;
 Schedule1.Groups.Add(1,"Pro");
</SCRIPT>

C# for /COM

axSchedule1.set_Description(EXSCHEDULELib.DescriptionTypeEnum.exGroupBarAll,"
(todos)");
axSchedule1.DisplayGroupingButton = true;
axSchedule1.ShowGroupingEvents = true;
axSchedule1.Groups.Add(1,"Pro");

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exschedule1.Description(0/*exGroupBarAll*/,"(todos)");

 exschedule1.DisplayGroupingButton(true);
 exschedule1.ShowGroupingEvents(true);
 exschedule1.Groups().Add(1,"Pro");
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 set_Description(EXSCHEDULELib.DescriptionTypeEnum.exGroupBarAll,'(todos)');
 DisplayGroupingButton := True;
 ShowGroupingEvents := True;
 Groups.Add(1,'Pro');
end

Delphi (standard)

with Schedule1 do
begin
 Description[EXSCHEDULELib_TLB.exGroupBarAll] := '(todos)';
 DisplayGroupingButton := True;
 ShowGroupingEvents := True;
 Groups.Add(1,'Pro');
end

VFP

with thisform.Schedule1
 .Object.Description(0) = "(todos)"
 .DisplayGroupingButton = .T.
 .ShowGroupingEvents = .T.
 .Groups.Add(1,"Pro")
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject

oSchedule.Template = [Description(0) = "(todos)"] // oSchedule.Description(0) = "
(todos)"
oSchedule.DisplayGroupingButton = true
oSchedule.ShowGroupingEvents = true
oSchedule.Groups.Add(1,"Pro")

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.Template = "Description(0) = \"(todos)\"" ' oSchedule.Description(0) =
"(todos)"
oSchedule.DisplayGroupingButton = .t.
oSchedule.ShowGroupingEvents = .t.
oSchedule.Groups.Add(1,"Pro")

Visual Objects

oDCOCX_Exontrol1:[Description,exGroupBarAll] := "(todos)"
oDCOCX_Exontrol1:DisplayGroupingButton := true
oDCOCX_Exontrol1:ShowGroupingEvents := true
oDCOCX_Exontrol1:Groups:Add(1,"Pro")

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.Description(0,"(todos)")
oSchedule.DisplayGroupingButton = true
oSchedule.ShowGroupingEvents = true
oSchedule.Groups.Add(1,"Pro")

property Schedule.DisplayGroupingButton as Boolean
Gets or sets a value that indicates whether the grouping button is displayed in the date
header.

Type Description

Boolean A Boolean expression that specifies whether the date's
header displays a grouping button.

By default, the DisplayGroupingButton property is False. The DisplayGroupingButton
property indicates whether the header of the date displays the grouping button. The list of
available groups is displayed on a drop down panel, once the user clicks the
grouping/filtering button. The drop down list shows the Title for each group found. The
ShowGroupingEvents property indicates whether the control displays events grouped by its
GroupID property. The ApplyGroupingColors property specifies whether the control uses
the Group's EventBackColor / EventForeColor / EventPattern properties to show the events
in the groups. The SingleGroupingView property specifies whether the drop down panel
shows radio buttons, instead check boxes, so the user can see all groups or only one group
at the time. The GroupID property specifies the identifier of the group where the event
belongs. If the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime. Use the Add method of the Groups collection to add new
groups to the control.

The grouping button is displayed if:

DisplayGroupingButton property is True
ShowGroupingEvents property is True

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

The following Background properties change the visual appearance of the drop down
grouping panel:

Background(exGroupingBackColor) / Background(exGroupingForeColor) changes the
background and the foreground color of the panel.
Background(exGroupingSelBackColor) / Background(exGroupingSelForeColor)
changes the background and the foreground color of the selection in the panel.
Background(exCheckBoxState0), Background(exCheckBoxState1),

Background(exCheckBoxState2) changes the visual appearance for the control's check
boxes.
Background(exRadioButtonState0), Background(exRadioButtonState1), changes the
visual appearance for the control's radio buttons.

The Description(exGroupBarAll) property changes the "(All)" predefined string, being
displayed on the top of the drop down grouping/filtering panel.

The following screen shot shows the drop down panel, if the SingleGroupingView property
is False (by default):

The following screen shot shows the drop down panel, if the SingleGroupingView property
is True:

property Schedule.EditContextMenuItems as String
Specifies the control's context menu, while editing the event.

Type Description

String A string expression that indicates the items to be shown
on the edit's context menu.

The edit's context menu is displayed if the user right clicks while editing the event. Use the
EditContextMenuItems property to change the edit's context menu.

By default the EditContextMenuItems property is:

Command[id=57625][captionwidth=48][group=19](Undo[id=57643][align=1]
[button=-1][captionwidth=44],Redo[id=57644][align=1][button=-1]),Edit[id=57624]
[captionwidth=48][group=19](Cut[id=57635][align=1][button=-1],Copy[id=57634]
[align=1][button=-1],Paste[id=57637][align=1][button=-1],Delete[id=57632][align=1]
[button=-1],Select All[id=57642][align=1][button=-1]),format[sep][id=57623]
[height=13],Type[id=57622][show=1][captionwidth=28][group=19](B[id=57648]
[typ=1][align=1][show=1],I[id=57649][typ=1][align=1][show=1],U[id=57650]
[typ=1][align=1][show=1],S[id=57651][typ=1][align=1][show=1],[sep]
[id=57621],A[id=57760][typ=1][align=1][spchk=-1][show=1](ID[id=57761]
[edittype=1][editwidth=-172],Options[id=57762][edittype=1]
[editwidth=-72]),G[id=57715][typ=1][align=1][spchk=-1][show=1]
(Color[id=57717][edittype=518][border=0][editwidth=-72],Mode[id=57724]
[group=17](H[id=57725][typ=2][align=1][chk=1][show=1][grp=2],V[id=57726]
[typ=2][align=1][show=1][grp=2],FD[id=57727][typ=2][align=1][show=1]
[grp=2],BD[id=57728][typ=2][align=1][show=1][grp=2]),Blend Triangular
Shape[id=57729][typ=1][show=-1]),O[id=57730][typ=1][align=1][spchk=-1]
[show=1](Color[id=57732][edittype=518][border=0]
[editwidth=-96],Width[id=57739][edittype=3][border=0][min=1][max=4][freq=1]
[editwidth=-72]),S[id=57743][typ=1][align=1][spchk=-1][show=1]
(Color[id=57745][edittype=518][border=0][editwidth=-72],Offset[id=57752]
[edittype=3][border=0][min=-8][max=+8][freq=1]
[editwidth=-128],Width[id=57756][edittype=3][border=0][min=2][max=+7]
[freq=1][editwidth=-128])),[sep][id=57620][height=4],Align[id=57619][show=1]
[captionwidth=24][height=26][group=19]([id=57618][group=19]
(Offset[id=57709][typ=1][chk][show=1][showdis][border=0][min=-32][max=+32]
[freq=4][editwidth=-96][height=24])),Color[id=57618][captionwidth=28]

[height=26][group=3](Fore[id=57685][typ=1][show=1][showdis][editwidth=-96]
[height=24],[sep][id=57617],Back[id=57686][typ=1][show=1][showdis]
[editwidth=-96][height=24]),Font[id=57617][captionwidth=28][height=26]
[group=3](Face[id=57701][typ=1][show=1][showdis][height=24][editwidth=-116],
[sep][id=57616],Size[id=57702][typ=1][show=1][showdis][height=24]
[editwidth=-82][min=4][max=72][freq=4]),Misc[id=57609][captionwidth=24]
[group=3](Image[id=57608](Size[id=57680][edittype=515][border=0][min=16]
[max=128][freq=16][editwidth=-128][ticklabel=value = %i ? ''+value : (value =
vmax ? ''+value : (value = vmin ? ''+value : ''))],Insert[id=57679]()))

By default, the control's context menu shows as following:

Let's say we want to remove all that grouping, and shows as a regular context menu (just
remove all the [group] from the EditContextMenuItems property, and you should get
something like:

The EditContextMenuItems's syntax in BNF notation:

<EditContextMenuItems> ::= <ITEMS>
<ITEMS> ::= <ITEM>["("<ITEMS>")"][","<ITEMS>]
<ITEM> ::= <CAPTION>[<OPTIONS>]
<OPTIONS> ::= "["<OPTION>"]"["["<OPTIONS>"]"]
<OPTION> ::= <PROPERTY>["="<VALUE>]
<PROPERTY> ::= "img" | "himg" | "sep" | "id" | "typ" | "group" | "chk" | "button" | "align" |

"spchk" | "show" | "rad" | "dis" | "showdis" | "bld" | "itl" | "stk" | "und" | "bg" | "fg" | "edittype"
| "edit" | "mask" | "border" | "editwidth" | "captionwidth" | "height" | "grp" | "tfi" | "ttp" | "min" |
"max" | "tick" | "freq" | "ticklabel" | "small" | "large" | "spin" | "ettp" | "float"

where the <CAPTION> is the HTML caption to be shown on the context menu item. The
<VALUE> indicates the value of giving property.

img=<VALUE>, where <VALUE> is an integer expression, that indicates the index of
the icon being displayed for the item.
himg=<VALUE>, where <VALUE> indicates the key of the picture to be displayed for
the item.
sep, specifies an separator item
id=<VALUE>, where <VALUE> is an integer expression, that indicates the identifier of
the item.
typ=<VALUE>, where <VALUE> could be one of the following:

0 for regular items,
1 for items that display a check/box (chk)
2 to display radio buttons (rad)

group=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values:

0 (exNoGroupPopup), No grouping is performed on the sub-menu, so the sub-
items are shown to a float popup,
1 (exGroupPopup), Groups and displays the sub-menu items on the current item,
arranged from left to right
2 (exNoGroupPopupFrame), Prevents showing the frame around each grouping
item.
4 (exGroupPopupCenter), Shows the grouping popup aligned to the center of the
current item.
8 (exGroupPopupRight), Shows the grouping popup aligned to the right of the
current item.
16 (exGroupPopupEqualSize), Shows the items that make the group of the same
size

chk[=<VALUE>], where <VALUE> could be 0 for unchecked, or not zero for checked.
The chk option makes the item to display a check box. If the <VALUE> is missing the
item still displays an un-checked check box.
button=<VALUE>, where <VALUE> could be 0 for regular or not zero to show the item
as a button.
align=<VALUE>, where <VALUE> could be one of the following:

0 (left), to align the item's caption to the left
1 (center), to center the item's caption
2 (right), to align the item's caption to the right

spchk=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item's sub menu is shown only if the item is checked.

show=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the checked item shows as selected
rad=<VALUE>, where <VALUE> could be 0 for unchecked radio button or not zero to
for checked radio button. Use the grp option to define the group of radio where this
button should be associated, If no group of radio buttons is required, the grp could be
ignored.
dis, specifies a disabled item
showdis=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item shows as disabled, but it is still enabled
bld, specifies that the item appears in bold
itl, specifies that the item appears in italics
stk, specifies that the item appears as strikeout
und, specifies that the item is underlined
bg=<VALUE>, specifies the item's background color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a long expression.
fg=<VALUE>, specifies the item's foreground color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a long expression.
edittype=<VALUE>, associates an edit field to the item, where <VALUE> could be one
of the following values:

0 (exItemDisableEdit), No editor is assigned to the current item.
1 (exItemEditText), A text-box editor is assigned to the current item.
2 (exItemEditMask), A masked text-box editor is assigned to the current item.
3 (exItemEditSlider), A slider editor is assigned to the current item.
4 (exItemEditProgress), A progress editor is assigned to the current item.
5 (exItemEditScrollBar), A scrollbar editor is assigned to the current item.
6 (exItemEditColor), A color editor is assigned to the current item.
7 (exItemEditFont), A font editor is assigned to the current item.
256 (exItemEditReadOnly), specifies that the item's editor is shown as disabled.
This value could be combined with one of the values from 0 to 7, 512
512 (exItemEditSpin), A spin editor is assigned to the current item. This value
could be combined with one of the values from 0 to 7, 256

edit=<VALUE>, specifies the caption to be shown in the item's edit field, where
<VALUE> could be any string
mask=<VALUE>, specifies the mask to be applied on a masked editor. This option is
valid for exItemEditMask edit. Use the float option to allow masking floating point
numbers. See Masking for more information about <VALUE> of the mask option. See
Masking Float for more information about <VALUE> if the float option is used.
border=<VALUE>, specifies the border to be shown on the item's edit field, where
<VALUE> could be one of the following:

0 (exEditBorderNone), No border is shown.

-1 (exEditBorderInset), shows an inset border
1 (exEditBorderSingle), shows a frame border

editwidth=<VALUE>, specifies the width to show the edit field inside the item. where
<VALUE> could be a long expression. A negative value indicates that the field goes to
the end of the item
captionwidth=<VALUE>, specifies the width to show the HTML caption of the item.
where <VALUE> could be a long expression. A negative value indicates that no
limitation is applied to the item's caption, so no truncate caption is shown
height=<VALUE>, specifies the height to show the item, where <VALUE> could be a
positive long expression
grp=<VALUE>, defines the radio group. It should be used when you define more
groups of radio buttons. A group of radio buttons means that only one item could be
checked at one time. The rad option specifies that the item displays a radio button.
Use the grp option to define the group of radio where this button should be associated,
If no group of radio buttons is required, the grp could be ignored. The <VALUE> could
be any long expression.
ttp=<VALUE>, defines the item's tooltip. The <VALUE> could be any HTML string
expression. The item's tooltip is shown when the user hovers the item.
min=<VALUE>, defines the minimum value of the edit field. The <VALUE> could be any
long expression, and specifies the minimum value for any slider, progress, scroll, spin,
or range editor.
max=<VALUE>, defines the maximum value of the edit field. The <VALUE> could be
any long expression, and specifies the maximum value for any slider, progress, scroll,
spin, or range editor.
tick=<VALUE>, defines where the ticks of the slider edit appear. This option is valid for
exItemEditSlider edit. The <VALUE> could be one of the following values:

0 (exBottomRight), The ticks are displayed on the bottom/right side.
1 (exTopLeft), The ticks are displayed on the top/left side.
2 (exBoth), The ticks are displayed on the both side.
3 (exNoTicks), No ticks are displayed.

freq=<VALUE>, indicates the ratio of ticks on the slider edit. This option is valid for
exItemEditSlider edit. The <VALUE> could be a positive long expression.
ticklabel=<VALUE>, indicates the HTML label to be displayed on slider's ticks. This
option is valid for exItemEditSlider edit. See Tick Label Expression for more information
about <VALUE> of the ticklabel option.
small=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the arrow key (left, right, or button). This option is valid for
exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive long
expression.
large=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the CTRL + arrow key (CTRL + left, CTRL + right). This option is valid
for exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive long
expression.

spin=<VALUE>, specifies the step to advance when user clicks the editor's spin.. This
option is valid for exItemEditSpin edit. The <VALUE> could be a positive long
expression.
ettp=<VALUE>, specifies the HTML tooltip to be shown when the item's value is
changed. This option is valid for exItemEditSlider/exItemEditScrollBar edit. The
<VALUE> could be any string expression.
float=<VALUE>, Specifies whether the mask field masks a floating point number. This
option is valid for exItemEditMask edit. See Masking Float for more information about
<VALUE> of mask option, if the float option is used. The <VALUE> could be 0 for
standard masking field or not zero to specify that the field is masking a floating point.

ContextMenu - Masking

For instance, the following input-mask (ext-phone)

!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is

separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,

";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. readonly, the editor
is locked, user can not update the content, the caret is available, so user can
copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed

and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.

rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

ContextMenu - Masking Float

The [mask=<VALUE>] property may indicate the followings, if the [float=-1] is present

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates
the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the <VALUE> property is empty, the control takes the settings for the regional options
like: Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The <VALUE>"-###.###.##0,00" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The <VALUE>"-###.###.###,##" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator)

The <VALUE>"-###,###,###.##" filter floating point numbers a number for English settings (
"." is the decimal sign, "," is the thousands separator)

The <VALUE>"####" indicates a max-4 digit number (positive) without a decimal symbol
and without digit grouping

The <VALUE>"-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the
decimal sign, no thousands separator)

The <VALUE>"#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

ContextMenu - Tick Label Expression

For instance:

"value", shows the values for each tick.
" (value=current ? '<fgcolor=FF0000>' : '') + value", shows the current
slider's position with a different color and font.
"value = current ? value : ''", shows the value for the current tick only.
"(value = current ? '' : '') + (value array 'ab bc cd de ef fg gh hi ij jk kl'
split ' ')" displays different captions for slider's values.

The The <VALUE> of [ticklabel] option is a formatted expression which result may include
the HTML tags.

The The <VALUE> of [ticklabel] option indicates a formatting expression that may use the
following predefined keywords:

value gets the slider's position to be displayed
current gets the current slider's value.
vmin gets the slider's minimum value.
vmax gets the slider's maximum value.
smin gets the slider's selection minimum value.
smax gets the slider's selection maximum value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified

dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the

field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.

shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display labels using the following built-in HTML
tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of text with a different font and/or different
size. For instance, the bit draws the bit text using the Tahoma
font, on size 12 pt. If the name of the font is missing, and instead size is present, the
current font is used with a different size. For instance, bit displays the
bit text using the current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text with a specified foreground color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text with a specified background color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on top/bottom side. If has no effect for a
single line caption.
<dotline> The next line shows a dot-line on top/bottom side. If has no effect for a
single line caption.
<upline> The next line shows a solid/dot-line on top side. If has no effect for a single
line caption.
<r> Right aligns the text

<c> Centers the text
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number
(the character with specified code), For instance, the € displays the EUR
character, in UNICODE configuration. The & ampersand is only recognized as markup
when it is followed by a known letter or a # character and a digit. For instance if you
want to display bold in HTML caption you can use bold

property Schedule.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A Boolean expression that specifies whether the control is
enabled or disabled.

By default, the Enabled property is True. Use the Enabled property to disable the control.
The DisableZoneFormat property of the Calendar returns or sets an expression that
determines the dates being disabled in the calendar/schedule panel. The
AllowUpdateDisableZone property on True, lets user to update the disabled zones. The
AllowCreateEvent property indicates the combination of the keys to let user creates new
events. The AllowMoveEvent property indicates the combination of the keys to let user
moves the events. The AllowResizeEvent property indicates the combination of the keys to
let user resizes the events.

method Schedule.EndBlockUndoRedo ()
Ends recording the UI operations and adds the undo/redo operations as a block, so they all
can be restored at once, if Undo method is performed.

Type Description

You can use the StartBlockUndoRedo / EndBlockUndoRedo methods to group multiple
Undo/Redo operations into a single-block. The GroupUndoRedoActions groups the next to
current Undo/Redo Actions in a single block. A block may hold multiple Undo/Redo actions.
The AllowUndoRedo property enables or disables the Undo/Redo feature. Use the
GroupUndoRedoActions method to group two or more entries in the Undo/Redo queue in a
single block, so when a next Undo/Redo operation is performed, multiple actions may occur.
For instance, moving several calendar-events in the same time (multiple calendar-events
selection) is already recorded as a single block. Use the UndoRedoQueueLength property
to specify the number of entries that Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveEvent;B
MoveEvent;A
EndBlock

method Schedule.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your events, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. You can use
the Refresh method to refresh the control's content.

method Schedule.EnsureVisible (Date as Variant)
Ensures that the specified date fits the client area of the schedule view.

Type Description

Date as Variant A DATE expression that specifies the date to be shown in
the schedule view.

The EnsureVisible method ensures that giving date fits the schedule's view. The
EnsureVisible method does not select a date, and it scrolls the schedule view so it ensures
that the panel shows the specified date. You can use the OnSelectDate property to specifiy
the action to perform once the user clicks or selects a date in the calendar panel. The
DayViewWidth property specifies the width, in pixels, of the date in the schedule panel. The
DayViewOffsetX property indicates the horizontal scroll position of the schedule's view. The
DayViewHeight property specifies the height, in pixels, of the date in the schedule panel.
The DayViewOffsetY property indicates the vertical scroll position of the schedule's view.

property Schedule.EventFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Event
Gets the Event object from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS

A single that specifies the current X location of
the mouse pointer. The x values is always
expressed in client coordinates. -1 indicates the
current cursor position.

Y as OLE_YPOS_PIXELS

A single that specifies the current X location of
the mouse pointer. The x values is always
expressed in client coordinates. -1 indicates the
current cursor position.

Event An Event object from the position or Nothing, if not event
found.

The EventFromPoint method gets the Event object from the giving position. The
EventFromPoint(-1,-1) gives the Event object from the current mouse position. The
EventFromPoint method gets nothing, if no event is found at specified location. The /NET or
/WPF version provides the EventFromPoint property and get_EventFromPoint(x,y) method
that gives the Event from the current mouse position, or from the giving (x,y) position.

The following VB sample displays the event from the cursor, if any:

Private Sub Schedule1_Click()
 Dim e As EXSCHEDULELibCtl.Event
 With Schedule1
 Set e = .EventFromPoint(-1, -1)
 If Not e Is Nothing Then
 MsgBox e.Start & " " & e.End
 End If
 End With
End Sub

In VBA/MSAccess, you need to replace the EXSCHEDULELibCtl with EXSCHEDULELib,
else you will be prompted for a compiler error: "Can't find project or library".

For instance, you can use the (get_)EventFromPoint(-1,-1) method during the
LayoutStartChanging(exScheduleEditEvent) to store the Event object from the cursor to a
global member, and when the LayoutEndChanging(exScheduleEditEvent) occurs, you can

use the previously stored member to identify the Event being edited like in the following
snippet of code:

Private evEdit As Object

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleEditEvent) Then
 Set evEdit = Schedule1.EventFromPoint(-1, -1)
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleEditEvent) Then
 If Not evEdit Is Nothing Then
 Debug.Print "Event: " & evEdit.Handle & " has been edited, and the new caption is:
" & evEdit.ExtraLabel
 End If
 End If
End Sub

Most of the UI parts of the control can be accessed through the mouse position as listed:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

property Schedule.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

property Schedule.Events as Events
Gets the Events collection of the scheduler.

Type Description

Events An Events collection that holds the events or appointments
of the control.

The Add method adds programmatically a new event/appointment to the control. The
AddEvent event occurs once a new event is added to the Events collection. The
RemoveEvent event occurs once an event is removed. The UpdateEvent event occurs once
the margins of the event are updated. The LayoutStartCreating(exScheduleCreateEvent)
event occurs once a new event is creating using the mouse. The
LayoutEndCreating(exScheduleCreateEvent) event occurs once the event has been created
at runtime using the mouse.

The AllowCreateEvent property indicates the combination of keys that user can use to
create a new event at runtime. The CreateEventLabel property specifies the label to be
shown when the user creates a new event. The CreateEventLabelAlign property indicates
the alignment of the label while user creates new events. The
Background(exScheduleCreateEventBackColor) and
Background(exScheduleCreateEventForeColor) properties indicate the visual aspect of the
label being shown to create new events.

property Schedule.EventsFont as IFontDisp
Retrieves or sets the font to display the events in the schedule view.

Type Description

IFontDisp A Font object used to paint the captions/labels in
the control.

The EventsFont property indicates the font to display the labels and captions
on events. The ForeColor property indicates the foreground color to show the
captions or labels.

The control supports the following Font properties:

Font property, that specifies the control's font, including the Calendar's font
EventsFont property, indicates the font to show the captions and labels on
Event/Appointment objects
TimeScaleFont property, specifies the font to display the labels on the control's time
scales
ToolTipFont property specifies the font to display the tooltip being shown when the
cursor is hovering an part of the control.

property Schedule.EventsTransparent as Long
Specifies the percent of transparency to show the events in the schedule panel.

Type Description

Long

A long expression between 0 (opaque) and 100
(transparent) which indicates the percent of transparency
to show the events in the schedule panel. For instance, the
EventsTransparent property on 50 indicates that the
events are shown using a semi-transparent color.

By default, the EventsTransparent property is 0. The EventsTransparent property indicates
the transparency to show the events on the schedule view. The ShowEventPictures
property specifies whether the labels are shown on the event's body. The ShowEventLabels
property specifies whether the labels are shown on the event's body. The ShowEvents
property specifies what events the control should show.

method Schedule.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by

commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Schedule.FitSelToView ()
Fits the selected dates to the current view.

Type Description

The FitSelToView method restores the view to fit the selected dates. Use the
Selection/SelectDate property to change programmatically the dates being selected in the
calendar, including the dates to be shown in the schedule view. You can use the
Selection/SelCount/SelDate property to retrieve the selected dates. The ClipToSel property
indicates whether the control clips the schedule panel to view the selected dates only.

The following sample shows how you can ensure that the schedule view fits the selected
dates, when exCalendarAutoHide option is used on OnResizeControl property

Private Sub LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exLayoutCalendarAutoHide) Then
 Schedule1.FitSelToView
 End If
End Sub

The sample calls the FitSelToView method once the control shows or hides the calendar
panel.

property Schedule.Font as IFontDisp
Retrieves or sets the control's font.

Type Description

IFontDisp A Font object used to paint the captions/labels in
the control.

Use the Font property to change the control's font. The ForeColor property
indicates the foreground color to show the captions or labels.

The control supports the following Font properties:

Font property, that specifies the control's font, including the Calendar's font
EventsFont property, indicates the font to show the captions and labels on
Event/Appointment objects
TimeScaleFont property, specifies the font to display the labels on the control's time
scales
ToolTipFont property specifies the font to display the tooltip being shown when the
cursor is hovering an part of the control.

property Schedule.ForeColor as Color
Specifies the control's foreground color.

Type Description
Color A Color expression that specifies the control's foreground.

The Background(exCalendarForeColor) property changes the calendar's panel foreground
color. If this option is not set, the control's ForeColor property indicates the calendar's
foreground color. The BackColor property specifies the control's background color. Use the
Picture property of the control to show a picture on the control's background. The Font
property indicates the font to show captions in the control. The Font property indicates the
font to show captions in the control. The EventsFont property indicates the font to show
captions in the events/appointments. The BodyEventForeColor property specifies the
foreground color to show the body for all events. The EventForeColor property specifies the
event's foreground color if it belongs to a group.

property Schedule.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTML format to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates that
the anchor elements (that were never clicked) are underlined and shown in light blue. Also,
the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text or
some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

The control fires the AnchorClick event once the user clicks an anchor element. You can use
the AnchorFromPoint property to retrieve the identifier of the anchor element from the
cursor.

property Schedule.GroupFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Group
Retrieves the Group object from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Group A Group object from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no

object is found.

property Schedule.GroupHeaderFromPoint (X as OLE_XPOS_PIXELS, Y
as OLE_YPOS_PIXELS) as Group
Retrieves the Group's header from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Group
A Group object from the cursor. The
GroupHeaderFromPoint property returns an object only if
it hovers the group's header.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.

TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

property Schedule.GroupHighlightEvent as Boolean
Highlights the date in the schedule panel using the HighlightEvent property of each Group
found on day's events.

Type Description

Boolean
A Boolean expression that specifies whether the dates in
the schedule panel using the ScheduleHighlightEvent
property of each Group found on day's events

By default, the GroupHighlightEvent property is False. The GroupHighlightEvent property
specifies if events are highlighted using the HighlightEvent property (False), or using the
CalendarHighlightEvent property of the Group that event belongs to (True). The
ShowHighlightEvent property specifies whether the calendar panel highlights the events in
the calendar panel. The ScheduleHighlightEvent property specifies the visual appearance of
dates with events in the schedule panel. The GroupID property indicates the identifier of the
event's group.

property Schedule.Groups as Groups
Retrieves the Groups collection of the scheduler.

Type Description
Groups A Groups object that holds the Group objects.

The Groups collection holds the groups in the control. Use the Add method of the Groups
collection to add new groups to the control. The DisplayGroupingButton property indicates
whether the header of the date displays the grouping button. The list of available groups is
displayed on a drop down panel, once the user clicks the grouping/filtering button. The drop
down list shows the Title for each group found. The ShowGroupingEvents property
indicates whether the control displays events grouped by its GroupID property. The
ApplyGroupingColors property specifies whether the control uses the Group's
EventBackColor / EventForeColor / EventPattern properties to show the events in the
groups. The SingleGroupingView property specifies whether the drop down panel shows
radio buttons, instead check boxes, so the user can see all groups or only one group at the
time. The GroupID property specifies the identifier of the group where the event belongs. If
the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime.

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

The following Background properties change the visual appearance of the drop down
grouping panel:

Background(exGroupingBackColor) / Background(exGroupingForeColor) changes the
background and the foreground color of the panel.
Background(exGroupingSelBackColor) / Background(exGroupingSelForeColor)
changes the background and the foreground color of the selection in the panel.
Background(exCheckBoxState0), Background(exCheckBoxState1),
Background(exCheckBoxState2) changes the visual appearance for the control's check
boxes.
Background(exRadioButtonState0), Background(exRadioButtonState1), changes the
visual appearance for the control's radio buttons.

The Description(exGroupBarAll) property changes the "(All)" predefined string, being
displayed on the top of the drop down grouping/filtering panel.

The following screen shot shows the events with grouping colors applied, including the
grouping panel:

The following screen shot shows the events with grouping colors applied, but with no
grouping button/panel:

The following screen shot shows the events with no grouping colors apply:

method Schedule.GroupUndoRedoActions (Count as Long)
Groups the next to current Undo/Redo Actions in a single block.

Type Description

Count as Long
A Long expression that specifies the number of entries
being grouped in a single block of actions, in the
Undo/Redo queue.

The GroupUndoRedoActions groups the next to current Undo/Redo Actions in a single
block. A block may hold multiple Undo/Redo actions. The AllowUndoRedo property enables
or disables the Undo/Redo feature. Use the GroupUndoRedoActions method to group two
or more entries in the Undo/Redo queue in a single block, so when a next Undo/Redo
operation is performed, multiple actions may occur. You can use the StartBlockUndoRedo /
EndBlockUndoRedo methods to group multiple Undo/Redo operations into a single-block.
For instance, moving several calendar-events in the same time (multiple calendar-events
selection) is already recorded as a single block. Use the UndoRedoQueueLength property
to specify the number of entries that Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveEvent;B
MoveEvent;A
EndBlock

property Schedule.HeaderAllDayEventHeight as Double
Specifies the height of the All-Day events being displayed on the control's All-Day header.

Type Description

Double

A double expression that indicates the height of the event
to be shown in All-Day header. A positive value is
multiplied with the font's height, while a negative value
indicates a fixed height. For instance, 1 indicates that's the
event's height is indicated by the control's font, while -20
indicates that the event's height is 20 pixels.

By default, the HeaderAllDayEventHeight property is 1, which indicates that the height of
the event in the All-Day header is the same as the font's height. The
HeaderAllDayEventHeight property specifies the height of the events to be displayed in the
All-Day header. Use the ShowAllDayHeader property to show the All-Day header, so all All-
Day events are displayed on this header instead in the time scale section of the schedule
view. The AllDayEvent property indicates whether the event is an All-Day event. Use the
Background(exScheduleEventContinuePrevWeek)/Background(exScheduleEventContinueNextWeek)
property to specify an EBN object to be shown on the start/end of the week, if the event
continues on multiple days.

The following screen shot shows the events in the All-Day header with the following EBN
files:

 / gtask.ebn, specifies the visual appearance for the event's body
 / gprev.ebn, indicates the arrow to be shown on the start of the week, if the event

continues on previously week.
 / gnext.ebn, indicates the arrow to be shown on the end of the week, if the event

continues on the next week.

The following screen shot shows the events in the All-Day header with no EBN files:

The following template x-script (exhelper), shows how to assign EBN appearance to
events, including the next, prev signs:

https://exontrol.com/exhelper.jsp

BeginUpdate
OnResizeControl = 2048
ShowAllDayHeader = True
Calendar
{
 SelectDate(#5/8/2012#) = True
 Select(3)
 SelectDate(#5/15/2012#) = False
 Select(19)
}
VisualAppearance.Add(1,"E:\Exontrol\ExG2antt\sample\EBN\gtask.ebn")
VisualAppearance.Add(2,"E:\Exontrol\ExG2antt\sample\EBN\gnext.ebn")
VisualAppearance.Add(3,"E:\Exontrol\ExG2antt\sample\EBN\gprev.ebn")
BodyEventBackColor = 0x1000000
Background(86) = 0x2000000
Background(85) = 0x3000000
HeaderAllDayEventHeight = -20
Events.Add(#5/8/2012#,#5/17/2012#).AllDayEvent = True
EndUpdate()

property Schedule.HeaderDayHeight as Double
Indicates the height of the day's header.

