|
ExPropertiesList

The ExPropertiesList/ExPropertiesGrid control (similar to the control used to manipulate
properties in Visual Studio) provides an efficient, intuitive and visually compact way to
handle data input with minimal coding and user interface design. The ExPropertiesList
component is easy to use and integrate into your application. The ExPropertiesList
component lets the user changes its visual appearance using skins, each one providing an
additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control.

Features include:

e Print and Print Preview support.

o Skinnable Interface support (ability to apply a skin to any background part)

e Ability to browse any object that selected object contains, including COM or/and .NET
objects.

e Ability to insert multiple COM or/and .NET objects in the same browser.

o Ability to add custom properties.

¢ Ability to include properties with multiple parameters, of any type (predefined type or
not).

e Built-in HTML support, including icons, pictures, font and colors.

e Filter-Prompt support, allows you to filter the properties as you type while the filter

bar is always visible on the bottom part of the list area.

Properties of Color type (support for EBN skin objects)

Tooltip Support.

Hierarchical layout

Browse collections and their items.

Browse property pages.

Browse object categories.

Incremental search support, including expanding the object properties for looking

inside.

Ability to filter properties.

e |t supports virtually all common data types including Variant, Byte, Boolean, (Long)
Integer, Single, Double, Currency, Font, Icon, Picture, Date and more

e Built-in editors includes font, calendar, boolean combo, enumeration combo, colors,
spin, slider, masked edit control and more

The control includes the ability to browse any COM object that exposes an implementation
of IDispatch interface. For instance, any VB class provides an implementation for IDispatch
interface, so the ExPropertiesList is able to browse your VB objects. Another nice feature
that control provides is browsing collections and their items. If you have a collection, the
ExPropertiesList can browse their items! More than that the ExPropertiesList control

expands your objects. For instance, If your object provides a property that exports another
object, the ExPropertiesList control is able to browse the exported object.

All that you have to do to see it running, is to insert an instance of ExPropertiesList control
to your form, and then to select the object that you want to browse, by calling Select
method. That's all! If it is too much try this: PropertiesList1.Select PropertiesList1

Marmne AW alue -
Column&utoResize True
ColumnstlowSiz... True
Count 33
Dt 10427 (2006 -]
DefaulCated [rm october 2006 &)
DetfaulttemH SiM TiW T F. S
Description RO R

g 910 11 12 13 14
DizplayCaolon
: 15 16 17 18 19 20 M
EditOnk ey

Ftonsaed 22 23 24 25 26[27] 28
29305 0 5

Des=scription

Enabled
Firainciucer S R
=l Font {_}
Charzet
talic Falze L
Date

Specifies the current date.

Z ExPropertiesList is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.
Here are few hints what to do when you're stuck on your programming:

e Check out the samples - they are here to provide some quick info on how things should
be done

e Check out the how-to questions using the eXHelper tool

e Check out the help - includes documentation for each method, property or event

e Check out if you have the latest version, and if you don't have it send an update
request here.

e Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum

Specifies the alignment of the object in the source.

LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.

constants AppearanceEnum

The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar. See also the HeaderAppearance property.

None2 0 No border

Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum

The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on.

e The flag that ends on ...OnShortTouch indicates the action the control does when the
user short touches the screen

e The flag that ends on ...OnRight indicates the action the control does when the user
right clicks the control.

e The flag that ends on ...OnLongTouch indicates the action the control does when the
user long touches the screen

The AutoDragEnum type supports the following values:

exAutoDragNone 0 AutoDrag is disabled.

Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends

exAutoDragCopy 8 on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopylmage as an
image.

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other

exAutoDragCopyText 9 OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here x| to watch a movie on how
exAutoDragCopyText works.

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other

OLE-Automation compliant. The drag and drop
exAutoDragCopylmage 10

https://www.youtube.com/watch?v=4uA7ZI0W3Sk

operation can start anywhere

Click here = to watch a movie on how
exAutoDragCopylmage works.

Drag and drop a snap shot of the current
component. This option could be used to drag and

exAutoDragCopySnapShot 11 drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature

exAutoDragScroll 16 is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content.

Click here = to watch a movie on how
exAutoDragScroll works.

Drag and drop the selected objects to a target

exAutoDragCopyOnShortTouc2048 application, and paste them as image or text.

Drag and drop the selected objects to a target

exAutoDragCopy TextOnShorte80R - -tion, and paste them as text only.

exAutoDragCopylmageOnSh oEtSBOchDrag an.d drop the selected obj_ects to a target
application, and paste them as image only.

eXAUtODragCOpySnapShotOn%.ﬁTo[arc?-? and drop a snap shot of the current
component.

The component is scrolled by clicking the object and

exAutoDragScrollOnShortTouch096 : "
dragging to a new position.

Qrag and drop the selected objects to a target

exAutoDragCopyOnRight 524288 i ation, and paste them as image or text.

Prag and drop the selected objects to a target

exAutoDragCopyTextOnRight 58982 application, and paste them as text only.

6)rag and drop the selected objects to a target

exAutoDragCopylmageOnRigH#5536 application, and paste them as image only.

(l):)rag and drop a snap shot of the current

exAutoDragCopySnapShotOnRig®89 Somponent.

https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

_ The component is scrolled by clicking the object and
exAutoDragScrollOnRight 10485E¢agging to a new position.

exAutoDragCopyOnLongTouchl 3 4211;);51? an.d drop the selected objgcts to a target
application, and paste them as image or text.

