
 ExPropertiesList

The ExPropertiesList/ExPropertiesGrid control (similar to the control used to manipulate
properties in Visual Studio) provides an efficient, intuitive and visually compact way to
handle data input with minimal coding and user interface design. The ExPropertiesList
component is easy to use and integrate into your application. The ExPropertiesList
component lets the user changes its visual appearance using skins, each one providing an
additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control.

Features include:

Print and Print Preview support.
Skinnable Interface support (ability to apply a skin to any background part)
Ability to browse any object that selected object contains, including COM or/and .NET
objects.
Ability to insert multiple COM or/and .NET objects in the same browser.
Ability to add custom properties.
Ability to include properties with multiple parameters, of any type (predefined type or
not).
Built-in HTML support, including icons, pictures, font and colors.
Filter-Prompt support, allows you to filter the properties as you type while the filter
bar is always visible on the bottom part of the list area.
Properties of Color type (support for EBN skin objects)
Tooltip Support.
Hierarchical layout
Browse collections and their items.
Browse property pages.
Browse object categories.
Incremental search support, including expanding the object properties for looking
inside.
Ability to filter properties.
It supports virtually all common data types including Variant, Byte, Boolean, (Long)
Integer, Single, Double, Currency, Font, Icon, Picture, Date and more
Built-in editors includes font, calendar, boolean combo, enumeration combo, colors,
spin, slider, masked edit control and more

The control includes the ability to browse any COM object that exposes an implementation
of IDispatch interface. For instance, any VB class provides an implementation for IDispatch
interface, so the ExPropertiesList is able to browse your VB objects. Another nice feature
that control provides is browsing collections and their items. If you have a collection, the
ExPropertiesList can browse their items! More than that the ExPropertiesList control

expands your objects. For instance, If your object provides a property that exports another
object, the ExPropertiesList control is able to browse the exported object.

All that you have to do to see it running, is to insert an instance of ExPropertiesList control
to your form, and then to select the object that you want to browse, by calling Select
method. That's all! If it is too much try this: PropertiesList1.Select PropertiesList1

Ž ExPropertiesList is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the alignment of the object in the source.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar. See also the HeaderAppearance property.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on.

The flag that ends on ...OnShortTouch indicates the action the control does when the
user short touches the screen
The flag that ends on ...OnRight indicates the action the control does when the user
right clicks the control.
The flag that ends on ...OnLongTouch indicates the action the control does when the
user long touches the screen

The AutoDragEnum type supports the following values:

Name Value Description
exAutoDragNone 0 AutoDrag is disabled.

exAutoDragCopy 8

Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopyImage 10

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop

https://www.youtube.com/watch?v=4uA7ZI0W3Sk

operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content.

Click here to watch a movie on how
exAutoDragScroll works.

exAutoDragCopyOnShortTouch2048 Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnShortTouch2304 Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnShortTouch2560 Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 Drag and drop a snap shot of the current
component.

exAutoDragScrollOnShortTouch4096 The component is scrolled by clicking the object and
dragging to a new position.

exAutoDragCopyOnRight 524288Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnRight 589824Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnRight655360Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnRight720896Drag and drop a snap shot of the current
component.

https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

exAutoDragScrollOnRight 1048576
The component is scrolled by clicking the object and
dragging to a new position.

exAutoDragCopyOnLongTouch134217728Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnLongTouch150994944Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnLongTouch167772160Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376Drag and drop a snap shot of the current
component.

exAutoDragScrollOnLongTouch268435456The component is scrolled by clicking the object and
dragging to a new position.

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
IncrementalSearch property to allow 'start with' incremental search or 'contains' incremental
search feature in the control. For instance, if the IncrementalSearch property is exContains
+ exMoveOnTop, the items are re-arranged so, the first items contain the typed characters,
while the rest stay unchanged. Use the ExpandOnSearch property to automatically expand
parent items as user types characters. The FilterBarPromptVisible property specifies
whether the control displays the control's filter prompt. The AutoSearchEnum type supports
the following values.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters. This option can be combined with
the exMoveOnTop flag, which indicates that the
control filters for items that start with typed
characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters. This option can be combined with
the exMoveOnTop flag, which indicates that the
control filters for items that contains typed
characters.
If this flag is present, the items being found are
displayed on the top of the list. This flag can be
combined with the exStartWith or exContains. The
exMoveOnTop option filters for properties as you
type (FilterBarPromptVisible property should be
True, else it has no effect).

The first screen shot shows the properties before
typing anything, while the second screen shot
shows the item being re-arranged on top once the
user typed "Allow" (IncrementalSearch property is
exContains + exMoveOnTop):

exMoveOnTop 256

In other words, if the exMoveOnTop flag is included
the control filters the entries/properties that match
the typed characters only.

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The CellBackgroundExt property specifies the EBN
String format to be displayed on the cell's background. The CellBackgroundExtValue
property access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
CellBackgroundExt property specifies the EBN
String format to be displayed on the object's
background. The Exontrol's eXButton WYSWYG
Builder helps you to generate or view the EBN
String Format, in the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255

https://exontrol.com/exbutton.jsp

exBackColorExt 1
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates
the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the

exClientExt 2

size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.
 ... displays portions

about:blank

of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon

exTextExt 4

inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript

The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For

instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

exTextExtAlignment 6

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and
horizontally aligned on the left.

17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.
32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

exPatternExt 7

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Name Value Description

exHeaderFilterBarButton 0 Specifies the background color for the drop down
filter bar button.

exFooterFilterBarButton 1 Specifies the background color for the closing
button in the filter bar.

exDropDownButtonUp 4 Specifies the visual appearance for the drop down
button, when it is up.

exDropDownButtonDown 5 Specifies the visual appearance for the drop down
button, when it is down.

exButtonUp 6 Specifies the visual appearance for the button
inside the editor, when it is up.

exButtonDown 7 Specifies the visual appearance for the button
inside the editor, when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a

calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSliderRange 15 Specifies the visual appearance for the slider's bar.

exSliderThumb 16 Specifies the visual appearance for the thumb of the
slider.

exSplitDesc 18 Specifies the visual appearance for the description's
splitter.

exSpinUpButtonUp 22 Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23 Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24 Specifies the visual appearance for the down spin
button when it is not pressed.

exSpinDownButtonDown 25 Specifies the visual appearance for the down spin
button when it is pressed.

exCursorHoverColumn 32 Specifies the visual appearance for the column
when the cursor hovers the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTipWidth property to
specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the
ShowToolTip method to display a custom tooltip.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exCheckBoxState0 70 Specifies the visual appearance for the check box in
0 state (unchecked).

exCheckBoxState1 71 Specifies the visual appearance for the check box in
1 state (checked).

exCheckBoxState2 72 Specifies the visual appearance for the check box in
2 state (partial, not used).

exSpyWidget 92 Specifies the visual appearance of the widget to
highlight the object from the cursor while spying.

exTreeLinesColor 186
exTreeLinesColor. Specifies the color to show the
tree-lines (connecting lines from the parent to the
children)

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398
The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants BorderStyleEnum
The BorderStyleEnum enumeration defines the control's border style. Use the BorderStyle
property of to change the control's border.

Name Value Description
None 0 No border. The control has no border.
Fixed 1 Fixed. The control has a fixed size border.

constants DisplayBoolEnum
The DisplayBoolEnum type specifies the way the boolean properties displays the values.
The DisplayBoolAs property specifies how the control displays the boolean properties. The
DisplayBoolEnum type supports the following values:

Name Value Description
exBoolEnum 0 Displays the property of boolean type as enum.

exBoolCheck 1 Displays the property of boolean type as a check-
box.

constants DisplayCaptionEnum
The DisplayCaptionEnum type specifies the type of captions that the DisplayCaption
property returns. The DisplayCaptionEnum type supports the following values:

Name Value Description
exDisplayName 0 Gets the caption as displayed on Name column.
exDisplayValue 1 Gets the value as displayed on Value column.
exDisplayDescription 2 Gets the value as displayed on Description panel.
exDisplayTemplate 3 (Reserved) Gets the value in Template format.

constants DisplayColorEnum
The DisplayColorEnum type defines how the properties of color type are displayed. Use
the DisplayColorEnum property to specify how the properties of color type are displayed.

Name Value Description

exDefault 0 Displays the property of color type as hexa like
&H00FF0000&

exRGB 1 Displays the property of color type using RGB
values, like RGB(255,0,0)

constants EditTypeEnum
Here's the list of supported built- in editors. Use the Add method to insert a new property to
the browser. Use the Value property to assign a value to a property. Use the
PropertyChange event to notify your application that the property changes its value. Use the
Select method to browse for a COM object. Use the Property.Option property to specify
different settings for the current editor. Use the Option property to customize the strings or
behavior for different editors. Use the ModalPropertyChange event to notify your application
that the user clicks the cell's button. The control supports the following type of editors:

Name Value Description

Button -3

Adds a button to the property, that's always visible
no matter if the property is focused or selected.
The EditButton or EditPage shows the button ONLY
if the property is selected. The
ModalPropertyChange(Property, Value, Cancel)
event is fired once the user clicks the property's
button (EditTypeEnum.Button type). The
PropertyChange(Property) event occurs if the
ModalPropertyChange event is not canceled
(Cancel property is false) and the Value is changed.

Divider -2

Adds a divider property, that merges the Name and
Value columns, and displays the Name, HTMLName
property on the center. The Selectable property
specifies whether the user can select the property
at runtime. The Sortable property specifies whether
the property changes its position once the user
sorts a column.

Label -1 The property is read only (has no editor assigned
) and it looks not grayed.

ReadOnly 0
The property is read only (has no editor assigned
) and it looks grayed. Use the Locked property to
lock a property from being changed by the user.

Edit 1

Uses a standard text box control to edit the
property's value. Use the Numeric property to filter
numbers of integer type. Use The NumericFloat
property to filter for numbers of double type. Use
the Option(exEditSingleLine) property on False to
specify a multiple-lines editor.
Provides a drop down portion that includes
standard, system, or EBN colors. Use the

https://exontrol.com/ebn.jsp

EditColor 2 EditColorPage type to provide your own color
editor. The EBN colors are shown only if the
browsed COM object exposes a VisualAppearance
property like shown in the following movie.

EditFont 3

Changing the property of font types. Use the
ModalPropertyChange event to notify your
application that the user clicks the cell's button. The
default implementation calls the common font select
dialog. Use the Option property to specify different
settings for the current editor.

EditFontName 4
Displays a list of fonts into your system. Provides a
drop down list that includes the name of the fonts
installed on your computer.

EditPicture 5

Displays the picture contained by the property.
Provides a small rectangle where the picture is
rendered. Use the ModalPropertyChange event to
notify your application that the user clicks the cell's
button. Use the Option property to specify different
settings for the current editor.

EditPage 6
User can open a custom page. Use the
ModalPropertyChange event to notify your
application that the user clicks the cell's button.

EditBoolean 7 Displays a list with boolean values: True and False.

EditEnum 8

Presents a list of predefined values. The property
accepts only one of the predefined values. The
AllowMultipleValuesOnEnum property specifies
whether the drop down element displays a
checkbox for flags in the enumeration lists that may
be a bit combination.

EditDate 9

Changing the properties of DATE type. Provides a
drop down calendar control. Use the Option
property to specify different settings for the current
editor.

EditPassword 10
Password editor. Use the EditPassword type to
mask input characters with '*' character, and to
disable copy and paste inside the edit control.

EditDropDown 11 Presents a list of values. The property accepts also
values that are not in the list.

https://exontrol.com/images/ebn/expropertieslist-EBN-browse.htm

EditObject 12
Specifies that the property is an object property,
and the properties of the object are inserted. Use
the EditObject to insert multiple COM objects to the
same browser.

EditColorPage 13

Displays cells of color type and add a button to let
user changes the color using custom color dialog.
Use the ModalPropertyChange event to notify your
application that the user clicks the cell's button.

EditCheck 14 Adds a check box entry for properties of boolean
type.

EditButton 15
Adds a button and a text box to a cell. Use the
ModalPropertyChange event to notify your
application that the user clicks the cell's button.

EditSlider 16

Adds a slider control to the property. The
SliderWidth property specify the width of the slider
in the property. The SliderMin and SliderMax
properties indicate the range of the values used by
the slider. The SliderStep property determines the
proposed change when user moves the slider. The
SliderTickFrequency property specifies the
frequency to display ticks on a slider control.

EditFile 17
Adds a button to select a file using the common
open file dialog. Use the Option property to specify
different settings for the current editor.

EditFolder 18 Adds a button to select a folder.
Edits a property of an object. The property can
have multiple parameters of any type. The
ShowMultipleParams property should be on True, if
the property contains multiple parameters. The
property may include several child items, if one or
more parameters of the property are of a predefine
type such as Boolean or enumeration, that lists all
possible combinations. For instance, the ItemBar
property (Items.ItemBar(Item as HITEM, Key as
Variant, Property as ItemBarPropertyEnum) as
Variant) of the eXG2antt contains 3 parameters,
the first two of Variant type, and the last parameter
of it, of Enumeration type. The PropertiesList.Add
"ItemBar", Array(G2antt1.Items, i, k), EditProperty
adds a new property ItemBar to the browser and

https://exontrol.com/content/products/exg2antt/help/Items_ItemBar.htm

EditProperty 19

list all available options as follows:

As you can see the exBarCanMove option is a value
of ItemBarPropertyEnum as well as all child items
of the ItemBar property. In other words, the
EditProperty may add a single row for a property if
the property has no parameters, or have no
predefined parameters, or several rows, if the
property returns another object, or have several
parameters of a predefined type such as Boolean
or Enumeration.

The following VB sample lists the ItemBar property
(Items.ItemBar(Item as HITEM, Key as Variant,
Property as ItemBarPropertyEnum) as Variant)
property, for the bar from the focused item:

With PropertiesList1
 .Add "ItemBar", Array(G2antt1.Items,
G2antt1.Items.FocusItem,

https://exontrol.com/content/products/exg2antt/help/temBarPropertyEnum_enum.htm
https://exontrol.com/content/products/exg2antt/help/Items_ItemBar.htm

G2antt1.Items.FirstItemBar(G2antt1.Items.FocusItem)),
 EditProperty
End With

EditPropertyWildcard 20 Reserved.
EditPropertyWildcardParent 21 Reserved.

constants ExpandButtonEnum
Defines how the control displays the expanding/collapsing buttons.

Name Value Description
exNoButtons 0 The control displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed items, and a
minus sign for expanded items.()

exArrow 1 The control uses icons to display the expand
buttons.()

exCircle 2 The control uses icons to display the expand
buttons. ()

exWPlus 3 The control uses icons to display the expand
buttons. ()

exCustom 4 The HasButtonsCustom property specifies the index
of icons being used for +/- signs on parent items.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type specifies how the control displays its filter bar prompt. The
FilterBarPromptVisible property specifies whether the control's filter prompt is visible or
hidden. The FilterBarVisibleEnum type specifies the following values:

Name Value Description
exFilterBarHidden 0 No filter prompt is shown.

exFilterBarVisible -1

The control shows the filter bar, which displays a
close button, so the user can close and remove the
current filter. Use the
Background(exFooterFilterBarButton) property to
specify the visual appearance of the close button.

exFilterBarAlwaysVisible 1

The control shows the filter bar with no close
button.

constants GridLinesEnum
Defines how the control paints the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exRowLines -2 The control paints grid lines only for current rows.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the CellBackgroundExtValue property indicates the index of the part
of the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder
helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BackgroundExt property:

After calling the BackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants OptionEnum
Specifies different options for a built-in The Option property specifies the editor's options

Name Value Description

exDateTodayCaption 0

Specifies the caption for the 'Today' button in the
EditDate editor By default, the
Option(exDateTodayCaption) is "Today". (string
expression)

exDateMonths 1

Specifies the names for months to be displayed in
in the EditDate editor. The list of months should be
delimitated by spaces. By default, the
Option(exDateMonths) = "January February March
April May June July August September October
November December". (string expression)

exDateWeekDays 2

Specifies the shortcut for the weekdays to be
displayed in the EditDate editor. The list of shortcut
for the weekdays should be separated by spaces.
By default, the Option(exDateWeekDays) = "S M T
W T F S". The first shortcut in the list indicates the
shortcut for the Sunday, the second shortcut
indicates the shortcut for Monday, and so
on. (string expression)

exDateFirstWeekDay 3

Specifies the first day of the week in the EditDate
editor. By default, the Option(exDateFirstWeekDay)
= 0. The valid values for the
Option(exDateFirstWeekDay) property are like
follows: 0 - Sunday, 1 - Monday, 2 - Tuesday, 3 -
Wednesday, 4 - Thursday, 5 - Friday and 6 -
Saturday. (long expression, valid values are 0 to 6)

exDateShowTodayButton 4

Specifies whether the 'Today' button is visible or
hidden in the EditDate editor. By default, the
Option(exDateShowTodayButton) property is True.
(boolean expression)

exDateMarkToday 5

Gets or sets a value that indicates whether the
today date is marked in the EditDate editor. By
default, Option(exDateMarkToday) property is
False. (boolean expression)

exDateShowScroll 6

Specifies whether the years scroll bar is visible or
hidden in the EditDate editor. By default, the
Option(exDateShowScroll) property is

True. (boolean expression)

exFontCharSet 7

Specifies a list of character sets being included in
the EditFontName editor. The comma splits the
characters sets in the option. By default, the
exFontCharSet option is "0,2,255", that means that
ANSI, OEM and SYMBOL character sets are
included. (string expression)

ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
MAC_CHARSET 77
SHIFTJIS_CHARSET 128
HANGUL_CHARSET 129
JOHAB_CHARSET 130
GB2312_CHARSET 134
CHINESEBIG5_CHARSET 136
GREEK_CHARSET 161
TURKISH_CHARSET 162
VIETNAMESE_CHARSET 163
HEBREW_CHARSET 177
ARABIC_CHARSET 178
BALTIC_CHARSET 186
RUSSIAN_CHARSET 204
THAI_CHARSET 222
EASTEUROPE_CHARSET 238
OEM_CHARSET 255

For instance, if you need to include the Japanese
fonts, you need to use the exFontCharSet option as
"0,2,128,255", where 128 indicates the
SHIFTJIS_CHARSET.

exEditFileTitle 8
Specifies the title to select a file for the EditFile
editor. By default, the option is "Select File" (string
expression)

exEditFileFilter 9

Specifies the filter to select files for the EditFile
editor. If empty, no filter field is displayed on the
open files dialog. By default, the option is "All Files
(*.*)|*.*" (string expression)

exEditPictureTitle 10
Specifies the title to select a file for the EditPicture
editor. By default, the option is "Load Picture"

(string expression)

exEditPictureFilter 11

Specifies the filter to select files for the EditPicture
editor. If empty, no filter field is displayed on the
open files dialog. By default, the option is "All
Pictures
Files|*.bmp;*.dib;*.gif;*.jpg;*.wmf;*.emf;*.ico;*.cur|Bitmaps
(*.bmp;*.dib)|;*.bmp;*.dib|GIF Images
(*.gif)|*.gif|JPEG Images (*.jpg)|*.jpg|Metafiles
(*.wmf;*.emf)|*.wmf;*.emf|Icons
(*.ico;*.cur)|*.ico;*.cur|All Files (*.*)|*.*" (string
expression)

exEditFolderTitle 12
Specifies the title to select a folder for the
EditFolder editor. By default, the option is "Select
Folder" (string expression)

exEditFolderIncludeFiles 13
Specifies whether files are included in the
EditFolder editor. By default, the option is False
(Boolean expression)

exEditFolderNewUI 14
Specifies whether the EditFolder editor uses the
new user interface. By default, the option is False
(Boolean expression)

exEditFolderShowEditBox 15
Specifies whether the EditFolder editor displays an
edit box field. By default, the option is True
(Boolean expression)

exEditFolderAllowNewFolder 16
Specifies specifies whether the EditFolder editor
includes a button to allow creating a new folder. By
default, the option is False (Boolean expression)

exEditFolderShowPath 17

Indicates whether the EditFolder editor shows the
current selected path. You can use this option in
combination with exEditFolderShowEditBox on
False, so the user can view the fully path of the
selected file or folder in the EditFolder editor. By
default, the option is False (Boolean expression)

exEditSingleLine 18

Specifies if the inside edit-box is a single or multiple
lines editor. If False, you can use the
exEditMaxMultipleLines option to specify the
number of lines that a multiple-lines editor may
display. If False, you can use the
exEditAutoSizeMultipleLines option to specify if the
editor is auto-sizing when user alters the editor. By
default, the option is True (Boolean expression)

exEditMaxMultipleLines 19

Specifies the number of lines that a multiple-lines
editor may display. This option has effect only if the
exEditSingleLine property is False. By default, the
option is 6 (long expression)

exEditAutoSizeMultipleLines 20

Specifies if the multiple-lines editor is auto-sizing
once the user alters the property's field. This option
has effect only if the exEditSingleLine property is
False.

If the exEditAutoSizeMultipleLines property is
0, the size of the editor is not changed while
the user alters the editor's content. In this
case, the exEditMaxMultipleLines option
specifies the number of lines to be displayed
while editing the field.
If the exEditAutoSizeMultipleLines property is
-1, the size of the editor is changed while the
user alters the editor's content, so it fits it
content. In this case, the
exEditMaxMultipleLines option specifies the
number of maximum lines to be displayed while
editing the field. While editing, if the number of
lines grows, the size of the editor is growing
too.
If the exEditAutoSizeMultipleLines property is
1, the size of the editor is changed while the
user alters the editor's content, so it fits it
content. In this case, the
exEditMaxMultipleLines option specifies the
number of maximum lines to be displayed while
editing the field. The height of the editor is not
shrinking while the user is editing or removing
lines.

By default, the option is -1 (long expression)

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SortObjectsEnum
The SortObjectsEnum type specifies the position of objects to be shown on the control,
when the user sorts a column. The SortObjects property specifies whether the objects are
placed on top or bottom side of the control when the user sorts a column. The
SortObjectsEnum type supports the following values.

Name Value Description

exSortObjectsDefault 0 Default sorting. The object properties are placed on
their sorting position.

exSortObjectsTop 1 The object properties are put on the top of the list.

exSortObjectsBottom 2 The object properties are put on the bottom of the
list.

constants SortOnClickEnum
Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption has
been clicked.

Name Value Description

exNoSort 0 The column is not sorted when the user clicks the
column's header

exDefaultSort -1 The control sorts the column when the user clicks
the column's header

constants ToStringEnum
The ToString method gets the list of properties with their values as they are displayed in the
control.

Name Value Description
exLiterals 0 Generates the literals, as in the type library.
exNumbers 1 Generates the numbers instead the literals.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control. Use the Background
property to specify the visual appearance for the parts in the control.

The identifier you choose for the skin is very important to be used in the

background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicates the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background
color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the BackColor = BackColor Or
&H2000000 indicates that we apply the skin with the index 2 using the old color, to the
object that BackColor is applied.

Starting with Windows XP, the following table shows how the common controls are broken
into parts and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10

CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3
MS_NORMAL = 1
MS_SELECTED = 2

MP_MENUBARITEM = 3 MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3
CHEVS_NORMAL = 1

RP_CHEVRON = 4 CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5

RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4
SCRBS_NORMAL = 1
SCRBS_HOT = 2

SBP_UPPERTRACKHORZ = 5 SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1

TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1

TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON
MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE

= 2
WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11
FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

PropertiesList object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {A703DF80-DFF3-48D7-A4C7-47CF6A48425C}. The object's program identifier is:
"Exontrol.PropertiesList". The /COM object module is: "ExPropertiesList.dll"

The ExPropertiesList control (similar to the control used to manipulate properties in Visual
Studio) provides an efficient, intuitive and visually compact way to handle data input with
minimal coding and user interface design. A built from the ground up using 100% ATL-based
code, the ExPropertiesList represents some of the most advanced properties list
technology available in the ActiveX marketplace. The ExPropertiesList ActiveX control is
easy to use and too easy to integrate into your application. The doesn't require any
additional libraries, like MFC library.

The control includes the ability to browse any COM object that exposes an implementation
of IDispatch interface. For instance, any VB class provides an implementation for IDispatch
interface, so the ExPropertiesList is able to browse your VB objects. Another nice feature
that control provides is browsing collections and their items. If you have a collection, the
ExPropertiesList can browse their items! More than that the ExPropertiesList control
expands your objects. For instance, If your object provides a property that exports another
object, the ExPropertiesList control is able to browse the exported object Here's the list of
supported properties and methods:

Name Description
Add Adds a custom entry to the list.

AllowDrop Gets or sets a value indicating whether the control can
accept data that the user drags into it.

AllowDuplicateEntries Specifies whether the Add method allows adding new
properties with the same caption on the Name column.

AllowMultipleValuesOnEnum Specifies whether the enum types display bit combination
of predefined values.

AllowSpin Retrieves or sets a value that indicates whether the
component uses a spin control to edit numeric values.

AllowSpy Specifies whether the control can spy other UI
components or parts of them.

AllowSpyOn Specifies handle of the window where the spy can find UI
objects.

AllowTooltip Specifies whether the control displays a tooltip when the
string value is too long.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Attaches a script to the current object, including the

AttachTemplate events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoIndent Specifies a value that indicates whether child items are
automatically indented.

BackColor Retrieves or sets a value that indicates the control's
background color.

BackColorAlternate Specifies the background color used to display alternate
items in the control.