Type Description

Double

A double expression that indicates the height of the header
to be shown the date's labels, in the schedule view. A
positive value is multiplied with the font's height, while a
negative value indicates a fixed height.

By default, the HeaderDayHeight property is 1.5. The HeaderDayHeight property
determines the height of the header by multiplying the value with the height of the current
font, if the value is positive, else if the value is negative it indicates a fixed height. The Font
property indicates the control's font. Use the HeaderDayHeight property to
programmatically extend the header's height. The HeaderDayHeight property on 0,
indicates that no header is shown for dates. The HeaderDayShortLabel property indicates
the labels to be displayed on the date's header when the schedule vies is minimized so no
time scale is shown, while the HeaderDayLongLabel property indicates the labels to be
shown on date's header when the schedule view displays time scales.

The HeaderGroupHeight property indicates the height of the header that displays groups in
the control.

property Schedule.HeaderDayLongLabel as String
Specifies the long label for header days.

Type Description

String A String expression that defines alternative HTML labels to
be shown on the date's header.

By default, the HeaderDayLongLabel property is "<|><%dddd%>, <%mmmm%> <%d%>,
<%yyyy%><|><%dddd%>,<%mmmm%> <%d%>,<%yyyy%><|><%dddd%>,
<%mmmm%> <%d%>,`<%yy%><|><%dddd%>, <%mmmm%> <%d%><|><%dddd%>,
<%m3%> <%d%><|><%dddd%>, <%d%><|><%dddd%><|><%d3%><|><%d2%><|>
<%d1%>". The HeaderDayLongLabel property defines the alternate HTML labels being
shown on date's header, when the time scale is visible. The HeaderDayShortLabel property
defines the HTML label to show on date's header when no time scale is available (the
schedule view has been shrink until the time scale is hidden). The HeaderDayHeight
property indicates the height of the day's header. The HeaderDayLabel property specifies
the HTML date-format to be shown on the calendar's header.

The following screen shot shows the header's schedule view if using "<|><sha><%dddd%>,
<%mmmm%> <%d%>, <fgcolor=FF0000><%loc_yyyy%><|><sha><%dddd%>,
<%mmmm%> <%d%>,<fgcolor=FF0000><%loc_yyyy%><|><sha><%dddd%>,
<%mmmm%> <%d%>,`<fgcolor=FF0000><%loc_yy%><|><sha><%dddd%>,
<%mmmm%> <%d%><|><sha><%dddd%>, <%m3%> <%d%><|><sha><%dddd%>,
<%d%><|><sha><%dddd%><|><sha><%d3%><|><sha><%d2%><|><sha><%d1%>"

The following screen shot shows the header's schedule view if using "<|><%dddd%>,
<%mmmm%> <%d%>, <fgcolor=FF0000><%loc_yyyy%><|><%dddd%>,<%mmmm%>
<%d%>,<fgcolor=FF0000><%loc_yyyy%><|><%dddd%>, <%mmmm%>
<%d%>,`<fgcolor=FF0000><%loc_yy%><|><%dddd%>, <%mmmm%> <%d%><|>
<%dddd%>, <%m3%> <%d%><|><%dddd%>, <%d%><|><%dddd%><|><%d3%><|>
<%d2%><|><%d1%>" (default)

The format of the HeaderDayLongLabel property is "ALT1[<|>ALT2<|>...]" where

ALT defines a HTML label that supports a lot of predefined built-in tags.

For instance, HeaderDayLongLabel could be

"<%d3%>", always displays a 3-letters from the week day.
"<|><%d1%><|><%d2%><|><%d3%><|><%dddd%>", may display nothing, 1, 2, 3
letters, or the full week day.
 "<|><%d1%><|><%d2%><|><%d3%><|><%dddd%><|><%d3%>, <%m3%>
<%d%>, '<%yy%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%>" indicates a list
of 7 alternate HTML labels that the control uses when it displays the date header.

When the user resizes the schedule view, the control searches for the best fit, and the
date header displays the proper HTML label, based on its width, so no ... (three dots) is
shown in the labels as much as possible.

The HeaderDayLongLabel property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.

<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).

<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.

<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The HeaderDayLongLabel property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a

about:blank

piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Schedule.HeaderDayShortLabel as String
Specifies the short label for header days.

Type Description

String
A String expression that indicates the alternate labels + an
expression that can be used to show a specific HTML
label on certain conditions.

By default, the HeaderDayShortLabel property is "<%mmmm%> <%d%><|><%m3%>
<%d%><|><%d%><=>(((day(value) = 1) or (month(value+1) != month(value))) ? -1 : 2)".
The HeaderDayShortLabel property defines the HTML label to show on date's header when
no time scale is available (the schedule view has been shrink until the time scale is hidden
). The HeaderDayLongLabel property defines the alternate HTML labels being shown on
date's header, when the time scale is visible. The HeaderDayHeight property indicates the
height of the day's header. The HeaderDayLabel property specifies the HTML date-format
to be shown on the calendar's header.

The following screen shot shows the short header's schedule view if using "<sha>
<%mmmm%> <%d%><|><%m3%> <%d%><|><%d%><=>(((day(value) = 1) or (
month(value+1) != month(value))) ? -1 : 2)"

The following screen shot shows the short header's schedule view if using ""<%mmmm%>
<%d%><|><%m3%> <%d%><|><%d%><=>(((day(value) = 1) or (month(value+1) !=
month(value))) ? -1 : 2)" " (default)

The first part of the HeaderDayShortLabel's format is similar with the
HeaderDayLongLabel's format, and it indicates a list of alternate labels separated by the
<|>, while the last part of the format indicates an expression that determines whether a
specified HTML label is being displayed on a certain condition.

In conclusion, the format of the HeaderDayShortLabel property is: "ALT1[<|>ALT2<|>...]
[<=>EXPR]"

ALT defines a HTML label that supports a lot of predefined built-in tags.
EXPR defines an expression to specify which HTML label to be shown when a
condition is met. The EXPR supports the value keyword that specifies the date being
queried. The EXPR supports the following operators and functions.

For instance, HeaderDayLongLabel could be

"<%d%>", always displays day's number.
"<%m3%> <%d%>", always displays the three-letters month, followed by the day's
number.
 "<%mmmm%> <%d%><|><%m3%> <%d%><|><%d%><=>(((day(value) = 1) or (
month(value+1) != month(value))) ? -1 : 2)", displays the name of the month and the
day number for the first and last days of the month, and in rest just the day number.

When the user resizes the schedule view, the control searches for the best fit, and the
date header displays the proper HTML label, based on its width, so no ... (three dots) is
shown in the labels as much as possible.

The HeaderDayLongLabel property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).

<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)

<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.

<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.

<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The HeaderDayLongLabel property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+

about:blank

" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being

inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The EXPR supports the following operators and methods:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements

could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.

If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string

rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Schedule.HeaderGroupHeight as Double
Indicates the height of the group's header.

Type Description

Double

A double expression that indicates the height of the header
to be shown for groups, in the schedule view. A positive
value is multiplied with the font's height, while a negative
value indicates a fixed height.

By default, the HeaderGroupHeight property is 1, which indicates that the height of the
group's header is the same as the font's height. The HeaderGroupHeight property
determines the height of the header by multiplying the value with the height of the current
font, if the value is positive, else if the value is negative it indicates a fixed height. The Font
property indicates the control's font. Use the HeaderGroupHeight property to
programmatically extend the header's height. The HeaderGroupHeight property on 0,
indicates that no header is shown for groups. The Caption/Title property of the Group is
displayed on the group's header.

The HeaderDayHeight property indicates the height of the header that displays dates in the
schedule view.

property Schedule.HighlightDate(Date as Date) as Variant
Highlights the specified date.

Type Description

Date as Date A DATE expression that specifies the date to be
highlighted

Variant

A long expression that specifies the color to be applied (
RGB color), a string expression that specifies the list of
colors to be applied, a uni-dimensional safe array of long
expression that specifies the colors to be applied.

By default, the HighlightDate property returns an empty value, which indicates that no color
is applied to the date. The highlight can be applied to the date shown in the calendar panel,
or in the date header being shown on the schedule panel. Use the ShowHighlightDate
property to specify whether the highlighted dates are shown on calendar or/and schedule
panels. The HighlightDate property highlights/un-highlights the specified date with the giving
color(s).

The following VB6 samples shows how you can set the HighlightDate property:

Schedule1.HighlightDate(#11/12/2013#) = 255
Schedule1.HighlightDate(#11/12/2013#) = RGB(255, 0, 0)
Schedule1.HighlightDate(#11/12/2013#) = "255,65535"
Schedule1.HighlightDate(#11/12/2013#) = Array(RGB(255, 0, 0),RGB(255,255,0))

The HighlightEvent property highlights dates in the calendar panel, when it contains events.
The ScheduleHighlightEvent property specifies the visual appearance of dates with events in
the schedule panel.

property Schedule.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface)

The Images method loads icons to the control, HTMLPicture assigns a key to a picture
object, and the Pictures collection handles the identifiers of the pictures that can be used in
the Pictures or ExtraPictures properties.

In order to display an icon or a picture in the control you need first to load the icons or the
pictures you plan to display, using the Images method, HTMLPicture, or Add method of the
ExPictures collection. The Images collection can display only 16x16 icons, while the
HTMLPicture, or Add method can load and display custom sized pictures. The
Width/Height property specifies the width and height of the picture to be displayed in the
event's body.

https://exontrol.com/eximages.jsp

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Pictures and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

property Schedule.hWnd as Long

Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. Use the Calendar.hWnd
property to get the handle of the calendar panel. The Microsoft Windows operating
environment identifies each form and control in an application by assigning it a handle, or
hWnd. The hWnd property is used with Windows API calls. Many Windows operating
environment functions require the hWnd of the active window as an argument. Use the
Parent property to move the calendar panel to other place.

method Schedule.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to control's images holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. The ShowImageList property available for the /COM shows or hides the
control's images holder at design mode. Use the ReplaceIcon method to add, remove or
clear icons in the control's images collection.

The Images method loads icons to the control, HTMLPicture assigns a key to a picture
object, and the Pictures collection handles the identifiers of the pictures that can be used in
the Pictures or ExtraPictures properties.

In order to display an icon or a picture in the control you need first to load the icons or the
pictures you plan to display, using the Images method, HTMLPicture, or Add method of the
ExPictures collection. The Images collection can display only 16x16 icons, while the
HTMLPicture, or Add method can load and display custom sized pictures. The
Width/Height property specifies the width and height of the picture to be displayed in the
event's body.

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Pictures and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

property Schedule.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Schedule.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the event's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

OnResizeControl property, that specifies how the panels are arranged, sized and so
on.
The selection in the calendar panel (selected date)
The date begin browsed in the calendar panel, Date property
The alignment, position and width for each time scale
The alignment, position and width for each time group
The selection in the schedule panel (selected events)
The schedule view scrolling position

These properties are serialized as a string.

method Schedule.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument.

Return Description

Boolean

A boolean expression that specifies whether the
XML document is loaded without errors. If an
error occurs, the method retrieves a description of
the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to load XML documents, previously saved using the SaveXML method. Before
calling the LoadXML you may call the ClearAll method to empty the control's content. The
LoadXML method fires AddEvent event for each loaded event. It is good to know, that the
LoadXML method does not clear the Events collection, and this is happen to allow you load
multiple XML files, so it can add new events each time.

The XML format looks like follows:

- <Content Author Component Version> <DateFormat Separator Short Long
/> <TimeFormat Separator Format AM PM /> <NumberFormat Decimal /> -
<Calendar WeekDays MonthNames AMPM FirstWeekDay NonworkingDays
ShortDateFormat LongDateFormat ShortTimeFormat LongTimeFormat
GroupHighlightEven ShowHighlightEvent DisableZoneFormat MinDate
MaxDate ShowNonMonthDays Date SingleSel HideSel ...> - <Selection>
<Date Value .../> </Selection> <HighlightEvent Bold Italic Underline
StrikeOut FontSize .../> </Calendar> - <TimeScales DayStartTime
DayEndTime> <TimeScale TimeZone AlignLeft MinWidth MaxWidth Width
AllowResize MajorRuler MajorLabel MajorPlainText MinorRuler MinorLabel
MinorPlainText Visible Caption CaptionAlign ToolTip UserData
MinorLabelColor .../> </TimeScales> - <Groups ApplyGroupingColors
DisplayGroupingButton GroupHighlightEvent ShowGroupingEvents> -
<Group ID Visible Caption Title ToolTip Alignment UserData>
<CalendarHighlightEvent Bold Italic Underline StrikeOut FontSize ... />
<ScheduleHighlightEvent Bold Italic Underline StrikeOut FontSize ... />
</Group> </Groups> - <NonworkingPatterns> <NonworkingPattern ID
PatternType PatternColor PatternFrameColor .../> </NonworkingPatterns> -

<NonworkingTimes ShowNonworkingTime> <NonworkingTime Expression
StartTime EndTime IDNonworkingPattern .../> </NonworkingTimes> -
<MarkZones> <MarkZone Key Start End ShortLabel LongLabel GroupID
PatternType PatternColor PatternFrameColor ... /> </MarkZones> -
<MarkTimes ShowMarkTime> <MarkTime Key Time Line TimeScaleLine
LineColor TimeScaleLineColor Label TimeScaleLabel LabelAlign
TimeScaleLabelAlign Movable StatusEventBackColor UserData ... />
</MarkTimes> - <Pictures ShowEventPictures> <Picture Key Content Width
Height ShowHandCursor Enabled ... /> </Pictures> <Icons Content/> -
<Events HeaderDayLongLabel HeaderDayShortLabel CreateEventLabel
CreateEventLabelAlign UpdateEventsLabel UpdateEventsLabelAlign
DefaultEventLongLabel DefaultEventTooltip DefaultEventPaddingLeft
DefaultEventPaddingTop DefaultEventPaddingRight
DefaultEventPaddingBottom ...> <Event Start End GroupID Selectable
ShowStatus ShortLabel LongLabel LabelAlign ExtraLabelAlign Pictures ... />
</Events> </Content>

property Schedule.MarkTimeFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as MarkTime
Gets the MarkTime object from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

MarkTime A MarkTime object, or a timer from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no

object is found.

property Schedule.MarkTimes as MarkTimes
Gets the MarkTimes collection of the scheduler.

Type Description

MarkTimes Returns a reference to the schedule's MarkTimes
collection, which holds a set of MarkTime objects.

The MarkTimes property exports a collection of MarkTime objects, also called timers. The
MarkTime object indicates a line in the schedule view, at a specified time. The Add method
of MarkTimes collection adds a new timer to the schedule view. The MarkTimes collection is
accessible through the MarkTimes property of the control. The ShowMarkTime property
indicates whether the schedule view displays timers. The AllowMoveMarkTime property
indicates the keys to allow user to move timers (with the Movable property on True). The
MarkTimeFromPoint property indicates the timer from the cursor.

The MarkTime object, also called timer, can be used to:

show a line of different styles on the schedule view, at specified time
show a HTML label at specified time
highlights the events that intersect with the timer

The following screen shot shows the control's timers (red and black/blue arrow):

property Schedule.MarkZoneFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as MarkZone
Retrieves the MarkZone from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

MarkZone A MarkZone object, or a time-zone from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no

object is found.

property Schedule.MarkZones as MarkZones
Retrieves the MarkZones collection of the scheduler.

Type Description

MarkZones A MarkZones object that holds a collection of the
MarkZone objects.

The MarkZones property gets the MarkZones collection. The MarkZones collection holds a
set of MarkZone objects (also called time-zone). A MarkZone object holds information
about a time-zone. A time-zone is identified by a Start/End date time, what can be
highlighted in the schedule view. The ShowMarkZone property shows or hides the added
time-zones. Use the Add method of the MarkZones collection to add a new time-zone to the
control. The MarkZoneFromPoint property indicates the time-zone from the cursor.

The MarkZone object can:

show a HTML/Image caption on a specified time-zone
highlight a time-zone with a different background, pattern and so on, to indicate a
restricted zone for instance.

A time-zone (MarkZone object) requires the Start/End to define the zone, while a timer (
MarkTime object) requires a Time, that indicates where the timer is shown.

The following screen shot shows a time-zone in the control:

property Schedule.NonworkingPatterns as NonworkingPatterns
Retrieves the NonworkingPatterns collection of the scheduler.

Type Description

NonworkingPatterns A NonworkingPatterns object that defines the pattern to be
used by non-working time-intervals.

The NonworkingPatterns collection is accessible through the NonworkingPatterns property
of the control. The NonworkingPatterns collection defines the patterns/colors to be used by
non-working time intervals. In other words, each NonworkingTime object can associate a
NonworkingPattern object that specifies the colors and the pattern to show the non-working
zone. The ShowNonworkingTime property shows or hides the defined non-working intervals.
The NonworkingTimeFromPoint property gets the non-working object from the cursor.

The Add method of the NonworkingPatterns collection defines a pattern/color. The ID
property defines the identifier of the pattern/color. The IDNonworkingPattern property
indicates the identifier of the NonworkingPattern object to be displayed on the non-working
interval.

The NonworkingPatterns collection holds a list of NonworkingPattern objects. The
NonworkingDays property of the calendar defines the days to be non-working in the
calendar. The NonworkingDaysPattern and the NonworkingDaysColor which defines the
pattern and the color to show the non-working days. The FirstWeekDay property indicates
the first day of the week.

The Add method of the NonworkingTimes objects adds a new non-working time interval.

property Schedule.NonworkingTimeFromPoint (X as OLE_XPOS_PIXELS,
Y as OLE_YPOS_PIXELS) as NonworkingTime
Retrieves the NonworkingTime from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

NonworkingTime A NonworkingTime object from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no

object is found.

property Schedule.NonworkingTimes as NonworkingTimes
Retrieves the NonworkingTimes collection of the scheduler, to specify different non-working
time for different days.

Type Description

NonworkingTimes A NonworkingTimes object that holds a collection
NonworkingTime objects.

The NonworkingTimes collection is accessible through the NonworkingTimes property of the
control. The Add method of the NonworkingTimes objects adds a new non-working time
interval. The Expression property indicates the expression that defines the dates to include
the specified non-working interval. The IsValid property indicates whether the non-working
expression is valid, and so, if it is visible or hidden. The StartTime/EndTime property defines
the time to start/end the non-working time-zone. The ShowNonworkingTime property shows
or hides the defined non-working intervals. The NonworkingTimeFromPoint property gets
the non-working object from the cursor.

The NonworkingTimes object holds a collection of NonworkingTime objects. The
NonworkingTime object indicates a time interval to be shown as non-working. Each
NonworkingTime object can associate a NonworkingPattern object that specifies the colors
and the pattern to show the non-working zone. The NonworkingPatterns collection is
accessible through the NonworkingPatterns property of the control. The NonworkingDays
property of the calendar defines the days to be non-working in the calendar.

The NonworkingTime's advantages are:

highlight the interval of time as non-working with a different patterns, colors.
any/all day can display different intervals of time as non-working
you can specify the non-working interval using an expression, that defines the days
where the non-working interval is shown.

The following screen shot shows different days with different non-working area:

method Schedule.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

property Schedule.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode.

In the /NET Assembly, you have to use the AllowDrop property as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

By default, the OLEDropMode property is exOLEDropNone. Currently, the ExSchedule
control supports only manual OLE Drag and Drop operation. Use the
Background(exDragDropBefore) property to specify the visual appearance for the dragging
items, before painting the items. Use the Background(exDragDropAfter) property to specify
the visual appearance for the dragging items, after painting the items. Use the
Background(exDragDropList) property to specify the graphic feedback for the item from the
cursor, while the OLE drag and drop operation is running. See the OLEStartDrag and
OLEDragDrop events for more details about implementing drag and drop operations into
the ExSchedule control.

https://exontrol.com/faq.jsp/net/#dragdrop

property Schedule.OnResizeControl as OnResizeControlEnum
Specifies which panel is resized when the control is resized.

Type Description

OnResizeControlEnum An OnResizeControlEnum expression that specifies the
operation the control does when it is resized.

By default, the OnResizeControl property is exResizePanelRight + exCalendarFit. This
indicates that the right panel (such as schedule view) is resized when the control is
resized, and the calendar panel always fit its portion (no partially view is allowed). The
ScrollBars property indicates whether the control display the vertical or horizontal scroll
bars. The AllowMoveSchedule property indicates the keys combination so the user can
change the schedule view by dragging. The AllowMoveSchedule property on exDisallow,
indicates that the user can not move the currently schedule date to a new position. The
AllowExchangePanels property specifies whether the user can drag and drop a panel to a
new position. The FitSelToView method restores the view to fit the selected dates. The
control fires the LayoutStartChanging(exLayoutExchangePanels)/LayoutEndChanging(
exLayoutExchangePanels) events once the user drags the panels from a side to another.
The OnResizeControl property has effect only if the Calendar.Parent property is zero (
default).

Also, you can use the OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

disabling the control's vertical split bar (so user can not resize the fixed panel)
(OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exDisableSplitter Or OnResizeControlEnum.exCalendarFit)

use the Calendar.Parent property to move the calendar panel outside of the scheduler

The following samples hide the Calendar panel of the component:

VBA (MS Access, Excell...)

With Schedule1
 .OnResizeControl = 768
 .ScrollBars = 0
End With

VB6

With Schedule1
 .OnResizeControl = OnResizeControlEnum.exHideSplitter Or
OnResizeControlEnum.exChangePanels
 .ScrollBars = exNoScroll
End With

VB.NET

With Exschedule1
 .OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exHideSplitter Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exChangePanels
 .ScrollBars = exontrol.EXSCHEDULELib.ScrollBarsEnum.exNoScroll
End With

VB.NET for /COM

With AxSchedule1
 .OnResizeControl = EXSCHEDULELib.OnResizeControlEnum.exHideSplitter Or
EXSCHEDULELib.OnResizeControlEnum.exChangePanels
 .ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exNoScroll
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;

*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1-
>PutOnResizeControl(EXSCHEDULELib::OnResizeControlEnum(EXSCHEDULELib::exHideSplitter
 | EXSCHEDULELib::exChangePanels));
spSchedule1->PutScrollBars(EXSCHEDULELib::exNoScroll);

C++ Builder

Schedule1->OnResizeControl =
Exschedulelib_tlb::OnResizeControlEnum::exHideSplitter |
Exschedulelib_tlb::OnResizeControlEnum::exChangePanels;
Schedule1->ScrollBars = Exschedulelib_tlb::ScrollBarsEnum::exNoScroll;

C#

exschedule1.OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exHideSplitter |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exChangePanels;
exschedule1.ScrollBars = exontrol.EXSCHEDULELib.ScrollBarsEnum.exNoScroll;

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.OnResizeControl = 768;
 Schedule1.ScrollBars = 0;
</SCRIPT>

C# for /COM

axSchedule1.OnResizeControl =
EXSCHEDULELib.OnResizeControlEnum.exHideSplitter |

EXSCHEDULELib.OnResizeControlEnum.exChangePanels;
axSchedule1.ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exNoScroll;

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exschedule1.OnResizeControl(768/*exHideSplitter | exChangePanels*/);
 exschedule1.ScrollBars(0/*exNoScroll*/);
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 OnResizeControl :=
Integer(EXSCHEDULELib.OnResizeControlEnum.exHideSplitter) Or
Integer(EXSCHEDULELib.OnResizeControlEnum.exChangePanels);
 ScrollBars := EXSCHEDULELib.ScrollBarsEnum.exNoScroll;
end

Delphi (standard)

with Schedule1 do
begin
 OnResizeControl := Integer(EXSCHEDULELib_TLB.exHideSplitter) Or
Integer(EXSCHEDULELib_TLB.exChangePanels);
 ScrollBars := EXSCHEDULELib_TLB.exNoScroll;
end

VFP

with thisform.Schedule1
 .OnResizeControl = 768

 .ScrollBars = 0
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.OnResizeControl = 768 /*exHideSplitter | exChangePanels*/
oSchedule.ScrollBars = 0

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.OnResizeControl = 768 'exHideSplitter + exChangePanels
oSchedule.ScrollBars = 0

Visual Objects

oDCOCX_Exontrol1:OnResizeControl := exHideSplitter | exChangePanels
oDCOCX_Exontrol1:ScrollBars := exNoScroll

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.OnResizeControl = 768 /*exHideSplitter | exChangePanels*/
oSchedule.ScrollBars = 0

property Schedule.PaneMinWidth(Right as Boolean) as Long
Specifies the minimum width for the left or right panel.

Type Description

Right as Boolean A Boolean expression that defines the panel whose width
is requested.

Long A long expression that specifies the minimum width of the
giving panel.

The PaneMinWidth property specifies the minimum width for the panel. The PaneWidth
property indicates the width of the left or right panel.

Also, you can use the OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

disabling the control's vertical split bar (so user can not resize the fixed panel)
(OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exDisableSplitter Or OnResizeControlEnum.exCalendarFit)

property Schedule.PaneWidth(Right as Boolean) as Long
Specifies the width for the left or right panel.

Type Description

Right as Boolean A Boolean expression that defines the panel whose width
is requested.

Long A long expression that specifies the width of the giving
panel.

The PaneWidth property indicates the width of the left or right panel. The PaneMinWidth
property specifies the minimum width for the panel.

Also, you can use the OnResizeControl property to specify one of the followings:

auto hide the calendar panel. Ability to hide the calendar section while the cursor is not
in it (OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide).

hide completely the calendar section (exHideSplitter)

specify the alignment of the calendar, as on the left or right side of the schedule view
(OnResizeControlEnum.exChangePanels Or OnResizeControlEnum.exCalendarFit)

full or partially view of the calendar panel (exResizePanelRight)

disabling the control's vertical split bar (so user can not resize the fixed panel)
(OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exDisableSplitter Or OnResizeControlEnum.exCalendarFit)

property Schedule.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. The
BackColor property specifies a solid color to be shown on the control's background. The
Background(exCalendarBackColor) property changes the calendar's panel back color if
not-zero. You can use the EventsTransparent property to show the events in the control
with a transparent color.

The following screen shot shows the control with a picture on its background (tiled):

The ExPictures collection holds a collection of icons, pictures that can be displayed using
the Pictures and ExtraPictures properties of the Event object. The Images method loads
icons to the control, HTMLPicture assigns a key to a picture object. The ExPictures
collection can be accessed through the Pictures property of the control.

The control can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.

Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

property Schedule.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that specifies how the
picture is displayed on the control's background.

The control uses the PictureDisplay property to determine how the picture is displayed on
the control's background. By default, the control has no picture associated. Use the Picture
property to display a picture on the control's background. The BackColor property specifies
a solid color to be shown on the control's background. The Background(
exCalendarBackColor) property changes the calendar's panel back color if not-zero. You
can use the EventsTransparent property to show the events in the control with a
transparent color. The PicturesAlign / ExtraPicturesAlign property indicates the alignment of
the pictures relative to the borders of the event.

The following screen shot shows the control with a picture on its background (LowerRight):

property Schedule.PictureFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the picture from the point (Event.Pictures or Event.ExtraPictures
).

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String A String expression that indicates the key of the picture
from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.

TimeScaleFromPoint property returns the TimeScale object from the cursor.

property Schedule.Pictures as ExPictures
Gets the Pictures collection of the scheduler.

Type Description

ExPictures
The ExPictures object that holds the icons and pictures
that may be shown on the event's body using the Pictures
and ExtraPictures properties of the Event object.

The ExPictures collection holds a collection of icons, pictures that can be displayed using
the Pictures and ExtraPictures properties of the Event object. The Images method loads
icons to the control, HTMLPicture assigns a key to a picture object. The ExPictures
collection can be accessed through the Pictures property of the control.

The control can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor
hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

method Schedule.Redo ()
Redoes the next action in the control's Redo queue.

Type Description

The Redo redoes the next action in the control's redo queue. The AllowUndoRedo property
enables or disables the Undo/Redo feature. The CanRedo method indicates whether the
control can perform a Redo operation. The Undo method undoes the last control operation.
The UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo
actions that may be stored to the control's queue, or in other words how many operations
the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Schedule.RedoListAction ([Action as Variant], [Count as
Variant]) as String
Lists the Redo actions that can be performed on the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exUndoRedoAddEvent(13) ~ "AddEvent;EVENTID",
indicates that a new calendar-event has been created
exUndoRedoRemoveEvent(14) ~
"RemoveEvent;EVENTID", indicates that an
calendar-event has been removed
exUndoRedoMoveEvent(15) ~
"MoveEvent;EVENTID", indicates that an calendar-
event has been moved or resized
exUndoRedoUpdateEvent(16) ~
"UpdateEvent;EVENTID", indicates that one or more
properties of the calendar-event has been updated,
using the StartUpdateEvent / EndUpdateEvent
methods

For instance, RedoListAction(12) shows only AddEvent
actions in the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, RedoListAction(12,1) shows only the last
AddEvent action being added to the redo stack

String A String expression that lists the Redo actions that may be
performed.

The RedoListAction property lists the Redo actions that can be performed in the control.
The AllowUndoRedo property enables or disables the Undo/Redo feature. The
UndoListAction property lists the Undo actions that can be performed in the control. Use the
UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo)
event notifies your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

Here's a sample how the result of RedoListAction method looks like:

AddEvent;1
UpdateEvent;1
AddEvent;2
UpdateEvent;2
MoveEvent;B
StartBlock
MoveEvent;3
AddEvent;3
EndBlock

method Schedule.RedoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last redo actions that can be performed on the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
remove. If missing or -1, all actions are removed.

The Action parameter can be one of the following:

exUndoRedoAddEvent(13) ~ "AddEvent;EVENTID",
indicates that a new calendar-event has been created
exUndoRedoRemoveEvent(14) ~
"RemoveEvent;EVENTID", indicates that an
calendar-event has been removed
exUndoRedoMoveEvent(15) ~
"MoveEvent;EVENTID", indicates that an calendar-
event has been moved or resized
exUndoRedoUpdateEvent(16) ~
"UpdateEvent;EVENTID", indicates that one or more
properties of the calendar-event has been updated,
using the StartUpdateEvent / EndUpdateEvent
methods

For instance, RedoRemoveAction(13) removes only
AddEvent actions from the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to remove. If missing or -1, all actions are
removed. For instance, RedoRemoveAction(12,1)
removes only the last AddEvent action from the redo stack

The RedoRemoveAction method removes the first action to be performed if the Redo
method is invoked. Use the RedoRemoveAction() (with no parameters) to remove all redo
actions. Use the UndoRemoveAction method to remove the last action from the undo queue.
The AllowUndoRedo property enables or disables the Undo/Redo feature. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. The
LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event notifies
your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

method Schedule.Refresh ()
Refreshes the control.

Type Description

The Refresh method refreshes the controls content. You can use the BeginUpdate and
EndUpdate methods to increase the speed of loading your events, by preventing painting
the control when it suffers any change.

method Schedule.RemoveSelection ()
Removes the selected events.

Type Description

method Schedule.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The user can add images at design time, by
drag and drop files to control's images holder. The ShowImageList property available for
the /COM shows or hides the control's images holder at design mode.

The following VB sample adds a new icon to control's images list:

 i = ExSchedule1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExSchedule1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExSchedule1.ReplaceIcon 0, i, where i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExSchedule1.ReplaceIcon 0, -1

The Images method loads icons to the control, HTMLPicture assigns a key to a picture
object, and the Pictures collection handles the identifiers of the pictures that can be used in
the Pictures or ExtraPictures properties.

In order to display an icon or a picture in the control you need first to load the icons or the
pictures you plan to display, using the Images method, HTMLPicture, or Add method of the
ExPictures collection. The Images collection can display only 16x16 icons, while the
HTMLPicture, or Add method can load and display custom sized pictures. The
Width/Height property specifies the width and height of the picture to be displayed in the
event's body.

The event can display icons, pictures several ways as follows:

Using the HTML tag, if used in any label properties such as LongLabel or
ExtraLabel property. The ShortLabel property can NOT display images or HTML font
attributes. For instance, this option can be used to display a default icon or picture for
all events in the control using the DefaultEventLongLabel property. Also, the
TAG can be used to any label or caption property that supports HTML format.
Using the Pictures property of the Event object, which indicates a list of pictures from
Pictures collection to be displayed on the event's body. The PicturesAlign property
indicates the alignment of the pictures relative to the borders of the event. The hand
cursor is shown, if the ExPicture.ShowCursorHand property is set, when the cursor

hovers the picture. The PictureClick event is fired if the user clicks a picture on event's
picture. You can use the PictureFromPoint property to get the identifier of the picture
from the cursor.
Using the ExtraPictures property of the Event object, which indicates a list of pictures
from Pictures collection to be displayed on the event's body. The ExtraPicturesAlign
property indicates the alignment of the pictures relative to the borders of the event. The
hand cursor is shown, if the ExPicture.ShowCursorHand property is set, when the
cursor hovers the picture. The PictureClick event is fired if the user clicks a picture on
event's picture. You can use the PictureFromPoint property to get the identifier of the
picture from the cursor.