Bﬁg and drop the selected objects to a target

exAutoDragCopy TextOnLongTASE9IRE - ion, and paste them as text only.

Ii?iHP and drop the selected objects to a target
exAutoDragCopylmageOnl.ond {8(?cation, and paste them as image only.

appli

eXAUtODraQCODySnapShotOnl;lca@m@éﬁngpssgr]?mp a snap shot of the current

g’ ﬂ%component is scrolled by clicking the object and

exAutoDragScrollOnLongToucl2684 3 : "
dragging to a new position.

constants AutoSearchEnum

Specifies the kind of searching while user types characters within a column. Use the
IncrementalSearch property to allow 'start with' incremental search or 'contains' incremental
search feature in the control. For instance, if the IncrementalSearch property is exContains
+ exMoveOnTop, the items are re-arranged so, the first items contain the typed characters,
while the rest stay unchanged. Use the ExpandOnSearch property to automatically expand
parent items as user types characters. The FilterBarPromptVisible property specifies
whether the control displays the control's filter prompt. The AutoSearchEnum type supports
the following values.

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the

exStartWith 0 typed characters. This option can be combined with
the exMoveOnTop flag, which indicates that the
control filters for items that start with typed
characters.

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the

exContains 1 typed characters. This option can be combined with
the exMoveOnTop flag, which indicates that the
control filters for items that contains typed
characters.

If this flag is present, the items being found are
displayed on the top of the list. This flag can be
combined with the exStartWith or exContains. The
exMoveOnTop option filters for properties as you
type (EilterBarPromptVisible property should be
True, else it has no effect).

The first screen shot shows the properties before
typing anything, while the second screen shot
shows the item being re-arranged on top once the
user typed "Allow" (IncrementalSearch property is
exContains + exMoveOnTop):

Mame Value
AdjustlevelsToBaze Falze | -
AllowCreateBar exCreateBarAuto i =
AllowinsideZoom True B
AllowLinkBars True
AllowMNonworkingBars Falze

Allow Overview Zoom
AllowResizeChart
Allow ResizelnsideZoom
AllowSelectDate

exZoomOnRClick
exhllowResizeChartHeader ex...
False

exSelectiToggle exSelectZone

AllowSelectObjects exSelectBarsOnly exSelectSin. .
AllowUndoRedo False

AMPM AN PR

BackColor |:| &HB00000:058

BackColorLevelHeader

[] aHaoo00004a

exMoveOnTop 256 # Bars
BarsAllow Sizing True
CanRedo Falze
CanUndo Falze
Start Filter... -
Chart
Gets the chart object.
MName £ Value
AllewChartScrollHeader True
AllewChartScroliPage Falze

[=]

AllowlinzsideZoom True
AllowlLinkBars True
AllewNonworkingBars False

Allow OverviewZoom
AllowResizeChart
AllowResizelnsideZoom
AllowSelectDate
AllowSelectObjects
AllowUndoRedo

exZoomOnRClick
exhllowResizeChartHeader exA. .
False

exSeleciToggle exSelectZone
exSelectBarsOnly exSelectSingl...
False

- BarsallowSizing True
ColumnsAlow Sizing Falze
63|
o
temsAlow Sizing exMoSizing
allow
Chart.AllowCreateBar

Allows creating new bars using the mouse.

In other words, if the exMoveOnTop flag is included
the control filters the entries/properties that match
the typed characters only.

constants BackgroundExtPropertyfEnum

The BackgroundExtPropertyEnum type specifies the Ul properties of the part of the EBN
you can access/change at runtime. The CellBackgroundExt property specifies the EBN
String format to be displayed on the cell's background. The CellBackgroundExtValue
property access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Specifies the part's ToString representation. The
CellBackgroundExt property specifies the EBN
String format to be displayed on the object's
background. The Exontrol's eXButton WYSWYG
Builder helps you to generate or view the EBN
String Format, in the To String field.

Sample:

"client(right[18]
(bottom[18, pattern=6,frame=0,framethick]), bottom[4
(bottom[18, pattern=6,frame=0,framethick])"

generates the following layout:

To Sting; ||:Iient[right[1 Blbaottam[18, patterm=0=006.frame=R GE [0,0,0).framethick]]Lbo

exToStringExt 0

7 v

where it is applied to an object it looks as follows:

(Color)

(Font)

(Template)

]
=

Vi

Wisual Design)

o

3

AllowDrop

(String expression, read-only).

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255

https://exontrol.com/exbutton.jsp

exBackColorExt

indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

e 0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height” (as string) where
(left,top) margin indicates the position where
the part starts, and the (width, height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
SO when the parent is resized the client is
resized accordingly. The "50%-8,560%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.

o 1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates
the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the

exClientExt

Size of the object is always 16 pixels.

o 2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

o 3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.

e 4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

e 5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
Size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,

1 (left), the object is anchored to left side of
the parent,

2 (right), the object is anchored to right side
of the parent object,

3 (client), the object takes the full available
area of the parent,

4 (top), the object is anchored to the top side
of the parent object,

5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold

<i> ... </i> displays the text in italics

<u> ... </u> underlines the text

<s> ... </s> Strike-through text

<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

 ... displays portions

about:blank

of text with a different font and/or different
size. For instance, the "<font

Tahoma;12>bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.

