
 ExRecord

Exontrol's new exRecord control is a container component that displays a set of editors
added manually or bounded to a table in a database. The exRecord name comes from the
record, that's a set of fields that contain related information, in database type systems. The
exRecord significantly reduces development time of data components.

Features include:

Skinnable Interface support (ability to apply a skin to any background part)
ADO and DAO data binding support
WYSWYG Template/Layout Editor support
It includes editors like: mask, date, drop down list, check box list, memo fields, spin,
slider, OLE Object viewer, color, buttons and more.
Ability to use custom ActiveX control as built-in editors
ActiveX hosting (you can place any ActiveX component in any field of the control).
Arranging fields from left to right, from top to bottom or custom layout as well.
Ability to load icons and pictures from BASE64 encoded strings.
Multi-lines HTML tooltip support

Ž ExRecord is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the object's alignment.

Name Value Description
LeftAlignment 0 The object is left aligned.
CenterAlignment 1 The object is centered.
RightAlignment 2 The object is right aligned.

constants AppearanceEnum
Specifies the object's appearance.

Name Value Description
None2 0 The source has no borders.
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exDropDownButtonUp 4 Specifies the visual appearance for the drop down
button, when it is up.

exDropDownButtonDown 5 Specifies the visual appearance for the drop down
button, when it is down.

exButtonUp 6 Specifies the visual appearance for the button
inside the editor, when it is up.

exButtonDown 7 Specifies the visual appearance for the button
inside the editor, when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a
calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSliderRange 15 Specifies the visual appearance for the slider's bar.

exSliderThumb 16 Specifies the visual appearance for the thumb of the
slider.

exSpinUpButtonUp 22 Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23 Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24 Specifies the visual appearance for the down spin
button when it is not pressed.

exSpinDownButtonDown 25 Specifies the visual appearance for the down spin
button when it is pressed.

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exCheckBoxState0 70 Specifies the visual appearance for the check box in
0 state (unchecked).

exCheckBoxState1 71 Specifies the visual appearance for the check box in
1 state (checked).

exCheckBoxState2 72 Specifies the visual appearance for the check box in
2 state (partial, not used).

constants CheckStateEnum
Specifies the check-box's states. Use the CheckImage property to assign new icons for
check-box states. Use the CheckValueType editor to assign a check box to a field.

Name Value Description
Unchecked 0 The check box is unchecked.
Checked 1 The check box is checked.
PartialChecked 2 The check box looks partially checked.

constants EditorOptionEnum
Specifies different options for a built-in editor. The Option property specifies the editor's
options.

Name Value Description

exMemoHScrollBar 1

Adds the horizontal scroll bar to a MemoType or
MemoDropDownType editor. By default, the
Editor.Option(exMemoHScrollBar) is False. (
boolean expression)

exMemoVScrollBar 2

Adds the vertical scroll bar to a MemoType or
MemoDropDownType editor. By default, the
Editor.Option(exMemoVScrollBar) is False. (
boolean expression)

exMemoAutoSize 3

Specifies whether the MemoType editor is resized
when user alters the text. By default, the
Editor.Option(exMemoAutoSize) is True. (boolean
expression)

exColorListShowName 4

Specifies whether a ColorListType editor displays
the name of the color. By default, the Editor.Option(
exColorListShowName) is False. (boolean
expression)

exColorShowPalette 5

Specifies whether the ColorList editor displays the
palette colors list. By default, the Editor.Option(
exColorShowPalette) is True. (boolean expression
)

exColorShowSystem 6

Specifies whether the ColorType editor shows the
system colors list. By default, the Editor.Option(
exColorShowSystem) is True. (boolean expression
)

exMemoDropDownWidth 7 Specifies the width for a MemoDropDownType
editor. (long expression)

exMemoDropDownHeight 8 Specifies the height for a MemoDropDownType
editor. (long expression)

exMemoDropDownAcceptReturn9
Specifies whether the Return key is used to add
new lines into a MemoDropDownType editor.
(boolean expression)

exEditRight 10 Right-aligns text in a single-line or multiline edit
control. (boolean expression)

exProgressBarBackColor 11 Specifies the background color for a progress bar
editor. (color expression)

exProgressBarAlignment 12 Specifies the alignment of the caption inside of a
progress bar editor. (AlignmentEnum expression)

exProgressBarMarkTicker 13
Retrieves or sets a value that indicates whether the
ticker of a progress bar editor is visible or hidden.
(boolean expression)

exDateAllowNullDate 14 Allows you to specify an empty date to a DateType
editor. (boolean expression)

exCheckValue0 15
Specifies the check box state being displayed for
unchecked state. (long expression, valid values are
0, 1 or 2)

exCheckValue1 16
Specifies the check box state being displayed for
checked state. (long expression, valid values are 0,
1 or 2)

exCheckValue2 17
Specifies the check box state being displayed for
partial checked state. (long expression, valid values
are 0, 1 or 2)

exEditPassword 18
Specifies a value that indicates whether an edit
control displays all characters as an asterisk (*) as
they are typed (passwords). (boolean expression)

exEditPasswordChar 19 Specifies a value that indicates the password
character. (character expression)

exLeftArrow 20

(VK_LEFT) Specifies whether the left arrow key is
handled by the control or by the current editor. By
default, the Option(exLeftArrow) property is True.
Use the exLeftArrow option to disable focusing a
new editor if the user presses the left arrow key
while editing. The option is valid for all editors.
(boolean expression)

exRightArrow 21

(VK_RIGHT) Specifies whether the right arrow key
is handled by the control or by the current editor. By
default, the Option(exRightArrow) property is True.
Use the exRightArrow option to disable focusing a
new editor if the user presses the right arrow key
while editing. The option is valid for all editors.
(boolean expression)
(VK_UP) Specifies whether the up arrow key is
handled by the control or by the current editor. By

exUpArrow 22
default, the Option(exUpArrow) property is True.
Use the exUpArrow option to disable focusing a
new editor if the user presses the up arrow key
while editing. The option is valid for all editors.
(boolean expression)

exDownArrow 23

(VK_DOWN) Specifies whether the down arrow key
is handled by the control or by the current editor. By
default, the Option(exDownArrow) property is True.
Use the exDownArrow option to disable focusing a
new editor if the user presses the down arrow key
while editing. The option is valid for all editors.

exHomeKey 24

(VK_HOME) Specifies whether the home key is
handled by the control or by the current editor. By
default, the Option(exHomeKey) property is True.
Use the exHomeKey option to disable focusing a
new editor if the user presses the home key while
editing. The option is valid for all editors. (boolean
expression)

exEndKey 25

(VK_END) Specifies whether the end key is handled
by the control or by the current editor. By default,
the Option(exEndKey) property is True. Use the
exEndKey option to disable focusing a new editor if
the user presses the end key while editing. The
option is valid for all editors. (boolean expression)

exPageUpKey 26

(VK_PRIOR) Specifies whether the page up key is
handled by the control or by the current editor. By
default, the Option(exPageUpKey) property is True.
Use the exPageUpKey option to disable focusing a
new editor if the user presses the page up key
while editing. The option is valid for all editors.
(boolean expression)

exPageDownKey 27

(VK_NEXT) Specifies whether the page down key
is handled by the control or by the current editor. By
default, the Option(exPageDownKey) property is
True. Use the exPageDownKey option to disable
focusing a new editor if the user presses the page
down key while editing. The option is valid for all
editors. (boolean expression)
Displays the predefined icon in the control's editor,
if the user selects an item from a drop down editor.

exDropDownImage 28 By default, the exDropDownImage property is True.
The option is valid for DropDownListType, PickEdit
and ColorListType editors. (boolean expression)

exDateTodayCaption 29

Specifies the caption for the 'Today' button in a
DateType editor. By default, the
Editor.Option(exDateTodayCaption) is
"Today". (string expression)

exDateMonths 30

Specifies the name for months to be displayed in a
DateType editor. The list of months should be
delimitated by spaces. By default, the
Editor.Option(exDateMonths) = "January February
March April May June July August September
October November December". (string expression)

exDateWeekDays 31

Specifies the shortcut for the weekdays to be
displayed in a DateType editor. The list of shortcut
for the weekdays should be separated by spaces.
By default, the Editor.Option(exDateWeekDays) =
"S M T W T F S". The first shortcut in the list
indicates the shortcut for the Sunday, the second
shortcut indicates the shortcut for Monday, and so
on. (string expression)

exDateFirstWeekDay 32

Specifies the first day of the week in a DateType
editor. By default, the
Editor.Option(exDateFirstWeekDay) = 0. The valid
values for the Editor.Option(exDateFirstWeekDay)
property are like follows: 0 - Sunday, 1 - Monday, 2
- Tuesday, 3 - Wednesday, 4 - Thursday, 5 - Friday
and 6 - Saturday. (long expression, valid values are
0 to 6)

exDateShowTodayButton 33

Specifies whether the 'Today' button is visible or
hidden in a DateType editor. By default, the
Editor.Option(exDateShowTodayButton) property is
True. (boolean expression)

exDateMarkToday 34

Gets or sets a value that indicates whether the
today date is marked in a DateType editor. By
default, Editor.Option(exDateMarkToday) property
is False. (boolean expression)

exDateShowScroll 35

Specifies whether the years scroll bar is visible or
hidden in a DateType editor. By default, the
Editor.Option(exDateShowScroll) property is

True. (boolean expression)

exEditLimitText 36

Limits the length of the text that the user may enter
into an edit control. By default, the
Editor.Option(exEditLimitText) is zero, and so no
limit is applied to the edit control. (long expression)

exAutoDropDownList 37

The exAutoDropDownList has no effect
Editor.Option(exAutoDropDownList) property is 0 (
default). Automatically shows the drop down list
when user starts typing characters into a
DropDownList editor, if the
Editor.Option(exAutoDropDownList) property is -1.
If the Editor.Option(exAutoDropDownList) property
is +1, the control selects a new item that matches
typed characters without opening the drop down
portion of the editor. (long expression, valid values
are -1, 0 and +1)

exExpandOnSearch 38

Expands items while user types characters into a
drop down editor. The exExpandOnSearch type has
effect for drop down type editors. (boolean
expression)

exAutoSearch 39 Only for future use.

exSpinStep 40

Specifies the proposed change when user clicks a
spin control. The exSpinStep should be a positive
number, else clicking the spin has no effect. By
default, the exSpinStep option is 1. Integer or
floating points allowed as well. he
exSliderTickFrequency property specifies the
frequency to display ticks on a slider control. For
instance, if the exSpinStep is 0.01, the proposed
change when user clicks the spin is 0.01. If the
exSpinStep property is 0, the spin control is hidden
(useful if you have a slider control).

exSliderWidth 41

Specifies the width in pixels of the slider control.
The exSliderWidth value could be 0, when the slider
control is hidden, a positive value that indicates the
width in pixels of the slider in the control, a negative
number when its absolute value indicates the
percent of the editor's size being used by the slider.
For instance, Option(exSliderWidth) = 0, hides the
slider, Option(exSliderWidth) = 100, shows a slider
of 100 pixels width, Option(exSliderWidth) = -50,

uses half of the editor's client area to display a
slider control. By default the Option(exSliderWidth)
property is 64 pixels. Use the exSpinStep to hide
the spin control. (long expression)

exSliderStep 42
Specifies a value that represents the proposed
change in the slider control's position. (double
expression , by default it is 1)

exSliderMin 43 Specifies the slider's minimum value. (double
expression, by default it is 0)

exSliderMax 44 Specifies the slider's maximum value. (double
expression, by default it is 100)

exKeepSelBackColor 45

Keeps the selection background color while the
editor is visible. The exKeepSelBackColor option is
valid for all editors. By default, the
Option(exKeepSelBackColor) property is False.
Use the exKeepSelBackColor to let the editor to
display the control's selection background color
when it is visible. (boolean expression)

exEditDecimalSymbol 46

Specifies the symbol that indicates the decimal
values while editing a floating point number. By
default, the exEditDecimalSymbol value is the
"Decimal symbol" settings as in the Regional
Options, in your control panel. Use the
exEditDecimaSymbol option to assign a different
symbol for floating point numbers, when Numeric
property is exFloat. (long expression, that indicates
the ASCII code for the character being used as
decimal symbol.)

exDateWeeksHeader 47

Sets or gets a value that indicates whether the
weeks header is visible or hidden in a DateType
editor. By default,
Editor.Option(exDateWeeksHeader) property is
False. (boolean expression).

exEditSelStart 48 Sets the starting point of text selected, when an
EditType editor is opened.

exEditSelLength 49
Sets the number of characters selected, when an
EditType editor is opened.

exEditLockedBackColor 50 Specifies the background color for a locked edit
control.

exEditLockedForeColor 51 Specifies the foreground color for a locked edit
control.

exSliderTickFrequency 53

Gets or sets the interval between tick marks slider
types. By default, the exSliderTickFrequency
property is 0 which makes the slider to display no
ticks. The exSliderTickFrequency property specifies
the frequency to display ticks on a slider control.
The exSliderStep proposed change in the slider
control's position. The exSliderMin and exSliderMax
determines the range of values for the slider
control. The exSliderWidth option specifies the
width of the slider within the cell. (double
expression, by default it is 0)

exPickAllowEmpty 54 Specifies whether the editor of PickEditType
supports empty value.

exDropDownBackColor 55 Specifies the drop down's background color.
exDropDownForeColor 56 Specifies the drop down's foreground color.

exDropDownColumnCaption 57
Specifies the HTML caption for each column within
the drop down list, separated by Ś character
(vertical broken bar, ALT + 221).

exDropDownColumnWidth 58
Specifies the width for each column within the drop
down list, separated by Ś character (vertical broken
bar, ALT + 221).

exDropDownColumnPosition 59
Specifies the position for each column within the
drop down list, separated by Ś character (vertical
broken bar, ALT + 221).

exDropDownColumnAutoResize60
Specifies whether the drop down list resizes
automatically its visible columns to fit the drop down
width.

exSliderTickStyle 63 Gets or sets the style to display the slider' ticks.

exCalcExecuteKeys 100
Specifies whether the calculator editor executes the
keys while focused and the drop down portion is
hidden. (boolean expression, by default it is True).

exCalcCannotDivideByZero 101
Specifies the message whether a division by zero
occurs in a calendar editor. (string expression, by
default it is "Cannot divide by zero.").

exCalcButtonWidth 102
Specifies the width in pixels of the buttons in the
calculator editor. (long expression, by default it is

24).

exCalcButtonHeight 103
Specifies the height in pixels of the buttons in the
calculator editor. (long expression, by default it is
24).

exCalcButtons 104

Specifies buttons in a calendar editor. The property
specifies the buttons and the layout of the buttons in
the control. A string expression that indicates the list
of buttons being displayed. The rows are separated
by chr(13)+chr(10) (vbCrLf) sequence, and the
buttons inside the row are separated by ';'
character. (string expression)

exCalcPictureUp 105

Specifies the picture when the button is up in a drop
down calendar editor. A Picture object that
indicates the node's picture. (A Picture object
implements IPicture interface), a string expression
that indicates the base64 encoded string that holds
a picture object. Use the eximages tool to save your
picture as base64 encoded format.

exCalcPictureDown 106

Specifies the picture when the button is down in a
drop down calendar editor. A Picture object that
indicates the node's picture. (A Picture object
implements IPicture interface), a string expression
that indicates the base64 encoded string that holds
a picture object. Use the eximages tool to save your
picture as base64 encoded format.

exEditAllowOverType 200

Specifies whether the editor supports overtype
mode. The option is valid for EditType and
MemoType editors. (boolean expression, by
default it is False).

exEditOverType 201

Retrieves or sets a value that indicates whether the
editor is in insert or overtype mode. The option is
valid for EditType and MemoType editors. (boolean
expression, by default it is False).

exEditAllowContextMenu 202

exEditAllowContextMenu. Specifies whether the
editor displays the edit's default context menu when
the user right clicks the field.

https://exontrol.com/eximages.jsp
https://exontrol.com/eximages.jsp

constants EditTypeEnum
Use the EditType property to specify the type of the editor. Use the Add method to add a
new editor to the control. Use the AddItem, InsertItem method to add new items to a drop
down list editor. Use the AddButton method to add the buttons to the editor. Use the Option
property to assign different options for a given editor. The exRecord component supports
the following type of editors:

Name Value Description
ReadOnly 0 The editor is not ediatble.

EditType 1

The editor supports the following options:

exEditRight, Right-aligns text in a single-line or
multiline edit control.
exEditPassword, Specifies a value that
indicates whether an edit control displays all
characters as an asterisk (*) as they are typed
(passwords).
exEditPasswordChar, Specifies a value that
indicates the password character.

The Numeric property specifies whether the editor
enables numeric values only.

DropDownType 2

It provides an intuitive interface for your
users to select values from pre-defined
lists presented in a drop-down window,
but it accepts new values at runtime too.
The DropDownType editor has
associated a standard text edit field too. Use
AddItem method to add predefined values to the
drop down list. Use the InsertItem method to insert
child items to the editor's predefined list. The
DropDownRows property specifies the maximum
number of visible rows into the drop-down list. The
editor displays the Value value.

The following sample adds a DropDownType editor:

 With Record1
 .BeginUpdate
 With .Add("DropDownType",

EXRECORDLibCtl.DropDownType)
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartment", 3
 .AddItem 3, "Suite", 4
 .AddItem 4, "Royal Suite", 5
 .Value = "Apartment"
 End With
 .EndUpdate
End With

DropDownListType 3

It provides an intuitive interface
for your users to select values
from pre-defined lists presented
in a drop-down window. The
DropDownListType editor has
no standard edit field
associated. Use AddItem
method to add predefined values to the drop down
list. Use InsertItem method to insert child
predefined values to the drop down list. The
DropDownRows property specifies the maximum
number of visible rows into the drop-down list. The
editor displays the caption of the item that matches
the Value value. The item's icon is also displayed if
it exists.

The following sample adds a DropDownListType
editor:

With Record1
 .BeginUpdate
 With .Add("DropDownType",
EXRECORDLibCtl.DropDownListType)
 .DropDownAutoWidth = False
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartments", 3
 .InsertItem 3, "1 Bed Apartment", 4, 2
 .InsertItem 4, "2 Bed Apartment", 5, 2

 .AddItem 5, "Suite", 4
 .InsertItem 6, "Royal Suite", 1, 5
 .InsertItem 7, "Deluxe Suite", 2, 5
 .ExpandAll
 .Value = 3
 End With
 .EndUpdate
End With

SpinType 4

The SpinType allows your users to view
and change numeric values using a familiar up/down
button (spin control) combination. The AddItem or
InsertItem method has no effect, if the EditType is
SpinType. Use the exSpinStep option to specify the
proposed change when user clicks the spin button.
The Numeric property specifies whether the editor
enables numeric values only. Use the SliderType to
specify minimum and maximum values for the spin.

The following sample adds a SpinType editor:

With Record1
 .BeginUpdate
 With .Add("Spin", EXRECORDLibCtl.SpinType)
 .Numeric = exFloat
 .Option(exSpinStep) = 0.1
 .Value = 3.14
 End With
 .EndUpdate
End With

MemoType 5

The MemoType is designed to provide a unique and
intuitive interface, which you can implement within
your application to assist users in working with
textual information. If all information does not fit
within the edit box, the window of the editor is
enlarged. The AddItem or InsertItem method has no
effect, if the EditType is SpinType. You can use
options like exMemoHScrollBar, exMemoVScrollBar
and so on.

CheckListType 6

It provides an intuitive interface for
your users to check values from
pre-defined lists presented in a
drop-down window. Each item has
a check box associated. The editor
displays the list of item captions, separated by
comma, that is OR combination of the Value
expression. The AddItem method adds new
predefined values to the drop down portion of the
editor. The DropDownRows property specifies the
maximum number of visible rows into the drop-down
list. Use the CheckImage property to assign a
different icons for check box states.

The following sample adds a CheckListType editor:

With Record1
 .BeginUpdate
 With .Add("CheckListType",
EXRECORDLibCtl.CheckListType)
 .AddItem 1, "Single Bed", 1
 .AddItem 2, "Double Bed", 2
 .AddItem 4, "Apartment", 3
 .AddItem 8, "Suite", 4
 .AddItem 16, "Royal Suite", 5
 .Value = 5
 End With
 .EndUpdate
End With

The DateType editor is a
date/calendar control (not the
Microsoft Calendar Control). The
dropdown calendar provides an
efficient and appealing way to edit
dates at runtime. The DateType
editor has a standard edit control
associated. The user can easy
select a date by selecting a date
from the drop down calendar, or

DateType 7

by typing directly the date. The editor displays the
Value value as date. The AddItem or InsertItem
method has no effect, if the EditType is DateType.

The following sample adds a DateType editor:

With Record1
 .BeginUpdate
 With .Add("DateType",
EXRECORDLibCtl.DateType)
 .Value = Date
 End With
 .EndUpdate
End With

MaskType 8

You can use the MaskType to enter any
data that includes literals and requires a mask to
filter the characters during data input. You can use
this control to control the entry of many types of
formatted information such as telephone numbers,
social security numbers, IP addresses, license keys
etc. The Mask property specifies the editor's mask.
The MaskChar property specifies the masking
character. The AddItem or InsertItem method has
no effect, if the EditType is MaskType. The Mask
property can use one or more literals: #,x,X,A,?
<,>,*,\,{nMin,nMax},[...]. The following sample
shows how to mask the "MaskType" column for
input telephone numbers.

The following sample adds a MaskType editor:

With Record1
 .BeginUpdate
 With .Add("MaskType",
EXRECORDLibCtl.MaskType)
 .Mask = "(###) ### - ####"
 .Value = "(074) 728 - 2121"
 End With
 .EndUpdate

End With

ColorType 9

You can include a color selection
control in your applications via the
ColorType editor. Check the
ColorListType also. The editor has
a standard edit control and a color
drop-down window. The color
drop-down window contains two
tabs that can be used to select
colors, the "Pallette" tab shows a grid of colors,
while the "System" tab shows the current windows
color constants. The AddItem or InsertItem method
has no effect, if the EditType is ColorType.

The following sample adds a ColorType editor:

With Record1
 .BeginUpdate
 With .Add("ColorType",
EXRECORDLibCtl.ColorType)
 .Value = RGB(255, 0, 0)
 End With
 .EndUpdate
End With

FontType 10

Provides an intuitive way for
selecting fonts. The FontType
editor contains a standard edit
control and a font drop-down
window. The font drop-down
window contains a list with all
system fonts. The AddItem or InsertItem method
has no effect, if the EditType is FontType. The
Value property indicates the name of the font. The
DropDownRows property specifies the maximum
number of visible rows into the drop-down list.

The following sample adds a FontType editor:

With Record1
 .BeginUpdate
 With .Add("FontType",
EXRECORDLibCtl.FontType)
 .Value = "Tahoma"
 End With
 .EndUpdate
End With

PictureType 11

The PictureType provides an
elegant way for displaying the
fields of OLE Object type and
cells that have a reference to an
IPicture interface. An OLE
Object field can contain a
picture, a Microsoft Clip Gallery,
a package, a chart, PowerPoint
slide, a word document, a WordPad documen, a
wave file, an so on. In MS Access you can specify
the field type to OLE Object. The
DropDownMinWidth property specifies the minimum
width for the drop=down window. The drop-down
window is scaled based on the picture size. The
AddItem or InsertItem method has no effect, if the
EditType is PictureType. If your control is bounded
to a recordset, it automatically detects the OLE
Object fields, so setting the editor's type to
PictureType is not necessary.

The Value property specifies the source of the
picture being displayed, and it can be

a Picture object (A Picture object implements
IPicture interface)
a string expression that indicates the path to
the picture file
a string expression that indicates the base64
encoded string that holds a picture object. Use
the eximages tool to save your picture as
base64 encoded format
an array of bytes that holds an OLE object field

https://exontrol.com/eximages.jsp

The following sample adds a PictureType editor:

With Record1
 .BeginUpdate
 With .Add("PictureType",
EXRECORDLibCtl.PictureType)
 .Value = App.Path & "\xfmail.gif"
 End With
 .EndUpdate
End With

ButtonType 12

The ButtonType editor consists
into a standard edit field and a "..." button. The
ButtonClick event is fired if the user has clicked the
button. The AddItem or InsertItem method has no
effect, if the EditType is ButtonType. The
ButtonWidth property specifies the width of the
button. The Value property specifies the editor's
caption.

The following sample adds a ButtonType editor:

With Record1
 .BeginUpdate
 With .Add("ButtonType",
EXRECORDLibCtl.ButtonType)
 .Value = "<path>"
 .AddButton "A", 1
 .AddButton "B", 2, RightAlignment
 .ButtonWidth = 20
 End With
 .EndUpdate
End With

The ProgressBarType editor
displays a progress bar. The Value property
indicates the percent value being displayed. The
options like exProgressBarBackColor,
exProgressBarAlignment or

ProgressBarType 13

exProgressBarMarkTicker may be used for a
ProgressBarType editor.

The following sample adds a ProgressBarType
editor:

With Record1
 .BeginUpdate
 With .Add("ProgressBarType",
EXRECORDLibCtl.ProgressBarType)
 .Value = 34
 End With
 .EndUpdate
End With

PickEditType 14

It provides an intuitive interface for
your users to select values from
pre-defined lists presented in a
drop-down window. The
PickEditType editor has a standard
edit field associated, that useful for searching
items. The DropDownRows property specifies the
maximum number of visible rows into the
drop=down list. Use AddItem, InsertItem method to
add predefined values to the drop down list. The
editor displays the caption of the item that matches
Value value. The item's icon is also displayed if it
exists.