BackColorCategories Specifies the category items background color.
BackColorDescription Specifies the description's background color.
BackColorHeader Specifies the header's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderStyle Retrieves or sets the border style of the control.

CaptionMessageBox Specifies the caption to be displayed on the message box,
in case the user inputs an invalid value.

Clear Clears the control's content.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnCaption Retrieves or sets the column's caption.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ColumnWidth Retrieves or sets the column's width.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF, PDF, BMP, PNG,
GIF, TIF file.

Count Counts the properties in the control.
DefaultCategory Retrieves or sets the default category.
DefaultItemHeight Retrieves or sets the default item height.

DescriptionHeight
Retrieves or sets a value that indicates the height of the
description area.

DescriptionVisible Retrieves or sets a value that indicates whether the
description is visible or hidden.

DisplayBoolAs Specifies how the properties of boolean type are
displayed.

DisplayColorAs Specifies how the properties of color type are displayed.

EditOnKey Customizes the F4 key to let user edits a property using
the keys.

EditOnSelect
Retrieves or sets a value that indicates whether the
properties browser is ready to edit a value when the
selection is changed.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
ExpandAll Expands all items.
ExpandItem Expands or collapses an item.

ExpandOnSearch Expands items automatically while user types characters
to search for a specific property.

FilterBarFont Retrieves or sets the font for control's filter bar.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.

FireIncludeProperty Retrieves or sets a value that indicates whether the
IncludeProperty event is fired.

Font Retrieves or sets the control's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

ForeColorCategories Specifies the category items foreground color.
ForeColorDescription Specifies the description's foreground color.

ForeColorHeader Specifies the header's foreground color.

FormatAnchor
Specifies the visual effect for anchor elements in HTML
captions.

GridLineColor Retrieves or sets the grid line color.

HasButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.

HasButtonsCustom Specifies the index of icons for +/- signs when the
HasButtons property is exCustom.

HasGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

HasLines
Enhances the graphic representation of a tree control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderHeight Retrieves or sets a value indicating the control's header
height.

HeaderVisible Retrieves or sets a value that indicates whether the
control's header is visible or hidden.

HideSelection Specifies whether selected property appears selected
when the control loses focus.

HotBackColor Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
Images Sets the control's image list at runtime.
ImageSize Retrieves or sets the size of icons the control displays.

IncrementalSearch
Specifies whether the incremental search feature looks for
starting of the property or if it contains the typed
characters.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.
Retrieves or sets a value that indicates the base index

IndexItemsCollection when control enumerates the items in the collection.

Interfaces Retrieves the interfaces implemented by the object.

InvalidValueMessage
Retrieves or sets a value that indicates the error message
displayed by browser when changing property's value
fails. No error message occurs if is empty.

Item Returns a Property object based on its index.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

LinkCategories Retrieves or sets a value that indicates whether the
categories are linked.

MarkCategories Specifies whether the object's categories are splited by
separator lines

MarkLineColor Retrieves or sets a value that indicates the color of line
that splits the categories.

NameItemsCollection
Retrieves or sets a list of property's names separated by
semicolon (;), that are used by properties browser when it
requires a name for an item into a collection.

Option Specifies an option for the editor.

Property Gets a Property object given property's name or
property's identifier.

ReadOnly Gets or sets whether the properties browser is read-only.
Refresh Refreshes the properties values.
Remove Removes a property from the list.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.
ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

Select Browses a new object to control.
SelectedObject Browses a new object (com or .net) in the control.
SelectedProperty Specifies the selected property.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowCategories Retrieves or sets a value whether the browser includes
the object categories.

ShowHidden Retrieves or sets a value that indicates whether the
properties browser displays the hidden members.

ShowItemsCollection
Retrieves or sets a value that indicates whether the
properties browser includes the elements of a property
that contains a collection.

ShowMultipleParams Specifies whether the control loads properties with
multiple parameters.

ShowNonBrowsable Retrieves or sets a value that indicates whether the
control displays the non browseable members.

ShowObjects Retrieves or sets a value that indicates whether the
properties browser includes the properties of object type.

ShowPropertyPages Retrieves or sets a value that indicates whether the
properties browser displays the object property pages.

ShowReadOnly Retrieves or sets a value that indicates whether the
properties browser displays the read only properties.

ShowRestricted Retrieves or sets a value that indicates whether the
properties browse displays the restricted members.

ShowToolTip Shows the specified tooltip at given position.

ShowVariables Retrieves or sets a value that indicates whether the
control displays the object variables. An object of
IFontDisp type has variables like: Name, Size, ...

Sort Sorts the control.

SortObjects Specifies how the object properties are positioned once a
Sort occurs.

SortOnClick
Retrieves or sets a value that indicates whether the
control sorts automatically the data when the user click on
column's caption.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

ToString Saves the control's content to a string, as it is displayed.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.
VisualDesign Invokes the control's VisualAppearance designer.

method PropertiesList.Add (Property as String, Value as Variant, Type as
EditTypeEnum, [Description as Variant], [Parent as Variant], [Template
as Variant])
Adds a custom property to the list.

Type Description
Property as String A string expression that indicates the property's name.
Value as Variant A Variant value that indicates the property's value.

Type as EditTypeEnum An EditTypeEnum expression that indicates the property's
built-in editor.

Description as Variant A string expression that indicates the property's
description.

Parent as Variant
A string expression that indicates the name of the parent
property, or a long expression that indicates the identifier
of the parent property.

Template as Variant Reserved.
Return Description

Property
A Property object that represents the newly created
object. Use Property property to get a property based on
its name or based on its identifier.

The Add method adds a new property to the current list. The Add method associates to the
newly created Property object an identifier, that's unique. Use the ID property to get the
property's identifier. Use the Remove property to remove a property from the collection.
Use the UserData property to associate an extra data to a property. Use the
PropertyChange event to notify your application when a property's value is changed. Use
the AddValue method to add new values to a drop down editor (EditEnum, EditDropDown
types). Use the Select method to browse for a new COM object. Use the HTMLName
property to assign icons, pictures, font attributes or colors, to parts of the caption being
displayed in the Name column. Use the Option property to specify custom settings for editor
assigned to a property. If the AllowDuplicateEntries property is False, the Add method does
not add a new property with a name that's already shown on the Name column.

The following adds few properties with different editors, to the ExPropertiesList control:

With PropertiesList1
 .BeginUpdate

 .Add "ReadOnly", "", EXPROPERTIESLISTLibCtl.ReadOnly, "The property is read only"

 .Add "Edit", Me.Caption, EXPROPERTIESLISTLibCtl.Edit, "The property uses a standard
edit control, to change the property's value."
 .Add "Color", Me.BackColor, EXPROPERTIESLISTLibCtl.EditColor, "The property uses a
drop down color list to change the property's value."
 .Add "Font", Me.Font, EXPROPERTIESLISTLibCtl.EditFont, "The property uses a font
property page to change the property's value."
 .Add "FontName", Me.Font, EXPROPERTIESLISTLibCtl.EditFontName, "The property uses
a drop down font name list to change the property's value."
 .Add "Picture", Me.Icon, EXPROPERTIESLISTLibCtl.EditPicture, "The property uses picture
page to change the property's value."
 .Add "Page", Me.Icon, EXPROPERTIESLISTLibCtl.EditPage, "The property uses a custom
page to change the property's value."
 .Add "Boolean", Me.Visible, EXPROPERTIESLISTLibCtl.EditBoolean, "The property uses a
boolean combo."
 With .Add("Enum", Me.BorderStyle, EXPROPERTIESLISTLibCtl.EditEnum, "Not available
in DEMO version")
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed Single"
 .AddValue 2, "2 - Sizable"
 .AddValue 3, "3 - Fixed Dialog"
 .AddValue 4, "4 - Fixed ToolWindow"
 .AddValue 5, "5 - Sizable ToolWindow"
 End With
 .Add "Date", Date, EXPROPERTIESLISTLibCtl.EditDate, "Edits a value of DATE type"
 .Add "Password", "Password", EXPROPERTIESLISTLibCtl.EditPassword, "Edits a password"
 With .Add("DropDown", "Mr.", EXPROPERTIESLISTLibCtl.EditDropDown, "Specifies a list
of predefined values, but allow custom entries too.")
 .AddValue 0, "Mr."
 .AddValue 1, "Ms."
 .AddValue 2, "Dr."
 End With

 .Refresh
 .EndUpdate
End With

The following sample shows how to add new items for a property of EditEnum type:

Dim p As Property
Set p = PropertiesList1.Add("Enum", 1, EditEnum)
p.AddValue 0, "Zero"
p.AddValue 1, "One"
p.AddValue 2, "Two"
PropertiesList1.Refresh

You need to call Refresh method because the values for the property were unknown at
adding time.

The following sample adds two COM objects to the same browser:

With PropertiesList1
 .BeginUpdate
 .Add "PropertiesList", PropertiesList1.Object, EXPROPERTIESLISTLibCtl.EditObject
 .Add "Form", Me, EXPROPERTIESLISTLibCtl.EditObject
 .EndUpdate
End With

The following sample adds a root property and two child properties:

With PropertiesList1
 .BeginUpdate
 .Add("Root", "", ReadOnly).ID = 1234
 .Add("Child", "", Edit, , 1234).ID = 1235
 .Add "SubChild", "", Edit, , 1235
 .EndUpdate
End With

property PropertiesList.AllowDrop as Boolean
Gets or sets a value indicating whether the control can accept data that the user drags into
it.

Type Description

Boolean A Boolean expression that specifies whether the user can
drag data to.

By default, the AllowDrop property is False. Currently, this property is reserved, so user
should not use it.

property PropertiesList.AllowDuplicateEntries as Boolean
Specifies whether the Add method allows adding new properties with the same caption on
the Name column.

Type Description

Boolean
A Boolean expression that specifies whether the Add
method allows adding new properties with the same
name.

By default, the AllowDuplicateEntries property is True. If the AllowDuplicateEntries property
is False, the Add method does not add a new property with a name that's already shown
on the Name column.

property PropertiesList.AllowMultipleValuesOnEnum as Boolean
Specifies whether the enum types display bit combination of predefined values.

Type Description

Boolean
A Boolean expression that indicates whether the EditEnum
entries may display bit combination of predefined values.
An EditEnum editor displays a list of predefined values.

By default, the AllowMultipleValuesOnEnum property is False. If the
AllowMultipleValuesOnEnum property is True, the EditEnum properties may display a
checkbox for any predefined value in the enumeration that may be a bit combination. When
user clicks the checkbox, the new value includes or excludes the clicked flag. The COM
objects may allow bit combinations for predefined values.

For instance, let's say that our control browses the AllowSelectObjects property of the
Exontrol's eXG2antt component. The AllowSelectObjects property is of SelectObjectsEnum
which allow bit combination of the following values:

exNoSelectObjects, 0, The user can't select any object in the chart area
exSelectBarsOnly, 1, The user can select bars only.
exSelectLinksOnly, 2, The user can select links only.
exSelectObjects, 3, The user can select any object in the chart.
exSelectSingleObject, 16, If present, it specifies whether the user can select one or
multiple objects. For instance, the exSelectBarsOnly Or exSelectSingleObject specifies
that the user can select a single bar in the chart. The exSelectLinksOnly Or
exSelectSingleObject specifies that the user can select a single link in the chart.
and so on.

The exSelectSingleObject flag can be combined with any previously value that will indicates
that the control allows single selection only in the chart.

The following screen shot shows the ExPropertiesList control when the
AllowMultipleValuesOnEnum property is True, and Chart.AllowSelectObjects property is
exSelectSingleObject Or exSelectBarsOnly:

https://exontrol.com/content/products/exg2antt/help/Chart_AllowSelectObjects.htm
https://exontrol.com/exg2antt.jsp

The following screen shot shows the ExPropertiesList control when the
AllowMultipleValuesOnEnum property is False (by default), and Chart.AllowSelectObjects
property is exSelectSingleObject Or exSelectBarsOnly.

property PropertiesList.AllowSpin as Boolean

Returns or sets a value indicating whether the control uses a spin control to edit numeric
values.

Type Description

Boolean A boolean expression indicating whether the control uses a
spin control to edit numeric values.

Use the AllowSpin property to let user changes the numeric values using a spin control. The
property has effect only if the ReadOnly property is False, and it shows up only for
properties of numeric type. Use the SpinStep property to hide a spin control for a specified
property, or to specify the proposed change when user clicks a spin control.

property PropertiesList.AllowSpy as Boolean
Specifies whether the control can spy other UI components or parts of them.

Type Description

Boolean A Boolean expression that specifies whether the control
can spy other COM objects.

By default, the AllowSpy property is False. Use the AllowSpy property on True, to allow the
user to browse other /COM objects at runtime by drag and drop. If the AllowSpy property
is True, the control displays a spying cursor in the lower right part of the control as shown in
the bellow picture. The user clicks the spy icon, the spying cursor shows up, and so it can
be dragged to the object that needs to be browsed. The most part of our /COM UI
components like: eXG2antt, eXGantt, eXGrid, eXTree, eXList, eXComboBox,
eXPropertiesList, eXFileView, eXCalc, ... can be spied. When you do spying the
component, the browser finds parts of the control that can be browsed by showing a
rectangle arround the UI object. Once the user releases the button of the mouse, the
properties of the object are being loaded in the current browser, and so you can change the
properties of the objects at runtime.

 This movie shows how you can spy our /COM objects at runtime.

https://exontrol.com/exg2antt.jsp
https://exontrol.com/exgantt.jsp
https://exontrol.com/exgrid.jsp
https://exontrol.com/extree.jsp
https://exontrol.com/exlist.jsp
https://exontrol.com/excombobox.jsp
https://exontrol.com/exfileview.jsp
https://exontrol.com/excalc.jsp
https://www.youtube.com/watch?v=wt_CQ47penk

method PropertiesList.AllowSpyOn ([Handle as Variant])
Specifies handle of the window where the spy can find UI objects.

Type Description

Handle as Variant A long expression that specifies the handle of the window
to spy.

Reserved for internal use only.

property PropertiesList.AllowTooltip as Boolean
Specifies whether the control displays a tooltip when the string value is too long.

Type Description

Boolean A boolean expression that indicates whether the property's
tooltip is enabled or disabled.

By default, the AllowTooltip is False. If the AllowToolTip property is True, the control
displays the property's tooltip if the property's name or property's value is partially visible
and the cursor is over the property. Use the ToolTipDelay property to specify the time in ms
that passes before the ToolTip appears. Use the ToolTip property to assign a custom tooltip
to a property, that's displayed no matter if the property's name is partially visible.

property PropertiesList.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub PropertiesList1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 With PropertiesList1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxPropertiesList1_MouseMoveEvent(ByVal sender As System.Object, ByVal e
As AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent) Handles
AxPropertiesList1.MouseMoveEvent
 With AxPropertiesList1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axPropertiesList1_MouseMoveEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent e)
{
 axPropertiesList1.ShowToolTip(axPropertiesList1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMovePropertiesList1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_propertiesList.ShowToolTip(m_propertiesList.GetAnchorFromPoint(-1, -1), vtEmpty,
vtEmpty, vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .PropertiesList1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

method PropertiesList.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub PropertiesList1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property PropertiesList.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. Also, you can use the
AutoDrag property (exAutoDragScroll + exAutoDragScrollOnShortTouch, or 4112) to let
user scrolls the control's content when user touches a capacitive screen.

property PropertiesList.AutoIndent as Boolean
Specifies a value that indicates whether child items are automatically indented.

Type Description

Boolean
A boolean expression that indicates whether the control
automatically indents the child items relative to the position
of their parent items.

By default, the AutoIndent property is True. Use the Indent property to specify the amount,
in pixels, that child items are indented relative to their parent items. Use the HasLines
property to hide the lines between parent and child items. Use HasGridLines property to
draw lines between items.

Use the AutoIndent property to display all +/- signs on the first column without indentation
like in the following sample.

AutoIndent = True AutoIndent = False

property PropertiesList.BackColor as Color

Retrieves or sets a value that indicates the control's background color.

Type Description

Color A Color expression that indicates the control's background
color.

Use the BackColor property to change the control's background color. Use the ForeColor
property to change the foreground color. Use the BackColor property to specify the
background color for a specified property. Use the BackColorAlternate property to specify
the background color used to display alternate items in the control.

property PropertiesList.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color A color expression that indicates the alternate background
color.

By default, the control's BackColorAlternate property is zero. The control ignores the
BackColorAlternate property if it is 0 (zero). Use the BackColor property to specify the
control's background color.

property PropertiesList.BackColorCategories as Color

Specifies the category items background color.

Type Description

Color A color expression that indicates the background color for
category items.

Use the ForeColorCategories and BackColorCategories properties to customize the colors
for category items, when ShowCategories property is True.

The following sample displays the control's categories:

Private Sub Form_Load()
 With PropertiesList1
 .HasLines = False
 .BackColorCategories = vbBlue
 .ForeColorCategories = vbWhite
 .ShowCategories = True
 .ShowPropertyPages = False
 .Select PropertiesList1.Object
 End With
End Sub

property PropertiesList.BackColorDescription as Color
Specifies the description's background color.

Type Description

Color A color expression that indicates the background color for
control's description bar.

Use the BackColorDescription property to change the the background color for control's
description bar. Use the ForeColorDescription property to change the foreground color for
control's description bar. Use the DescriptionVisible property to show or hide the property's
description bar. Use the DescriptionHeight property to define the height of the property's
description bar, in pixels.

property PropertiesList.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color A color expression that indicates the background color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader to customize colors in the control's header
bar. Use the HeaderVisible property to show the control's header bar. Use the
ColumnCaption property to change the column's caption.

property PropertiesList.Background(Part as BackgroundPartEnum) as
Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

method PropertiesList.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

property PropertiesList.BorderStyle as BorderStyleEnum

Retrieves or sets the border style of the control.

Type Description

BorderStyleEnum A BorderStyleEnum expression that indicates the border
style of the control.

Use the BorderStyle property to remove the control's border. By default, the BorderStyle
property is Fixed (1).

property PropertiesList.CaptionMessageBox as String
Specifies the caption to be displayed on the message box, in case the user inputs an invalid
value.

Type Description

String A String expression that specifies the title of the message
box to be shown, when any error occurs.

By default, the CaptionMessageBox property is "Exontrol.PropertiesList". Use the
CaptionMessageBox property to specify your own title when an error occurs.

method PropertiesList.Clear ()
Clears the control's content.

Type Description

Clears all items into list. The Clear method doesn't clear the control columns collection. Use
the Remove method to remove a particular property.

property PropertiesList.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the control will automatically size its columns to
fit on the control's client area.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its columns to fit on the control's client
area.

Use the ColumnAutoResize property to fit the columns to the control's client area. By
default, the ColumnAutoResize property is true. If the ColumnAutoResize property is True,
the horizontal scroll bar never appears. The vertical scroll bar appears if there are items
that do not fit the control's client area. Use the HeaderVisible property to display the
control's header bar.

property PropertiesList.ColumnCaption([Index as Variant]) as String
Retrieves or sets the column's caption.

Type Description

Index as Variant
A long expression that indicates the index of the column.
The valid values are: 0 (Name column), 1 (Value column
)

String A string expression that indicates the column's caption.

The ColumnCaption property specifies the column's caption. Use the HeaderVisible property
to show the control's header bar. The ColumnWidth property specifies the column's width.
By default, the first column's caption is "Name", and the second column's caption is "Value".

property PropertiesList.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. Use the HasGridLines property to
show or hide the control's grid lines. Use the HeaderVisible property to show or hide the
control's header bar. Use the ColumnsAllowSizing property to resize the columns even if the
control's header bar is not visible. At runtime, the user can use the CTRL + Left or CTRL +
Right key to resize the columns (only if the ColumnsAllowSizing property is True).

property PropertiesList.ColumnWidth([Index as Variant]) as Long

Retrieves or sets the column's width.

Type Description

Index as Variant
A long expression that indicates the column's index. The
valid values are: 0 for "Name" column, and 1 for 'Value'
column.

Long A long expression that indicates the column's width, in
pixels.

Use the ColumnWidth property to specify the column's width. Use the ColumnAutoResize
property to let control resizes the columns to fit the control's client area. Use the
HeaderVisible property to show the control's header bar. Use the ColumnCaption property
to define the column's caption.

method PropertiesList.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. The items
are not expanded, they are listed in the order as they are displayed on the screen.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub PropertiesList1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 PropertiesList1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))

 {
 CComPtr<IPicture> spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc, IID_IPicture, FALSE,
(LPVOID*)&spPicture)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr<IStream> spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b, 10240, &dwRead);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten, NULL);
 dwWritten += dwBWritten;
 }
 CloseHandle(hFile);
 bResult = TRUE;
 }

 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxPropertiesList1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axPropertiesList1.Copy();

property PropertiesList.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

 The following VB sample saves the control's content to a file:

If (PropertiesList1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In PropertiesList1.CopyTo("")
 Debug.Print i
Next

property PropertiesList.Count as Long
Counts the properties in the control.

Type Description

Long A long expression that indicates the number of items in the
control.

The Count property counts the items in the control. The Count property counts the items
that are on the control at one time. For instance, if you have parent items, the children items
are counted as well. Use the Item property to access a Property object giving its index.

The following sample enumerates the properties in the control:

With PropertiesList1
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
End With

The following sample enumerates the properties in the control using the for each statement:

Dim p As EXPROPERTIESLISTLibCtl.Property
For Each p In PropertiesList1
 Debug.Print p.Name
Next

property PropertiesList.DefaultCategory as String

Retrieves or sets the default category.

Type Description

String A string expression that indicates the default category
name.

Use the DefaultCategory property to specify the name of the default category. If the
ShowCategories is True, The DefaultCategory category contains all properties that has no
category specified (when Select method is used). By default, the DefaultCategory
property is empty. The DefaultCategory property doesn't create a new category, so it
should exist in the list of object categories.

property PropertiesList.DefaultItemHeight as Long

Retrieves or sets the default item height.

Type Description

Long A long expression that indicates the default item's height in
pixels.

The DefaultItemHeight property specifies the default item's height, in pixels. By default, the
DefaultItemHeight property is 16 pixels. The DefaultItemHeight property should be set
before adding items. Use the Add method to add new entries to the browser. Use the
Select method to load properties of a COM object.

property PropertiesList.DescriptionHeight as Long

Retrieves or sets a value that indicates the height in pixels of the description area.

Type Description

Long A long expression that indicates the height in pixels of the
description area.

Use the DescriptionVisible property to hide the description window. The Description window
displays the description for the selected property. The Description property specifies the
description for the property. For instance, you can hide the description window, and you can
make your own description window (in this case a Label control):

Private Sub PropertiesList1_SelChange()
 Label1 = PropertiesList1.SelectedProperty.Description
End Sub

property PropertiesList.DescriptionVisible as Boolean

Retrieves or sets a value that indicates whether the description is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the
description is visible or hidden.

The DescriptionVisible property to hide the property's description bar. Use the
DescriptionHeight property to change the description window's height. Use the
BackColorDescription and ForeColorDescription properties to define the
background/foreground colors for property's description bar. Use the Description property
to get the property's description. Use the ToolTip property to display the property's
description as tooltip.

For instance, you can hide the description window, and you can make your own description
window (in this case a Label control):

Private Sub PropertiesList1_SelChange()
 Label1 = PropertiesList1.SelectedProperty.Description
End Sub

The following sample changes the property's description bar:

Private Sub Form_Load()
 With PropertiesList1
 .DescriptionVisible = True
 .ForeColorDescription = RGB(&HD0, &HF0, &HF0)
 .BackColorDescription = vbBlack
 .Select PropertiesList1.Object
 End With
End Sub

property PropertiesList.DisplayBoolAs as DisplayBoolEnum
Specifies how the properties of boolean type are displayed.

Type Description

DisplayBoolEnum A DisplayBoolEnum expression that specifies the way the
control displays the boolean properties.

By default, the DisplayBoolAs property is exBoolEnum, so the True and False values are
displayed for boolean properties. Use the DisplayBoolAs property on exBoolCheck to
display the boolean properties using the check-boxes.

The following screen shot shows the boolean properties using the exBoolEnum (by default
):

The following screen shot shows the boolean properties using the exBoolCheck:

property PropertiesList.DisplayColorAs as DisplayColorEnum
Specifies how the properties of color type are displayed.

Type Description

DisplayColorEnum A DisplayColorEnum expression that indicates how the
properties of color type are displayed.

By default, all color properties are displayed using the &HXXXXXXXX& form, where X is a
hex value. Use the DisplayColorAs property to change how the properties display the color
values.

The following screen shot shows the colors using the exDefault (by default):

The following screen shot shows the colors using the exRGB:

property PropertiesList.EditOnKey as Long
Customizes the F4 key to let user edits a property using the keys.

Type Description

Long A long expression that indicates the key code used instead
F4 key.

If the EditOnSelect property is False, you can start editing a property using the keyboard
using the F4 key. Use the EditOnKey property to specify the key being used to open the
property's editor when EditOnSelect property is False. By default, the EditOnKey property
is VK_F4.

property PropertiesList.EditOnSelect as Boolean

Retrieves or sets a value that indicates whether the properties browser is ready to edit a
value when the selection is changed.

Type Description

Boolean
A boolean expression that indicates whether the properties
browser is ready to edit a value when the selection is
changed.

By default, EditOnSelect property is False. Use the ReadOnly property to avoid editing the
properties.

property PropertiesList.Enabled as Boolean

Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the properties
browser is enabled or disabled.