<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.

<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified [EGROIOBNE color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.

<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.

<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.

<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text

<c> centers the text

 forces a line-break
number[:width] inserts an icon

exTextExt

inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.

key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.

& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold

<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript”
displays the text such as: Text with gybscript

The "Text with <off -6>superscript"

displays the text such as: Text with Subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, O if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:
. | i

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

outlined

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For

instance the "<sha>shadow</sha>
" generates the following picture:

shadow

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

eutlinefantizaliasing

(String expression)

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This

exTextExtWordWrap 5 property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

e 0O, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the lefft.

o 1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.

o 2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.

e 16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and

exTextExtAlignment 6 horizontally aligned on the left.

exPatternExt

e 17, (hexa Ox11, Middle-Center), Textis
vertically aligned in the middle, and
horizontally aligned at the center.

o 18, (hexa Ox12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.

o 32, (hexa 0x20, Bottom-Left), Textis
vertically aligned at the bottom, and
horizontally aligned on the left.

e 33, (hexa 0x21, Bottom-Center), Textis
vertically aligned at the bottom, and
horizontally aligned at the center.

o 34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

e 0, (hexa 0x000, Empty), The pattern is not
visible

o 1, (hexa 0x001, Solid),
I

o 2, (hexa 0x002, Dot),

5, (hexa 0x005, FDiagonal
e
e 6, (hexa 0x006, BDiagonal),
@ @ OO @O @@
e 7, (hexa 0x007, DiagCross),

exPatternColorExt

exFrameColorExt

exFrameThickExt

10

e 9, (hexa 0x009, Horizontal),

e 10, (hexa Ox00A, Cross),

e 11, (hexa 0x00B, Brick),

o 12, (hexa 0x00C, Yard),

o 256, (hexa 0x100, Frame),
| . The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

e 768, (hexa 0x300, FrameThick),
I l. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not O (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

Specifies an extra-data associated with the object.
exUserDataExt 11

(Variant expression)

constants BackgroundPartEnum

The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar

All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar

Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.

Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.

Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.

Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Specifies the background color for the drop down

exHeaderFilterBarButton 0 filter bar button.

exFooterFilterBarButton 1 Specnﬁgs the packground color for the closing
button in the filter bar.

exDropDownButtonUp 4 Specifies the _\/l_sual appearance for the drop down
button, when it is up.

exDropDownButtonDown 5 Specifies the _\/l_sual appearance for the drop down
button, when it is down.

exButtonUp 6 Sp_emﬁes the_ visual appearance for the button
inside the editor, when it is up.

exButtonDown v Specifies the visual appearance for the button

inside the editor, when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a

exDate TodayUp

exDateTodayDown

exDateScrollThumb

exDateScrollRange

exDateSeparatorBar

exDateSelect
exSliderRange

exSliderThumb

exSplitDesc

exSpinUpButtonUp

exSpinUpButtonDown

exSpinDownButtonUp

exSpinDownButtonDown

exCursorHoverColumn

exToolTipAppearance

10

11

12

13

14

15

16

18

22

23

24

25

32

64

calendar control.

Specifies the visual appearance for the today button
in a calendar control, when it is up.

Specifies the visual appearance for the today button
in a calendar control, when it is down.

Specifies the visual appearance for the scrolling
thumb in a calendar control.

Specifies the visual appearance for the scrolling
range in a calendar control.

Specifies the visual appearance for the separator
bar in a calendar control.

Specifies the visual appearance for the selected
date in a calendar control.

Specifies the visual appearance for the slider's bar.

Specifies the visual appearance for the thumb of the
slider.

Specifies the visual appearance for the description's
splitter.

Specifies the visual appearance for the up spin
button when it is not pressed.

Specifies the visual appearance for the up spin
button when it is pressed.

Specifies the visual appearance for the down spin
button when it is not pressed.

Specifies the visual appearance for the down spin
button when it is pressed.

Specifies the visual appearance for the column
when the cursor hovers the column.

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTipWidth property to
specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the
ShowToolTip method to display a custom tooltip.

exToolTipBackColor
exToolTipForeColor

exCheckBoxStateO

exCheckBoxState1

exCheckBoxState2

exSpyWidget

exTreeLinesColor

exVSUp
exVSUpP
exVVSUpD
exVSUpH
exVSThumb
exVSThumbP
exVSThumbD

exVSThumbH

exVSDown

exVSDownP
exVSDownD
exVSDownH

exVSLower

exVSLowerP

exVSLowerD

exVSLowerH

65
66

70

71

72

92

186

256
257
258
259
260
261
262

263

264
265
266
267

268

269

270

271

Specifies the tooltip's background color.
Specifies the tooltip's foreground color.

Specifies the visual appearance for the check box in
0 state (unchecked).

Specifies the visual appearance for the check box in
1 state (checked).

Specifies the visual appearance for the check box in
2 state (partial, not used).

Specifies the visual appearance of the widget to
highlight the object from the cursor while spying.

exTreeLinesColor. Specifies the color to show the
tree-lines (connecting lines from the parent to the
children)

The up button in normal state.

The up button when it is pressed.

The up button when it is disabled.

The up button when the cursor hovers it.