The following sample adds a PickEditType editor:

With Record1
 .BeginUpdate
 With .Add("DropDownType",
EXRECORDLibCtl.PickEditType)
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartment", 3
 .AddItem 3, "Suite", 4
 .AddItem 4, "Royal Suite", 5

 .Value = "Apartment"
 End With
 .EndUpdate
End With

LinkEditType 15 The LinkEditType control allows your application to
edit and display hyperlink addresses.

UserEditorType 16

The control support ActiveX
hosting. An UserEditorType
editor can host an ActiveX
control. Use the UserEditor
method to create the inner
ActiveX control. The
UserEditorOleEvent event is fired each time when
an inner ActiveX control fires an event. Use the
UserEditorObject property to access the inner
ActiveX control.

The following sample adds an UserEditorType
editor (the sample adds an inner
Exontrol.ComboBox control):

With Record1
 .BeginUpdate
 With .Add("UserEditorType",
EXRECORDLibCtl.UserEditorType)
 .UserEditor "Exontrol.ComboBox", ""
 With .UserEditorObject()
 Dim h As Long
 .BeginUpdate
 .IntegralHeight = True
 .LinesAtRoot = -1
 .ColumnAutoResize = True
 .MinWidthList = 164
 .MinHeightList = 164
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 h = .Items.AddItem(Array("Root 1",
"SubRoot 1"))

https://exontrol.com/excombobox.jsp

 .Items.InsertItem h, , Array("Child 1",
"SubChild 1")
 .Items.InsertItem h, , Array("Child 1",
"SubChild 1")
 .Items.ExpandItem(h) = True
 h = .Items.AddItem(Array("Root 2",
"SubRoot 2"))
 .Items.InsertItem h, , Array("Child 1",
"SubChild 1")
 .EndUpdate
 End With
 End With
 .EndUpdate
End With

ColorListType 17

You can include a color selection
control in your applications via the
ColorListType editor, also. The editor
hosts a predefined list of colors. By
default. the following colors are
added: Black, White, Dark Red, Dark
Green, Dark Yellow, Dark Blue, Dark
Magenta, Dark Cyan, Light Grey, Dark Grey, Red,
Green, Yellow, Blue, Magenta, Cyan. The AddItem
method adds a new color to your color list editor.
You can the exColorListShowName to allow the
editor displays the color's name.

The following sample adds a ColorListType editor:

With Record1
 .BeginUpdate
 With .Add("ColorListType",
EXRECORDLibCtl.ColorListType)
 .Option(exColorListShowName) = True
 .Value = RGB(0, 0, 255)
 End With
 .EndUpdate
End With

MemoDropDownType 18

It provides a multiple lines edit
control that's displayed into a drop
down window. The AddItem,
InsertItem method has no effect, if
the EditType is MemoDropDownType.

The Editor.Option(exMemoDropDownWidth)
specifies the width (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(exMemoDropDownHeight
) specifies the height (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(
exMemoDropDownAcceptReturn) specifies
whether the user closes the
MemoDropDownType editor by pressing the
ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is True, the
user inserts new lines by pressing the ENTER
key. The user can close the editor by pressing
the CTRL + ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is False,
the user inserts new lines by pressing the
CTRL + ENTER key. The user can close the
editor by pressing the ENTER key.
The Editor.Option(exMemoHScrollBar) adds
the horizontal scroll bar to a MemoType or
MemoDropDownType editor.
The Editor.Option(exMemoVScrollBar) adds
the vertical scroll bar to a MemoType or
MemoDropDownType editor

The following sample adds a MemoDropDownType
editor:

With Record1
 .BeginUpdate
 With .Add("MemoDropDownType",
EXRECORDLibCtl.MemoDropDownType)

 .Option(exMemoVScrollBar) = True
 .Value = "This is a bit of text that should be
displayed on the drop down portion of the
editor."
 End With
 .EndUpdate
End With

CheckValueType 19

The CheckValueType editor displays a
check box based on the Value property. Use the
CheckImage property to assign a different icons for
check box states. You can use the following
options:

exCheckValue0, Specifies the check box state
being displayed for unchecked state. (long
expression, valid values are 0, 1 or 2)
exCheckValue1, Specifies the check box state
being displayed for checked state. (long
expression, valid values are 0, 1 or 2)
exCheckValue2, Specifies the check box state
being displayed for partial checked state. (long
expression, valid values are 0, 1 or 2)

The following sample adds a CheckValueType
editor:

With Record1
 .BeginUpdate
 With .Add("Boolean",
EXRECORDLibCtl.CheckValueType)
 .Option(exCheckValue2) = 1
 .Value = True
 End With
 .EndUpdate
End With

Adds a slider control to an editor. Use
the exSliderWidth, exSliderStep, exSliderMin,
exSliderMax options to control the slider

SliderType 20

properties. Use the exSpinStep option to hide the
spin control.

The following sample adds a SliderType editor:

With Record1
 .BeginUpdate
 With .Add("Slider",
EXRECORDLibCtl.SliderType)
 .Option(exSpinStep) = 0.1
 .Option(exSliderMax) = 50
 .Value = 34
 End With
 .EndUpdate
End With

CalculatorType 21

Adds a drop down calculator to
an editor. Use the
exCalcExecuteKeys,
exCalcCannotDivideByZero,
exCalcButtonWidth,
exCalcButtonHeight,
exCalcButtons,
exCalcPictureUp, exCalcPictureDown to specify
different options for calculator editor.

With Record1
 .BeginUpdate
 With .Add("Calculator",
EXRECORDLibCtl.CalculatorType)
 .Value = 3.14
 End With
 .EndUpdate
End With

All editors support the following options:

exLeftArrow, Disables focusing a new cell if the user presses the left arrow key while
editing.

exRightArrow, Disables focusing a new cell if the user presses the right arrow key
while editing.
exUpArrow, Disable focusing a new cell if the user presses the up arrow key while
editing.
exDownArrow, Disable focusing a new cell if the user presses the down arrow key
while editing.
exHomeKey, Disable focusing a new cell if the user presses the home key while
editing.
exEndKey, Disables focusing a new cell if the user presses the end key while editing.
exPageUpKey, Disable focusing a new cell if the user presses the page up key while
editing.
exKeepSelBackColor. Keeps the selection background color while editor is visible

constants LayoutEnum
The LayoutEnum expression specifies how the fields are arranged in the control's client
area. Use the Layout property to arrange the fields in the control. Use the LabelSize
property to specify the width of the label. Use the FieldWidth, FieldHeight properties to
specify the size of the fields.

Name Value Description

exLeftToRight 0 Arranges the fields from the left to the right side of
the control.

exTopToBottom 1 Arranges the fields from the top to the bottom side
of the control.

exCustomLayout 61440

Customizes the position of fields on the page. The
CustomLayout property appends relative position of
the fields, when Layout property is
exCustomLayout.

constants InplaceAppearanceEnum
Defines the editor's appearance. Use the Appearance property to change the editor's
appearance. Use the PopupAppearance property to define the appearance of the editor's
drop-down window, if it exists.

Name Value Description
NoApp 0 No border
FlatApp 1 Flat
SunkenApp 2 Sunken
RaisedApp 3 Raised
EtchedApp 4 Etched
BumpApp 5 Bump
ShadowApp 6 Shadow
InsetApp 7 Inset
SingleApp 8 Single

constants NumericEnum
Use the Numeric property to specify the format of numbers when editing a field.

Name Value Description

exInteger -1

Allows editing numbers of integer type. The format
of the integer number is: [+/-]digit, where digit is
any combination of digit characters. This flag can
be combined with exDisablePlus, exDisableMinus or
exDisableSigns flags. For instance, the 0x3FF (hexa
representation, 1023 decimal) value indicates an
integer value with no +/- signs.

exAllChars 0 Allows all characters. No filtering.

exFloat 1

Allows editing floating point numbers. The format of
the floating point number is: [+/-
]digit[.digit[[e/E/d/D][+/-]digit]], where digit is any
combination of digit characters. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exFloatInteger 2

Allows editing floating point numbers without
exponent characters such as e/E/d/D, so the
accepted format is [+/-]digit[.digit]. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exDisablePlus 256
Prevents using the + sign when editing numbers. If
this flag is included, the user can not add any + sign
in front of the number.

exDisableMinus 512
Prevents using the - sign when editing numbers. If
this flag is included, the user can not add any - sign
in front of the number.

exDisableSigns 768

Prevents using the +/- signs when editing numbers.
If this flag is included, the user can not add any +/-
sign in front of the number. For instance
exFloatInteger + exDisableSigns allows editing
floating points numbers without using the exponent
and plus/minus characters, so the allowed format is

digit[.digit]

constants PictureDisplayEnum
Specifies how a picture object is displayed.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarsEnum
The ScrollBarsEnum type indicates whether the control displays the horizontal or the vertical
scroll bar. The ScrollBars property specifies whether the control adds scrollbars to the
control.

Name Value Description
exNoScroll 0 No scroll bars are shown
exHorizontal 1 Only horizontal scroll bars are shown.
exVertical 2 Only vertical scroll bars are shown.
exBoth 3 Both horizontal and vertical scroll bars are shown.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows. Let's
say that the control requests painting the {10, 10, 30,
20} area, a rectangle with the width of 20 pixels, and
the height of 10 pixels, the skin will be displayed on
the {14,10,26,20} as each coordinates in the "CP"
syntax is added to the displayed rectangle, so the
skin looks smaller. This way you can apply different
effects to your objects in your control. The following
screen shot shows the control's header when using a
"CP:1 -6 -6 6 6", that displays the original skin on
larger rectangles.

the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the
background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicates the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background
color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the BackColor = BackColor Or
&H2000000 indicates that we apply the skin with the index 2 using the old color, to the

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

object that BackColor is applied.

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

Editor object
The Editor object holds information about an editor. Use the Add or DataSource method to
add new editors to the control. The Editor object may display an icon, a custom size
picture, an HTML label and window editor.

The Editor object supports the following properties and methods:

Name Description

AddButton Adds a new button to the editor with specified key and
aligns it to the left or right side of the editor.

AddItem Adds a new item to the editor's list.
Appearance Retrieves or sets the editor's appearance.
BackColor Specifies the editor's background color.
ButtonWidth Specifies the width of the buttons in the editor.
Caption Retrieves the caption of the field.
ClearButtons Clears the buttons collection.
ClearItems Clears the items collection.
DropDown Displays the drop down list.

DropDownAlignment Retrieves or sets a value that indicates the item's
alignment in the editor's drop-down list.

DropDownAutoWidth
Retrieves or sets a value that indicates whether the
editor's drop-down window list is automatically computed
to fit the entire list.

DropDownMinWidth Specifies the minimum drop-down list width if the
DropDownAutoWidth is False.

DropDownRows Retrieves or sets a value that indicates the maximum
number of visible rows in the editor's drop- down list.

DropDownVisible Retrieves or sets a value that indicates whether the
editor's drop down button is visible or hidden.

EditType Retrieves or sets a value that indicates the type of the
editor.

ExpandAll Expands all items in the editor's list.
ExpandItem Expands or collapses an item in the editor's list.
FindItem Finds an item given its value or caption.
ForeColor Specifies the editor's foreground color.

Image Retrieves or sets a value that indicates the index of the
editor's icon.

Index Retrieves the index of the editor.
InsertItem Inserts a child item to the editor's list.

ItemToolTip Gets or sets the text displayed when the mouse pointer
hovers over a predefined item.

Key Retrieves the editor's key.
Label Specifies the editor's label.
LabelAlignment Specifies the alignment of the label relative to the field.
LabelBackColor Specifies the label's background color.
LabelForeColor Specifies the label's foreground color.
Locked Determines whether the editor is locked or unlocked.

Mask Retrieves or sets a value that indicates the mask used by
the editor.

MaskChar Retrieves or sets a value that indicates the character used
for masking.

Numeric Specifies whether the editor enables numeric values only.
Option Specifies an option for the editor.

PartialCheck Retrieves or sets a value that indicates whether the
associated check box has two or three states.

Picture Assigns a custom size picture to an editor.

PopupAppearance Retrieves or sets a value that indicates the drop-down
window's appearance.

Position Retrieves or sets a value that indicates the editor's
position.

RemoveButton Removes a button given its key.
RemoveItem Removes an item from the editor's predefined values list.
SortItems Sorts the list of items in the editor.

ToolTip Specifies a tooltip being displayed when the cursor hover
the editor's label.

UserData Gets or sets the user-definable data for the current editor.

UserEditor Specifies the control's identifier and the control's runtime
license key when EditType is UserEditor.

UserEditorObject Gets the user editor object when EditType is UserEditor.

Value Retrieves or sets the field's value.

Visible Retrieves or sets a value that indicates whether the editor
is visible or hidden.

method Editor.AddButton (Key as Variant, [Image as Variant], [Align as
Variant], [ToolTip as Variant], [ToolTipTitle as Variant], [ShortcutKey as
Variant])
Adds a new button to the editor with specified key and aligns it to the left or right side of the
editor.

Type Description

Key as Variant A Variant value that indicates the button's key. The
ButtonClick event passes this value to Key parameter

Image as Variant

A long expression that indicates the index of button's icon.
The index is valid for Images collection. By default the
button has no icon associated. Use the Images property to
assign a list of icons to the control.

Align as Variant An AlignmentEnum expression that defines the button's
alignment.

ToolTip as Variant

A string expression that indicates the the button's tooltip
description. The tooltip shows up when cursor hovers the
button. The ToolTip parameter may include built-in HTML
tags.

ToolTipTitle as Variant A string expression that indicates the tooltip's title.

ShortcutKey as Variant

A short expression that indicates the shortcut key being
used to simulate clicking the button. The lower byte
indicates the code of the virtual key, and the higher byte
indicates the states for SHIFT, CTRL and ALT keys (last
insignificant bits in the higher byte). The ShortcutKey
expression could be 256 *((shift ? 1 : 0) + (ctrl ? 2 : 0)
+ (alt ? 4 : 0)) + vbKeyCode, For instance, a combination
like CTRL + F3 is 256 * 2 + vbKeyF3, SHIFT + CTRL + F2
is 256 *(1 + 2) + vbKeyF2, and SHIFT + CTRL + ALT + F5
is 256 * (1 + 2 + 4) + vbKeyF5.

Use the AddButton method to add multiple buttons to the editor. Make sure that you are
using unique keys for the buttons in the same editor, else the previous button is replaced.
The editor doesn't allow two buttons with the same key. Use the ButtonWidth property to
set the button's width. If the user clicks on one of the editor buttons, the ButtonClick event
is fired. Use the RemoveButton method to remove a button that was previously added using
the AddButton method. Use the ClearButtons method to clear the entire collection of
buttons added with AddButton method. Use the Images property to assign a list of icons to
the control.

The following VB sample adds some buttons to a CalculatorType editor:

With Record1
 .BeginUpdate
 .FieldHeight = 20
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwUrQGFADAxGDteGjcQib/suOwqAw+JxDAyuYxVhw2Tx8Zh+fx1Yx2Sw2XzIAz2e1Gbq+e0eh1uh2OQ0dL0u00OrzunxOmymo1uupW9ykTz/I3mU3O23WQoHNz+s3+y6uQ1HUzHD4lHz3Ix3ZxnP1XG0HO9HJmfS4Gp8PX93WzHL7tJ2Gh8H43fm6Xa86avY/bgvgxjGNQ97MQC6D6qM2rpvM/LIPpCKcv630Evk8qMwMyz4OlBjcPTCjlP4/TsMS5CcPa4UOu2xMCuO8byNvECoPJEbyQm/CfxZF0fNS8UNuPD6NMZGqqQdJMTPUo0eyBFsNSilkYSOrUbxuqcnSdKkoy5I0qqzByuO4mMuTBM6iy/NE1zYsCLB8lc4I8kCRJIACSpRPEVR3NqZIefw/o2SZ/n4D6NkAf58APQ4fnhPTVAecCVAGzSNgC46NgGldF0eAFF00jYHgBUCMmAB5gASjZ4A+eCUUKfgcsaH5/j2xsaICA"

 .BackColor = vbWhite
 With .Add("Calculator", CalculatorType)
 .Value = 3.14
 .ButtonWidth = 20
 .AddButton "A", 1, LeftAlignment
 .AddButton "B", 2, LeftAlignment
 .AddButton "C", 1, RightAlignment
 .AddButton "D", 2, RightAlignment
 End With
 .EndUpdate
End With

The following VC sample adds some buttons to a CalculatorType editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
m_record.Images(COleVariant(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwUrQGFADAxGDteGjcQib/suOwqAw+JxDAyuYxVhw2Tx8Zh+fx1Yx2Sw2XzIAz2e1Gbq+e0eh1uh2OQ0dL0u00OrzunxOmymo1uupW9ykTz/I3mU3O23WQoHNz+s3+y6uQ1HUzHD4lHz3Ix3ZxnP1XG0HO9HJmfS4Gp8PX93WzHL7tJ2Gh8H43fm6Xa86avY/bgvgxjGNQ97MQC6D6qM2rpvM/LIPpCKcv630Evk8qMwMyz4OlBjcPTCjlP4/TsMS5CcPa4UOu2xMCuO8byNvECoPJEbyQm/CfxZF0fNS8UNuPD6NMZGqqQdJMTPUo0eyBFsNSilkYSOrUbxuqcnSdKkoy5I0qqzByuO4mMuTBM6iy/NE1zYsCLB8lc4I8kCRJIACSpRPEVR3NqZIefw/o2SZ/n4D6NkAf58APQ4fnhPTVAecCVAGzSNgC46NgGldF0eAFF00jYHgBUCMmAB5gASjZ4A+eCUUKfgcsaH5/j2xsaICA"
));
CEditor editor = m_record.Add(COleVariant("Calculator"), /*CalculatorType*/ 21, vtMissing
);
editor.SetValue(COleVariant(3.14));
editor.SetButtonWidth(18);
editor.AddButton(COleVariant("A"), COleVariant((long) 1), COleVariant((long) 0),
vtMissing, vtMissing, vtMissing);

editor.AddButton(COleVariant("B"), COleVariant((long) 2), COleVariant((long) 1),
vtMissing, vtMissing, vtMissing);
editor.AddButton(COleVariant("C"), COleVariant((long) 1), COleVariant((long) 1),
vtMissing, vtMissing, vtMissing);
editor.AddButton(COleVariant("D"), COleVariant((long) 2), vtMissing, vtMissing,
vtMissing, vtMissing);

method Editor.AddItem (Value as Long, Caption as String, [Image as
Variant])
Adds a new item to the editor's list.

Type Description
Value as Long A long expression that defines a predefined value.

Caption as String A string expression that indicates the caption for the Value.
The Caption supports HTML format.

Image as Variant A long expression that indicates the index of the item's
icon.

Use the AddItem method to add new items to the editor's predefined list. Use the
InsertItem method to insert child items to the editor's predefined list (DropDownListType
editor). If the AddItem method uses a Value already defined, the old item is replaced. The
AddItem method has effect for the following type of editors: DropDownType,
DropDownListType, PickEditType, and CheckListType. Check each EditType value for
what Value argument should contain. Use the RemoveItem method to remove a particular
item from the predefined list. Use the ClearItems method to clear the entire list of
predefined values. Use the SortItems to sort the items. Use the ItemToolTip property to
assign a tooltip to a predefined item into a drop down list. Call the Refresh method to
update the editor's value, if it depends on a predefined list of items (drop down editors).
Use the ItemToolTip property to assign a tooltip to the item.

The Caption property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with

about:blank

a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample adds some checks to a CheckListType editor:

With Record1
 .BeginUpdate
 With .Add("CheckListType", CheckListType)

 .AddItem &H1, "ReadOnly", 1
 .AddItem &H2, "Hidden", 2
 .AddItem &H4, "System", 3
 .AddItem &H10, "Directory", 4
 .AddItem &H20, "Archive", 5
 .AddItem &H80, "Normal", 7
 .AddItem &H100, "Temporary", 8
 .Value = &H1 + &H2
 End With
 .EndUpdate
End With

The following VC sample add some checks to a CheckListType editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("CheckListType"), /*CheckListType*/ 6,
vtMissing);
editor.AddItem(0x01, "ReadOnly", vtMissing);
editor.AddItem(0x02, "Hidden", vtMissing);
editor.AddItem(0x04, "System", vtMissing);
editor.AddItem(0x10, "Directory", vtMissing);
editor.AddItem(0x20, "Archive", vtMissing);
editor.AddItem(0x80, "Normal", vtMissing);
editor.AddItem(0x100, "Temporary", vtMissing);
editor.SetValue(COleVariant((long)(0x01 + 0x02)));
m_record.Refresh();

property Editor.Appearance as InplaceAppearanceEnum
Retrieves or sets the editor's appearance.

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
editor's appearance

Use the Appearance property to change the editor's border style. Use the
PopupAppearance property to define the appearance for editor's drop-down window, if it
exists. By default, the editor's Appearance is NoApp.

property Editor.BackColor as Color
Specifies the editor's background color.

Type Description

Color A color expression that indicates the background color of
the editor.

Use the BackColor property to change the editor's background color. Use the
LabelBackColor property to change the background color of the label of the editor. Use the
ForeColor property to change the editor's foreground color. Use the <bgcolor> HTML tag to
specify a background color for parts of the editor's label. Use the Label property to specify
the editor's label. Use the BackColor property to specify the control's background color.

The following sample assign different background colors for label and the editor as seeing
in the screen shot:

With Record1
 .BeginUpdate
 With .Add("Label (red)", DropDownType)
 .Value = "Editor (blue)"
 .BackColor = vbBlue
 .LabelBackColor = vbRed
 .ForeColor = vbWhite
 .Position = 0
 End With
 .EndUpdate
End With

property Editor.ButtonWidth as Long
Specifies the width of the buttons in the editor.

Type Description

Long A long expression that indicates the width of the buttons in
pixels.

Use the ButtonWidth property to change the button's width. By default, the ButtonWidth
property is 13 pixels. Use the AddButton method to add multiple buttons to the editor. Use
the ClearButtons method to clear the editor's buttons collection. If the ButtonWidth property
is 0, the editor displays no buttons. The FieldHeight property specifies the height of the
label/editor/field. Use the DropDownVisible property to hide the editor's drop-down button.

property Editor.Caption as String
Retrieves the caption of the field.

Type Description
String A string expression that specifies the editor's caption.

Use the Caption property to get the editor's caption. Use the Value property to get the
editor's value. The Caption property of the editor may be different than the Value property
like follows. For instance, if we have a DropDownListType editor, the Caption property gets
the caption of the item being selected, and the Value property gets a long expression that
identifies the value of the item. The Label property gets the editor's label. Use the FindItem
property to find an item based on its value.

The following VB sample prints the label, caption and the value of the editor from the
cursor:

Private Sub Record1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then
 Debug.Print "Label: " & e.Label & " Caption: """ & e.Caption & """ Value: " & e.Value
 End If
End Sub

The following VC sample prints the label, caption and the value of the editor from the
cursor:

void OnMouseMoveRecord1(short Button, short Shift, long X, long Y)
{
 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "Label: %s Caption: \"%s\" Value: %s\n",
(LPCTSTR)editor.GetLabel(), (LPCTSTR)editor.GetCaption(), (LPCTSTR)V2S(
&editor.GetValue()));
 OutputDebugString(szOutput);
 }

}

method Editor.ClearButtons ()
Clears the buttons collection.

Type Description

Use the ClearButtons property to clear the editor's collection of buttons. Use the AddButton
method to add multiple buttons to the editor. Use the ButtonWidth property to specify the
width of the buttons. Use the RemoveButton method to remove a single button. The control
fires the ButtonClick event when user clicks a button.

method Editor.ClearItems ()
Clears the items collection.

Type Description

The ClearItems method clears the predefined values added using AddItem, InsertItem
methods. Use the RemoveItem method to remove a particular item. Use the
DropDownVisible property to hide the drop-down window. Use the Refresh method to
update the editor's content, if it depends on predefined values. Use the Value property to
update the editor's value.

method Editor.DropDown ()
Displays the drop down list.

Type Description

The DropDown method shows the drop down portion of the editor. The method has effect
for editors like: DropDownType, DropDownListType, PickEditType, and CheckListType.

The following VB sample shows the drop down portion of the current editor if the user
releases the F2 key:

Private Sub Record1_KeyUp(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyF2) Then
 With Record1
 If Not .Focus Is Nothing Then
 .Focus.DropDown
 End If
 End With
 End If
End Sub

The following VC sample shows the drop down portion of the current editor if the user
releases the F2 key:

void OnKeyUpRecord1(short FAR* KeyCode, short Shift)
{
 if (*KeyCode == VK_F2)
 {
 CEditor editor = m_record.GetFocus();
 editor.DropDown();
 }
}

property Editor.DropDownAlignment as AlignmentEnum
Retrieves or sets a value that indicates the item's alignment in the editor's drop-down list.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the item's
alignment into the editor's drop-down list.

Use the DropDownAlignment property to align the items in the editor's drop-down list. The
property has effect only for editors of drop down type. By default, the items in the drop
down portion of the editor are left aligned. Use the DropDownAlignment property to right
align the items in the drop down portion of the editor.

property Editor.DropDownAutoWidth as Boolean
Retrieves or sets a value that indicates whether the editor's drop-down window list is
automatically computed to fit the entire list.

Type Description

Boolean
A boolean expression that indicates whether the editor's
drop- down list width is automatically computed to fit the
entire list.

Use the DropDownAutoWidth property to specify when you let the control computes the
drop-down list width, or whenever the width is specified by the DropDownMinWidth
property. By default, the DropDownAutoWidth property is True.

property Editor.DropDownMinWidth as Long
Specifies the minimum drop-down list width if the DropDownAutoWidth is False.