The Pictures and ExtraPictures may display one or more pictures at the time. The ,
character indicates the separator of pictures in the same line, while the / character divides
the lines to show the pictures. For instance, "1,2" displays icon with the index 1 and 2 on
the same line, while the "1/2,pic1" displays the first icon on the first line, the second icon
and the picture pic1 on the second line.

method Schedule.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, reference to a
string member, an XML document object, or a custom
object that supports persistence as follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

Schedule1.SaveXML("sample.xml")

Reference to a String member - Saves the control's
content to the string member. Note that the string
member must be empty, before calling the SaveXML
method. For example:

Dim s As String
Schedule1.SaveXML s

In VB.NET for /NET assembly, you should call such as
:

Dim s As String = String.Empty
Exschedule1.SaveXML(s)

In C# for /NET assembly, you should call such as :

string s = string.Empty;
exschedule1.SaveXML(ref s);

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
Schedule1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write

method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data in XML documents. The LoadXML method loads XML
documents being created with SaveXML method. The Copy, CopyTo methods copies the
control's content in EMF format.

The XML format looks like follows:

- <Content Author Component Version> <DateFormat Separator Short Long
/> <TimeFormat Separator Format AM PM /> <NumberFormat Decimal /> -
<Calendar WeekDays MonthNames AMPM FirstWeekDay NonworkingDays
ShortDateFormat LongDateFormat ShortTimeFormat LongTimeFormat
GroupHighlightEven ShowHighlightEvent DisableZoneFormat MinDate
MaxDate ShowNonMonthDays Date SingleSel HideSel ...> - <Selection>
<Date Value .../> </Selection> <HighlightEvent Bold Italic Underline
StrikeOut FontSize .../> </Calendar> - <TimeScales DayStartTime
DayEndTime> <TimeScale TimeZone AlignLeft MinWidth MaxWidth Width
AllowResize MajorRuler MajorLabel MajorPlainText MinorRuler MinorLabel
MinorPlainText Visible Caption CaptionAlign ToolTip UserData
MinorLabelColor .../> </TimeScales> - <Groups ApplyGroupingColors
DisplayGroupingButton GroupHighlightEvent ShowGroupingEvents> -
<Group ID Visible Caption Title ToolTip Alignment UserData>
<CalendarHighlightEvent Bold Italic Underline StrikeOut FontSize ... />
<ScheduleHighlightEvent Bold Italic Underline StrikeOut FontSize ... />
</Group> </Groups> - <NonworkingPatterns> <NonworkingPattern ID
PatternType PatternColor PatternFrameColor .../> </NonworkingPatterns> -
<NonworkingTimes ShowNonworkingTime> <NonworkingTime Expression
StartTime EndTime IDNonworkingPattern .../> </NonworkingTimes> -
<MarkZones> <MarkZone Key Start End ShortLabel LongLabel GroupID
PatternType PatternColor PatternFrameColor ... /> </MarkZones> -
<MarkTimes ShowMarkTime> <MarkTime Key Time Line TimeScaleLine
LineColor TimeScaleLineColor Label TimeScaleLabel LabelAlign
TimeScaleLabelAlign Movable StatusEventBackColor UserData ... />
</MarkTimes> - <Pictures ShowEventPictures> <Picture Key Content Width

Height ShowHandCursor Enabled ... /> </Pictures> <Icons Content/> -
<Events HeaderDayLongLabel HeaderDayShortLabel CreateEventLabel
CreateEventLabelAlign UpdateEventsLabel UpdateEventsLabelAlign
DefaultEventLongLabel DefaultEventTooltip DefaultEventPaddingLeft
DefaultEventPaddingTop DefaultEventPaddingRight
DefaultEventPaddingBottom ...> <Event Start End GroupID Selectable
ShowStatus ShortLabel LongLabel LabelAlign ExtraLabelAlign Pictures ... />
</Events> </Content>

property Schedule.ScrollBars as ScrollBarsEnum
Returns or sets a value that determines whether the control has horizontal and/or vertical
scroll bars.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that identifies which scroll
bars are visible.

Use the ScrollBars property to disable the control's scroll bars. By default, the ScrollBars
property is exBoth, so both scroll bars are used if necessarily. For instance, if the
ScrollBars property is exNone the control displays no scroll bars. Use the ScrollOrderParts
property to customize the order of the buttons in the scroll bar.

property Schedule.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Schedule.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Schedule.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. The control fires the ScrollButtonClick event when the user clicks a
part of the scroll bar.

property Schedule.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollBars property to specify
which scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property Schedule.ScrollOrderParts(ScrollBar as ScrollBarEnum) as
String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property Schedule.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. The control fires the ScrollButtonClick event when the user clicks a
part of the scroll bar. Use the ScrollFont property to specify the font in the control's scroll
bar. Use the ScrollOrderParts property to customize the order of the buttons in the scroll
bar. The ScrollPartCaptionAlignment property specifies the alignment of the caption in the
part of the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With Schedule1

 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxSchedule1
 .BeginUpdate()
 .ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part Or
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axSchedule1.BeginUpdate();
axSchedule1.ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exDisableBoth;
axSchedule1.set_ScrollPartVisible(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part |
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, true);
axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part , "1");
axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, "2");
axSchedule1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical

scroll bar :

m_schedule.BeginUpdate();
m_schedule.SetScrollBars(15 /*exDisableBoth*/);
m_schedule.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_schedule.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_schedule.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_schedule.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.Schedule1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property Schedule.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

The following VB sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

With Schedule1
 .ScrollPartCaption(exHScroll,exLowerBackPart) = "left"
 .ScrollPartCaptionAlignment(exHScroll,exLowerBackPart) = LeftAlignment
 .ScrollPartCaption(exHScroll,exUpperBackPart) = "right"
 .ScrollPartCaptionAlignment(exHScroll,exUpperBackPart) = RightAlignment
 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following VB.NET sample displays "left" aligned to the left on the lower part of the
control's horizontal scroll bar, and "right" aligned to the right on the upper part of the
control's horizontal scroll bar:

With AxSchedule1

.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exLowerBackPart,"left")

.set_ScrollPartCaptionAlignment(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exLowerBackPart,EXSCHEDULELib.AlignmentEnum.LeftAlignment)

.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exUpperBackPart,"right")

.set_ScrollPartCaptionAlignment(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exUpperBackPart,EXSCHEDULELib.AlignmentEnum.RightAlignment)

 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following C# sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exLowerBackPart,"left");

axSchedule1.set_ScrollPartCaptionAlignment(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exLowerBackPart,EXSCHEDULELib.AlignmentEnum.LeftAlignment);

axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exUpperBackPart,"right");

axSchedule1.set_ScrollPartCaptionAlignment(EXSCHEDULELib.ScrollBarEnum.exHScroll,EXSCHEDULELib.ScrollPartEnum.exUpperBackPart,EXSCHEDULELib.AlignmentEnum.RightAlignment);

axSchedule1.ColumnAutoResize = false;
axSchedule1.Columns.Add(1.ToString());
axSchedule1.Columns.Add(2.ToString());
axSchedule1.Columns.Add(3.ToString());
axSchedule1.Columns.Add(4.ToString());

The following C++ sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's

horizontal scroll bar:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import "ExSchedule.dll"
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1-
>PutScrollPartCaption(EXSCHEDULELib::exHScroll,EXSCHEDULELib::exLowerBackPart,L"left");

spSchedule1-
>PutScrollPartCaptionAlignment(EXSCHEDULELib::exHScroll,EXSCHEDULELib::exLowerBackPart,EXSCHEDULELib::LeftAlignment);

spSchedule1-
>PutScrollPartCaption(EXSCHEDULELib::exHScroll,EXSCHEDULELib::exUpperBackPart,L"right");

spSchedule1-
>PutScrollPartCaptionAlignment(EXSCHEDULELib::exHScroll,EXSCHEDULELib::exUpperBackPart,EXSCHEDULELib::RightAlignment);

spSchedule1->PutColumnAutoResize(VARIANT_FALSE);
spSchedule1->GetColumns()->Add(L"1");
spSchedule1->GetColumns()->Add(L"2");
spSchedule1->GetColumns()->Add(L"3");
spSchedule1->GetColumns()->Add(L"4");

The following VFP sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

with thisform.Schedule1
 .ScrollPartCaption(1,512) = "left"
 .ScrollPartCaptionAlignment(1,512) = 0
 .ScrollPartCaption(1,128) = "right"

 .ScrollPartCaptionAlignment(1,128) = 2
 .ColumnAutoResize = .F.
 .Columns.Add(1)
 .Columns.Add(2)
 .Columns.Add(3)
 .Columns.Add(4)
endwith

property Schedule.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. The control fires the ScrollButtonClick event when the user clicks a part of the
scroll bar. Use the ScrollOrderParts property to customize the order of the buttons in the
scroll bar.

property Schedule.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. The control fires the ScrollButtonClick event when the user clicks a part of the
scroll bar. Use the Background property to change the visual appearance for any part in the
control's scroll bar. Use the ScrollOrderParts property to customize the order of the buttons
in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With Schedule1
 .BeginUpdate

 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxSchedule1
 .BeginUpdate()
 .ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part Or
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axSchedule1.BeginUpdate();
axSchedule1.ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exDisableBoth;
axSchedule1.set_ScrollPartVisible(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part |
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, true);
axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part , "1");
axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, "2");
axSchedule1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_schedule.BeginUpdate();
m_schedule.SetScrollBars(15 /*exDisableBoth*/);
m_schedule.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_schedule.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_schedule.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_schedule.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.Schedule1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property Schedule.ScrollThumbSize(ScrollBar as ScrollBarEnum) as
Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property Schedule.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub Schedule1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As
Long)
 If (Not Horizontal) Then
 Schedule1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxSchedule1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OffsetChangedEvent) Handles
AxSchedule1.OffsetChanged
 If (Not e.horizontal) Then
 AxSchedule1.set_ScrollToolTip(EXSCHEDULELib.ScrollBarEnum.exVScroll, "Record " &
e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedSchedule1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_schedule.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axSchedule1_OffsetChanged(object sender,
AxEXSCHEDULELib._IScheduleEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axSchedule1.set_ScrollToolTip(EXSCHEDULELib.ScrollBarEnum.exVScroll, "Record " +
e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.Schedule1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property Schedule.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollBars property to specify which
scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to specify
the width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify
the height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the
height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify
the visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a
fixed size for the scrollbar's thumb.

property Schedule.SelCount as Long
Indicates the number of events being selected in the schedule panel.

Type Description

Long A Long expression that specifies the number of selected
events.

The SelCount/SelEvent property may be used to retrieve the selected events one by one
(The Selected property indicates whether the event is selected or unselected). We
recommend using the Selection property and the for each statement to enumerate the
events in the control. The /NET and /WPF versions of the component provide the
SelEvents function that retrieves a collection of Event objects, as List<Event>. The
Selectable property of the Event indicates whether the event can be selected at runtime.

Once the user starts selecting a new event in the schedule panel, the control fires the
LayoutStartChanging(exScheduleSelectionChange). Once a new event is selected, the
LayoutEndChanging(exScheduleSelectionChange) event occurs. You can use the
AllowSelectEvent property to change the key to allow the user select new events or you
can prevent selecting any event using exDisallow value.

method Schedule.SelectAll ()
Selects all events in the control.

Type Description

property Schedule.SelectEventColor as Color
Indicates the color to show the selected events.

Type Description

Color
A Color expression that defines color to show the frame
around the selected event, or the background color of the
event's body

If the SelectEventStyle property is exNoLines (by default), the SelectEventColor /
SelectEventTextColor indicates the background / foreground colors to be applied on the
event's body. If the SelectEventStyle property is NOT exNoLines, the the SelectEventColor
property indicates the color to show the frame around the selected events. In other words,
you can use the SelectEventStyle on exLinesSolid + exLinesThick, to display a frame
arround the selected events, rather than changing the event's background/foreground
colors. The ShowSelectEvent property prevents showing the selected events in a different
way (using a frame around, by changing the body's background/foreground colors).

You can use the AllowSelectEvent property to change the key to allow the user select new
events or you can prevent selecting any event using exDisallow value.

property Schedule.SelectEventStyle as LinesStyleEnum
Specifies the style to display the selected event.

Type Description

LinesStyleEnum A LinesStyleEnum expression that defines the borders to
be shown around the selected event.

By default, the SelectEventStyle property is exNoLines. If the SelectEventStyle property is
exNoLines (by default), the SelectEventColor / SelectEventTextColor indicates the
background / foreground colors to be applied on the event's body. If the SelectEventStyle
property is NOT exNoLines, the the SelectEventColor property indicates the color to show
the frame around the selected events. In other words, you can use the SelectEventStyle on
exLinesSolid + exLinesThick, to display a frame arround the selected events, rather than
changing the event's background/foreground colors. The ShowSelectEvent property
prevents showing the selected events in a different way.

You can use the AllowSelectEvent property to change the key to allow the user select new
events or you can prevent selecting any event using exDisallow value.

property Schedule.SelectEventTextColor as Color
Indicates the color to show the text for selected events.

Type Description

Color A Color expression that specifies the selected event's
foreground color.

The SelectEventTextColor property indicates the color to show the text/label/captions for
the selected events. The SelectEventTextColor property has effect only, if the
SelectEventStyle property is exNoLines (by default). SelectEventTextColor property has
NO effect, if the the SelectEventStyle property is different than exNoLines value. The
ShowSelectEvent property prevents showing the selected events in a different way (using a
frame around, by changing the body's background/foreground colors).

You can use the AllowSelectEvent property to change the key to allow the user select new
events or you can prevent selecting any event using exDisallow value.

property Schedule.Selection as Variant
Returns or sets a safe array of selected events in the schedule panel.

Type Description
Variant A safe array of Event objects being or to be selected.

 The Selection property of control can be used to set or get the current selection (events) in
the control's schedule panel. The Selection property of the Calendar object can be used to
set or get the current selection (dates) in the control's calendar panel. The /NET and /WPF
versions of the component provide the SelEvents function that retrieves a collection of
Event objects, as List<Event>. The Selectable property of the Event indicates whether the
event can be selected at runtime. The Selected property indicates whether the event is
selected or unselected.

Once the user starts selecting a new event in the schedule panel, the control fires the
LayoutStartChanging(exScheduleSelectionChange). Once a new event is selected, the
LayoutEndChanging(exScheduleSelectionChange) event occurs. You can use the
AllowSelectEvent property to change the key to allow the user select new events or you
can prevent selecting any event using exDisallow value.

The following sample shows how you can enumerate the selected events, once the
LayoutEndChanging(exScheduleSelectionChange) event occurs.

VB

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If Operation = exScheduleSelectionChange Then
 Dim d As Variant
 For Each d In Schedule1.Selection
 Debug.Print "Event: " & d.Start & " " & d.End
 Next
 End If
End Sub

VB/NET

Private Sub Exschedule1_LayoutEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles
Exschedule1.LayoutEndChanging
 If Operation =

exontrol.EXSCHEDULELib.LayoutChangingEnum.exScheduleSelectionChange Then
 Dim evs As List(Of exontrol.EXSCHEDULELib.Event) = Exschedule1.SelEvents
 If Not evs Is Nothing Then
 For Each d As exontrol.EXSCHEDULELib.Event In evs
 Debug.Print("Event: " & d.Start & " " & d.End)
 Next
 End If
 End If
End Sub

C#

private void exschedule1_LayoutEndChanging(object sender,
exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
 if (Operation ==
exontrol.EXSCHEDULELib.LayoutChangingEnum.exScheduleSelectionChange)
 {
 List<exontrol.EXSCHEDULELib.Event> evs = exschedule1.SelEvents;
 if (evs != null)
 foreach (exontrol.EXSCHEDULELib.Event d in evs)
 System.Diagnostics.Debug.Print("Event: " + d.Start.ToString() + " " +
d.Start.ToString());
 }
}

VFP

*** ActiveX Control Event ***
LPARAMETERS operation
* 10 ' exScheduleSelectionChange
 If Operation = 10 Then
 local e as Object

 For Each e In thisform.schedule1.Selection
 LOCAL ee as Object
 ee = thisform.Schedule1.Events(e)
 WAIT WINDOW TTOC(ee.Start) + " " + TTOC(ee.End)

 ENDFOR
 EndIf

C++

void CAddEventsDlg::LayoutEndChangingSchedule1(long Operation)
{
 if (Operation == EXSCHEDULELib::exScheduleSelectionChange)
 {
 _variant_t evs = m_spSchedule->Selection;
 if (V_VT(&evs) == (VT_ARRAY | VT_VARIANT))
 {
 BYTE* p = NULL;
 long nCount = 0;
 if (SUCCEEDED(SafeArrayGetUBound(V_ARRAY(&evs), 1, &nCount)))
 {
 if (SUCCEEDED(SafeArrayAccessData(V_ARRAY(&evs), (LPVOID*)&p)))
 {
 for (long i = 0; i < nCount + 1; i++, p += sizeof(VARIANT))
 {
 VARIANT* pValue = (VARIANT*)p;
 if (V_VT(pValue) == VT_DISPATCH)
 {
 EXSCHEDULELib::IEventPtr spEvent = V_DISPATCH(pValue);
 CString strMessage;
 strMessage.Format(_T("Event: %f %f\r\n"), spEvent->Start, spEvent->End
);
 OutputDebugString(strMessage);
 }
 }
 SafeArrayUnaccessData(V_ARRAY(&evs));
 }
 }
 }
 }
}

where m_spSchedule is of EXSCHEDULELib::ISchedulePtr type.

property Schedule.SelEvent (Index as Long) as Event
Gets the event being selected giving its index in the selection.

Type Description

Index as Long A Long expression that defines the index of the Event to
be requested

Event The Event being requested, if the index is between 0 and
SelCount - 1, or empty/nothing/NULL

The SelCount/SelEvent property may be used to retrieve the selected events one by one
(The Selected property indicates whether the event is selected or unselected). We
recommend using the Selection property and the for each statement to enumerate the
events in the control. The /NET and /WPF versions of the component provide the
SelEvents function that retrieves a collection of Event objects, as List<Event>. The
EventFromPoint property gets the event from the cursor. The Selectable property of the
Event indicates whether the event can be selected at runtime.

You can use the AllowSelectEvent property to change the key to allow the user select new
events or you can prevent selecting any event using exDisallow value. Once the user starts
selecting a new event in the schedule panel, the control fires the
LayoutStartChanging(exScheduleSelectionChange). Once a new event is selected, the
LayoutEndChanging(exScheduleSelectionChange) event occurs.

property Schedule.ShowAllDayHeader as Boolean
Specifies whether the control shows or hides the header for All-Day events.

Type Description

Boolean A Boolean expression that specifies whether the control's
All-Day header is displayed or hidden.

By default, the ShowAllDayHeader property is False. Use the ShowAllDayHeader property
to show the All-Day header, so all All-Day events are displayed on this header instead in the
time scale section of the schedule view. The AllDayEvent property indicates whether the
event is an All-Day event. Clicking the All-Day header makes the control to add a new All-
Day event when user drops the mouse to a new position. The AllowUpdateAllDayFlag
property specifies whether the event's AllDayEvent property is changed when the user
drags an event from All-Day header to Time-Scale or reverse. The AllowUpdateAllDayFlag
property on False indicates that the user can not drag an All-Day event to Time-Scale and
reverse. The HeaderAllDayEventHeight property specifies the height of the events to be
displayed in the All-Day header. The AllowAllDayEventScroll property gets or sets a value
that specifies whether the all-day event header supports scrolling.

The following screen shot shows the All-Day events on the All-Day header (
ShowAllDayHeader property is True):

The following screen shot shows the All-Day events on the All-Day header (
ShowAllDayHeader property is False):

property Schedule.ShowEventLabels as Boolean
Indicates whether the Label or ExtraLabel of the events are being shown or hidden.

Type Description

Boolean A boolean expression that specifies whether the labels of
the events are shown or hidden.

By default, the ShowEventLabels property is True. The ShowEventLabels property
specifies whether the labels are shown on the event's body. The ShortLabel, LongLabel or
ExtraLabel property indicates labels that could be displayed on any event. The ShowEvents
property specifies what events the control should show. The ShowEventPictures property
specifies whether the labels are shown on the event's body. The EventsTransparent
property indicates the transparency to show the events on the schedule view.

property Schedule.ShowEventPictures as Boolean
Indicates whether the Pictures or ExtraPictures of the events are being shown or hidden.

Type Description

Boolean A boolean expression that specifies whether the pictures
of the events are shown or hidden.

By default, the ShowEventPictures property is True. The ShowEventPictures property
specifies whether the labels are shown on the event's body. The ShowEventLabels property
specifies whether the labels are shown on the event's body. The Pictures, or ExtraPictures
property indicates pictures to be shown on the event's body. The ShowEvents property
specifies what events the control should show. The EventsTransparent property indicates
the transparency to show the events on the schedule view. The Clear method of the
ExPictures collection clears the control's pictures collection.

property Schedule.ShowEvents as ShowEventsEnum
Indicates the type of the events which schedule displays.

Type Description

ShowEventsEnum A ShowEventsEnum expression indicates the type of
events the control shows.

By default, the ShowEvents property is exShowAllEvents. The ShowEvents property
specifies what events the control should show. You can use the ShowEvents property to
show only the regular events, repetitive events, or all events. The ShowEventLabels
property specifies whether the labels are shown on the event's body. The
ShowEventPictures property specifies whether the labels are shown on the event's body.
The EventsTransparent property indicates the transparency to show the events on the
schedule view.

For instance, the ShowEvents on 0 (zero), indicates no events are shown on the control.
the ShowEvents on 2 (two), indicates that the schedule view displays the repetitive
events only.

property Schedule.ShowGroupingEvents as Boolean
Specifies whether the schedule view shows grouped events.

Type Description

Boolean A Boolean expression that specifies whether the control
displays events based on the owner groups.

By default, the ShowGroupingEvents property is False. The ShowGroupingEvents property
indicates whether the control displays events grouped by its GroupID property. The
DisplayGroupingButton property indicates whether the header of the date displays the
grouping button. The list of available groups is displayed on a drop down panel, once the
user clicks the grouping/filtering button. The drop down list shows the Title for each group
found. The ApplyGroupingColors property specifies whether the control uses the Group's
EventBackColor / EventForeColor / EventPattern properties to show the events in the
groups. The SingleGroupingView property specifies whether the drop down panel shows
radio buttons, instead check boxes, so the user can see all groups or only one group at the
time. The GroupID property specifies the identifier of the group where the event belongs. If
the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime. Use the Add method of the Groups collection to add new
groups to the control.

The grouping button is displayed if:

DisplayGroupingButton property is True
ShowGroupingEvents property is True

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

The following Background properties change the visual appearance of the drop down
grouping panel:

Background(exGroupingBackColor) / Background(exGroupingForeColor) changes the
background and the foreground color of the panel.
Background(exGroupingSelBackColor) / Background(exGroupingSelForeColor)
changes the background and the foreground color of the selection in the panel.
Background(exCheckBoxState0), Background(exCheckBoxState1),
Background(exCheckBoxState2) changes the visual appearance for the control's check

boxes.
Background(exRadioButtonState0), Background(exRadioButtonState1), changes the
visual appearance for the control's radio buttons.

The Description(exGroupBarAll) property changes the "(All)" predefined string, being
displayed on the top of the drop down grouping/filtering panel.

The following screen shot shows the drop down panel, if the SingleGroupingView property
is False (by default):

The following screen shot shows the drop down panel, if the SingleGroupingView property
is True:

property Schedule.ShowHighlightDate as ShowHighlightDateEnum
Returns or sets a value that indicates whether the control shows the highlighted dates.

Type Description

ShowHighlightDateEnum A ShowHighlightDateEnum expression that specifies the
way the control shows highlighted dates.

By default, the ShowHighlightDate property is exShowHighlightDate, which means that the
date is highlighted in the calendar and schedule panels. The ShowHighlightDate property
can highlight the date in the calendar panel and the header of the date in the schedule
panel. Use the ShowHighlightDate property to specify whether the highlighted dates are
shown on calendar or/and schedule panels. The HighlightDate property highlights/un-
highlights the specified date with the giving color(s). The HighlightEvent property highlights
dates in the calendar panel, when it contains events. The ScheduleHighlightEvent property
specifies the visual appearance of dates with events in the schedule panel.

The following screen shot shows a few dates highlighted with different colors:

property Schedule.ShowHighlightEvent as Boolean
Returns or sets a value that indicates whether the schedule panel highlights days that
contain events.

Type Description

Boolean A Boolean expression that specifies whether the schedule
panel highlights the dates with events or appointments

Use the ShowHighlightEvent property of the Calendar object, to customize the dates with
events, in the calendar panel.

By default, the ShowHighlightEvent property is true, which indicates that the dates with
events or appointments appear as bold in the schedule panel. You can use the
ShowHighlightEvent property to prevent highlighting the the dates with events or
appointments. You can use the HighlightEvent object to highlight the dates with events or
appointments in the calendar panel. The GroupHighlightEvent property specifies if events
are highlighted using the HighlightEvent property (False), or using the
CalendarHighlightEvent property of the Group that event belongs to (True). The
ScheduleHighlightEvent property specifies the visual appearance of dates with events in the
schedule panel.

Using the Highlight object a date with events can combine one or more of the following
options:

bold, Bold property renders as bold text
italic, Italic property renders as italic text
underline, Underline property underlines the text
strikeout, StrikeOut property shows the text with a horizontal line through its center
change the font size, FontSize property indicates the size of the font to display the
text
change the font, using the Font property
change the text's foreground color, using the ForeColor property
change the text's background color, using the BackColor property
shows a pattern using the Pattern property

property Schedule.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

The property is available for /COM version only, and only at design mode. By default, the
ShowImageList property is False. Use the ShowImageList property to show the control's
images list window. The control's images list window is visible only at design time. Use the
Images method to associate an images list control to the control. Use the ReplaceIcon
method to add, remove or clear icons in the control's images collection, at runtime.

property Schedule.ShowMarkTime as Boolean
Indicates whether the schedule shows the mark times.

Type Description

Boolean A Boolean expression that specifies whether the control
shows or hides the timers.

By default, The ShowMarkTime property is True, which indicates that all added timers are
visible. The ShowMarkTime property indicates whether the schedule view displays
timers. The AllowMoveMarkTime property indicates the keys to allow user to move timers (
with the Movable property on True). The MarkTimeFromPoint property indicates the timer
from the cursor. The MarkTimes property gets a collection of MarkTime objects, also called
timers. The MarkTime object indicates a line in the schedule view, at a specified time. The
Add method of MarkTimes collection adds a new timer to the schedule view. The
MarkTimes collection is accessible through the MarkTimes property of the control.

The MarkTime object, also called timer, can be used to:

show a line of different styles on the schedule view, at specified time
show a HTML label at specified time
highlights the events that intersect with the timer

property Schedule.ShowMarkZone as ShowMarkZoneEnum
Indicates how the schedule panel shows the mark zones.

Type Description

ShowMarkZoneEnum A ShowMarkZoneEnum expression that specifies how the
time-zones are shown on the control.

The ShowMarkZone property shows or hides the added time-zones. Using the
ShowMarkZone property the mark zones can be shown:

hidden, exHideMarkZones
on the back of the other elements as events, and so on, exShowMarkZonesBack
on the front of the other elements as events, and so on, exShowMarkZonesFront (by
default)
using a semi-transparent color, exShowMarkZonesSemi (by default)

The MarkZones property gets the MarkZones collection. The MarkZones collection holds a
set of MarkZone objects (also called time-zone). A MarkZone object holds information
about a time-zone. A time-zone is identified by a Start/End date time, what can be
highlighted in the schedule view. Use the Add method of the MarkZones collection to add a
new time-zone to the control. The MarkZoneFromPoint property indicates the time-zone
from the cursor.

The MarkZone object can:

show a HTML/Image caption on a specified time-zone
highlight a time-zone with a different background, pattern and so on, to indicate a
restricted zone for instance.

A time-zone (MarkZone object) requires the Start/End to define the zone, while a timer (
MarkTime object) requires a Time, that indicates where the timer is shown.

The following screen shot shows the time-zones on the front, exShowMarkZonesFront (by
default):

The following screen shot shows the time-zones on the back, exShowMarkZonesBack:

The following screen shot shows the time-zones using a semi-transparent color,
exShowMarkZonesSemi:

property Schedule.ShowNonworkingTime as
ShowNonworkingTimeEnum
Returns or sets a value that indicates whether the schedule panel displays nonworking time.

Type Description

ShowNonworkingTimeEnum A ShowNonworkingTimeEnum expression that defines how
the non-working time-zones are displayed.

By default, the ShowNonworkingTime property is exShowNonworkingTimeFront. The
ShowNonworkingTime property shows or hides the defined non-working intervals. The Add
method of the NonworkingTimes objects adds a new non-working time interval. The
NonworkingTimes collection is accessible through the NonworkingTimes property of the
control. The Expression property indicates the expression that defines the dates to include
the specified non-working interval. The IsValid property indicates whether the non-working
expression is valid, and so, if it is visible or hidden. The StartTime/EndTime property defines
the time to start/end the non-working time-zone. The NonworkingTimeFromPoint property
gets the non-working object from the cursor.

The NonworkingTimes object holds a collection of NonworkingTime objects. The
NonworkingTime object indicates a time interval to be shown as non-working. Each
NonworkingTime object can associate a NonworkingPattern object that specifies the colors
and the pattern to show the non-working zone. The NonworkingPatterns collection is
accessible through the NonworkingPatterns property of the control. The NonworkingDays
property of the calendar defines the days to be non-working in the calendar.

The NonworkingTime's advantages are:

highlight the interval of time as non-working with a different patterns, colors.
any/all day can display different intervals of time as non-working
you can specify the non-working interval using an expression, that defines the days
where the non-working interval is shown.

property Schedule.ShowSelectEvent as Boolean
Specifies whether the selected events are highlighted.

Type Description

Boolean A boolean expression that specifies whether the selected
events are shown in a in a different way,

By default, the ShowSelectEvent property is True. The ShowSelectEvent property prevents
showing the selected events in a different way (using a frame around, by changing the
body's background/foreground colors). If the SelectEventStyle property is exNoLines (by
default), the SelectEventColor / SelectEventTextColor indicates the background /
foreground colors to be applied on the event's body. If the SelectEventStyle property is
NOT exNoLines, the the SelectEventColor property indicates the color to show the frame
around the selected events. In other words, you can use the SelectEventStyle on
exLinesSolid + exLinesThick, to display a frame arround the selected events, rather than
changing the event's background/foreground colors.

You can use the AllowSelectEvent property to change the key to allow the user select new
events or you can prevent selecting any event using exDisallow value.

property Schedule.ShowStatusEvent as Boolean
Gets or sets a value that specifies whether the event's status is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the status
part of the event is shown or hidden.

By default, the ShowStatusEvent property is True, which means that the control shows the
status part of the event. The ShowStatusEvent property shows or hides the status part for
all events. The ShowStatus property shows or hides the status part of giving event. Use the
ClearShowStatus method to allow the ShowStatusEvent property to display the event's
status, rather than ShowStatus property. The StatusEventColor property indicates the color
to show the status part of the events. The StatusEventSize property specify the size in
pixels of the event's status.

You can:

show the status part for all events (ShowStatusEvent on True), and use the
ShowStatus (ShowStatus on False) property to hide the status part for specified
events only.
hide the status part for all events (ShowStatusEvent on False), and use the
ShowStatus (ShowStatus on True) property to show the status part for specified
events only.

property Schedule.ShowTimeScale as Boolean
Specifies whether the control's time scale is shown on the schedule panel.

Type Description

Boolean A boolean expression that indicates whether the control
display the time-scale.

The control displays time scale if it fits on the control's client area. The control decides
when it can display the time-scale depending on how large is the schedule view. The Visible
property of the TimeScale object indicates whether the control displays or hides the time-
scale.