The thumb part (exThumbPart) in normal state.
The thumb part (exThumbPart) when it is pressed.
The thumb part (exThumbPart) when it is disabled.
The thumb part (exThumbPart) when cursor hovers
it.

The down button in normal state.

The down button when it is pressed.

The down button when it is disabled.

The down button when the cursor hovers it.

The lower part (exLowerBackPart) in normal
state.

The lower part (exLowerBackPart) when it is
pressed.

The lower part (exLowerBackPart) when it is
disabled.

The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper

exVSUpperP

exVSUpperD

exVSUpperH

exVVSBack

exVVSBackP

exVVSBackD

exVSBackH

exHSLeft
exHSLeftP
exHSLeftD
exHSLeftH
exHSThumb
exHSThumbP
exHSThumbD

exHSThumbH

exHSRight

exHSRightP
exHSRightD
exHSRightH
exHSLower

exHSLowerP

exHSLowerD

272

273

274

275

276

277

278

279

384
385
386
387
388
389
390

391

392
393
394
395
396

397

398

The upper part (exUpperBackPart) in normal
state.

The upper part (exUpperBackPart) when it is
pressed.

The upper part (exUpperBackPart) when it is
disabled.

The upper part (exUpperBackPart) when the
cursor hovers it.

The background part (exLowerBackPart and
exUpperBackPart) in normal state.

The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

The left button in normal state.

The left button when it is pressed.

The left button when it is disabled.

The left button when the cursor hovers it.

The thumb part (exThumbPart) in normal state.

The thumb part (exThumbPart) when it is pressed.

The thumb part (exThumbPart) when it is disabled.
)

The thumb part (exThumbPart) when the cursor
hovers it.

The right button in normal state.

The right button when it is pressed.

The right button when it is disabled.

The right button when the cursor hovers it.
The lower part (exLowerBackPart) in normal state.

The lower part (exLowerBackPart) when it is
pressed.

The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH
exHSUpper

exHSUpperP

exHSUpperD

exHSUpperH

exHSBack

exHSBackP

exHSBackD

exHSBackH

exSBtn

exSBtnP

exSBtnD

exSBtnH

exScrollHoverAll

399

400

401

402

403

404

405

406

407

324

325

326

327

500

The lower part (exLowerBackPart) when the cursor
hovers it.

The upper part (exUpperBackPart) in normal state.

The upper part (exUpperBackPart) when it is
pressed.

The upper part (exUpperBackPart) when it is
disabled.

The upper part (exUpperBackPart) when the cursor
hovers it.

The background part (exLowerBackPart and
exUpperBackPart) in normal state.

The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

Specifies the visual appearance of the control's size

exScrollSizeGrip o1 grip when both scrollbars are shown.

constants BorderStyleEnum

The BorderStyleEnum enumeration defines the control's border style. Use the BorderStyle
property of to change the control's border.

None 0 No border. The control has no border.
Fixed 1 Fixed. The control has a fixed size border.

constants DisplayBoolEnum

The DisplayBoolEnum type specifies the way the boolean properties displays the values.
The DisplayBoolAs property specifies how the control displays the boolean properties. The
DisplayBoolEnum type supports the following values:

exBoolEnum 0 Displays the property of boolean type as enum.

Displays the property of boolean type as a check-

exBoolCheck
box.

constants DisplayCaptionEnum

The DisplayCaptionEnum type specifies the type of captions that the DisplayCaption
property returns. The DisplayCaptionEnum type supports the following values:

exDisplayName
exDisplayValue
exDisplayDescription
exDisplayTemplate

w N - O

Gets the caption as displayed on Name column.
Gets the value as displayed on Value column.
Gets the value as displayed on Description panel.
(Reserved) Gets the value in Template format.

constants DisplayColorEnum

The DisplayColorEnum type defines how the properties of color type are displayed. Use
the DisplayColorEnum property to specify how the properties of color type are displayed.

Displays the property of color type as hexa like
exDefault O &HOOFF0000&

Displays the property of color type using RGB
ARG 1 Jalues, like RGB(255,0,0)

constants EditTypeEnum

Here's the list of supported built- in editors. Use the Add method to insert a new property to
the browser. Use the Value property to assign a value to a property. Use the
PropertyChange event to notify your application that the property changes its value. Use the
Select method to browse for a COM object. Use the Property.Option property to specify
different settings for the current editor. Use the Option property to customize the strings or
behavior for different editors. Use the ModalPropertyChange event to notify your application
that the user clicks the cell's button. The control supports the following type of editors:

Adds a button to the property, that's always visible
no matter if the property is focused or selected.
The EditButton or EditPage shows the button ONLY
if the property is selected. The
ModalPropertyChange(Property, Value, Cancel)
event is fired once the user clicks the property's
button (EditTypeEnum.Button type). The
PropertyChange(Property) event occurs if the
ModalPropertyChange event is not canceled
(Cancel property is false) and the Value is changed.

Button -3

Adds a divider property, that merges the Name and
Value columns, and displays the Name, HTMLName
property on the center. The Selectable property

Divider -2 specifies whether the user can select the property
at runtime. The Sortable property specifies whether
the property changes its position once the user
sorts a column.

The property is read only (has no editor assigned

Label -1) and it looks not grayed.

The property is read only (has no editor assigned
ReadOnly 0) and it looks grayed. Use the Locked property to
lock a property from being changed by the user.