Type Description

Long A long expression that specifies the minimum drop- down
list width if the DropDownAutoWidth is False

The DropDownMinWidth property has no effect if the DropDownAutoWidth property is True.

property Editor.DropDownRows as Long
Retrieves or sets a value that indicates the maximum number of visible rows in the editor's
drop- down list.

Type Description

Long A long expression that indicates the maximum number of
visible rows in the editor's drop- down list.

Use the DropDownRows property to specify the maximum number of visible rows in the
editor's drop-down list. By default, the DropDownRows property is set to 7. The
DropDownRows property has effect for the following types: DropDownType,
DropDownListType, PickEditType, CheckListType and FontType.

property Editor.DropDownVisible as Boolean
Retrieves or sets a value that indicates whether the editor's drop down button is visible or
hidden.

Type Description

Boolean A boolean value that indicates whether the editor's drop
down button is visible or hidden.

By default, the DropDownVisible property is True. Use the DropDownVisible property to
hide the editor's drop-down button. Use the ButtonWidth property to hide the editor buttons.

property Editor.EditType as EditTypeEnum
Retrieves or sets a value that indicates the type of the editor.

Type Description

EditTypeEnum An EditTypeEnum expression that specifies the type of the
editor.

Use the EditType property to set the editor's type. Use the Add method to specify the
editor's type when adding the editor to the control. The EditType property is set when using
the DataSource property according to the record set field's type. For instance, if we have
a record set field of date type, the EditType property is set to DateType. Use the
UserEditor method to specify the program identifier when EditType property is
UserEditorType. Use the UserEditorObject property to access the inner ActiveX control
when EditType property is UserEditorType. Use the Value property to specify the editor's
value. Use the Option property to define options for a specific type of editor. Use the
AddItem and InsertItem methods to add new items to the drop down portion of the editor.
Use the AddButton method to add new buttons to the editor.

The following VB sample adds an editor of drop down list type:

With Record1
 .BeginUpdate
 .BackColor = vbWhite
 .LabelSize = 80
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkQsuGQGJwl1w2Nh8Tf8ux9IwzAy2QAGWYGZy+JQGLwOTpeazGVy+k1GdxWgr2GlGP0mvyMbx2zx+unemze6jOf3sZ1Ob1ld3EZ4vG2cazwA5e1zE80nO2O+6fAy/DrHO2XK2WR53LifPm/R2GX3nL6uc4XYq3ajWIxWu2/z72P5uim286Wn6++5jrM28D2Ka5zjvA+jSsnBD4P8/MFwe+rIuC9UKQHAkILC8jIuXDjFPvCMKNjCypwLDD3KM0kPwTEEOs+3kRq3EsQKhFTvvjBEVRgsUTqjHj9s3EUdSFIciSLIaLB8lcko8kCRJIACSpRKKcOPIyYIojZ5nefjkgAeBnngH6NnAB8yTGAJwAOjZgTRNSNTZNKNkAAJgTc3s6AHKRgTyjc8TkD89zGH5wT4jJ8B+eFCgAfw/nyB7aOKgI"

 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .DropDownAutoWidth = False
 .AddItem 0, "Root 1", 1
 .InsertItem 1, "Child 1", 2, 0
 .InsertItem 2, "Child 2", 2, 0

 .AddItem 3, "Root 2", 1
 .InsertItem 4, "Child 1", 2, 3
 .InsertItem 5, "Child 2", 2, 3
 .ExpandAll
 End With
 .EndUpdate
End With

The following VC sample adds an editor of drop down list type:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
m_record.Images(COleVariant("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkQsuGQGJwl1w2Nh8Tf8ux9IwzAy2QAGWYGZy+JQGLwOTpeazGVy+k1GdxWgr2GlGP0mvyMbx2zx+unemze6jOf3sZ1Ob1ld3EZ4vG2cazwA5e1zE80nO2O+6fAy/DrHO2XK2WR53LifPm/R2GX3nL6uc4XYq3ajWIxWu2/z72P5uim286Wn6++5jrM28D2Ka5zjvA+jSsnBD4P8/MFwe+rIuC9UKQHAkILC8jIuXDjFPvCMKNjCypwLDD3KM0kPwTEEOs+3kRq3EsQKhFTvvjBEVRgsUTqjHj9s3EUdSFIciSLIaLB8lcko8kCRJIACSpRKKcOPIyYIojZ5nefjkgAeBnngH6NnAB8yTGAJwAOjZgTRNSNTZNKNkAAJgTc3s6AHKRgTyjc8TkD89zGH5wT4jJ8B+eFCgAfw/nyB7aOKgI"));

CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(0, "Root 1", COleVariant((long)1));
editor.InsertItem(1, "Child 1", COleVariant((long)2), COleVariant(long(0)));
editor.InsertItem(2, "Child 2", COleVariant((long)2), COleVariant(long(0)));
editor.AddItem(3, "Root 2", COleVariant((long)1));
editor.InsertItem(4, "Child 1", COleVariant((long)2), COleVariant(long(3)));
editor.InsertItem(5, "Child 2", COleVariant((long)2), COleVariant(long(3)));
editor.ExpandAll();
m_record.Refresh();

The following VC sample adds an Exontrol.ComboBox ActiveX control:

#import "c:\winnt\system32\ExComboBox.dll"
#import "c:\winnt\system32\ExRecord.dll"

BOOL sInstalled(BSTR strProgID)
{
 CLSID clsid = CLSID_NULL;
 HRESULT hResult = E_POINTER;
 if (SUCCEEDED(hResult = CLSIDFromProgID(strProgID, &clsid;)))
 {
 IDispatch* pObject = NULL;
 if (SUCCEEDED(hResult = CoCreateInstance(clsid, NULL, CLSCTX_ALL, IID_IDispatch,

https://exontrol.com/excombobox.jsp

reinterpret_cast(&pObject;))))
 {
 pObject->Release();
 return TRUE;
 }
 }
 return FALSE;
}

#define v(x) _variant_t(x)

 CString strObject("Exontrol.ComboBox");
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 m_record.BeginUpdate();
 m_record.SetLabelSize(110);
 CEditor editor = m_record.Add(COleVariant("ActiveX"),
EXRECORDLib::UserEditorType, vtMissing);
 editor.SetPosition(2);
 if (!isInstalled(strObject.AllocSysString()))
 {
 CString strFormat;
 strFormat.Format("\"%s\" is not installed.", (LPCSTR)strObject);
 editor.SetValue(COleVariant(strFormat));
 editor.SetForeColor(RGB(255, 0, 0));
 }
 else
 {
 // Creates the exComboBox control. https://www.exontrol.com/excombobox.jsp
 editor.UserEditor(strObject, "");
 if (EXCOMBOBOXLib::IComboBoxPtr spComboBox = editor.GetUserEditorObject())
 {
 spComboBox->BeginUpdate();
 spComboBox->BackColorEdit = GetSysColor(COLOR_MENU);
 spComboBox->IntegralHeight = true;
 spComboBox->ColumnAutoResize = true;
 spComboBox->LinesAtRoot = EXCOMBOBOXLib::exLinesAtRoot;
 spComboBox->MinHeightList = 164;

 spComboBox->MinWidthList = 264;
 spComboBox->MarkSearchColumn = false;
 spComboBox->DrawGridLines = EXCOMBOBOXLib::exAllLines;
 spComboBox->FilterBarDropDownHeight = -150;
 spComboBox->Alignment = EXCOMBOBOXLib::RightAlignment;
 EXCOMBOBOXLib::IColumnsPtr spColumns = spComboBox->Columns;
 spColumns->Add("Column 1");
 spColumns->Add("Column 2");
 EXCOMBOBOXLib::IColumnPtr spColumn = spColumns->Add("Column 3");
 spColumn->DisplayFilterButton = true;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 long h = spItems->AddItem(v("Root 1"));
 spItems->CellCaption[v(h)][v((long)1)] = v("SubChild 1");
 spItems->CellCaption[v(h)][v((long)2)] = v("SubChild 2");
 long h1 = spItems->InsertItem(h, vtMissing, v("Child 1"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 1.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 1.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 h1 = spItems->InsertItem(h, vtMissing, v("Child 2"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 2.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 2.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 spItems->put_ExpandItem(h, TRUE);

 h = spItems->AddItem(v("Root 2"));
 spItems->CellCaption[v(h)][v((long)1)] = v("SubChild 1");
 spItems->CellCaption[v(h)][v((long)2)] = v("SubChild 2");
 h1 = spItems->InsertItem(h, vtMissing, v("Child 1"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 1.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 1.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 h1 = spItems->InsertItem(h, vtMissing, v("Child 2"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 2.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 2.2");

 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 spItems->put_ExpandItem(h, TRUE);

 spComboBox->Value = "Root 1";
 spComboBox->EndUpdate();

 }
 }
 m_record.EndUpdate();

The following VB sample adds a Forms.ComboBox ActiveX control:

 With Record1
 .BeginUpdate
 With .Add("ActiveX", EXRECORDLibCtl.UserEditorType)
 .UserEditor "Forms.ComboBox.1", ""
 With .UserEditorObject()
 .AddItem "Item 1"
 .AddItem "Item 2"
 End With
 End With
 .EndUpdate
End With

method Editor.ExpandAll ()
Expands all items in the editor's list.

Type Description

The ExapndAll method expands all items in the editor's drop down list. Use the InsertItem
method to insert child items to the editor's drop down list. Use the ExpandItem method to
expand programmatically an item. The ExpandAll method has effect only if the EditType
property is DropDownListType. Use the DropDownAutoWidth property to let the control
computes the width of the drop down portion so all items hit the drop down client's area.

The following VB sample expands all items in the DropDownListType editor:

With Record1
 .BeginUpdate
 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .DropDownAutoWidth = False
 .AddItem 0, "Root 1"
 .InsertItem 1, "Child 1", , 0
 .InsertItem 2, "Child 2", , 0
 .InsertItem 3, "SubChild 2.1", , 2
 .InsertItem 4, "SubChild 2.2", , 2
 .AddItem 5, "Root 2"
 .InsertItem 6, "Child 1", , 5
 .InsertItem 7, "Child 2", , 5
 .InsertItem 8, "SubChild 2.1", , 6
 .InsertItem 9, "SubChild 2.2", , 6
 .ExpandAll
 .Value = 6
 End With
 .EndUpdate
End With

The following VC sample expands all items in a DropDownListType editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(0, "Root 1", vtMissing);
editor.InsertItem(1, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(3, "SubChild 2.1", vtMissing, COleVariant(long(2)));
editor.InsertItem(4, "SubChild 2.2", vtMissing, COleVariant(long(2)));
editor.AddItem(5, "Root 2", vtMissing);
editor.InsertItem(6, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(7, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(8, "SubChild 1.1", vtMissing, COleVariant(long(6)));
editor.InsertItem(9, "SubChild 1.2", vtMissing, COleVariant(long(6)));
editor.SetValue(COleVariant((long)6));
editor.ExpandAll();

property Editor.ExpandItem(Value as Variant) as Boolean
Expandes or collapses an item in the editor's list.

Type Description

Value as Variant
A long expression that indicates the value of the item being
expanded, a string expression that indicates the caption of
the item being expanded.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

By default, the items are collapsed. Use the ExpandItem to expand a specified item. Use
the ExpandAll method to expand all items in the editor. Use the InsertItem method to insert
a child item to your drop down editor. The ExpandItem property has effect only if the
EditType property is DropDownListType.

The following VB sample expands all items in the DropDownListType editor:

With Record1
 .BeginUpdate
 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .DropDownAutoWidth = False
 .AddItem 0, "Root 1"
 .InsertItem 1, "Child 1", , 0
 .InsertItem 2, "Child 2", , 0
 .InsertItem 3, "SubChild 2.1", , 2
 .InsertItem 4, "SubChild 2.2", , 2
 .AddItem 5, "Root 2"
 .InsertItem 6, "Child 1", , 5
 .InsertItem 7, "Child 2", , 5
 .InsertItem 8, "SubChild 2.1", , 6
 .InsertItem 9, "SubChild 2.2", , 6
 .ExpandAll

 .Value = 6
 End With
 .EndUpdate
End With

The following VC sample expands all items in a DropDownListType editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(0, "Root 1", vtMissing);
editor.InsertItem(1, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(3, "SubChild 2.1", vtMissing, COleVariant(long(2)));
editor.InsertItem(4, "SubChild 2.2", vtMissing, COleVariant(long(2)));
editor.AddItem(5, "Root 2", vtMissing);
editor.InsertItem(6, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(7, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(8, "SubChild 1.1", vtMissing, COleVariant(long(6)));
editor.InsertItem(9, "SubChild 1.2", vtMissing, COleVariant(long(6)));
editor.SetValue(COleVariant((long)6));
editor.ExpandAll();

property Editor.FindItem (Value as Variant) as Variant
Finds an item given its value or caption.

Type Description

Value as Variant
A long expression that indicates the value of the item being
searched, a string expression that indicates the caption of
the item being searched.

Variant
A string expression that indicates the caption of the item, if
the Value is a long expression, a long expression that
indicates the item's value if Value is a string expression.

Use the FindItem property look for an item in the drop down list editor. The FindItem
property retrieves an empty (VT_EMPTY) value if no item is found. Use the AddItem or
InsertItem method to add new items to the drop down list editor.

The following VB sample prints the caption of the item with the value 6:

With Record1
 .BeginUpdate
 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .DropDownAutoWidth = False
 .AddItem 0, "Root 1"
 .InsertItem 1, "Child 1", , 0
 .InsertItem 2, "Child 2", , 0
 .InsertItem 3, "SubChild 2.1", , 2
 .InsertItem 4, "SubChild 2.2", , 2
 .AddItem 5, "Root 2"
 .InsertItem 6, "Child 1", , 5
 .InsertItem 7, "Child 2", , 5
 .InsertItem 8, "SubChild 2.1", , 6
 .InsertItem 9, "SubChild 2.2", , 6
 Debug.Print .FindItem(6)
 End With
 .EndUpdate
End With

The sample displays the "Child 1" string that's the caption for the item with the value 6.

The following VB sample displays the value of the item with the caption "SubChild 2.1":

With Record1
 .BeginUpdate
 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .DropDownAutoWidth = False
 .AddItem 0, "Root 1"
 .InsertItem 1, "Child 1", , 0
 .InsertItem 2, "Child 2", , 0
 .InsertItem 3, "SubChild 2.1", , 2
 .InsertItem 4, "SubChild 2.2", , 2
 .AddItem 5, "Root 2"
 .InsertItem 6, "Child 1", , 5
 .InsertItem 7, "Child 2", , 5
 .InsertItem 8, "SubChild 2.1", , 6
 .InsertItem 9, "SubChild 2.2", , 6
 Debug.Print .FindItem("SubChild 2.1")
 End With
 .EndUpdate
End With

The sample displays 3 as being the value of the "SubChild 2.1" item.

The following VC sample looks for the item with the value 6:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

COleVariant vtMissing; vtMissing.vt = VT_ERROR;

CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(0, "Root 1", vtMissing);
editor.InsertItem(1, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(3, "SubChild 2.1", vtMissing, COleVariant(long(2)));
editor.InsertItem(4, "SubChild 2.2", vtMissing, COleVariant(long(2)));
editor.AddItem(5, "Root 2", vtMissing);
editor.InsertItem(6, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(7, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(8, "SubChild 1.1", vtMissing, COleVariant(long(6)));
editor.InsertItem(9, "SubChild 1.2", vtMissing, COleVariant(long(6)));

COleVariant vtItem = editor.GetFindItem(COleVariant((long)6));
OutputDebugString(V2S(&vtItem));

The sample displays in the output window the "Child 1" string that indicates the caption of
the item with the value 6.

The following VC sample looks for an item given its caption:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(0, "Root 1", vtMissing);
editor.InsertItem(1, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(3, "SubChild 2.1", vtMissing, COleVariant(long(2)));
editor.InsertItem(4, "SubChild 2.2", vtMissing, COleVariant(long(2)));
editor.AddItem(5, "Root 2", vtMissing);
editor.InsertItem(6, "Child 1", vtMissing, COleVariant(long(0)));
editor.InsertItem(7, "Child 2", vtMissing, COleVariant(long(0)));
editor.InsertItem(8, "SubChild 1.1", vtMissing, COleVariant(long(6)));
editor.InsertItem(9, "SubChild 1.2", vtMissing, COleVariant(long(6)));

COleVariant vtItem = editor.GetFindItem(COleVariant("SubChild 2.2"));

OutputDebugString(V2S(&vtItem));

The sample displays in the output window the 4 value that corresponds to the "SubChild
2.2" item.

property Editor.ForeColor as Color
Specifies the editor's foreground color.

Type Description

Color A color expression that indicates the editor's foreground
color.

Use the ForeColor property to specify the editor's foreground color. Use the
LabelForeColor property to specify the label's foreground color. Use the ForeColor property
to specify the foreground color for the entire control. Use the <fgcolor> HTML tag to
specify a foreground color for parts of the editor's label. Use the Label property to specify
the editor's label.

The following sample assign different background colors for label and the editor as seeing
in the screen shot:

With Record1
 .BeginUpdate
 With .Add("Label (red)", DropDownType)
 .Value = "Editor (blue)"
 .BackColor = vbBlue
 .LabelBackColor = vbRed
 .ForeColor = vbWhite
 .Position = 0
 End With
 .EndUpdate
End With

property Editor.Image as Long
Retrieves or sets a value that indicates the index of the editor's icon.

Type Description

Long
A long expression that indicates the index of the icon being
displayed in the editor's label. The control's list of icons is
1 based.

Use the Image property to assign a 16x16 icon to the editor. Use the Images method to
assign a list of icons to the control. By default, the Image property is 0, no icon is
displayed. Use the Picture property to assign a custom size picture to the editor. Use the
Value property to assign a value to the editor. Use the Label property to specify the label of
the editor. Use the tag to insert icons or custom size pictures inside the field's label.

The following VB sample loads a list of icons from a BASE64 encoded string:

Dim s As String
s =
"gD/bD/cAACBKIxJIwAAIBAEMiAAf7bABDAADAQCjEaAcdAkeAoIAoFAgEAoKA4HAwIBgKBgMBYKBYLBoOCQQmoRB0zCAWCARCYUCtDBgPC4YCwUDASoQUicVAIDkskAoJkYJCgNmgUrldr1fsFhsVjr7/YAACIIAAWABsAYBEQAAQRqN0f7EAAfh4BAsNv0Oh+BvcakwGA4IBMyu4AWoQuVRjEfkclvZ9AMaAAECIFCQhGJBAwTKJhA4iOIUGSBSKhBAjISxYIVKTReAkGZiOSCxIWo4ZDQlEwnFApFQ0Go2G44HI6IZEIpGI5IJJKKZUKpWK5YLJaMZkMpmM5oNJqOZ0Op2O54PJ6QaEQqGQ6IRKKSSTSiVSyXTCZTSiUZSFKUxTlQVJVFkWZaFqWxblwXJdGEYZiGKYxjmQZJlGkaZqGqaxrmwbJtHCcRxnIcpzHOdB0nUeJ5Hmeh6nse58HyfTFg+hy3r+v7BMGqQCsMxDFLwWoIseASSqkA6SAIhgBDvJoBgikzPAMCQgiiA4wjiCYRNSBAKCE1bYASEYZikeAKtwaIFAsEgaHCEp4t6DTguGFTjuS5bmue6Lpuq67su27rvvC8byvO9L1kE9r3vi+b6vu/L9v6/8AwHAsDwTBcGwfCMJwrC8Mw3DsPm1EcSxPFJ1RbF8YxnGptAABi3rkCMogAH4AH6J5JCoQo7h2FQUH8EwQAUKRgDuCp8kCf4AAKDJ8F6VI+CMfBvjGeBTGOYgmnCT4GHQGI"

s = s +
"jjmVZuG4JBrHiTJuj4Z4YHoNICDiNoUFWSBnHIOouFeTw8HWexLHwWJxD6LYrHgTxEnETovGOYZfBhBI+gKd4tBWPJvGiMQInyUwpGyW5CnsJR2DiXpDBiQQ8n2FQOBiRBiCiUork6I5NB4Zx0nSDZVjWaptHkW4kFaLIeG0bB+kCBwEGQEBBm4KRzg8Sp8gqcJvm0V5xEQeBXEGcAXkMbwVkMZYingMpTm0OovguNQwgUboWD2XAfDAMRYAsfIIiAFx8A4VADh0T54HkR5FA0XuHjuXhLG2YZtCKXhlhcW4/gaUQkG0ZQRkiFRWD4TBrgGMwLkkdvSAOL56iOGA7jiOJpHuJpahIVhtF0Wx5CUdQVHaL4qEEfwjnSO5iHeRhvAUfAZlObBvjwbZiCsPwOFoXpMGCN4anCEIyDgXZFEYAZsDMXBvkEX5aheQh/B4PBVmKTQzkMEgbi0PxDjiBpeB0JgOAYxfgvA8PYNA1xUBVB+C4J4UgGh8DmPERY9hyDwF+McP4hBvAjGiDUB4hQBB/A4NgHg0gsBpG8CIQQORJhOFuFgW4SQ/ghEgA8FokQNj9CwPkRIKgAjBGaHkC4wxngYHwLccILxggYHqA8Qg5hvDDCoNAdoUwtDxD+IgNw4xEmqGAGgNgRhwBMEkGwOAChAjCEeLwUgihvCPAaEsdQrQxAiHCFkZIRQ5hJDkKQeo5hpDuGe0Qdw3hCC5FGPYEYNR5DHHaP0fYTR1BfACD4DQwRTD4C0HEB4"

s = s +
"jB6jRBeNkc4VAHDWBsLEFw6R3B2E8DIAIChSDwAyIEEA4wKjiB8DRZwghDD4GWOIOolxDC8BKPAR4TRbi1HiIUbonA7iaGcK8PYtx2DWAKFULQWBoA/AKFQTgPBCAQIaEMGI4xhA8AqOMBocx7DEH6KMOgnQrjiBMLMUoIh0C6DwBIIYZhjDeG0O4HApgzAKEUMwIIVgzhWDmJwGQoh4iDGKGUXgOwtgNBeK4cY4heidBoOQcYvBOivGWHQXQSRXC7FKNkbgph3iiB8OsQY4xniJD8BsPwxQrheBwPEAgqxUB4FeEkaAYB+j9HUIEewixzhFCIN4AwOhkDrEiFwe47BcjxE2OJbgLxBC6BcLkP4eQwirHUNcKYXgnhxB8awRYfAmgzAQAIBAwAFCqFGKYBIPA9jWFOO0SodRSBoF+LAT4jA3AtDKLYag7QagLB2GENocQAgSCOCMZoPAlgTFCBwDwWAIBHGsL4KY0hfhsH2K8QT9BhjfAMPgEY7AYh4DUNALQwxVj4EeFEQAywGjMDiGwC4ERtj6EKMsAwcRPicEKB0ZoYxAjACeDAYISgqAoFOFIKoZB3DWEUDERo3ArhtDKLIb4ThiC3DOGMegHB8DTGON8MotwyjTBoEMEIHxetzEAAMXIhwOBzEKAoPo8g0izDwJsY4qRUjdEIIsJgawoi9FaMEZ4zR5h8FCLgZAGB9D1HWF8Hw2lnDBCeP4Dr0Q7hUEsA8BYaxWjiBwK5DITBoEtDONQLIzgKi"

s = s +
"BAIIgagHgEBvEwGQAACQQBXFcH4ZwPwJD8DmOMKguwPgRFYPQJoIwti6DCHUNYoB0iMA0E0Hw1BGAqCYMURIkRlgDEkRcDAr7hiAGKGAUA6gxBoFQHYJ4dx0CuHcJcK4shtD3A0LMbImxZB4F+OIGIgBZBZDQEsGw+QBgNGlQ8cIdgIjABIOcPwQRxgED6CsVsxhEg1HWN0FInwtC3FkIodgSAqAtFMOIUocAYBOD2OcGo1h+iaBYH8VYTx9jkCoJEYwkRXAVCEI8IAKxjiVCwMkLYkQXhBGwPMD4jAfizDuIAPwOBkhlDiOIX4DgsBqFuLYLI+wejEHiGUSgHAyhJAwNwU4AxBiRGAK8HYuGlA+AoN4dI1wrA3D8B0WouxDDiHAN4HgswLhpF4M4QACQZi4CMAdzoBw0BQAABgCo9MwBHD0NITwNwJhKOKOoJIJRaibCsPQDokwfBUGsH8cAnQvgLDqC0PQ0wrgaBoCgeILA0D6DlSoQgoW3gWFuF8SIiAAB1A4OMTg1RCNKH8B8dIXgejSH4FMMoahYhPDKAQKwthNBuGqBYKwuwFgfBsDgQSzhWA7F8PMCYjAyBgGuNQJ40hQi6H2PAP4vgVhpDMHgbIRxLBVFINUXIfgTi3DeEEOQrhjiJD4EsfojhfAfH4EkaY9RHg7CcI8Jg1h6hdB5wcHQ9ROBIBeAwM4GBhiwB8IMVA5AAANDiJoF47ALjgDwP4CMkwHj8G2LsJoGh3B0E0OIcQzg2i3CuF"

s = s +
"IUYqx3iWCEKcOwdhABGBwBwBgAAVjqDmNIVI6RfjqDKs4VwjQogMGGBcJoRhOAVBkgSBqBLBXgjBbA/gXBOhDgyA+BEg6lnACBrh8A1g5AaB9hdg8A3AaB5g2gIBbhLBpBpB5AsBwhehEAOERheBCFnAIgTgWAAADgcAKhYhWA/hggbhfAIg1gYgsQMA5BtBpAtgjAGBIhsgkgSAYgkhnA4gVBVg/B4A7B8hZhjgOgcBXhUBxlnBHgClnAeh1BsB9hBh0gugPhtgMhHBHh1gJhph9hnh+B+BihlBdgPAhh4gJh7A2BoA/ATB+AIBfh8A0hUhuAmgxhRguBWAAgNgmgFgIndgyArhGAjAFBKgAAKABgMBjAdgrhJAvg/BghvAKBqAeA1msAJhuhuhmg7BdAmhSAtA+hHBGgbAGhKAdgOhMAmArg3AtAhAtgTgTgCBAAkASAGA+g6A/B3hwgsBnlnICg/h6hrBchUgxh4gqARhkglBRglguhPh5gVgfhNglBmA7AthPgYg+A5Jdg/A8AlhxADBXgzhxBugFsph4A7hFhWgyAshzhqgaB2APhaBZBAAKhMgNgQAcBgBhhGAPAchmgwh0hPhYBPBJIPAGh8BXAPgKA1gUx4gDB+g6gFhGg5AlhjBJBzgpgwAggIhlBiAwgxgCg4EigAAZgGA+BjBfBjOdhyAMg4h/B2g5h9Ajh+BAgXB/BBh8hrgiA5hGA+AwBUgVBXhLAVBlhoh6B3g3gWhAgiguB0A6BS"

s = s +
"hPh9gbBth2gHASBPgwBvB1hoBNBbADACghv6gAAPA4FnBcAfhKgngvAkRlhsiAg=="