The following screen shot shows the control with no time-scale (ShowTimeScale property is
False):

The following screen shot shows the control with the default time-scale (ShowTimeScale
property is True):

method Schedule.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Schedule.ShowViewCompact as ShowViewCompactEnum
Indicates whether the schedule view is compact, so the first day of the month starts right
after the last day of the previously month, or start to a new row.

Type Description

ShowViewCompactEnum A ShowViewCompactEnum expression that specifies
whether the schedule view is shown compact.

By default, the ShowViewCompact property is exViewCalendar(0). The ShowViewCompact
property specifies the way the control shows/layouts the dates in the schedule view.

The ShowViewCompact property can arrange the dates, in the schedule view:

exViewCalendar (0), as they are shown in the calendar panel
exViewCalendarCompact (-1), as they are shown in the calendar panel, excepts that
the first day of the month starts right after the last day of the previously month, or start
to a new row. This option is valid, ONLY, if the calendar panel displays 1 x 12 month. In
other words, the Calendar.MinMonthX and MaxMonthX properties must be set on 1 (
by default).
exViewSingleRow (1), in a single row only, so the view displays days one after other,
no matter of what dates are selected in the calendar panel.

The following screen shot shows the schedule view, for ShowViewCompact property on
exViewCalendar:

The following screen shot shows the schedule view, for ShowViewCompact property on
exViewCalendarCompact:

The following screen shot shows the schedule view, for ShowViewCompact property on
exViewSingleRow:

property Schedule.SingleGroupingView as Boolean
Indicates whether the schedule shows single or multiple groups of events at once.

Type Description

Boolean
A Boolean expression that specifies whether the drop
down grouping list displays radio buttons rather than check
boxes.

By default, the SingleGroupingView property is False. The SingleGroupingView property
specifies whether the drop down panel shows radio buttons, instead check boxes, so the
user can see all groups or only one group at the time. The DisplayGroupingButton property
indicates whether the header of the date displays the grouping button. The list of available
groups is displayed on a drop down panel, once the user clicks the grouping/filtering button.
The drop down list shows the Title for each group found. The ShowGroupingEvents
property indicates whether the control displays events grouped by its GroupID property.
The ApplyGroupingColors property specifies whether the control uses the Group's
EventBackColor / EventForeColor / EventPattern properties to show the events in the
groups. The GroupID property specifies the identifier of the group where the event belongs.
If the control displays groups the GroupID property of the newly created event is
automatically updated with the group where the event has been created. The
AllowMoveEventToOtherGroup property specifies whether the user can move an event from
a group to another at runtime. Use the Add method of the Groups collection to add new
groups to the control.

The grouping button is displayed if:

DisplayGroupingButton property is True
ShowGroupingEvents property is True

The control displays groups if:

ShowGroupingEvents property is True
The Groups collection has elements. By default, the Groups collection contains no
Group objects.

The following Background properties change the visual appearance of the drop down
grouping panel:

Background(exGroupingBackColor) / Background(exGroupingForeColor) changes the
background and the foreground color of the panel.
Background(exGroupingSelBackColor) / Background(exGroupingSelForeColor)
changes the background and the foreground color of the selection in the panel.
Background(exCheckBoxState0), Background(exCheckBoxState1),

Background(exCheckBoxState2) changes the visual appearance for the control's check
boxes.
Background(exRadioButtonState0), Background(exRadioButtonState1), changes the
visual appearance for the control's radio buttons.

The following screen shot shows the drop down panel, if the SingleGroupingView property
is False (by default):

The following screen shot shows the drop down panel, if the SingleGroupingView property
is True:

method Schedule.StartBlockUndoRedo ()
Starts recording the UI operations as a block of undo/redo operations.

Type Description

You can use the StartBlockUndoRedo / EndBlockUndoRedo methods to group multiple
Undo/Redo operations into a single-block. The GroupUndoRedoActions groups the next to
current Undo/Redo Actions in a single block. A block may hold multiple Undo/Redo actions.
The AllowUndoRedo property enables or disables the Undo/Redo feature. Use the
GroupUndoRedoActions method to group two or more entries in the Undo/Redo queue in a
single block, so when a next Undo/Redo operation is performed, multiple actions may occur.
For instance, moving several calendar-events in the same time (multiple calendar-events
selection) is already recorded as a single block. Use the UndoRedoQueueLength property
to specify the number of entries that Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveEvent;B
MoveEvent;A
EndBlock

property Schedule.StatusEventColor as Color
Indicates the default visual appearance for the event's status.

Type Description

Color

A Color expression that specifies the visual appearance of
the status part of the events. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

By default, the StatusEventColor property is 0. The StatusEventColor property indicates the
color to show the status part of the events. By default, the StatusEventColor property
specifies the color to show the status part of the event. The StatusColor property indicates
the color to show the status part of a specified event. The StatusEventSize property specify
the size in pixels of the event's status.

You can:

show the status part for all events (ShowStatusEvent on True), and use the
ShowStatus (ShowStatus on False) property to hide the status part for specified
events only.
hide the status part for all events (ShowStatusEvent on False), and use the
ShowStatus (ShowStatus on True) property to show the status part for specified
events only.

property Schedule.StatusEventSize as Long
Indicates the size of the event's status.

Type Description

Long A Long expression that defines the width of the status part
of the event.

By default, the StatusEventSize property is 4 pixels wide. The StatusEventSize property
specify the size in pixels of the event's status. The ShowStatusEvent property shows or
hides the status part for all events. The ShowStatus property shows or hides the status
part of giving event. Use the ClearShowStatus method to allow the ShowStatusEvent
property to display the event's status, rather than ShowStatus property. The
StatusEventColor property indicates the color to show the status part of the events.

You can:

show the status part for all events (ShowStatusEvent on True), and use the
ShowStatus (ShowStatus on False) property to hide the status part for specified
events only.
hide the status part for all events (ShowStatusEvent on False), and use the
ShowStatus (ShowStatus on True) property to show the status part for specified
events only.

method Schedule.Synchronize ([Records as Variant])
Synchronizes the control' events with the records, while the control is bounded to a
recordset, using the DataSource property.

Type Description

Records as Variant

A VARIANT expression that specifies an empty expression
or a safe array of bookmarks to be synchronized. If
missing or empty, the entire control/recordset is
synchronized

The Syncronize method updates the giving records from the control and back. For instance,
the DAO provides no notification when a new record is added, so if you add new records
by code, and want to have them added to the control, you need to use the Syncronize
method. The Syncronize method has no effect if no DataSource property is used. In other
words, the Syncronize method ensures that each record has associated an event, and each
event has associated a record.

The following sample shows how you can syncronize the control events and the table once
all records of the tabel has been deleted (MS Access, or DAO)

CurrentProject.Connection.Execute "DELETE FROM Events"
Schedule1.Synchronize

Because DAO does not provide sync events you can use the Syncronize method to update
the events of the control, once you update externally the table.

property Schedule.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Schedule.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Schedule.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Schedule.TimeFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Date
Retrieves the time from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Date
A Date expression that indicates the time from the cursor.
The value is between 0 and 1, and it indicates the time
from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.

TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

property Schedule.TimeScaleFont as IFontDisp
Retrieves or sets the font to display the time scales in the schedule view.

Type Description

IFontDisp A Font object used to paint the captions/labels in
the time scale.

Use the TimeScaleFont property specifies the time scale's font. The ForeColor
property indicates the foreground color to show the captions or labels.

The control supports the following Font properties:

Font property, that specifies the control's font, including the Calendar's font
EventsFont property, indicates the font to show the captions and labels on
Event/Appointment objects
TimeScaleFont property, specifies the font to display the labels on the control's time
scales
ToolTipFont property specifies the font to display the tooltip being shown when the
cursor is hovering an part of the control.

property Schedule.TimeScaleFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as TimeScale
Retrieves the TimeScale object from the cursor, in the schedule panel.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

TimeScale A TimeScale object from the cursor.

The MouseMove event is generated continually as the mouse pointer moves across objects.
During the MouseMove event you can call the ShowToolTip method to display any custom
tooltip. During the Click or RClick event you can get an UI part of the control using one of
the following properties. All ...FromPoint properties can be use such as
...FromPoint(-1,-1) to get the UI part of the control from the current mouse position,
in other words, you do not have to pass any X, Y coordinates.

You can get UI parts from the cursor, using any of the following ...FromPoint properties:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no

object is found.

property Schedule.TimeScales as TimeScales
Gets the schedule's time scales collection.

Type Description

TimeScales The TimeScales object which holds a collection of
TimeScale objects.

By default, the control adds a time scale, that can be accessed using TimeScales(0)
property. The control handles one or more time scales. Each time scale can display a
different time zone, and can be aligned to any side of the schedule view. The TimeScales
collection is accessible through the TimeScales property of the control. The
TimeScaleFromPoint method gets the TimeScale object from the cursor. The
TimeScalesFont defines the font to display the control's time scales. The TimeZone
property defines the time zone of the time scale. The AllowMoveTimeScale property
indicates the keys the user can move at runtime the time scale from a side to another. The
AllowResizeTimeScale property indicates the keys the user can resize at runtime the time
scale. Use the Add method of the TimeScales object to add a new time scale to the control.
The AlignLeft property aligns the time scale to the left or to the right side of the schedule
view.

The DayStartTime property defines the starting time of the day, and the DayEndTime
property defines the ending time of the day.

The following screen show shows the control with two time-scales:

property Schedule.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipFont property to assign a font for the
control's tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color.

property Schedule.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object used to paint the control's tooltip.

Use the ToolTipFont property to change the tooltip's font. The ForeColor
property indicates the foreground color to show the captions or labels.

The control supports the following Font properties:

Font property, that specifies the control's font, including the Calendar's font
EventsFont property, indicates the font to show the captions and labels on
Event/Appointment objects
TimeScaleFont property, specifies the font to display the labels on the control's time
scales
ToolTipFont property specifies the font to display the tooltip being shown when the
cursor is hovering an part of the control.

property Schedule.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip.

property Schedule.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the Background(exToolTipAppearance) property indicates
the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip. Use the ToolTipFont property to assign a
font for the control's tooltip.

method Schedule.Undo ()
Performs the last Undo operation.

Type Description

The Undo method undoes the last control operation. The AllowUndoRedo property enables
or disables the Undo/Redo feature. The CanUndo method indicates whether the control can
perform an Undo operation. The Redo redoes the next action in the control's redo queue.
The UndoRedoQueueLength property gets or sets the maximum number of Undo/Redo
actions that may be stored to the control's queue, or in other words how many operations
the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Schedule.UndoListAction ([Action as Variant], [Count as
Variant]) as String
Lists the Undo actions that can be performed on the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exUndoRedoAddEvent(13) ~ "AddEvent;EVENTID",
indicates that a new calendar-event has been created
exUndoRedoRemoveEvent(14) ~
"RemoveEvent;EVENTID", indicates that an
calendar-event has been removed
exUndoRedoMoveEvent(15) ~
"MoveEvent;EVENTID", indicates that an calendar-
event has been moved or resized
exUndoRedoUpdateEvent(16) ~
"UpdateEvent;EVENTID", indicates that one or more
properties of the calendar-event has been updated,
using the StartUpdateEvent / EndUpdateEvent
methods

For instance, UndoListAction(12) shows only AddEvent
actions in the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, UndoListAction(12,1) shows only the last
AddEvent action being added to the undo stack

String A String expression that lists the Undo actions that may be
performed.

The UndoListAction property lists the Undo actions that can be performed in the control.
The AllowUndoRedo property enables or disables the Undo/Redo feature. The
RedoListAction property lists the Redo actions that can be performed in the control. Use
the UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. The LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo)
event notifies your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

Here's a sample how the result of UndoListAction method looks like:

StartBlock
MoveEvent;3
AddEvent;3
EndBlock
MoveEvent;B
UpdateLink;Akak
UpdateEvent;2
AddEvent;2
UpdateEvent;1
AddEvent;1

property Schedule.UndoRedoQueueLength as Long
Gets or sets the maximum number of Undo/Redo actions that may be stored to the
control's queue.

Type Description

Long

A Long expression that specifies the length of the
Undo/Redo queue. If -1, the queue is unlimited, 0 allows
no entries in the Undo/Redo queue (Undo/Redo is
disabled).

By default, the UndoRedoQueueLength property is -1. The AllowUndoRedo property
enables or disables the Undo/Redo feature. Use the UndoRedoQueueLength property to
specify the number of entries that Undo/Redo queue may store. For instance, if the
UndoRedoQueueLength property is 1, the control retains only the last chart operation.
Changing the UndoRedoQueueLength property may change the current Undo/Redo queue
based on the new length. The length being specified, does not affect the blocks in the
queue. A block may hold multiple Undo/Redo actions. Use the GroupUndoRedoActions
method to group two or more entries in the Undo/Redo queue in a single block, so when a
next Undo/Redo operation is performed, multiple actions may occur. For instance, moving
several calendar-events in the same time (multiple calendar-events selection) is already
recorded as a single block.

method Schedule.UndoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last undo actions that can be performed on the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
remove. If missing or -1, all actions are removed.

The Action parameter can be one of the following:

exUndoRedoAddEvent(13) ~ "AddEvent;EVENTID",
indicates that a new calendar-event has been created
exUndoRedoRemoveEvent(14) ~
"RemoveEvent;EVENTID", indicates that an
calendar-event has been removed
exUndoRedoMoveEvent(15) ~
"MoveEvent;EVENTID", indicates that an calendar-
event has been moved or resized
exUndoRedoUpdateEvent(16) ~
"UpdateEvent;EVENTID", indicates that one or more
properties of the calendar-event has been updated,
using the StartUpdateEvent / EndUpdateEvent
methods

For instance, UndoRemoveAction(12) removes only
AddEvent actions from the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to remove. If missing or -1, all actions are
removed. For instance, UndoRemoveAction(12,1) removes
only the last AddEvent action from the undo stack

Use the UndoRemoveAction method to remove the last action from the undo queue. Use the
UndoRemoveAction() (with no parameters) to remove all undo actions. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. The AllowUndoRedo property enables or disables the Undo/Redo feature. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control. The
LayoutStartChanging(exUndo/exRedo) / LayoutEndChanging(exUndo/exRedo) event notifies
your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddEvent;EVENTID", indicates that a new calendar-event has been created
"RemoveEvent;EVENTID", indicates that an calendar-event has been removed
"MoveEvent;EVENTID", indicates that an calendar-event has been moved or resized
"UpdateEvent;EVENTID", indicates that one or more properties of the calendar-event
has been updated, using the StartUpdateEvent / EndUpdateEvent methods

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins (initiated by
StartBlockUndoRedo method)
"EndBlock", specifies that a block of operations ends (initiated by EndBlockUndoRedo
method)

property Schedule.UpdateEventsLabel as String
Specifies the label to be shown while moving or resizing the events.

Type Description

String

A String expression that defines the label to be displayed
when the user moves or resizes the events at runtime. The
UpdateEventsLabel supports extended HTML format as
explained bellow.

By default, the UpdateEventsLabel property is: "<%=%256%>
<%=((1:=int(0:=
(date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 +
1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60))
!= 0 ? =:1 + ' min(s)' : '')%>" which displays the margins of the event being moved or
resized on the first line, while on the second line it displays the duration of the event. The
UpdateEventsLabel property indicates the HTML format to be shown on the label when the
user moves or resizes the events. The UpdateEventsLabelAlign property aligns the label
being shown when the user moves or resizes event. The AllowMoveEvent property
indicates the combination of the keys to let user moves the events. The AllowResizeEvent
property indicates the combination of the keys to let user resizes the events. The
AllowCreateEvent property indicates the combination of keys that allows the user to create
new events in the control. The Background(exScheduleUpdateEventsBackColor) and
Background(exScheduleUpdateEventsForeColor) specifies the visual appearance of the
event being created. The UpdateEvent event occurs once an event is resized or moved. The
DefaultEventPadding property indicates the padding of the labels on the event, relative to
event's borders.

Here's a few samples:

"new", simple new text is shown.
"<a no>title", displays a clickable text such as title, and AnchorClick can be used
to determine whether the no anchor has been clicked.
"<a>pic1:32", displays a click able image, the AnchorClick can be
used to determine whether the anchor has been clicked. We would recommend using
the Pictures or ExtraPictures property to assign pictures to an event.
"<%=%256%>", displays the event's start and end points in a short format.
"<%=%257%>", displays the event's margins in a long format.
"Start: <%=%1%>
End: <%=%2%>", displays the starting margin of the even on
the first line, while on the second line it displays the ending point of the event.
"<%=%256%>
Caption: <%=%5%>", displays the event's margins in short format
on the first line, and on the second line it displays the event's Caption property. The
caption shown on the event's body is automatically updated once the event is moved to
a new position or the event's Caption is changed.

"<%=%256%>
<%=%264? `repetitive event`:``%>" displays automatically the
"repetitive event" for repetitive events, or when the event's Repetitive property is not
empty and valid
"Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? '
' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ?
' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>" displays the duration
of the event in days, hours and minutes.
"<%=%256%>
Duration: <%=((1:=int(0:= (date(%2)-date(%1)))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 +
' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' :
'')%>" displays the event's margins on the first line and the duration of the event in
days, hours and minutes, on the second line
"<%=%><%=%5%>
<%=%256%>", displays the event's Caption on first line(s),
following by the event's Start/End margins in short date-time format. The <%=%>
prefix forces the expression to be re-evaluated and apply any HTML tag found. For
instance, %5 indicates the event's Caption property, and if it contains HTML tags they
will be applied as is, instead displaying them as a plain text. Any expression that starts
with "<%=%>" is re- evaluated and its result is displayed in HTML format (available
starting with the version 12.2)

The EventKnowPropertyEnum defines the %identifiers that can be used in formula
<%=FORMULA%>. For instance, the CreateEventLabel property on "Start:
<%=time(%1) replace `AM` with ``%>" displays the time when the event starts with no AM
time indicators.

The property supports the following identifiers. These identifiers can be used in FORMULA
format:

%1, Indicates the starting date/time of the event as DATE type, equivalent with Start
property
%2, Indicates the ending date/time of the event as DATE type, equivalent with End
property
%3, Indicates if the current event is an all day event as BOOL type, equivalent with
AllDayEvent property
%4, Indicates the identifier of the event's group, as LONG type, equivalent with
GroupID property.
%5, Indicates the caption of the event, as STRING expression, equivalent with Caption
property.
%6, Indicates the extra data associated with the event, as VARIANT type, equivalent
with UserData property.
%7, Gets or sets the duration of the event as FLOAT expression. Above you can find
how you can display the duration of the event in hours, minutes...
%8, Specifies the repetitive expression of the event, equivalent with Repetitive

property.
%256, Gets the margins of the event in a short format, as a STRING expression. The
ShortDateFormat property defines the short date format. The ShortTimeFormat
property defines the short time format.
%257, Gets the margins of the event in a long format, as a STRING expression. The
LongDateFormat property defines the long date format. The LongTimeFormat property
defines the long time format.
%258, Gets the starting date (not including the time) of the current event, as a DATE
type.
%259, Gets the starting time (not including the date) of the current event, as DATE
type from 0 to 1.
%260, Gets the ending date (not including the time) of the current event, as a DATE
type.
%261, Gets the ending time (not including the date) of the current event, as DATE
type from 0 to 1.
%262, Gets the label of the owner group, as STRING expression, equivalent with
Caption property of the Group's event.
%263, Gets the title of the owner group, as STRING expression, equivalent with Title
property of the Group's event.
%264, Indicates if the current event is a repetitive event, as BOOL type. This flag
returns TRUE, if the Repetitive property is not empty, and the expression is valid.

The FORMULA, is identified by <%=FORMULA%>, and supports the following predefined
operators and functions:

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =

44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1 :
(%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings. The date(``) returns now (date + time), and int(date(``)) gets the today date
(with no time including)

dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1

2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in

"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Schedule.UpdateEventsLabelAlign as ContentAlignmentEnum
Specifies the alignment of the label to be shown while moving or resizing events.

Type Description

ContentAlignmentEnum
A ContentAlignmentEnum expression that specifies the
alignment of the label being shown when the user moves
or resizes the events.

The UpdateEventsLabelAlign property aligns the label being shown when the user moves or
resizes the events. The CreateEventLabelAlign property aligns the label being shown when
the user creates a new event.

property Schedule.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The The
UseVisualTheme property has effect only a current theme is selected for your desktop. The
UseVisualTheme property. Use the Appearance property of the control to provide your own
visual appearance using the EBN files. The VisualDesign property may be used to change
the visual aspect of the entire control at design mode.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property Schedule.Version as String
Retrieves the control's version.

Type Description
String A String expression that specifies the control's version.

The version property specifies the control's version.

property Schedule.VerticalScrollWheel as Double
Indicates the distance to scroll using the mouse wheel.

Type Description

Double

A double expression that indicates the distance to scroll
using the mouse wheel. A positive value is multiplied with
the font's height, while a negative value indicates a fixed
distance.

By default, the VerticalScrollWheel property is 1.0. The VerticalScrollWheel property
determines the distance to scroll using the mouse wheel by multiplying the value with the
height of the current font, if the value is positive, else if the value is negative it indicates a
fixed distance. The Font property indicates the control's font. Use the VerticalScrollWheel
property to programmatically specify the increment to scroll the control's content by rotating
the mouse wheel. The VerticalScrollWheel property on 0, indicates that no scroll is
performed when user rotates the mouse wheel.

property Schedule.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description

Appearance An Appearance object that holds the EBN objects, that
can be applied on any UI part of the control.

The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The control provides the VisualDesign property that allows you to easily change the
control's visual appearance at design mode. Also, the VisualDesign property can be used at
runtime to specify a visual appearance, by setting the VisualDesign property with a new
generated value. The UseVisualTheme property indicates whether the current visual theme
is applied to parts of the control.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

Here's a screen shot skins a few UI parts of the component, using the EBN objects :

property Schedule.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

TimeScale object
The TimeScale object displays the time-scale in the control. The control handles one or
more time scales. Each time scale can display a different time zone, and can be aligned to
any side of the schedule view. The TimeZone property defines the time zone of the time
scale. The MajorTimeRuler property indicates the time to increment the major rulers, while
the MinorTimeRuler property specifies the time to increment the minor rulers. The
DayStartTime property defines the starting time of the day, and the DayEndTime property
defines the ending time of the day.

The TimeScale object shows the control's time scale in red:

The TimeScale object supports the following properties and methods:

Name Description

AlignLeft Specifies whether the time scale is aligned to left or to the
right of the scheduler.

AllowResize Specifies whether the user can resize the TimeScale
object.

BackColor Specifies the TimeScale's background color.

Caption Indicates the caption to be displayed on the TimeScale's
header.

CaptionAlign Indicates the alignment of the TimeScale's caption.

CaptionBackColor Specifies the background color for the TimeScale's
caption.

CaptionForeColor Specifies the foreground color for the TimeScale's caption.
ForeColor Specifies the TimeScale's foreground color.

Index Indicates the index of the time scale object in the
TimeScales collection.

MajorLabelColor Specifies the foreground color to display the labels of
major rulers.

MajorTimeLabel Indicates the label to be displayed on the major ruler of
the current TimeScale object.

MajorTimeLabelPlainText Specifies whether the major label is a plain text or a
formatted HTML text.

MajorTimeRuler Indicates the major increment for the current time scale.

MaxWidth Gets or sets a value that indicates the maximum width for
the current TimeScale object.

MinorLabelColor Specifies the foreground color to display the labels of
minor rulers.

MinorTimeLabel Indicates the label to be displayed on the minor ruler of
the current TimeScale object.

MinorTimeLabelPlainText Specifies whether the minor label is a plain text or a
formatted HTML text.

MinorTimeRuler Indicates the minor increment for the current time scale.

MinWidth Gets or sets a value that indicates the minimum width for
the current TimeScale object.

Position Gets or sets the position of the current time scale.
RulerBackColor Specifies the background color for TimeScale's ruler.
TimeZone Indicates the time zone for the current time scale.
ToolTip Indicates the tooltip of the TimeScale object.

UserData Indicates any extra data associated with the TimeScale
object.

Visible Specifies whether the TimeScale is visible or hidden.

Width Gets or sets a value that indicates the TimeScale's width,
in pixels.

property TimeScale.AlignLeft as Boolean
Specifies whether the time scale is aligned to left or to the right of the scheduler.

Type Description

Boolean
A Boolean expression that specifies whether the time
scale is aligned on the left or right side of the schedule
view.

By default, the AlignLeft property is True, which indicates that the time scale is aligned to
the left side of the schedule view. The AlignLeft property can be used to programmatically
change the time scale alignment. The AllowMoveTimeScale property indicates the keys the
user can move at runtime the time scale from a side to another. The Position property
indicates the position of the time scale as they are displayed. The AlignLeft and Position
properties may be changed if the user moves the time scale position to a new side, while
the AllowMoveTimeScale property is not exDisallow (0).

property TimeScale.AllowResize as Boolean
Specifies whether the user can resize the TimeScale object.

Type Description

Boolean A Boolean expression that specifies whether the user can
resize the current time scale at runtime.

By default, the AllowResize property is True. The AllowResizeTimeScale property indicates
the keys the user can resize at runtime the time scale. The AllowResize property may
specify whether a time scale is resizable or not, while AllowResizeTimeScale property on
exDisallow may specify that no time scale can be resized at runtime. The Width property of
the time scale indicates the width in pixels of the time scale. The MinWidth property
indicates the minimum width for the time scale, and the MaxWidth indicates the maximum
size of the time scale.

The LayoutStartChanging(exScheduleResizeTimeScale) and
LayoutEndChanging(exScheduleResizeTimeScale) properties notifies your application once
the user resizes a time scale. The Width property may be changed while the user resizes
the time scale.

property TimeScale.BackColor as Color
Specifies the TimeScale's background color.

Type Description

Color

A Color expression that specifies the background color to
show the time scale. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The BackColor property is initialized with the value of the
Background(exScheduleTimeScaleBackColor) property. By default, the
Background(exScheduleTimeScaleBackColor) property defines the background color to
show the control's time scales.

The time scale supports the following background properties:

The BackColor property changes the time scale's background.
The CaptionBackColor property defines the color to show caption of the timescale. The
Caption property defines the HTML caption to be displayed on the top of the time
scale.
The RulerBackColor property specifies the background color for the rulers part of the
time scale. The MajorTimeLabel property defines the time label to be shown on the
major rulers, while the MinorTimeLabel property specifies the time label to be shown
on minor rulers.

All background colors can display a solid color as well as an EBN object.

The following sample shows the time scale using different background colors:

property TimeScale.Caption as String
Indicates the caption to be displayed on the TimeScale's header.

Type Description

String A String expression that specifies the HTML caption to be
displayed on the top side of the time scale.

The Caption property specifies the HTML caption to be displayed on the top side of the
time scale. The CaptionAlign property aligns the caption. The MajorTimeLabel property
defines the time label to be shown on the major rulers, while the MinorTimeLabel property
specifies the time label to be shown on minor rulers. The TimeZone property can be used to
programmatically update the time zone. The CaptionBackColor property defines the color to
show caption's background of the timescale. The CaptionForeColor property defines the
color to show caption of the timescale.

The Caption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to

stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>

</sha>" gets:

property TimeScale.CaptionAlign as ContentAlignmentEnum
Indicates the alignment of the TimeScale's caption.

Type Description

ContentAlignmentEnum A ContentAlignmentEnum expression that specifies the
alignment of the caption in the time scale header.

By default, the CaptionAlign property is exMiddleLeft. The Caption property specifies the
HTML caption to be displayed on the top side of the time scale. The CaptionBackColor
property defines the color to show caption's background of the timescale. The
CaptionForeColor property defines the color to show caption of the timescale.

property TimeScale.CaptionBackColor as Color
Specifies the background color for the TimeScale's caption.

Type Description

Color

A Color expression that specifies the background color to
show the caption part of the time scale. The last 7 bits in
the high significant byte of the color to indicates the
identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

By default, the CaptionBackColor property 0. The CaptionBackColor property defines the
visual appearance of the caption part of the time scale, if it is not zero. If the
CaptionBackColor property is zero (default), the BackColor property indicates the time
scale's background color.

The time scale supports the following background properties:

The BackColor property changes the time scale's background.
The CaptionBackColor property defines the color to show caption of the timescale. The
Caption property defines the HTML caption to be displayed on the top of the time
scale.
The RulerBackColor property specifies the background color for the rulers part of the
time scale. The MajorTimeLabel property defines the time label to be shown on the
major rulers, while the MinorTimeLabel property specifies the time label to be shown
on minor rulers.

All background colors can display a solid color as well as an EBN object.

The following sample shows the time scale using different background colors:

property TimeScale.CaptionForeColor as Color
Specifies the foreground color for the TimeScale's caption.

Type Description

Color A Color expression that specifies the foreground color to
show the caption part of the time scale.

By default, the CaptionForeColor property 0. The CaptionForeColor property defines the
color to show the caption of the time scale, if it is not zero. If the CaptionForeColor
property is zero (default), the ForeColor property indicates the time scale's foreground
color.

The time scale supports the following foreground properties:

The ForeColor property changes the time scale's foreground.
The CaptionForeColor property defines the color to show caption of the timescale. The
Caption property defines the HTML caption to be displayed on the top of the time
scale.
The MajorLabelColor property indicates the color to show the labels on major rulers.
The MajorTimeLabel property defines the time label to be shown on the major rulers.
The MinorLabelColor property indicates the color to show the labels on minor rulers.
The MinorTimeLabel property defines the time label to be shown on the minor rulers.

property TimeScale.ForeColor as Color
Specifies the TimeScale's foreground color.

Type Description

Color A Color expression that specifies the foreground color to
show the time scale.

The time scale supports the following foreground properties:

The ForeColor property changes the time scale's foreground.
The CaptionForeColor property defines the color to show caption of the timescale. The
Caption property defines the HTML caption to be displayed on the top of the time
scale.
The MajorLabelColor property indicates the color to show the labels on major rulers.
The MajorTimeLabel property defines the time label to be shown on the major rulers.
The MinorLabelColor property indicates the color to show the labels on minor rulers.
The MinorTimeLabel property defines the time label to be shown on the minor rulers.

property TimeScale.Index as Long
Indicates the index of the time scale object in the TimeScales collection.

Type Description
Long A long expression that defines the time scale.

The Index property specifies the index of the time scale in the TimeScales collection. By
default, the control adds a default time scale that can be accesses using the property
TimeScales(0). The Item property gets the time scale using its index or time zone. The
TimeZone property can be used to programmatically update the time zone. The Count
property indicates the number of time scales in the control. The Index property goes from 0
to Count - 1.

property TimeScale.MajorLabelColor as Color
Specifies the foreground color to display the labels of major rulers.

Type Description

Color A Color expression that specifies the color to show the
labels on the major rulers.

The MajorLabelColor property indicates the color to show the labels on major rulers. The
MajorTimeLabel property defines the time label to be shown on the major rulers, while the
MinorTimeLabel property specifies the time label to be shown on minor rulers. The
MajorTimeLabelPlainText property should be set on False, if the MajorTimeLabel property
uses UI font attributes like , <fgcolor>, and so on. The MajorTimeRuler property
indicates the time to show the major rulers.

property TimeScale.MajorTimeLabel as String
Indicates the label to be displayed on the major ruler of the current TimeScale object.

Type Description

String A string expression that defines the extended HTML
format to display the labels on the major rulers.

By default, the MajorTimeLabel property is "<%hh%>:<%nn%> <%AM/PM%>", which
indicates that the major rulers displays the time using the AM/PM time indicators. The
MajorTimeLabel property defines the time label to be shown on the major rulers, while the
MinorTimeLabel property specifies the time label to be shown on minor rulers. The
MajorLabelColor property indicates the color to show the labels on major rulers. The
MajorTimeLabelPlainText property should be set on False, if the MajorTimeLabel property
uses UI font attributes like , <fgcolor>, and so on. The MajorTimeRuler property
indicates the time to show the major rulers.

The TimeZone property can be used to programmatically update the time zone. You can
use the ShortTimeFormat property to define a 24-hours format, by removing the
<%AM.PM%> TAG. The Caption property specifies the HTML caption to be displayed on
the top side of the time scale.