Use the Enabled property to disable the control. Use the ReadOnly property to disable
editing properties. A disabled control looks grayed. Use the Locked property to lock a
property. Use the Enabled property to disable a property.

method PropertiesList.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your custom
properties , by preventing painting the control when it suffers any change. Once that
BeginUpdate method was called, you have to make sure that EndUpdate method will be
called too.

property PropertiesList.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method PropertiesList.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

Debug.Print PropertiesList1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

method PropertiesList.ExpandAll ()
Expands all items.

Type Description

The ExpandAll method expands all items. Use the ExpandItem method to expand an item.
Use the ExpandOnSearch property to expand items automatically while user types
characters to search for a specific property.

property PropertiesList.ExpandItem(Name as Variant) as Boolean

Expands or collapses an item.

Type Description

Name as Variant A string expression that indicates the property's name, or
a long expression that indicates the property's identifier.

Boolean
A boolean expression that indicates whether the item is
expanded or collapsed. True means that the item is
expanded, and False means that the item is collapsed.

Use the ExpandItem property to expand or collapse an item. Use the ID property to
determine the property's identifier. Use the Name property to retrieve the property's name.
Use the ExpandAll method to expand all items. Use the ExpandOnSearch property to
expand items automatically while user types characters to search for a specific property.

The following samples collapses the "Appearance" item:

Private Type POINTAPI
 x As Long
 y As Long
End Type

Private Type MSG
 hwnd As Long
 message As Long
 wParam As Long
 lParam As Long
 time As Long
 pt As POINTAPI
End Type
Private Declare Function PeekMessage Lib "user32" Alias "PeekMessageA" (lpMsg As MSG,
ByVal hwnd As Long, ByVal wMsgFilterMin As Long, ByVal wMsgFilterMax As Long, ByVal
wRemoveMsg As Long) As Long
Private Const PM_NOREMOVE = &H0
Private Declare Function TranslateMessage Lib "user32" (lpMsg As MSG) As Long
Private Declare Function DispatchMessage Lib "user32" Alias "DispatchMessageA" (lpMsg
As MSG) As Long

Private Sub Form_Load()
 With PropertiesList1
 .BeginUpdate
 .HasLines = False
 .ShowCategories = True
 .MarkCategories = True
 .Select PropertiesList1.Object

 ' When using the Select method, the list of properties is not immediately available,
so we need to proceeds few messages
 Dim m As MSG
 While PeekMessage(m, .hwnd, 0, 0, 1)
 TranslateMessage m
 DispatchMessage m
 Wend

 .ExpandItem("Appearance") = False
 .EndUpdate
 End With
End Sub

property PropertiesList.ExpandOnSearch as Boolean
Expands items automatically while user types characters to search for a specific property.

Type Description

Boolean
A Boolean expression that indicates whether the control
automatically expands items with children items when the
user searches for typed characters (incremental search)

By default, the ExpandOnSearch property is False. The IncrementalSearch property
specifies the control's incremental searching type. If the ExpandOnSearch property is True,
and user starts typing characters within the control, it takes each item, if the item is not
found but it has child items, it expands the item, and start looking inside the child items, and
so on. The property has effect only if the items display child items. When using the
ExpandOnSearch property you have to be carefully that your browsed object does not
provide recursive objects. In other words, an object that returns an already browsed object
and so on. Use the ExpandItem property to programmatically expand/collapse an item. Use
the ExpandAll method to expand all items.

property PropertiesList.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use Use the Refresh method to refresh the control.

property PropertiesList.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank

line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or

blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property PropertiesList.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The IncrementalSearch property indicates the type of filtering.

The filter prompt works based on the IncrementalSearch property as follows:

exStartWith, the list contains only items that starts with filter prompt's text (
FilterBarPromptPattern property).
exContains, the list displays only items that contains the filter prompt's text (
FilterBarPromptPattern property).

property PropertiesList.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that specifies whether
the control's filter prompt is visible or hidden.

By default, the FilterBarPromptVisible property is False, in other words the filter prompt is
not visible. Use the FilterBarPromptVisible property to add filtering capabilities to the
component. The filter prompt feature allows you to filter the items as you type while the
filter bar is visible on the bottom part of the list area. Use the FilterBarPrompt property to
specify the HTML caption being displayed in the filter bar when the filter pattern is missing.
The FilterBarPromptPattern property specifies the pattern to filter the list. The
IncrementalSearch property indicates the type of filtering.

The filter prompt works based on the IncrementalSearch property as follows:

exStartWith, the list contains only items that starts with filter prompt's text (
FilterBarPromptPattern property).
exContains, the list displays only items that contains the filter prompt's text (
FilterBarPromptPattern property).

The following screen shot shows the filter prompt (FilterBarPromptVisible property is True
):

The following screen shot shows the list once the user types "allow" in the filter prompt
portion:

property PropertiesList.FireIncludeProperty as Boolean

Retrieves or sets a value that indicates whether the IncludeProperty event is fired.

Type Description

Boolean A Boolean expression that indicates whether the
IncludeProperty event is fired.

By default, the FireIncludeProperty is True. Use the FireIncludeProperty to allow the control
filtering properties using the IncludeProperty event. If the FireIncludeProperty is False, the
control doesn't fire the IncludeProperty event. Use the FireIncludeProperty property on
False, when your properties browser doesn't require custom filtering, to increase the speed
of loading objects into the browser.

The following sample excludes the "hPal" variable of a Picture property:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 If Property.Variable = True Then
 If Property.Name = "hPal" Then
 Cancel = True
 End If
 End If
End Sub

property PropertiesList.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the font object used to paint the items. An object property
appears as bolded.

property PropertiesList.ForeColor as Color

Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A Color expression that indicates the control's foreground
color.

The ForeColor property determines the foregound color used to paint the items. Use
BackColor property to change the control's background color.

property PropertiesList.ForeColorCategories as Color

Specifies the category items foreground color.

Type Description

Color A color expression that indicates the category items
foreground color..

Use the ForeColorCategories and BackColorCategories properties to customize the color
for category items. The ForeColorCategories property has effect only if the
ShowCategories property is True. Use the ForeColor property to define the control's
foreground color.

The following sample displays the control's categories:

Private Sub Form_Load()
 With PropertiesList1
 .HasLines = False
 .BackColorCategories = vbBlue
 .ForeColorCategories = vbWhite
 .ShowCategories = True
 .ShowPropertyPages = False
 .Select PropertiesList1.Object
 End With
End Sub

property PropertiesList.ForeColorDescription as Color
Specifies the description's foreground color.

Type Description

Color A color expression that indicates the foreground color for
control's description bar.

Use the ForeColorDescription property to change the the foreground color for control's
description bar. Use the BackColorDescription property to change the background color for
control's description bar. Use the DescriptionVisible property to show or hide the property's
description bar. Use the DescriptionHeight property to define the height of the property's
description bar, in pixels.

property PropertiesList.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the background color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader to customize colors in the control's header
bar. Use the HeaderVisible property to show the control's header. bar.

property PropertiesList.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

property PropertiesList.GridLineColor as Color

Retrieves or sets the grid line color.

Type Description
Color A color expression that indicates the grid line color.

Use the GridLineColor property to specify the control's grid line color. The HasLines
property tnhances the graphic representation of a tree control's hierarchy by drawing lines
that link child items to their parent items.

property PropertiesList.HasButtons as ExpandButtonEnum
Adds a button to the left side of each parent item. The user can click the button to expand
or collapse the child items as an alternative to double-clicking the parent item.

Type Description

ExpandButtonEnum An ExpandButtonEnum expression that indicates whether
the left side button of each parent item is visible or hidden.

By default, the HasButtons property is exPlus. The HasButtons property defines the visual
appearance for the expanding/collapsing buttons. The HasButtonsCustom property
specifies the index of icons being used for +/- signs on parent items, when HasButtons
property is exCustom.

The following VB sample changes the +/- button appearance:

With PropertiesList1
 .HasButtons = ExpandButtonEnum.exWPlus
End With

The following C++ sample changes the +/- button appearance:

m_PropertiesList.SetHasButtons(3 /*exWPlus*/);

The following VB.NET sample changes the +/- button appearance:

With AxPropertiesList1
 .HasButtons = EXPROPERTIESLISTLib.ExpandButtonEnum.exWPlus
End With

The following C# sample changes the +/- button appearance:

axPropertiesList1.HasButtons = EXPROPERTIESLISTLib.ExpandButtonEnum.exWPlus;

The following VFP sample changes the +/- button appearance:

with thisform.PropertiesList1
 .HasButtons = 3 && exWPlus
endwith

property PropertiesList.HasButtonsCustom(Expanded as Boolean) as
Long
Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

Type Description

Expanded as Boolean A boolean expression that indicates the sign being
changed.

Long

A long expression that indicates the icon being used for +/-
signs on the parent items. The last 7 bits in the high
significant byte of the long expression indicates the
identifier of the skin being used to paint the object.

Use the HasButtonsCustom property to assign custom icons to the +/- signs on the parent
items. The HasButtonsCustom property has effect only if the HasButtons property is
exCustom. Use the Images, ReplaceIcon methods to add new icons to the control, at
runtime. Use the HTMLPicture property to display icons in the node's caption.

The following VB sample specifies different (as in the screen shot) +/- signs for the
control:

With PropertiesList1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .HasGridLines = exNoLines
 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1
 .HasButtonsCustom(True) = 2
 .HTMLPicture("S1") =
"gAAAABgYACEHgUJFEEAAWhUJCEJEEJggEhMCYEXjUbjkJQECj8gj8hAEjkshQEpADAlkJf8Cl8wl8xAEzmsxf85js7hL3jb4fCHjSPfCIoUJoAiREXogoFEJBFAPFPgQPoiCFBwqs5oshBD3O5/fFeP7/e5/kllP73eEJB7wf9LnkcnQAfkxeA/gTgB97A9+wErv8rAcYwuEw17w7ww75vs3gUBA"

 With .Add("I1", "", ReadOnly)
 .HTMLName = "S1 Item 1"
 End With
 With .Add("Subitem 1", "", Edit, , "I1")
 End With

 With .Add("Subitem 1.1", "", Edit, , "Subitem 1")
 End With
 With .Add("Subitem 2", "", Edit, , "I1")
 End With
 .EndUpdate
End With

property PropertiesList.HasGridLines as GridLinesEnum

Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the HasGridLine property to show or hide the grid lines. The grid lines are painted to
mark columns and items. Use the HasLines to draw the lines that link child items to their
parent items. Use HasButtons property to hide the buttons displayed at the left of each
parent item.

property PropertiesList.HasLines as Boolean

Enhances the graphic representation of a tree control's hierarchy by drawing lines that link
child items to their parent items.

Type Description

Boolean A boolean expression that indicates whether the control
draws the lines that link child items to their parents.

Use the HasGridLines property to draw the grid lines. Use the Indent property to specify
the amount, in pixels, that child items are indented relative to their parent items. Use the
AutoIndent property to indicate whether child items are automatically indented.

property PropertiesList.HeaderAppearance as AppearanceEnum

Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
header's appearance.

Use the HeaderAppearance property to change the appearance of the control's header bar.
Use the HeaderVisible property to hide the control's header bar. Use the BackColorHeader
and ForeColorHeader properties to define the background/foreground colors for the
control's header bar.

property PropertiesList.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A Long expression that specifies the height of the control's
header (in pixels).

By default, the height of the header bar is 18 pixels. The HeaderHeight property has effect
while the control's header bar is visible. The user can use the control's header bar to sort or
order the visible columns. The HeaderVisible property indicates whether the control's
header bar is visible or hidden. Use the BackColorHeader and ForeColorHeader properties
to define the background/foreground colors for the control's header bar. Use the
ColumnCaption property to change the column's caption.

property PropertiesList.HeaderVisible as Boolean

Retrieves or sets a value that indicates whether the control's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
header is visible or hidden.

By default, the control's header bar is hidden. The user can use the control's header bar to
sort or order the visible columns. If the HeaderVisible property is True, the control shows its
header bar. If the header bar is visible, the user is able to resize the columns by dragging
the mouse. For instance, you can show the control's header and set the ColumnAutoResize
property to False to let the user be able to resize the columns at runtime. Use the
BackColorHeader and ForeColorHeader properties to define the background/foreground
colors for the control's header bar. Use the ColumnCaption property to change the column's
caption. Use the ColumnsAllowSizing property to specify whether the user can resize the
columns at run-time, even if the control's header bar is hidden. The HeaderHeight property
specifies the height of the control's header bar. Use the HeaderAppearance property to
change the appearance of the control's header bar.

The following VB6 sample displays the control's header bar:

Private Sub Form_Load()
 With PropertiesList1
 .BeginUpdate
 .HeaderVisible = True
 .ColumnCaption(0) = "Property"

 .Select .Object
 .EndUpdate
 End With
End Sub

property PropertiesList.HideSelection as Boolean
Specifies whether selected property appears selected when the control loses focus.

Type Description

Boolean A boolean expression that indicates whether selected
property appears selected when the control loses focus.

Use the HideSelection property to hide the selection when the control loses the focus. By
default, the HideSelection property is False.

property PropertiesList.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The SelBackColor property specifies the selection background color.

The following sample displays a different background color mouse passes over an item.

VBA (MS Access, Excell...)

With PropertiesList1
 .BeginUpdate
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select PropertiesList1
 .EndUpdate
End With

VB6

With PropertiesList1
 .BeginUpdate
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select PropertiesList1
 .EndUpdate
End With

VB.NET

With Expropertieslist1
 .BeginUpdate()
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 .Select(Expropertieslist1)
 .EndUpdate()
End With

VB.NET for /COM

With AxPropertiesList1
 .BeginUpdate()
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select(AxPropertiesList1.GetOcx())
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPROPERTIESLISTLib' for the library: 'ExPropertiesList
1.0 Control Library'

 #import <ExPropertiesList.dll>
 using namespace EXPROPERTIESLISTLib;
*/
EXPROPERTIESLISTLib::IPropertiesListPtr spPropertiesList1 =
GetDlgItem(IDC_PROPERTIESLIST1)->GetControlUnknown();
spPropertiesList1->BeginUpdate();
spPropertiesList1->PutHotBackColor(RGB(0,0,128));
spPropertiesList1->PutHotForeColor(RGB(255,255,255));
spPropertiesList1->Select(spPropertiesList1);
spPropertiesList1->EndUpdate();

C++ Builder

PropertiesList1->BeginUpdate();
PropertiesList1->HotBackColor = RGB(0,0,128);
PropertiesList1->HotForeColor = RGB(255,255,255);
PropertiesList1->Select(PropertiesList1);
PropertiesList1->EndUpdate();

C#

expropertieslist1.BeginUpdate();
expropertieslist1.HotBackColor = Color.FromArgb(0,0,128);
expropertieslist1.HotForeColor = Color.FromArgb(255,255,255);
expropertieslist1.Select(expropertieslist1);
expropertieslist1.EndUpdate();

JavaScript

<OBJECT classid="clsid:A703DF80-DFF3-48D7-A4C7-47CF6A48425C"
id="PropertiesList1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 PropertiesList1.BeginUpdate();
 PropertiesList1.HotBackColor = 8388608;
 PropertiesList1.HotForeColor = 16777215;
 PropertiesList1.Select(PropertiesList1);
 PropertiesList1.EndUpdate();
</SCRIPT>

C# for /COM

axPropertiesList1.BeginUpdate();
axPropertiesList1.HotBackColor = Color.FromArgb(0,0,128);
axPropertiesList1.HotForeColor = Color.FromArgb(255,255,255);
axPropertiesList1.Select(axPropertiesList1.GetOcx());
axPropertiesList1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 expropertieslist1.BeginUpdate();
 expropertieslist1.HotBackColor(WinApi::RGB2int(0,0,128));
 expropertieslist1.HotForeColor(WinApi::RGB2int(255,255,255));
 expropertieslist1.Select(expropertieslist1);
 expropertieslist1.EndUpdate();
}

Delphi 8 (.NET only)

with AxPropertiesList1 do
begin
 BeginUpdate();
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 Select(AxPropertiesList1);
 EndUpdate();
end

Delphi (standard)

with PropertiesList1 do
begin
 BeginUpdate();
 HotBackColor := RGB(0,0,128);
 HotForeColor := RGB(255,255,255);
 Select(PropertiesList1);
 EndUpdate();
end

VFP

with thisform.PropertiesList1

 .BeginUpdate
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select(thisform.PropertiesList1)
 .EndUpdate
endwith

dBASE Plus

local oPropertiesList

oPropertiesList = form.Activex1.nativeObject
oPropertiesList.BeginUpdate()
oPropertiesList.HotBackColor = 0x800000
oPropertiesList.HotForeColor = 0xffffff
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

XBasic (Alpha Five)

Dim oPropertiesList as P

oPropertiesList = topparent:CONTROL_ACTIVEX1.activex
oPropertiesList.BeginUpdate()
oPropertiesList.HotBackColor = 8388608
oPropertiesList.HotForeColor = 16777215
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
oDCOCX_Exontrol1:Select(oDCOCX_Exontrol1)

oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPropertiesList

oPropertiesList = ole_1.Object
oPropertiesList.BeginUpdate()
oPropertiesList.HotBackColor = RGB(0,0,128)
oPropertiesList.HotForeColor = RGB(255,255,255)
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComHotBackColor to (RGB(0,0,128))
 Set ComHotForeColor to (RGB(255,255,255))
 Send ComSelect (pvComObject(Self))
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oPropertiesList

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.

 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oPropertiesList := XbpActiveXControl():new(oForm:drawingArea)
 oPropertiesList:CLSID := "Exontrol.PropertiesList.1" /*{A703DF80-DFF3-48D7-
A4C7-47CF6A48425C}*/
 oPropertiesList:create(,, {10,60},{610,370})

 oPropertiesList:BeginUpdate()
 oPropertiesList:SetProperty("HotBackColor",AutomationTranslateColor(
GraMakeRGBColor ({ 0,0,128 }) , .F.))
 oPropertiesList:SetProperty("HotForeColor",AutomationTranslateColor(
GraMakeRGBColor ({ 255,255,255 }) , .F.))
 oPropertiesList:Select(oPropertiesList)
 oPropertiesList:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property PropertiesList.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that indicates the foreground color for
item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The SelForeColor property specifies the selection foreground color.

The following sample displays a different background color mouse passes over an item.

VBA (MS Access, Excell...)

With PropertiesList1
 .BeginUpdate
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select PropertiesList1
 .EndUpdate
End With

VB6

With PropertiesList1
 .BeginUpdate
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select PropertiesList1
 .EndUpdate
End With

VB.NET

With Expropertieslist1
 .BeginUpdate()
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)

 .Select(Expropertieslist1)
 .EndUpdate()
End With

VB.NET for /COM

With AxPropertiesList1
 .BeginUpdate()
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 .Select(AxPropertiesList1.GetOcx())
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPROPERTIESLISTLib' for the library: 'ExPropertiesList
1.0 Control Library'

 #import <ExPropertiesList.dll>
 using namespace EXPROPERTIESLISTLib;
*/
EXPROPERTIESLISTLib::IPropertiesListPtr spPropertiesList1 =
GetDlgItem(IDC_PROPERTIESLIST1)->GetControlUnknown();
spPropertiesList1->BeginUpdate();
spPropertiesList1->PutHotBackColor(RGB(0,0,128));
spPropertiesList1->PutHotForeColor(RGB(255,255,255));
spPropertiesList1->Select(spPropertiesList1);
spPropertiesList1->EndUpdate();

C++ Builder

PropertiesList1->BeginUpdate();
PropertiesList1->HotBackColor = RGB(0,0,128);
PropertiesList1->HotForeColor = RGB(255,255,255);

PropertiesList1->Select(PropertiesList1);
PropertiesList1->EndUpdate();

C#

expropertieslist1.BeginUpdate();
expropertieslist1.HotBackColor = Color.FromArgb(0,0,128);
expropertieslist1.HotForeColor = Color.FromArgb(255,255,255);
expropertieslist1.Select(expropertieslist1);
expropertieslist1.EndUpdate();

JavaScript

<OBJECT classid="clsid:A703DF80-DFF3-48D7-A4C7-47CF6A48425C"
id="PropertiesList1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 PropertiesList1.BeginUpdate();
 PropertiesList1.HotBackColor = 8388608;
 PropertiesList1.HotForeColor = 16777215;
 PropertiesList1.Select(PropertiesList1);
 PropertiesList1.EndUpdate();
</SCRIPT>

C# for /COM

axPropertiesList1.BeginUpdate();
axPropertiesList1.HotBackColor = Color.FromArgb(0,0,128);
axPropertiesList1.HotForeColor = Color.FromArgb(255,255,255);
axPropertiesList1.Select(axPropertiesList1.GetOcx());
axPropertiesList1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{

 ;

 super();

 expropertieslist1.BeginUpdate();
 expropertieslist1.HotBackColor(WinApi::RGB2int(0,0,128));
 expropertieslist1.HotForeColor(WinApi::RGB2int(255,255,255));
 expropertieslist1.Select(expropertieslist1);
 expropertieslist1.EndUpdate();
}

Delphi 8 (.NET only)

with AxPropertiesList1 do
begin
 BeginUpdate();
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 Select(AxPropertiesList1);
 EndUpdate();
end

Delphi (standard)

with PropertiesList1 do
begin
 BeginUpdate();
 HotBackColor := RGB(0,0,128);
 HotForeColor := RGB(255,255,255);
 Select(PropertiesList1);
 EndUpdate();
end

VFP

with thisform.PropertiesList1
 .BeginUpdate
 .HotBackColor = RGB(0,0,128)

 .HotForeColor = RGB(255,255,255)
 .Select(thisform.PropertiesList1)
 .EndUpdate
endwith

dBASE Plus

local oPropertiesList

oPropertiesList = form.Activex1.nativeObject
oPropertiesList.BeginUpdate()
oPropertiesList.HotBackColor = 0x800000
oPropertiesList.HotForeColor = 0xffffff
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

XBasic (Alpha Five)

Dim oPropertiesList as P

oPropertiesList = topparent:CONTROL_ACTIVEX1.activex
oPropertiesList.BeginUpdate()
oPropertiesList.HotBackColor = 8388608
oPropertiesList.HotForeColor = 16777215
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
oDCOCX_Exontrol1:Select(oDCOCX_Exontrol1)
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPropertiesList

oPropertiesList = ole_1.Object
oPropertiesList.BeginUpdate()
oPropertiesList.HotBackColor = RGB(0,0,128)
oPropertiesList.HotForeColor = RGB(255,255,255)
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComHotBackColor to (RGB(0,0,128))
 Set ComHotForeColor to (RGB(255,255,255))
 Send ComSelect (pvComObject(Self))
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oPropertiesList

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oPropertiesList := XbpActiveXControl():new(oForm:drawingArea)
 oPropertiesList:CLSID := "Exontrol.PropertiesList.1" /*{A703DF80-DFF3-48D7-
A4C7-47CF6A48425C}*/
 oPropertiesList:create(,, {10,60},{610,370})

 oPropertiesList:BeginUpdate()
 oPropertiesList:SetProperty("HotBackColor",AutomationTranslateColor(
GraMakeRGBColor ({ 0,0,128 }) , .F.))
 oPropertiesList:SetProperty("HotForeColor",AutomationTranslateColor(
GraMakeRGBColor ({ 255,255,255 }) , .F.))
 oPropertiesList:Select(oPropertiesList)
 oPropertiesList:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property PropertiesList.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). Use the HTMLName property to display HTML
format in the Name column.

https://exontrol.com/eximages.jsp

The following template sample adds two properties and a custom size picture for each
property:

BeginUpdate
HasGridLines = False
DefaultItemHeight = 52
HTMLPicture("floppy") = "D:\Temp\Icons\3floppy_1mount.gif"
HTMLPicture("hard") = "D:\Temp\Icons\3floppy_mount.gif"
Add("Floppy", "", EditColor).HTMLName = "floppyFloppy"
Add("Hard", "", EditColor).HTMLName = "hardHard"
EndUpdate

property PropertiesList.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method PropertiesList.Images (Handle as Variant)
Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

Use the Images method to attach a list of icons to the control. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection. At
runtime, the user can use the Images and ReplaceIcon method to change the Images
collection. Use the HTMLName property to assign built-in HTML format to a property. In
design mode, user can add icons to the control using the control's Template page. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor. It's a nice feature and we don't
want you to miss it.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The Template feature lets you to use a simple x-script language to call properties and
methods of the control at design as well at runtime. You can use this feature to build x-
script strings to pass them at runtime.

For instance, the following template sample adds three properties and assign an icon to
each of them, using the tag.