Uses a standard text box control to edit the
property's value. Use the Numeric property to filter
numbers of integer type. Use The NumericFloat
property to filter for numbers of double type. Use
the Option(exEditSingleLine) property on False to
specify a multiple-lines editor.

Edit 1

Provides a drop down portion that includes
standard, system, or EBN colors. Use the

https://exontrol.com/ebn.jsp

EditColor

EditFont

EditFontName

EditPicture

EditPage

EditBoolean

EditEnum

EditDate

EditPassword

EditDropDown

10

11

EditColorPage type to provide your own color
editor. The EBN colors are shown only if the
browsed COM object exposes a VisualAppearance
property like shown in the following movie.

Changing the property of font types. Use the
ModalPropertyChange event to notify your
application that the user clicks the cell's button. The
default implementation calls the common font select
dialog. Use the Option property to specify different
settings for the current editor.

Displays a list of fonts into your system. Provides a
drop down list that includes the name of the fonts
installed on your computer.

Displays the picture contained by the property.
Provides a small rectangle where the picture is
rendered. Use the ModalPropertyChange event to
notify your application that the user clicks the cell's
button. Use the Option property to specify different
settings for the current editor.

User can open a custom page. Use the
ModalPropertyChange event to notify your
application that the user clicks the cell's button.

Displays a list with boolean values: True and False.

Presents a list of predefined values. The property
accepts only one of the predefined values. The
AllowMultipleValuesOnEnum property specifies
whether the drop down element displays a
checkbox for flags in the enumeration lists that may
be a bit combination.

Changing the properties of DATE type. Provides a
drop down calendar control. Use the Option
property to specify different settings for the current
editor.

Password editor. Use the EditPassword type to
mask input characters with ™' character, and to
disable copy and paste inside the edit control.

Presents a list of values. The property accepts also
values that are not in the list.

https://exontrol.com/images/ebn/expropertieslist-EBN-browse.htm

EditObject

EditColorPage

EditCheck

EditButton

EditSlider

EditFile

EditFolder

12

13

14

15

16

17

18

Specifies that the property is an object property,
and the properties of the object are inserted. Use
the EditObject to insert multiple COM objects to the
same browser.

Displays cells of color type and add a button to let
user changes the color using custom color dialog.
Use the ModalPropertyChange event to notify your
application that the user clicks the cell's button.

Adds a check box entry for properties of boolean
type.
Adds a button and a text box to a cell. Use the

ModalPropertyChange event to notify your
application that the user clicks the cell's button.

Adds a slider control to the property. The
SliderWidth property specify the width of the slider
in the property. The SliderMin and SliderMax
properties indicate the range of the values used by
the slider. The SliderStep property determines the
proposed change when user moves the slider. The
SliderTickFrequency property specifies the
frequency to display ticks on a slider control.

Adds a button to select a file using the common
open file dialog. Use the Option property to specify
different settings for the current editor.

Adds a button to select a folder.

Edits a property of an object. The property can
have multiple parameters of any type. The
ShowMultipleParams property should be on True, if
the property contains multiple parameters. The
property may include several child items, if one or
more parameters of the property are of a predefine
type such as Boolean or enumeration, that lists all
possible combinations. For instance, the IltemBar
property (ltems.ltemBar(ltem as HITEM, Key as
Variant, Property as ltemBarPropertyEnum) as
Variant) of the eXG2antt contains 3 parameters,
the first two of Variant type, and the last parameter
of it, of Enumeration type. The PropertiesList.Add
"ltemBar", Array(G2antt1.ltems, i, k), EditProperty
adds a new property ItemBar to the browser and

https://exontrol.com/content/products/exg2antt/help/Items_ItemBar.htm

EditProperty

19

list all available options as follows:

exBarAlignPercentCaption 2

exBarBackColor . &HO00000008
exBarCanBelinked 7
exBarCanEndLink v

| exBarCantiove]
exBarCanMoveToAnother v" =
exBarCanResize]
exBarCanResizePercent 7
exBarCanStartLink _J
exBarCaption
exBarColor [l z+oooooo00&
exBarData

exBarDuration
exBarDurationPrev

thoch

exBarEffort 1
exBarEnd 10372008
exBarEndPrev 10632006
exBarExtraCaption

exBarExtraCaptionHAlign

exBarExtraCaptionHO ffzet
exBarExtraCaption'Align
exBarExtraCaption\VOffzet

exBarForeColor Il &Hoooo0000&
exBarHAlignCaption 1
exBarkKeepWorkingCount '

- s (

ltemBar(exBarCanMove)
exBarCanMove. Specifies whether the user can move the bar.

As you can see the exBarCanMove option is a value
of ltemBarPropertyEnum as well as all child items
of the ItemBar property. In other words, the
EditProperty may add a single row for a property if
the property has no parameters, or have no
predefined parameters, or several rows, if the
property returns another object, or have several
parameters of a predefined type such as Boolean
or Enumeration.