With Record1
 .BeginUpdate

 .BackColor = vbWhite
 .LabelSize = 166
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkbiAAQGJrOHwt7w7AyETf4AyDAymRxKApuHzkPyUuz2Ns2Vz+PyOk1GYxWLyeitOmy2wjOa2cZ1OWoGMw2T0ko0Mazutz2611W0nBy+42m95eR3O/jPE6OtjWZxGK5HS4tP4+e7u81Wa5m25075G+6m04HD9mT60Tz/bqWy5G32v30nvm/n9fu7DQva0rPOs7T5KY7MAvq08Fss3qZwQ6jZtXBMAvg5D9QMpzvuuzTrQ8/7JtlByZQhDK8PzEEBRDAbFQI7zyp1EsZOhEyvxdFccQ5FUdQKn0ZwjGqzP46ccvsqEhyDJMlSXJkmoyiwfJXKKPJAkSSAAkqUSynEeyclaKI2fh/nmd6NngH54GejZwAfNk1gOcEtgAcADmBOU6TsjZgAOQE5GAAc+z0AcsUFQiNT+QAPzWAZwB/MwBnxRyNHyB5/D+3boICA=="

 With .Add("Label", EXRECORDLibCtl.ReadOnly)
 .Image = 1
 .Picture = s
 .Value = "Editor"
 End With
 .EndUpdate
End With

The following VC sample loads a list of icons from a BASE64 encoded string:

CString s(
"gD/bD/cAACBKIxJIwAAIBAEMiAAf7bABDAADAQCjEaAcdAkeAoIAoFAgEAoKA4HAwIBgKBgMBYKBYLBoOCQQmoRB0zCAWCARCYUCtDBgPC4YCwUDASoQUicVAIDkskAoJkYJCgNmgUrldr1fsFhsVjr7/YAACIIAAWABsAYBEQAAQRqN0f7EAAfh4BAsNv0Oh+BvcakwGA4IBMyu4AWoQuVRjEfkclvZ9AMaAAECIFCQhGJBAwTKJhA4iOIUGSBSKhBAjISxYIVKTReAkGZiOSCxIWo4ZDQlEwnFApFQ0Go2G44HI6IZEIpGI5IJJKKZUKpWK5YLJaMZkMpmM5oNJqOZ0Op2O54PJ6QaEQqGQ6IRKKSSTSiVSyXTCZTSiUZSFKUxTlQVJVFkWZaFqWxblwXJdGEYZiGKYxjmQZJlGkaZqGqaxrmwbJtHCcRxnIcpzHOdB0nUeJ5Hmeh6nse58HyfTFg+hy3r+v7BMGqQCsMxDFLwWoIseASSqkA6SAIhgBDvJoBgikzPAMCQgiiA4wjiCYRNSBAKCE1bYASEYZikeAKtwaIFAsEgaHCEp4t6DTguGFTjuS5bmue6Lpuq67su27rvvC8byvO9L1kE9r3vi+b6vu/L9v6/8AwHAsDwTBcGwfCMJwrC8Mw3DsPm1EcSxPFJ1RbF8YxnGptAABi3rkCMogAH4AH6J5JCoQo7h2FQUH8EwQAUKRgDuCp8kCf4AAKDJ8F6VI+CMfBvjGeBTGOYgmnCT4GHQGI"
);
s = s +
"jjmVZuG4JBrHiTJuj4Z4YHoNICDiNoUFWSBnHIOouFeTw8HWexLHwWJxD6LYrHgTxEnETovGOYZfBhBI+gKd4tBWPJvGiMQInyUwpGyW5CnsJR2DiXpDBiQQ8n2FQOBiRBiCiUork6I5NB4Zx0nSDZVjWaptHkW4kFaLIeG0bB+kCBwEGQEBBm4KRzg8Sp8gqcJvm0V5xEQeBXEGcAXkMbwVkMZYingMpTm0OovguNQwgUboWD2XAfDAMRYAsfIIiAFx8A4VADh0T54HkR5FA0XuHjuXhLG2YZtCKXhlhcW4/gaUQkG0ZQRkiFRWD4TBrgGMwLkkdvSAOL56iOGA7jiOJpHuJpahIVhtF0Wx5CUdQVHaL4qEEfwjnSO5iHeRhvAUfAZlObBvjwbZiCsPwOFoXpMGCN4anCEIyDgXZFEYAZsDMXBvkEX5aheQh/B4PBVmKTQzkMEgbi0PxDjiBpeB0JgOAYxfgvA8PYNA1xUBVB+C4J4UgGh8DmPERY9hyDwF+McP4hBvAjGiDUB4hQBB/A4NgHg0gsBpG8CIQQORJhOFuFgW4SQ/ghEgA8FokQNj9CwPkRIKgAjBGaHkC4wxngYHwLccILxggYHqA8Qg5hvDDCoNAdoUwtDxD+IgNw4xEmqGAGgNgRhwBMEkGwOAChAjCEeLwUgihvCPAaEsdQrQxAiHCFkZIRQ5hJDkKQeo5hpDuGe0Qdw3hCC5FGPYEYNR5DHHaP0fYTR1BfACD4DQwRTD4C0HEB4";

s = s +
"jB6jRBeNkc4VAHDWBsLEFw6R3B2E8DIAIChSDwAyIEEA4wKjiB8DRZwghDD4GWOIOolxDC8BKPAR4TRbi1HiIUbonA7iaGcK8PYtx2DWAKFULQWBoA/AKFQTgPBCAQIaEMGI4xhA8AqOMBocx7DEH6KMOgnQrjiBMLMUoIh0C6DwBIIYZhjDeG0O4HApgzAKEUMwIIVgzhWDmJwGQoh4iDGKGUXgOwtgNBeK4cY4heidBoOQcYvBOivGWHQXQSRXC7FKNkbgph3iiB8OsQY4xniJD8BsPwxQrheBwPEAgqxUB4FeEkaAYB+j9HUIEewixzhFCIN4AwOhkDrEiFwe47BcjxE2OJbgLxBC6BcLkP4eQwirHUNcKYXgnhxB8awRYfAmgzAQAIBAwAFCqFGKYBIPA9jWFOO0SodRSBoF+LAT4jA3AtDKLYag7QagLB2GENocQAgSCOCMZoPAlgTFCBwDwWAIBHGsL4KY0hfhsH2K8QT9BhjfAMPgEY7AYh4DUNALQwxVj4EeFEQAywGjMDiGwC4ERtj6EKMsAwcRPicEKB0ZoYxAjACeDAYISgqAoFOFIKoZB3DWEUDERo3ArhtDKLIb4ThiC3DOGMegHB8DTGON8MotwyjTBoEMEIHxetzEAAMXIhwOBzEKAoPo8g0izDwJsY4qRUjdEIIsJgawoi9FaMEZ4zR5h8FCLgZAGB9D1HWF8Hw2lnDBCeP4Dr0Q7hUEsA8BYaxWjiBwK5DITBoEtDONQLIzgKi";

s = s +
"BAIIgagHgEBvEwGQAACQQBXFcH4ZwPwJD8DmOMKguwPgRFYPQJoIwti6DCHUNYoB0iMA0E0Hw1BGAqCYMURIkRlgDEkRcDAr7hiAGKGAUA6gxBoFQHYJ4dx0CuHcJcK4shtD3A0LMbImxZB4F+OIGIgBZBZDQEsGw+QBgNGlQ8cIdgIjABIOcPwQRxgED6CsVsxhEg1HWN0FInwtC3FkIodgSAqAtFMOIUocAYBOD2OcGo1h+iaBYH8VYTx9jkCoJEYwkRXAVCEI8IAKxjiVCwMkLYkQXhBGwPMD4jAfizDuIAPwOBkhlDiOIX4DgsBqFuLYLI+wejEHiGUSgHAyhJAwNwU4AxBiRGAK8HYuGlA+AoN4dI1wrA3D8B0WouxDDiHAN4HgswLhpF4M4QACQZi4CMAdzoBw0BQAABgCo9MwBHD0NITwNwJhKOKOoJIJRaibCsPQDokwfBUGsH8cAnQvgLDqC0PQ0wrgaBoCgeILA0D6DlSoQgoW3gWFuF8SIiAAB1A4OMTg1RCNKH8B8dIXgejSH4FMMoahYhPDKAQKwthNBuGqBYKwuwFgfBsDgQSzhWA7F8PMCYjAyBgGuNQJ40hQi6H2PAP4vgVhpDMHgbIRxLBVFINUXIfgTi3DeEEOQrhjiJD4EsfojhfAfH4EkaY9RHg7CcI8Jg1h6hdB5wcHQ9ROBIBeAwM4GBhiwB8IMVA5AAANDiJoF47ALjgDwP4CMkwHj8G2LsJoGh3B0E0OIcQzg2i3CuF";

s = s +
"IUYqx3iWCEKcOwdhABGBwBwBgAAVjqDmNIVI6RfjqDKs4VwjQogMGGBcJoRhOAVBkgSBqBLBXgjBbA/gXBOhDgyA+BEg6lnACBrh8A1g5AaB9hdg8A3AaB5g2gIBbhLBpBpB5AsBwhehEAOERheBCFnAIgTgWAAADgcAKhYhWA/hggbhfAIg1gYgsQMA5BtBpAtgjAGBIhsgkgSAYgkhnA4gVBVg/B4A7B8hZhjgOgcBXhUBxlnBHgClnAeh1BsB9hBh0gugPhtgMhHBHh1gJhph9hnh+B+BihlBdgPAhh4gJh7A2BoA/ATB+AIBfh8A0hUhuAmgxhRguBWAAgNgmgFgIndgyArhGAjAFBKgAAKABgMBjAdgrhJAvg/BghvAKBqAeA1msAJhuhuhmg7BdAmhSAtA+hHBGgbAGhKAdgOhMAmArg3AtAhAtgTgTgCBAAkASAGA+g6A/B3hwgsBnlnICg/h6hrBchUgxh4gqARhkglBRglguhPh5gVgfhNglBmA7AthPgYg+A5Jdg/A8AlhxADBXgzhxBugFsph4A7hFhWgyAshzhqgaB2APhaBZBAAKhMgNgQAcBgBhhGAPAchmgwh0hPhYBPBJIPAGh8BXAPgKA1gUx4gDB+g6gFhGg5AlhjBJBzgpgwAggIhlBiAwgxgCg4EigAAZgGA+BjBfBjOdhyAMg4h/B2g5h9Ajh+BAgXB/BBh8hrgiA5hGA+AwBUgVBXhLAVBlhoh6B3g3gWhAgiguB0A6BS";

s = s +
"hPh9gbBth2gHASBPgwBvB1hoBNBbADACghv6gAAPA4FnBcAfhKgngvAkRlhsiAg==";

m_record.BeginUpdate();
m_record.Images(COleVariant(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkbiAAQGJrOHwt7w7AyETf4AyDAymRxKApuHzkPyUuz2Ns2Vz+PyOk1GYxWLyeitOmy2wjOa2cZ1OWoGMw2T0ko0Mazutz2611W0nBy+42m95eR3O/jPE6OtjWZxGK5HS4tP4+e7u81Wa5m25075G+6m04HD9mT60Tz/bqWy5G32v30nvm/n9fu7DQva0rPOs7T5KY7MAvq08Fss3qZwQ6jZtXBMAvg5D9QMpzvuuzTrQ8/7JtlByZQhDK8PzEEBRDAbFQI7zyp1EsZOhEyvxdFccQ5FUdQKn0ZwjGqzP46ccvsqEhyDJMlSXJkmoyiwfJXKKPJAkSSAAkqUSynEeyclaKI2fh/nmd6NngH54GejZwAfNk1gOcEtgAcADmBOU6TsjZgAOQE5GAAc+z0AcsUFQiNT+QAPzWAZwB/MwBnxRyNHyB5/D+3boICA=="
));

m_record.SetBackColor(RGB(255,255,255));
m_record.SetLabelSize(166);
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Label"), /*ReadOnly*/ 0, vtMissing);
editor.SetImage(1);
editor.SetValue(COleVariant("Editor"));
editor.SetPicture(COleVariant((LPCTSTR)s));
m_record.EndUpdate();

property Editor.Index as Long
Retrieves the index of the editor.

Type Description
Long A long expression that specifies the index of the editor.

Use the Index property to retrieve the index of the editor in the control's collection of Editor
objects. Use the Key property to identify an editor. Use the Position property to specify the
editor's position. Use the Visible property to hide an editor. By default, the first editor added
has the Index property on 0. The Index property of the editor is updated as soon as an
editor is removed. Use the Item property to access an editor by index or by key. Use the
ItemByPosition property to access an editor giving its position.

method Editor.InsertItem (Value as Long, Caption as String, [Image as
Variant], [Parent as Variant])
Inserts a child item to the editor's list.

Type Description
Value as Long A long expression that indicates the value of the item

Caption as String
A string expression that indicates the caption of the item.
The Caption parameter may include built-in HTML tags like
explained bellow.

Image as Variant A long expression that indicates the index of the icon being
displayed.

Parent as Variant A long expression that defines the value of the parent
item.

Use the InsertItem to insert child items to the editor's predefined list. Use the AddItem
method to add new items to the editor's drop down list. Use the ExpandItem property to
expand an item. Use the ExpandAll items to expand all items. Use the ItemTooltip property
to assign a tooltip to a predefined item into a drop down editor. Use the RemoveItem
method to remove an item.

The following VB sample inserts few items to a drop down list editor:

With Record1
 .BeginUpdate
 .BackColor = vbWhite
 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

 .Images

("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA==")

 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .Image = 1
 .DropDownAutoWidth = False
 .AddItem 1, "CObject class", 1
 .InsertItem 2, "CCmdTarget class", 2, 1
 .InsertItem 3, "CWnd class", 3, 2
 .InsertItem 6, "S y n c", 1, 1
 .AddItem 4, "Exceptions", 1
 .InsertItem 7, "System Exceptions", 2, 4
 .AddItem 5, "File Services", 2
 .ExpandAll
 .Value = 3
 End With
 .EndUpdate
End With

The following VC sample inserts some items to a drop down list editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
m_record.BeginUpdate();
m_record.Images(COleVariant(
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI"
));
m_record.Images(COleVariant(
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA="
));
m_record.Images(COleVariant(
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA=="
));
m_record.SetBackColor(RGB(255,255,255));
CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(1, "CObject class", COleVariant((long)1));
editor.InsertItem(2, "CCmdTarget class", COleVariant((long)2), COleVariant((long)1));

editor.InsertItem(3, "CWnd class", COleVariant((long)3), COleVariant((long)2));
editor.InsertItem(6, "S y n c", COleVariant((long)1), COleVariant((long)1));
editor.AddItem(4, "Exceptions", COleVariant((long)1));
editor.InsertItem(7, "System Exceptions", COleVariant((long)2), COleVariant((long)4));
editor.AddItem(5, "File Services", COleVariant((long)2));
editor.ExpandAll();
editor.SetValue(COleVariant((long)3));
m_record.EndUpdate();

The Caption parameter may include the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires

about:blank

<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines

the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Editor.ItemToolTip(Value as Variant) as String
Gets or sets the text displayed when the mouse pointer hovers over a predefined item.

Type Description

Value as Variant

A long expression that indicates the value of the item
whose tooltip is accessed, a string expression that
indicates the caption of the item whose tooltip is
accessed.

String
A string expression that may include HTML tags, that
indicates the text being displayed when the mouse hovers
the item.

Use the ItemToolTip property to assign a tooltip for a drop down list value. Use the AddItem
or InsertItem methods to insert new items to the drop down predefined list. Use the ToolTip
property to assign a tooltip to an editor.

The following VB sample adds a tooltip for a predefined value:

With Record1
 .BeginUpdate
 .BackColor = vbWhite
 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA==")

 With .Add("DropDownList", EXRECORDLibCtl.DropDownListType)
 .Image = 1
 .DropDownAutoWidth = False
 .AddItem 1, "CObject class", 1
 .InsertItem 2, "CCmdTarget class", 2, 1
 .InsertItem 3, "CWnd class", 3, 2
 .ItemToolTip(3) = "A CWnd object is distinct from a Windows window, but the two
are tightly linked. A CWnd object is created or destroyed by the CWnd constructor and
destructor. The Windows window, on the other hand, is a data structure internal to
Windows that is created by a Create member function and destroyed by the CWnd virtual
destructor. The DestroyWindow function destroys the Windows window without
destroying the object. "
 .InsertItem 6, "S y n c", 1, 1
 .AddItem 4, "Exceptions", 1
 .InsertItem 7, "System Exceptions", 2, 4
 .AddItem 5, "File Services", 2
 .ExpandAll
 .Value = 3
 End With
 .EndUpdate
End With

The following VC sample adds a tooltip to a predefined value:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
m_record.BeginUpdate();
m_record.Images(COleVariant(
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI"
));
m_record.Images(COleVariant(
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA="
));
m_record.Images(COleVariant(
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA=="
));
m_record.SetBackColor(RGB(255,255,255));

CEditor editor = m_record.Add(COleVariant("DropDownList"), /*DropDownListType*/ 3,
vtMissing);
editor.SetDropDownAutoWidth(FALSE);
editor.AddItem(1, "CObject class", COleVariant((long)1));
editor.InsertItem(2, "CCmdTarget class", COleVariant((long)2), COleVariant((long)1));
editor.InsertItem(3, "CWnd class", COleVariant((long)3), COleVariant((long)2));
editor.SetItemToolTip(COleVariant((long)3), "A CWnd object is distinct from a Windows
window, but the two are tightly linked. A CWnd object is created or destroyed by the
CWnd constructor and destructor. The Windows window, on the other hand, is a data
structure internal to Windows that is created by a Create member function and destroyed
by the CWnd virtual destructor. The DestroyWindow function destroys the Windows
window without destroying the object. ");
editor.InsertItem(6, "S y n c", COleVariant((long)1), COleVariant((long)1));
editor.AddItem(4, "Exceptions", COleVariant((long)1));
editor.InsertItem(7, "System Exceptions", COleVariant((long)2), COleVariant((long)4));
editor.AddItem(5, "File Services", COleVariant((long)2));
editor.ExpandAll();
editor.SetValue(COleVariant((long)3));
m_record.EndUpdate();

The ItemToolTip property may include the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

about:blank

<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or

<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Editor.Key as String
Retrieves the editor's key.

Type Description
String A string expression that specifies the editor's key.

The Key property specifies the editor's key. The Key property is read only. The Key
parameter of the Add method indicates the key of the editor being added. Use the Item
property to access an editor by key or by its index. The Index property retrieves the index
of the editor. Use the Position property to specify the position of the editor.

property Editor.Label as String
Specifies the editor's label.

Type Description
String A string expression that indicates the label of the editor.

The Label property specifies the editor's label. Use the Label property to change the
editor's label. Use the LabelSize property to specify the width of the label. Use the Value
property to specify the value of the editor. Use the Caption property to retrieve the caption
of the editor. Use the Add method to specify the editor's label at adding time. Use the
Image property to assign an icon to an editor. Use the tag to insert icons inside the
field's label. Use the Picture property to assign a picture to an editor. Use the
LabelForeColor property to specify the label's foreground color. Use the LabelBackColor
property to specify the label's background color. Use the LabelAlignment property to align
the label.

The Label property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The

about:blank

rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra

FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Editor.LabelAlignment as AlignmentEnum
Specifies the alignment of the label relative to the field.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the label's
alignment.

Use the LabelAlignment property to align the label. By default, the label is aligned to the
left.

property Editor.LabelBackColor as Color
Specifies the label's background color.

Type Description

Color A color expression that indicates the label's background
color.

Use the LabelBackColor property to change the background color of the label of the editor.
Use the BackColor property to change the editor's background color. Use the ForeColor
property to change the editor's foreground color. Use the <bgcolor> HTML tag to specify a
background color for parts of the editor's label. Use the Label property to specify the
editor's label. Use the BackColor property to specify the control's background color.

The following sample assign different background colors for label and the editor as seeing
in the screen shot:

With Record1
 .BeginUpdate
 With .Add("Label (red)", DropDownType)
 .Value = "Editor (blue)"
 .BackColor = vbBlue
 .LabelBackColor = vbRed
 .ForeColor = vbWhite
 .Position = 0
 End With
 .EndUpdate
End With

property Editor.LabelForeColor as Color
Specifies the label's foreground color.

Type Description

Color A color expression that specifies the editor's label
foreground color.

Use the LabelForeColor property to specify the label's foreground color. Use the ForeColor
property to specify the editor's foreground color. Use the ForeColor property to specify the
foreground color for the entire control. Use the <fgcolor> HTML tag to specify a foreground
color for parts of the editor's label. Use the Label property to specify the editor's label. Use
the LabelBackColor property to specify the background color of the editor's label.

The following sample assign different background colors for label and the editor as seeing
in the screen shot:

With Record1
 .BeginUpdate
 With .Add("Label (red)", DropDownType)
 .Value = "Editor (blue)"
 .BackColor = vbBlue
 .LabelBackColor = vbRed
 .ForeColor = vbWhite
 .Position = 0
 End With
 .EndUpdate
End With

property Editor.Locked as Boolean
Determines whether the editor is locked or unlocked.

Type Description

Boolean A boolean expression that indicates whether the editor is
locked.

Use the Locked property to lock an editor. By default, the Locked property is False. If the
Locked property is True, the editor is locked. For instance, if the EditType property is
EditType, and Locked property is True, the edit control is read-only, and so the user can
type new text inside. Use the Visible property to hide the editor. Use the Enabled property
to disable the control.

property Editor.Mask as String
Retrieves or sets a value that indicates the mask used by the editor.

Type Description
String A string expression that defines the editor's mask.

Use the Mask property to filter characters during data input. Use the Mask property to
control the entry of many types of formatted information such as telephone numbers, social
security numbers, IP addresses, license keys etc. The Mask property has effect for the
following edit types: DropDownType, SpinType, DateType, MaskType, FontType,
PickEditType. Call the Refresh method to update the editor's mask.

Use the MaskChar property to change the masking character. If the Mask property is
empty no filter is applied. The Mask property is composed by a combination of regular
characters, literal escape characters, and masking characters. The Mask property can
contain also alternative characters, or range rules. A literal escape character is preceded
by a \ character, and it is used to display a character that is used in masking rules. Here's
the list of all rules and masking characters:

Rule Name Description
Digit Masks a digit character. [0-9]
x Hexa Lower Masks a lower hexa character. [0-9],[a-f]
X Hexa Upper Masks a upper hexa character. [0-9],[A-F]
A AlphaNumeric Masks a letter or a digit. [0-9], [a-z], [A-Z]
? Alphabetic Masks a letter. [a-z],[A-Z]

< Alphabetic
Lower Masks a lower letter. [a-z]

> Alphabetic
Upper Masks an upper letter. [A-Z]

* Any Mask any combination of characters.

\ Literal
Escape

Displays any masking characters. The following combinations
are valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[

{nMin,nMax} Range
Masks a number in a range. The nMin and nMax values should
be numbers. For instance the mask {0,255} will mask any
number between 0 and 255.

[...] Alternative Masks any characters that are contaied by brackets []. For
instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following VB sample adds an IP editor:

With Record1
 .BeginUpdate
 With .Add("IP", EXRECORDLibCtl.MaskType)
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 .Value = "193.226.40.161"
 End With
 .EndUpdate
End With

The following VC sample adds a Phone editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Phone"), /*MaskType*/ 8, vtMissing);
editor.SetMask("(###) ### - ####");
editor.SetValue(COleVariant("(0744) 845 - 2835"));
m_record.Refresh();

property Editor.MaskChar as Long
Retrieves or sets a value that indicates the character used for masking.

Type Description

Long A long expression that indicates the ASCII code for the
masking character.

Use the MaskChar property to change the default masking character, which is '_'. The
MaskChar property has effect only if the Mask property is not empty, and the mask is
applicable to the editor's type. Use the Mask property to specify the editor's mask.

property Editor.Numeric as NumericEnum
Specifies whether the editor enables numeric values only.

Type Description

NumericEnum A NumericEnum expression that indicates whether integer
or floating point numbers are allowed.