BeginUpdate
Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/syEQSEADGYbGAGCwj/jWKxuPjOEyOJwcOxuVx2MyOViGAz0szWUwmOx2TjOh1Ea0OjzGt1mL1UPuuZ2Vcw2I29NzOXyWJ1WiwuHieM0uW0fA0O51G1uedzvK5lS3PT4W5qW9xnO2XP4WnyEzztw2nZ2XQxnmpPU3HV9mI7WhnWk13f8nE+fhy2T+WvlH4tz3uC9ztvK4TuQE+CeusjT1QC4cHQAmjxwc0zLM7CT8NXBrcuK07orTC8CQPBsAPQ9CaQUjMUQ1ArZRA+sJpWx0GQo88WRe4sMwZDkYLVEkbQdEzfMnA0eJjHcVPRAD9wfDyNwklzsN+70pyElcNsqjb/LLJciS65jCSCxcmpfK7exS4UZR/F0gO6l81whKrezlEcBxqxEdy0sjUs2/kvQzOExQQmEdSxBcfyU+86yMzkWxi2MEPROcKTK/sxx7KTgQlBU5zyncGUjR8mTsms31DJE1UNEVKSzSy4yXLkQyKokAQs+lFQjRkb1DLUk0bM71zvQsO0EvdXvmqlaVinEJUlUSUVBYcq1XULPpVJauTgm01uxW9UzZO9vWnaNq3I5FFWTSFD3PWM8VbctivnYz+XlTN43tQKyosHyV32jyQJEkgAJKlGBpxTt3p4iiNnmf+GI2cB/4hh4fnAH6NmAB+MYuAZgIMjRAADkCN5BkSNoNjyNZPkYDkAA+HgOcGXI0fAH5ojZ/AfnEsk+f5P1Y6KAg")

Add("Icon1","",1).HTMLName = "1Icon 1"
Add("Icon2","",1).HTMLName = "2Icon 2"
Add("Icon3","",1).HTMLName = "3Icon 3"
EndUpdate

property PropertiesList.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property PropertiesList.IncrementalSearch as AutoSearchEnum
Specifies whether the incremental search feature looks for starting of the property or if it
contains the typed characters.

Type Description

AutoSearchEnum
An AutoSearchEnum expression that specifies whether the
control searches for the start of or if contains the typed
characters.

By default, the IncrementalSearch property is exStartWith. Use the IncrementalSearch
property to define a 'contains' incremental search. For instance, if the IncrementalSearch
property is exContains + exMoveOnTop, the items are re-arranged so, the first items
contain the typed characters, while the rest stay unchanged. In case the exMoveOnTop flag
is included, the FilterBarPromptVisible property should be True, else it has no effect. Use
the ExpandOnSearch property to automatically expand parent items as user types
characters.

property PropertiesList.Indent as Long
Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items

Use the Indent property to increase or decrease the amount, in pixels, that child items are
indented relative to their parent items. By default, the Indent property is 14 pixels. If the
Indent property is 0 ,the control displays no indent for child items. Use the AutoIndent
property to specify whether the control automatically indents the child items.

property PropertiesList.IndexItemsCollection as Long
Retrieves or sets a value that indicates the base index when control enumerates the items
in the collection.

Type Description

Long A long expression that indicates the base index of the
items in a collection.

By default, the IndexItemsCollection property is 0. Use the IndexItemsCollection to specify
the base index of the items in a object of collection type. Use the NameItemsCollection
property to specify the possible name of the properties that could indicate the caption of the
items in the collection.

property PropertiesList.Interfaces (Object as IUnknown FAR*) as String
Retrieves the interfaces implemented by the object.

Type Description
Object as IUnknown FAR* An object being queried.

String A string expression that indicates the list of the interfaces
implemented by the object.

The following sample prints the interfaces implemented by the extended control object:

Private Sub Form_Load()
 MsgBox PropertiesList1.Interfaces(PropertiesList1)
End Sub

The following sample prints the interfaces implemented by the object itself:

Private Sub Form_Load()
 MsgBox PropertiesList1.Interfaces(PropertiesList1.Object)
End Sub

property PropertiesList.InvalidValueMessage as String

Retrieves or sets a value that indicates the error message displayed by browser when
changing the property's value fails.

Type Description

String
A string expression that indicates the error message that
is displayed by the control when changing property's value
fails.

No message occurs if the InvalidValueMessage is empty. By default the The
InvalidValueMessage property is "Invalid property value."

property PropertiesList.Item (Index as Variant) as Property
Returns a Property object based on its index.

Type Description

Index as Variant A long expression that indicates the index of the Property
being requested

Property A Property object being accessed.

Use the Item property to access a property by its index. Use the Property property to
access a Property giving its identifier. Use the Count property to get the number of items in
the control. Use the Item and Count properties to enumerate the properties/items in the
control.

The following sample enumerates the properties in the control:

With PropertiesList1
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
End With

The following sample enumerates the properties in the control using the for each statement:

Dim p As EXPROPERTIESLISTLibCtl.Property
For Each p In PropertiesList1
 Debug.Print p.Name
Next

property PropertiesList.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

columns size and position
current selection
scrolling position and size
expanded/collapsed properties, if any
sorting columns
filtering options

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is
displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

multiplesort="";singlesort="", removes any previously sorting
multiplesort="C3:1", sorts ascending the column with the index 3 (and add it to the sort
bar if visible)
singlesort="C4:2", sorts descending the column with the index 4 (it is not added to sort
bar panel)
multiplesort="C3:1";singlesort="C4:2", sorts ascending the column with the index 3 (

https://www.youtube.com/watch?v=TbWWnDJlD9w

and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3 and 4.
multiplesort="C3:1 C5:2";singlesort="C4:2", sorts ascending the column with the index
3 (and add it to the sort bar if visible), sorts descending the column with the index 5 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3, 5 and 4.

The format of the Layout in non-encoded form is like follows:

c0.filtertype=0
c0.position=0
c0.select=0
c0.visible=1
c0.width=96
....
columns=13
collapse="0-3 5-63 80-81 83"
filterprompt=""
focus=8
focuscolumnindex=0
hasfilter=1
hscroll=0
multiplesort="C12:1 C2:2"
searchcolumnindex=3
select="39 2 13 8"
selectcolumnindex=0
singlesort="C5:2"
treecolumnindex=0
vscroll=12
vscrolloffset=0

property PropertiesList.LinkCategories as Boolean

Retrieves or sets a value that indicates whether the categories are linked.

Type Description

Boolean A boolean expression that indicates whether the
categories are linked.

By default the LinkCategories property is True. The LinkCategories has effect only if the
ShowCategories is True. Use the MarkCategories property to mark categories.

property PropertiesList.MarkCategories as Boolean

Specifies whether the categories are splited by separator lines.

Type Description

Boolean A boolean expression that indicates whether the
categories are marked.

By default, the MarkCategories property is False.

The following sample shows how to split the categories using the MarkLineColor and
MarkCategories properties:

With PropertiesList1
 .BeginUpdate
 .HasGridLines = False
 .DescriptionVisible = False
 .ShowCategories = True
 .LinkCategories = False
 .MarkCategories = True
 .MarkLineColor = vbBlack
 ' Adds a category
 .Add "Appearance", "", ReadOnly
 ' Adds items to 'Appearance' category
 With .Add("Border", 0, EditEnum, , "Appearance")
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed"
 End With
 .Add "Width", 64, Edit, , "Appearance"
 .Add "Height", 64, Edit, , "Appearance"
 .ExpandItem("Appearance") = True
 ' Adds a category
 .Add "Misc", "", ReadOnly
 ' Adds items to 'Misc' category
 .Add "ControlBox", True, EditBoolean, , "Misc"
 .Add "KeyPreview", False, EditBoolean, , "Misc"
 .Refresh
 .EndUpdate
End With

property PropertiesList.MarkLineColor as Color

Retrieves or sets a value that indicates the color of lines that splits the categories.

Type Description

Color A color expression that indicates the color of lines that
splits the categories.

Use the MarkLineColor property to specify the color of lines that splits the categories. Use
the MarkLineColor property has effect only if the MarkCategories property is True and
ShowCategories is True.

The following sample shows how to split the categories using the MarkLineColor and
MarkCategories properties:

With PropertiesList1
 .BeginUpdate
 .HasGridLines = False
 .DescriptionVisible = False
 .ShowCategories = True
 .LinkCategories = False
 .MarkCategories = True
 .MarkLineColor = vbBlack
 ' Adds a category
 .Add "Appearance", "", ReadOnly
 ' Adds items to 'Appearance' category
 With .Add("Border", 0, EditEnum, , "Appearance")
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed"
 End With
 .Add "Width", 64, Edit, , "Appearance"
 .Add "Height", 64, Edit, , "Appearance"
 .ExpandItem("Appearance") = True
 ' Adds a category
 .Add "Misc", "", ReadOnly
 ' Adds items to 'Misc' category
 .Add "ControlBox", True, EditBoolean, , "Misc"
 .Add "KeyPreview", False, EditBoolean, , "Misc"
 .Refresh

 .EndUpdate
End With

property PropertiesList.NameItemsCollection as String

Retrieves or sets a list of property's names separated by semicolon (;), that are used by
properties browser when it requires a name for an item into a collection.

Type Description

String

A string expression that indicates a list of property's
names separated by semicolon (;), that are used by
properties browser when it requires a name for an item
into a collection.

By default, the NameItemsCollection is "Name;Caption;Item". Change the
NameItemsCollection is your collection has different item's names. During loading the
control uses the NameItemsCollection property to determine the name of each element into
collection, if it is a collection of objects. If the ItemCollection property is True use the Object
property to find the owner collection. For instance, if the collection contains only strings, the
items added to browser's list will be numerated. Instead if the collection contains another
objects, it uses the NameItemsCollection property to determine the caption that will be
displayed on the name column. Use the IndexItemsCollection to specify the base index of
the items in a object of collection type.

property PropertiesList.Option(Name as OptionEnum) as Variant
Specifies an option for the editor.

Type Description

Name as OptionEnum An OptionEnum expression that indicates the option being
changed.

Variant A Variant value that indicates the option's newly value.

Use the Option property to change particular options for a specified type editor. Use the
Option property to customize the strings or behavior for different editors. For instance, you
can specify the filter for EditFile properties, or specify the months for a drop down calendar
control. The Option property applies the options to all editors, while the Option property of
Property object may specify different options for different entries in the control. For
instance, you can display a filter for some EditFile entries, and other filters for other EditFile
entries in the same control.

In conclusion, you can specify options for the editors as follows:

the same settings for all editors using Option property (by default).
custom settings for the editor of an entry/property using the Property.Object property

The following VB sample customizes the EditDate editor to display strings in Romanian
language:

With PropertiesList1
 .Option(exDateTodayCaption) = "Azi"
 .Option(exDateMonths) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Decembrie"
 .Option(exDateWeekDays) = "D L M M J V S"
 .Option(exDateFirstWeekDay) = 1
 .Add "Date", Date, EditDate
End With

The following VB sample changes the default filter for EditFile editors :

With PropertiesList1
 .Option(exEditFileFilter) = "INI Files|*.ini;*.init|All (*.*)|*.*"
 .Option(exEditFileTitle) = "Select an INI file"
 .Add "INI", "c:\temp\test.ini", EditFile, "Selects a file", "Custom"
End With

property PropertiesList.Property (Property as Variant) as Property
Gets a Property object given property's name or property's identifier.

Type Description

Property as Variant A string expression that indicates the property's name. or
a long expression that indicates the property's identifier.

Property A Property object being accessed.

Use the Property property to access at runtime to the control items. Use the Item property
to access a Property by its index. Use the ID property to retrieve the property's identifier.
The property's identifier is defined when adding new properties using the Add method. Use
the SelectedProperty to retrieve the selected property.

property PropertiesList.ReadOnly as Boolean

Gets or sets whether the properties browser is read-only.

Type Description

Boolean A boolean expression that indicates whether the properties
browser is read-only.

Use the ReadOnly property to disable editing properties. By default, the ReadOnly property
is False. Use the Enabled property to disable the control. Use the Locked property to lock a
property. Use the Enabled property to disable a property.

method PropertiesList.Refresh ()
Refreshes the properties values.

Type Description

Refreshes the control. Use the BeginUpdate and EndUpdate methods to maintain
performances while adding new entries. If a property is added manually, using the Add
method, you need to call the Value property each time when you need to refresh the
property's value. In case the properties list browses a COM object, using the Select
method, you need to call the Refresh method to refresh the values for the properties in the
browser, in case some changes occurs to the browsed object or if you need to. Also, if a
property contains another COM object (EditObject type), the Refresh method updates the
values for all browsed properties.

Use the Refresh method when adding values to a drop down editor like in the following
sample:

With PropertiesList1
 .BeginUpdate
 .Add "Appearance", "", ReadOnly
 With .Add("Border", 0, EditEnum, , "Appearance")
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed"
 End With
 .Refresh
 .EndUpdate
End With

If the Refresh method is not called in the above sample, the value for the Border property
will be empty, because the predefined list of values for Border property were added after
adding the property Border.

method PropertiesList.Remove (Property as Variant)
Removes a property from the list.

Type Description

Property as Variant A string expression that indicates the property's name, or
a long expression that indicates the property's identifier.

The Remove method removes a property. The Remove method removes recursively the
items/properties. Use Clear method if you need to clear the entire collection.

method PropertiesList.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant A long expression that indicates the icon's handle. By
default, the Icon parameter is 0, if it is missing.

Index as Variant
A long expression that indicates the index where icon is
inserted. By default, the Index parameter is -1, if it is
missing.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following sample shows how to add a new icon to control's images list:

 i = PropertiesList1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), in this case the i
specifies the index where the icon was added

The following sample shows how to replace an icon into control's images list::

 i = PropertiesList1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case
the i is zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 PropertiesList1.ReplaceIcon 0, i, in this case the i must be the index of the icon that
follows to be removed

The following sample shows how to clear the control's icons collection:

 PropertiesList1.ReplaceIcon 0, -1

property PropertiesList.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property PropertiesList.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property PropertiesList.ScrollFont (ScrollBar as ScrollBarEnum) as
IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property PropertiesList.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property PropertiesList.ScrollOrderParts(ScrollBar as ScrollBarEnum)
as String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property PropertiesList.ScrollPartCaption(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the ScrollFont property to specify the font in the
control's scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With PropertiesList1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxPropertiesList1
 .BeginUpdate()
 .set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part Or
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axPropertiesList1.BeginUpdate();
axPropertiesList1.set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part |
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, true);
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part , "1");
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, "2");
axPropertiesList1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_propertiesList.BeginUpdate();
m_propertiesList.SetScrollBars(15 /*exDisableBoth*/);
m_propertiesList.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_propertiesList.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.PropertiesList1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property PropertiesList.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

property PropertiesList.ScrollPartEnable(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar.

property PropertiesList.ScrollPartVisible(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the Background property to change the visual appearance for
any part in the control's scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With PropertiesList1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxPropertiesList1
 .BeginUpdate()
 .set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part Or
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axPropertiesList1.BeginUpdate();
axPropertiesList1.set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part |
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, true);
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part , "1");
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, "2");
axPropertiesList1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_propertiesList.BeginUpdate();
m_propertiesList.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_propertiesList.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.PropertiesList1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property PropertiesList.ScrollThumbSize(ScrollBar as ScrollBarEnum)
as Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property PropertiesList.ScrollToolTip(ScrollBar as ScrollBarEnum) as
String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar.

property PropertiesList.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonWidth property to specify the
width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify the
height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the height
of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify the
visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a fixed
size for the scrollbar's thumb.

property PropertiesList.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color A color expression that indicates the selection background
color.

Use the SelBackColor and SelForeColor properties to define the colors for selected
property. Use the HotForeColor property to specify a different foreground color for property
when cursor hovers it. Use the HotBackColor property to specify a different background
color for property when cursor hovers it.

method PropertiesList.Select (Object as Object)

Browses a new object to control.

Type Description
Object as Object An Object being browsed.

Use the Select method to browse the properties of a COM object. Use the SelectedObject
property to browse properties of .NET objects (objects in the .NET framework). If the
FireIncludeProperty is True, the Select method invokes the IncludeProperty event to let user
filters the properties being browsed. Use the Add method to insert custom entries to the
list.

The following VB sample browses the properties of the object itself (including the
properties of the extended control, Visible, Top, and so on):

PropertiesList1.Select PropertiesList1

The following VB sample browses only the properties of the object itself:

PropertiesList1.Select PropertiesList1.Object

The following C++ sample browses the control's properties:

IDispatch* pObject = NULL;
if (SUCCEEDED(m_propertieslist.GetControlUnknown()->QueryInterface(IID_IDispatch,
(LPVOID*)&pObject)))
{
 m_propertieslist.Select(pObject);
 pObject->Release();
}

In case you are using ATL (atlbase.h) classes you can use a code like follows:

CComQIPtr<IDispatch> spObject(m_propertieslist.GetControlUnknown());
m_propertieslist.Select(spObject);

The following VB.NET sample browses the control's properties:

AxPropertiesList1.CtlSelect(AxPropertiesList1.GetOcx())

The following C# sample browses the control's properties:

axPropertiesList1.CtlSelect(axPropertiesList1.GetOcx());

The following VFP sample browses the control's properties:

with thisform.PropertiesList1
 .Select(.Object)
endwith

If the Select method is called, and you need immediately after the list of browsed
properties the following trick is required:

Private Type POINTAPI
 x As Long
 y As Long
End Type

Private Type MSG
 hwnd As Long
 message As Long
 wParam As Long
 lParam As Long
 time As Long
 pt As POINTAPI
End Type
Private Declare Function PeekMessage Lib "user32" Alias "PeekMessageA" (lpMsg As MSG,
ByVal hwnd As Long, ByVal wMsgFilterMin As Long, ByVal wMsgFilterMax As Long, ByVal
wRemoveMsg As Long) As Long
Private Const PM_NOREMOVE = &H0
Private Declare Function TranslateMessage Lib "user32" (lpMsg As MSG) As Long
Private Declare Function DispatchMessage Lib "user32" Alias "DispatchMessageA" (lpMsg
As MSG) As Long

' The list of properties is not immediately available, so we need to proceeds few messages
Private Sub waitSelect(ByVal h As Long)
 Dim m As MSG
 While PeekMessage(m, h, 0, 0, 1)

 TranslateMessage m
 DispatchMessage m
 Wend
End Sub

The following sample uses the trick, to expand the "Appearance" item:

Private Sub Form_Load()
 With PropertiesList1
 .BeginUpdate
 .HasLines = False
 .ShowCategories = True
 .MarkCategories = True
 .Select PropertiesList1.Object

 waitSelect .hwnd

 .ExpandItem("Appearance") = False
 .EndUpdate
 End With
End Sub

Note that if the waitSelect method is not called, the "Appearance" item is still expanded.

In VC++ the waitSelect method looks like follows:

// Function name : waitSelect
// Description : The list of properties is not immediately available, so we need to
proceeds few messages
// Return type : void
// Argument : HWND h
void waitSelect(HWND h)
{
 MSG m = {0};
 while (PeekMessage(&m, h, 0, 0, PM_REMOVE))
 {
 TranslateMessage(&m);
 DispatchMessage(&m);

 }
}

The following VB sample browses the Form contains that hosts the ExPropertiesList
control:

PropertiesList1.Select Me

The following VB sample clears the browsed object:

PropertiesList1.Select Nothing

The following VB sample browses an object and its categories:

Private Sub Form_Load()
 With PropertiesList1
 .BeginUpdate
 .HasLines = False
 .ShowCategories = True
 .MarkCategories = True
 .Select PropertiesList1.Object
 .EndUpdate
 End With
End Sub

property PropertiesList.SelectedObject as Variant
Browses a new object (com or .net) in the control.

Type Description

Variant A Variant expression that holds a COM object or a .NET
object

Use the SelectedObject property to browse the properties of a .NET object. If the
FireIncludeProperty is True, the Select method invokes the IncludeProperty event to let user
filters the properties being browsed. Use the Add method to insert custom entries to the
list. Use the Select method to browse properties of .COM objects.

The following VB.NET sample browses the properties of the form that contains the control:

AxPropertiesList1.SelectedObject = Me

The following C# sample browses the properties of the form that contains the control:

axPropertiesList1.SelectedObject = this;

property PropertiesList.SelectedProperty as Property

Retrieves a Property object that is currently selected.

Type Description
Property A Property object that is currently selected.

Use the SelChange event to notify your application when the current selection is changed.
Use the Property property to retrieve a property giving its index or its name. Use the
Selectable property to prevent a property to be selected.

The following sample prints the name and the type of the selected property (for instance,
the sample is useful to find out the type of the property selected, when you need to include
or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()
 Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

property PropertiesList.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

Use the SelBackColor and SelForeColor properties to define the colors for selected
property. Use the HotForeColor property to specify a different foreground color for property
when cursor hovers it. Use the HotBackColor property to specify a different background
color for property when cursor hovers it.

property PropertiesList.ShowCategories as Boolean

Retrieves or sets a value whether the browser includes the object categories.

Type Description

Boolean A boolean expression indicating whether the browser
includes the object categories.

The ExPropertiesList control has the ability to categorize the object properties. Use the
ShowCategories to display the object categories. Use the BackColorCategories and
ForeColorCategories properties to define the background/foreground colors for category
items. The LinkCategories specifies whether the control links the categories. Use the
CategoryName property to get the property's category name. The Category property
checks whether an items is category item or a property item. Use the DefaultCategory
property to specify the default category. The default category includes all properties that
have no category associated.

The following sample displays the control's categories:

Private Sub Form_Load()
 With PropertiesList1
 .HasLines = False
 .BackColorCategories = vbBlue
 .ForeColorCategories = vbWhite
 .ShowCategories = True
 .ShowPropertyPages = False
 .Select PropertiesList1.Object
 End With
End Sub

property PropertiesList.ShowHidden as Boolean

Retrieves or sets a value that indicates whether the properties browser displays the hidden
members.

Type Description

Boolean A boolean expression that indicates whether the properties
browser displays the hidden members.

Use the ShowHidden property to show hidden members. Changing the ShowHidden
property at runtime invokes refreshing the control.

 Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowItemsCollection as Boolean

Retrieves or sets a value that indicates whether the properties browser includes the
elements of a property that contains a collection.

Type Description

Boolean
A boolean expression that indicates whether the properties
browser includes the elements of a property that contains
a collection.

Use the ShowItemsCollection property to expand properties that export collections. If you
want to browse the collections, make sure that ShowObjects property is True. Changing the
ShowItemsCollection property at runtime invokes refreshing the control.

property PropertiesList.ShowMultipleParams as Boolean
Specifies whether the control loads properties with multiple parameters.

Type Description

Boolean A Boolean expression that indicates whether the control
loads properties that have multiple parameters.

By default, the ShowMultipleParams property is True. Use the ShowMultipleParams
property to include properties with multiple parameters when browsing a COM object, using
the Select method. If the ShowMultipleParams property is True, only the properties with
parameters of predefined type like enumeration or boolean are included. For instance, the
property Grid.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS,
ColIndex as Long, HitTestInfo as HitTestInfoEnum) as HITEM can't be included in the
browser, because it contains parameters that are not predefined like long type. The Name
property indicates the name of the property. If the property includes multiple parameters,
the Name property displays the name of the property and the parameters separated by
comma, like "Background(exButtonDown)". If the property has a single parameter, the
Description property indicates the description of the value in the predefined type. The Value
property indicates the value of the property. Use the ToString property to save the control's
properties and values to a string. Use the EditProperty option when adding a new property,
to add properties one at the time, with none, one or more parameters.

For instance, let's say that we browse the eXGrid control that includes the "property
Grid.Background(Part as BackgroundPartEnum) as Color. The property returns or sets
a value that indicates the background color for parts in the control.". The Background
property has a single parameter of BackgroundPartEnum type (enumeration type). The
Background property retrieves different values based on the Part parameter. The Part
parameter is of BackgroundPartEnum type. When the control includes the Background
property, it combines all parameters with their values, and add a new property for each, as
seen bellow.

https://exontrol.com/content/products/exgrid/help/Grid_Background.htm

This feature is new, and it is not available for other propertieslist controls. For instance,
browses the ExPropertiesList with another browser, and check if the Option property is
included in the browser? Definitely, this property may be browsed using the
ExPropertiesList control.

property PropertiesList.ShowNonBrowsable as Boolean

Retrieves or sets a value that indicates whether the control displays the non browseable
members.

Type Description

Boolean A boolean expression indicating whether the control
displays the non browseable members.

Use the ShowNonBrowsable property to include non browseable members. Changing the
ShowNonBrowsable property at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowObjects as Boolean

Retrieves or sets a value that indicates whether the properties browser includes the
properties of object type.

Type Description

Boolean A boolean expression that indicates whether the properties
browser includes the properties of object type.

Use the ShowObjects property to let the control browsing the properties of object type.
Changing the ShowObjects at runtime invokes refreshing the control.

property PropertiesList.ShowPropertyPages as Boolean

Retrieves or sets a value that indicates whether the properties browser displays the object
property pages.

Type Description

Boolean A boolean expression that indicates whether the properties
browser displays the object property pages.

Use the ShowPropertyPages property to include the properties pages of the browsed
object. Changing the ShowPropertyPages at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowReadOnly as Boolean

Retrieves or sets a value that indicates whether the properties browser displays the read
only properties.

Type Description

Boolean A boolean expression that indicates whether the properties
browser displays the read only properties.

Use the ShowReadOnly property to exclude properties that read only. Use the ReadOnly
property to make the control editable. A read only member appears as grayed. Changing
the ShowPropertyPages at runtime invokes refreshing the control. Here's a sample that
shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowRestricted as Boolean

Retrieves or sets a value that indicates whether the properties browse displays the
restricted members.

Type Description

Boolean A boolean expression that indicates whether the properties
browse displays the restricted members.

Use the ShowRestricted property to include restricted members. Changing the
ShowPropertyPages at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

method PropertiesList.ShowToolTip (ToolTip as String, [Title as
Variant], [Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property PropertiesList.ShowVariables as Boolean

Retrieves or sets a value that indicates whether the control displays the object variables.

Type Description

Boolean A boolean expression that indicates whether the control
displays the object variables.

For instance, the properties of IFontDisp (font) type has variables like: Name, Size, and so
on. Changing the ShowVariables at runtime executes a refresh of the browsed control. If
you want to filter the object properties that has some special flags you can use Flags
property of Property object.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

method PropertiesList.Sort ([Ascending as Variant], [Reserved as
Variant])

Sorts the control.