The following VB sample lists the ItemBar property
(ltems.ltemBar(ltem as HITEM, Key as Variant,
Property as ltemBarPropertyEnum) as Variant)
property, for the bar from the focused item:

With PropertiesList1
Add "ltemBar", Array(G2antt1.ltems,
G2antt1.ltems.Focusltem,

https://exontrol.com/content/products/exg2antt/help/temBarPropertyEnum_enum.htm
https://exontrol.com/content/products/exg2antt/help/Items_ItemBar.htm

G2antt1.Iltems.FirstlitemBar(G2antt1.ltems.Focuslten
EditProperty
End With

EditPropertyWildcard 20 Reserved.
EditPropertyWildcardParent 21 Reserved.

constants ExpandButtonEnum

Defines how the control displays the expanding/collapsing buttons.

exNoButtons 0 The control displays no expand buttons.

A plus sign is displayed for collapsed items, and a

exPlus - minus sign for expanded items. (= =)

exArrow 1 The control uses icons to display the expand
buttons.(»)

exCircle 5 The control uses icons to display the expand
buttons. (& o)

exWPIUs 3 The control uses icons to display the expand
buttons. (+ =)

exCustom 4 The HasButtonsCustom property specifies the index

of icons being used for +/- signs on parent items.

constants FilterBarVisibleEnum

The FilterBarVisibleEnum type specifies how the control displays its filter bar prompt. The
FilterBarPromptVisible property specifies whether the control's filter prompt is visible or
hidden. The FilterBarVisibleEnum type specifies the following values:

exFilterBarHidden 0 No filter prompt is shown.

The control shows the filter bar, which displays a
close button, so the user can close and remove the
current filter. Use the
Background(exFooterFilterBarButton) property to
specify the visual appearance of the close button.

E} Font
. o ForeColor RGB(0,0,0)
exFilterBarVisible -1 : L]
ForeColorCategories |:| RGB(191205 219)
ForeColorDescription D RGB(0,0.0)
ForeColorHeader [GEIE
@ Start Filter.. . -
Background{BackgroundPartEnum)
Returns or sets a value that indicates the background celor for parts in the
control.
=
The control shows the filter bar with no close
button.
D Font
ForeColor D RGB(0,0,0)
ForeColorCategories [] reBu1s1 205219
exFilterBarAlwaysVisible 1 ForeColorDescription [l resw0.0.0)
ForeColorHeader [l reei0.0.0)
Start Filter.. e

Background({BackgroundPartEnum)
Returns or zets a value that indicates the background color for parts in the

control.
Q]

constants GridLinesEnum

Defines how the control paints the grid lines.

exNoLines 0 The control displays no grid lines.

The control displays vertical and horizontal grid

exAllLines -1 .
lines.

exRowLines -2 The control paints grid lines only for current rows.

constants IndexExtEnum

The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the CellBackgroundExtValue property indicates the index of the part
of the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder

helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

=) B 4ER D

Bl 8 v G| JE |

¥ | i | Cv:|50%
To String: |I:n:uttu:um[5[l°/o,l:uan:k=Fl GB[255,255 0] text="< tha 0:|Index< shar <sha 0 <b:Ealign=0:1

Leftios
Toprzs

Right 10z
BDﬁDI’I’Ija:_‘-,

Monesss s s

D o o

Indéx 6 |

ilndex

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from O which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BackgroundExt property:

After calling the BackgroundExt property:

https://exontrol.com/exbutton.jsp

Index &

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Specifies the part of the object with the index 0

exlndexExtRoot 0 (root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exlndexExt3 3 Specifies the part of the object with the index 3.
exlndexExt4 4 Specifies the part of the object with the index 4.
exlndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exindexExt7 7 Specifies the part of the object with the index 7.

constants OptionEnum

Specifies different options for a built-in The Option property specifies the editor's options

exDateTodayCaption

exDateMonths

exDateWeekDays

exDateFirstWeekDay

exDateShowTodayButton

exDateMarkToday

exDateShowScroll

Specifies the caption for the "Today' button in the
EditDate editor By default, the
Option(exDateTodayCaption) is "Today". (string
expression)

Specifies the names for months to be displayed in
in the EditDate editor. The list of months should be
delimitated by spaces. By default, the
Option(exDateMonths) = "January February March
April May June July August September October
November December". (string expression)

Specifies the shortcut for the weekdays to be
displayed in the EditDate editor. The list of shortcut
for the weekdays should be separated by spaces.
By default, the Option(exDateWeekDays) = "SM T
W T F S". The first shortcut in the list indicates the
shortcut for the Sunday, the second shortcut
indicates the shortcut for Monday, and so

on. (string expression)

Specifies the first day of the week in the EditDate
editor. By default, the Option(exDateFirstWeekDay)
= 0. The valid values for the
Option(exDateFirstWeekDay) property are like
follows: O - Sunday, 1 - Monday, 2 - Tuesday, 3 -
Wednesday, 4 - Thursday, 5 - Friday and 6 -
Saturday. (long expression, valid values are 0 to 6)

Specifies whether the "Today' button is visible or
hidden in the EditDate editor. By default, the
Option(exDateShow TodayButton) property is True.
(boolean expression)

Gets or sets a value that indicates whether the
today date is marked in the EditDate editor. By
default, Option(exDateMarkToday) property is

False. (boolean expression)

Specifies whether the years scroll bar is visible or
hidden in the EditDate editor. By default, the
Option(exDateShowScroll) property is

exFontCharSet

exEditFileTitle

exEditFileFilter

exEditPictureTitle

10

True. (boolean expression)

Specifies a list of character sets being included in
the EditFontName editor. The comma splits the
characters sets in the option. By default, the
exFontCharSet option is "0,2,255", that means that
ANSI, OEM and SYMBOL character sets are
included. (string expression)