The major lines can be changed using the following Background properties:

The Background(exScheduleTimeScaleMajorRulerColor) specifies the color to show
the lines for major rulers (This option changes the lines being shown in the time scale
header)
The Background(exScheduleTimeScaleMajorRulerStyle) property indicates a
LinesStyleEnum expression that determines the style of lines to be shown on major
rulers (This option changes the lines being shown in the time scale header)
The Background(exScheduleMajorTimeScaleStyle) indicates a LinesStyleEnum
expression that determines style of lines to be shown on the schedule view.
The Background(exScheduleMajorTimeRulerColor) indicates the color to show the
major lines on the schedule view

Here's a few samples on how you can use the MajorTimeLabel property:

"", no label is shown on the major rulers
"<%hh%>:<%nn%> <%AM/PM%>", hour and minute of the major, using the AM/PM
time indicators.
"<%hh%> <%AM/PM%>", hour using the AM/PM time indicators with a
larger font. The MajorTimeLabelPlainText property must be set on False.

The MajorTimeLabel property supports the following HTML tags:

<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The MajorTimeLabel property supports the following HTML tags (The
MajorTimeLabelPlainText property must be set on False, else the following UI attributes are
not shown) :

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning

about:blank

and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on

the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property TimeScale.MajorTimeLabelPlainText as Boolean
Specifies whether the major label is a plain text or a formatted HTML text.

Type Description

Boolean
A Boolean expression that specifies whether the label on
major rulers UI font attributes like , <fgcolor> are
hidden or shown.

By default, the MajorTimeLabelPlainText property is True, which indicates that no UI font
attributes like , <fgcolor> are displayed when any of them is included in the
MajorTimeLabel property. The MajorTimeLabel property defines the time label to be shown
on the major rulers, while the MinorTimeLabel property specifies the time label to be shown
on minor rulers. Using this property on False, may affect the control's performances. Do not
set on False, unless you are using any of the specified UI font tags.

property TimeScale.MajorTimeRuler as String
Indicates the major increment for the current time scale.

Type Description

String A String expression that specifies the time to show the
next major ruler.

By default, the MajorTimeRuler property is "01:00" which indicates that the major rulers are
shown from hour to hour. You can use the MajorTimeRuler property to programmatically
change the major ruler occurrence.

The DayStartTime property defines the starting time of the day, and the DayEndTime
property defines the ending time of the day. The MajorTimeLabel property defines the time
label to be shown on the major rulers, while the MinorTimeLabel property specifies the time
label to be shown on minor rulers. The MajorLabelColor property indicates the color to
show the labels on major rulers. The MinorTimeRuler property indicates the time to show
the next minor label/line.

property TimeScale.MaxWidth as Long
Gets or sets a value that indicates the maximum width for the current TimeScale object.

Type Description

Long A Long expression that specifies the maximum width for
the current TimeScale object

By default, the MaxWidth property is 96 pixels. The MinWidth property indicates the
minimum width for the time scale, and the MaxWidth indicates the maximum size of the time
scale. The Width property of the time scale indicates the width in pixels of the time scale.
The Visible property shows or hides the time scale.The AllowResize property may specify
whether a time scale is resizable or not, while AllowResizeTimeScale property on
exDisallow may specify that no time scale can be resized at runtime.

The AllowResizeTimeScale property indicates the keys the user can resize at runtime the
time scale. The AllowResize property may specify whether a time scale is resizable or not,
while AllowResizeTimeScale property on exDisallow may specify that no time scale can be
resized at runtime. The LayoutStartChanging(exScheduleResizeTimeScale) and
LayoutEndChanging(exScheduleResizeTimeScale) properties notifies your application once
the user resizes a time scale.

property TimeScale.MinorLabelColor as Color
Specifies the foreground color to display the labels of minor rulers.

Type Description

Color A Color expression that specifies the color to show the
labels on the minor rulers.

The MinorLabelColor property indicates the color to show the labels on minor rulers. The
MajorTimeLabel property defines the time label to be shown on the major rulers, while the
MinorTimeLabel property specifies the time label to be shown on minor rulers. The
MinorTimeLabelPlainText property should be set on False, if the MinorTimeLabel property
uses UI font attributes like , <fgcolor>, and so on. The MinorTimeRuler property
indicates the time to show the minor rulers.

property TimeScale.MinorTimeLabel as String
Indicates the label to be displayed on the minor ruler of the current TimeScale object.

Type Description

String A string expression that defines the extended HTML
format to display the labels on the minor rulers.

By default, the MinorTimeLabel property is ":<%nn%>", which indicates that the major
rulers displays the minutes only. The MajorTimeLabel property defines the time label to be
shown on the major rulers, while the MinorTimeLabel property specifies the time label to be
shown on minor rulers. The MinorLabelColor property indicates the color to show the labels
on minor rulers. The MinorTimeLabelPlainText property should be set on False, if the
MinorTimeLabel property uses UI font attributes like , <fgcolor>, and so on. The
MinorTimeRuler property indicates the time to show the minor rulers.

The TimeZone property can be used to programmatically update the time zone. You can
use the ShortTimeFormat property to define a 24-hours format, by removing the
<%AM.PM%> TAG. The Caption property specifies the HTML caption to be displayed on
the top side of the time scale.

The minor lines can be changed using the following Background properties:

The Background(exScheduleTimeScaleMinorRulerColor) specifies the color to show the
lines for minor rulers (This option changes the lines being shown in the time scale
header)
The Background(exScheduleTimeScaleMinorRulerStyle) property indicates a
LinesStyleEnum expression that determines the style of lines to be shown on minor
rulers (This option changes the lines being shown in the time scale header)
The Background(exScheduleMinorTimeScaleStyle) indicates a LinesStyleEnum
expression that determines style of lines to be shown on the schedule view.
The Background(exScheduleMinorTimeRulerColor) indicates the color to show the
minor lines on the schedule view

Here's a few samples on how you can use the MinorTimeLabel property:

"", no label is shown on the minor rulers
"<%hh%>:<%nn%> <%AM/PM%>", hour and minute of the minor, using the AM/PM
time indicators.
":<%nn%>", minute with a smaller font. The MinorTimeLabelPlainText property
must be set on False.

The MinorTimeLabel property supports the following HTML tags:

<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The MinorTimeLabel property supports the following HTML tags (The
MinorTimeLabelPlainText property must be set on False, else the following UI attributes are
not shown) :

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning

about:blank

and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on

the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property TimeScale.MinorTimeLabelPlainText as Boolean
Specifies whether the minor label is a plain text or a formatted HTML text.

Type Description

Boolean
A Boolean expression that specifies whether the label on
minor rulers UI font attributes like , <fgcolor> are
hidden or shown.

By default, the MinorTimeLabelPlainText property is True, which indicates that no UI font
attributes like , <fgcolor> are displayed when any of them is included in the
MinorTimeLabel property. The MajorTimeLabel property defines the time label to be shown
on the major rulers, while the MinorTimeLabel property specifies the time label to be shown
on minor rulers. Using this property on False, may affect the control's performances. Do not
set on False, unless you are using any of the specified UI font tags.

property TimeScale.MinorTimeRuler as String
Indicates the minor increment for the current time scale.

Type Description

String A String expression that specifies the time to show the
next minor ruler.

By default, the MinorTimeRuler property is "00:15" which indicates that the minor rulers are
shown from 15 to 15 minutes. You can use the MinorTimeRuler property to
programmatically change the minor ruler occurrence.

The DayStartTime property defines the starting time of the day, and the DayEndTime
property defines the ending time of the day. The MajorTimeLabel property defines the time
label to be shown on the major rulers, while the MinorTimeLabel property specifies the time
label to be shown on minor rulers. The MinorLabelColor property indicates the color to
show the labels on minor rulers. The MajorTimeRuler property indicates the time to show
the next major label/line.

property TimeScale.MinWidth as Long
Gets or sets a value that indicates the minimum width for the current TimeScale object.

Type Description

Long A Long expression that specifies the minimum width for the
current TimeScale object

By default, the MinWidth property is 0. The MinWidth property indicates the minimum width
for the time scale, and the MaxWidth indicates the maximum size of the time scale. The
Width property of the time scale indicates the width in pixels of the time scale. The Visible
property shows or hides the time scale. The AllowResize property may specify whether a
time scale is resizable or not, while AllowResizeTimeScale property on exDisallow may
specify that no time scale can be resized at runtime.

The AllowResizeTimeScale property indicates the keys the user can resize at runtime the
time scale. The AllowResize property may specify whether a time scale is resizable or not,
while AllowResizeTimeScale property on exDisallow may specify that no time scale can be
resized at runtime. The LayoutStartChanging(exScheduleResizeTimeScale) and
LayoutEndChanging(exScheduleResizeTimeScale) properties notifies your application once
the user resizes a time scale.

property TimeScale.Position as Long
Gets or sets the position of the current time scale.

Type Description

Long A Long expression that indicates the position of the time
scale.

By default, the Position property is 0, which indicates that the time scale is left displayed on
the first position. The Position property indicates the position of the time scale as they are
displayed. The AlignLeft property can be used to programmatically change the time scale
alignment. The AllowMoveTimeScale property indicates the keys the user can move at
runtime the time scale from a side to another. The AlignLeft and Position properties may be
changed if the user moves the time scale position to a new side, while the
AllowMoveTimeScale property is not exDisallow (0).

property TimeScale.RulerBackColor as Color
Specifies the background color for TimeScale's ruler.

Type Description

Color

A Color expression that specifies the background color to
show the ruler part of the time scale. The last 7 bits in the
high significant byte of the color to indicates the identifier
of the skin being used. Use the Add method to add new
skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the background's part.

The RulerBackColor property is initialized with the value of the
Background(exScheduleTimeScaleRulerBackColor) property. By default, the
Background(exScheduleTimeScaleRulerBackColor) property defines the background color
to show the ruler part of the control's time scales. If the RulerBackColor property is zero (
default), the BackColor property indicates the ruler's background color.

The time scale supports the following background properties:

The BackColor property changes the time scale's background.
The CaptionBackColor property defines the color to show caption of the timescale. The
Caption property defines the HTML caption to be displayed on the top of the time
scale.
The RulerBackColor property specifies the background color for the rulers part of the
time scale. The MajorTimeLabel property defines the time label to be shown on the
major rulers, while the MinorTimeLabel property specifies the time label to be shown
on minor rulers.

All background colors can display a solid color as well as an EBN object.

The following sample shows the time scale using different background colors:

property TimeScale.TimeZone as String
Indicates the time zone for the current time scale.

Type Description

String

A String expression that defines the time-zone to be
displayed. In other words, the time to be added to current
time. For instance, the "+03:00" adds a three hours to the
current time, while "-02:00" delays the current time scale
with 2 hours earlier.

The TimeZone parameter of the Add method initializes the TimeZone property. The
TimeZone property can be used to programmatically update the time zone. The Caption
property specifies the HTML caption to be displayed on the top side of the time scale. The
MajorTimeRuler property indicates the time to increment the major rulers, while the
MinorTimeRuler property specifies the time to increment the minor rulers.

The DayStartTime property defines the starting time of the day, and the DayEndTime
property defines the ending time of the day.

property TimeScale.ToolTip as String
Indicates the tooltip of the TimeScale object.

Type Description

String
A String expression that specifies the extended HTML
caption to be displayed when cursor hovers the time
scale.

By default, the ToolTip property is "". The Caption property specifies the HTML caption to
be displayed on the top side of the time scale. The MajorTimeLabel property defines the
time label to be shown on the major rulers, while the MinorTimeLabel property specifies the
time label to be shown on minor rulers. The TimeZone property can be used to
programmatically update the time zone.

Here's a few samples on how you can use the ToolTip property:

"this is a bit of text that's being displayed when cursor hovers the time scale", an hard
coded text
"<%hh%>:<%nn%>", hour and minute from the cursor, in the 24-hours format
"Time: <%loc_time24%>", hour and minute from the cursor, in the 24-hours format,
using the current regional settings
"Time
<%loc_time%>" displays the Time text on the first line, while on the second
line is shows the time from cursor

The ToolTip property supports the following HTML tags:

<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as

appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The ToolTip property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to

about:blank

decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the

picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property TimeScale.UserData as Variant
Indicates any extra data associated with the TimeScale object.

Type Description

Variant A VARIANT expression that indicates any extra data you
can associate with the time scale.

By default, the UserData property is empty. You can use the UserData property to
associate any extra data to the current time scale. The Caption property defines the HTML
caption to be displayed on the top of the time scale. The MajorTimeLabel property defines
the time label to be shown on the major rulers, while the MinorTimeLabel property specifies
the time label to be shown on minor rulers.

property TimeScale.Visible as Boolean
Specifies whether the TimeScale is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the time
scale is visible or hidden.

By default, the Visible property is True, which means that the time scale is shown. The
Visible property shows or hides the time scale. The Position property indicates the position
of the time scale. The Width property of the time scale indicates the width in pixels of the
time scale. The MinWidth property indicates the minimum width for the time scale, and the
MaxWidth indicates the maximum size of the time scale. The AllowResize property may
specify whether a time scale is resizable or not, while AllowResizeTimeScale property on
exDisallow may specify that no time scale can be resized at runtime.

The AllowResizeTimeScale property indicates the keys the user can resize at runtime the
time scale. The AllowResize property may specify whether a time scale is resizable or not,
while AllowResizeTimeScale property on exDisallow may specify that no time scale can be
resized at runtime. The LayoutStartChanging(exScheduleResizeTimeScale) and
LayoutEndChanging(exScheduleResizeTimeScale) properties notifies your application once
the user resizes a time scale.

property TimeScale.Width as Long
Gets or sets a value that indicates the TimeScale's width, in pixels.

Type Description

Long A Long expression that specifies the width of the time
scale.

By default, the Width property is 64 pixels. The Width property of the time scale indicates
the width in pixels of the time scale. The MinWidth property indicates the minimum width for
the time scale, and the MaxWidth indicates the maximum size of the time scale. The Visible
property shows or hides the time scale.The AllowResize property may specify whether a
time scale is resizable or not, while AllowResizeTimeScale property on exDisallow may
specify that no time scale can be resized at runtime.

The AllowResizeTimeScale property indicates the keys the user can resize at runtime the
time scale. The AllowResize property may specify whether a time scale is resizable or not,
while AllowResizeTimeScale property on exDisallow may specify that no time scale can be
resized at runtime. The LayoutStartChanging(exScheduleResizeTimeScale) and
LayoutEndChanging(exScheduleResizeTimeScale) properties notifies your application once
the user resizes a time scale.

TimeScales object
The TimeScales object holds a collection of TimeScale objects. The control handles one or
more time scales. Each time scale can display a different time zone, and can be aligned to
any side of the schedule view. The TimeScales collection is accessible through the
TimeScales property of the control. The TimeScaleFromPoint method gets the TimeScale
object from the cursor. The TimeScalesFont defines the font to display the control's time
scales. The TimeZone property defines the time zone of the time scale. The
AllowMoveTimeScale property indicates the keys the user can move at runtime the time
scale from a side to another. The AllowResizeTimeScale property indicates the keys the
user can resize at runtime the time scale. The DayStartTime property defines the starting
time of the day, and the DayEndTime property defines the ending time of the day.

The following screen show shows the control with two time-scales:

The TimeScales object support the following properties and methods:

Name Description

Add Adds a TimeScale object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific TimeScale of the TimeScales collection.

Remove Removes a specific member from the TimeScales
collection.

method TimeScales.Add (TimeZone as String)
Adds a TimeScale object to the collection and returns a reference to the newly created
object.

Type Description

TimeZone as String

A String expression that defines the time-zone to be
displayed. In other words, the time to be added to current
time. The TimeZone property can be used to
programmatically update the time zone. For instance, the
"+03:00" adds a three hours to the current time, while
"-02:00" delays the current time scale with 2 hours earlier.

Return Description
TimeScale A TimeScale object being created.

By default, the control adds a TimeScale object that can be accessed through the
TimeScales(0) property. The newly added time scale is aligned to left, so you can use the
AlignLeft property on False, to align the time scale to the right. The TimeZone property can
be used to programmatically update the time zone. The Visible property shows or hides the
time scale. The Position property changes the position of the time scale from left to right.

The DayStartTime property defines the starting time of the day, and the DayEndTime
property defines the ending time of the day. The TimeScaleFromPoint method gets the
TimeScale object from the cursor. The AllowResizeTimeScale property indicates the keys
the user can resize at runtime the time scale.

method TimeScales.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all time-scales from the control. The Remove method removes
a time scale giving its time zone or its index. The Visible property shows or hides the time
scale. The Position property changes the position of the time scale from left to right. The
Item property accesses the time scale object its time zone or its index. The TimeZone
property can be used to programmatically update the time zone. The Index property defines
the index of the time scale in the TimeScales collection.

property TimeScales.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that specifies the number of time scales
in the control.

The Count property indicates the number of time scales in the control. The Item property
accesses the time scale object its time zone or its index. The Remove method removes a
time scale giving its time zone or its index. The Clear method removes all time-scales from
the control. The Visible property shows or hides the time scale. The Position property
changes the position of the time scale from left to right. The TimeZone property can be
used to programmatically update the time zone. The Index property defines the index of the
time scale in the TimeScales collection. The for each statement is supported by the
TimeScales collection, so the TimeScales collection can be enumerated using a sample like
for each ts in TimeScales

property TimeScales.Item (Index as Variant) as TimeScale
Returns a specific TimeScale of the TimeScales collection.

Type Description

Index as Variant
A long expression that specifies the index of the time scale
to be accessed, or a string expression that indicates the
time-zone of the time scale to be accessed.

TimeScale A TimeScale object associated with giving index or time-
zone, or empty/nothing/NULL if no object is associated.

The Item property accesses the time scale object its time zone or its index. The Count
property indicates the number of time scales in the control. The Remove method removes a
time scale giving its time zone or its index. The Clear method removes all time-scales from
the control. The Visible property shows or hides the time scale. The Position property
changes the position of the time scale from left to right. The TimeZone property can be
used to programmatically update the time zone. The Index property defines the index of the
time scale in the TimeScales collection. The TimeScaleFromPoint method gets the
TimeScale object from the cursor. The for each statement is supported by the TimeScales
collection, so the TimeScales collection can be enumerated using a sample like for each ts
in TimeScales

method TimeScales.Remove (Index as Variant)
Removes a specific member from the TimeScales collection.

Type Description

Index as Variant
A long expression that specifies the index of the time scale
to be removed, or a string expression that indicates the
time-zone of the time scale to be removed.

The Remove method removes a time scale giving its time zone or its index. The Clear
method removes all time-scales from the control. The Visible property shows or hides the
time scale. The Position property changes the position of the time scale from left to
right. The Item property accesses the time scale object its time zone or its index. The
TimeZone property can be used to programmatically update the time zone. The Index
property defines the index of the time scale in the TimeScales collection.

ExSchedule events
The ExSchedule component supports the following events:

Name Description
AddEvent Notifies your application once the a new event is added.
AnchorClick Occurs when an anchor element is clicked.

ChangeEvent Occurs once an event is added, removed or
updated/changed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Error Fired when an internal error occurs.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutEndChanging Notifies your application once the control's layout has been
changed.

LayoutStartChanging Occurs when the control's layout is about to be changed.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.
Occurs on a drag source when a drop target calls the

OLESetData GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.

PictureClick Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).

RClick Occurs once the user right clicks the control.
RemoveEvent Occurs once an event is removed.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.

UpdateEvent Notifies your application once the event changes the
starting or ending margins.

C#

VB

private void AddEvent(object sender,exontrol.EXSCHEDULELib.Event Ev)
{
}

Private Sub AddEvent(ByVal sender As System.Object,ByVal Ev As
exontrol.EXSCHEDULELib.Event) Handles AddEvent
End Sub

C# private void AddEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_AddEventEvent e)

event AddEvent (Ev as Event)
Notifies your application once the a new event is added.

Type Description

Ev as Event The Ev object indicates the new appointment/event being
added.

The control fires the AddEvent event once the user creates a new appointment, or the
Events.Add method has been invoked. You can use the AddEvent event to change the
event's label, pictures, and so on. You can use the UserData property to associate any
extra data to your event/appointment. The AddEvent event is fired also during loading an
XML document using the LoadXML method. The control fires the
LayoutStartChanging(exScheduleCreateEvent)/LayoutEndChanging(
exScheduleCreateEvent) event once the user creates a new event using the mouse. The
Start and End properties of the Event are known at the moment the AddEvent event occurs.
You can handle the AddEvent event to invoke your dialogs in other to update any other
property of the newly added event. You can also, call the Remove event in case you need
to remove the event. The ChangeEvent(exAddEvent) event is equivalent with the AddEvent
event.

The AllowCreateEvent property specifies the keys combination to let user creates new
events at runtime. The CreateEventLabel property indicates the label to be shown when the
user creates a new event at runtime. You can use the
Background(exScheduleCreateEventBackColor) and
Background(exScheduleCreateEventForeColor) properties to specify the visual
appearance of the events being updated at runtime * moving or resizing).

Syntax for AddEvent event, /NET version, on:

Syntax for AddEvent event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnAddEvent(LPDISPATCH Ev)
{
}

void __fastcall AddEvent(TObject *Sender,Exschedulelib_tlb::IEvent *Ev)
{
}

procedure AddEvent(ASender: TObject; Ev : IEvent);
begin
end;

procedure AddEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_AddEventEvent);
begin
end;

begin event AddEvent(oleobject Ev)
end event AddEvent

Private Sub AddEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_AddEventEvent) Handles AddEvent
End Sub

Private Sub AddEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
End Sub

Private Sub AddEvent(ByVal Ev As Object)
End Sub

LPARAMETERS Ev

PROCEDURE OnAddEvent(oSchedule,Ev)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AddEvent(Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddEvent(Ev)
End Function
</SCRIPT>

Procedure OnComAddEvent Variant llEv
 Forward Send OnComAddEvent llEv
End_Procedure

METHOD OCX_AddEvent(Ev) CLASS MainDialog
RETURN NIL

void onEvent_AddEvent(COM _Ev)
{
}

function AddEvent as v (Ev as OLE::Exontrol.Schedule.1::IEvent)
end function

function nativeObject_AddEvent(Ev)
return

Syntax for AddEvent event, /COM version (others), on:

The following VB sample shows how you can change the event's pattern once a new event
is created:

Private Sub Schedule1_AddEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
 With Ev.BodyPattern
 .Type = exPatternBDiagonal
 .Color = RGB(128, 128, 128)
 End With
End Sub

The following VB sample asks the user if he wants to keep the newly created event, and if

not, removes it:

Dim iCreatingEvent As Long

Private Sub Schedule1_AddEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
 If Not (iCreatingEvent = 0) Then
 If Not MsgBox("Do you allow creating this new event?", vbQuestion Or
vbYesNoCancel) = vbYes Then
 Schedule1.Events.Remove (Ev.Handle)
 End If
 End If
End Sub

Private Sub Schedule1_LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleCreateEvent) Then
 iCreatingEvent = iCreatingEvent + 1
 End If
End Sub

Private Sub Schedule1_LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
 If (Operation = exScheduleCreateEvent) Then
 iCreatingEvent = iCreatingEvent - 1
 End If
End Sub

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String

A string expression that specifies the identifier of the
anchor being clicked. For instance if you have a <a
id;options>anchor, the id is the AnchorID, while the
options is passed to the Options parameter.

Options as String A string expression that specifies the options being used in
the <a ;options> declaration.

The control fires the AnchorClick event to notify that the user clicks an anchor
element. An anchor is a piece of text or some other object (for example an
image) which marks the beginning and/or the end of a hypertext link.
The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The AnchorClick event is
fired only if prior clicking the control it shows the hand cursor. For instance, if
the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor
property to specify the visual effect for anchor elements. For instance, if the
user clicks the anchor <a1>anchor, the control fires the AnchorClick
event, where the AnchorID parameter is 1, and the Options parameter is
empty. Also, if the user clicks the anchor <a 1;yourextradata>anchor,
the AnchorID parameter of the AnchorClick event is 1, and the Options
parameter is "yourextradata". You can use the AnchorFromPoint property to
retrieve the identifier of the anchor element from the cursor.

Currently, the recognizable anchors elements are in the event's body, by using
the <a> elements in the LongLabel or ExtraLabel property.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

https://exontrol.com/content/products/exstatusbar/help/Panel_Text.htm
https://exontrol.com/content/products/exstatusbar/help/StatusBar_FormatAnchor.htm

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void AnchorClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEvent e)
{
}

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

Xbas… PROCEDURE OnAnchorClick(oSchedule,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

The following samples adds a <a rem>remove to all events:

VBA (MS Access, Excell...)

With Schedule1
 .DefaultEventLongLabel = "<%=%256%>
<a rem>remove"
End With

VB6

With Schedule1
 .DefaultEventLongLabel = "<%=%256%>
<a rem>remove"
End With

VB.NET

With Exschedule1
 .DefaultEventLongLabel = "<%=%256%>
<a rem>remove"
End With

VB.NET for /COM

With AxSchedule1
 .DefaultEventLongLabel = "<%=%256%>
<a rem>remove"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0 Control
Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
*/
EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->PutDefaultEventLongLabel(L"<%=%256%>
<a
rem>remove");

C++ Builder

Schedule1->DefaultEventLongLabel = L"<%=%256%>
<a rem>remove";

C#

exschedule1.DefaultEventLongLabel = "<%=%256%>
<a rem>remove";

JavaScript

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.DefaultEventLongLabel = "<%=%256%>
<a rem>remove";
</SCRIPT>

C# for /COM

axSchedule1.DefaultEventLongLabel = "<%=%256%>
<a rem>remove";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exschedule1.DefaultEventLongLabel("<%=%256%>
<a rem>remove");
}

Delphi 8 (.NET only)

with AxSchedule1 do
begin
 DefaultEventLongLabel := '<%=%256%>
<a rem>remove';
end

Delphi (standard)

with Schedule1 do
begin

 DefaultEventLongLabel := '<%=%256%>
<a rem>remove';
end

VFP

with thisform.Schedule1
 .DefaultEventLongLabel = "<%=%256%>
<a rem>remove"
endwith

dBASE Plus

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.DefaultEventLongLabel = "<%=%256%>
<a rem>remove"

XBasic (Alpha Five)

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.DefaultEventLongLabel = "<%=%256%>
<a rem>remove"

Visual Objects

oDCOCX_Exontrol1:DefaultEventLongLabel := "<%=%256%>
<a
rem>remove"

PowerBuilder

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.DefaultEventLongLabel = "<%=%256%>
<a rem>remove"

The following samples displays the identifier of the anchor/<a> being clicked.

VBA (MS Access, Excell...)

' AnchorClick event - Occurs when an anchor element is clicked.
Private Sub Schedule1_AnchorClick(ByVal AnchorID As String,ByVal Options As String)
 With Schedule1
 Debug.Print(AnchorID)
 End With
End Sub

VB6

' AnchorClick event - Occurs when an anchor element is clicked.
Private Sub Schedule1_AnchorClick(ByVal AnchorID As String,ByVal Options As String)
 With Schedule1
 Debug.Print(AnchorID)
 End With
End Sub

VB.NET

' AnchorClick event - Occurs when an anchor element is clicked.
Private Sub Exschedule1_AnchorClick(ByVal sender As System.Object,ByVal AnchorID
As String,ByVal Options As String) Handles Exschedule1.AnchorClick
 With Exschedule1
 Debug.Print(AnchorID)
 End With
End Sub

VB.NET for /COM

' AnchorClick event - Occurs when an anchor element is clicked.
Private Sub AxSchedule1_AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEvent) Handles

AxSchedule1.AnchorClick
 With AxSchedule1
 Debug.Print(e.anchorID)
 End With
End Sub

C++

// AnchorClick event - Occurs when an anchor element is clicked.
void OnAnchorClickSchedule1(LPCTSTR AnchorID,LPCTSTR Options)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0
Control Library'
 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 OutputDebugStringW(L"AnchorID");
}

C++ Builder

// AnchorClick event - Occurs when an anchor element is clicked.
void __fastcall TForm1::Schedule1AnchorClick(TObject *Sender,BSTR AnchorID,BSTR
Options)
{
 OutputDebugString(L"AnchorID");
}

C#

// AnchorClick event - Occurs when an anchor element is clicked.
private void exschedule1_AnchorClick(object sender,string AnchorID,string Options)
{
 System.Diagnostics.Debug.Print(AnchorID.ToString());
}
//this.exschedule1.AnchorClick += new
exontrol.EXSCHEDULELib.exg2antt.AnchorClickEventHandler(this.exschedule1_AnchorClick);

JavaScript

<SCRIPT FOR="Schedule1" EVENT="AnchorClick(AnchorID,Options)"
LANGUAGE="JScript">
 alert(AnchorID);
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
</SCRIPT>

C# for /COM

// AnchorClick event - Occurs when an anchor element is clicked.
private void axSchedule1_AnchorClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEvent e)
{
 System.Diagnostics.Debug.Print(e.anchorID.ToString());
}
//this.axSchedule1.AnchorClick += new
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEventHandler(this.axSchedule1_AnchorClick);

X++ (Dynamics Ax 2009)

// AnchorClick event - Occurs when an anchor element is clicked.
void onEvent_AnchorClick(str _AnchorID,str _Options)
{
 ;
 print(_AnchorID);
}

public void init()
{
 ;

 super();

}

Delphi 8 (.NET only)

// AnchorClick event - Occurs when an anchor element is clicked.
procedure TWinForm1.AxSchedule1_AnchorClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_AnchorClickEvent);
begin
 with AxSchedule1 do
 begin
 OutputDebugString(e.anchorID);
 end
end;

Delphi (standard)

// AnchorClick event - Occurs when an anchor element is clicked.
procedure TForm1.Schedule1AnchorClick(ASender: TObject; AnchorID :
WideString;Options : WideString);

begin
 with Schedule1 do
 begin
 OutputDebugString(AnchorID);
 end
end;

VFP

*** AnchorClick event - Occurs when an anchor element is clicked. ***
LPARAMETERS AnchorID,Options
 with thisform.Schedule1
 DEBUGOUT(AnchorID)
 endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 AnchorClick = class::nativeObject_AnchorClick
endwith
*/
// Occurs when an anchor element is clicked.
function nativeObject_AnchorClick(AnchorID,Options)
 local oSchedule
 oSchedule = form.Activex1.nativeObject
 ? Str(AnchorID)
return

local oSchedule

oSchedule = form.Activex1.nativeObject

XBasic (Alpha Five)

' Occurs when an anchor element is clicked.
function AnchorClick as v (AnchorID as C,Options as C)
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 ? AnchorID
end function

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex

Visual Objects

METHOD OCX_Exontrol1AnchorClick(AnchorID,Options) CLASS MainDialog
 // AnchorClick event - Occurs when an anchor element is clicked.
 OutputDebugString(String2Psz(AsString(AnchorID)))
RETURN NIL

PowerBuilder

/*begin event AnchorClick(string AnchorID,string Options) - Occurs when an anchor
element is clicked.*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
 MessageBox("Information",string(String(AnchorID)))
*/
/*end event AnchorClick*/

OleObject oSchedule

oSchedule = ole_1.Object

C#

VB

private void ChangeEvent(object sender,exontrol.EXSCHEDULELib.Event
Ev,exontrol.EXSCHEDULELib.ChangeOperationEnum Operation)
{
}

Private Sub ChangeEvent(ByVal sender As System.Object,ByVal Ev As
exontrol.EXSCHEDULELib.Event,ByVal Operation As
exontrol.EXSCHEDULELib.ChangeOperationEnum) Handles ChangeEvent
End Sub

C#

C++

private void ChangeEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_ChangeEventEvent e)
{
}

void OnChangeEvent(LPDISPATCH Ev,long Operation)
{
}

event ChangeEvent (Ev as Event, Operation as ChangeOperationEnum)
Occurs once an event is added, removed or updated/changed.

Type Description
Ev as Event An Event object being added, removed or changed.
Operation as
ChangeOperationEnum

A ChangeOperationEnum type that specifies the operation
that just occured.

The ChangeEvent event notifies your application once a new event is added, if any event is
removed, or a any property of the event is changed. The ChangeEvent(exAddEvent) event
is equivalent with the AddEvent event. The ChangeEvent(exRemoveEvent) event is
equivalent with the RemoveEvent event. The ChangeEvent(exUpdateEvent +
EventKnownPropertyEnum) event occurs once the EventKnownPropertyEnum property of
the Ev is changed. For instance, the ChangeEvent(exUpdateEvent + exEventEndDateTime
) event (16 + 2 = 18) indicates that the ending position of the event (Ev) is changed, or the
end margin of the event is resized.