Type Description

Ascending as Variant A boolean expression that indicates the sort order. True
means ascending, False means descending.

Reserved as Variant Reserved.

The Sort method sorts the properties. Use the SortObjects property to specify if the object
properties should be placed on top or bottom side of the control once the user sorts a
column. Use the SortOnClick property to specify whether a column gets sorted once the
user clicks the column's header. Use the Sortable property to specify an un-sortable
property.

property PropertiesList.SortObjects as SortObjectsEnum
Specifies how the object properties are positioned once a Sort occurs.

Type Description

SortObjectsEnum The SortObjectsEnum expression that specifies how the
objects are positioned once the user sorts a column.

By default, the SortObjects property is exSortObjectsDefault. Use the SortObjects property
to specify if the object properties should be placed on top or bottom side of the control
once the user sorts a column. The Sort method sorts programmatically the control. Use the
SortOnClick property to specify whether a column gets sorted once the user clicks the
column's header. Use the Sortable property to specify an un-sortable property.

The following sample shows a sorted control, when SortObjects property is
exSortObjectsDefault:

The following sample shows a sorted control, when SortObjects property is
exSortObjectsTop:

property PropertiesList.SortOnClick as SortOnClickEnum
Retrieves or sets a value that indicates whether the control sorts automatically the data
when the user click on column's caption.

Type Description

SortOnClickEnum
A SortOnClickEnum expression that indicates whether the
control sorts the columns when clicking the control's
header.

By default, the SortOnClick property is exDefaultSort, that means that the control sorts the
column's being clicked. Use the SortOnClick property to disable sorting items when the user
clicks on the column's header. Use the HeaderVisible property to show or hide the control's
header. Use the ColumnsAllowSizing property to specify whether the user can resize a
column at runtime. Use the Sortable property to specify an un-sortable property.

property PropertiesList.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property PropertiesList.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method PropertiesList.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property PropertiesList.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip.

property PropertiesList.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window.

property PropertiesList.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip.

property PropertiesList.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ShowToolTip method to display a custom tooltip.

property PropertiesList.ToString (Type as ToStringEnum) as String
Saves the control's content to a string, as it is displayed.

Type Description

Type as ToStringEnum A ToStringEnum expression that indicates whether the
values of the properties use literals or numbers.

String A string expression that indicates the list of properties with
their values.

The ToString property gets the list of properties with their values to a string, as they are
displayed. Use the ToString property to save the properties and their values to a string for
the object being browsed. The ToString(exLiterals) property lists the properties closely as
being displayed in the control. The ToString(exNumbers) property lists the properties being
displayed in the control, after the predefined literals are replaced. Use the Select method to
browse a COM object. Use the ExpandAll method to expand all items in the control.

Here's how the properties are listed, when the control browses the eXGrid control:

(Color)
(Font)
(Template)
Appearance = Sunken
ASCIILower = "abcdefghijklmnopqrstuvwxyzüéâäŕĺçęëčďîěôöňűůáíóúń"
ASCIIUpper = "ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄŔĹÇĘËČĎÎĚÔÖŇŰŮÁÍÓÚŃ"
AutoEdit = True
AutoSearch = True
BackColor = &H80000005;&
BackColorAlternate = &H00000000;&
BackColorHeader = &H8000000F;&
BackColorLevelHeader = &H8000000F;&
BackColorLock = &H80000005;&
BackColorSortBar = &H80000010;&
BackColorSortBarCaption = &H8000000F;&
Background(exButtonDown) = &H00000000;&
Background(exButtonUp) = &H00000000;&
Background(exCellButtonDown) = &H00000000;&
Background(exCellButtonUp) = &H00000000;&
Background(exDateHeader) = &H00000000;&
Background(exDateScrollRange) = &H00000000;&

Background(exDateScrollThumb) = &H00000000;&
Background(exDateSelect) = &H00000000;&
Background(exDateSeparatorBar) = &H00000000;&
Background(exDateTodayDown) = &H00000000;&
Background(exDateTodayUp) = &H00000000;&
Background(exDropDownButtonDown) = &H00000000;&
Background(exDropDownButtonUp) = &H00000000;&
Background(exFooterFilterBarButton) = &H00000000;&
Background(exHeaderFilterBarButton) = &H00000000;&
Background(exSelBackColorFilter) = &H00000000;&
Background(exSelectInPlace) = &H00000000;&
Background(exSelForeColorFilter) = &H00000000;&
Background(exSliderRange) = &H00000000;&
Background(exSliderThumb) = &H00000000;&
Background(exSpinDownButtonDown) = &H00000000;&
Background(exSpinDownButtonUp) = &H00000000;&
Background(exSpinUpButtonDown) = &H00000000;&
Background(exSpinUpButtonUp) = &H00000000;&
CauseValidateValue = False
ColumnAutoResize = True
Columns
 Column 1
 Alignment = LeftAlignment
 AllowDragging = True
 AllowSizing = True
 AllowSort = True
 AutoSearch = exStartWith
 [AutoWidth = 24]
 Caption = "Column 1"
 Data
 Def(exCellBackColor)
 Def(exCellButtonAutoWidth) = 0
 Def(exCellForeColor)
 Def(exCellFormatLevel) = ""
 Def(exCellHasButton) = 0
 Def(exCellHasCheckBox) = 0
 Def(exCellHasRadioButton) = 0

 Def(exCellSingleLine) = -1
 Def(exCellValueFormat) = 0
 DefaultSortOrder = False
 DisplayFilterButton = False
 DisplayFilterDate = False
 DisplayFilterPattern = True
 DisplaySortIcon = True
 Editor
 Appearance = NoApp
 ButtonWidth = 13
 DropDownAlignment = LeftAlignment
 DropDownAutoWidth = exDropDownAutoWidth
 DropDownMinWidth = 164
 DropDownRows = 7
 DropDownVisible = True
 EditType = EditType
 Locked = False
 Mask = ""
 MaskChar = 95
 Numeric = exAllChars
 Option(exAutoDropDownList) = 0
 Option(exAutoSearch) = 0
 Option(exCalcButtonHeight) = 24
 Option(exCalcButtons) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-,.,+,="
 Option(exCalcButtonWidth) = 24
 Option(exCalcCannotDivideByZero) = "Cannot divide by zero."
 Option(exCalcExecuteKeys) = -1
 Option(exCalcPictureDown) = ""
 Option(exCalcPictureUp) = ""
 Option(exCheckValue0) = 0
 Option(exCheckValue1) = 1
 Option(exCheckValue2) = 2
 Option(exColorListShowName) = 0
 Option(exColorShowPalette) = -1
 Option(exColorShowSystem) = -1
 Option(exDateAllowNullDate) = -1
 Option(exDateFirstWeekDay) = 0

 Option(exDateMarkToday) = 0
 Option(exDateMonths) = "January February March April May June July August
September October November December"
 Option(exDateShowScroll) = -1
 Option(exDateShowTodayButton) = -1
 Option(exDateTodayCaption) = "Today"
 Option(exDateWeekDays) = "S M T W T F S"
 Option(exDateWeeksHeader) = 0
 Option(exDownArrow) = -1
 Option(exDropDownImage) = -1
 Option(exEditDecimalSymbol) = 46
 Option(exEditLimitText) = 0
 Option(exEditLockedBackColor) = -2147483633
 Option(exEditLockedForeColor) = 0
 Option(exEditPassword) = 0
 Option(exEditPasswordChar) = 42
 Option(exEditRight) = 0
 Option(exEditSelLength) = -1
 Option(exEditSelStart) = 0
 Option(exEndKey) = -1
 Option(exExpandOnSearch) = 0
 Option(exHomeKey) = -1
 Option(exKeepSelBackColor) = 0
 Option(exLeftArrow) = -1
 Option(exMemoAutoSize) = -1
 Option(exMemoDropDownAcceptReturn) = -1
 Option(exMemoDropDownHeight) = 116
 Option(exMemoDropDownWidth) = 128
 Option(exMemoHScrollBar) = 0
 Option(exMemoVScrollBar) = 0
 Option(exPageDownKey) = -1
 Option(exPageUpKey) = -1
 Option(exProgressBarAlignment) = 0
 Option(exProgressBarBackColor) = -2147483635
 Option(exProgressBarMarkTicker) = -1
 Option(exRightArrow) = -1
 Option(exShowPictureType) = -1

 Option(exSliderMax) = 100
 Option(exSliderMin) = 0
 Option(exSliderStep) = 1
 Option(exSliderWidth) = 64
 Option(exSpinStep) = 1
 Option(exUpArrow) = -1
 PartialCheck = False
 PopupAppearance = ShadowApp
 UserEditorObject
 Enabled = True
 Filter = ""
 FilterBarDropDownWidth = 1
 FilterList = exAllItems
 FilterType = exAll
 FireFormatColumn = False
 FormatLevel = ""
 HeaderAlignment = LeftAlignment
 HeaderBold = False
 HeaderImage = 0
 HeaderImageAlignment = LeftAlignment
 HeaderItalic = False
 HeaderStrikeOut = False
 HeaderUnderline = False
 HeaderVertical = False
 HTMLCaption = ""
 [Index = 0]
 Key = ""
 LevelKey
 MaxWidthAutoResize = -1
 MinWidthAutoResize = 0
 PartialCheck = False
 Position = 0
 Selected = False
 SortOrder = SortNone
 SortPosition = -1
 SortType = SortString
 ToolTip = "..."

 Visible = True
 Width = 269
 WidthAutoResize = False
 [Count = 1]
ColumnsAllowSizing = False
ContinueColumnScroll = True
CountLockedColumns = 0
DataSource
DefaultEditorOption(exAutoDropDownList) = 0
DefaultEditorOption(exAutoSearch) = 0
DefaultEditorOption(exCalcButtonHeight) = 24
DefaultEditorOption(exCalcButtons) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-
,.,+,="
DefaultEditorOption(exCalcButtonWidth) = 24
DefaultEditorOption(exCalcCannotDivideByZero) = "Cannot divide by zero."
DefaultEditorOption(exCalcExecuteKeys) = -1
DefaultEditorOption(exCalcPictureDown) = ""
DefaultEditorOption(exCalcPictureUp) = ""
DefaultEditorOption(exCheckValue0) = 0
DefaultEditorOption(exCheckValue1) = 1
DefaultEditorOption(exCheckValue2) = 2
DefaultEditorOption(exColorListShowName) = 0
DefaultEditorOption(exColorShowPalette) = -1
DefaultEditorOption(exColorShowSystem) = -1
DefaultEditorOption(exDateAllowNullDate) = -1
DefaultEditorOption(exDateFirstWeekDay) = 0
DefaultEditorOption(exDateMarkToday) = 0
DefaultEditorOption(exDateMonths) = "January February March April May June July
August September October November December"
DefaultEditorOption(exDateShowScroll) = -1
DefaultEditorOption(exDateShowTodayButton) = -1
DefaultEditorOption(exDateTodayCaption) = "Today"
DefaultEditorOption(exDateWeekDays) = "S M T W T F S"
DefaultEditorOption(exDateWeeksHeader) = 0
DefaultEditorOption(exDownArrow) = -1
DefaultEditorOption(exDropDownImage) = -1
DefaultEditorOption(exEditDecimalSymbol) = 46

DefaultEditorOption(exEditLimitText) = 0
DefaultEditorOption(exEditLockedBackColor) = -2147483633
DefaultEditorOption(exEditLockedForeColor) = 0
DefaultEditorOption(exEditPassword) = 0
DefaultEditorOption(exEditPasswordChar) = 42
DefaultEditorOption(exEditRight) = 0
DefaultEditorOption(exEditSelLength) = -1
DefaultEditorOption(exEditSelStart) = 0
DefaultEditorOption(exEndKey) = -1
DefaultEditorOption(exExpandOnSearch) = 0
DefaultEditorOption(exHomeKey) = -1
DefaultEditorOption(exKeepSelBackColor) = 0
DefaultEditorOption(exLeftArrow) = -1
DefaultEditorOption(exMemoAutoSize) = -1
DefaultEditorOption(exMemoDropDownAcceptReturn) = -1
DefaultEditorOption(exMemoDropDownHeight) = 116
DefaultEditorOption(exMemoDropDownWidth) = 128
DefaultEditorOption(exMemoHScrollBar) = 0
DefaultEditorOption(exMemoVScrollBar) = 0
DefaultEditorOption(exPageDownKey) = -1
DefaultEditorOption(exPageUpKey) = -1
DefaultEditorOption(exProgressBarAlignment) = 0
DefaultEditorOption(exProgressBarBackColor) = -2147483635
DefaultEditorOption(exProgressBarMarkTicker) = -1
DefaultEditorOption(exRightArrow) = -1
DefaultEditorOption(exShowPictureType) = -1
DefaultEditorOption(exSliderMax) = 100
DefaultEditorOption(exSliderMin) = 0
DefaultEditorOption(exSliderStep) = 1
DefaultEditorOption(exSliderWidth) = 64
DefaultEditorOption(exSpinStep) = 1
DefaultEditorOption(exUpArrow) = -1
DefaultItemHeight = 18
Description(exFilterBarAll) = "(All)"
Description(exFilterBarAnd) = " and "
Description(exFilterBarBlanks) = "(Blanks)"
Description(exFilterBarChecked) = "(Checked)"

Description(exFilterBarDate) = "Date:"
Description(exFilterBarDateMonths) = "January February March April May June July
August September October November December"
Description(exFilterBarDateTitle) = "Date"
Description(exFilterBarDateTo) = "to"
Description(exFilterBarDateTodayCaption) = "Today"
Description(exFilterBarDateTooltip) = "You can filter the items into a given interval of
dates. For instance, you can filter all items dated before a specified date (to 2/13/2004),
or all items dated after a date (Feb 13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)."
Description(exFilterBarDateWeekDays) = "S M T W T F S"
Description(exFilterBarFilterForCaption) = "Filter For:"
Description(exFilterBarFilterForTooltip) = "A pattern filter may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character, '|' determines the options in the pattern. For instance: '1*|2*'
specifies all items that start with '1' or '2'. If the filter is of numeric type you can filter
numbers giving numeric rules. For instance, ">10 <100" filter indicates all numbers
greater than 10 and less than 100."
Description(exFilterBarFilterTitle) = "Filter"
Description(exFilterBarIsBlank) = "IsBlank"
Description(exFilterBarIsChecked) = "IsChecked"
Description(exFilterBarIsNonBlank) = "not IsBlank"
Description(exFilterBarIsUnchecked) = "not IsChecked"
Description(exFilterBarNonBlanks) = "(NonBlanks)"
Description(exFilterBarPatternFilterTitle) = "Pattern/Numeric Filter"
Description(exFilterBarPatternTooltip) = "You can select multiple filter items as many as
you like by keeping the CTRL key pressed. Start typing characters if you like to enter a filter
as a pattern that may include wild card characters like *,? or #. Press ENTER key to filter the
items using the typed pattern. If the filter is of numeric type you can filter numbers giving
numeric rules. For instance, ">10 <100" filter indicates all numbers greater than 10 and
less than 100."
Description(exFilterBarTooltip) = "You can select multiple filter items as many as you like
by keeping the CTRL key pressed. "
Description(exFilterBarUnchecked) = "(Unchecked)"
DetectAddNew = False
DetectDelete = False
DrawGridLines = exNoLines

[Editing = 0]
Enabled = True
EnsureOnSort = True
ExpandOnDblClick = True
ExpandOnKeys = True
ExpandOnSearch = False
FilterBarBackColor = &H8000000F;&
FilterBarCaption = ""
FilterBarDropDownHeight = 0.5
FilterBarFont
 Bold = True
 Charset = 0
 Italic = False
 Name = "Arial"
 Size = 8.25
 Strikethrough = False
 Underline = False
 Weight = 700
FilterBarForeColor = &H80000008;&
FilterBarHeight = -1
FilterInclude = exItemsWithoutChilds
FocusColumnIndex = 0
Font
 Bold = False
 Charset = 0
 Italic = False
 Name = "Arial"
 Size = 8.25
 Strikethrough = False
 Underline = False
 Weight = 400
ForeColor = &H80000008;&
ForeColorHeader = &H80000008;&
ForeColorLock = &H80000008;&
ForeColorSortBar = &H80000010;&
FullRowSelect = exItemSel
GridLineColor = &H00889048;&

HasButtons = exPlus
HasButtonsCustom(False) = 0
HasButtonsCustom(True) = 0
HasLines = exDotLine
HeaderAppearance = Raised
HeaderHeight = 18
HeaderVisible = True
HideSelection = False
[hWnd = 4391834]
HyperLinkColor = &H00FF6531;&
Indent = 22
Items
 [(000) = 68282272]
 DefaultItem = 0
 [FirstVisibleItem = 68282272]
 [FocusItem = 68282272]
 [ItemCount = 1]
 LockedItemCount(exBottom) = 0
 LockedItemCount(exMiddle) = 0
 LockedItemCount(exTop) = 0
 PathSeparator = "\"
 [RootCount = 1]
 [SelectCount = 1]
 SelectPos = 0
 [VisibleCount = 1]
ItemsAllowSizing = False
LinesAtRoot = exNoLinesAtRoot
MarkSearchColumn = True
MarkTooltipCells = False
MarkTooltipCellsImage = 0
OLEDropMode = exOLEDropNone
Picture
PictureDisplay = Tile
PictureDisplayLevelHeader = Tile
PictureLevelHeader
RadioImage(False) = 0
RadioImage(True) = 0

RClickSelect = False
ReadOnly = exReadWrite
ScrollBars = exBoth
ScrollBySingleLine = False
ScrollPos(False) = 0
ScrollPos(True) = 0
SearchColumnIndex = 0
SelBackColor = &H8000000D;&
SelBackMode = exOpaque
SelectByDrag = True
SelectColumnIndex = 0
SelectColumnInner = 0
SelForeColor = &H8000000E;&
ShowFocusRect = True
ShowImageList = False
ShowLockedItems = True
SingleSel = True
SingleSort = True
SortBarCaption = "Drag a column header here to sort by that column."
SortBarColumnWidth = -96
SortBarHeight = 18
SortBarVisible = False
SortOnClick = exDefaultSort
Template = "BeginUpdate\r\nColumns\r\n{\r\n\t"Column
1"\r\n\t{\r\n\t\tEditor\r\n\t\t{\r\n\t\t\tEditType =
1\r\n\t\t}\r\n\t}\r\n}\r\nItems\r\n{\r\n\tDim h\r\n\th = AddItem(16)\r\n\tSelectItem(h) =
True\r\n}\r\nEndUpdate"
TooltipCellsColor = &H00FF6531;&
ToolTipDelay = 500
ToolTipPopDelay = 5000
ToolTipWidth = 196
TreeColumnIndex = 0
UnboundHandler
UseTabKey = True
Version = "3.1.0.3.DEBUG"
VirtualMode = False
VisualAppearance

property PropertiesList.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

property PropertiesList.Version as String
Retrieves the control's version.

Type Description

String A string expression that indicates the version of the
control.

The Version property retrieves the control's version.

property PropertiesList.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

property PropertiesList.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With PropertiesList1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg6pBcHF4eAoABsIfj/jEJAcKhYEjgCicKA4GjgBA8cAgIjgDB0cBAPjgJCUlEMlEUfQEJQD/AUng8"
 & _
"MAAREEHf0bAECIROoEcn8IALlo05YAQGKIYBkAKBQAGaAoDDQOQ5QwAAwjCK8EwsACEIrjKCRShyCYZRhGcTALD8EhhECTZK"
 & _
"kAYQEiKLoaRzAcwyDAcQRFCKUJxlKa5PjaL40UBFRipGx4ASHIqLJygOSaLigAo/SAEUZ1FKsSw1I6jKIieIRSDUJZcV5EIy"
 & _
"jBT8EzHMqeZ7qSgZfiKSgAUxcEpyJZsXxnGaQJ6jKaJcrKfZxW5GYgRWINLQvLCsKRvezxQo+aYDWrgeQQTgtKyvLTEYRsCx"
 & _
"AAKO4cjOWIshEHAMGsJAAjWZRujoS51DcFxQg2XoABobRUGsGYMkcS4qDgbIOlIbwcjCb5znoKw3A4NY4libogHsPZuBoQAI"
 & _
"gSFANCYM4hlSZBlBiSANkAeAZAiG5ag0DYhCKCBOiISgYguDg7HyRh6EyS5sncex9n8L4PlOYZ2nmfZ+j+Dx8A0PJmD+X5oA"
 & _
"Gf4AGASAOAaAIgggFgJgGYIoAUAwmk4U5+BCBIhBg+4FGGCBSBqBZhjgZgcgSUAyGCZA/mIKISCOCRigiHgqgmIpIiYLYKmK"
 & _
"aIVAMJRODOfg0g2IxYl4OoOGOSJiD6DpjnidhAg3TFeD+ZBpCIR4SGSSQuE6EolAkNhRhOZQpCUAwjk4E5+FiFolhkbhehcZ"
 & _
"gJHIYoXmYOYGGSFtMDIWYag+eYyG6GpnAmNhxhuZwplYdIdmWFAMgkOF6G4fYfCeak8iCZ56BaAohigSgeH4QJIGMfJ/iMaJ"
 & _
"6DqEIkmkKhWhGJZpEoYoWiYaQEAyAg3g+eh+4oKgqhaJIpmoOomiaKoqgqLoiECR5zHSf4sGsOpKjSLZrGqZo1i6a4KnKOov"
 & _
"GsRAMHwNwPnsDpFjFpQmkiMpsHsNpKjOLJLD6RmihsEpVD+bR7GaVo2m2CxylqNxuAsfpijEEAxliWw/m4a4imeOhukuLpu6"
 & _
"wC42nGO5vCvbIck2I5+niPovhubp+j8cALnMAo/nAPAHASPpQDGQJZD+cIsDMC5DHEDA/BKQ4xEwRwVkScRsDUAwbE2A5/By"
 & _
"R4xlwfwikgchM0GSJyHyFwokf2AolcP5ymyQwvkwcxMk8NpMjODJXDmTZziyRQDBmcp9ACf5QjQTQHEaUJ0H0C4SIpR0haDc"
 & _
"F4QIlBzhBH+KgdQehLCpFWOobQzhVitHWBocwtRXDqEQBkLQdQPj7A8MsWQbBthOGiLUdg+w3DVFuG0TYfhmCBEsEcMI/xdD"
 & _
"uH2LYeIvR3hbHcPMX47xOAGH6MAd7Lw4B3A+PwH4ExiBxC4G8DKwA+CPA6MkOQHBPgUECJcU4gR/jMHmHwa4ORnjzG6A8HbH"
 & _
"wOgnCKNIecHRDB5A+P0L7Tw6jdEeGEbI9R+ivDKNsOwnRfhcECJkA4oR/jeHuP0e4gRwj4C8C8QY4x8CeCOI0cg+GXicD2B8"
 & _
"fwfxRjoD0F4V4qR1j6D8M8Vo7Q9geG+KQQImgzjBH+PAfgfwLjJHmPwb4TxlyAA+Gcao9h+QdFkH0D4/xPyrD8N8Z48R+j+H"

 & _
"+O8ekzhxj/D8MQBgbwHy4ACGAHgBhAgQBcAUIA2E/DgDIBAQI0AjAEKoMgH4hx+AXEGDAMQDQgjYByAccA3AQiDGgIoCAQgc"
 & _
"A0CAM8bI+hChHHMBYIQmAtB9CQBkAIAiEFCIOF2jhRwsFJKWUwoAAQiUhKkVQqxWCtFcK8MgNwMyxllBiMQtJay2lvLiXMup"
 & _
"dy8l7L6X8wJgzCiOGGGQWAOQCCKBGCgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcTwAASgwCSEABQXwQiBEEGMMAqROhCBeE"
 & _
"YUQ0QRDRNwbo3hvjgHCOIJ4aoYhqgpFKD4boSRSjSFKdIOgvgxAAF2NAMo8w8hVHsJkPwlwnigDCEoVAVhqgJDoC8Y4YAGBO"
 & _
"BcC0OAlRphpHkAsMAAwEgDFUEAeA1hsVXAyIoRY2AWgXEWA0TQyQxDTHIOoXIcADBXBuHUSIZAThUE6Iwf4VxYDAHAC4GYuQ"
 & _
"ag6GmFEVQ5g5DbESLQOYSwGjjEACwfQjQOBbD6FYXoawwg6GcCYHwqgECEEoA0EwMxQjUHIGUbwQBtDbHEkkY6TEnAQE8BYX"
 & _
"wEAMCLFQDkfYgRtD9GiPVNAvwPi/GuPceQ/xQBvGCMwPwHx4AcAWAIIA0AmARAKJ8d4xABD7A2OcaI/wEDCDgJQFICxhDQGY"
 & _
"BofYQYEiwD4J+XQQwIBECiCwJIExhhnCIDoNAnhzj8CyBcIosQ+BlAwMZVAOgygeUMHEDoRwYjcD6B4ZAERYAAH4BgM8jARD"
 & _
"IHkDQSIJRkhSDYISfIpxIj/BQMoOQlBUgrGUNIZgnh9gWGPGIFwyx5D0GCDEZgUwWC2DoBUc4eR/g0GaHMKg2QbjNGmIwZwV"
 & _
"AOqGYCE4WYvB6g8GeJMHIQg7L0H6AMIAUAqAtASEMZg5BojUD+NEKgZQLhGGkBQPoJQZiSEPAoJQ0h6C1BiE0aYVB2DOCMJw"
 & _
"c4/QghRCoDUDoTQpDVAmDkBgchPj1C6FsKwVRqiNDCFkZg4x8jGD+1AYobwuDXEqN0PoMxHgHAiP8MA2A7AVESGO3ITBnA5A"
 & _
"4Acfr6Qsi2D6KUNA2hJg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQEhKCUMAAL6QlIKUUwhNJwLUqTrSwq5WSt"
 & _
"ldAwNQMwN6agjDDTgtRbC3FwLkXQuzLhEDIDUCUSQyRxAjCiIQUQEwWCXCMIAKIsASAmBEAwQgghxjzFyBQBwQACiXGWEUUY"
 & _
"igCA2EIDgTIwQDDUEwJAbQeweCeEICEGoKr4gvBAAQIS2RJgZGgOoOQMhGTvFwBkBAmwyCLGmKAMQihOi2D4AABldAahoCWO"
 & _
"4dg8heA6FeE4TY5R7JpGAGAN8YAqjhHKHYPo4RNCYFqP4GoeRHjIDIHILIPBTA/A0L8YotQYDYCIK4Ot+whCgHoFoHoJhLhN"
 & _
"FONEM40BcjUFcBIfYqgxiwGwCwAo6h0iAF4NsNwNh9hOhzB3g+hdBtB2AsAdBWADBGhEBhAvhWhrBFgPApBlhNhngtA5hdAe"
 & _
"gHBLgkgxhjgvh0B4AEAWgJgOhEBhgshWAKhvAPgPhFhkB/h6A9A+BPBfgbhFheBhh3AQB9g9ATApgOhFBWgqgVAfgPhXhnh3"
 & _
"tsBfg4AFh9B+BfBTAVhxB2hdhDAwhKAyAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATAnBhACB6ANAoBggjAggCB3Q7AI"
 & _