ANSI|_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
MAC_CHARSET 77
SHIFTJIS_CHARSET 128
HANGUL_CHARSET 129
JOHAB_CHARSET 130
GB2312_CHARSET 134
CHINESEBIG5_CHARSET 136
GREEK_CHARSET 161
TURKISH_CHARSET 162
VIETNAMESE_CHARSET 163
HEBREW_CHARSET 177
ARABIC_CHARSET 178
BALTIC_CHARSET 186
RUSSIAN_CHARSET 204
THAI_CHARSET 222
EASTEUROPE_CHARSET 238
OEM_CHARSET 255

For instance, if you need to include the Japanese
fonts, you need to use the exFontCharSet option as
"0,2,128,255", where 128 indicates the
SHIFTJIS_CHARSET.

Specifies the title to select a file for the EditFile
editor. By default, the option is "Select File" (string
expression)

Specifies the filter to select files for the EditFile
editor. If empty, no filter field is displayed on the
open files dialog. By default, the option is "All Files
(*.")[*.*" (string expression)

Specifies the title to select a file for the EditPicture
editor. By default, the option is "Load Picture"

exEditPictureFilter

exEditFolderTitle

exEditFolderincludeFiles

exEditFolderNewUI

exEditFolderShowEditBox

exEditFolderAllowNewFolder

exEditFolderShowPath

exEditSingleLine

11

12

13

15

16

17

18

(string expression)

Specifies the filter to select files for the EditPicture
editor. If empty, no filter field is displayed on the
open files dialog. By default, the option is "All
Pictures
Files|*.bmp;*.dib;*.qif;*.jpg;*.wmf;*.emf;*.ico;*.cur|Bi
(*.bmp;*.dib)|;*.bmp;*.dib|GIF Images
(*.gif)|*.gif|[JPEG Images (*.jpg)|*.jpg|Metafiles
(*.wmf;*.emf)|*.wmf;*.emf|Icons
(*.ico;*.cur)|*.ico;*.cur|All Files (*.*)|*.*" (string
expression)

Specifies the title to select a folder for the
EditFolder editor. By default, the option is "Select
Folder" (string expression)

Specifies whether files are included in the
EditFolder editor. By default, the option is False
(Boolean expression)

Specifies whether the EditFolder editor uses the
new user interface. By default, the option is False
(Boolean expression)

Specifies whether the EditFolder editor displays an
edit box field. By default, the option is True
(Boolean expression)

Specifies specifies whether the EditFolder editor
includes a button to allow creating a new folder. By
default, the option is False (Boolean expression)

Indicates whether the EditFolder editor shows the
current selected path. You can use this option in
combination with exEditFolderShowEditBox on
False, so the user can view the fully path of the
selected file or folder in the EditFolder editor. By
default, the option is False (Boolean expression)

Specifies if the inside edit-box is a single or multiple
lines editor. If False, you can use the
exEditMaxMultipleLines option to specify the
number of lines that a multiple-lines editor may
display. If False, you can use the
exEditAutoSizeMultipleLines option to specify if the
editor is auto-sizing when user alters the editor. By
default, the option is True (Boolean expression)

exEditMaxMultipleLines 19

exEditAutoSizeMultipleLines 20

Specifies the number of lines that a multiple-lines
editor may display. This option has effect only if the
exEditSingleLine property is False. By default, the
option is 6 (long expression)

Specifies if the multiple-lines editor is auto-sizing
once the user alters the property's field. This option
has effect only if the exEditSingleLine property is
False.

o |f the exEditAutoSizeMultipleLines property is
0, the size of the editor is not changed while
the user alters the editor's content. In this
case, the exEditMaxMultipleLines option
specifies the number of lines to be displayed
while editing the field.

o |f the exEditAutoSizeMultipleLines property is
-1, the size of the editor is changed while the
user alters the editor's content, so it fits it
content. In this case, the
exEditMaxMultipleLines option specifies the
number of maximum lines to be displayed while
editing the field. While editing, if the number of
lines grows, the size of the editor is growing
too.

o |f the exEditAutoSizeMultipleLines property is
1, the size of the editor is changed while the
user alters the editor's content, so it fits it
content. In this case, the
exEditMaxMultipleLines option specifies the
number of maximum lines to be displayed while
editing the field. The height of the editor is not
shrinking while the user is editing or removing
lines.

By default, the option is -1 (long expression)

constants ScrollIBarEnum

The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bars.

exVVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollPartEnum

The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

................ - L s ——2 0 exllpperBackPart

| :
i exlowerBackPart | o L 4
[i R o oy % e o I
'\\\._ |-\. s |I _f'.__-"‘"-
e] _ﬁ.'-"f
>

L1122 Le| LS|« i il F1|RZ|R3| R4|RS|RA

8(L1) The first additional button, in the left or top

exLeftB1Part 3276 area. By default, this button is hidden.

4(L2) The second additional button, in the left or top
area. By default, this button is hidden.

(L3) The third additional button, in the left or top
area. By default, this button is hidden.

(L4) The forth additional button, in the left or top
area. By default, this button is hidden.

(LS) The fifth additional button, in the left or top
area. By default, this button is hidden.