The Numeric property has effect only if the editor contains an edit box. Use the Numeric
property to add intelligent input filtering for integer, or floating points numbers. Use the
exSpinStep option to specify the proposed change when user clicks a spin control, if the
cell's editor is of SpinType type. Use the exEditDecimaSymbol option to specify the symbol
being used by decimal value while editing a floating point number.

property Editor.Option(Name as EditorOptionEnum) as Variant
Specifies an option for the editor.

Type Description

Name as EditorOptionEnum An EditorOptionEnum expression that indicates the editor's
option being changed.

Variant A Variant expression that indicates the value for editor's
option

Use the Option property to change the options for an editor.

The following VB sample adds a password editor:

 With Record1
 .BeginUpdate
 With .Add("Password", EXRECORDLibCtl.EditType)
 .Option(exEditPassword) = True
 .Value = "pass"
 End With
 .EndUpdate
End With

The following VC sample adds a password editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Password"), /*EditType*/ 1, vtMissing);
editor.SetOption(/*exEditPassword*/ 18, COleVariant((long)TRUE));
editor.SetValue(COleVariant("pass"));

property Editor.PartialCheck as Boolean
Retrieves or sets a value that indicates whether the associated check box has two or three
states.

Type Description

Boolean A boolean expression that indicates whether the
associated check box has two or three states.

property Editor.Picture as Variant
Assigns a custom size picture to an editor.

Type Description

Variant

A Picture object that indicates the picture being assigned,
a string expression that may indicate the path to a picture
file or a string expression that indicates the base64
encoded string that holds a picture object. Use the
eximages tool to save your picture as base64 encoded
format.

The Picture property assigns a custom size picture to an editor. Use the Image property to
assign an icon to the editor. The picture is displayed on the editor's label, if it's width is less
that the label's width. Use the LabelSize property to enlarge the label's size. Use the Picture
property to display a picture to the control's background. You can load a transparent picture
(a GIF file with transparency but set) in order to display a transparent picture.

The following VB sample loads a list of icons from a BASE64 encoded string:

Dim s As String
s =
"gD/bD/cAACBKIxJIwAAIBAEMiAAf7bABDAADAQCjEaAcdAkeAoIAoFAgEAoKA4HAwIBgKBgMBYKBYLBoOCQQmoRB0zCAWCARCYUCtDBgPC4YCwUDASoQUicVAIDkskAoJkYJCgNmgUrldr1fsFhsVjr7/YAACIIAAWABsAYBEQAAQRqN0f7EAAfh4BAsNv0Oh+BvcakwGA4IBMyu4AWoQuVRjEfkclvZ9AMaAAECIFCQhGJBAwTKJhA4iOIUGSBSKhBAjISxYIVKTReAkGZiOSCxIWo4ZDQlEwnFApFQ0Go2G44HI6IZEIpGI5IJJKKZUKpWK5YLJaMZkMpmM5oNJqOZ0Op2O54PJ6QaEQqGQ6IRKKSSTSiVSyXTCZTSiUZSFKUxTlQVJVFkWZaFqWxblwXJdGEYZiGKYxjmQZJlGkaZqGqaxrmwbJtHCcRxnIcpzHOdB0nUeJ5Hmeh6nse58HyfTFg+hy3r+v7BMGqQCsMxDFLwWoIseASSqkA6SAIhgBDvJoBgikzPAMCQgiiA4wjiCYRNSBAKCE1bYASEYZikeAKtwaIFAsEgaHCEp4t6DTguGFTjuS5bmue6Lpuq67su27rvvC8byvO9L1kE9r3vi+b6vu/L9v6/8AwHAsDwTBcGwfCMJwrC8Mw3DsPm1EcSxPFJ1RbF8YxnGptAABi3rkCMogAH4AH6J5JCoQo7h2FQUH8EwQAUKRgDuCp8kCf4AAKDJ8F6VI+CMfBvjGeBTGOYgmnCT4GHQGI"

s = s +
"jjmVZuG4JBrHiTJuj4Z4YHoNICDiNoUFWSBnHIOouFeTw8HWexLHwWJxD6LYrHgTxEnETovGOYZfBhBI+gKd4tBWPJvGiMQInyUwpGyW5CnsJR2DiXpDBiQQ8n2FQOBiRBiCiUork6I5NB4Zx0nSDZVjWaptHkW4kFaLIeG0bB+kCBwEGQEBBm4KRzg8Sp8gqcJvm0V5xEQeBXEGcAXkMbwVkMZYingMpTm0OovguNQwgUboWD2XAfDAMRYAsfIIiAFx8A4VADh0T54HkR5FA0XuHjuXhLG2YZtCKXhlhcW4/gaUQkG0ZQRkiFRWD4TBrgGMwLkkdvSAOL56iOGA7jiOJpHuJpahIVhtF0Wx5CUdQVHaL4qEEfwjnSO5iHeRhvAUfAZlObBvjwbZiCsPwOFoXpMGCN4anCEIyDgXZFEYAZsDMXBvkEX5aheQh/B4PBVmKTQzkMEgbi0PxDjiBpeB0JgOAYxfgvA8PYNA1xUBVB+C4J4UgGh8DmPERY9hyDwF+McP4hBvAjGiDUB4hQBB/A4NgHg0gsBpG8CIQQORJhOFuFgW4SQ/ghEgA8FokQNj9CwPkRIKgAjBGaHkC4wxngYHwLccILxggYHqA8Qg5hvDDCoNAdoUwtDxD+IgNw4xEmqGAGgNgRhwBMEkGwOAChAjCEeLwUgihvCPAaEsdQrQxAiHCFkZIRQ5hJDkKQeo5hpDuGe0Qdw3hCC5FGPYEYNR5DHHaP0fYTR1BfACD4DQwRTD4C0HEB4"

s = s +
"jB6jRBeNkc4VAHDWBsLEFw6R3B2E8DIAIChSDwAyIEEA4wKjiB8DRZwghDD4GWOIOolxDC8BKPAR4TRbi1HiIUbonA7iaGcK8PYtx2DWAKFULQWBoA/AKFQTgPBCAQIaEMGI4xhA8AqOMBocx7DEH6KMOgnQrjiBMLMUoIh0C6DwBIIYZhjDeG0O4HApgzAKEUMwIIVgzhWDmJwGQoh4iDGKGUXgOwtgNBeK4cY4heidBoOQcYvBOivGWHQXQSRXC7FKNkbgph3iiB8OsQY4xniJD8BsPwxQrheBwPEAgqxUB4FeEkaAYB+j9HUIEewixzhFCIN4AwOhkDrEiFwe47BcjxE2OJbgLxBC6BcLkP4eQwirHUNcKYXgnhxB8awRYfAmgzAQAIBAwAFCqFGKYBIPA9jWFOO0SodRSBoF+LAT4jA3AtDKLYag7QagLB2GENocQAgSCOCMZoPAlgTFCBwDwWAIBHGsL4KY0hfhsH2K8QT9BhjfAMPgEY7AYh4DUNALQwxVj4EeFEQAywGjMDiGwC4ERtj6EKMsAwcRPicEKB0ZoYxAjACeDAYISgqAoFOFIKoZB3DWEUDERo3ArhtDKLIb4ThiC3DOGMegHB8DTGON8MotwyjTBoEMEIHxetzEAAMXIhwOBzEKAoPo8g0izDwJsY4qRUjdEIIsJgawoi9FaMEZ4zR5h8FCLgZAGB9D1HWF8Hw2lnDBCeP4Dr0Q7hUEsA8BYaxWjiBwK5DITBoEtDONQLIzgKi"

s = s +
"BAIIgagHgEBvEwGQAACQQBXFcH4ZwPwJD8DmOMKguwPgRFYPQJoIwti6DCHUNYoB0iMA0E0Hw1BGAqCYMURIkRlgDEkRcDAr7hiAGKGAUA6gxBoFQHYJ4dx0CuHcJcK4shtD3A0LMbImxZB4F+OIGIgBZBZDQEsGw+QBgNGlQ8cIdgIjABIOcPwQRxgED6CsVsxhEg1HWN0FInwtC3FkIodgSAqAtFMOIUocAYBOD2OcGo1h+iaBYH8VYTx9jkCoJEYwkRXAVCEI8IAKxjiVCwMkLYkQXhBGwPMD4jAfizDuIAPwOBkhlDiOIX4DgsBqFuLYLI+wejEHiGUSgHAyhJAwNwU4AxBiRGAK8HYuGlA+AoN4dI1wrA3D8B0WouxDDiHAN4HgswLhpF4M4QACQZi4CMAdzoBw0BQAABgCo9MwBHD0NITwNwJhKOKOoJIJRaibCsPQDokwfBUGsH8cAnQvgLDqC0PQ0wrgaBoCgeILA0D6DlSoQgoW3gWFuF8SIiAAB1A4OMTg1RCNKH8B8dIXgejSH4FMMoahYhPDKAQKwthNBuGqBYKwuwFgfBsDgQSzhWA7F8PMCYjAyBgGuNQJ40hQi6H2PAP4vgVhpDMHgbIRxLBVFINUXIfgTi3DeEEOQrhjiJD4EsfojhfAfH4EkaY9RHg7CcI8Jg1h6hdB5wcHQ9ROBIBeAwM4GBhiwB8IMVA5AAANDiJoF47ALjgDwP4CMkwHj8G2LsJoGh3B0E0OIcQzg2i3CuF"

s = s +
"IUYqx3iWCEKcOwdhABGBwBwBgAAVjqDmNIVI6RfjqDKs4VwjQogMGGBcJoRhOAVBkgSBqBLBXgjBbA/gXBOhDgyA+BEg6lnACBrh8A1g5AaB9hdg8A3AaB5g2gIBbhLBpBpB5AsBwhehEAOERheBCFnAIgTgWAAADgcAKhYhWA/hggbhfAIg1gYgsQMA5BtBpAtgjAGBIhsgkgSAYgkhnA4gVBVg/B4A7B8hZhjgOgcBXhUBxlnBHgClnAeh1BsB9hBh0gugPhtgMhHBHh1gJhph9hnh+B+BihlBdgPAhh4gJh7A2BoA/ATB+AIBfh8A0hUhuAmgxhRguBWAAgNgmgFgIndgyArhGAjAFBKgAAKABgMBjAdgrhJAvg/BghvAKBqAeA1msAJhuhuhmg7BdAmhSAtA+hHBGgbAGhKAdgOhMAmArg3AtAhAtgTgTgCBAAkASAGA+g6A/B3hwgsBnlnICg/h6hrBchUgxh4gqARhkglBRglguhPh5gVgfhNglBmA7AthPgYg+A5Jdg/A8AlhxADBXgzhxBugFsph4A7hFhWgyAshzhqgaB2APhaBZBAAKhMgNgQAcBgBhhGAPAchmgwh0hPhYBPBJIPAGh8BXAPgKA1gUx4gDB+g6gFhGg5AlhjBJBzgpgwAggIhlBiAwgxgCg4EigAAZgGA+BjBfBjOdhyAMg4h/B2g5h9Ajh+BAgXB/BBh8hrgiA5hGA+AwBUgVBXhLAVBlhoh6B3g3gWhAgiguB0A6BS"

s = s +
"hPh9gbBth2gHASBPgwBvB1hoBNBbADACghv6gAAPA4FnBcAfhKgngvAkRlhsiAg=="

https://exontrol.com/eximages.jsp

With Record1
 .BeginUpdate
 .BackColor = vbWhite
 .LabelSize = 166
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkbiAAQGJrOHwt7w7AyETf4AyDAymRxKApuHzkPyUuz2Ns2Vz+PyOk1GYxWLyeitOmy2wjOa2cZ1OWoGMw2T0ko0Mazutz2611W0nBy+42m95eR3O/jPE6OtjWZxGK5HS4tP4+e7u81Wa5m25075G+6m04HD9mT60Tz/bqWy5G32v30nvm/n9fu7DQva0rPOs7T5KY7MAvq08Fss3qZwQ6jZtXBMAvg5D9QMpzvuuzTrQ8/7JtlByZQhDK8PzEEBRDAbFQI7zyp1EsZOhEyvxdFccQ5FUdQKn0ZwjGqzP46ccvsqEhyDJMlSXJkmoyiwfJXKKPJAkSSAAkqUSynEeyclaKI2fh/nmd6NngH54GejZwAfNk1gOcEtgAcADmBOU6TsjZgAOQE5GAAc+z0AcsUFQiNT+QAPzWAZwB/MwBnxRyNHyB5/D+3boICA=="

 With .Add("Label", EXRECORDLibCtl.ReadOnly)
 .Image = 1
 .Picture = s
 .Value = "Editor"
 End With
 .EndUpdate
End With

The following VC sample loads a list of icons from a BASE64 encoded string:

CString s(
"gD/bD/cAACBKIxJIwAAIBAEMiAAf7bABDAADAQCjEaAcdAkeAoIAoFAgEAoKA4HAwIBgKBgMBYKBYLBoOCQQmoRB0zCAWCARCYUCtDBgPC4YCwUDASoQUicVAIDkskAoJkYJCgNmgUrldr1fsFhsVjr7/YAACIIAAWABsAYBEQAAQRqN0f7EAAfh4BAsNv0Oh+BvcakwGA4IBMyu4AWoQuVRjEfkclvZ9AMaAAECIFCQhGJBAwTKJhA4iOIUGSBSKhBAjISxYIVKTReAkGZiOSCxIWo4ZDQlEwnFApFQ0Go2G44HI6IZEIpGI5IJJKKZUKpWK5YLJaMZkMpmM5oNJqOZ0Op2O54PJ6QaEQqGQ6IRKKSSTSiVSyXTCZTSiUZSFKUxTlQVJVFkWZaFqWxblwXJdGEYZiGKYxjmQZJlGkaZqGqaxrmwbJtHCcRxnIcpzHOdB0nUeJ5Hmeh6nse58HyfTFg+hy3r+v7BMGqQCsMxDFLwWoIseASSqkA6SAIhgBDvJoBgikzPAMCQgiiA4wjiCYRNSBAKCE1bYASEYZikeAKtwaIFAsEgaHCEp4t6DTguGFTjuS5bmue6Lpuq67su27rvvC8byvO9L1kE9r3vi+b6vu/L9v6/8AwHAsDwTBcGwfCMJwrC8Mw3DsPm1EcSxPFJ1RbF8YxnGptAABi3rkCMogAH4AH6J5JCoQo7h2FQUH8EwQAUKRgDuCp8kCf4AAKDJ8F6VI+CMfBvjGeBTGOYgmnCT4GHQGI"
);
s = s +
"jjmVZuG4JBrHiTJuj4Z4YHoNICDiNoUFWSBnHIOouFeTw8HWexLHwWJxD6LYrHgTxEnETovGOYZfBhBI+gKd4tBWPJvGiMQInyUwpGyW5CnsJR2DiXpDBiQQ8n2FQOBiRBiCiUork6I5NB4Zx0nSDZVjWaptHkW4kFaLIeG0bB+kCBwEGQEBBm4KRzg8Sp8gqcJvm0V5xEQeBXEGcAXkMbwVkMZYingMpTm0OovguNQwgUboWD2XAfDAMRYAsfIIiAFx8A4VADh0T54HkR5FA0XuHjuXhLG2YZtCKXhlhcW4/gaUQkG0ZQRkiFRWD4TBrgGMwLkkdvSAOL56iOGA7jiOJpHuJpahIVhtF0Wx5CUdQVHaL4qEEfwjnSO5iHeRhvAUfAZlObBvjwbZiCsPwOFoXpMGCN4anCEIyDgXZFEYAZsDMXBvkEX5aheQh/B4PBVmKTQzkMEgbi0PxDjiBpeB0JgOAYxfgvA8PYNA1xUBVB+C4J4UgGh8DmPERY9hyDwF+McP4hBvAjGiDUB4hQBB/A4NgHg0gsBpG8CIQQORJhOFuFgW4SQ/ghEgA8FokQNj9CwPkRIKgAjBGaHkC4wxngYHwLccILxggYHqA8Qg5hvDDCoNAdoUwtDxD+IgNw4xEmqGAGgNgRhwBMEkGwOAChAjCEeLwUgihvCPAaEsdQrQxAiHCFkZIRQ5hJDkKQeo5hpDuGe0Qdw3hCC5FGPYEYNR5DHHaP0fYTR1BfACD4DQwRTD4C0HEB4";

s = s +
"jB6jRBeNkc4VAHDWBsLEFw6R3B2E8DIAIChSDwAyIEEA4wKjiB8DRZwghDD4GWOIOolxDC8BKPAR4TRbi1HiIUbonA7iaGcK8PYtx2DWAKFULQWBoA/AKFQTgPBCAQIaEMGI4xhA8AqOMBocx7DEH6KMOgnQrjiBMLMUoIh0C6DwBIIYZhjDeG0O4HApgzAKEUMwIIVgzhWDmJwGQoh4iDGKGUXgOwtgNBeK4cY4heidBoOQcYvBOivGWHQXQSRXC7FKNkbgph3iiB8OsQY4xniJD8BsPwxQrheBwPEAgqxUB4FeEkaAYB+j9HUIEewixzhFCIN4AwOhkDrEiFwe47BcjxE2OJbgLxBC6BcLkP4eQwirHUNcKYXgnhxB8awRYfAmgzAQAIBAwAFCqFGKYBIPA9jWFOO0SodRSBoF+LAT4jA3AtDKLYag7QagLB2GENocQAgSCOCMZoPAlgTFCBwDwWAIBHGsL4KY0hfhsH2K8QT9BhjfAMPgEY7AYh4DUNALQwxVj4EeFEQAywGjMDiGwC4ERtj6EKMsAwcRPicEKB0ZoYxAjACeDAYISgqAoFOFIKoZB3DWEUDERo3ArhtDKLIb4ThiC3DOGMegHB8DTGON8MotwyjTBoEMEIHxetzEAAMXIhwOBzEKAoPo8g0izDwJsY4qRUjdEIIsJgawoi9FaMEZ4zR5h8FCLgZAGB9D1HWF8Hw2lnDBCeP4Dr0Q7hUEsA8BYaxWjiBwK5DITBoEtDONQLIzgKi";

s = s +
"BAIIgagHgEBvEwGQAACQQBXFcH4ZwPwJD8DmOMKguwPgRFYPQJoIwti6DCHUNYoB0iMA0E0Hw1BGAqCYMURIkRlgDEkRcDAr7hiAGKGAUA6gxBoFQHYJ4dx0CuHcJcK4shtD3A0LMbImxZB4F+OIGIgBZBZDQEsGw+QBgNGlQ8cIdgIjABIOcPwQRxgED6CsVsxhEg1HWN0FInwtC3FkIodgSAqAtFMOIUocAYBOD2OcGo1h+iaBYH8VYTx9jkCoJEYwkRXAVCEI8IAKxjiVCwMkLYkQXhBGwPMD4jAfizDuIAPwOBkhlDiOIX4DgsBqFuLYLI+wejEHiGUSgHAyhJAwNwU4AxBiRGAK8HYuGlA+AoN4dI1wrA3D8B0WouxDDiHAN4HgswLhpF4M4QACQZi4CMAdzoBw0BQAABgCo9MwBHD0NITwNwJhKOKOoJIJRaibCsPQDokwfBUGsH8cAnQvgLDqC0PQ0wrgaBoCgeILA0D6DlSoQgoW3gWFuF8SIiAAB1A4OMTg1RCNKH8B8dIXgejSH4FMMoahYhPDKAQKwthNBuGqBYKwuwFgfBsDgQSzhWA7F8PMCYjAyBgGuNQJ40hQi6H2PAP4vgVhpDMHgbIRxLBVFINUXIfgTi3DeEEOQrhjiJD4EsfojhfAfH4EkaY9RHg7CcI8Jg1h6hdB5wcHQ9ROBIBeAwM4GBhiwB8IMVA5AAANDiJoF47ALjgDwP4CMkwHj8G2LsJoGh3B0E0OIcQzg2i3CuF";

s = s +
"IUYqx3iWCEKcOwdhABGBwBwBgAAVjqDmNIVI6RfjqDKs4VwjQogMGGBcJoRhOAVBkgSBqBLBXgjBbA/gXBOhDgyA+BEg6lnACBrh8A1g5AaB9hdg8A3AaB5g2gIBbhLBpBpB5AsBwhehEAOERheBCFnAIgTgWAAADgcAKhYhWA/hggbhfAIg1gYgsQMA5BtBpAtgjAGBIhsgkgSAYgkhnA4gVBVg/B4A7B8hZhjgOgcBXhUBxlnBHgClnAeh1BsB9hBh0gugPhtgMhHBHh1gJhph9hnh+B+BihlBdgPAhh4gJh7A2BoA/ATB+AIBfh8A0hUhuAmgxhRguBWAAgNgmgFgIndgyArhGAjAFBKgAAKABgMBjAdgrhJAvg/BghvAKBqAeA1msAJhuhuhmg7BdAmhSAtA+hHBGgbAGhKAdgOhMAmArg3AtAhAtgTgTgCBAAkASAGA+g6A/B3hwgsBnlnICg/h6hrBchUgxh4gqARhkglBRglguhPh5gVgfhNglBmA7AthPgYg+A5Jdg/A8AlhxADBXgzhxBugFsph4A7hFhWgyAshzhqgaB2APhaBZBAAKhMgNgQAcBgBhhGAPAchmgwh0hPhYBPBJIPAGh8BXAPgKA1gUx4gDB+g6gFhGg5AlhjBJBzgpgwAggIhlBiAwgxgCg4EigAAZgGA+BjBfBjOdhyAMg4h/B2g5h9Ajh+BAgXB/BBh8hrgiA5hGA+AwBUgVBXhLAVBlhoh6B3g3gWhAgiguB0A6BS";

s = s +
"hPh9gbBth2gHASBPgwBvB1hoBNBbADACghv6gAAPA4FnBcAfhKgngvAkRlhsiAg==";

m_record.BeginUpdate();

m_record.Images(COleVariant(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkbiAAQGJrOHwt7w7AyETf4AyDAymRxKApuHzkPyUuz2Ns2Vz+PyOk1GYxWLyeitOmy2wjOa2cZ1OWoGMw2T0ko0Mazutz2611W0nBy+42m95eR3O/jPE6OtjWZxGK5HS4tP4+e7u81Wa5m25075G+6m04HD9mT60Tz/bqWy5G32v30nvm/n9fu7DQva0rPOs7T5KY7MAvq08Fss3qZwQ6jZtXBMAvg5D9QMpzvuuzTrQ8/7JtlByZQhDK8PzEEBRDAbFQI7zyp1EsZOhEyvxdFccQ5FUdQKn0ZwjGqzP46ccvsqEhyDJMlSXJkmoyiwfJXKKPJAkSSAAkqUSynEeyclaKI2fh/nmd6NngH54GejZwAfNk1gOcEtgAcADmBOU6TsjZgAOQE5GAAc+z0AcsUFQiNT+QAPzWAZwB/MwBnxRyNHyB5/D+3boICA=="
));
m_record.SetBackColor(RGB(255,255,255));
m_record.SetLabelSize(166);
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Label"), /*ReadOnly*/ 0, vtMissing);
editor.SetImage(1);
editor.SetValue(COleVariant("Editor"));
editor.SetPicture(COleVariant((LPCTSTR)s));
m_record.EndUpdate();

property Editor.PopupAppearance as InplaceAppearanceEnum
Retrieves or sets a value that indicates the drop-down window's appearance.

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
drop-down window's border style.

Use the PopupAppearance property to change the drop-down window's border style. Use
the Appearance property to define the editor's appearance.

property Editor.Position as Long
Retrieves or sets a value that indicates the editor's position.

Type Description
Long A long expression that indicates the position of the editor.

Use the Position property to change the editor's position. Use the ItemByPosition property
to access an Editor by its position. Use the Visible property to hide an editor. Use the Key
property to identify an editor.

method Editor.RemoveButton (Key as Variant)
Removes a button given its key.

Type Description

Key as Variant A string expression that indicates the key of the button
being removed.

Use the RemoveButton method to remove a single button. Use the AddButton method to
add multiple buttons to the editor. Use the ButtonWidth property to specify the width of the
buttons. The control fires the ButtonClick event when user clicks a button. Use the
ClearButtons property to clear the editor's collection of buttons.

method Editor.RemoveItem (Value as Long)
Removes an item from the editor's predefined values list.

Type Description

Value as Long
A long expression that indicates the index of the item being
removed, or a string expression that indicates the caption
of the item being removed.

Use the RemoveItem method to remove an item from the editor's predefined values list.
Use the ClearItems method to clear the entire list of editor items. Use the DropDownVisible
property to hide the editor's drop-down window. Use the Remove method to remove an
editor.

method Editor.SortItems ([Ascending as Variant], [Reserved as Variant])
Sorts the list of items in the editor.

Type Description

Ascending as Variant A boolean expression that indicates the sort order of the
items.

Reserved as Variant For future use only

Use the SortItems method to sort the items in a drop down editor. Use the AddItem or
InsertItem method to add new items to the control. Use the RemoveItem method to remove
an item. Use the ClearItems method to clear the items. Use the ExpandAll method to
expand all items.

property Editor.ToolTip as String
Specifies a tooltip being displayed when the cursor hover the editor's label.

Type Description
String A string expression that specifies the editor's tooltip.

The ToolTip property specifies the editor's tooltip. The editor's tooltip shows up when the
cursor hovers the editor. By default, the ToolTip property is "...". If the ToolTip property is
"..." the tooltip appears only if the Label property is not fully visible.

The ToolTip property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires

about:blank

<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines

the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Editor.UserData as Variant
Gets or sets the user-definable data for the current editor.

Type Description
Variant A Variant expression that specifies the editor's extra data.