"hQH1BSgAgcAmghgIg2AugLBigiBqAnAzBiQtAlA1ANAjBEgbAmAJMwA+gLgjgyBWA4A0BjBYgUhaA2BNBiBogXAlAjhCBOBL"
 & _
"AkBJHpgRgLBlAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWAnAJgCBaBmgLBmBpgiBqgaBkhZgIhdgYE+ACB0"
 & _
"A5gOBTgQgTAkAIhpAsgSgTRiA2gAAlBkhiBQgSgehIhphghkgdAXhWASB0A7tXgwgNAiHpBAgNAihJAaBegZgmApgqB2gcI4"
 & _
"hiAugTAhhpADgyB0BhAYBmgOglgqhpAao/ArgrAKg2gyA7AaA2AZgIApArgCANgfBqArhKh1gkBnhrgCgRgIBACtqOueAYuf"
 & _
"qRuguhCmifgMOjCpiqukqXumOnOoCyOpOqKdOrqeutBxOuOvOwOxOyOzO0O1O2O3O4O5O6O7O8O9O+O/PAPBPCPDPEPFPGPH"
 & _
"PIPJArPKPLPMPNPOPPPQPRPSPTPUPVPWPXPYPZPaPbPcPdPePfPgPhPiPjPkPlPmPnPoPpPqPrPsPtPuPvPwPxPyPzP0P1P2"
 & _
"P3P4P5P6P7P8P9P+P/QAQBQCQDQEQFQGQHQIQJQKQLQMQNQOQPQQQRQSQTQUQVQWQXBkhzh5wZhfBfB5gHhcBBh2h0BMgmA7"
 & _
"AVBagqBUB9g/AfJnBzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGKhCgEgeAogJhyB2AQAnAhA4BUgfgFFFA0gegCgKAYAc"
 & _
"hIAggdhIAUgCA0AMhjA0ggRkAjh+GghihIxBgKhiByBqAkRFACAKAiRHRIRJRKA+JmBjxMxNxOgIxQRRRSRTRURVRWBOBQgU"
 & _
"glAZBOBQFpAZA2BKAlAkBzBaBFBfhIAZgEhhA3gNoSg7AlgJhCBggWgZhmhJgqBntSNTBNgYhNhZgEgBBgAnBjgYtEAJAyBA"
 & _
"gOuwApA2gCAlBJA6AOgFghAoAJh0gOgegOBJhZB9BhUqA4htA7AIhSAkgHRwBSAsgRgmBpg6BqgcgnhpyFgYI4hSAegSA7An"
 & _
"BmARgGNjh6g2gTgrgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQBaBGB+g6ApAYgEAECfAACVCDiWiDmKAdAZAQVbVbAW"
 & _
"1cgZVYVXiEVZAAVaAagQAWgaViVjVkAEiEVe1gVaAbVj1oVkCAg=="
End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

Property object
The Property object represents an object property, a category item, a property object page
or a variable. Use the SelectedProperty to get the selected property. Use the
IncludeProperty event to filter the object properties. The Property object supports the
following properties and methods

Name Description
AddValue Adds a new item, when the property is of EnumType.
BackColor Specifies the property's background color.
Bold Specifies a value whether the property appears as bold.

Caption Retrieves or sets the value's description in the predefined
list.

Category Retrieves a value indicating whether the item hosts a
category.

CategoryName Retrieves the property's category name.
CellBackColor Specifies the cell's background color.

CellBackgroundExt
Indicates additional colors, text, images that can be
displayed on the cell's background using the EBN string
format.

CellBackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

CellForeColor Specifies the cell's foreground color.
Clear Clears the predefined list values.
Description Specifies the property's description.
DisplayCaption Retrieves the property's full name.
DisplayCheck Specifies whether the property displays a check box.
DisplayColor Specifies whether the property displays colors.
DisplayDate Specifies whether the property displays dates.
DisplayFile Specifies whether the property displays files.
DisplayFolder Specifies whether the property displays folders.
DisplaySlider Specifies whether the property displays a slider.

DisplayValue Retrieves the property's display value. The value is
displayed by the properties browser.
Retrieves or sets a value that indicates the maximum

DropDownItems number of visible rows in a drop-down list.

EditType Specifies the type of the property's editor.
Enabled Enables or disables a property.

Flags Retrieves the property's flags. This is a combination of
FUNCFLAGS

ForeColor Specifies the property's foreground color.
Height Specifies the height in pixels of the property.

HTMLName Displays the name of the property using built-in HTML
format.

HTMLValue Displays the value of the property using built-in HTML
format.

ID Specifies the property's identifier

ItemCollection Retrieves a value that indicates whether the property is an
item of a collection.

Locked Specifies whether the property can be edited.
Mask Specifies the property's mask.
MaskChar Specifies the property's masking character.
Name Retrieves the property's name.
Numeric Specifies whether the property is of numeric type.
NumericFloat Specifies whether the property is of float type.
Object Retrieves the owner object of the property.
Option Specifies an option for the property's editor.

Parameter Specifies whether the item holds a parameter of the
parent property.

Parent Retrieves the parent of the property in the properties
browser. Nothing if the property has no parent.

Position Retrieves or sets a value that indicates the item's position
in the children list.

PropertyObject Retrieves a value that indicates whether the property is an
object or non object.

PropertyPage Retrieves a value that indicates whether the property
contains a property page.

ReadOnly Retrieves a value that indicates whether the property is

read-only.
RemoveValue Removes an item, when the property is of EnumType.
Selectable Specifies whether the user can select the property.

SingleLine Specifies whether the property is shown using single or
multiple lines.

SliderMax Specifies the slider's maximum value.
SliderMin Specifies the slider's minimum value.

SliderStep Specifies a value that represents the proposed change in
the slider control's position.

SliderTickFrequency Returns or sets a value that indicates the ratio of ticks on
the slider control.

SliderWidth Specifies the width the property's slider.

Sortable
Specifies whether the item that hosts the property may
change its position while sorting. An unsortable item does
not change its position while sort is performed.

SortItems Sorts the list of items in a drop down list editor.

SpinStep Specifies a value that represents the proposed change in
the up-down control's position.

ToolTip Specifies the property's tooltip.
Type Retrieves the property's type.
UserData Gets or sets the user-definable data for the current object.
Value Retrieves or sets the property's value.

Variable Retrieves a value that indicates whether the property is a
variable or a property.

method Property.AddValue (Value as Long, Description as String)

Adds a new item, when the property is of EditEnum type.

Type Description
Value as Long A long expression that indicates the item's value.
Description as String A long expression that indicates the item's caption.

Use the AddValue method to add new value to the list of property of EditEnum,
EditDropDown type. Use the RemoveValue method to remove values from the property's
list values. Use the SortItems to sort the values by description. Use the Caption property of
a predefined value at runtime. Use the Add method to insert new properties to the
browser.

The following sample adds few values to a property of EditEnum type:

With PropertiesList1
 With .Add("Border", 0, EditEnum)
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed"
 End With
 .Refresh
End With

property Property.BackColor as Color
Specifies the property's background color.

Type Description

Color A color expression that indicates the background color of
the property

Use the BackColor property to apply a background color to a property. Use the ForeColor
property to change the property's foreground color. Use the CellBackColor property to
change the cell's background color.

property Property.Bold as Boolean
Specifies a value whether the property appears as bold.

Type Description

Boolean A boolean expression that indicates whether a property
appears as bold.

Use the Bold property to bold a property. The value for the ShowObjects property is
important for the Bold property before adding items. Changing the ShowObjects property
has no effect after adding items.

By default,

if the ShowObjects property is True, the Bold property is true for all parent items. A
parent items contains at least a child item inserted using the Add method. For instance,
if the ShowObjects is True, when adding a new item to a parent item, the Bold
property of the parent item will be set on True.
if the ShowObjects property is False, the Bold property is false, for all items.

The following sample shows how to avoid bolding the parent items while building a
hierarchy:

With PropertiesList1
 .BeginUpdate
 .ShowObjects = False
 .Add "Root", "", ReadOnly
 With .Add("Child 1", 0, Edit, , "Root")
 .Bold = True
 End With
 With .Add("Child 2", 0, Edit, , "Root")
 .Bold = True
 End With
 .ExpandItem("Root") = True
 .ShowObjects = True
 .EndUpdate
End With

In the sample, the root item is not bolded, instead the child items are bolded.

In the following sample the root item is automatically bolded, and the child items are not:

With PropertiesList1
 .BeginUpdate
 .ShowObjects = True
 .Add "Root", "", ReadOnly
 With .Add("Child 1", 0, Edit, , "Root")
 End With
 With .Add("Child 2", 0, Edit, , "Root")
 End With
 .ExpandItem("Root") = True
 .EndUpdate
End With

property Property.Caption(Value as Long) as String
Retrieves or sets the value's description in the predefined list.

Type Description

Value as Long A long expression that indicates the index of the item being
changed.

String A string expression that indicates the item's caption.

Use the Caption property to change the description for a predefined value. Use the
AddValue method to add new items to an editor of drop down type. Use the Name property
to retrieves the property's name.

property Property.Category as Boolean
Retrieves a value indicating whether the item hosts a category.

Type Description

Boolean A boolean expression that indicates whether the current
object is a category object.

Use the CategoryName property to get the property's category name. Use the Category
property to find whether the current object is a property item or a category item. Use the
ShowCategories property to show the object properties. Use the Select method to browse
an object. The Name property specifies the property's name. The Value property specifies
the property's value.

property Property.CategoryName as String

Retrieves the property's category name.

Type Description

String A string expression that indicates the property's category
name.

The ExPropertiesList control is able to categorize object properties. Use the
ShowCategories property to enable categories into your control. Use the Category property
to check if an item is a property or it is a category.

The following sample shows how to include only the properties in the "Misc" category:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.CategoryName = "Misc")
End Sub

property Property.CellBackColor([Index as Variant]) as Color
Specifies the cell's background color.

Type Description

Index as Variant A long expression that indicates the column's index. Valid
values are: 0 for "Name" column, and 1 for "Value" column.

Color A color expression that specifies the cell's background
color.

Use the CellBackColor property to change the cell's foreground color. Use the BackColor
property to change the foreground color for the entire property. Use the CellForeColor
property to change the cell's foreground color.

 The following sample changes the background/foreground color for the Border's value:

Private Sub Form_Load()
With PropertiesList1
 .BeginUpdate
 .Add "Appearance", "", ReadOnly
 With .Add("Border", 0, EditEnum, , "Appearance")
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed"

 .CellBackColor(1) = vbRed
 .CellForeColor(1) = vbWhite
 End With
 .Refresh
 .EndUpdate
End With
End Sub

property Property.CellBackgroundExt(Column as Variant) as String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description

Column as Variant
A Long expression that specifies the index where the
background extension is applied. The valid values are 0 for
Name column, and 1 for Value column.

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the CellCellBackgroundExt property is empty. Using the CellCellBackgroundExt
property you have unlimited options to show any HTML text, images, colors, EBNs,
patterns, frames anywhere on the object's background. For instance, let's say you need to
display more colors on the object's background, or just want to display an additional
caption or image to a specified location on the object's background. The EBN String
Format defines the parts of the EBN to be applied on the object's background. The EBN is
a set of UI elements that are built as a tree where each element is anchored to its parent
element. Use the CellBackgroundExtValue property to change at runtime any UI property for
any part that composes the EBN String Format. The CellCellBackgroundExt property is
applied right after setting the object's backcolor, and before drawing the default object's
captions, icons or pictures.

The following screen shot shows how you can extend the node as follows:

displays the picture to a different place
assign more HTML captions to the node
different type of borders/frames
and so on.

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
CellCellBackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

https://exontrol.com/exbutton.jsp

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the CellCellBackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define CellCellBackgroundExt property such as "left[10%]

(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Property.CellBackgroundExtValue(Column as Variant, Index as
IndexExtEnum, Property as BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Column as Variant
A Long expression that specifies the index where the
background extension is applied. The valid values are 0 for
Name column, and 1 for Value column.

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part

that composes the EBN String Format. The BackgroundExtValue property has no effect if
the CellBackgroundExt property is empty (by default). The idea is as follows: first you
need to decide the layout of the UI to put on the object's background, using the
BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)

exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant
expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Property.CellForeColor([Index as Variant]) as Color
Specifies the cell's foreground color.

Type Description

Index as Variant A long expression that indicates the column's index. Valid
values are: 0 for "Name" column, and 1 for "Value" column.

Color A color expression that specifies the cell's foreground
color.

Use the CellForeColor property to change the cell's foreground color. Use the ForeColor
property to change the foreground color for the entire property. Use the CellBackColor
property to change the cell's background color.

 The following sample changes the background/foreground color for the Border's value:

Private Sub Form_Load()
With PropertiesList1
 .BeginUpdate
 .Add "Appearance", "", ReadOnly
 With .Add("Border", 0, EditEnum, , "Appearance")
 .AddValue 0, "0 - None"
 .AddValue 1, "1 - Fixed"

 .CellBackColor(1) = vbRed
 .CellForeColor(1) = vbWhite
 End With
 .Refresh
 .EndUpdate
End With
End Sub

method Property.Clear ()
Clears the predefined list values.

Type Description

Use the Clear method to clear all items of the property. Use the RemoveValue method to
remove a particular value.

property Property.Description as String

Specifies the property's description.

Type Description

String A string expression that indicates the property's
description.

Use the Description property to get the property's description. The property's description
describes briefly what a property does. By default, the ExPropertiesList control displays in
its description window the description for selected property. Use DescriptionVisible property
to hide the control's description window. The Name property gets the property's name. The
Value property gets the property's value.

The following sample shows how to implement by yourself a description window (to run the
sample please include to your form a Label control):

Private Sub PropertiesList1_SelChange()
 Label1 = PropertiesList1.SelectedProperty.Description
End Sub

property Property.DisplayCaption (Mode as DisplayCaptionEnum) as
Variant
Retrieves the property's full name.

Type Description
Mode as
DisplayCaptionEnum

A DisplayCaptionEnum expression that specifies the
caption to retrieve.

Variant A String/Variant expression that indicates the retrieved
caption.

The DisplayCaption property gets the caption to be displayed in the Name or Value
columns. The Name or HTMLName property specifies the caption to be displayed on the
Name column. The Value property indicates the property's value, which is displayed on the
Value column. The Description property specifies the property's description.

The DisplayCaption property gets:

Gets the caption as displayed on Name column. The Name or HTMLName property
specifies the caption to be displayed on the Name column.
Gets the value as displayed on Value column. The Value property indicates the
property's value, which is displayed on the Value column. For instance, if the property
is of an enumeration type, the property displays its literals, instead the value of the
property, so the DisplayCaption returns the literals.
Gets the value as displayed on Description panel. The Description property specifies
the property's description.

property Property.DisplayCheck as Boolean
Specifies whether the property displays a check box.

Type Description

Boolean A Boolean expression that indicates whether the property
displays a check box.

By default, the DisplayCheck property is False. Use the DisplayCheck property to display a
checkbox for boolean values. The PropertyChange event notifies your application that user
is about to change a property. The control fires the PropertyChanged event when the user
changes any property in the control. The DisplayColor, DisplayDate, DisplayFile or
DisplaySlider property specifies whether the property displays a color, date, file, or slider.

For instance, the following screen shot lists the boolean properties on top, using True/False
values, while the second screen shot shows the same properties displaying a checkbox
instead True/False values.

The following VB sample changes the DisplayCheck property for properties of Boolean
type:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Property.DisplaySlider = InStr(1, Property.Name, "transparent", vbTextCompare) > 0
 If (Not Property.DisplaySlider) Then
 Property.DisplayDate = VarType(Property.Value) = vbDate
 If (Not Property.DisplayDate) Then
 Property.DisplayCheck = VarType(Property.Value) = vbBoolean
 If (Not Property.DisplayCheck) Then
 Property.DisplayColor = InStr(1, Property.Name, "color", vbTextCompare) > 0
 End If
 End If
 End If
End Sub

property Property.DisplayColor as Boolean
Specifies whether the property displays colors.

Type Description

Boolean A Boolean expression that indicates whether the property
displays and edits a color value.

By default, the DisplayColor property is False. Use the DisplayColor property to let a
property display and edit a color expression. For instance, let's say that your object lists a
property of long type, but it changes the color for some part of the control. In this case, you
can force the property to display the property as a color, and use the color editor to edit the
value for the color. The PropertyChange event notifies your application that user is about to
change a property. The control fires the PropertyChanged event when the user changes any
property in the control. The DisplayCheck, DisplayDate, DisplayFile or DisplaySlider
property specifies whether the property displays a checkbox, date, file, or slider.

property Property.DisplayDate as Boolean
Specifies whether the property displays dates.

Type Description

Boolean A Boolean expression that indicates whether the property
displays and edits a date expression.

By default, the DisplayDate property is False. Use the DisplayDate property to let a
property display and edit a date expression. For instance, let's say that your object lists a
property of double type, but it changes the date. In this case, you can force the property to
display the property as a date, and use the date editor to edit the value for the date. The
PropertyChange event notifies your application that user is about to change a property. The
control fires the PropertyChanged event when the user changes any property in the control.
The DisplayCheck, DisplayColor, DisplayFile or DisplaySlider property specifies whether
the property displays a checkbox, color, file, or slider.

property Property.DisplayFile as Boolean
Specifies whether the property displays files.

Type Description

Boolean A Boolean expression that indicates whether the property
displays a path to a file.

By default, the DisplayFile property is False. Use the DisplayFile property to let a property
display and edit a string expression that represents the path to a file. For instance, let's say
that your object lists a property of string type that changes the path to a file, so you can
assign the open file editor to change the listed path. The PropertyChange event notifies
your application that user is about to change a property. The control fires the
PropertyChanged event when the user changes any property in the control. The
DisplayCheck, DisplayColor, DisplaySlider or DisplayDate property specifies whether the
property displays a checkbox, color, slider, or date.

property Property.DisplayFolder as Boolean
Specifies whether the property displays folders.

Type Description

Boolean A Boolean expression that indicates whether the property
displays a path to a file.

By default, the DisplayFolder property is False. Use the DisplayFolder property to let a
property display and edit a string expression that represents the path to a file. For instance,
let's say that your object lists a property of string type that changes the path to a file, so
you can assign the open file editor to change the listed path. The PropertyChange event
notifies your application that user is about to change a property. The control fires the
PropertyChanged event when the user changes any property in the control. The
DisplayCheck, DisplayColor, DisplaySlider or DisplayDate property specifies whether the
property displays a checkbox, color, slider, or date.

property Property.DisplaySlider as Boolean
Specifies whether the property displays a slider.

Type Description

Boolean A Boolean expression that indicates whether the property
displays a slider control.

By default, the DisplaySlider property is False. Use the DisplaySlider property to let a
property display and edit a long expression between 0 and 100. For instance, let's say that
your object lists a property Transparency of long type and so, you can assign a slider
control to display and change the transparency for the object. The PropertyChange event
notifies your application that user is about to change a property. The control fires the
PropertyChanged event when the user changes any property in the control. The
DisplayCheck, DisplayColor, DisplayFile or DisplayDate property specifies whether the
property displays a checkbox, color, file, or date.

property Property.DisplayValue as String

Retrieves the property's display value. The value is displayed by the properties browser.

Type Description
String A string expression that indicates the item's caption.

The control uses the DisplayValue property to display the property's value into the browser.
To get the value of the property you should use the Value property. If the Category property
is True, the DisplayValue gets the category name. For instance, a property of Color type,
has the DisplayValue like &H80000005&, since the property's value is 0x80000005. A
property of boolean type has DisplayValue like "True" or "False". The following sample
shows how to print the property''s display value when selection is changing:

Private Sub PropertiesList1_SelChange()
 Debug.Print PropertiesList1.SelectedProperty.DisplayValue
End Sub

property Property.DropDownItems as Long
Retrieves or sets a value that indicates the maximum number of visible rows in a drop-down
list.

Type Description

Long A long expression that indicates the number of visible rows
in the drop down list editor.

By default, the DropDownRows property is 7. Use the DropDownRows property to specify
number of visible items in a drop down list editor. The DropDownRows property has effect
for editors like EditEnum, EditDropDown or EditFontName. The EditType property specifies
the type of the editor assigned to a property.

property Property.EditType as EditTypeEnum
Specifies the type of the property's editor.

Type Description

EditTypeEnum An EditTypeEnum expression that indicates the type of the
editor being used when the property is edited.

Use the Add method to add a custom property.

property Property.Enabled as Boolean
Enables or disables a property.

Type Description

Boolean A boolean expression that indicates whether the property
is enabled or disabled.

By default, the Enabled property is True. A disabled property is locked and it looks grayed.
Use the Locked property to lock a property. A locked property doesn't look grayed.

property Property.Flags as Long

Retrieves the property's flags.

Type Description
Long A long expression that indicates the property's flags.

You can use the Flags property to filter only properties that have some flags, using the
IncludeProperty event. Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

Here's the list of all flags:

Name Value Description

FUNCFLAG_FRESTRICTED 0x0001

The function should not be accessible from
macro languages. This flag is intended for
system-level functions or functions that type
browsers should not display.

FUNCFLAG_FSOURCE 0x0002 The function returns an object that is a
source of events.

FUNCFLAG_FBINDABLE 0x0004 The function that supports data binding.

FUNCFLAG_FREQUESTEDIT 0x0008

When set, any call to a method that sets the
property results first in a call to
IPropertyNotifySink::OnRequestEdit. The
implementation of OnRequestEdit determines
if the call is allowed to set the property.

FUNCFLAG_FDISPLAYBIND 0x0010
The function that is displayed to the user as
bindable. FUNC_FBINDABLE must also be
set.

FUNCFLAG_FDEFAULTBIND 0x0020
The function that best represents the object.
Only one function in a type information can
have this attribute.

FUNCFLAG_FHIDDEN 0x0040 The function should not be displayed to the
user, although it exists and is bindable.

FUNCFLAG_USESGETLASTERROR 0x0080
The function supports GetLastError. If an
error occurs during the function, the caller
can call GetLastError to retrieve the error

code.

FUNCFLAG_FDEFAULTCOLLELEM 0x0100

Permits an optimization in which the compiler
looks for a member named ”xyz” on the type
of ”abc”. If such a member is found and is
flagged as an accessor function for an
element of the default collection, then a call
is generated to that member function.
Permitted on members in dispinterfaces and
interfaces; not permitted on modules.

FUNCFLAG_FUIDEFAULT 0x0200 The type information member is the default
member for display in the user interface.

FUNCFLAG_FNONBROWSABLE 0x0400 The property appears in an object browser,
but not in a properties browser.

FUNCFLAG_FREPLACEABLE 0x0800 Tags the interface as having default
behaviors.

FUNCFLAG_FIMMEDIATEBIND 0x1000 Mapped as individual bindable properties

property Property.ForeColor as Color
Specifies the property's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the property.

Use the ForeColor property to apply a foreground color to a property. Use the BackColor
property to change the property's background color. Use the CellForeColor property to
change the cell's foreground color.

property Property.Height as Long
Specifies the height in pixels of the property.

Type Description

Long A long expression that indicates the height of a particular
item/property.

Use the Height property to specify the height for a property. Use the DefaultItemHeight
property to specify the height of the properties before loading properties to the control.Use
the
 tag in HTMLName property to break a line.

property Property.HTMLName as String
Displays the name of the property using built-in HTML format.

Type Description

String A string expression that indicates the HTML format being
displayed in the Name column, instead Name property.