Syntax for ChangeEvent event, /NET version, on:

Syntax for ChangeEvent event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall ChangeEvent(TObject *Sender,Exschedulelib_tlb::IEvent
*Ev,Exschedulelib_tlb::ChangeOperationEnum Operation)
{
}

procedure ChangeEvent(ASender: TObject; Ev : IEvent;Operation :
ChangeOperationEnum);
begin
end;

procedure ChangeEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_ChangeEventEvent);
begin
end;

begin event ChangeEvent(oleobject Ev,long Operation)
end event ChangeEvent

Private Sub ChangeEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_ChangeEventEvent) Handles ChangeEvent
End Sub

Private Sub ChangeEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent,ByVal Operation
As EXSCHEDULELibCtl.ChangeOperationEnum)
End Sub

Private Sub ChangeEvent(ByVal Ev As Object,ByVal Operation As Long)
End Sub

LPARAMETERS Ev,Operation

PROCEDURE OnChangeEvent(oSchedule,Ev,Operation)
RETURN

Java… <SCRIPT EVENT="ChangeEvent(Ev,Operation)" LANGUAGE="JScript">
Syntax for ChangeEvent event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ChangeEvent(Ev,Operation)
End Function
</SCRIPT>

Procedure OnComChangeEvent Variant llEv OLEChangeOperationEnum
llOperation
 Forward Send OnComChangeEvent llEv llOperation
End_Procedure

METHOD OCX_ChangeEvent(Ev,Operation) CLASS MainDialog
RETURN NIL

void onEvent_ChangeEvent(COM _Ev,int _Operation)
{
}

function ChangeEvent as v (Ev as OLE::Exontrol.Schedule.1::IEvent,Operation as
OLE::Exontrol.Schedule.1::ChangeOperationEnum)
end function

function nativeObject_ChangeEvent(Ev,Operation)
return

C# private void Click(object sender)

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event notifies your application once the user presses and releases the let mouse
button over the control. Unlike Click event, the RClick event occurs once the user right clicks
the control. The Click event does not occur, if the user presses the left mouse button, drag
to a new position and releases the button. By default, the control selects the event being
clicked. You can use the AllowSelectEvent property to disable selecting the event being
clicked. Use a MouseDown or MouseUp event procedure to specify actions that will occur
when a mouse button is pressed or released. Unlike the Click and DblClick events,
MouseDown and MouseUp events lets you distinguish between the left, right, and middle
mouse buttons. You can also write code for mouse-keyboard combinations that use the
SHIFT, CTRL, and ALT keyboard modifiers.

During Click event you can use the ...FromPoint(-1,-1) properties to get UI elements of the
scheduler from the cursor as follows:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

Syntax for Click event, /NET version, on:

VB

{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Syntax for Click event, /COM version, on:

VBA

VFP

Xbas…

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oSchedule)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

Syntax for Click event, /COM version (others), on:

The following samples display the date/time from the cursor.

VBA (MS Access, Excell...)

' Click event - Occurs when the user presses and then releases the left mouse
button over the control.
Private Sub Schedule1_Click()
 With Schedule1
 Debug.Print(.DateTimeFromPoint(-1,-1))
 End With
End Sub

VB6

' Click event - Occurs when the user presses and then releases the left mouse
button over the control.
Private Sub Schedule1_Click()
 With Schedule1
 Debug.Print(.DateTimeFromPoint(-1,-1))
 End With
End Sub

VB.NET

' Click event - Occurs when the user presses and then releases the left mouse
button over the control.
Private Sub Exschedule1_Click(ByVal sender As System.Object) Handles
Exschedule1.Click
 With Exschedule1
 Debug.Print(.get_DateTimeFromPoint(-1,-1))
 End With
End Sub

VB.NET for /COM

' Click event - Occurs when the user presses and then releases the left mouse
button over the control.
Private Sub AxSchedule1_ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxSchedule1.ClickEvent
 With AxSchedule1
 Debug.Print(.get_DateTimeFromPoint(-1,-1))
 End With
End Sub

C++

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
void OnClickSchedule1()
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0
Control Library'
 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 OutputDebugStringW(_bstr_t(spSchedule1->GetDateTimeFromPoint(-1,-1)));
}

C++ Builder

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
void __fastcall TForm1::Schedule1Click(TObject *Sender)

{
 OutputDebugString(PChar(Schedule1->DateTimeFromPoint[-1,-1]));
}

C#

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
private void exschedule1_Click(object sender)
{
 System.Diagnostics.Debug.Print(
exschedule1.get_DateTimeFromPoint(-1,-1).ToString());
}
//this.exschedule1.Click += new
exontrol.EXSCHEDULELib.exg2antt.ClickEventHandler(this.exschedule1_Click);

JavaScript

<SCRIPT FOR="Schedule1" EVENT="Click()" LANGUAGE="JScript">
 alert(Schedule1.DateTimeFromPoint(-1,-1));
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
</SCRIPT>

C# for /COM

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
private void axSchedule1_ClickEvent(object sender, EventArgs e)
{

 System.Diagnostics.Debug.Print(
axSchedule1.get_DateTimeFromPoint(-1,-1).ToString());
}
//this.axSchedule1.ClickEvent += new
EventHandler(this.axSchedule1_ClickEvent);

X++ (Dynamics Ax 2009)

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
void onEvent_Click()
{
 ;
 print(exschedule1.DateTimeFromPoint(-1,-1));
}

public void init()
{
 ;

 super();

}

Delphi 8 (.NET only)

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
procedure TWinForm1.AxSchedule1_ClickEvent(sender: System.Object; e:
System.EventArgs);
begin
 with AxSchedule1 do
 begin
 OutputDebugString(get_DateTimeFromPoint(-1,-1));
 end
end;

Delphi (standard)

// Click event - Occurs when the user presses and then releases the left
mouse button over the control.
procedure TForm1.Schedule1Click(ASender: TObject;);
begin
 with Schedule1 do
 begin
 OutputDebugString(DateTimeFromPoint[-1,-1]);
 end
end;

VFP

*** Click event - Occurs when the user presses and then releases the left mouse button
over the control. ***
LPARAMETERS nop
 with thisform.Schedule1
 DEBUGOUT(.DateTimeFromPoint(-1,-1))
 endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 Click = class::nativeObject_Click
endwith
*/
// Occurs when the user presses and then releases the left mouse button over
the control.
function nativeObject_Click()

 local oSchedule
 oSchedule = form.Activex1.nativeObject
 ? Str(oSchedule.DateTimeFromPoint(-1,-1))
return

local oSchedule

oSchedule = form.Activex1.nativeObject

XBasic (Alpha Five)

' Occurs when the user presses and then releases the left mouse button over
the control.
function Click as v ()
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 ? oSchedule.DateTimeFromPoint(-1,-1)
end function

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex

Visual Objects

METHOD OCX_Exontrol1Click() CLASS MainDialog
 // Click event - Occurs when the user presses and then releases the left
mouse button over the control.
 OutputDebugString(String2Psz(AsString(oDCOCX_Exontrol1:
[DateTimeFromPoint,-1,-1])))
RETURN NIL

PowerBuilder

/*begin event Click() - Occurs when the user presses and then releases the left mouse
button over the control.*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
 MessageBox("Information",string(String(oSchedule.DateTimeFromPoint(-1,-1))))
*/
/*end event Click*/

OleObject oSchedule

oSchedule = ole_1.Object

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event occurs once the user double clicks the control. By default, the control
toggles the schedule view or edit the event from the cursor, when the user double click the
schedule panel. In other words, if a double click occurs in the schedule view, the previously
view is being displayed or inline editing the event is started. The AllowToggleSchedule
property on exDisallow to prevent toggling the schedule view when double clicking the
control. The AllowEditEvent property indicates the keys combination to perform the inline
edit event.

During Click event you can use the ...FromPoint(-1,-1) properties to get UI elements of the
scheduler from the cursor as follows:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void DblClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)

TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oSchedule,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{

Syntax for DblClick event, /COM version (others), on:

XBasic

dBASE

}

function DblClick as v (Shift as N,X as
OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following sample displays the date being double clicked.

VBA (MS Access, Excell...)

' DblClick event - Occurs when the user dblclk the left mouse button over an
object.
Private Sub Schedule1_DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As
Long)
 With Schedule1
 Debug.Print(.DateTimeFromPoint(-1,-1))
 End With
End Sub

With Schedule1
 .AllowToggleSchedule = 0
End With

VB6

' DblClick event - Occurs when the user dblclk the left mouse button over an
object.
Private Sub Schedule1_DblClick(Shift As Integer,X As Single,Y As Single)
 With Schedule1
 Debug.Print(.DateTimeFromPoint(-1,-1))
 End With
End Sub

With Schedule1

 .AllowToggleSchedule = exDisallow
End With

VB.NET

' DblClick event - Occurs when the user dblclk the left mouse button over an
object.
Private Sub Exschedule1_DblClick(ByVal sender As System.Object,ByVal Shift As
Short,ByVal X As Integer,ByVal Y As Integer) Handles Exschedule1.DblClick
 With Exschedule1
 Debug.Print(.get_DateTimeFromPoint(-1,-1))
 End With
End Sub

With Exschedule1
 .AllowToggleSchedule = exontrol.EXSCHEDULELib.AllowKeysEnum.exDisallow
End With

VB.NET for /COM

' DblClick event - Occurs when the user dblclk the left mouse button over an
object.
Private Sub AxSchedule1_DblClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_DblClickEvent) Handles AxSchedule1.DblClick
 With AxSchedule1
 Debug.Print(.get_DateTimeFromPoint(-1,-1))
 End With
End Sub

With AxSchedule1
 .AllowToggleSchedule = EXSCHEDULELib.AllowKeysEnum.exDisallow
End With

C++

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
void OnDblClickSchedule1(short Shift,long X,long Y)

{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0
Control Library'
 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 OutputDebugStringW(_bstr_t(spSchedule1->GetDateTimeFromPoint(-1,-1)));
}

EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->PutAllowToggleSchedule(EXSCHEDULELib::exDisallow);

C++ Builder

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
void __fastcall TForm1::Schedule1DblClick(TObject *Sender,short Shift,int X,int Y)
{
 OutputDebugString(PChar(Schedule1->DateTimeFromPoint[-1,-1]));
}

Schedule1->AllowToggleSchedule = Exschedulelib_tlb::AllowKeysEnum::exDisallow;

C#

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
private void exschedule1_DblClick(object sender,short Shift,int X,int Y)
{
 System.Diagnostics.Debug.Print(
exschedule1.get_DateTimeFromPoint(-1,-1).ToString());

}
//this.exschedule1.DblClick += new
exontrol.EXSCHEDULELib.exg2antt.DblClickEventHandler(this.exschedule1_DblClick);

exschedule1.AllowToggleSchedule =
exontrol.EXSCHEDULELib.AllowKeysEnum.exDisallow;

JavaScript

<SCRIPT FOR="Schedule1" EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
 alert(Schedule1.DateTimeFromPoint(-1,-1));
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.AllowToggleSchedule = 0;
</SCRIPT>

C# for /COM

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
private void axSchedule1_DblClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_DblClickEvent e)
{
 System.Diagnostics.Debug.Print(
axSchedule1.get_DateTimeFromPoint(-1,-1).ToString());
}
//this.axSchedule1.DblClick += new
AxEXSCHEDULELib._IScheduleEvents_DblClickEventHandler(this.axSchedule1_DblClick);

axSchedule1.AllowToggleSchedule = EXSCHEDULELib.AllowKeysEnum.exDisallow;

X++ (Dynamics Ax 2009)

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
void onEvent_DblClick(int _Shift,int _X,int _Y)
{
 ;
 print(exschedule1.DateTimeFromPoint(-1,-1));
}

public void init()
{
 ;

 super();

 exschedule1.AllowToggleSchedule(0/*exDisallow*/);
}

Delphi 8 (.NET only)

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
procedure TWinForm1.AxSchedule1_DblClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_DblClickEvent);
begin
 with AxSchedule1 do
 begin
 OutputDebugString(get_DateTimeFromPoint(-1,-1));
 end
end;

with AxSchedule1 do
begin
 AllowToggleSchedule := EXSCHEDULELib.AllowKeysEnum.exDisallow;
end

Delphi (standard)

// DblClick event - Occurs when the user dblclk the left mouse button over an
object.
procedure TForm1.Schedule1DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y :
Integer);
begin
 with Schedule1 do
 begin
 OutputDebugString(DateTimeFromPoint[-1,-1]);
 end
end;

with Schedule1 do
begin
 AllowToggleSchedule := EXSCHEDULELib_TLB.exDisallow;
end

VFP

*** DblClick event - Occurs when the user dblclk the left mouse button over an object.

LPARAMETERS Shift,X,Y
 with thisform.Schedule1
 DEBUGOUT(.DateTimeFromPoint(-1,-1))
 endwith

with thisform.Schedule1
 .AllowToggleSchedule = 0
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 DblClick = class::nativeObject_DblClick
endwith
*/
// Occurs when the user dblclk the left mouse button over an object.
function nativeObject_DblClick(Shift,X,Y)

 local oSchedule
 oSchedule = form.Activex1.nativeObject
 ? Str(oSchedule.DateTimeFromPoint(-1,-1))
return

local oSchedule

oSchedule = form.Activex1.nativeObject
oSchedule.AllowToggleSchedule = 0

XBasic (Alpha Five)

' Occurs when the user dblclk the left mouse button over an object.
function DblClick as v (Shift as N,X as OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 ? oSchedule.DateTimeFromPoint(-1,-1)
end function

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.AllowToggleSchedule = 0

Visual Objects

METHOD OCX_Exontrol1DblClick(Shift,X,Y) CLASS MainDialog
 // DblClick event - Occurs when the user dblclk the left mouse button over
an object.
 OutputDebugString(String2Psz(AsString(oDCOCX_Exontrol1:
[DateTimeFromPoint,-1,-1])))
RETURN NIL

oDCOCX_Exontrol1:AllowToggleSchedule := exDisallow

PowerBuilder

/*begin event DblClick(integer Shift,long X,long Y) - Occurs when the user dblclk the
left mouse button over an object.*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
 MessageBox("Information",string(String(oSchedule.DateTimeFromPoint(-1,-1))))
*/
/*end event DblClick*/

OleObject oSchedule

oSchedule = ole_1.Object
oSchedule.AllowToggleSchedule = 0

C#

VB

private void Error(object sender,int Err,string Description)
{
}

Private Sub Error(ByVal sender As System.Object,ByVal Err As Integer,ByVal
Description As String) Handles Error
End Sub

C#

C++

C++
Builder

Delphi

private void Error(object sender, AxEXSCHEDULELib._IScheduleEvents_ErrorEvent
e)
{
}

void OnError(long Error,LPCTSTR Description)
{
}

void __fastcall Error(TObject *Sender,long Error,BSTR Description)
{
}

procedure Error(ASender: TObject; Error : Integer;Description : WideString);
begin

event Error (Error as Long, Description as String)
Fired when an internal error occurs.

Type Description
Error as Long A long expression that indicates the error number.
Description as String A string expression that describes the error.

The Error event occurs when an internal error occurs. The Error event is usually fired when
the control is bounded to an ADO/DAO Recordset. For instance, if the user changes a field,
the control tries to update the current record. If it fails, the Error event is fired. The
DataSource property binds the control to a database.

Syntax for Error event, /NET version, on:

Syntax for Error event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Error(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent);
begin
end;

begin event Error(long Error,string Description)
end event Error

Private Sub Error(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_ErrorEvent) Handles Error
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

LPARAMETERS Error,Description

PROCEDURE OnError(oSchedule,Error,Description)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Error(Error,Description)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Error(Error,Description)
End Function
</SCRIPT>

Procedure OnComError Integer llError String llDescription
 Forward Send OnComError llError llDescription

Syntax for Error event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Error(Error,Description) CLASS MainDialog
RETURN NIL

void onEvent_Error(int _Error,str _Description)
{
}

function Error as v (Error as N,Description as C)
end function

function nativeObject_Error(Error,Description)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. For instance if a RClick
event occurs, then a Event(1) occurs also, so the events inside the Event are differentiated
by its EventID. Print the EventParam(-2) during the Event notification, and you get
debugging information for the name, ID, and parameters of the fired event. For instance,
Click event has no parameter, which means that the EventParam(-1) gets 0.

Click here to watch a movie on how you can use the eXHelper to get information about
the fired events using the Event handler. The Event notification is sent any time the control
fires a specified event. For instance, if the BarResize event occurs, the order of the events
are Event(120) and next BarResize. You can use any of these notifications based on your
requirements or limitations of the programming environment you are using.

This is useful for X++, which does not support event with parameters passed by
reference. Also, this could be useful for C++ Builder or Delphi, which does not handle
properly the events with parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's assume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

https://www.youtube.com/watch?v=SLSqFaC7GTE
https://exontrol.com/exhelper.jsp

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exschedule1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exschedule1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

private void Event(object sender, AxEXSCHEDULELib._IScheduleEvents_EventEvent
e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exschedule1.Items().EnableItem(exschedule1.EventParam(2 /*NewItem*/)))
 exschedule1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oSchedule,EventID)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Syntax for Event event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oSchedule,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)

Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oSchedule,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oSchedule,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

event LayoutEndChanging (Operation as LayoutChangingEnum)
Notifies your application once the control's layout has been changed.

Type Description
Operation as
LayoutChangingEnum

A LayoutChangingEnum expression that indicates the
operation that ends .

Generally, the LayoutEndChanging event occurs once an UI operation is performed (ended
). For instance, if the user resizes an event the LayoutEndChanging(
exScheduleResizeStartEvent) or LayoutEndChanging(exScheduleResizeEndEvent) may
occurs once the user resized an event. Once the operation starts the LayoutStartChanging
with the same code (operation) is fired. Another sample of using the
LayoutStartChanging/LayoutEndChanging events, is to be notified once the user changes
the selected dates in the calendar panel or in the schedule view, using the
exCalendarSelectionChange or exScheduleSelectionChange. Generally speaking, a
LayoutEndChanging(Operation) is preceded by a LayoutStartChanging(Operation).

The LayoutEndChanging event may occurs in the following situations:

exLayoutResizePanels(0), one of the panels is resized. The PaneWidth property
indicates the width of the left/right panel.
exCalendarSelectionChange(1), specifies whether the selection in the calendar panel
is changed. The Selection property of the Calendar returns a safe array of selected
dates. The /NET or /WPF version provides the SelDates property of List<DateTime>
type to get or sets the new selection using a collection of DateTime objects. The
Calendar.SelCount and Calendar.SelDate properties gives the selection dates. The
LayoutEndChanging(exCalendarSelectionChange) notifies once the selection of dates
in the calendar section is changed.
exCalendarFocusDateChange(2), specifies whether the focused date in the calendar
panel is changed. The FocusDate property indicates the date being focused in the
calendar.
exCalendarDateChange(3), notifies whether the browsing date in the calendar panel is
changed. The Date property indicates the month date being browsed in the calendar.
exScheduleMove(4), notifies once the user moved the schedule view to a new position
by drag and drop. By default, you can press the SHIFT + Click and drag the schedule
view to a new position. The AllowMoveSchedule property indicates the keys
combination so the user can move the schedule to a new position.
exScheduleResize(5), occurs once the schedule view is resized. By default, you can
click the middle mouse button, and drag the cursor to a new position, so the schedule
view gets zoomed or resized. The AllowResizeSchedule property indicates the keys
combination so the user can resize the schedule view at runtime.
exScheduleResizeTimeScale(6), notifies once the user is resized the control's time

C# private void LayoutEndChanging(object
sender,exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{

scale. The TimeScales property access the control's TimeScale objects.
exLayoutCalendarAutoHide(7), notifies your application once the calendar panel is
shown or hidden. The OnResizeControl property on exCalendarAutoHide makes the
calendar goes away if the cursor is not in it. The PaneWidth property indicates the
width of the left/right panel. For instance, the PaneWidth(False) on 0, indicates that the
calendar panel is hidden, or if it not zero, the calendar panel is shown. You can call the
FitSelToView method during this operation so the schedule fits the selected dates in its
client area.
exScheduleCreateEvent(8), occurs once a new event is created using the mouse. The
AddEvent event notifies your application once a new event is added to the schedule
view.
exScheduleResizeGroup(9), specifies whether the user resized a group. The user can
resize a group by clicking the groups header between two groups, and start dragging
the cursor to a new position, and so the group is being resized.
exScheduleSelectionChange(10), indicates whether the user is selected events in the
schedule panel. The Selection property gets or sets a safe array of selected events.
The /NET or /WPF version provides the SelEvents property of List<Event> type to get
or sets the new selection using a collection of Event objects. The Selected property of
the Event indicates whether the current event is selected or unselected. The Selectable
property indicates whether a specified event can be selected at runtime. The
AllowSelectEvent property indicates the combination of the keys to let user selects the
events.
exScheduleMoveEvent(11), indicates whether the user is about to move events in the
schedule panel. The control fires the UpdateEvent event once the margin of the events
are being updated.
exScheduleResizeStartEvent(12), indicates whether the user resized the starting point
of the event. The control fires the UpdateEvent event once the margin of the events are
being updated.
exScheduleResizeEndEvent(13), indicates whether the user resized the ending point
of the event. The control fires the UpdateEvent event once the margin of the events are
being updated.
exScheduleMoveMarkTime(14), indicates whether the user moved a MarkTime object.
The Movable property of the MarkTime object indicates whether the user can move at
runtime the MarkTime object using the Mouse. The MarkTimeFromPoint(-1,-1) property
indicates the MarkTime object from the cursor.

Use the Parent property to move the calendar panel to other place.

Syntax for LayoutEndChanging event, /NET version, on:

VB

}

Private Sub LayoutEndChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles LayoutEndChanging
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void LayoutEndChanging(object sender,
AxEXSCHEDULELib._IScheduleEvents_LayoutEndChangingEvent e)
{
}

void OnLayoutEndChanging(long Operation)
{
}

void __fastcall LayoutEndChanging(TObject
*Sender,Exschedulelib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutEndChanging(ASender: TObject; Operation :
LayoutChangingEnum);
begin
end;

procedure LayoutEndChanging(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_LayoutEndChangingEvent);
begin
end;

begin event LayoutEndChanging(long Operation)
end event LayoutEndChanging

Private Sub LayoutEndChanging(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_LayoutEndChangingEvent) Handles
LayoutEndChanging

Syntax for LayoutEndChanging event, /COM version, on:

VB6

VBA

VFP

Xbas…

End Sub

Private Sub LayoutEndChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutEndChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutEndChanging(oSchedule,Operation)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="LayoutEndChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutEndChanging(Operation)
End Function
</SCRIPT>

Procedure OnComLayoutEndChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutEndChanging llOperation
End_Procedure

METHOD OCX_LayoutEndChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutEndChanging(int _Operation)
{
}

function LayoutEndChanging as v (Operation as
OLE::Exontrol.Schedule.1::LayoutChangingEnum)

Syntax for LayoutEndChanging event, /COM version (others), on:

dBASE

end function

function nativeObject_LayoutEndChanging(Operation)
return

The following two samples shows how to use a separate calendar control, instead the
schedule's calendar panel:

Using the eXCalendar as a separate control

Insert the CalendarCombo or eXCalendar to a form, and name it Calendar1. Next,
add the eXSchedule component to the same form, and name it to Schedule1.
Now, use the following code:

Private Sub Calendar1_SelectionChanged()
 Schedule1.Calendar.Selection = Calendar1.Value
End Sub

Private Sub Form_Load()
 With Schedule1
 .OnResizeControl = 768
 .Calendar.Selection = Calendar1.Value
 End With
End Sub

If you want so synchronize the dates, so once the user clicks another date in the
schedule view, you can use a code as follows:

Private Sub Schedule1_MouseDown(Button, Shift, X, Y)
 If (Shift = 0) Then
 If (Button = 1) Then
 With Schedule1
 Dim d As Date
 d = Fix(.DateTimeFromPoint(-1, -1))
 If (d <> 0) Then
 Calendar1.Value = d
 End If
 End With
 End If

https://exontrol.com/excalendar.jsp

 End If
End Sub

SHIFT + Click the schedule view, and move the view to a new position, and then
click. The new date in the calendar is selected. The Fix(.DateTimeFromPoint(-1,
-1)) gets the integer part of the date, in other words, just the date from the cursor,
not including the time section. The .DateTimeFromPoint(-1, -1) gets the date
including the time being clicked.

Using the Calendar Panel of the ExSchedule component as a separate control.

Insert the eXSchedule control to a form, and name it Calendar1. Next, add a new
eXSchedule to the same form, and name it to Schedule1. Now, use the following
code:

Private Sub Calendar1_LayoutEndChanging(Operation)
 If (Operation = exCalendarSelectionChange) Then
 Schedule1.Calendar.Selection = Calendar1.Calendar.Selection
 End If
End Sub

Private Sub Form_Load()
 With Calendar1
 .OnResizeControl = 257
 End With
 With Schedule1
 .OnResizeControl = 768
 .Calendar.Selection = Calendar1.Calendar.Selection
 End With
End Sub

If you want so synchronize the dates, so once the user clicks another date in the
schedule view, you can use a code as follows:

Private Sub Schedule1_MouseDown(Button, Shift, X, Y)
 If (Shift = 0) Then
 If (Button = 1) Then
 With Schedule1
 Dim d As Date
 d = Fix(.DateTimeFromPoint(-1, -1))

 If (d <> 0) Then
 Calendar1.Calendar.Selection = d
 End If
 End With
 End If
 End If
End Sub

SHIFT + Click the schedule view, and move the view to a new position, and then
click. The new date in the calendar is selected. The Fix(.DateTimeFromPoint(-1,
-1)) gets the integer part of the date, in other words, just the date from the cursor,
not including the time section. The .DateTimeFromPoint(-1, -1) gets the date
including the time being clicked.

The samples changes the Selection property of the Schedule's Calendar object, when the
selection is changed in the second (the calendar) control.

event LayoutStartChanging (Operation as LayoutChangingEnum)
Occurs when the control's layout is about to be changed.

Type Description
Operation as
LayoutChangingEnum

A LayoutChangingEnum expression that indicates the
operation is about to begin.

Generally, the LayoutStartChanging event occurs once an UI operation is performed (
started). For instance, if the user resizes an event the
LayoutStartChanging(exScheduleResizeStartEvent) or
LayoutStartChanging(exScheduleResizeEndEvent) may occurs once the user starts resizing
an event. Once the operation ends the LayoutEndChanging with the same code (operation
) is fired. Another sample of using the LayoutStartChanging/LayoutEndChanging events, is
to be notified once the user changes the selected dates in the calendar panel or in the
schedule view, using the exCalendarSelectionChange or exScheduleSelectionChange.
Generally speaking, a LayoutStartChanging(Operation) is followed by a
LayoutEndChanging(Operation).

The LayoutStartChanging event may occurs in the following situations:

exLayoutResizePanels(0), one of the panels is being resized. The PaneWidth property
indicates the width of the left/right panel.
exCalendarSelectionChange(1), specifies whether the selection in the calendar panel
is changing. The Selection property of the Calendar returns a safe array of selected
dates. The /NET or /WPF version provides the SelDates property of List<DateTime>
type to get or sets the new selection using a collection of DateTime objects.
exCalendarFocusDateChange(2), specifies whether the focused date in the calendar
panel is changing. The FocusDate property indicates the date being focused in the
calendar. The AllowFocusDate property specifies the combination of keys that allows
the user to focus a new date, in the calendar panel. The
Background(exCalendarFocusDate) changes the visual appearance of the focused
date, while the Background(exCalendarFocusDateForeColor) changes the foreground
color of the focused date.
exCalendarDateChange(3), notifies whether the browsing date in the calendar panel is
changing. The Date property indicates the month date being browsed in the calendar.
The FirstVisibleDate/LastVisibleDate property indicates the first visible date in the
calendar panel.
exScheduleMove(4), notifies once the user is about to move the schedule view to a
new position by drag and drop. By default, you can press the SHIFT + Click and drag
the schedule view to a new position. The AllowMoveSchedule property indicates the
keys combination so the user can move the schedule to a new position.
exScheduleResize(5), occurs once the schedule view is resizing. By default, you can

click the middle mouse button, and drag the cursor to a new position, so the schedule
view gets zoomed or resized. The AllowResizeSchedule property indicates the keys
combination so the user can resize the schedule view at runtime.
exScheduleResizeTimeScale(6), notifies once the user is resizing the control's time
scale. The TimeScales property access the control's TimeScale objects.
exLayoutCalendarAutoHide(7), notifies your application once the calendar panel is
shown or hidden. The OnResizeControl property on exCalendarAutoHide makes the
calendar goes away if the cursor is not in it. The PaneWidth property indicates the
width of the left/right panel. For instance, the PaneWidth(False) on 0, indicates that the
calendar panel is hidden, or if it not zero, the calendar panel is shown. You can call the
FitSelToView method during this operation so the schedule fits the selected dates in its
client area.
exScheduleCreateEvent(8), occurs once a new event is creating using the mouse. The
AddEvent event notifies your application once a new event is added to the schedule
view.
exScheduleResizeGroup(9), specifies whether the user is resizing a group. The user
can resize a group by clicking the groups header between two groups, and start
dragging the cursor to a new position, and so the group is being resized.
exScheduleSelectionChange(10), indicates whether the user is about to select events
in the schedule panel. The Selection property gets or sets a safe array of selected
events. The /NET or /WPF version provides the SelEvents property of List<Event> type
to get or sets the new selection using a collection of Event objects.
exScheduleMoveEvent(11), indicates whether the user is about to move events in the
schedule panel. The control fires the UpdateEvent event once the margin of the events
are being updated.
exScheduleResizeStartEvent(12), indicates whether the user is about to resize the
starting point of the event. The control fires the UpdateEvent event once the margin of
the events are being updated.
exScheduleResizeEndEvent(13), indicates whether the user is about to resize the
ending point of the event. The control fires the UpdateEvent event once the margin of
the events are being updated.
exScheduleMoveMarkTime(14), indicates whether the user is about to move a
MarkTime object. The Movable property of the MarkTime object indicates whether the
user can move at runtime the MarkTime object using the Mouse. The
MarkTimeFromPoint(-1,-1) property indicates the MarkTime object from the cursor.
exScheduleEditEvent(15), indicates whether the user edits the event's caption. The
event notifies once the user starts inline editing an appointment. The Editable property
of the Event indicates the property of the Event to be edited at runtime. You can use
the EventFromPoint(-1,-1) method during the LayoutStartChanging(
exScheduleEditEvent) to store the event from the cursor to a global member, and
when LayoutEndChanging(exScheduleEditEvent) occurs, you can use the previously
stored member to identify the event being edited.

C#

VB

private void LayoutStartChanging(object
sender,exontrol.EXSCHEDULELib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutStartChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXSCHEDULELib.LayoutChangingEnum) Handles LayoutStartChanging
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void LayoutStartChanging(object sender,
AxEXSCHEDULELib._IScheduleEvents_LayoutStartChangingEvent e)
{
}

void OnLayoutStartChanging(long Operation)
{
}

void __fastcall LayoutStartChanging(TObject
*Sender,Exschedulelib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutStartChanging(ASender: TObject; Operation :
LayoutChangingEnum);
begin
end;

procedure LayoutStartChanging(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_LayoutStartChangingEvent);
begin
end;

exScheduleMoveGroup,(18),

Syntax for LayoutStartChanging event, /NET version, on:

Syntax for LayoutStartChanging event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event LayoutStartChanging(long Operation)
end event LayoutStartChanging

Private Sub LayoutStartChanging(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_LayoutStartChangingEvent) Handles
LayoutStartChanging
End Sub

Private Sub LayoutStartChanging(ByVal Operation As
EXSCHEDULELibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutStartChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutStartChanging(oSchedule,Operation)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="LayoutStartChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutStartChanging(Operation)
End Function
</SCRIPT>

Procedure OnComLayoutStartChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutStartChanging llOperation
End_Procedure

METHOD OCX_LayoutStartChanging(Operation) CLASS MainDialog
RETURN NIL

Syntax for LayoutStartChanging event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_LayoutStartChanging(int _Operation)
{
}

function LayoutStartChanging as v (Operation as
OLE::Exontrol.Schedule.1::LayoutChangingEnum)
end function

function nativeObject_LayoutStartChanging(Operation)
return

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user presses a mouse button.