Use the UserData property to associate an extra data to an editor. Use the Value property
to change the editor's value. Use the Label property to specify the editor's label. Use the
Caption property to get the editor's caption.

method Editor.UserEditor (ControlID as String, License as String)
Specifies the control's identifier and the control's runtime license key when EditType is
UserEditor.

Type Description

ControlID as String

A string expression that indicates the control's program
identifier. For instance, if you want to use a multiple
column combobox as an user editor, the control's identifier
could be: "Exontrol.ComboBox".

License as String
Optional. A string expression that indicates the runtime
license key in case is it required. It depends on what
control are you using.

The UserEditor property creates an editor that hosts an inner ActiveX control, based on the
ControlID parameter. The UserEditor property has effect only if the EditType property if
UserEditorType. Use the UserEditorObject property to access the newly created object.
The UserEditorObject property is nothing if the control wasn't able to create the user editor
based on the ControlID. Also, if the user control requires a runtime license key, and the
License parameter is empty or doesn't match, the UserEditorObject property is nothing.
The control fires the UserEditorOleEvent event each time when an user editor fires an
event.

The control supports ActiveX hosting, so you can insert any ActiveX component. The
ControlID must be formatted in one of the following ways:

A ProgID such as "Exontrol.ComboBox"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

The look and feel of the inner ActiveX control depends on the identifier you are
using, and the version of the library that implements the ActiveX control, so you
need to consult the documentation of the inner ActiveX control you are inserting
inside the exRecord control. Unfortunately, You need to contact the vendor for particular
ActiveX controls, because we can't provide documentation for any ActiveX control you might
use. We can provide documentation only for our components.

Use the UserEditor method to create an inner ActiveX control.

The following VB sample adds an Exontrol.ComboBox control and displays the events being
fired by inner ActiveX control:

Option Explicit

Private Function isInstalled(ByVal s As String) As Boolean
On Error GoTo Error
 CreateObject (s)
 isInstalled = True
 Exit Function
Error:
 isInstalled = False
End Function

Private Sub Form_Load()
 With Record1
 .BeginUpdate
 With .Add("ActiveX", UserEditorType)
 .Position = 2
 Dim progID As String
 progID = "Exontrol.ComboBox"
 If Not (isInstalled(progID)) Then
 .Value = """" & progID & """ is not installed."
 .ToolTip = .Value
 .ForeColor = vbRed
 Else

https://exontrol.com/excombobox.jsp

 .UserEditor progID, ""
 .LabelBackColor = SystemColorConstants.vbMenuBar
 ' Accesses the inside ActiveX control, in our case an ExComboBox control.
https://www.exontrol.com/excombobox.jsp
 With .UserEditorObject()
 .BeginUpdate
 .BackColorEdit = SystemColorConstants.vbMenuBar
 .IntegralHeight = True
 .ColumnAutoResize = True
 .LinesAtRoot = True
 .MinHeightList = 164
 .MinWidthList = 264
 .MarkSearchColumn = False
 .FilterBarDropDownHeight = -150
 .DrawGridLines = True
 .Alignment = 0
 With .Columns
 .Add "Column 1"
 .Add "Column 2"
 With .Add("Column 3")
 .DisplayFilterButton = True
 End With
 End With
 With .Items
 Dim h, h1
 h = .AddItem(Array("Root 1", "SubChild 1", "SubChild 2"))
 h1 = .InsertItem(h, , Array("Child 1", "SubChild 1.1", "SubChild 1.2"))
 .CellMerge(h1, 0) = 1
 .CellHasCheckBox(h1, 0) = True
 h1 = .InsertItem(h, , Array("Child 2", "SubChild 2.1", "SubChild 2.2"))
 .CellMerge(h1, 0) = 1
 .CellHasCheckBox(h1, 0) = True
 .ExpandItem(h) = True
 h = .AddItem(Array("Root 2", "SubChild 1", "SubChild 2"))
 h1 = .InsertItem(h, , Array("Child 1", "SubChild 1.1", "SubChild 1.2"))
 .CellMerge(h1, 0) = 1
 h1 = .InsertItem(h, , Array("Child 2", "SubChild 2.1", "SubChild 2.2"))

 .CellMerge(h1, 0) = 1
 .ExpandItem(h) = True
 End With
 .Value = "Root 1"
 .EndUpdate
 End With
 End If
 End With
 .EndUpdate
 End With
End Sub

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample adds an Exontrol.ComboBox control and displays the events being
fired by inner ActiveX control:

#import "c:\winnt\system32\ExComboBox.dll"
#import "c:\winnt\system32\ExRecord.dll"

CString strObject("Exontrol.ComboBox");
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
m_record.BeginUpdate();
m_record.SetLabelSize(110);
CEditor editor = m_record.Add(COleVariant("ActiveX"), EXRECORDLib::UserEditorType,

https://exontrol.com/excombobox.jsp

vtMissing);
editor.SetPosition(2);
if (!isInstalled(strObject.AllocSysString()))
{
 CString strFormat;
 strFormat.Format("\"%s\" is not installed.", (LPCSTR)strObject);
 editor.SetValue(COleVariant(strFormat));
 editor.SetForeColor(RGB(255, 0, 0));
}
else
{
 // Creates the exComboBox control. https://www.exontrol.com/excombobox.jsp
 editor.UserEditor(strObject, "");
 if (EXCOMBOBOXLib::IComboBoxPtr spComboBox = editor.GetUserEditorObject())
 {
 spComboBox->BeginUpdate();
 spComboBox->BackColorEdit = GetSysColor(COLOR_MENU);
 spComboBox->IntegralHeight = true;
 spComboBox->ColumnAutoResize = true;
 spComboBox->LinesAtRoot = EXCOMBOBOXLib::exLinesAtRoot;
 spComboBox->MinHeightList = 164;
 spComboBox->MinWidthList = 264;
 spComboBox->MarkSearchColumn = false;
 spComboBox->DrawGridLines = EXCOMBOBOXLib::exAllLines;
 spComboBox->FilterBarDropDownHeight = -150;
 spComboBox->Alignment = EXCOMBOBOXLib::RightAlignment;
 EXCOMBOBOXLib::IColumnsPtr spColumns = spComboBox->Columns;
 spColumns->Add("Column 1");
 spColumns->Add("Column 2");
 EXCOMBOBOXLib::IColumnPtr spColumn = spColumns->Add("Column 3");
 spColumn->DisplayFilterButton = true;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 long h = spItems->AddItem(v("Root 1"));
 spItems->CellCaption[v(h)][v((long)1)] = v("SubChild 1");
 spItems->CellCaption[v(h)][v((long)2)] = v("SubChild 2");
 long h1 = spItems->InsertItem(h, vtMissing, v("Child 1"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 1.1");

 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 1.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 h1 = spItems->InsertItem(h, vtMissing, v("Child 2"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 2.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 2.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 spItems->put_ExpandItem(h, TRUE);

 h = spItems->AddItem(v("Root 2"));
 spItems->CellCaption[v(h)][v((long)1)] = v("SubChild 1");
 spItems->CellCaption[v(h)][v((long)2)] = v("SubChild 2");
 h1 = spItems->InsertItem(h, vtMissing, v("Child 1"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 1.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 1.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 h1 = spItems->InsertItem(h, vtMissing, v("Child 2"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 2.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 2.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 spItems->put_ExpandItem(h, TRUE);

 spComboBox->Value = "Root 1";
 spComboBox->EndUpdate();

 }
}
m_record.EndUpdate();

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)

 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt;);
 }
 return szDefault;
}

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)
{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)
 {
 strOutput += "\tThe event has no arguments.";
 }
 else
 {
 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent-;>GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 OutputDebugString(strOutput);
}

In C++, the #import "path-to-ExRecord.dll" adds a new EXRECORDLib namespace that
includes definition for OleEvent and OleEventParam classes.

property Editor.UserEditorObject as Object
Gets the user editor object when EditType is UserEditor.

Type Description
Object An ActiveX object being used as an user editor.

Use the UserEditorOpen property to access to the inner ActiveX user editor. Use the
UserEditor property to initialize the inner ActiveX user editor. The UserEditorObject property
retrieves the ActiveX control created by the UserEditor method. The type of object returned
by the UserEditorObject depends on the ControlID parameter of the UserEditor method.
For instance, the type of the created object when UserEditor("Exontrol.ComboBox") is
called, is EXCOMBOBOXLibCtl.ComboBox. The UserEditorObject property gets nothing if
the UserEditor method fails to create the inner ActiveX control. The control fires the
UserEditorOleEvent event each time when an user editor fires an event.

property Editor.Value as Variant
Retrieves or sets the field's value.

Type Description
Variant A Variant expression that specifies the editor's value.

Use the Value property to get the editor's value. Use the Caption property to get the editor's
caption. The Caption property of the editor may be different than the Value property like
follows. For instance, if we have a DropDownListType editor, the Caption property gets the
caption of the item being selected, and the Value property gets a long expression that
identifies the value of the item. The Label property gets the editor's label. Use the FindItem
property to find an item based on its value. The Change event is fired when the user alters
the editor's content. Use the AddItem property to add predefined items to a drop down
editor (DropDownType, DropDownListType, PickEditType, and CheckListType). Use
the EditType property to change the type of the editor. Call the Refresh method to update
the editor's value, if it depends on a predefined list of items (drop down editors). The
Change event is called when the uses changes the value for an editor. If the control is
bounded to a recordset (DataSource property), the value of the field is automatically
updated in the recodset too.

The following VB sample prints the label, caption and the value of the editor from the
cursor:

Private Sub Record1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then
 Debug.Print "Label: " & e.Label & " Caption: """ & e.Caption & """ Value: " & e.Value
 End If
End Sub

The following VC sample prints the label, caption and the value of the editor from the
cursor:

void OnMouseMoveRecord1(short Button, short Shift, long X, long Y)
{
 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {

 TCHAR szOutput[1024];
 wsprintf(szOutput, "Label: %s Caption: \"%s\" Value: %s\n",
(LPCTSTR)editor.GetLabel(), (LPCTSTR)editor.GetCaption(), (LPCTSTR)V2S(
&editor.GetValue()));
 OutputDebugString(szOutput);
 }
}

property Editor.Visible as Boolean
Retrieves or sets a value that indicates whether the editor is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the editor is
visible or hidden.

Use the Visible property to hide an editor. Use the Position property to change the order of
the editors.

The following VB sample hides the "Handler" editor:

Record1("Handler").Visible = False

The following VC sample hides the "Handler" editor:

m_record.GetItem(COleVariant("Handler")).SetVisible(FALSE)

OleEvent object

The OleEvent object holds information about an event fired by an inner ActiveX control
hosted by an UserEditorType editor. The UserEditorOleEvent event is fired when an inner
ActiveX control fires an event.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

The following VB sample shows how to enumerate the arguments of an OLE event:

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample enumerates the arguments of an OLE event:

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)
{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)
 {
 strOutput += "\tThe event has no arguments.";
 }
 else
 {

 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent->GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 m_output = strOutput;
 UpdateData(FALSE);
}

The #import "c:\winnt\system32\ExRecord.dll" generates the EXRECORDLib namespace
that includes definitions for OleEvent and OleEventParam objects.

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the identifier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602.

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

The Name property indicates the name of the event. Use the ID property to specify a
specified even by its identifier. Use the ToString property to display information about an
OLE event. The ToString property displays the identifier of the event after the name of the
event in two [] brackets. For instance, the ToString property gets the "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed, so the identifier of the
KeyDown event being fired by the inside User editor is -602. The following VB sample
shows how to enumerate the arguments of an OLE event:

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample enumerates the arguments of an OLE event:

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)
{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)

 {
 strOutput += "\tThe event has no arguments.";
 }
 else
 {
 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent->GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 m_output = strOutput;
 UpdateData(FALSE);
}

The #import "c:\winnt\system32\ExRecord.dll" generates the EXRECORDLib namespace
that includes definitions for OleEvent and OleEventParam objects.

property OleEvent.Param (item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

item as Variant A long expression that indicates the argument's index or a
a string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

The following VB sample shows how to enumerate the arguments of an OLE event:

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample enumerates the arguments of an OLE event:

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)
{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)
 {

 strOutput += "\tThe event has no arguments.";
 }
 else
 {
 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent->GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 m_output = strOutput;
 UpdateData(FALSE);
}

The #import "c:\winnt\system32\ExRecord.dll" generates the EXRECORDLib namespace
that includes definitions for OleEvent and OleEventParam objects.

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object

The OleEventParam holds the name and the value for an event's argument. The
UserEditorOleEvent event is fired when an inner ActiveX control fires an event.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

The following VB sample shows how to enumerate the arguments of an OLE event:

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample enumerates the arguments of an OLE event:

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)
{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)
 {
 strOutput += "\tThe event has no arguments.";
 }
 else
 {

 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent->GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 m_output = strOutput;
 UpdateData(FALSE);
}

The #import "c:\winnt\system32\ExRecord.dll" generates the EXRECORDLib namespace
that includes definitions for OleEvent and OleEventParam objects.

property OleEventParam.Value as Variant

Specifies the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

The following VB sample shows how to enumerate the arguments of an OLE event:

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample enumerates the arguments of an OLE event:

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)
{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)
 {
 strOutput += "\tThe event has no arguments.";
 }
 else
 {

 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent->GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 m_output = strOutput;
 UpdateData(FALSE);
}

The #import "c:\winnt\system32\ExRecord.dll" generates the EXRECORDLib namespace
that includes definitions for OleEvent and OleEventParam objects.

Record object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {656D66AF-1E46-45E3-B1B5-FFE9FB353AC7}. The object's program identifier is: "Exontrol.Record".
The /COM object module is: "ExRecord.dll"

Exontrol's new exRecord control is a container component that displays a set of editors
added manually or bounded to a table in a database. The exRecord name comes from the
record, that's a set of fields that contain related information, in database type systems. The
exRecord significantly reduces development time of data components. The Record object
supports the following properties and methods:

Name Description

Add Adds an editor and returns a reference to the newly
created object.

Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when editors are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

CheckImage Retrieves or sets a value that indicates the index of the
image for the checkbox fields.

Count Returns the number of editors in a control.

CustomLayout Specifies an array of relative positions that are used when
the control arranges the fields on the page.

DataSource Retrieves or sets a value that indicates the data source for
object.

EditorFromPoint Retrieves the editor from point.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EnsureVisible Ensures that a field fits the control's client area.
ExecuteTemplate Executes a template and returns the result.

FieldHeight Retrieves or sets a value that indicates the height of the
field.

FieldWidth Retrieves or sets a value that indicates the width of the
field.

Focus Specifies the editor that gets the focus.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

HBorderField Returns or sets a value that indicates the distance
between two fields on the horizontal axis.

HFieldCount Sets or gets a value that indicates the number of fields on
the horizontal axis.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..
item Returns an editor based on its index.
ItemByPosition Returns an editor based on its position.
LabelAlignment Specifies the alignment of the label relative to the field.

LabelSize Retrieves or sets a value that indicates the size of the
label.

LastError Retrieves the description for the last error.

Layout Retrieves or sets a value that indicates the way how fields
are arranged.

LayoutHeight Retrieves a value that indicates the height that's required
so all editors fit the control's client area.

LayoutWidth Retrieves a value that indicates the width that's required
so all editors fit the control's client area.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background
Retrieves or sets a value that indicates the index of the

RadioImage image for the radio button fields.

Refresh Refreshes the control.
Remove Removes an editor.
RemoveAll Removes all the editors in the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ScrollBars Specifies the type of scroll bars that control adds.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UseTabKey Retrieves or sets a value that indicates whether the Tab
key navigate through the control's fields.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

VBorderField Returns or sets a value that indicates the distance
between two fields on the vertical axis.

Version Retrieves the control's version.

VFieldCount Sets or gets a value that indicates the number of fields on

the vertical axis.
VisualAppearance Retrieves the control's appearance.

method Record.Add (Label as Variant, Type as EditTypeEnum, [Key as
Variant])
Adds an editor and returns a reference to the newly created object.

Type Description

Label as Variant
A string expression that indicates the label of the editor.
The Label paramater may include built-in HTML format like
described bellow.

Type as EditTypeEnum An EditTypeEnum expression that indicates the type of the
editor being added.

Key as Variant
A Variant expression that indicates the key of the editor
being added. If missing, the editor's key is the editor's
label.

Return Description
Editor An Editor object being created.

The Add method adds a new editor to the control. Use the DataSource property to bind a
recordset to the control. The Value property indicates the editor's value. Use the UserEditor
method to create an inner ActiveX control, if the Type parameter is UserEditorType. Use
the Label property to get the editor's label. Use the Item property to access an editor by its
key or by its index. Use the Layout property to arrange fields in the control. Use the
BeginUpdate and EndUpdate methods to maintain the performance while adding multiple
editors. Use the EnsureVisible method to ensures that an editor fits the control's client area.
Use the EditType property to change the editor's type at runtime. Use the Remove method
to remove an editor. Use the UserData property to associate an extra data to an editor.

The following VB sample adds an editor to mask a phone number:

With Record1
 .BeginUpdate
 With .Add("Phone", EXRECORDLibCtl.MaskType)
 .Mask = "(###) ### - ####"
 .Value = "(245) 282 - 1290"
 End With
 .EndUpdate
End With

The following VC sample adds a password editor:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Password"), /*EditType*/ 1, vtMissing);
editor.SetOption(/*exEditPassword*/ 18, COleVariant((long)TRUE));
editor.SetValue(COleVariant("pass"));

The Label parameter may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the

about:blank

index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Record.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
control's appearance.

Use the Appearance property to remove the borders of the control. Use the BackColor
property to specify the control's background color. Use the ForeColor property to specify
the control's foreground color. Use the Layout property to arrange the fields in the control.

method Record.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Record1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Record.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to specify the control's background color. Use the Picture
property to put a picture in the control's background. Use the BackColor property to change
the editor's background color. Use the LabelBackColor property to specify the background
color for the editor's label. Use the ForeColor property to specify the control's foreground
color.

property Record.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

method Record.BeginUpdate ()
Maintains performance when editors are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called. Use
the DataSource property to bind a recordset to the control.

The following VB sample adds 10 EditType editors in the control:

With Record1
 .BeginUpdate
 Dim i As Long
 For i = 1 To 10
 .Add "Editor " & i & "", EditType
 Next
 .EndUpdate
End With

The following VC sample adds 10 EditType editors in the control:

m_record.BeginUpdate();
for (long i = 1; i < 10; i++)
{
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 CString strLabel;
 strLabel.Format("Editor %i", i);
 CEditor editor = m_record.Add(COleVariant(strLabel), /*EditType*/ 1, vtMissing);
 editor.SetValue(COleVariant(i));
}
m_record.EndUpdate();

property Record.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that indicates the height of the control's
border.

The BorderHeight property specifies the height of the control's border. By default, the
BorderHeight property is 2 pixels. Use the BorderWidth property to specify the width of the
control's border. The control's client area excludes the borders. The fields are arranged in
the control's client area. The HBorderField property specifies a value that indicates the
distance between two fields on the horizontal axis. The VBorderField property specifies a
value that indicates the distance between two fields on the vertical axis.

property Record.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that indicates the width of the control's
border.

The BorderWidth property specifies the width of the control's border. By default, the
BorderWidth property is 2 pixels. Use the BorderHeight property to specify the height of the
control's border. The control's client area excludes the borders. The fields are arranged in
the control's client area. The HBorderField property specifies a value that indicates the
distance between two fields on the horizontal axis. The VBorderField property specifies a
value that indicates the distance between two fields on the vertical axis.

property Record.CheckImage(State as Long) as Long
Retrieves or sets a value that indicates the index of the image for the checkbox fields.

Type Description

State as Long
A long expression that defines the state of the check box
being changed. 0 - unchecked, 1 - checked, 2 - partial
checked.

Long A long expression that indicates the index of the icon used.
If the index is not valid the default icon is used.

Use the CheckImage property to change the appearance of the check boxes in the control.
Use the Images method to add a list of icons to the control. Use the CheckValueType editor
to add a check box editor.

The following VB sample changes the appearance for the check boxes:

With Record1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzUKv9Jy+HTJmjOh0eiAGk0+m1Gr1Wt0uv1MZz+C1mw2ux3G33WuzuewUs1Dx4QA4Tx4nD4sTf/K5kQ5sP5mow/A03J63D53Z6Ha5fc6Om3tH6cr1Dq83H43X9PY7ft7vu7+y3/k6vI+3r43e/Xw52o8KjPGlTyvO8x1PRA71Oe98FvixzqIzAsEPuAAZkyGcFQw7z/P+okApRAcDQjCMEwS/cGOk+cBNNETzuTCsLxfCkLQy/joQ3DihQ8jbUHHHoARZEMWwnEsauXFDOPpCECPPGMmxnJ0LxNBscKHHSNR5H0enHH8lyDA0SQnDTTSs2EtS5A0oQPNMYylG8qJ/MjcTNOcfSBM8JPxA7+zHFMPtNOktxjO0XSfQsovhN03p7OLUG7RwAUBSE6y7O8wTzI6WyxLdIztEbhzS5M90VHM+x20xr1QAFHG7SVNyzScvUrIbh0xB9W1vTlKU840YwTRNRp1RlT1TVBr1VR9IzNTshUvPkkRUjNk1fV0t2XL9ZuNX9gJxYSM2KAFv2/VdcWnO9B1pZ1Mz/ctpWpc1KV88Ftp5brct43bbXvfT5WfP183/e2AXw3F53pUqptnfqqMvgqd4SzGIYfiTN4jimJszjGK4VhqaosHyV4+jyQJEkgAJKlGTpw52OJyiiNnAAGYZfmKUZhmSNZtmuaZnm6M5znmdZ7mmhZ/nGd6NoWXI1pSMoCA=="

 .CheckImage(0) = 1
 .CheckImage(1) = 2
 With .Add("Boolean", EXRECORDLibCtl.CheckValueType)
 .Option(exCheckValue2) = 1
 .Value = True
 End With
 .EndUpdate
End With

The following VC sample changes the appearance for the check boxes:

m_record.BeginUpdate();
CString s(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzUKv9Jy+HTJmjOh0eiAGk0+m1Gr1Wt0uv1MZz+C1mw2ux3G33WuzuewUs1Dx4QA4Tx4nD4sTf/K5kQ5sP5mow/A03J63D53Z6Ha5fc6Om3tH6cr1Dq83H43X9PY7ft7vu7+y3/k6vI+3r43e/Xw52o8KjPGlTyvO8x1PRA71Oe98FvixzqIzAsEPuAAZkyGcFQw7z/P+okApRAcDQjCMEwS/cGOk+cBNNETzuTCsLxfCkLQy/joQ3DihQ8jbUHHHoARZEMWwnEsauXFDOPpCECPPGMmxnJ0LxNBscKHHSNR5H0enHH8lyDA0SQnDTTSs2EtS5A0oQPNMYylG8qJ/MjcTNOcfSBM8JPxA7+zHFMPtNOktxjO0XSfQsovhN03p7OLUG7RwAUBSE6y7O8wTzI6WyxLdIztEbhzS5M90VHM+x20xr1QAFHG7SVNyzScvUrIbh0xB9W1vTlKU840YwTRNRp1RlT1TVBr1VR9IzNTshUvPkkRUjNk1fV0t2XL9ZuNX9gJxYSM2KAFv2/Vd"
);
s = s +

"cWnO9B1pZ1Mz/ctpWpc1KV88Ftp5brct43bbXvfT5WfP183/e2AXw3F53pUqptnfqqMvgqd4SzGIYfiTN4jimJszjGK4VhqaosHyV4+jyQJEkgAJKlGTpw52OJyiiNnAAGYZfmKUZhmSNZtmuaZnm6M5znmdZ7mmhZ/nGd6NoWXI1pSMoCA==";

m_record.Images(COleVariant(s));
m_record.SetCheckImage(0, 1);
m_record.SetCheckImage(1, 2);
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Boolean"), /*CheckValueType*/ 19, vtMissing
);
editor.SetOption(/*exCheckValue2*/ 17, COleVariant(long(1)));
COleVariant vtValue;
vtValue.vt = VT_BOOL;
V_BOOL(&vtValue;) = VARIANT_TRUE;
editor.SetValue(vtValue);
m_record.EndUpdate();

property Record.Count as Long
Returns the number of editors in a control.

Type Description

Long A long expression that indicates the number editors in the
control.

The Count property counts the number of editors in the control. Use the Add method to add
new editors to the control. Use the DataSource property to bind a recordset to the control.
Use the Item property to access an editor by its index or by its index. Use the
ItemByPosition property to access an editor by its position.

The following VB sample enumerates the visible editors in the control, as they are created:

Dim i As Long
With Record1
 For i = 0 To .Count - 1
 Dim e As EXRECORDLibCtl.Editor
 Set e = .Item(i)
 If (e.Visible) Then
 Debug.Print e.Label
 End If
 Next
End With

The following VB sample enumerates all editors in the control:

Dim e As EXRECORDLibCtl.Editor
For Each e In Record1
 Debug.Print e.Label
Next

The following VC sample enumerates all editors in the control:

for (long i = 0; i < m_record.GetCount(); i++)
{
 CEditor editor = m_record.GetItem(COleVariant(i));
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s\n", (LPCTSTR)editor.GetLabel());

 OutputDebugString(szOutput);
}

method Record.CustomLayout (X as Variant, Y as Variant)
Specifies an array of relative positions that are used when the control arranges the fields on
the page.

Type Description

X as Variant

A safe array of numeric values that indicates the x
coordinate, a numeric value that indicates the x position
being inserted. A positive value means the absolute
position. A negative value means a relative position, For
instance, the 100 means that the field will be positioned at
100 pixels from the left side of the control's client area.
The -.5 means that the field will be positioned at the
center of the control's client area.