By default, the HTMLName property is empty. If the HTMLName property is empty, the
Name property is displayed in the name column. Use the HTMLName property to assign
pictures, icons or font attributes to parts of the caption being displayed in the Name column.
The HTMLValue property specifies the HTML caption to be displayed on the Value column.
The SingleLine property indicates whether the property is displaying by single or multiple
lines.

The HTMLName property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on

about:blank

the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

For instance, the "<u>B</u>old" sequence displays a string like follows: Bold. The
control displays the HTMLName property instead Name property, only if the HTMLName is
not empty. Use the IncludeProperty to assign a new html format for a specified property,
like in the following sample.

For instance, the following VB sample adds an icon to the Appearance property.

Private Sub PropertiesList1_IncludeProperty(ByVal Property As

EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 If Property.Name Like "Appearance" Then
 Property.HTMLName = "1" & Property.Name
 End If
End Sub

For instance, the following template sample adds three properties and assign an icon to
each of them, using the tag.

BeginUpdate
Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/syEQSEADGYbGAGCwj/jWKxuPjOEyOJwcOxuVx2MyOViGAz0szWUwmOx2TjOh1Ea0OjzGt1mL1UPuuZ2Vcw2I29NzOXyWJ1WiwuHieM0uW0fA0O51G1uedzvK5lS3PT4W5qW9xnO2XP4WnyEzztw2nZ2XQxnmpPU3HV9mI7WhnWk13f8nE+fhy2T+WvlH4tz3uC9ztvK4TuQE+CeusjT1QC4cHQAmjxwc0zLM7CT8NXBrcuK07orTC8CQPBsAPQ9CaQUjMUQ1ArZRA+sJpWx0GQo88WRe4sMwZDkYLVEkbQdEzfMnA0eJjHcVPRAD9wfDyNwklzsN+70pyElcNsqjb/LLJciS65jCSCxcmpfK7exS4UZR/F0gO6l81whKrezlEcBxqxEdy0sjUs2/kvQzOExQQmEdSxBcfyU+86yMzkWxi2MEPROcKTK/sxx7KTgQlBU5zyncGUjR8mTsms31DJE1UNEVKSzSy4yXLkQyKokAQs+lFQjRkb1DLUk0bM71zvQsO0EvdXvmqlaVinEJUlUSUVBYcq1XULPpVJauTgm01uxW9UzZO9vWnaNq3I5FFWTSFD3PWM8VbctivnYz+XlTN43tQKyosHyV32jyQJEkgAJKlGBpxTt3p4iiNnmf+GI2cB/4hh4fnAH6NmAB+MYuAZgIMjRAADkCN5BkSNoNjyNZPkYDkAA+HgOcGXI0fAH5ojZ/AfnEsk+f5P1Y6KAg")

Add("Icon1","",1).HTMLName = "1Icon 1"
Add("Icon2","",1).HTMLName = "2Icon 2"
Add("Icon3","",1).HTMLName = "3Icon 3"
EndUpdate

The following VB sample adds a picture to a property:

With PropertiesList1
 .HasGridLines = False
 .DefaultItemHeight = 52
 .HTMLPicture("floppy") = "D:\Temp\Icons\3floppy_1mount.gif"
 .HTMLPicture("hard") = "D:\Temp\Icons\3floppy_mount.gif"
 With .Add("Floppy", "", EditColor)
 .HTMLName = "floppyFloppy"
 End With
 With .Add("Hard", "", EditColor)
 .HTMLName = "hardHard"
 End With
End With

property Property.HTMLValue as String
Displays the value of the property using built-in HTML format.

Type Description

String A String expression that defines the HTML caption to be
displayed on the Value column.

By default, the HTMLValue property is empty. If HTMLValue property is empty, the Value
property is displayed on the Value column. The SingleLine property indicates whether the
property is displaying by single or multiple lines.

The HTMLValue property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

about:blank

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,

width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Property.ID as Long

Retrieves the property's identifier

Type Description
Long A long expression that indicates the property's identifier.

The property's identifier identifies a property. The property's identifier is used by Invoke
method of IDispatch property to invoke a property. Use the Add method to specify the
property's identifier when adding properties manually.

property Property.ItemCollection as Boolean

Retrieves a value that indicates whether the property is an item of a collection.

Type Description

Boolean A boolean expression that indicates whether the property
is an item of a collection.

If the ItemCollection is True, the Property object contains an element of the collection. The
ExPropertiesList control is able to display collections and their elements. When the control
finds a property that exports a collection it adds the elements of the collection as child items
of the property. During loading the control uses the NameItemsCollection property to
determine the name of each element into collection, if it is a collection of objects. If the
ItemCollection is True use the Object property to find the owner collection. For instance, if
the collection contains only strings, the items added to browser's list will be numerated.
Instead if the collection contains another objects, it uses the NameItemsCollection property
to determine the caption that will be displayed on the name column. Let's suppose that we
have the following collection:

Dim n As New Collection
n.Add 10
n.Add 20
n.Add 30

When the control browses for the collection n (PropertiesList1.Select n), the elements of
collection are not of object type, so the control will not be able to find each element name.
Instead, if we have the following sample:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

and we call PropertiesList1.Select rs.Fields, the control will browse the rs.Fields collection.
The Fields property of an ADO recordset contains a collection of Field objects. Since each
Field object has a property called "Name", the browser will be able to find the element
name using the NameItemsCollection property that contains by default:
"Name;Caption;Item".

Here's a screen shot of how the ExPropertiesList browses the Fields collection (rs.Fields):

If we are using the following sample (make sure that you have set the
NameItemsCollection to empty at design time):

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
PropertiesList1.Select rs.Fields

property Property.Locked as Boolean

Specifies whether the property can be edited.

Type Description

Boolean A boolean expression that specifies whether the property
can be edited.

By default, the Locked property is False. Use the Locked property to lock a property. A
locked property is not editable, and doesn't look grayed. Use the Enabled property to
disable a property. A disabled property is locked and looks grayed. Use the ForeColor
property to change the foreground color for a locked property.

Use the ReadOnly property to lock the entire control. Use the Enabled property to disable
the entire control.

property Property.Mask as String
Specifies the property's mask.

Type Description
String A string expression that indicates the control's mask

he Mask property is composed by a combination of regular characters, literal escape
characters, and masking characters. The Mask property can contain also alternative
characters, or range rules. A literal escape character is preceded by a \ character, and it is
used to display a character that is used in masking rules. Here's the list of all rules and
masking characters:
Rule Name Description
Digit Masks a digit character. [0-9]
x Hexa Lower Masks a lower hexa character. [0-9],[a-f]
X Hexa Upper Masks a upper hexa character. [0-9],[A-F]
A AlphaNumeric Masks a letter or a digit. [0-9], [a-z], [A-Z]
? Alphabetic Masks a letter. [a-z],[A-Z]

< Alphabetic
Lower Masks a lower letter. [a-z]

> Alphabetic
Upper Masks an upper letter. [A-Z]

* Any Mask any combination of characters.

\ Literal
Escape

Displays any masking characters. The following combinations
are valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[

{nMin,nMax} Range
Masks a number in a range. The nMin and nMax values should
be numbers. For instance the mask {0,255} will mask any
number between 0 and 255.

[...] Alternative Masks any characters that are contained by brackets []. For
instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following sample shows how to mask an IP address:

 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"

property Property.MaskChar as Long
Specifies the property's masking character.

Type Description

Long A value that indicates the character used for masking
characters.

Use the MaskChar property to change the masking character. By default, the MaskChar is
'_'.

property Property.Name as String

Retrieves the property's name.

Type Description
String A string expression that indicates the property's name.

If the Property object hosts a category the Name property retrieves the category name.
Use the SelectedProperty event to find out the selected property. The Value property gets
the property's value. The ID property gets the identifier of the property. The Description
property gets the description of the property being displayed in the control's description bar.
Use the UserData property to associate an extra data to the property. Use the HTMLName
property to assign icons, pictures, font attributes or colors, to parts of the caption being
displayed in the Name column.

The following sample prints the name and the type of the selected property (for instance,
the sample is useful to find out the type of the property selected, when you need to include
or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()
 Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

property Property.Numeric as Boolean
Specifies whether the property is of numeric type.

Type Description

Boolean A boolean expression that indicates whether property's
edit box allows only digits to be entered.

The Numeric property allows only digits to be entered into the property's edit box. Use the
AllowSpin property to specify whether the numeric properties show a spin control. Use the
SpinStep property to define the proposed change when user clicks the spin.

property Property.NumericFloat as Boolean
Specifies whether the property is of float type.

Type Description

Boolean A boolean expression that indicates whether the property
is of float type.

A float type is represented in the format: [+/-]digit[.]digit[e/E/d/D][+/-]digit, where digit is
any combination of digit characters. Use the Numeric property to specify when only long
values are allowed in the property. Use the AllowSpin property to specify whether the
numeric properties show a spin control. Use the SpinStep property to define the proposed
change when user clicks the spin. If the NumericFloat property is True, the input characters
are filtered, and so characters that are not in the number representation can't be inserted.
For instance, if you have a number such of 100, and you type 'e' character, the number will
be 100e, but if you would type again a new 'e' it will not be accepted, so the number will
stay as 100e.

property Property.Object as Object

Retrieves the owner object of the property.

Type Description
Object An object that's the owner of the property.

The Object property retrieves the owner object of the property. Use the Value property to
get the object contained by the property. For instance if a Property object has the
ItemCollection property to True, then the Object property retrieves the owner object
collection. Also, if a Property object contains is of Variable type, the Object property
retrieves the object where the variable belong. Use the PropertyObject property to
determine whether the property contains an object. For instance a property of font type is
considered as been of object type. You can use the Type property to determine the type of
the property. The following sample shows how to exclude variables of IPictureDisp
properties:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 If Not (Property.Object Is Nothing) Then
 Cancel = Property.Variable And TypeOf Property.Object Is IPictureDisp
 End If
End Sub

property Property.Option(Name as OptionEnum) as Variant
Specifies an option for the property's editor.

Type Description

Name as OptionEnum An OptionEnum expression that indicates the option being
changed.

Variant A Variant value that indicates the option's newly value.

Use the Option property to change a particular option for a specified entry/property. If no
option is specified for the current entry, the Option property of the control indicates the
default options. The Option property applies the options to all editors, while the Option
property of Property object may specify different options for different entries in the control.
For instance, you can display a filter for some EditFile entries, and other filters for other
EditFile entries in the same control.

In conclusion, you can specify options for the editors as follows:

the same settings for all editors using Option property (by default).
custom settings for the editor of an entry/property using the Property.Option property

The following VB sample adds a custom EditDate editor that uses Romanian calendar:

With PropertiesList1
 With .Add("Date", Date, EditDate)
 .Option(exDateTodayCaption) = "Azi"
 .Option(exDateMonths) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Decembrie"
 .Option(exDateWeekDays) = "D L M M J V S"
 .Option(exDateFirstWeekDay) = 1
 Wnd With
End With

The following VB sample adds a custom EditFile editor with INI filter:

With PropertiesList1
 With .Add("INI", "c:\temp\test.ini", EditFile, "Selects a file", "Custom")
 .Option(exEditFileFilter) = "INI Files|*.ini;*.init|All (*.*)|*.*"
 .Option(exEditFileTitle) = "Select an INI file"
 End With
End With

property Property.Parameter as Boolean
Specifies whether the item holds a parameter of the parent property.

Type Description

Boolean A Boolean expression that indicates whether the property
holds a parameter

The control may browse properties with multiple parameters.

property Property.Parent as Property

Retrieves the parent of the property in the properties browser.

Type Description

Property A Property object that's the parent of the property in the
properties browser.

If the property has no parent, the Parent retrieves nothing.

property Property.Position as Long
Retrieves or sets a value that indicates the item's position in the children list.

Type Description

Long
A long expression that indicates the position of the
Property in the list of children items. 0 means the first
property, 1, the second, and so on.

The Position property specifies the position of the property in the browser. Use the Position
property to change the property's position. For instance, if the IncrementalSearch property
is exContains + exMoveOnTop, the items are re-arranged so, the first items contain the
typed characters, while the rest stay unchanged.

property Property.PropertyObject as Boolean

Retrieves a value that indicates whether the property is an object or non object.

Type Description

Boolean A boolean expression that indicates whether the Property
object contains an Object.

Use the Value property to get the object contained by the property. All the properties of
object type are displayed as bold. If the Property object contains a category item, the
PropertyObject property is False. Use the ShowObjects property to show properties of
object type into the control. For instance a property of IFontDisp type is considered as
been as object type. Use the Type to get the string representation of the property's object
type. The following sample shows how to simulate the VB browser (make sure that
ShowObjects property is True):

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Property.PropertyObject
 If (Cancel) Then
 Cancel = Not (Property.Type = "Font*" Or Property.Type = "Picture*")
 End If
End Sub

property Property.PropertyPage as Boolean

Retrieves a value that indicates whether the Property object contains a property page.

Type Description

Boolean A boolean expression that indicates whether the Property
object contains a property page.

The ExPropertiesList control supports browsing property pages. The PropertPage property
specifies whether the Property object contains a property page. The following sample
shows how to include into your browser only the property pages:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not Property.PropertyPage
End Sub

property Property.ReadOnly as Boolean

Retrieves a value that indicates whether the property is read-only.

Type Description

Boolean A boolean expression that indicates whether the property
is read-only.

The control displays the read-only properties in a grayed color. Use the ReadOnly property
to disable user editing. Use the ShowReadOnly property to ignore read-only properties. If
the item is of category type or property page type, the ReadOnly property has no effect.
Use the Enabled property to disables a property. Use the Locked property to lock a
property.

method Property.RemoveValue (Value as Long)

Removes an item, when the property is of EnumType.

Type Description

Value as Long A long expression that indicates the value of the item being
removed.

Use the RemoveValue method to remove an item from the property's list values when it is of
EnumType type. Use the AddValue property to add new values to property's list values.

property Property.Selectable as Boolean
Specifies whether the user can select the property.

Type Description

Boolean A Boolean expression that specifies whether the user can
select the property at runtime.

By default, the Selectable property is True. Use the Selectable property to prevent a
property to be selected. The Sortable property indicates whether the property's position is
changed once the user sorts a column. The SelectedProperty property indicates the
currently selected property. The control fires the SelChange event once a new property
gets selected in the properties browser control.

property Property.SingleLine as Boolean
Specifies whether the property is shown using single or multiple lines.

Type Description

Boolean A Boolean expression that specifies whether the property
is displaying by single or multiple lines.

By default, the SingleLine property is True. Use the SingleLine property to display the
property's name or value on multiple lines. Use the Name or HTMLName property to specify
the caption of the property to be displayed on the Name column. Use the Value or
HTMLValue property to specify the caption of the property to be displayed on the Value
column.

property Property.SliderMax as Double
Specifies the slider's maximum value.

Type Description

Double A double expression that indicates the maximum value for
the slider control.

By default, the SliderMax property is 100. Use the EditSlider type when adding the property
to assign a slider control to a property. The SliderWidth property determines the width of
the slider in the property. The SliderStep property determines the slider step, when user
moves the slider. The SliderMin and SliderMax properties determine the range being used
by the Value property. The SliderTickFrequency property specifies the frequency to display
ticks on a slider control.

property Property.SliderMin as Double
Specifies the slider's minimum value.

Type Description

Double A double expression that indicates the minimum value for
the slider.

By default, the SliderMin property is 0. Use the EditSlider type to assign a slider to a
property. The SliderWidth property determines the width of the slider in the property. The
SliderStep property determines the slider step, when user moves the slider. The SliderMin
and SliderMax properties determine the range being used by the Value property. The
SliderTickFrequency property specifies the frequency to display ticks on a slider control.

property Property.SliderStep as Double
Specifies a value that represents the proposed change in the slider control's position.

Type Description
Double A double expression that indicates the slider's step.

The SliderStep property determines the slider step, when user moves the slider. Use the
EditSlider type to assign a slider to a property. The SliderWidth property determines the
width of the slider in the property. The SliderMin and SliderMax properties determine the
range being used by the Value property. By default, the SliderStep property is 1.

property Property.SliderTickFrequency as Double
Returns or sets a value that indicates the ratio of ticks on the slider control.

Type Description

Double A Double expression that indicates the ratio of ticks on the
slider control.

By default, the SliderTickFrequency property is 0. If the SliderTickFrequency property is 0
the slider displays no ticks. The SliderTickFrequency property specifies the frequency to
display ticks on a slider control. Use the EditSlider type when adding the property to assign
a slider control to a property. The SliderWidth property determines the width of the slider in
the property. The SliderStep property determines the slider step, when user moves the
slider. The SliderMin and SliderMax properties determine the range being used by the Value
property.

property Property.SliderWidth as Long
Specifies the width the property's slider.

Type Description

Long A long expression that indicates the width of the slider in
the property like explained bellow.

Use the EditSlider type to assign a slider to a property. By default, the SliderWidth property
is 64 pixels.

If the SliderWidth property is 0, the slider control is not visible.
If the SliderWidth property is greater than 0, the SliderWidth property represents the
width in pixels of the slider in the control.
If the SliderWidth property is less than 0, the absolute value of the SliderWidth
property represents the percent being used by the slider in the property. For instance,
if the SliderWidth property is -50, that means the that slider's width will be 50% (half)
of the cell's width.

Use the SliderMin and SliderMax properties to hold the property's Value within a range. The
SliderStep property determines the slider step, when user moves the slider. The
SliderTickFrequency property specifies the frequency to display ticks on a slider control.

The following sample adds different types of sliders:

With PropertiesList1
 .AllowSpin = True
 With .Add("Spin", 0.2, Edit)
 .NumericFloat = True
 End With
 With .Add("Slider with a non fixed width", 0.2, EditSlider)
 .SliderWidth = -60
 .SliderStep = 0.05
 .SpinStep = 0.05
 .SliderMin = 0
 .SliderMax = 50
 End With
 With .Add("Slider with a fixed width", 0, EditSlider)
 .SliderMin = -50
 .SliderMax = 50
 End With

 With .Add("Slider with unknown step", 0, EditSlider)
 .SliderWidth = -70
 .SpinStep = 0
 .SliderStep = 0
 .SliderMin = -50
 .SliderMax = 50
 End With
End With

property Property.Sortable as Boolean
Specifies whether the item that hosts the property may change its position while sorting.

Type Description

Boolean A Boolean expression that specifies whether the property
is sortable or not.

By default, the Sortable property is True. An unsortable item does not change its position
while sort is performed. The Sort method sorts the properties. Use the SortObjects
property to specify if the object properties should be placed on top or bottom side of the
control once the user sorts a column. Use the SortOnClick property to specify whether a
column gets sorted once the user clicks the column's header.

method Property.SortItems ([Ascending as Variant], [Reserved as
Variant])
Sorts the list of items in a drop down list editor.

Type Description

Ascending as Variant
A boolean expression that indicates the sort order of the
items. By default, is the Ascending parameter is True, if it
is missing.

Reserved as Variant Not used. For future use only.

Use the SortItems method to sort the items in a drop down list editor. Use the AddValue
method to add predefined values to the drop down list. Call the SortItems after adding
values to a drop down list editor.

property Property.SpinStep as Double
Specifies a value that represents the proposed change in the up-down control's position.

Type Description

Double A double expression that indicates the proposed change in
the spin control.

Use the AllowSpin property to associate a spin (up/down control) to a property of numeric
type. Use the SpinStep property to specify the proposed change when user clicks a spin
control. By default, the SpinStep property is 1. If the SpinStep property is 0, the property
doesn't show a spin control even if the property is of numeric type and AllowSpin property
is True. The SliderTickFrequency property specifies the frequency to display ticks on a
slider control.

property Property.ToolTip as String
Specifies the property's tooltip.

Type Description
String A string expression that indicates the property's tooltip.

Use the ToolTip property to assign a custom tooltip to a property. By default, the ToolTip
property is "...". The AllowToolTip property specifies whether the control displays a tooltip
when the string value is too long to be displayed in the property's client area. The control
pops up a tooltip when the mouse pointer hovers the property's name or value in the
following cases:

If the ToolTip property is "...", and the property's name or property's value is too long to
be displayed in the property's client area.
The ToolTip property is not empty, and it is different than "..." (three dots).

The following sample shows how to display the property's description when the mouse
pointer hovers the property's name:

Private Sub Form_Load()
 With PropertiesList1
 .DescriptionVisible = False
 .AllowTooltip = True
 .Select Me
 End With
End Sub

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Property.ToolTip = Property.Description
End Sub

property Property.Type as String

Retrieves the property's type.

Type Description
String A string expression that represents the property's type.

Use the PropertyObject property to check whether a property is of object type. For
instance, the Type property is useful to determine whether a variable is member of a
IFontDisp object, using the following statement: typeof Property.Object is IFontDisp. Use
the Value property to determine the property's value. It is not recommended using the
typeof Property.Value is IFontDisp, because the VB operator typeof is not able to check
the type objects that are set to nothing. Use the SelectedProperty event to find out the
selected property. The following sample prints the name and the type of the selected
property (for instance, the sample is useful to find out the type of the property selected,
when you need to include or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()
 Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

property Property.UserData as Variant
Gets or sets the user-definable data for the current object.

Type Description
Variant A Variant value that defines the property's user data.

Use the UserData event to associate a user value to a property. Use the Property property
to access to a property object. The Name property specifies the property's name. The
Value property specifies the property's value. Use the ID property to identify a property.

The following sample associates an extra string to the property "Visible":

PropertiesList1.Property("Visible").UserData = "A constant string"

property Property.Value as Variant

Retrieves or sets the property's value

Type Description
Variant A variant expression that indicates the property's value.

If the property object holds a property page or a category, the Value property has no
sense. Use the PropertyObject property to check whether the property is of object type.
Use the value property to determine the object contained by the property. Use the Object to
get the owner object of a property. Use the DisplayValue property to get the text that
control displays in the browser. The control fires the EditChange event while user types
characters in the property's text box control. The Name property retrieves the name of the
property. Use the AddValue method to add predefined values to a drop down list editor. The
DisplayValue property gets the string being displayed in the browser. The HTMLValue
property specifies the HTML caption to be displayed on the Value column.

If the property is added manually, using the Add method, you need to call the Value
property each time when you need to refresh the property's value. In case the properties
list browses a COM object, using the Select method, you need to call the Refresh method
to refresh the values for the properties in the browser, in case some changes occurs to the
browsed object or if you need to. Also, if a property contains another COM object (
EditObject type), the Refresh method updates the values for all browsed properties.

property Property.Variable as Boolean

Retrieves a value indicating whether the property is a variable.

Type Description

Boolean A boollean expression indicating whether the property is a
variable.

If the Variable is False, that doesn't means that the Property object contains a real
property. Use the PropertyPage property to determine if the Property object contains a
properties page, or use the Category to check whether the Property object contains a
category. Use the ShowVariables property to exclude variables. Use the Variable property
to filter your items like in the following sample:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 If Not (Property.Object Is Nothing) Then
 Cancel = Property.Variable And TypeOf Property.Object Is IPictureDisp
 End If
End Sub

ExPropertiesList events
The ExPropertiesList component supports the following events:

Name Description
AnchorClick Occurs when an anchor element is clicked.

Click Occurs when the user presses and then releases the
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

EditChange Fired when user alters the text of an edit control.
Event Notifies the application once the control fires an event.

IncludeProperty Fired when the properties browser is about to include a
new property.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

ModalPropertyChange Fired when the properties browser is about to change a
property's value using a modal dialog.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.

PropertyChange Fired when the properties browser is about to change a
property's value.

PropertyChanged Occurs after the property's value is changed.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelChange Fired when the selected property is changed.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_AnchorClickEvent) Handles
AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oPropertiesList,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void Click(object sender,exontrol.EXPROPERTIESLISTLib.Property
Property,short Button,short Shift)
{
}

Private Sub Click(ByVal sender As System.Object,ByVal Property As
exontrol.EXPROPERTIESLISTLib.Property,ByVal Button As Short,ByVal Shift As
Short) Handles Click
End Sub

C#

C++

private void ClickEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ClickEvent e)
{
}

void OnClick(LPDISPATCH Property,short Button,short Shift)
{
}

event Click (Property as Property, Button as Integer, Shift as Integer)
Occurs when the user presses and then releases the mouse button over the control.

Type Description
Property as Property A Property object that indicates the property being clicked.

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

The Click event is fired when user clicks a property. The Property parameter gets the
property being clicked. The Value property gets the property's value. The Name property
gets the property's name.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Click(TObject *Sender,Expropertieslistlib_tlb::IProperty *Property,short
Button,short Shift)
{
}

procedure Click(ASender: TObject; Property : IProperty;Button : Smallint;Shift :
Smallint);
begin
end;

procedure ClickEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ClickEvent);
begin
end;

begin event Click(oleobject Property,integer Button,integer Shift)
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ClickEvent) Handles ClickEvent
End Sub

Private Sub Click(Property As EXPROPERTIESLISTLibCtl.IProperty,Button As
Integer,Shift As Integer)
End Sub

Private Sub Click(ByVal Property As Object,ByVal Button As Integer,ByVal Shift As
Integer)
End Sub

LPARAMETERS Property,Button,Shift

PROCEDURE OnClick(oPropertiesList,Property,Button,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Click(Property,Button,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click(Property,Button,Shift)
End Function
</SCRIPT>

Procedure OnComClick Variant llProperty Short llButton Short llShift
 Forward Send OnComClick llProperty llButton llShift
End_Procedure

METHOD OCX_Click(Property,Button,Shift) CLASS MainDialog
RETURN NIL

void onEvent_Click(COM _Property,int _Button,int _Shift)
{
}

function Click as v (Property as OLE::Exontrol.PropertiesList.1::IProperty,Button as
N,Shift as N)
end function

function nativeObject_Click(Property,Button,Shift)
return

Syntax for Click event, /COM version (others), on:

The following sample prints the property's name if the user clicks the property:

Private Sub PropertiesList1_Click(Property As EXPROPERTIESLISTLibCtl.IProperty, Button
As Integer, Shift As Integer)
 Debug.Print Property.Name
End Sub

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

C++
Builder

private void DblClick(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The DblClick event is fired when user double clicks the control.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oPropertiesList,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

C#

VB

private void EditChange(object sender,exontrol.EXPROPERTIESLISTLib.Property
Property,ref object Value)
{
}

Private Sub EditChange(ByVal sender As System.Object,ByVal Property As
exontrol.EXPROPERTIESLISTLib.Property,ByRef Value As Object) Handles
EditChange
End Sub

C#

C++

private void EditChange(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_EditChangeEvent e)
{
}

void OnEditChange(LPDISPATCH Property,VARIANT FAR* Value)
{
}

event EditChange (Property as Property, Value as Variant)
Fired when user alters the text of an edit control.