Type Description

Button as Integer
An integer that identifies the button that was pressed to
cause the event as as 1 for Left Mouse Button, 2 for Right
Mouse Button and 4 for Middle Mouse Button.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

During Click event you can use the ...FromPoint(-1,-1) properties to get UI elements of the
scheduler from the cursor as follows:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C#

C++

C++
Builder

Delphi

private void MouseDownEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

Use the Parent property to move the calendar panel to other place.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseDownEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oSchedule,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY

Syntax for MouseDown event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

The following two samples shows how to use a separate calendar control, instead the
schedule's calendar panel:

Using the eXCalendar as a separate control

Insert the CalendarCombo or eXCalendar to a form, and name it Calendar1. Next,
add the eXSchedule component to the same form, and name it to Schedule1.
Now, use the following code:

Private Sub Calendar1_SelectionChanged()
 Schedule1.Calendar.Selection = Calendar1.Value
End Sub

Private Sub Form_Load()
 With Schedule1
 .OnResizeControl = 768
 .Calendar.Selection = Calendar1.Value
 End With
End Sub

If you want so synchronize the dates, so once the user clicks another date in the

https://exontrol.com/excalendar.jsp

schedule view, you can use a code as follows:

Private Sub Schedule1_MouseDown(Button, Shift, X, Y)
 If (Shift = 0) Then
 If (Button = 1) Then
 With Schedule1
 Dim d As Date
 d = Fix(.DateTimeFromPoint(-1, -1))
 If (d <> 0) Then
 Calendar1.Value = d
 End If
 End With
 End If
 End If
End Sub

SHIFT + Click the schedule view, and move the view to a new position, and then
click. The new date in the calendar is selected. The Fix(.DateTimeFromPoint(-1,
-1)) gets the integer part of the date, in other words, just the date from the cursor,
not including the time section. The .DateTimeFromPoint(-1, -1) gets the date
including the time being clicked.

Using the Calendar Panel of the ExSchedule component as a separate control.

Insert the eXSchedule control to a form, and name it Calendar1. Next, add a new
eXSchedule to the same form, and name it to Schedule1. Now, use the following
code:

Private Sub Calendar1_LayoutEndChanging(Operation)
 If (Operation = exCalendarSelectionChange) Then
 Schedule1.Calendar.Selection = Calendar1.Calendar.Selection
 End If
End Sub

Private Sub Form_Load()
 With Calendar1
 .OnResizeControl = 257
 End With
 With Schedule1

 .OnResizeControl = 768
 .Calendar.Selection = Calendar1.Calendar.Selection
 End With
End Sub

If you want so synchronize the dates, so once the user clicks another date in the
schedule view, you can use a code as follows:

Private Sub Schedule1_MouseDown(Button, Shift, X, Y)
 If (Shift = 0) Then
 If (Button = 1) Then
 With Schedule1
 Dim d As Date
 d = Fix(.DateTimeFromPoint(-1, -1))
 If (d <> 0) Then
 Calendar1.Calendar.Selection = d
 End If
 End With
 End If
 End If
End Sub

SHIFT + Click the schedule view, and move the view to a new position, and then
click. The new date in the calendar is selected. The Fix(.DateTimeFromPoint(-1,
-1)) gets the integer part of the date, in other words, just the date from the cursor,
not including the time section. The .DateTimeFromPoint(-1, -1) gets the date
including the time being clicked.

The samples changes the Selection property of the Schedule's Calendar object, when the
selection is changed in the second (the calendar) control.

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

Type Description

Button as Integer
Gets which mouse button was pressed as 1 for Left
Mouse Button, 2 for Right Mouse Button and 4 for Middle
Mouse Button.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. During the MouseMove event you can
call the ShowToolTip method to display any custom tooltip. For instance, you can display a
tooltip when the cursor is hovering an anchor element <a> like shown in the bellow
samples:

During MouseMove event you can use the ...FromPoint(-1,-1) properties to get UI elements
of the scheduler from the cursor as follows:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

C++
Builder

Delphi

private void MouseMoveEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseMoveEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oSchedule,Button,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Syntax for MouseMove event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

The following samples show how to show a custom tooltip when the cursor hovers to an
anchor <a> element.

VBA (MS Access, Excell...)

' MouseMove event - Occurs when the user moves the mouse.
Private Sub Schedule1_MouseMove(ByVal Button As Integer,ByVal Shift As
Integer,ByVal X As Long,ByVal Y As Long)
 With Schedule1
 s = .AnchorFromPoint(-1,-1)
 .ShowToolTip s,"info","","+16"
 End With
End Sub

VB6

' MouseMove event - Occurs when the user moves the mouse.
Private Sub Schedule1_MouseMove(Button As Integer,Shift As Integer,X As Single,Y
As Single)
 With Schedule1
 s = .AnchorFromPoint(-1,-1)
 .ShowToolTip s,"info","","+16"
 End With
End Sub

VB.NET

' MouseMove event - Occurs when the user moves the mouse.
Private Sub Exschedule1_MouseMoveEvent(ByVal sender As System.Object,ByVal
Button As Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
Exschedule1.MouseMoveEvent
 Dim s
 With Exschedule1
 s = .get_AnchorFromPoint(-1,-1)
 .ShowToolTip(s,"info","","+16")
 End With
End Sub

VB.NET for /COM

' MouseMove event - Occurs when the user moves the mouse.
Private Sub AxSchedule1_MouseMoveEvent(ByVal sender As System.Object, ByVal e
As AxEXSCHEDULELib._IScheduleEvents_MouseMoveEvent) Handles
AxSchedule1.MouseMoveEvent
 Dim s
 With AxSchedule1
 s = .get_AnchorFromPoint(-1,-1)
 .ShowToolTip(s,"info","","+16")
 End With
End Sub

C++

// MouseMove event - Occurs when the user moves the mouse.
void OnMouseMoveSchedule1(short Button,short Shift,long X,long Y)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0
Control Library'
 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 _bstr_t s = spSchedule1->GetAnchorFromPoint(-1,-1);
 spSchedule1->ShowToolTip(L"s","info","","+16",vtMissing);
}

C++ Builder

// MouseMove event - Occurs when the user moves the mouse.
void __fastcall TForm1::Schedule1MouseMove(TObject *Sender,short Button,short
Shift,int X,int Y)
{
 String s = Schedule1->AnchorFromPoint[-1,-1];
 Schedule1-
>ShowToolTip(L"s",TVariant("info"),TVariant(""),TVariant("+16"),TNoParam());
}

C#

// MouseMove event - Occurs when the user moves the mouse.
private void exschedule1_MouseMoveEvent(object sender,short Button,short Shift,int
X,int Y)
{
 string s = exschedule1.get_AnchorFromPoint(-1,-1);
 exschedule1.ShowToolTip(s.ToString(),"info","","+16",null);
}
//this.exschedule1.MouseMoveEvent += new
exontrol.EXSCHEDULELib.exg2antt.MouseMoveEventHandler(this.exschedule1_MouseMoveEvent);

JavaScript

<SCRIPT FOR="Schedule1" EVENT="MouseMove(Button,Shift,X,Y)"
LANGUAGE="JScript">
 var s = Schedule1.AnchorFromPoint(-1,-1);
 Schedule1.ShowToolTip(s,"info","","+16",null);
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
</SCRIPT>

C# for /COM

// MouseMove event - Occurs when the user moves the mouse.
private void axSchedule1_MouseMoveEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_MouseMoveEvent e)
{
 string s = axSchedule1.get_AnchorFromPoint(-1,-1);
 axSchedule1.ShowToolTip(s.ToString(),"info","","+16",null);
}
//this.axSchedule1.MouseMoveEvent += new
AxEXSCHEDULELib._IScheduleEvents_MouseMoveEventHandler(this.axSchedule1_MouseMoveEvent);

X++ (Dynamics Ax 2009)

// MouseMove event - Occurs when the user moves the mouse.
void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
 str s;
 ;
 s = exschedule1.AnchorFromPoint(-1,-1);
 exschedule1.ShowToolTip(s,"info","","+16");
}

public void init()
{
 ;

 super();

}

Delphi 8 (.NET only)

// MouseMove event - Occurs when the user moves the mouse.
procedure TWinForm1.AxSchedule1_MouseMoveEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_MouseMoveEvent);
begin
 with AxSchedule1 do
 begin
 s := get_AnchorFromPoint(-1,-1);
 ShowToolTip(s,'info','','+16',Nil);
 end
end;

Delphi (standard)

// MouseMove event - Occurs when the user moves the mouse.
procedure TForm1.Schedule1MouseMove(ASender: TObject; Button : Smallint;Shift :
Smallint;X : Integer;Y : Integer);
begin
 with Schedule1 do
 begin
 s := AnchorFromPoint[-1,-1];
 ShowToolTip(s,'info','','+16',Null);
 end
end;

VFP

*** MouseMove event - Occurs when the user moves the mouse. ***
LPARAMETERS Button,Shift,X,Y
 with thisform.Schedule1
 s = .AnchorFromPoint(-1,-1)
 .ShowToolTip(s,"info","","+16")
 endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 MouseMove = class::nativeObject_MouseMove
endwith
*/
// Occurs when the user moves the mouse.
function nativeObject_MouseMove(Button,Shift,X,Y)
 local oSchedule,s
 oSchedule = form.Activex1.nativeObject
 s = oSchedule.AnchorFromPoint(-1,-1)

 oSchedule.ShowToolTip(Str(s),"info","","+16")
return

local oSchedule

oSchedule = form.Activex1.nativeObject

XBasic (Alpha Five)

' Occurs when the user moves the mouse.
function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
 Dim oSchedule as P
 Dim s as
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 s = oSchedule.AnchorFromPoint(-1,-1)
 oSchedule.ShowToolTip(s,"info","","+16")
end function

Dim oSchedule as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex

Visual Objects

METHOD OCX_Exontrol1MouseMove(Button,Shift,X,Y) CLASS MainDialog
 // MouseMove event - Occurs when the user moves the mouse.
 local s as USUAL
 s := oDCOCX_Exontrol1:[AnchorFromPoint,-1,-1]
 oDCOCX_Exontrol1:ShowToolTip(AsString(s),"info","","+16",nil)
RETURN NIL

PowerBuilder

/*begin event MouseMove(integer Button,integer Shift,long X,long Y) - Occurs when
the user moves the mouse.*/
/*
 OleObject oSchedule
 any s
 oSchedule = ole_1.Object
 s = oSchedule.AnchorFromPoint(-1,-1)
 oSchedule.ShowToolTip(String(s),"info","","+16")
*/
/*end event MouseMove*/

OleObject oSchedule

oSchedule = ole_1.Object

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

Type Description

Button as Integer
An integer that identifies the button that was pressed to
cause the event as as 1 for Left Mouse Button, 2 for Right
Mouse Button and 4 for Middle Mouse Button.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

During Click event you can use the ...FromPoint(-1,-1) properties to get UI elements of the
scheduler from the cursor as follows:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C#

C++

C++
Builder

Delphi

private void MouseUpEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseUpEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oSchedule,Button,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Syntax for MouseUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXSCHEDULELib._IScheduleEvents_OLECompleteDragEvent e)
{

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to set the OLEDropMode and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oSchedule,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

private void OLEDragDrop(object sender,
AxEXSCHEDULELib._IScheduleEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

In the /NET Assembly, you have to use the DragDrop event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support. Use the EventFromPoint property to get the event from point. Use
the DateTimeFromPoint property to get the date-time from point in the schedule part of the
control. Use the DateFromPoint property to retrieve the date from the cursor over the
calendar section of the control. Use the Add method to add a event to the control. The
Background(exScheduleOLEDropPosition) property specifies the visual appearance of the
line to be shown when the cursor is hovering the schedule part of the control, during an OLE
drag and drop operation.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OLEDragDrop(TObject *Sender,Exschedulelib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y)
{
}

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXSCHEDULELibCtl.IExDataObject,Effect
As Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oSchedule,Data,Effect,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as OLE::Exontrol.Schedule.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

Syntax for OLEDragDrop event, /COM version (others), on:

The following VB sample adds a new event for each dragged file (Open the Windows
Explorer, click and drag a file to the control) :

Private Sub Schedule1_OLEDragDrop(ByVal Data As EXSCHEDULELibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 If Data.GetFormat(exCFFiles) Then

 With Schedule1
 Dim d As Date
 d = .DateTimeFromPoint(-1, -1)
 If Not (d = 0) Then
 With .Events
 Dim f As Variant
 For Each f In Data.Files
 .Add(d, d + 2 / 24).ExtraLabel = f
 Next
 End With
 End If
 End With
 End If
End Sub

The sample queries the date-time over the schedule part of the control, and add a new
event for each dragged file.

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

State as Integer An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed in Remarks.

The Background(exScheduleOLEDropPosition) property specifies the visual appearance of
the line to be shown when the cursor is hovering the schedule part of the control, during an
OLE drag and drop operation.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

C#

VB

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEDragOver(object sender,
AxEXSCHEDULELib._IScheduleEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exschedulelib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Syntax for OLEDragOver event, /NET version, on:

Syntax for OLEDragOver event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Private Sub OLEDragOver(ByVal Data As EXSCHEDULELibCtl.IExDataObject,Effect
As Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oSchedule,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

Syntax for OLEDragOver event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.Schedule.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.Schedule.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Schedule.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed in Remarks.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object.

The Background(exScheduleOLEDropPosition) property specifies the visual appearance of
the line to be shown when the cursor is hovering the schedule part of the control, during an
OLE drag and drop operation.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void OLEGiveFeedback(object sender,
AxEXSCHEDULELib._IScheduleEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_OLEGiveFeedbackEvent);
begin
end;

-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OLEGiveFeedbackEvent) Handles
OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oSchedule,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

Syntax for OLEGiveFeedback event, /COM version (others), on:

X++

XBasic

dBASE

// OLEGiveFeedback event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXSCHEDULELib._IScheduleEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exschedulelib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not currently supported.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXSCHEDULELibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oSchedule,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.Schedule.1::IExDataObject,Format
as N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

In the /NET Assembly, you have to use the DragEnter event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The Background(exScheduleOLEDropPosition) property specifies the visual appearance of
the line to be shown when the cursor is hovering the schedule part of the control, during an
OLE drag and drop operation.

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the AllowedEffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You
may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use exCFFiles
and Files property to add files to the drag and drop data object.

The idea of drag and drop in exSchedule control is the same as in other controls. To start
accepting drag and drop sources the exSchedule control MUST have the OLEDropMode

https://exontrol.com/faq.jsp/net/#dragdrop

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

private void OLEStartDrag(object sender,
AxEXSCHEDULELib._IScheduleEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exschedulelib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

property to exOLEDropManual. Once that is is set, the exSchedule starts accepting any
drag and drop sources.

The first step is if you want to be able to drag items from your exSchedule control to other
controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects can be changed only in
the OLEStartDrag event. The OLE_StartDrag event is fired when user is about to drag
items from the control. The AllowedEffect parameter and SetData property must be set
to continue drag and drop operation, as in the following sample:

Syntax for OLEStartDrag event, /NET version, on:

Syntax for OLEStartDrag event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLEStartDrag(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_OLEStartDragEvent);
begin
end;

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXSCHEDULELibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oSchedule,Data,AllowedEffects)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Syntax for OLEStartDrag event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.Schedule.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

The following VB sample collects the focused/selected events and start dragging them (
you can drop them to a WinWord, Excel application for instance):

Private Sub Schedule1_OLEStartDrag(ByVal Data As EXSCHEDULELibCtl.IExDataObject,
AllowedEffects As Long)
 With Schedule1
 Dim e As EXSCHEDULELibCtl.Event
 Set e = .EventFromPoint(-1, -1)
 If Not e Is Nothing Then
 Dim sDragDropText As String
 If Not (e.Selected) Then
 sDragDropText = sDragDropText & "Start: " & e.Start & ", End: " & e.End &
vbCrLf
 Else
 Dim s As Variant
 For Each s In .Selection
 sDragDropText = sDragDropText & "Start: " & s.Start & ", End: " & s.End &
vbCrLf

 Next
 End If

 AllowedEffects = 1
 Data.SetData sDragDropText
 End If
 End With
End Sub

C#

VB

private void PictureClick(object sender,string Key)
{
}

Private Sub PictureClick(ByVal sender As System.Object,ByVal Key As String)
Handles PictureClick
End Sub

C# private void PictureClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_PictureClickEvent e)

event PictureClick (Key as String)
Occurs when the user clicks a picture within an event (Event.Pictures/ExtraPictures).

Type Description

Key as String
A String expression that specifies the picture being
clicked. The Key parameter indicates the Key being used
when Pictures.Add method has been called.

The PictureClick event is fired once the user clicks a picture inside an event. Use the Add
method of the ExPictures collection to add new images to the control. Use the Images
method to add a list of icons to be used in the control. The Pictures or ExtraPictures
property of the Event object indicates the list of pictures to be displayed in the Event object.
The Pictures or ExtraPictures property may display a single or multiple pictures on different
levels, using separators like , multiple elements in the same line, or / for a new line/level.
You can use the ShowHandCursor property to specify whether the hand cursor is shown
when the cursor hovers the picture. Also, you can display the images/icons on the
LongLabel/ExtraLabel using the HTML tag that can be include to a <a> HTML tag,
like <a pic1>pic1. You can use the AnchorClick event to get notified once
an anchor <a> element is clicked. A picture or icon is being displayed only, if the
LongLabel/ExtraLabel properties are being displayed, else the ShortLabel is displayed, but
it can not display HTML tags. In other words, if the event's body can not display the picture
as being too large, you can use the Width/Height property of the ExPicture to adjust the
size of the displaying picture.

The PictureFromPoint property indicates the key of the picture from the cursor or empty
string if no picture has been found. The EventFromPoint property may be used to get the
Event object from the cursor.

Syntax for PictureClick event, /NET version, on:

Syntax for PictureClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnPictureClick(LPCTSTR Key)
{
}

void __fastcall PictureClick(TObject *Sender,BSTR Key)
{
}

procedure PictureClick(ASender: TObject; Key : WideString);
begin
end;

procedure PictureClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_PictureClickEvent);
begin
end;

begin event PictureClick(string Key)
end event PictureClick

Private Sub PictureClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_PictureClickEvent) Handles PictureClick
End Sub

Private Sub PictureClick(ByVal Key As String)
End Sub

Private Sub PictureClick(ByVal Key As String)
End Sub

LPARAMETERS Key

PROCEDURE OnPictureClick(oSchedule,Key)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="PictureClick(Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function PictureClick(Key)
End Function
</SCRIPT>

Procedure OnComPictureClick String llKey
 Forward Send OnComPictureClick llKey
End_Procedure

METHOD OCX_PictureClick(Key) CLASS MainDialog
RETURN NIL

void onEvent_PictureClick(str _Key)
{
}

function PictureClick as v (Key as C)
end function

function nativeObject_PictureClick(Key)
return

Syntax for PictureClick event, /COM version (others), on:

The following samples displays a message once a picture is clicked:

VBA (MS Access, Excell...)

' PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
Private Sub Schedule1_PictureClick(ByVal Key As String)
 With Schedule1
 Debug.Print(Key)
 End With

End Sub

With Schedule1
 .BeginUpdate
 .OnResizeControl = 3073
 .Calendar.Selection = #5/24/2012#
 With .Pictures
 With .Add("pic1","c:\exontrol\images\card.png")
 .Width = 48
 .Height = 48
 End With
 With .Add("pic2","c:\exontrol\images\diary.png")
 .Width = 48
 .Height = 48
 End With
 End With
 With .Events
 .Add(#5/24/2012 8:45:00 AM#,#5/24/2012 2:30:00 PM#).Pictures = "pic1"
 With .Add(#5/24/2012 9:45:00 AM#,#5/24/2012 3:45:00 PM#)
 .ExtraPictures = "pic1,pic2"
 .ExtraPicturesAlign = 34
 End With
 End With
 .EndUpdate
End With

VB6

' PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
Private Sub Schedule1_PictureClick(ByVal Key As String)
 With Schedule1
 Debug.Print(Key)
 End With
End Sub

With Schedule1

 .BeginUpdate
 .OnResizeControl = OnResizeControlEnum.exResizePanelRight Or
OnResizeControlEnum.exCalendarFit Or OnResizeControlEnum.exCalendarAutoHide
 .Calendar.Selection = #5/24/2012#
 With .Pictures
 With .Add("pic1","c:\exontrol\images\card.png")
 .Width = 48
 .Height = 48
 End With
 With .Add("pic2","c:\exontrol\images\diary.png")
 .Width = 48
 .Height = 48
 End With
 End With
 With .Events
 .Add(#5/24/2012 8:45:00 AM#,#5/24/2012 2:30:00 PM#).Pictures = "pic1"
 With .Add(#5/24/2012 9:45:00 AM#,#5/24/2012 3:45:00 PM#)
 .ExtraPictures = "pic1,pic2"
 .ExtraPicturesAlign = exBottomRight
 End With
 End With
 .EndUpdate
End With

VB.NET

' PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
Private Sub Exschedule1_PictureClick(ByVal sender As System.Object,ByVal Key As
String) Handles Exschedule1.PictureClick
 With Exschedule1
 Debug.Print(Key)
 End With
End Sub

With Exschedule1
 .BeginUpdate()

 .OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarFit Or
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide
 .Calendar.Selection = #5/24/2012#
 With .Pictures
 With .Add("pic1","c:\exontrol\images\card.png")
 .Width = 48
 .Height = 48
 End With
 With .Add("pic2","c:\exontrol\images\diary.png")
 .Width = 48
 .Height = 48
 End With
 End With
 With .Events
 .Add(#5/24/2012 8:45:00 AM#,#5/24/2012 2:30:00 PM#).Pictures = "pic1"
 With .Add(#5/24/2012 9:45:00 AM#,#5/24/2012 3:45:00 PM#)
 .ExtraPictures = "pic1,pic2"
 .ExtraPicturesAlign =
exontrol.EXSCHEDULELib.ContentAlignmentEnum.exBottomRight
 End With
 End With
 .EndUpdate()
End With

VB.NET for /COM

' PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
Private Sub AxSchedule1_PictureClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_PictureClickEvent) Handles
AxSchedule1.PictureClick
 With AxSchedule1
 Debug.Print(e.key)
 End With
End Sub

With AxSchedule1
 .BeginUpdate()
 .OnResizeControl = EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight Or
EXSCHEDULELib.OnResizeControlEnum.exCalendarFit Or
EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide
 .Calendar.Selection = #5/24/2012#
 With .Pictures
 With .Add("pic1","c:\exontrol\images\card.png")
 .Width = 48
 .Height = 48
 End With
 With .Add("pic2","c:\exontrol\images\diary.png")
 .Width = 48
 .Height = 48
 End With
 End With
 With .Events
 .Add(#5/24/2012 8:45:00 AM#,#5/24/2012 2:30:00 PM#).Pictures = "pic1"
 With .Add(#5/24/2012 9:45:00 AM#,#5/24/2012 3:45:00 PM#)
 .ExtraPictures = "pic1,pic2"
 .ExtraPicturesAlign = EXSCHEDULELib.ContentAlignmentEnum.exBottomRight
 End With
 End With
 .EndUpdate()
End With

C++

// PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
void OnPictureClickSchedule1(LPCTSTR Key)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXSCHEDULELib' for the library: 'ExSchedule 1.0
Control Library'

 #import <ExSchedule.dll>
 using namespace EXSCHEDULELib;
 */
 EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
 OutputDebugStringW(L"Key");
}

EXSCHEDULELib::ISchedulePtr spSchedule1 = GetDlgItem(IDC_SCHEDULE1)-
>GetControlUnknown();
spSchedule1->BeginUpdate();
spSchedule1-
>PutOnResizeControl(EXSCHEDULELib::OnResizeControlEnum(EXSCHEDULELib::exResizePanelRight
 | EXSCHEDULELib::exCalendarFit | EXSCHEDULELib::exCalendarAutoHide));
spSchedule1->GetCalendar()->PutSelection("5/24/2012");
EXSCHEDULELib::IExPicturesPtr var_ExPictures = spSchedule1->GetPictures();
 EXSCHEDULELib::IExPicturePtr var_ExPicture = var_ExPictures-
>Add(L"pic1","c:\\exontrol\\images\\card.png");
 var_ExPicture->PutWidth(48);
 var_ExPicture->PutHeight(48);
 EXSCHEDULELib::IExPicturePtr var_ExPicture1 = var_ExPictures-
>Add(L"pic2","c:\\exontrol\\images\\diary.png");
 var_ExPicture1->PutWidth(48);
 var_ExPicture1->PutHeight(48);
EXSCHEDULELib::IEventsPtr var_Events = spSchedule1->GetEvents();
 var_Events->Add("5/24/2012 8:45:00 AM","5/24/2012 2:30:00 PM")-
>PutPictures(L"pic1");
 EXSCHEDULELib::IEventPtr var_Event = var_Events->Add("5/24/2012 9:45:00
AM","5/24/2012 3:45:00 PM");
 var_Event->PutExtraPictures(L"pic1,pic2");
 var_Event->PutExtraPicturesAlign(EXSCHEDULELib::exBottomRight);
spSchedule1->EndUpdate();

C++ Builder

// PictureClick event - Occurs when the user clicks a picture within an event (

Event.Pictures/ExtraPictures).
void __fastcall TForm1::Schedule1PictureClick(TObject *Sender,BSTR Key)
{
 OutputDebugString(L"Key");
}

Schedule1->BeginUpdate();
Schedule1->OnResizeControl =
Exschedulelib_tlb::OnResizeControlEnum::exResizePanelRight |
Exschedulelib_tlb::OnResizeControlEnum::exCalendarFit |
Exschedulelib_tlb::OnResizeControlEnum::exCalendarAutoHide;
Schedule1->Calendar->set_Selection(TVariant(TDateTime(2012,5,24).operator
double()));
Exschedulelib_tlb::IExPicturesPtr var_ExPictures = Schedule1->Pictures;
 Exschedulelib_tlb::IExPicturePtr var_ExPicture = var_ExPictures-
>Add(L"pic1",TVariant("c:\\exontrol\\images\\card.png"));
 var_ExPicture->Width = 48;
 var_ExPicture->Height = 48;
 Exschedulelib_tlb::IExPicturePtr var_ExPicture1 = var_ExPictures-
>Add(L"pic2",TVariant("c:\\exontrol\\images\\diary.png"));
 var_ExPicture1->Width = 48;
 var_ExPicture1->Height = 48;
Exschedulelib_tlb::IEventsPtr var_Events = Schedule1->Events;
 var_Events->Add(TVariant(TDateTime(2012,5,24,8,45,00,0).operator
double()),TVariant(TDateTime(2012,5,24,14,30,00,0).operator double()))->Pictures =
L"pic1";
 Exschedulelib_tlb::IEventPtr var_Event = var_Events-
>Add(TVariant(TDateTime(2012,5,24,9,45,00,0).operator
double()),TVariant(TDateTime(2012,5,24,15,45,00,0).operator double()));
 var_Event->ExtraPictures = L"pic1,pic2";
 var_Event->ExtraPicturesAlign =
Exschedulelib_tlb::ContentAlignmentEnum::exBottomRight;
Schedule1->EndUpdate();

C#

// PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
private void exschedule1_PictureClick(object sender,string Key)
{
 System.Diagnostics.Debug.Print(Key.ToString());
}
//this.exschedule1.PictureClick += new
exontrol.EXSCHEDULELib.exg2antt.PictureClickEventHandler(this.exschedule1_PictureClick);

exschedule1.BeginUpdate();
exschedule1.OnResizeControl =
exontrol.EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarFit |
exontrol.EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide;
exschedule1.Calendar.Selection =
Convert.ToDateTime("5/24/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
exontrol.EXSCHEDULELib.ExPictures var_ExPictures = exschedule1.Pictures;
 exontrol.EXSCHEDULELib.ExPicture var_ExPicture =
var_ExPictures.Add("pic1","c:\\exontrol\\images\\card.png");
 var_ExPicture.Width = 48;
 var_ExPicture.Height = 48;
 exontrol.EXSCHEDULELib.ExPicture var_ExPicture1 =
var_ExPictures.Add("pic2","c:\\exontrol\\images\\diary.png");
 var_ExPicture1.Width = 48;
 var_ExPicture1.Height = 48;
exontrol.EXSCHEDULELib.Events var_Events = exschedule1.Events;
 var_Events.Add(Convert.ToDateTime("5/24/2012 8:45:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 2:30:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Pictures = "pic1";
 exontrol.EXSCHEDULELib.Event var_Event =
var_Events.Add(Convert.ToDateTime("5/24/2012 9:45:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 3:45:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));

 var_Event.ExtraPictures = "pic1,pic2";
 var_Event.ExtraPicturesAlign =
exontrol.EXSCHEDULELib.ContentAlignmentEnum.exBottomRight;
exschedule1.EndUpdate();

JavaScript

<SCRIPT FOR="Schedule1" EVENT="PictureClick(Key)" LANGUAGE="JScript">
 alert(Key);
</SCRIPT>

<OBJECT classid="clsid:9B09E13D-7A88-4299-9DBE-383380435377"
id="Schedule1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 Schedule1.BeginUpdate();
 Schedule1.OnResizeControl = 3073;
 Schedule1.Calendar.Selection = "5/24/2012";
 var var_ExPictures = Schedule1.Pictures;
 var var_ExPicture = var_ExPictures.Add("pic1","c:\\exontrol\\images\\card.png");
 var_ExPicture.Width = 48;
 var_ExPicture.Height = 48;
 var var_ExPicture1 =
var_ExPictures.Add("pic2","c:\\exontrol\\images\\diary.png");
 var_ExPicture1.Width = 48;
 var_ExPicture1.Height = 48;
 var var_Events = Schedule1.Events;
 var_Events.Add("5/24/2012 8:45:00 AM","5/24/2012 2:30:00 PM").Pictures =
"pic1";
 var var_Event = var_Events.Add("5/24/2012 9:45:00 AM","5/24/2012 3:45:00
PM");
 var_Event.ExtraPictures = "pic1,pic2";
 var_Event.ExtraPicturesAlign = 34;
 Schedule1.EndUpdate();
</SCRIPT>

C# for /COM

// PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
private void axSchedule1_PictureClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_PictureClickEvent e)
{
 System.Diagnostics.Debug.Print(e.key.ToString());
}
//this.axSchedule1.PictureClick += new
AxEXSCHEDULELib._IScheduleEvents_PictureClickEventHandler(this.axSchedule1_PictureClick);

axSchedule1.BeginUpdate();
axSchedule1.OnResizeControl =
EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight |
EXSCHEDULELib.OnResizeControlEnum.exCalendarFit |
EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide;
axSchedule1.Calendar.Selection =
Convert.ToDateTime("5/24/2012",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
EXSCHEDULELib.ExPictures var_ExPictures = axSchedule1.Pictures;
 EXSCHEDULELib.ExPicture var_ExPicture =
var_ExPictures.Add("pic1","c:\\exontrol\\images\\card.png");
 var_ExPicture.Width = 48;
 var_ExPicture.Height = 48;
 EXSCHEDULELib.ExPicture var_ExPicture1 =
var_ExPictures.Add("pic2","c:\\exontrol\\images\\diary.png");
 var_ExPicture1.Width = 48;
 var_ExPicture1.Height = 48;
EXSCHEDULELib.Events var_Events = axSchedule1.Events;
 var_Events.Add(Convert.ToDateTime("5/24/2012 8:45:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 2:30:00
PM",System.Globalization.CultureInfo.GetCultureInfo("en-US"))).Pictures = "pic1";
 EXSCHEDULELib.Event var_Event =
var_Events.Add(Convert.ToDateTime("5/24/2012 9:45:00
AM",System.Globalization.CultureInfo.GetCultureInfo("en-
US")),Convert.ToDateTime("5/24/2012 3:45:00

PM",System.Globalization.CultureInfo.GetCultureInfo("en-US")));
 var_Event.ExtraPictures = "pic1,pic2";
 var_Event.ExtraPicturesAlign =
EXSCHEDULELib.ContentAlignmentEnum.exBottomRight;
axSchedule1.EndUpdate();

X++ (Dynamics Ax 2009)

// PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
void onEvent_PictureClick(str _Key)
{
 ;
 print(_Key);
}

public void init()
{
 COM com_Event,com_Events,com_ExPicture,com_ExPicture1,com_ExPictures;
 anytype var_Event,var_Events,var_ExPicture,var_ExPicture1,var_ExPictures;
 ;

 super();

 exschedule1.BeginUpdate();
 exschedule1.OnResizeControl(3073/*exResizePanelRight | exCalendarFit |
exCalendarAutoHide*/);

exschedule1.Calendar().Selection(COMVariant::createFromDate(str2Date("5/24/2012",213)));

 var_ExPictures = exschedule1.Pictures(); com_ExPictures = var_ExPictures;
 var_ExPicture = com_ExPictures.Add("pic1","c:\\exontrol\\images\\card.png");
com_ExPicture = var_ExPicture;
 com_ExPicture.Width(48);
 com_ExPicture.Height(48);
 var_ExPicture1 = com_ExPictures.Add("pic2","c:\\exontrol\\images\\diary.png");

com_ExPicture1 = var_ExPicture1;
 com_ExPicture1.Width(48);
 com_ExPicture1.Height(48);
 var_Events = exschedule1.Events(); com_Events = var_Events;
 var_Event =
COM::createFromObject(com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime(
 8:45:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("5/24/2012
14:30:00",213)))); com_Event = var_Event;
 com_Event.Pictures("pic1");
 var_Event =
com_Events.Add(COMVariant::createFromUtcDateTime(str2Datetime("5/24/2012
9:45:00",213)),COMVariant::createFromUtcDateTime(str2Datetime("5/24/2012
15:45:00",213))); com_Event = var_Event;
 com_Event.ExtraPictures("pic1,pic2");
 com_Event.ExtraPicturesAlign(34/*exBottomRight*/);
 exschedule1.EndUpdate();
}

Delphi 8 (.NET only)

// PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
procedure TWinForm1.AxSchedule1_PictureClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_PictureClickEvent);
begin
 with AxSchedule1 do
 begin
 OutputDebugString(e.key);
 end
end;

with AxSchedule1 do
begin
 BeginUpdate();
 OnResizeControl :=
Integer(EXSCHEDULELib.OnResizeControlEnum.exResizePanelRight) Or
Integer(EXSCHEDULELib.OnResizeControlEnum.exCalendarFit) Or

Integer(EXSCHEDULELib.OnResizeControlEnum.exCalendarAutoHide);
 Calendar.Selection := '5/24/2012';
 with Pictures do
 begin
 with Add('pic1','c:\exontrol\images\card.png') do
 begin
 Width := 48;
 Height := 48;
 end;
 with Add('pic2','c:\exontrol\images\diary.png') do
 begin
 Width := 48;
 Height := 48;
 end;
 end;
 with Events do
 begin
 Add('5/24/2012 8:45:00 AM','5/24/2012 2:30:00 PM').Pictures := 'pic1';
 with Add('5/24/2012 9:45:00 AM','5/24/2012 3:45:00 PM') do
 begin
 ExtraPictures := 'pic1,pic2';
 ExtraPicturesAlign := EXSCHEDULELib.ContentAlignmentEnum.exBottomRight;
 end;
 end;
 EndUpdate();
end

Delphi (standard)

// PictureClick event - Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
procedure TForm1.Schedule1PictureClick(ASender: TObject; Key : WideString);
begin
 with Schedule1 do
 begin
 OutputDebugString(Key);
 end

end;

with Schedule1 do
begin
 BeginUpdate();
 OnResizeControl := Integer(EXSCHEDULELib_TLB.exResizePanelRight) Or
Integer(EXSCHEDULELib_TLB.exCalendarFit) Or
Integer(EXSCHEDULELib_TLB.exCalendarAutoHide);
 Calendar.Selection := '5/24/2012';
 with Pictures do
 begin
 with Add('pic1','c:\exontrol\images\card.png') do
 begin
 Width := 48;
 Height := 48;
 end;
 with Add('pic2','c:\exontrol\images\diary.png') do
 begin
 Width := 48;
 Height := 48;
 end;
 end;
 with Events do
 begin
 Add('5/24/2012 8:45:00 AM','5/24/2012 2:30:00 PM').Pictures := 'pic1';
 with Add('5/24/2012 9:45:00 AM','5/24/2012 3:45:00 PM') do
 begin
 ExtraPictures := 'pic1,pic2';
 ExtraPicturesAlign := EXSCHEDULELib_TLB.exBottomRight;
 end;
 end;
 EndUpdate();
end

VFP

*** PictureClick event - Occurs when the user clicks a picture within an event (

Event.Pictures/ExtraPictures). ***
LPARAMETERS Key
 with thisform.Schedule1
 DEBUGOUT(Key)
 endwith

with thisform.Schedule1
 .BeginUpdate
 .OnResizeControl = 3073
 .Calendar.Selection = {^2012-5-24}
 with .Pictures
 with .Add("pic1","c:\exontrol\images\card.png")
 .Width = 48
 .Height = 48
 endwith
 with .Add("pic2","c:\exontrol\images\diary.png")
 .Width = 48
 .Height = 48
 endwith
 endwith
 with .Events
 .Add({^2012-5-24 8:45:00},{^2012-5-24 14:30:00}).Pictures = "pic1"
 with .Add({^2012-5-24 9:45:00},{^2012-5-24 15:45:00})
 .ExtraPictures = "pic1,pic2"
 .ExtraPicturesAlign = 34
 endwith
 endwith
 .EndUpdate
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 PictureClick = class::nativeObject_PictureClick
endwith
*/

// Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
function nativeObject_PictureClick(Key)
 local oSchedule
 oSchedule = form.Activex1.nativeObject
 ? Str(Key)
return

local
oSchedule,var_Event,var_Event1,var_Events,var_ExPicture,var_ExPicture1,var_ExPictures

oSchedule = form.Activex1.nativeObject
oSchedule.BeginUpdate()
oSchedule.OnResizeControl = 3073 /*exResizePanelRight | exCalendarFit |
exCalendarAutoHide*/
oSchedule.Calendar.Selection = "05/24/2012"
var_ExPictures = oSchedule.Pictures
 var_ExPicture = var_ExPictures.Add("pic1","c:\exontrol\images\card.png")
 var_ExPicture.Width = 48
 var_ExPicture.Height = 48
 var_ExPicture1 = var_ExPictures.Add("pic2","c:\exontrol\images\diary.png")
 var_ExPicture1.Width = 48
 var_ExPicture1.Height = 48
var_Events = oSchedule.Events
 // var_Events.Add("05/24/2012 08:45:00","05/24/2012 14:30:00").Pictures
= "pic1"
 var_Event = var_Events.Add("05/24/2012 08:45:00","05/24/2012 14:30:00")
 with (oSchedule)
 TemplateDef = [Dim var_Event]
 TemplateDef = var_Event
 Template = [var_Event.Pictures = "pic1"]
 endwith
 var_Event1 = var_Events.Add("05/24/2012 09:45:00","05/24/2012 15:45:00")
 var_Event1.ExtraPictures = "pic1,pic2"
 var_Event1.ExtraPicturesAlign = 34
oSchedule.EndUpdate()

XBasic (Alpha Five)

' Occurs when the user clicks a picture within an event (
Event.Pictures/ExtraPictures).
function PictureClick as v (Key as C)
 Dim oSchedule as P
 oSchedule = topparent:CONTROL_ACTIVEX1.activex
 ? Key
end function

Dim oSchedule as P
Dim var_Event as P
Dim var_Event1 as P
Dim var_Events as P
Dim var_ExPicture as P
Dim var_ExPicture1 as P
Dim var_ExPictures as P

oSchedule = topparent:CONTROL_ACTIVEX1.activex
oSchedule.BeginUpdate()
oSchedule.OnResizeControl = 3073 'exResizePanelRight + exCalendarFit +
exCalendarAutoHide
oSchedule.Calendar.Selection = {05/24/2012}
var_ExPictures = oSchedule.Pictures
 var_ExPicture = var_ExPictures.Add("pic1","c:\exontrol\images\card.png")
 var_ExPicture.Width = 48
 var_ExPicture.Height = 48
 var_ExPicture1 = var_ExPictures.Add("pic2","c:\exontrol\images\diary.png")
 var_ExPicture1.Width = 48
 var_ExPicture1.Height = 48
var_Events = oSchedule.Events
 ' var_Events.Add({05/24/2012 08:45:00},{05/24/2012 14:30:00}).Pictures =
"pic1"
 var_Event = var_Events.Add({05/24/2012 08:45:00},{05/24/2012 14:30:00})
 oSchedule.TemplateDef = "Dim var_Event"

 oSchedule.TemplateDef = var_Event
 oSchedule.Template = "var_Event.Pictures = \"pic1\""

 var_Event1 = var_Events.Add({05/24/2012 09:45:00},{05/24/2012 15:45:00})
 var_Event1.ExtraPictures = "pic1,pic2"
 var_Event1.ExtraPicturesAlign = 34
oSchedule.EndUpdate()

Visual Objects

METHOD OCX_Exontrol1PictureClick(Key) CLASS MainDialog
 // PictureClick event - Occurs when the user clicks a picture within an event
(Event.Pictures/ExtraPictures).
 OutputDebugString(String2Psz(AsString(Key)))
RETURN NIL

local var_Event as IEvent
local var_Events as IEvents
local var_ExPicture,var_ExPicture1 as IExPicture
local var_ExPictures as IExPictures

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:OnResizeControl := exResizePanelRight | exCalendarFit |
exCalendarAutoHide
oDCOCX_Exontrol1:Calendar:Selection := SToD("20120524")
var_ExPictures := oDCOCX_Exontrol1:Pictures
 var_ExPicture := var_ExPictures:Add("pic1","c:\exontrol\images\card.png")
 var_ExPicture:Width := 48
 var_ExPicture:Height := 48
 var_ExPicture1 := var_ExPictures:Add("pic2","c:\exontrol\images\diary.png")
 var_ExPicture1:Width := 48
 var_ExPicture1:Height := 48
var_Events := oDCOCX_Exontrol1:Events
 var_Events:Add(SToD("20120524 08:45:00"),SToD("20120524 14:30:00")):Pictures
:= "pic1"
 var_Event := var_Events:Add(SToD("20120524 09:45:00"),SToD("20120524

15:45:00"))
 var_Event:ExtraPictures := "pic1,pic2"
 var_Event:ExtraPicturesAlign := exBottomRight
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event PictureClick(string Key) - Occurs when the user clicks a picture within an
event (Event.Pictures/ExtraPictures).*/
/*
 OleObject oSchedule
 oSchedule = ole_1.Object
 MessageBox("Information",string(String(Key)))
*/
/*end event PictureClick*/

OleObject oSchedule,var_Event,var_Events,var_ExPicture,var_ExPicture1,var_ExPictures

oSchedule = ole_1.Object
oSchedule.BeginUpdate()
oSchedule.OnResizeControl = 3073 /*exResizePanelRight | exCalendarFit |
exCalendarAutoHide*/
oSchedule.Calendar.Selection = 2012-05-24
var_ExPictures = oSchedule.Pictures
 var_ExPicture = var_ExPictures.Add("pic1","c:\exontrol\images\card.png")
 var_ExPicture.Width = 48
 var_ExPicture.Height = 48
 var_ExPicture1 = var_ExPictures.Add("pic2","c:\exontrol\images\diary.png")
 var_ExPicture1.Width = 48
 var_ExPicture1.Height = 48
var_Events = oSchedule.Events
 var_Events.Add(DateTime(2012-05-24,08:45:00),DateTime(2012-05-
24,14:30:00)).Pictures = "pic1"
 var_Event = var_Events.Add(DateTime(2012-05-24,09:45:00),DateTime(2012-05-
24,15:45:00))
 var_Event.ExtraPictures = "pic1,pic2"

 var_Event.ExtraPicturesAlign = 34
oSchedule.EndUpdate()

C# private void RClick(object sender)

event RClick ()
Occurs once the user right clicks the control.

Type Description

The RClick event notifies your application once the user presses and releases the right
mouse button over the control. Unlike RClick event, the Click event occurs once the user left
clicks the control. The RClick event does not occur, if the user presses the right mouse
button, drag to a new position and releases the button. By default, the control does nothing
if the user right clicks the control. You can handle the RCLick event to provide a popup
context support. Use a MouseDown or MouseUp event procedure to specify actions that
will occur when a mouse button is pressed or released. Unlike the Click and DblClick
events, MouseDown and MouseUp events lets you distinguish between the left, right, and
middle mouse buttons. You can also write code for mouse-keyboard combinations that use
the SHIFT, CTRL, and ALT keyboard modifiers.

During RClick event you can use the ...FromPoint(-1,-1) properties to get UI elements of the
scheduler from the cursor as follows:

Calendar.DateFromPoint property gets the date from the cursor in the Calendar panel.
AnchorFromPoint property gets the anchor (<a>) element from the cursor.
DateTimeFromPoint property gets the date/time from the cursor, in the Schedule panel.
TimeFromPoint property gets the time from the cursor, in the Schedule panel.
EventFromPoint property gets the Event object from the cursor.
GroupFromPoint property retrieves the Group object from the cursor. Use the
GroupHeaderFromPoint property to the Group object when cursor hovers the group's
header.
GroupHeaderFromPoint property retrieves the Group object from the cursor, when the
cursor hovers just the group's header.
MarkTimeFromPoint property gets the MarkTime object from the cursor. A MarkTime
object is identified by a date/time where it is displaying.
MarkZoneFromPoint property gets the MarkZone object from the cursor. A MarkZone
object is identified by a starting date/time and ending date/time where it is displaying.
NonworkingTimeFromPoint property indicates the NonworkingTime object from the
cursor.
PictureFromPoint property indicates the key of the picture from the cursor.
TimeScaleFromPoint property returns the TimeScale object from the cursor.

All ...FromPoint properties that returns an Object, may return Nothing, Empty or NULL, if no
object is found.

Syntax for RClick event, /NET version, on:

VB

{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Syntax for RClick event, /COM version, on:

VBA

VFP

Xbas…

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oSchedule)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

Syntax for RClick event, /COM version (others), on:

C#

VB

private void RemoveEvent(object sender,exontrol.EXSCHEDULELib.Event Ev)
{
}

Private Sub RemoveEvent(ByVal sender As System.Object,ByVal Ev As
exontrol.EXSCHEDULELib.Event) Handles RemoveEvent
End Sub

C#

C++

C++
Builder

private void RemoveEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_RemoveEventEvent e)
{
}

void OnRemoveEvent(LPDISPATCH Ev)
{
}

void __fastcall RemoveEvent(TObject *Sender,Exschedulelib_tlb::IEvent *Ev)
{

event RemoveEvent (Ev as Event)
Occurs once an event is removed.

Type Description
Ev as Event An Event object to be removed.

The RemoveEvent event notifies your application once an event is about to be removed.
You can use the RemoveEvent event to release any extra data associated with the Event.
The Remove method removes the specified event. The RemoveSelection method removes
or erases all selected events in the schedule view. The Clear method of the Events
collection clears all events in the schedule component. The ClearAll method clear all objects
in the control, including the events. Any of these methods invoke calling of the RemoveEvent
event. Use the GroupID property of the Event object to move a (remove/add) an Event
from a Group to another. The AllowMoveEventToOtherGroup property specifies the keys
combination so the user can move events from a group to another. The ChangeEvent(
exRemoveEvent) event is equivalent with the RemoveEvent event.

Syntax for RemoveEvent event, /NET version, on:

Syntax for RemoveEvent event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure RemoveEvent(ASender: TObject; Ev : IEvent);
begin
end;

procedure RemoveEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_RemoveEventEvent);
begin
end;

begin event RemoveEvent(oleobject Ev)
end event RemoveEvent

Private Sub RemoveEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_RemoveEventEvent) Handles RemoveEvent
End Sub

Private Sub RemoveEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
End Sub

Private Sub RemoveEvent(ByVal Ev As Object)
End Sub

LPARAMETERS Ev

PROCEDURE OnRemoveEvent(oSchedule,Ev)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveEvent(Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveEvent(Ev)
End Function

Syntax for RemoveEvent event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComRemoveEvent Variant llEv
 Forward Send OnComRemoveEvent llEv
End_Procedure

METHOD OCX_RemoveEvent(Ev) CLASS MainDialog
RETURN NIL

void onEvent_RemoveEvent(COM _Ev)
{
}

function RemoveEvent as v (Ev as OLE::Exontrol.Schedule.1::IEvent)
end function

function nativeObject_RemoveEvent(Ev)
return

C#

VB

private void ScrollButtonClick(object
sender,exontrol.EXSCHEDULELib.ScrollBarEnum
ScrollBar,exontrol.EXSCHEDULELib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXSCHEDULELib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXSCHEDULELib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C#

C++

private void ScrollButtonClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_ScrollButtonClickEvent e)
{
}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scroll bar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollBars property to specify the
visible scrollbars in the control. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the Background property to change the visual appearance
for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall ScrollButtonClick(TObject *Sender,Exschedulelib_tlb::ScrollBarEnum
ScrollBar,Exschedulelib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXSCHEDULELibCtl.ScrollBarEnum,ByVal ScrollPart As
EXSCHEDULELibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oSchedule,ScrollBar,ScrollPart)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.Schedule.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.Schedule.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With Schedule1
 .BeginUpdate
 .ScrollBars = exDisableBoth

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

Private Sub Schedule1_ScrollButtonClick(ByVal ScrollPart As
EXSCHEDULELibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxSchedule1
 .BeginUpdate()
 .ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part Or
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxSchedule1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_ScrollButtonClickEvent) Handles
AxSchedule1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axSchedule1.BeginUpdate();
axSchedule1.ScrollBars = EXSCHEDULELib.ScrollBarsEnum.exDisableBoth;
axSchedule1.set_ScrollPartVisible(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part |

EXSCHEDULELib.ScrollPartEnum.exRightB1Part, true);
axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exLeftB1Part , "1");
axSchedule1.set_ScrollPartCaption(EXSCHEDULELib.ScrollBarEnum.exVScroll,
EXSCHEDULELib.ScrollPartEnum.exRightB1Part, "2");
axSchedule1.EndUpdate();

private void axSchedule1_ScrollButtonClick(object sender,
AxEXSCHEDULELib._IScheduleEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_schedule.BeginUpdate();
m_schedule.SetScrollBars(15 /*exDisableBoth*/);
m_schedule.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_schedule.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_schedule.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_schedule.EndUpdate();

void OnScrollButtonClickSchedule1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.Schedule1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.

 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

event UpdateEvent (Ev as Event)
Notifies your application once the event changes the starting or ending margins.

Type Description
Ev as Event An Event object being updated.

The UpdateEvent event occurs once the event's margins are updated. The Start and End
properties of the Event indicates the margins of the event. The UpdateEvent event may
occur if the user moves or resizes the event. The UpdateEvent event occurs right after
adding a new event (AddEvent). Removing an event does not fire the UpdateEvent event.
The Movable property of the Event indicates whether the user can move the event at
runtime. The Resizable property of the Event indicates whether the user can resize the
event at runtime (start, end or both). You can use the UpdateEvent to update a dirty flag
that indicates that the control's content must be saved.

The AllowMoveEvent property specifies the keys combination to let user moves the events
at runtime. The AllowResizeEvent property specifies the keys combination to let user
resizes the events at runtime. The AllowMoveEventToOtherGroup property specifies the
keys combination so the user can move events from a group to another.

You can use the UpdateEventsLabel property to specify the label to be shown when the
events are moved or resized at runtime. You can use the
Background(exScheduleUpdateEventsBackColor) and
Background(exScheduleUpdateEventsForeColor) properties to specify the visual
appearance of the events being updated at runtime * moving or resizing).

In case you want to ensure that the user updates an event at runtime, you need to use the
LayoutStartChanging and LayoutEndChanging events. The
LayoutStartChanging(exScheduleMoveEvent) event occurs once the user starts moving an
event by dragging the event to a new position. The
LayoutEndChanging(exScheduleMoveEvent) event occurs once the user moved the event
by dragging the event to a new position. The
LayoutStartChanging(exScheduleResizeStartEvent) event occurs once the user starts
resizing the starting point of the event by dragging. The
LayoutEndChanging(exScheduleResizeStartEvent) event occurs once the user resized the
starting point of the event by dragging. The
LayoutStartChanging(exScheduleResizeEndEvent) event occurs once the user starts
resizing the ending margin of the event by dragging. The
LayoutEndChanging(exScheduleResizeEndEvent) event occurs once the user resized the
ending margin of the event by dragging.

The order of the events when the user moves the event using the UI is:

C#

VB

private void UpdateEvent(object sender,exontrol.EXSCHEDULELib.Event Ev)
{
}

Private Sub UpdateEvent(ByVal sender As System.Object,ByVal Ev As
exontrol.EXSCHEDULELib.Event) Handles UpdateEvent
End Sub

C#

C++

C++
Builder

Delphi

private void UpdateEvent(object sender,
AxEXSCHEDULELib._IScheduleEvents_UpdateEventEvent e)
{
}

void OnUpdateEvent(LPDISPATCH Ev)
{
}

void __fastcall UpdateEvent(TObject *Sender,Exschedulelib_tlb::IEvent *Ev)
{
}

procedure UpdateEvent(ASender: TObject; Ev : IEvent);
begin
end;

LayoutStartChanging(exScheduleMoveEvent)
UpdateEvent
LayoutEndChanging(exScheduleMoveEvent)

The order of the events when the user resizes the event using the UI is:

LayoutStartChanging(exScheduleResizeStartEvent or exScheduleResizeEndEvent)
UpdateEvent
LayoutEndChanging(exScheduleResizeStartEvent or exScheduleResizeEndEvent)

Syntax for UpdateEvent event, /NET version, on:

Syntax for UpdateEvent event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure UpdateEvent(sender: System.Object; e:
AxEXSCHEDULELib._IScheduleEvents_UpdateEventEvent);
begin
end;

begin event UpdateEvent(oleobject Ev)
end event UpdateEvent

Private Sub UpdateEvent(ByVal sender As System.Object, ByVal e As
AxEXSCHEDULELib._IScheduleEvents_UpdateEventEvent) Handles UpdateEvent
End Sub

Private Sub UpdateEvent(ByVal Ev As EXSCHEDULELibCtl.IEvent)
End Sub

Private Sub UpdateEvent(ByVal Ev As Object)
End Sub

LPARAMETERS Ev

PROCEDURE OnUpdateEvent(oSchedule,Ev)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="UpdateEvent(Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UpdateEvent(Ev)
End Function
</SCRIPT>

Procedure OnComUpdateEvent Variant llEv

Syntax for UpdateEvent event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

 Forward Send OnComUpdateEvent llEv
End_Procedure

METHOD OCX_UpdateEvent(Ev) CLASS MainDialog
RETURN NIL

void onEvent_UpdateEvent(COM _Ev)
{
}

function UpdateEvent as v (Ev as OLE::Exontrol.Schedule.1::IEvent)
end function

function nativeObject_UpdateEvent(Ev)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Calendar
	AlignDate property
	AllowFocusDate property
	AllowSelectDate property
	AllowSelectDateRect property
	AllowToggleSelectKey property
	AMPM property
	Date property
	DateFromPoint property (readonly)
	DisableZoneFormat property
	DisplayWeekNumberAs property
	Events property (readonly)
	FirstVisibleDate property (readonly)
	FirstWeekDay property
	FitSelToView property
	FocusDate property (readonly)
	GroupHighlightEvent property
	HeaderDayLabel property
	HideSel property
	HighlightEvent property (readonly)
	hWnd property (readonly)
	LastVisibleDate property (readonly)
	LocAMPM property (readonly)
	LocFirstWeekDay property (readonly)
	LocMonthNames property (readonly)
	LocWeekDays property (readonly)
	LongDateFormat property
	LongTimeFormat property
	MaxDate property
	MaxMonthX property
	MaxMonthY property
	MinDate property
	MinMonthX property
	MinMonthY property
	MonthNames property
	NonworkingDays property
	NonworkingDaysColor property
	NonworkingDaysFrameColor property
	NonworkingDaysPattern property
	OnSelectDate property
	Parent property
	SelCount property (readonly)
	SelDate property (readonly)
	Select method
	SelectDate property
	Selection property
	ShortDateFormat property
	ShortTimeFormat property
	ShowGridLines property
	ShowHighlightEvent property
	ShowNonMonthDays property
	ShowTodayButton property
	ShowWeeks property
	ShowYearScroll property
	SingleSel property
	TodayCaption property
	WeekDays property

	Event
	AllDayEvent property
	BodyBackColor property
	BodyBackgroundExt property
	BodyBackgroundExtValue property
	BodyForeColor property
	BodyPattern property (readonly)
	Caption property
	ClearShowStatus method
	ClearStatusColor method
	Client property (readonly)
	Editable property
	End property
	EndUpdateEvent method
	EnsureVisible method
	ExtraLabel property
	ExtraLabelAlign property
	ExtraPictures property
	ExtraPicturesAlign property
	GroupID property
	Handle property (readonly)
	KnownProperty property
	LabelAlign property
	LongLabel property
	MaxDate property
	MinDate property
	Movable property
	MoveBy method
	Pictures property
	PicturesAlign property
	Repetitive property
	Resizable property
	Selectable property
	Selected property
	ShortLabel property
	ShowStatus property
	Start property
	StartUpdateEvent property (readonly)
	StatusColor property
	StatusPattern property (readonly)
	ToolTip property
	ToolTipTitle property
	UserData property

	Events
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExPicture
	Content property (readonly)
	Enabled property
	Height property
	Icon property
	Key property (readonly)
	Picture property
	ShowHandCursor property
	Width property

	ExPictures
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Group
	Alignment property
	CalendarHighlightEvent property (readonly)
	Caption property
	EventBackColor property
	EventForeColor property
	EventPattern property (readonly)
	HeaderBackColor property
	HeaderForeColor property
	HeaderPattern property (readonly)
	ID property
	Index property (readonly)
	Position property
	ScheduleHighlightEvent property (readonly)
	Title property
	ToolTip property
	UserData property
	Visible property
	Width property

	Groups
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemByIndex property (readonly)
	ItemByPos property (readonly)
	Remove method

	Highlight
	BackColor property
	Bold property
	Font property
	FontSize property
	ForeColor property
	Italic property
	Pattern property (readonly)
	StrikeOut property
	Underline property

	MarkTime
	BackColor property
	BodyEventBackColor property
	BodyEventForeColor property
	BodyEventPattern property (readonly)
	ForeColor property
	Key property (readonly)
	Label property
	LabelAlign property
	Line property
	LineColor property
	Movable property
	Pattern property (readonly)
	StatusEventBackColor property
	StatusEventForeColor property
	StatusEventPattern property (readonly)
	Time property
	TimeScaleBackColor property
	TimeScaleForeColor property
	TimeScaleLabel property
	TimeScaleLabelAlign property
	TimeScaleLine property
	TimeScaleLineColor property
	TimeScalePattern property (readonly)
	UserData property

	MarkTimes
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	MarkZone
	BackColor property
	End property
	ForeColor property
	GroupID property
	Key property (readonly)
	LongLabel property
	Pattern property (readonly)
	ShortLabel property
	Start property

	MarkZones
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	NonworkingPattern
	BackColor property
	BackgroundExt property
	ID property (readonly)
	Pattern property (readonly)

	NonworkingPatterns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	NonworkingTime
	EndTime property
	Expression property
	GroupID property
	Handle property (readonly)
	IDNonworkingPattern property
	Index property (readonly)
	IsValid property (readonly)
	NonworkingPattern property (readonly)
	StartTime property

	NonworkingTimes
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Pattern
	Color property
	FrameColor property
	Type property

	Schedule
	AllowAllDayEventScroll property
	AllowCreateAllDayEvent property
	AllowCreateEvent property
	AllowEditEvent property
	AllowExchangePanels property
	AllowMoveEvent property
	AllowMoveEventToOtherGroup property
	AllowMoveGroup property
	AllowMoveMarkTime property
	AllowMoveSchedule property
	AllowMoveTimeScale property
	AllowMultiDaysEvent property
	AllowRefineMoveKey property
	AllowResizeEvent property
	AllowResizeGroup property
	AllowResizeSchedule property
	AllowResizeTimeScale property
	AllowSelectCreateEvent property
	AllowSelectEvent property
	AllowSelectEventRect property
	AllowToggleSchedule property
	AllowToggleSelectKey property
	AllowUndoRedo property
	AllowUpdateAllDayFlag property
	AllowUpdateDisableZone property
	AnchorFromPoint property (readonly)
	Appearance property
	ApplyGroupingColors property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	BodyEventBackColor property
	BodyEventForeColor property
	BorderDateStyle property
	BorderGroupStyle property
	BorderHeight property
	BorderMonthStyle property
	BorderSelStyle property
	BorderTimeScaleStyle property
	BorderWidth property
	Calendar property (readonly)
	CanRedo property (readonly)
	CanUndo property (readonly)
	ClearAll method
	ClipToSel property
	Copy method
	CopyTo property (readonly)
	CreateEventLabel property
	CreateEventLabelAlign property
	DataField property
	DataSource property
	DateEvents property (readonly)
	DateTimeFromPoint property (readonly)
	DayEndTime property
	DayStartTime property
	DayViewHeight property
	DayViewOffsetX property
	DayViewOffsetY property
	DayViewWidth property
	DefaultEventLongLabel property
	DefaultEventPadding property
	DefaultEventShortLabel property
	DefaultEventTooltip property
	Description property
	DisplayGroupingButton property
	EditContextMenuItems property
	Enabled property
	EndBlockUndoRedo method
	EndUpdate method
	EnsureVisible method
	EventFromPoint property (readonly)
	EventParam property
	Events property (readonly)
	EventsFont property
	EventsTransparent property
	ExecuteTemplate method
	FitSelToView method
	Font property
	ForeColor property
	FormatAnchor property
	GroupFromPoint property (readonly)
	GroupHeaderFromPoint property (readonly)
	GroupHighlightEvent property
	Groups property (readonly)
	GroupUndoRedoActions method
	HeaderAllDayEventHeight property
	HeaderDayHeight property
	HeaderDayLongLabel property
	HeaderDayShortLabel property
	HeaderGroupHeight property
	HighlightDate property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Layout property
	LoadXML method
	MarkTimeFromPoint property (readonly)
	MarkTimes property (readonly)
	MarkZoneFromPoint property (readonly)
	MarkZones property (readonly)
	NonworkingPatterns property (readonly)
	NonworkingTimeFromPoint property (readonly)
	NonworkingTimes property (readonly)
	OLEDrag method
	OLEDropMode property
	OnResizeControl property
	PaneMinWidth property
	PaneWidth property
	Picture property
	PictureDisplay property
	PictureFromPoint property (readonly)
	Pictures property (readonly)
	Redo method
	RedoListAction property (readonly)
	RedoRemoveAction method
	Refresh method
	RemoveSelection method
	ReplaceIcon method
	SaveXML method
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SelCount property (readonly)
	SelectAll method
	SelectEventColor property
	SelectEventStyle property
	SelectEventTextColor property
	Selection property
	SelEvent property (readonly)
	ShowAllDayHeader property
	ShowEventLabels property
	ShowEventPictures property
	ShowEvents property
	ShowGroupingEvents property
	ShowHighlightDate property
	ShowHighlightEvent property
	ShowImageList property
	ShowMarkTime property
	ShowMarkZone property
	ShowNonworkingTime property
	ShowSelectEvent property
	ShowStatusEvent property
	ShowTimeScale property (readonly)
	ShowToolTip method
	ShowViewCompact property
	SingleGroupingView property
	StartBlockUndoRedo method
	StatusEventColor property
	StatusEventSize property
	Synchronize method
	Template property
	TemplateDef property
	TemplatePut method
	TimeFromPoint property (readonly)
	TimeScaleFont property
	TimeScaleFromPoint property (readonly)
	TimeScales property (readonly)
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	Undo method
	UndoListAction property (readonly)
	UndoRedoQueueLength property
	UndoRemoveAction method
	UpdateEventsLabel property
	UpdateEventsLabelAlign property
	UseVisualTheme property
	Version property
	VerticalScrollWheel property
	VisualAppearance property (readonly)
	VisualDesign property

	TimeScale
	AlignLeft property
	AllowResize property
	BackColor property
	Caption property
	CaptionAlign property
	CaptionBackColor property
	CaptionForeColor property
	ForeColor property
	Index property (readonly)
	MajorLabelColor property
	MajorTimeLabel property
	MajorTimeLabelPlainText property
	MajorTimeRuler property
	MaxWidth property
	MinorLabelColor property
	MinorTimeLabel property
	MinorTimeLabelPlainText property
	MinorTimeRuler property
	MinWidth property
	Position property
	RulerBackColor property
	TimeZone property
	ToolTip property
	UserData property
	Visible property
	Width property

	TimeScales
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExSchedule events
	AddEvent event
	AnchorClick event
	ChangeEvent event
	Click event
	DblClick event
	Error event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutEndChanging event
	LayoutStartChanging event
	MouseDown event
	MouseMove event
	MouseUp event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	PictureClick event
	RClick event
	RemoveEvent event
	ScrollButtonClick event
	UpdateEvent event