Y as Variant

A safe array of numeric values that indicates the y
coordinate, a numeric value that indicates the y position
being inserted. A positive value means the absolute
position. A negative value means a relative position, For
instance, the 100 means that the field will be positioned at
100 pixels from the top side of the control's client area.
The -.5 means that the field will be positioned at the
center of the control's client area.

The CustomLayout method adds new coordinates for arranging the fields when Layout
property is exCustomLayout. The CustomLayout method has effect only if the Layout
property is exCustomLayout. Use the CustomLayout property to arrange the fields in a
custom order. Use the Position property to change the position of the editor. Please be
aware that calling the Layout property erases all previous position being added by the
CustomLayout method. The CustomLayout method must be called after calling the Layout
property. Use the FieldWidth property to specify the width of the fields/editors.

The following VB sample arranges the fields from the left to the right:

With Record1
 .BeginUpdate
 .FieldWidth = 96
 .Layout = exLeftToRight
 Dim i As Long
 For i = 1 To 10
 With .Add("Editor " & i & "", EditType)
 .Value = i
 End With

 Next
 .EndUpdate
End With

The following VB sample arranges the fields from the top to the bottom:

With Record1
 .BeginUpdate
 .FieldWidth = 96
 .Layout = exTopToBottom
 Dim i As Long
 For i = 1 To 10
 With .Add("Editor " & i & "", EditType)
 .Value = i
 End With
 Next
 .EndUpdate
End With

The following VB sample arranges the fields in a circle:

Dim n As Long, pi As Double
pi = 3.1415
n = 10
With Record1
 .BeginUpdate
 .FieldWidth = 96
 .Layout = exCustomLayout
 Dim i As Long
 For i = 1 To n
 With .Add("Editor " & i & "", EditType)
 .Value = i
 ' If negative numbers are used, the absolute value represents the coordinate
proportionally with the control's size. In this case the control is consider as being 0..1
 Record1.CustomLayout -(0.5 + Sin(i * 2 * pi / n) / 2), -(0.5 + Cos(i * 2 * pi / n) / 2)
 End With
 Next
 .EndUpdate

End With

property Record.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description

Object
An Object that defines the control's data. Currently, the
control supports ADO.Recordset, ADODB.Recordset
objects, DAO recordsets

use the DataSource property to bind a recordset to a control. The DataSource property
clears the editors collection and add a new editor for each field found in the recordset. The
Key property specifies the field's name. The Value property is updated as soon as the
cursor is moving in the recordset. Use the Refresh method to update the values for the
editors, in case an DAO recordset is used. The EditType property specifies the type of the
editor being inserted. For instance, if the recordset includes a Date/Time field editor, the
EditType property is set to DateType. Use the AddItem or InsertItem methods to add new
predefined values to a drop down list editor. Use the Item property to access an editor
giving its key. Use the Visible property to hide an editor. Use the Add method to add new
editors to the control. The Change event is called when the uses changes the value for an
editor. If the control is bounded to a recordset, the value of the field is automatically
updated in the recodset too. The LastError property gets the description of the last error, if
occurs.

The following VB sample binds the "Employees" table in the "NWIND.MDB" database to the
component, using an ADODB recordset:

Dim rs As Object, strNWIND As String
strNWIND = "D:\Program Files\Microsoft Visual
Studio\VB98\NWIND.MDB"
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees",
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source= " &
strNWIND, 3, 3 ' Opens the table using static mode
With Record1
 .BeginUpdate
 Set .DataSource = rs
 With .Item("ReportsTo")
 .EditType = DropDownListType
 Dim i As Long
 i = 1
 .AddItem 0, "- unspecified -"

 While Not rs.EOF
 .AddItem rs("EmployeeID").Value,
rs("FirstName").Value & " " & rs("LastName").Value & "
"
 i = i + 1
 rs.MoveNext
 Wend
 rs.MoveFirst
 End With
 .EndUpdate
End With

The following VC sample binds the "Employees" table in the "NWIND.MDB" database to the
component, using an ADODB recordset:

#import rename ("EOF", "adoEOF")
using namespace ADODB;

BOOL isInstalled(BSTR strProgID, IDispatch** ppObject)
{
 CLSID clsid = CLSID_NULL;
 HRESULT hResult = E_POINTER;
 if (SUCCEEDED(hResult = CLSIDFromProgID(strProgID, &clsid;)))
 {
 IDispatch* pObject = NULL;
 if (SUCCEEDED(hResult = CoCreateInstance(clsid, NULL, CLSCTX_ALL, IID_IDispatch,
reinterpret_cast(&pObject;))))
 {
 if (ppObject)
 (*ppObject = pObject)->AddRef();
 pObject->Release();
 return TRUE;
 }
 }
 return FALSE;
}

 COleVariant vtMissing; vtMissing.vt = VT_ERROR;

 CString strDatabase = "D:\\Program Files\\Microsoft Visual
Studio\\VB98\\NWIND.MDB";

 CString strError = "";
 IDispatch* pObject = NULL;
 if (isInstalled(L"ADODB.Recordset", &pObject;))
 {
 _RecordsetPtr spRecordSet;
 if (spRecordSet = pObject)
 {
 CString strConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source= ");
 strConnection += strDatabase;
 try
 {
 if (SUCCEEDED(spRecordSet->Open(v("Employees"), v(strConnection),
adOpenStatic, adLockOptimistic, 0)))
 {
 CEditor editor;

 m_record.BeginUpdate();
 m_record.SetLabelSize(96);
 m_record.SetHBorderField(6);
 m_record.SetDataSource(spRecordSet);

 editor = m_record.GetItem(v("ReportsTo"));
 editor.SetEditType(/*DropDownListType*/ 3);
 editor.AddItem(0, "- unspecified -", vtMissing);
 while (!spRecordSet->adoEOF)
 {
 CString strName = V2S(&spRecordSet-;>Fields->GetItem(v("FirstName"))-
>Value);
 strName += " ";
 strName += V2S(&spRecordSet-;>Fields->GetItem(v("LastName"))->Value
);;
 editor.AddItem(spRecordSet->Fields->GetItem(v("EmployeeID"))->Value,
strName, vtMissing);
 spRecordSet->MoveNext();

 }
 spRecordSet->MoveFirst();
 m_record.EndUpdate();
 }
 }
 catch (...)
 {
 strError = "The sample database is missing. The 'SAMPLE.MDB' file is not found,
or doesn't contain an 'Employees' table.";
 };
 }
 pObject->Release();
 }
 else
 strError = "Microsoft ADODB namepsace, 'MSADO15.DLL' file is not installed. ";

property Record.EditorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Editor
Retrieves the editor from point.

Type Description

X as OLE_XPOS_PIXELS A long expression that indicates the X position where the
editor is located.

Y as OLE_YPOS_PIXELS A long expression that indicates the Y position where the
editor is located.

Editor An Editor object that's found at the specified position.

use the EditorFromPoint property to get the editor from the point. Use the Focus property
to get the focused editor. Use the EnsureVisible method to ensures that an editor fits the
control's client area.

The following VB sample prints the editor from the point:

Private Sub Record1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then
 Debug.Print e.Label & " = " & e.Value
 End If
End Sub

The following VC sample prints the editor from the point:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }

 return szDefault;
}

property Record.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the editor is
enabled or disabled.

Use the Enabled property to enable or disable the control. Use the ForeColor property to
change the control's foreground color. Use the Locked property to lock a specified editor.
By default, the Enabled property is True.

method Record.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use the BeginUpdate method to maintain performance when editors are added to the
control one at a time. Use the DataSource property to bind a recordset to the control.

The following VB sample adds 10 EditType editors in the control:

With Record1
 .BeginUpdate
 Dim i As Long
 For i = 1 To 10
 .Add "Editor " & i & "", EditType
 Next
 .EndUpdate
End With

The following VC sample adds 10 EditType editors in the control:

m_record.BeginUpdate();
for (long i = 1; i < 10; i++)
{
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 CString strLabel;
 strLabel.Format("Editor %i", i);
 CEditor editor = m_record.Add(COleVariant(strLabel), /*EditType*/ 1, vtMissing);
 editor.SetValue(COleVariant(i));
}
m_record.EndUpdate();

method Record.EnsureVisible (Index as Variant)
Ensures that a field fits the control's client area.

Type Description

Index as Variant
A long expression that indicates the index of the editor
being requested, a string expression that indicates the key
of the editor being accessed.

Use the EnsureVisible method to ensure that a specified editor fits the control's client area.
The Index property specifies the index of the editor. The Key property specifies the key of
the editor. The ScrollBars property specifies whether the control adds scroll bars when
required. The EnsureVisible method scrolls the control's content if is is necessary. If the
control has no scroll bars, the EnsureVisible method has no effect.

method Record.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the number of editors in the data control:

Debug.Print Record1.ExecuteTemplate("Count")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Record.FieldHeight as Long
Retrieves or sets a value that indicates the height of the field.

Type Description
Long A long expression that specifies the height of the fields.

The FieldHeight property specifies the height of the fields, in pixels. By default, the
FieldHeight property is -1. If the FieldHeight property is negative, the field's height is
determined by the control's font. Use the Font property to specify the control's font. Use the
FieldWidth property to specify the width of the fields. Use the VBorderField property to
specify the distance between two fields on the vertical axis. Use the BorderHeight property
to specify the control's border. Use the VFieldCount property to specify the number of fields
on the vertical axis.

property Record.FieldWidth as Long
Retrieves or sets a value that indicates the width of the field.

Type Description
Long A long expression that specifies the width of the fields.

The FieldWidth property specifies the width of the fields, in pixels. By default, the
FieldWidth property is -1. If the FieldWidth property is negative, the field's width is the width
of the control's client area. The control's client area excludes the control's border. Use the
Font property to specify the control's font. Use the FieldHeight property to specify the
height of the fields. Use the HBorderField property to specify the distance between two
fields on the horizontal axis. Use the BorderWidth property to specify the control's border.
Use the HFieldCount property to specify the number of fields on the horizontal axis. Use the
LabelSize property to specify the width of the label.

property Record.Focus as Editor
Specifies the editor that gets the focus.

Type Description
Editor An editor that gets the focus.

Use the Focus property to get the editor that has the focus.

property Record.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that specifies the control's font.

Use the Font property to specify the control's font. Use the FieldHeight property to specify
the height of the fields. The Font property updates the height of the fields, if the FieldHeight
property is less than zero. Use the built-in HTML tags like , <u>, <i>, <s> to change the
font attributes for parts of the editor's Label.

property Record.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to specify the control's foreground color. Use the BackColor
property to specify the control's background color. Use the ForeColor property to change
the editor's foreground color. Use the LabelForeColor property to specify the foreground
color for the editor's label.

property Record.HBorderField as Long
Returns or sets a value that indicates the distance between two fields on the horizontal axis.

Type Description

Long A long expression that indicates the distance between two
fields on the horizontal axis.

The HBorderField property specifies a value that indicates the distance between two fields
on the horizontal axis. The BorderWidth property specifies the width of the control's border.
By default, the HBorderField property is 2 pixels. Use the BorderHeight property to specify
the height of the control's border. The control's client area excludes the borders. The fields
are arranged in the control's client area. The VBorderField property specifies a value that
indicates the distance between two fields on the vertical axis

property Record.HFieldCount as Long
Sets or gets a value that indicates the number of fields on the horizontal axis.

Type Description

Long A long expression that indicates the number of fields on
the horizontal axis.

Use the HFieldCount property to specify the number of fields on the horizontal axis. By
default, the HFieldCount property is -1. If the HFieldCount property is -1, the control puts
the fields as much as they fit the control's client area. The HFieldCount property has effect
only if the Layout property is exLeftToRight or exTopToBottom. The HFieldCount property
has no effect if the Layout property is exCustomLayout. Use the FieldWidth property to
specify the width of the fields. Use the HBorderField property to specify the distance
between two fields on the horizontal axis. Use VFieldCount property to specify the number
of fields on the vertical axis.

property Record.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property Record.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method Record.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The control provides an image list window, that's displayed at design time. The ImageSize
property defines the size (width/height) of the icons within the control's Images collection.
Use the ShowImageList property to hide the image list window, at design time. At design
time, the user can add new icons to the control's Images collection, by dragging icon files,
exe files, etc, to the images list window. At runtime, the user can use the Images and
ReplaceIcon method to change the Images collection. The Images collection is 1 based.
The Image property assigns an icon to an editor.

The following VB sample changes the appearance for the check boxes:

With Record1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzUKv9Jy+HTJmjOh0eiAGk0+m1Gr1Wt0uv1MZz+C1mw2ux3G33WuzuewUs1Dx4QA4Tx4nD4sTf/K5kQ5sP5mow/A03J63D53Z6Ha5fc6Om3tH6cr1Dq83H43X9PY7ft7vu7+y3/k6vI+3r43e/Xw52o8KjPGlTyvO8x1PRA71Oe98FvixzqIzAsEPuAAZkyGcFQw7z/P+okApRAcDQjCMEwS/cGOk+cBNNETzuTCsLxfCkLQy/joQ3DihQ8jbUHHHoARZEMWwnEsauXFDOPpCECPPGMmxnJ0LxNBscKHHSNR5H0enHH8lyDA0SQnDTTSs2EtS5A0oQPNMYylG8qJ/MjcTNOcfSBM8JPxA7+zHFMPtNOktxjO0XSfQsovhN03p7OLUG7RwAUBSE6y7O8wTzI6WyxLdIztEbhzS5M90VHM+x20xr1QAFHG7SVNyzScvUrIbh0xB9W1vTlKU840YwTRNRp1RlT1TVBr1VR9IzNTshUvPkkRUjNk1fV0t2XL9ZuNX9gJxYSM2KAFv2/VdcWnO9B1pZ1Mz/ctpWpc1KV88Ftp5brct43bbXvfT5WfP183/e2AXw3F53pUqptnfqqMvgqd4SzGIYfiTN4jimJszjGK4VhqaosHyV4+jyQJEkgAJKlGTpw52OJyiiNnAAGYZfmKUZhmSNZtmuaZnm6M5znmdZ7mmhZ/nGd6NoWXI1pSMoCA=="

 .CheckImage(0) = 1
 .CheckImage(1) = 2
 With .Add("Boolean", EXRECORDLibCtl.CheckValueType)
 .Option(exCheckValue2) = 1
 .Value = True
 End With
 .EndUpdate
End With

The following VC sample changes the appearance for the check boxes:

m_record.BeginUpdate();
CString s(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzUKv9Jy+HTJmjOh0eiAGk0+m1Gr1Wt0uv1MZz+C1mw2ux3G33WuzuewUs1Dx4QA4Tx4nD4sTf/K5kQ5sP5mow/A03J63D53Z6Ha5fc6Om3tH6cr1Dq83H43X9PY7ft7vu7+y3/k6vI+3r43e/Xw52o8KjPGlTyvO8x1PRA71Oe98FvixzqIzAsEPuAAZkyGcFQw7z/P+okApRAcDQjCMEwS/cGOk+cBNNETzuTCsLxfCkLQy/joQ3DihQ8jbUHHHoARZEMWwnEsauXFDOPpCECPPGMmxnJ0LxNBscKHHSNR5H0enHH8lyDA0SQnDTTSs2EtS5A0oQPNMYylG8qJ/MjcTNOcfSBM8JPxA7+zHFMPtNOktxjO0XSfQsovhN03p7OLUG7RwAUBSE6y7O8wTzI6WyxLdIztEbhzS5M90VHM+x20xr1QAFHG7SVNyzScvUrIbh0xB9W1vTlKU840YwTRNRp1RlT1TVBr1VR9IzNTshUvPkkRUjNk1fV0t2XL9ZuNX9gJxYSM2KAFv2/Vd"
);
s = s +
"cWnO9B1pZ1Mz/ctpWpc1KV88Ftp5brct43bbXvfT5WfP183/e2AXw3F53pUqptnfqqMvgqd4SzGIYfiTN4jimJszjGK4VhqaosHyV4+jyQJEkgAJKlGTpw52OJyiiNnAAGYZfmKUZhmSNZtmuaZnm6M5znmdZ7mmhZ/nGd6NoWXI1pSMoCA==";

m_record.Images(COleVariant(s));
m_record.SetCheckImage(0, 1);
m_record.SetCheckImage(1, 2);
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Boolean"), /*CheckValueType*/ 19, vtMissing
);
editor.SetOption(/*exCheckValue2*/ 17, COleVariant(long(1)));
COleVariant vtValue;
vtValue.vt = VT_BOOL;
V_BOOL(&vtValue) = VARIANT_TRUE;
editor.SetValue(vtValue);
m_record.EndUpdate();

property Record.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Record.item (Index as Variant) as Editor
Returns an editor based on its index.

Type Description

Index as Variant
A long expression that indicates the index of the editor
being requested, or a string expression that indicates the
key of the editor being requested.

Editor An Editor object being accessed.

Use the Item property to access an editor by index or by key. Use the Index property to
retrieve the index of the editor in the control's collection of Editor objects. Use the Key
property to identify an editor. Use the Position property to specify the editor's position. Use
the Visible property to hide an editor. By default, the first editor added has the Index
property on 0. The Index property of the editor is updated as soon as an editor is removed.
Use the ItemByPosition property to access an editor giving its position.

The following VB sample enumerates the visible editors in the control, as they are created:

Dim i As Long
With Record1
 For i = 0 To .Count - 1
 Dim e As EXRECORDLibCtl.Editor
 Set e = .Item(i)
 If (e.Visible) Then
 Debug.Print e.Label
 End If
 Next
End With

The following VB sample enumerates all editors in the control:

Dim e As EXRECORDLibCtl.Editor
For Each e In Record1
 Debug.Print e.Label
Next

The following VC sample enumerates all editors in the control:

for (long i = 0; i < m_record.GetCount(); i++)
{

 CEditor editor = m_record.GetItem(COleVariant(i));
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s\n", (LPCTSTR)editor.GetLabel());
 OutputDebugString(szOutput);
}

property Record.ItemByPosition (Position as Variant) as Editor
Returns an editor based on its position.

Type Description

Position as Variant A long expression that indicates the position of the editor
being requested.

Editor An Editor object being requested.

Use the ItemByPosition property to access an editor giving its position. Use the Position
property to specify the editor's position. Use the Item property to access an editor by index
or by key. Use the Index property to retrieve the index of the editor in the control's collection
of Editor objects. Use the Key property to identify an editor. Use the Visible property to hide
an editor. By default, the first editor added has the Index property on 0. The Index property
of the editor is updated as soon as an editor is removed.

The following VB sample enumerates the visible editors in the control, as they are
displayed:

Dim i As Long
With Record1
 For i = 0 To .Count - 1
 Dim e As EXRECORDLibCtl.Editor
 Set e = .ItemByPosition(i)
 If (e.Visible) Then
 Debug.Print e.Label
 End If
 Next
End With

The following VC sample enumerates the visible editors in the control, as they are
displayed:

for (long i = 0; i < m_record.GetCount(); i++)
{
 CEditor editor = m_record.GetItemByPosition(COleVariant(i));
 if (editor.GetVisible())
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s\n", (LPCTSTR)editor.GetLabel());

 OutputDebugString(szOutput);
 }
}

property Record.LabelAlignment as AlignmentEnum
Specifies the alignment of the label relative to the field.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the label relative to their editors.

Use the LabelAlignment property to right align the labels. Use the LabelAlignment property
to align the label for a specified editor.

property Record.LabelSize as Long
Retrieves or sets a value that indicates the size of the label.

Type Description
Long A long expression that indicates the size of the label.

The LabelSize property specifies the size of the label in the editors. By default, the
LabelSize property is 64 pixels. Use the Label property to specify the editor's label. Use the
FieldWidth property to specify the width of the fields. A field contains the label and the
editor. Use the HBorderField property to specify the distance between two fields on the
horizontal axis. Use the BorderWidth property to specify the control's border.

property Record.LastError as String
Retrieves the description for the last error.

Type Description

String A string expression that indicates the description of the
last error.

The LastError property gets the description of the last database error that occurs. Use the
DataSource property to bind a recordset to the control. For instance, the LastError
property could get "The field is too small to accept the amount of data you attemted to add.
Try inserting or pasting less data", if you are trying to type more characters in a bounded
field.

property Record.Layout as LayoutEnum
Retrieves or sets a value that indicates the way how fields are arranged.

Type Description

LayoutEnum A LayoutEnum expression that indicates how the fields are
arranged in the control's client area.

The Layout property specifies how the fields are arranged in the control's client area. By
default, the Layout property is exLeftToRight. Use the CustomLayout method to add new
positions for the fields, when the Layout property is exCustomLayout. Use the FieldWidth
property to specify the width of the fields. Use the FieldHeight property to specify the height
of the fields. Use the VFieldCount property to specify the number of fields on the vertical
axis. Use HFieldCount property to specify the number of fields on the horizontal axis.

property Record.LayoutHeight as Long
Retrieves a value that indicates the height that's required so all editors fit the control's client
area.

Type Description

Long A long expression that specifies the height that's required
so all editors fit the control's client area.

The LayoutHeight property specifies the height, in pixels that's required so all editors fit the
control's client area. Use the Layout property to arrange the fields in the page. Use the
LayoutWidth property specifies the width, in pixels that's required so all editors fit the
control's client area.

property Record.LayoutWidth as Long
Retrieves a value that indicates the width that's required so all editors fit the control's client
area.

Type Description

Long A long expression that specifies the height that's required
so all editors fit the control's client area.

Use the LayoutWidth property specifies the width, in pixels that's required so all editors fit
the control's client area. Use the Layout property to arrange the fields in the page. The
LayoutHeight property specifies the height, in pixels that's required so all editors fit the
control's client area

property Record.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object being displayed in the control's
background.

Use the Picture property to put a picture in the control's background. Use the PictureDisplay
property to specify how the picture is displayed on the control's background. Use the
BackColor property to specify the control's background color. Use the BackColor property
to change the editor's background color. Use the LabelBackColor property to specify the
background color for the editor's label. Use the Picture property to assign a custom size to
an editor.

property Record.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that specifies how the
picture is displayed on the control's background.

Use the PictureDisplay property to specify how the picture is displayed on the control's
background. Use the Picture property to put a picture in the control's background. Use the
BackColor property to specify the control's background color. Use the BackColor property
to change the editor's background color. Use the LabelBackColor property to specify the
background color for the editor's label. Use the Picture property to assign a custom size to
an editor.

property Record.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the index of the image for the radio button fields.

Type Description

Checked as Boolean A boolean expression that specifies whether the image is
requested for checked/un-checked items

Long A long expression that specifies the index of the icon to
display

method Record.Refresh ()
Refreses the control.

Type Description

Use the Refresh method to update the values for all editors. The BeginUpdate method
maintains performance when editors are added to the control one at a time. The
EndUpdate method resumes painting the control after painting is suspended by the
BeginUpdate method.

method Record.Remove (Index as Variant)
Removes an editor.

Type Description

Index as Variant
A long expression that indicates the index of the editor
being removed, a string expression that indicates the key
of the editor being removed.

Use the Remove method to remove an editor. Use the RemoveAll method to remove all
editors in the control. Use the Add method to add new editors to the control. Use the
RemoveItem property to remove a predefined value from a drop down list editor. Use the
RemoveButton method to remove a button from an editor.

method Record.RemoveAll ()
Removes all the editors in the control.

Type Description

Use the RemoveAll method to remove all editors in the control. Use the Remove method to
remove an editor. Use the Add method to add new editors to the control. Use the
ClearItems method to remove all predefined values from a drop down list editor. Use the
ClearButtons method to remove all buttons in the editor.

method Record.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle

Index as Variant A long expression that indicates the index where icon is
inserted

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = Record1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), in this case the i
specifies the index where the icon was added

The following sample shows how to replace an icon into control's images list::

 i = Record1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 Record1.ReplaceIcon 0, i, in this case the i must be the index of the icon that follows to be
removed

The following sample shows how to clear the control's icons collection:

 Record1.ReplaceIcon 0, -1

property Record.ScrollBars as ScrollBarsEnum
Specifies the type of scroll bars that control adds.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that indicates which scroll
bars will be visible in the control.

Use the ScrollBars property to specify what scroll bars the control adds. By default, the
control adds scroll bars when they are required. Use the LayoutWidth property to get the
width in pixels that's required so no horizontal scroll bar is required. Use the LayoutHeight
property to get the height in pixels that's required so no vertical scroll bar is required.

property Record.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color A color expression that indicates the selection background
color.

Use the SelBackColor property to specify the selection background color. Use the
SelForeColor property to specify the selection foreground color. Use the BackColor
property to specify the control's background color. Use the ForeColor property to specify
the control's foreground color.

property Record.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

Use the SelForeColor property to specify the selection foreground color. Use the
SelBackColor property to specify the selection background color. Use the ForeColor
property to specify the control's foreground color. Use the BackColor property to specify
the control's background color.

property Record.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden.

The property has effect only at design time. Use the Images method to assign a list of icons
at runtime. Use the ReplaceIcon method to update the control's list of icons. At design time,
the user can add new icons to the control's Images collection, by dragging icon files, exe
files, etc, to the images list panel.

method Record.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Record.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Record.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Record.TemplatePut (newVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

newVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Record.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control.

property Record.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window.

property Record.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipDelay property specifies the time in ms that passes before the ToolTip appears.

property Record.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip.

property Record.UseTabKey as Boolean
Retrieves or sets a value that indicates whether the Tab key navigates through the control's
fields.

Type Description

Boolean A Boolean expression that indicates whether the Tab key
navigates through the control's fields.