Type Description
Property as Property A Property object being changed.

Value as Variant A string expression that indicates the caption of the text
box control.

The EditChange event is fired when user alters the text of the control's edit box. The
PropertyChange event is fired when user changes the property's value. Use the Value
property to access the old value for the property being changed. Use the ID property to
identify a property. The KeyDown event is fired when user presses a key. The KeyPress
event occurs when the user presses and releases an ANSI key. The control fires the
SelChange event when a new property is selected. Use the UserData property to associate
an extra data to a property.

Syntax for EditChange event, /NET version, on:

Syntax for EditChange event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall EditChange(TObject *Sender,Expropertieslistlib_tlb::IProperty
*Property,Variant * Value)
{
}

procedure EditChange(ASender: TObject; Property : IProperty;var Value :
OleVariant);
begin
end;

procedure EditChange(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_EditChangeEvent);
begin
end;

begin event EditChange(oleobject Property,any Value)
end event EditChange

Private Sub EditChange(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_EditChangeEvent) Handles
EditChange
End Sub

Private Sub EditChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Value As Variant)
End Sub

Private Sub EditChange(ByVal Property As Object,Value As Variant)
End Sub

LPARAMETERS Property,Value

PROCEDURE OnEditChange(oPropertiesList,Property,Value)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="EditChange(Property,Value)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function EditChange(Property,Value)
End Function
</SCRIPT>

Procedure OnComEditChange Variant llProperty Variant llValue
 Forward Send OnComEditChange llProperty llValue
End_Procedure

METHOD OCX_EditChange(Property,Value) CLASS MainDialog
RETURN NIL

void onEvent_EditChange(COM _Property,COMVariant /*variant*/ _Value)
{
}

function EditChange as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Value as A)
end function

function nativeObject_EditChange(Property,Value)
return

Syntax for EditChange event, /COM version (others), on:

The following sample prints the current text of the control's editing box:

Private Sub PropertiesList1_EditChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant)
 Debug.Print Value
End Sub

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print expropertieslist1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 expropertieslist1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!expropertieslist1.Items().EnableItem(expropertieslist1.EventParam(2 /*NewItem*/
)))
 expropertieslist1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void Event(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_EventEvent);
begin
end;

}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oPropertiesList,EventID)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

Syntax for Event event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void IncludeProperty(object
sender,exontrol.EXPROPERTIESLISTLib.Property Property,ref bool Cancel)
{
}

Private Sub IncludeProperty(ByVal sender As System.Object,ByVal Property As
exontrol.EXPROPERTIESLISTLib.Property,ByRef Cancel As Boolean) Handles
IncludeProperty
End Sub

C#

C++

C++
Builder

private void IncludeProperty(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_IncludePropertyEvent e)
{
}

void OnIncludeProperty(LPDISPATCH Property,BOOL FAR* Cancel)
{
}

void __fastcall IncludeProperty(TObject *Sender,Expropertieslistlib_tlb::IProperty
*Property,VARIANT_BOOL * Cancel)

event IncludeProperty (Property as Property, Cancel as Boolean)

Fired when the properties browser is about to include a new property.

Type Description

Property as Property A Property object that contains information about the item
that is going to be included.

Cancel as Boolean A boolean expression that indicates whether the property
is excluded or included.

Use the IncludeProperty event to filter the object properties. The event is fired only if the
FireIncludeProperty property is True. Use the Cancel argument of the event to include or
exclude a property. Use Cancel = True to exclude a property from the list. Use the
HTMLName property to display HTML format in the Name column.

Syntax for IncludeProperty event, /NET version, on:

Syntax for IncludeProperty event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure IncludeProperty(ASender: TObject; Property : IProperty;var Cancel :
WordBool);
begin
end;

procedure IncludeProperty(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_IncludePropertyEvent);
begin
end;

begin event IncludeProperty(oleobject Property,boolean Cancel)
end event IncludeProperty

Private Sub IncludeProperty(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_IncludePropertyEvent) Handles
IncludeProperty
End Sub

Private Sub IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Cancel As Boolean)
End Sub

Private Sub IncludeProperty(ByVal Property As Object,Cancel As Boolean)
End Sub

LPARAMETERS Property,Cancel

PROCEDURE OnIncludeProperty(oPropertiesList,Property,Cancel)
RETURN

Java… <SCRIPT EVENT="IncludeProperty(Property,Cancel)" LANGUAGE="JScript">
</SCRIPT>

Syntax for IncludeProperty event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function IncludeProperty(Property,Cancel)
End Function
</SCRIPT>

Procedure OnComIncludeProperty Variant llProperty Boolean llCancel
 Forward Send OnComIncludeProperty llProperty llCancel
End_Procedure

METHOD OCX_IncludeProperty(Property,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_IncludeProperty(COM _Property,COMVariant /*bool*/ _Cancel)
{
}

function IncludeProperty as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Cancel as L)
end function

function nativeObject_IncludeProperty(Property,Cancel)
return

For instance, if the control's ShowVariables is True, the control includes also the variables
for an IPictureDisp object (hPal variable).

The following sample shows how to exclude variables of IPictureDisp (picture) properties:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 If Not (Property.Object Is Nothing) Then
 Cancel = Property.Variable And TypeOf Property.Object Is IPictureDisp
 End If
End Sub

The following sample includes only the properties of IFontDisp type, and their variables:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As

EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not Property.Type = "Font*"
 If (Cancel) Then
 If Not (Property.Object Is Nothing) Then
 Cancel = Not Property.Variable
 End If
 End If
End Sub

The following sample include only the properties of boolean type, and properties of Object
type:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not Property.Type = "BOOL"
 If (Cancel) Then
 Cancel = Not Property.PropertyObject
 End If
End Sub

The following sample includes all properties contained by "Misc" category:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.CategoryName = "Misc")
End Sub

The following sample shows how to simulate the VB browser (the ShowObjects property is
True):

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Property.PropertyObject
 If (Cancel) Then
 Cancel = Not (Property.Type = "Font*" Or Property.Type = "Picture*")
 End If
End Sub

The following sample shows how to include into your browser only the property pages:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not Property.PropertyPage
End Sub

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 Cancel = Not (Property.Flags And &H40) = &H40
End Sub

The following sample excludes the "hPal" variable of a Picture property:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
 If Property.Variable = True Then
 If Property.Name = "hPal" Then
 Cancel = True
 End If
 End If
End Sub

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a
stemporary integer variable and then comparing shift to a bit mask. The control fires the
EditChange event while user types characters in the property's text box control. Use the
And operator with the shift argument to test whether the condition is greater than 0,
indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyDownEvent) Handles
KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oPropertiesList,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii,short Shift)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short,ByVal
Shift As Short) Handles KeyPress
End Sub

C#

C++

private void KeyPressEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii,short Shift)
{
}

event KeyPress (KeyAscii as Integer, Shift as Integer)

Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the key specified in the
KeyAsci argument is pressed or released.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyPress(TObject *Sender,short * KeyAscii,short Shift)
{
}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint;Shift : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii,integer Shift)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyPressEvent) Handles
KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer,Shift As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyAscii,Shift

PROCEDURE OnKeyPress(oPropertiesList,KeyAscii,Shift)
RETURN

Java… <SCRIPT EVENT="KeyPress(KeyAscii,Shift)" LANGUAGE="JScript">
Syntax for KeyPress event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii,Shift)
End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii Short llShift
 Forward Send OnComKeyPress llKeyAscii llShift
End_Procedure

METHOD OCX_KeyPress(KeyAscii,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii,int _Shift)
{
}

function KeyPress as v (KeyAscii as N,Shift as N)
end function

function nativeObject_KeyPress(KeyAscii,Shift)
return

Use the KeyPress event to handle keyboard events. The following sample shows how to
handle Delete key:

Private Sub PropertiesList1_KeyPress(KeyAscii As Integer, Shift As Integer)
 If KeyAscii = KeyCodeConstants.vbKeyDelete Then
 MsgBox PropertiesList1.SelectedProperty.Name
 End If
End Sub

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

private void KeyUpEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key. The control fires the
KeyDown event when user presses a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oPropertiesList,KeyCode,Shift)
RETURN

Java… <SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Syntax for KeyUp event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void ModalPropertyChange(object
sender,exontrol.EXPROPERTIESLISTLib.Property Property,ref object Value,ref bool
Cancel)
{
}

Private Sub ModalPropertyChange(ByVal sender As System.Object,ByVal Property
As exontrol.EXPROPERTIESLISTLib.Property,ByRef Value As Object,ByRef Cancel As
Boolean) Handles ModalPropertyChange
End Sub

C#

C++

private void ModalPropertyChange(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ModalPropertyChangeEvent e)
{
}

void OnModalPropertyChange(LPDISPATCH Property,VARIANT FAR* Value,BOOL

event ModalPropertyChange (Property as Property, Value as Variant,
Cancel as Boolean)

Fired when the properties browser is about to change a property's value using a modal
dialog.

Type Description
Property as Property A Property object being changed using a modal dialog.

Value as Variant A Variant expression that indicates the newly property's
value.

Cancel as Boolean A boolean expression that indicates whether the control
disables or enables the default implementation.

Use the ModalPropertyChange event to replace the default implementation of modal type
editors (IFontDisp (font) properties, IPictureDisp (picture) properties, object properties
pages, EditPage, EditColorPage, EditButton types). The "Invalid property value" message
is displayed if the Property does not accept the Value. To avoid showing error messages
set the InvalidValueMessage property to an empty string.

Syntax for ModalPropertyChange event, /NET version, on:

Syntax for ModalPropertyChange event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

FAR* Cancel)
{
}

void __fastcall ModalPropertyChange(TObject
*Sender,Expropertieslistlib_tlb::IProperty *Property,Variant * Value,VARIANT_BOOL
* Cancel)
{
}

procedure ModalPropertyChange(ASender: TObject; Property : IProperty;var
Value : OleVariant;var Cancel : WordBool);
begin
end;

procedure ModalPropertyChange(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ModalPropertyChangeEvent);
begin
end;

begin event ModalPropertyChange(oleobject Property,any Value,boolean Cancel)
end event ModalPropertyChange

Private Sub ModalPropertyChange(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ModalPropertyChangeEvent)
Handles ModalPropertyChange
End Sub

Private Sub ModalPropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Value As Variant,Cancel As Boolean)
End Sub

Private Sub ModalPropertyChange(ByVal Property As Object,Value As
Variant,Cancel As Boolean)
End Sub

LPARAMETERS Property,Value,Cancel

Xbas… PROCEDURE OnModalPropertyChange(oPropertiesList,Property,Value,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ModalPropertyChange(Property,Value,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ModalPropertyChange(Property,Value,Cancel)
End Function
</SCRIPT>

Procedure OnComModalPropertyChange Variant llProperty Variant llValue
Boolean llCancel
 Forward Send OnComModalPropertyChange llProperty llValue llCancel
End_Procedure

METHOD OCX_ModalPropertyChange(Property,Value,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_ModalPropertyChange(COM _Property,COMVariant /*variant*/
_Value,COMVariant /*bool*/ _Cancel)
{
}

function ModalPropertyChange as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Value as A,Cancel as L)
end function

function nativeObject_ModalPropertyChange(Property,Value,Cancel)
return

Syntax for ModalPropertyChange event, /COM version (others), on:

The following sample replaces the editor for properties of IPictureDisp (picture) type (the
sample uses Type property of the Property to check the property's type. The sample
doesn't use the statement typeof Property.Object is IPictureDisp because the Object

property might be set to nothing, and so the operator typeof will be unable to determine the
type of the object):

Private Sub PropertiesList1_ModalPropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant, Cancel As Boolean)
 If Property.Type = "Picture*" Then
 MsgBox "Invoke your dialog here, and change the Value parameter, when your dialog
is closed."
 Value = StdFunctions.LoadPicture("c:\winnt\system32\setup.bmp")
 Cancel = True
 End If
End Sub

The following sample shows how to change the default font editor:

Private Sub PropertiesList1_ModalPropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant, Cancel As Boolean)
 If (Property.Type = "Font*") Then
 MsgBox "Use your implementation here"
 Set Value = Me.Font
 Cancel = True
 End If
End Sub

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oPropertiesList,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

private void MouseMoveEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oPropertiesList,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_MouseUpEvent) Handles
MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oPropertiesList,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void PropertyChange(object
sender,exontrol.EXPROPERTIESLISTLib.Property Property,ref object Value)
{
}

Private Sub PropertyChange(ByVal sender As System.Object,ByVal Property As
exontrol.EXPROPERTIESLISTLib.Property,ByRef Value As Object) Handles
PropertyChange
End Sub

C# private void PropertyChange(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangeEvent e)
{
}

event PropertyChange (Property as Property, Value as Variant)

Fired when the properties browser is about to change the property's value.

Type Description

Property as Property
A Property object that was changed using one of the
control's editors, and it is about to change the property's
value.

Value as Variant A Variant expression that specifies the newly value that will
be passed to the property.

The PropertyChange event notifies your application that user is about to change a property.
If you are going to change the Value parameter during this event, make sure that your value
is accepted by the property, else the control will popup an error message: "Invalid property
value". To avoid showing error messages by the control when changing properties, set the
InvalidValueMessage property to empty message. The PropertyChange event is called,
even if the user canceled the default implementation in ModalPropertyChange event. The
control fires the EditChange event when user types characters in the property's text box
control. The PropertyChanged event is fired after changing the value of the property. Use
the Value property to retrieve the property's value. Use the Name property to retrieve the
name of the property. Use the ID property to identify a property by its identifier.

Syntax for PropertyChange event, /NET version, on:

Syntax for PropertyChange event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnPropertyChange(LPDISPATCH Property,VARIANT FAR* Value)
{
}

void __fastcall PropertyChange(TObject *Sender,Expropertieslistlib_tlb::IProperty
*Property,Variant * Value)
{
}

procedure PropertyChange(ASender: TObject; Property : IProperty;var Value :
OleVariant);
begin
end;

procedure PropertyChange(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangeEvent);
begin
end;

begin event PropertyChange(oleobject Property,any Value)
end event PropertyChange

Private Sub PropertyChange(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangeEvent) Handles
PropertyChange
End Sub

Private Sub PropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Value As Variant)
End Sub

Private Sub PropertyChange(ByVal Property As Object,Value As Variant)
End Sub

LPARAMETERS Property,Value

PROCEDURE OnPropertyChange(oPropertiesList,Property,Value)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="PropertyChange(Property,Value)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function PropertyChange(Property,Value)
End Function
</SCRIPT>

Procedure OnComPropertyChange Variant llProperty Variant llValue
 Forward Send OnComPropertyChange llProperty llValue
End_Procedure

METHOD OCX_PropertyChange(Property,Value) CLASS MainDialog
RETURN NIL

void onEvent_PropertyChange(COM _Property,COMVariant /*variant*/ _Value)
{
}

function PropertyChange as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Value as A)
end function

function nativeObject_PropertyChange(Property,Value)
return

Syntax for PropertyChange event, /COM version (others), on:

The following sample prints the property's name and the property's newly value when user
changes the property:

Private Sub PropertiesList1_PropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant)
 Debug.Print "The """ & Property.Name & """'s value is changed. The newly value is " &
Value

End Sub

C#

VB

private void PropertyChanged(object
sender,exontrol.EXPROPERTIESLISTLib.Property Property)
{
}

Private Sub PropertyChanged(ByVal sender As System.Object,ByVal Property As
exontrol.EXPROPERTIESLISTLib.Property) Handles PropertyChanged
End Sub

C#

C++

C++
Builder

Delphi

private void PropertyChanged(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangedEvent e)
{
}

void OnPropertyChanged(LPDISPATCH Property)
{
}

void __fastcall PropertyChanged(TObject *Sender,Expropertieslistlib_tlb::IProperty
*Property)
{
}

procedure PropertyChanged(ASender: TObject; Property : IProperty);

event PropertyChanged (Property as Property)
Occurs after the property's value is changed.

Type Description
Property as Property A Property object being changed

The PropertyChanged event notifies your application that the user changes the value of the
property. Use the Value property to retrieve the property's value. Use the Name property to
retrieve the name of the property. Use the ID property to identify a property by its identifier.
The PropertyChange event is fired before changing the value of the property.

Syntax for PropertyChanged event, /NET version, on:

Syntax for PropertyChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure PropertyChanged(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangedEvent);
begin
end;

begin event PropertyChanged(oleobject Property)
end event PropertyChanged

Private Sub PropertyChanged(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangedEvent) Handles
PropertyChanged
End Sub

Private Sub PropertyChanged(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty)
End Sub

Private Sub PropertyChanged(ByVal Property As Object)
End Sub

LPARAMETERS Property

PROCEDURE OnPropertyChanged(oPropertiesList,Property)
RETURN

Java…

VBSc…

<SCRIPT EVENT="PropertyChanged(Property)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function PropertyChanged(Property)
End Function
</SCRIPT>

Syntax for PropertyChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComPropertyChanged Variant llProperty
 Forward Send OnComPropertyChanged llProperty
End_Procedure

METHOD OCX_PropertyChanged(Property) CLASS MainDialog
RETURN NIL

void onEvent_PropertyChanged(COM _Property)
{
}

function PropertyChanged as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty)
end function

function nativeObject_PropertyChanged(Property)
return

C#

VB

private void ScrollButtonClick(object
sender,exontrol.EXPROPERTIESLISTLib.ScrollBarEnum
ScrollBar,exontrol.EXPROPERTIESLISTLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXPROPERTIESLISTLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXPROPERTIESLISTLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C#

C++

private void ScrollButtonClick(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent e)
{
}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scrollbar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollPartVisible property to add
or remove buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to
specify enable or disable parts in the control's scrollbar. Use the ScrolPartCaption property
to specify the caption of the scroll's part. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall ScrollButtonClick(TObject
*Sender,Expropertieslistlib_tlb::ScrollBarEnum
ScrollBar,Expropertieslistlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXPROPERTIESLISTLibCtl.ScrollBarEnum,ByVal ScrollPart As
EXPROPERTIESLISTLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oPropertiesList,ScrollBar,ScrollPart)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.PropertiesList.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.PropertiesList.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With PropertiesList1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

Private Sub PropertiesList1_ScrollButtonClick(ByVal ScrollPart As
EXPROPERTIESLISTLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxPropertiesList1
 .BeginUpdate()
 .set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part Or
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxPropertiesList1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent) Handles
AxPropertiesList1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axPropertiesList1.BeginUpdate();
axPropertiesList1.set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part |
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, true);
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part , "1");

axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, "2");
axPropertiesList1.EndUpdate();

private void axPropertiesList1_ScrollButtonClick(object sender,
AxEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_propertiesList.BeginUpdate();
m_propertiesList.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_propertiesList.EndUpdate();

void OnScrollButtonClickPropertiesList1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.PropertiesList1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

C#

VB

private void SelChange(object sender)
{
}

Private Sub SelChange(ByVal sender As System.Object) Handles SelChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void SelChange(object sender, EventArgs e)
{
}

void OnSelChange()
{
}

void __fastcall SelChange(TObject *Sender)
{
}

procedure SelChange(ASender: TObject;);
begin
end;

procedure SelChange(sender: System.Object; e: System.EventArgs);
begin

event SelChange ()

Fired when the selected property is changed.

Type Description

The SelChange event notifies your application that user changes the selection. The
SelChange event is not called when the control browses a new object using the Select
method. The SelectedProperty property gets the selected property. The Name property
gets the property's name. The Value property gets the property's value.

Syntax for SelChange event, /NET version, on:

Syntax for SelChange event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

begin event SelChange()
end event SelChange

Private Sub SelChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelChange
End Sub

Private Sub SelChange()
End Sub

Private Sub SelChange()
End Sub

LPARAMETERS nop

PROCEDURE OnSelChange(oPropertiesList)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="SelChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelChange()
End Function
</SCRIPT>

Procedure OnComSelChange
 Forward Send OnComSelChange
End_Procedure

METHOD OCX_SelChange() CLASS MainDialog
RETURN NIL

Syntax for SelChange event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_SelChange()
{
}

function SelChange as v ()
end function

function nativeObject_SelChange()
return

The following sample prints the name and the type of the selected property (for instance,
the sample is useful to find out the type of the property selected, when you need to include
or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()
 Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	PropertiesList
	Add method
	AllowDrop property
	AllowDuplicateEntries property
	AllowMultipleValuesOnEnum property
	AllowSpin property
	AllowSpy property
	AllowSpyOn method
	AllowTooltip property
	AnchorFromPoint property (readonly)
	AttachTemplate method
	AutoDrag property
	AutoIndent property
	BackColor property
	BackColorAlternate property
	BackColorCategories property
	BackColorDescription property
	BackColorHeader property
	Background property
	BeginUpdate method
	BorderStyle property
	CaptionMessageBox property
	Clear method
	ColumnAutoResize property
	ColumnCaption property
	ColumnsAllowSizing property
	ColumnWidth property
	Copy method
	CopyTo property (readonly)
	Count property (readonly)
	DefaultCategory property
	DefaultItemHeight property
	DescriptionHeight property
	DescriptionVisible property
	DisplayBoolAs property
	DisplayColorAs property
	EditOnKey property
	EditOnSelect property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	ExpandAll method
	ExpandItem property
	ExpandOnSearch property
	FilterBarFont property
	FilterBarPrompt property
	FilterBarPromptPattern property
	FilterBarPromptVisible property
	FireIncludeProperty property
	Font property
	ForeColor property
	ForeColorCategories property
	ForeColorDescription property
	ForeColorHeader property
	FormatAnchor property
	GridLineColor property
	HasButtons property
	HasButtonsCustom property
	HasGridLines property
	HasLines property
	HeaderAppearance property
	HeaderHeight property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	IncrementalSearch property
	Indent property
	IndexItemsCollection property
	Interfaces property (readonly)
	InvalidValueMessage property
	Item property (readonly)
	Layout property
	LinkCategories property
	MarkCategories property
	MarkLineColor property
	NameItemsCollection property
	Option property
	Property property (readonly)
	ReadOnly property
	Refresh method
	Remove method
	ReplaceIcon method
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SelBackColor property
	Select method
	SelectedObject property
	SelectedProperty property
	SelForeColor property
	ShowCategories property
	ShowHidden property
	ShowItemsCollection property
	ShowMultipleParams property
	ShowNonBrowsable property
	ShowObjects property
	ShowPropertyPages property
	ShowReadOnly property
	ShowRestricted property
	ShowToolTip method
	ShowVariables property
	Sort method
	SortObjects property
	SortOnClick property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	ToString property (readonly)
	UseVisualTheme property
	Version property
	VisualAppearance property (readonly)
	VisualDesign property

	Property
	AddValue method
	BackColor property
	Bold property
	Caption property
	Category property (readonly)
	CategoryName property (readonly)
	CellBackColor property
	CellBackgroundExt property
	CellBackgroundExtValue property
	CellForeColor property
	Clear method
	Description property
	DisplayCaption property (readonly)
	DisplayCheck property
	DisplayColor property
	DisplayDate property
	DisplayFile property
	DisplayFolder property
	DisplaySlider property
	DisplayValue property (readonly)
	DropDownItems property
	EditType property
	Enabled property
	Flags property (readonly)
	ForeColor property
	Height property
	HTMLName property
	HTMLValue property
	ID property
	ItemCollection property (readonly)
	Locked property
	Mask property
	MaskChar property
	Name property (readonly)
	Numeric property
	NumericFloat property
	Object property (readonly)
	Option property
	Parameter property (readonly)
	Parent property (readonly)
	Position property
	PropertyObject property (readonly)
	PropertyPage property (readonly)
	ReadOnly property (readonly)
	RemoveValue method
	Selectable property
	SingleLine property
	SliderMax property
	SliderMin property
	SliderStep property
	SliderTickFrequency property
	SliderWidth property
	Sortable property
	SortItems method
	SpinStep property
	ToolTip property
	Type property (readonly)
	UserData property
	Value property
	Variable property (readonly)

	ExPropertiesList events
	AnchorClick event
	Click event
	DblClick event
	EditChange event
	Event event
	IncludeProperty event
	KeyDown event
	KeyPress event
	KeyUp event
	ModalPropertyChange event
	MouseDown event
	MouseMove event
	MouseUp event
	PropertyChange event
	PropertyChanged event
	ScrollButtonClick event
	SelChange event