By default, the UseTabKey property is True. If the user presses the Tab key, while the
UseTabKey property is True, the focus is moved to the next visible editor. If the user
presses the SHIFT + Tab key, while the UseTabKey property is True, the focus is moved to
the previous visible editor. If the UseTabKey property is False, and user presses the Tab
key the control loses the focus, and the next visible control in the form gets the focus.

property Record.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property Record.VBorderField as Long
Returns or sets a value that indicates the distance between two fields on the vertical axis.

Type Description

Long A long expression that indicates the distance in pixels
between two fields on the vertical axis.

The VBorderField property specifies a value that indicates the distance between two fields
on the vertical axis. The BorderWidth property specifies the width of the control's border.
By default, the VBorderField property is 2 pixels. Use the BorderHeight property to specify
the height of the control's border. The control's client area excludes the borders. The fields
are arranged in the control's client area. The HBorderField property specifies a value that
indicates the distance between two fields on the horizontal axis.

property Record.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the version number of the control you have installed.

property Record.VFieldCount as Long
Sets or gets a value that indicates the number of fields on the vertical axis, when the control
displays a vertical scroll bar.

Type Description

Long A long expression that indicates the number of fields on
the horizontal axis.

Use the VFieldCount property to specify the number of fields on the vertical axis. By default,
the VFieldCount property is -1. If the VFieldCount property is -1, the control puts the fields
as much as they fit the control's client area. The VFieldCount property has effect only if the
Layout property is exLeftToRight or exTopToBottom. The VFieldCount property has no
effect if the Layout property is exCustomLayout. Use the FieldHeight property to specify the
height of the fields. Use the VBorderField property to specify the distance between two
fields on the vertical axis. Use HFieldCount property to specify the number of fields on the
horizontal axis.

property Record.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part

ExRecord events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {656D66AF-1E46-45E3-B1B5-FFE9FB353AC7}. The object's program identifier is: "Exontrol.Record".
The /COM object module is: "ExRecord.dll"

The ExRecord component supports the following events:

Name Description
ButtonClick Occurs when the user clicks the editor's button.
Change Occurs when the user changes the editor's content.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
RClick Fired when right mouse button is clicked.
UserEditorOleEvent Occurs when an user editor fires an event.

C#

VB

private void ButtonClick(object sender,exontrol.EXRECORDLib.Editor Ed,object
Key)
{
}

Private Sub ButtonClick(ByVal sender As System.Object,ByVal Ed As
exontrol.EXRECORDLib.Editor,ByVal Key As Object) Handles ButtonClick
End Sub

C#

C++

C++
Builder

private void ButtonClick(object sender,
AxEXRECORDLib._IRecordEvents_ButtonClickEvent e)
{
}

void OnButtonClick(LPDISPATCH Ed,VARIANT Key)
{
}

void __fastcall ButtonClick(TObject *Sender,Exrecordlib_tlb::IEditor *Ed,Variant Key)
{
}

event ButtonClick (Ed as Editor, Key as Variant)
Occurs when the user clicks the editor's button.

Type Description
Ed as Editor An Editor object where the event occurs.

Key as Variant A string expression that indicates the key of the button
being pressed.

The ButtonClick event notifies your application that the user clicks a button. The AddButton
method inserts new buttons to the editor. Use the RemoveButton method to remove a
button. The ButtonClick event is fired if the user presses the drop down button of an editor.
In this case, the Key parameter is empty. Use the Change event to notify your application
that the editor's content is altered. If the editor hosts an ActiveX control use the
UserEditorOleEvent event to monitor the events that inside ActiveX object fires.

Syntax for ButtonClick event, /NET version, on:

Syntax for ButtonClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ButtonClick(ASender: TObject; Ed : IEditor;Key : OleVariant);
begin
end;

procedure ButtonClick(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_ButtonClickEvent);
begin
end;

begin event ButtonClick(oleobject Ed,any Key)
end event ButtonClick

Private Sub ButtonClick(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_ButtonClickEvent) Handles ButtonClick
End Sub

Private Sub ButtonClick(ByVal Ed As EXRECORDLibCtl.IEditor,ByVal Key As Variant)
End Sub

Private Sub ButtonClick(ByVal Ed As Object,ByVal Key As Variant)
End Sub

LPARAMETERS Ed,Key

PROCEDURE OnButtonClick(oRecord,Ed,Key)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ButtonClick(Ed,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ButtonClick(Ed,Key)
End Function
</SCRIPT>

Syntax for ButtonClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComButtonClick Variant llEd Variant llKey
 Forward Send OnComButtonClick llEd llKey
End_Procedure

METHOD OCX_ButtonClick(Ed,Key) CLASS MainDialog
RETURN NIL

void onEvent_ButtonClick(COM _Ed,COMVariant _Key)
{
}

function ButtonClick as v (Ed as OLE::Exontrol.Record.1::IEditor,Key as A)
end function

function nativeObject_ButtonClick(Ed,Key)
return

The following VB sample displays the key of the button being clicked:

Private Sub Form_Load()
 With Record1
 With .Add("Calc", CalculatorType)
 .Value = 3.14
 .AddButton "AKey", , 1
 .AddButton "BKey", , 2
 End With
 End With
End Sub

Private Sub Record1_ButtonClick(ByVal Ed As EXRECORDLibCtl.IEditor, ByVal Key As
Variant)
 Debug.Print Ed.Label & ", Key = """ & Key & """"
End Sub

The following VC sample displays the key of the button being clicked:

COleVariant vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_record.Add(COleVariant("Calc"), /*CalculatorType*/ 21, vtMissing);

editor.SetValue(COleVariant(3.14));
editor.AddButton(COleVariant("AKey"), vtMissing, COleVariant((long) 1), vtMissing,
vtMissing, vtMissing);
editor.AddButton(COleVariant("BKey"), vtMissing, COleVariant((long) 1), vtMissing,
vtMissing, vtMissing);

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnButtonClickRecord1(LPDISPATCH Ed, const VARIANT FAR& Key)
{
 CEditor editor(Ed);
 editor.m_bAutoRelease = FALSE;

 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s, Key = \"%s\"\n", (LPCTSTR)editor.GetLabel(), (LPCTSTR)V2S(&
(VARIANT&)Key));
 OutputDebugString(szOutput);

}

C#

VB

private void Change(object sender,exontrol.EXRECORDLib.Editor Ed,ref object
NewValue)
{
}

Private Sub Change(ByVal sender As System.Object,ByVal Ed As
exontrol.EXRECORDLib.Editor,ByRef NewValue As Object) Handles Change
End Sub

C#

C++

private void Change(object sender, AxEXRECORDLib._IRecordEvents_ChangeEvent
e)
{
}

void OnChange(LPDISPATCH Ed,VARIANT FAR* NewValue)
{

event Change (Ed as Editor, NewValue as Variant)
Occurs when the user changes the editor's content.

Type Description
Ed as Editor An Editor object whose value is changed.

NewValue as Variant A Variant expression that indicates the newly editor's
value.

The Change event notifies your application that the user changes the editor's value. Use the
ButtonClick event to notify your application that the user clicks the editor's button. If the
editor hosts an ActiveX control use the UserEditorOleEvent event to monitor the events
inside the ActiveX object. If the control is bounded to a database using the DataSource
property, the control automatically updates the database. If failed, the LastError property
gets the description of the last error. The Change event is fired just before changing the
Value property. The Value property specifies the value of the editor. The field's value
depends on the type of the editor that's assigned to the field. For instance, if the field has
assigned a DropDownListType editor, the Value property indicates a long expression that
indicates the index of the predefined item being selected. Use the Caption property to
retrieve the caption of the editor. Use the Label property to retrieve the label of the editor.

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall Change(TObject *Sender,Exrecordlib_tlb::IEditor *Ed,Variant *
NewValue)
{
}

procedure Change(ASender: TObject; Ed : IEditor;var NewValue : OleVariant);
begin
end;

procedure Change(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_ChangeEvent);
begin
end;

begin event Change(oleobject Ed,any NewValue)
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_ChangeEvent) Handles Change
End Sub

Private Sub Change(ByVal Ed As EXRECORDLibCtl.IEditor,NewValue As Variant)
End Sub

Private Sub Change(ByVal Ed As Object,NewValue As Variant)
End Sub

LPARAMETERS Ed,NewValue

PROCEDURE OnChange(oRecord,Ed,NewValue)
RETURN

Java… <SCRIPT EVENT="Change(Ed,NewValue)" LANGUAGE="JScript">
Syntax for Change event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change(Ed,NewValue)
End Function
</SCRIPT>

Procedure OnComChange Variant llEd Variant llNewValue
 Forward Send OnComChange llEd llNewValue
End_Procedure

METHOD OCX_Change(Ed,NewValue) CLASS MainDialog
RETURN NIL

void onEvent_Change(COM _Ed,COMVariant /*variant*/ _NewValue)
{
}

function Change as v (Ed as OLE::Exontrol.Record.1::IEditor,NewValue as A)
end function

function nativeObject_Change(Ed,NewValue)
return

The following VB sample displays the editor's value as soon as the user changes the
control's content:

Private Sub Record1_Change(ByVal Ed As EXRECORDLibCtl.IEditor, NewValue As Variant)
 Debug.Print Ed.Label & " = " & NewValue
End Sub

The following VC sample displays the editor's value as soon as the user changes the
control's content:

void OnChangeRecord1(LPDISPATCH Ed, VARIANT FAR* NewValue)
{
 CEditor editor(Ed);
 editor.m_bAutoRelease = FALSE;

 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s, = %s", (LPCTSTR)editor.GetLabel(), (LPCTSTR)V2S(NewValue));
 OutputDebugString(szOutput);
}

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ButtonClick event notifies your application that the user clicks a
button. The RClick event notifies your application when user right clicks the control.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oRecord)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXRECORDLib._IRecordEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when the user dbl clicks on the control. Use the DblClick event to
notify your application that a cell has been double-clicked. Use the EditorFromPoint
property to get the editor from the point.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oRecord,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Record.1::OLE_XPOS_PIXELS,Y
as OLE::Exontrol.Record.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays the editor being double clicked:

Private Sub Record1_DblClick(Shift As Integer, X As Single, Y As Single)
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then
 Debug.Print e.Label
 End If
End Sub

The following VC sample displays the editor being double clicked:

void OnDblClickRecord1(short Shift, long X, long Y)
{

 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s", (LPCTSTR)editor.GetLabel());
 OutputDebugString(szOutput);
 }
}

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXRECORDLib._IRecordEvents_KeyDownEvent e)

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oRecord,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXRECORDLib._IRecordEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oRecord,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXRECORDLib._IRecordEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oRecord,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXRECORDLib._IRecordEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the EditorFromPoint property to get the editor from point.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oRecord,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Record.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Record.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample displays the editor from the point when user clicks the control:

Private Sub Record1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then

 MsgBox e.Label
 End If
End Sub

The following VC sample displays the editor from the point when user clicks the control:

void OnMouseDownRecord1(short Button, short Shift, long X, long Y)
{
 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s", (LPCTSTR)editor.GetLabel());
 ::MessageBox(NULL, szOutput, NULL, NULL);
 }
}

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXRECORDLib._IRecordEvents_MouseMoveEvent e)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the EnsureVisible method to ensures
that an editor fits the control's client area. Use the EditorFromPoint property to get the
editor from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oRecord,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Record.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Record.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the editor from the point:

Private Sub Record1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then

 Debug.Print e.Label & " = " & e.Value
 End If
End Sub

The following VC sample prints the editor from the point:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseMoveRecord1(short Button, short Shift, long X, long Y)
{
 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s = %s\n", (LPCTSTR)editor.GetLabel(), (LPCTSTR)V2S(
&editor.GetValue()));
 OutputDebugString(szOutput);
 }

}

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXRECORDLib._IRecordEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the EditorFromPoint method to retrieve the item from point.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oRecord,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Record.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Record.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample displays a message when user right clicks the control:

Private Sub Record1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = vbRightButton) Then
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then

 MsgBox e.Label
 End If
 End If
End Sub

The following VC sample displays a message when user right clicks the control:

void OnMouseUpRecord1(short Button, short Shift, long X, long Y)
{
 if (Button == 2)
 {
 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s", (LPCTSTR)editor.GetLabel());
 ::MessageBox(NULL, szOutput, NULL, NULL);
 }
 }
}

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

event RClick ()
Fired when right mouse button is clicked.

Type Description

The RClick event is fired each time the user releases the right mouse button over the
control. Use the MouseUp event in case you need the position of the cursor when right
clicking the control.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oRecord)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{

Syntax for RClick event, /COM version (others), on:

XBasic

dBASE

}

function RClick as v ()
end function

function nativeObject_RClick()
return

The following VB sample displays a message when user right clicks the control:

Private Sub Record1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = vbRightButton) Then
 Dim e As EXRECORDLibCtl.Editor
 Set e = Record1.EditorFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not e Is Nothing Then
 MsgBox e.Label
 End If
 End If
End Sub

The following VC sample displays a message when user right clicks the control:

void OnMouseUpRecord1(short Button, short Shift, long X, long Y)
{
 if (Button == 2)
 {
 CEditor editor = m_record.GetEditorFromPoint(X, Y);
 if (editor.m_lpDispatch != NULL)
 {
 TCHAR szOutput[1024];
 wsprintf(szOutput, "%s", (LPCTSTR)editor.GetLabel());
 ::MessageBox(NULL, szOutput, NULL, NULL);
 }
 }
}

C#

VB

private void UserEditorOleEvent(object sender,object
Obj,exontrol.EXRECORDLib.OleEvent Ev,exontrol.EXRECORDLib.Editor Ed)
{
}

Private Sub UserEditorOleEvent(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Ev As exontrol.EXRECORDLib.OleEvent,ByVal Ed As
exontrol.EXRECORDLib.Editor) Handles UserEditorOleEvent
End Sub

event UserEditorOleEvent (Object as Object, Ev as OleEvent, Ed as
Editor)
Occurs when an user editor fires an event.

Type Description
Object as Object An Object that fires the event.

Ev as OleEvent An OleEvent object that holds information about fired
event.

Ed as Editor An Editor object whose inner ActiveX control fires the
event.

The UserEditorOleEvent event notifies your application when an inner ActiveX control fires
an event. The UserEditorType type specifies an editor that may host an ActiveX control.
Use the Add method to insert an editor that hosts an ActiveX control. Use the UserEditor
method to create an inner ActiveX control.

Syntax for UserEditorOleEvent event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void UserEditorOleEvent(object sender,
AxEXRECORDLib._IRecordEvents_UserEditorOleEventEvent e)
{
}

void OnUserEditorOleEvent(LPDISPATCH Object,LPDISPATCH Ev,LPDISPATCH Ed)
{
}

void __fastcall UserEditorOleEvent(TObject *Sender,IDispatch
*Object,Exrecordlib_tlb::IOleEvent *Ev,Exrecordlib_tlb::IEditor *Ed)
{
}

procedure UserEditorOleEvent(ASender: TObject; Object : IDispatch;Ev :
IOleEvent;Ed : IEditor);
begin
end;

procedure UserEditorOleEvent(sender: System.Object; e:
AxEXRECORDLib._IRecordEvents_UserEditorOleEventEvent);
begin
end;

begin event UserEditorOleEvent(oleobject Object,oleobject Ev,oleobject Ed)
end event UserEditorOleEvent

Private Sub UserEditorOleEvent(ByVal sender As System.Object, ByVal e As
AxEXRECORDLib._IRecordEvents_UserEditorOleEventEvent) Handles
UserEditorOleEvent
End Sub

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As
EXRECORDLibCtl.IOleEvent,ByVal Ed As EXRECORDLibCtl.IEditor)
End Sub

Syntax for UserEditorOleEvent event, /COM version, on:

VBA

VFP

Xbas…

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As Object,ByVal Ed As
Object)
End Sub

LPARAMETERS Object,Ev,Ed

PROCEDURE OnUserEditorOleEvent(oRecord,Object,Ev,Ed)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="UserEditorOleEvent(Object,Ev,Ed)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorOleEvent(Object,Ev,Ed)
End Function
</SCRIPT>

Procedure OnComUserEditorOleEvent Variant llObject Variant llEv Variant llEd
 Forward Send OnComUserEditorOleEvent llObject llEv llEd
End_Procedure

METHOD OCX_UserEditorOleEvent(Object,Ev,Ed) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorOleEvent(COM _Object,COM _Ev,COM _Ed)
{
}

function UserEditorOleEvent as v (Object as P,Ev as
OLE::Exontrol.Record.1::IOleEvent,Ed as OLE::Exontrol.Record.1::IEditor)
end function

function nativeObject_UserEditorOleEvent(Object,Ev,Ed)
return

Syntax for UserEditorOleEvent event, /COM version (others), on:

The following VB sample adds an Exontrol.ComboBox control and displays the events being
fired by inner ActiveX control:

Option Explicit

Private Function isInstalled(ByVal s As String) As Boolean
On Error GoTo Error
 CreateObject (s)
 isInstalled = True
 Exit Function
Error:
 isInstalled = False
End Function

Private Sub Form_Load()
 With Record1
 .BeginUpdate
 With .Add("ActiveX", UserEditorType)
 .Position = 2
 Dim progID As String
 progID = "Exontrol.ComboBox"
 If Not (isInstalled(progID)) Then
 .Value = """" & progID & """ is not installed."
 .ToolTip = .Value
 .ForeColor = vbRed
 Else
 .UserEditor progID, ""
 .LabelBackColor = SystemColorConstants.vbMenuBar
 ' Accesses the inside ActiveX control, in our case an ExComboBox control.
https://www.exontrol.com/excombobox.jsp
 With .UserEditorObject()
 .BeginUpdate
 .BackColorEdit = SystemColorConstants.vbMenuBar
 .IntegralHeight = True
 .ColumnAutoResize = True
 .LinesAtRoot = True

https://exontrol.com/excombobox.jsp

 .MinHeightList = 164
 .MinWidthList = 264
 .MarkSearchColumn = False
 .FilterBarDropDownHeight = -150
 .DrawGridLines = True
 .Alignment = 0
 With .Columns
 .Add "Column 1"
 .Add "Column 2"
 With .Add("Column 3")
 .DisplayFilterButton = True
 End With
 End With
 With .Items
 Dim h, h1
 h = .AddItem(Array("Root 1", "SubChild 1", "SubChild 2"))
 h1 = .InsertItem(h, , Array("Child 1", "SubChild 1.1", "SubChild 1.2"))
 .CellMerge(h1, 0) = 1
 .CellHasCheckBox(h1, 0) = True
 h1 = .InsertItem(h, , Array("Child 2", "SubChild 2.1", "SubChild 2.2"))
 .CellMerge(h1, 0) = 1
 .CellHasCheckBox(h1, 0) = True
 .ExpandItem(h) = True
 h = .AddItem(Array("Root 2", "SubChild 1", "SubChild 2"))
 h1 = .InsertItem(h, , Array("Child 1", "SubChild 1.1", "SubChild 1.2"))
 .CellMerge(h1, 0) = 1
 h1 = .InsertItem(h, , Array("Child 2", "SubChild 2.1", "SubChild 2.2"))
 .CellMerge(h1, 0) = 1
 .ExpandItem(h) = True
 End With
 .Value = "Root 1"
 .EndUpdate
 End With
 End If
 End With
 .EndUpdate
 End With

End Sub

Private Sub Record1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXRECORDLibCtl.IOleEvent, ByVal Ed As EXRECORDLibCtl.IEditor)
On Error Resume Next
 Debug.Print "Event name: " & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print vbTab & "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print vbTab & Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample adds an Exontrol.ComboBox control and displays the events being
fired by inner ActiveX control:

#import "c:\winnt\system32\ExComboBox.dll"
#import "c:\winnt\system32\ExRecord.dll"

CString strObject("Exontrol.ComboBox");
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
m_record.BeginUpdate();
m_record.SetLabelSize(110);
CEditor editor = m_record.Add(COleVariant("ActiveX"), EXRECORDLib::UserEditorType,
vtMissing);
editor.SetPosition(2);
if (!isInstalled(strObject.AllocSysString()))
{
 CString strFormat;
 strFormat.Format("\"%s\" is not installed.", (LPCSTR)strObject);
 editor.SetValue(COleVariant(strFormat));
 editor.SetForeColor(RGB(255, 0, 0));
}
else

https://exontrol.com/excombobox.jsp

{
 // Creates the exComboBox control. https://www.exontrol.com/excombobox.jsp
 editor.UserEditor(strObject, "");
 if (EXCOMBOBOXLib::IComboBoxPtr spComboBox = editor.GetUserEditorObject())
 {
 spComboBox->BeginUpdate();
 spComboBox->BackColorEdit = GetSysColor(COLOR_MENU);
 spComboBox->IntegralHeight = true;
 spComboBox->ColumnAutoResize = true;
 spComboBox->LinesAtRoot = EXCOMBOBOXLib::exLinesAtRoot;
 spComboBox->MinHeightList = 164;
 spComboBox->MinWidthList = 264;
 spComboBox->MarkSearchColumn = false;
 spComboBox->DrawGridLines = EXCOMBOBOXLib::exAllLines;
 spComboBox->FilterBarDropDownHeight = -150;
 spComboBox->Alignment = EXCOMBOBOXLib::RightAlignment;
 EXCOMBOBOXLib::IColumnsPtr spColumns = spComboBox->Columns;
 spColumns->Add("Column 1");
 spColumns->Add("Column 2");
 EXCOMBOBOXLib::IColumnPtr spColumn = spColumns->Add("Column 3");
 spColumn->DisplayFilterButton = true;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 long h = spItems->AddItem(v("Root 1"));
 spItems->CellCaption[v(h)][v((long)1)] = v("SubChild 1");
 spItems->CellCaption[v(h)][v((long)2)] = v("SubChild 2");
 long h1 = spItems->InsertItem(h, vtMissing, v("Child 1"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 1.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 1.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 h1 = spItems->InsertItem(h, vtMissing, v("Child 2"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 2.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 2.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 spItems->put_ExpandItem(h, TRUE);

 h = spItems->AddItem(v("Root 2"));
 spItems->CellCaption[v(h)][v((long)1)] = v("SubChild 1");
 spItems->CellCaption[v(h)][v((long)2)] = v("SubChild 2");
 h1 = spItems->InsertItem(h, vtMissing, v("Child 1"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 1.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 1.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 h1 = spItems->InsertItem(h, vtMissing, v("Child 2"));
 spItems->CellCaption[v(h1)][v((long)1)] = v("SubChild 2.1");
 spItems->CellCaption[v(h1)][v((long)2)] = v("SubChild 2.2");
 spItems->CellHasCheckBox[v(h1)][v((long)0)] = true;
 spItems->CellMerge[v(h1)][v((long)0)] = v((long)1);
 spItems->put_ExpandItem(h, TRUE);

 spComboBox->Value = "Root 1";
 spComboBox->EndUpdate();

 }
}
m_record.EndUpdate();

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt;);
 }
 return szDefault;
}

void OnUserEditorOleEventRecord1(LPDISPATCH Object, LPDISPATCH Ev, LPDISPATCH Ed)

{
 EXRECORDLib::IOleEventPtr spEvent = Ev;
 CString strOutput = "Event name: ";
 strOutput += spEvent->Name;
 strOutput += "\r\n";
 if (spEvent->CountParam == 0)
 {
 strOutput += "\tThe event has no arguments.";
 }
 else
 {
 strOutput += "\tThe event has no arguments.\r\n";
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 strOutput += spEvent->GetParam(v(i))->Name;
 strOutput += " = ";
 strOutput += V2S(&spEvent-;>GetParam(v(i))->Value);
 strOutput += "\r\n";
 }

 }
 OutputDebugString(strOutput);
}

In C++, the #import "path-to-ExRecord.dll" adds a new EXRECORDLib namespace that
includes definition for OleEvent and OleEventParam classes.

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method

	Editor
	AddButton method
	AddItem method
	Appearance property
	BackColor property
	ButtonWidth property
	Caption property (readonly)
	ClearButtons method
	ClearItems method
	DropDown method
	DropDownAlignment property
	DropDownAutoWidth property
	DropDownMinWidth property
	DropDownRows property
	DropDownVisible property
	EditType property
	ExpandAll method
	ExpandItem property
	FindItem property (readonly)
	ForeColor property
	Image property
	Index property (readonly)
	InsertItem method
	ItemToolTip property
	Key property (readonly)
	Label property
	LabelAlignment property
	LabelBackColor property
	LabelForeColor property
	Locked property
	Mask property
	MaskChar property
	Numeric property
	Option property
	PartialCheck property
	Picture property
	PopupAppearance property
	Position property
	RemoveButton method
	RemoveItem method
	SortItems method
	ToolTip property
	UserData property
	UserEditor method
	UserEditorObject property (readonly)
	Value property
	Visible property

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	Record
	Add method
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	CheckImage property
	Count property (readonly)
	CustomLayout method
	DataSource property
	EditorFromPoint property (readonly)
	Enabled property
	EndUpdate method
	EnsureVisible method
	ExecuteTemplate method
	FieldHeight property
	FieldWidth property
	Focus property
	Font property
	ForeColor property
	HBorderField property
	HFieldCount property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	item property (readonly)
	ItemByPosition property (readonly)
	LabelAlignment property
	LabelSize property
	LastError property (readonly)
	Layout property
	LayoutHeight property (readonly)
	LayoutWidth property (readonly)
	Picture property
	PictureDisplay property
	RadioImage property
	Refresh method
	Remove method
	RemoveAll method
	ReplaceIcon method
	ScrollBars property
	SelBackColor property
	SelForeColor property
	ShowImageList property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	UseTabKey property
	UseVisualTheme property
	VBorderField property
	Version property
	VFieldCount property
	VisualAppearance property (readonly)

	ExRecord events
	ButtonClick event
	Change event
	Click event
	DblClick event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	RClick event
	UserEditorOleEvent event