(<) The left or top button. By default, this button is

exLeftB2Part 1638

exLeftB3Part 8192

exLeftB4Part 4096

exLeftB5Part 2048

exLeftBPart 1024

visible.
The area between the left/top button and the
exL.owerBackPart 512 {humb. By default, this part is visible.
exThumbPart 256 The thumb.pa_rt_or the scroll box region. By default,
the thumb is visible.
The area between the thumb and the right/bottom
exUpperBackPart 128 button. By default, this part is visible.
The union between the exLowerBackPart and the
exBackgroundPart 640 exUpperBackPart parts. By default, this part is
visible.
exRightBPart 64 .(>) _The right or down button. By default, this button
is visible.
exRightB1Part 32 (R1) The first additional button in the right or down

side. By default, this button is hidden.

exRightB2Part

exRightB3Part

exRightB4Part

exRightB5Part

exRightB6Part

exPartNone

16

(R2) The second additional button in the right or
down side. By default, this button is hidden.

(R3) The third additional button in the right or down
side. By default, this button is hidden.

(R4) The forth additional button in the right or down
side. By default, this button is hidden

(R5) The fifth additional button in the right or down
side. By default, this button is hidden.

(R6) The sixth additional button in the right or down
side. By default, this button is hidden.

No part.

constants SortObjectsEnum

The SortObjectsEnum type specifies the position of objects to be shown on the control,
when the user sorts a column. The SortObjects property specifies whether the objects are
placed on top or bottom side of the control when the user sorts a column. The
SortObjectsEnum type supports the following values.

Default sorting. The object properties are placed on

exSortObjectsDefault 0 : . ..

their sorting position.
exSortObjectsTop 1 The object properties are put on the top of the list.
exSortObjectsBottom 5 The object properties are put on the bottom of the

list.

constants SortOnClickEnum

Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption has
been clicked.

The column is not sorted when the user clicks the

exNoSort 0 :
column's header

The control sorts the column when the user clicks

exBeiduliSoit o the column's header

constants ToStringEnum

The ToString method gets the list of properties with their values as they are displayed in the
control.

exLiterals 0 Generates the literals, as in the type library.
exNumbers 1 Generates the numbers instead the literals.

constants UlVisualThemeEnum

The UlVisualThemeEnum expression specifies the Ul parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the Ul parts of
the control are displayed using the current visual theme.

exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 167772%DefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme

exCalculatorVisualTheme 256 exCalculatorVisualTheme

Appearance object

The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Add Adds or replaces a skin object to the control.

Clear Removes all skins in the control.

Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on

the component.

method Appearance.Add (ID as Long, Skin as Variant)

Adds or replaces a skin object to the control.

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements

The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE]] / safe arrays of VT |1 or

VT _UI1 expression that indicates the content of the EBN
file. You can use the BYTE][] / safe arrays of VT _I1 or
VT _UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

e A path to the skin file (*.EBN). The ExButton
component or EXEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontro\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"

o A BASEG64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASEG4 encoded string starts with "gBFLBCJw..."

¢ An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any Ul
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

¥P:Header 1 2

WP:Header 2 2 |

HP-Button 1 1 [|
XP:Button 1 2 [|
®P:Buttan 3 5
¥P:Button 3 9]
WP-ExplorerBar 3 1 4
¥F-ExplorerBar 4 1 »

XP:Header 12

XP.Header 22

XP:Button 1 1
XP:Button 1 2
XP:Button 3 5
¥P:Button 3 9 [m]
XP:ExplorerBar 3 1 -[;’]
XP:ExplorerBar 4 1 »

e A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the |ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

(default)

CP144-4-4
CP1-4-444
CP142000

CP100-430

A Boolean expression that indicates whether the new skin

Boolean was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control. Use the Background
property to specify the visual appearance for the parts in the control.

The identifier you choose for the skin is very important to be used in the

background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicates the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background
color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the BackColor = BackColor Or
&H2000000 indicates that we apply the skin with the index 2 using the old color, to the
object that BackColor is applied.

Marne

AW alue

Column&utoResize True

ColumnsAlowsSiz... True

Court

Diate: 27 r2006

DefaultCateq [Oictober 2006

=

DefaulttemH S M TW T F S

DescriptionH
Description
DisplayColon
EditOnk ey

1 2¢ 3 4! 5 B: ¥
g 910 11 12 135 14
13 16 17 13 19 20 21

——— 26(27] 28

Enabled
FirelncludeP
=l Font

i

29:30:31: 1: 2i 3: 4
S T B R SR

Bl
Charset

ftalic

Falze

Date

Specifies the current date.

Starting with Windows XP, the following table shows how the common controls are broken

into parts and states:

Control/ClassName

BUTTON

BP_CHECKBOX = 3

Part

States

CBS_UNCHECKED
1 CBS_UNCHECKE
CBS_UNCHECKED
=2

CBS_UNCHECKED
= 4 CBS_CHECKEI
5 CBS_CHECKEDF
CBS_CHECKEDPR
CBS_CHECKEDDI
CBS_MIXEDNORM
CBS_MIXEDHOT =

CLOCK

COMBOBOX

EDIT

EXPLORERBAR

BP_GROUPBOX = 4

BP_PUSHBUTTON = 1

BP_RADIOBUTTON = 2

BP_USERBUTTON = 5
CLP_TIME = 1

CP_DROPDOWNBUTTON = 1

EP_CARET = 2

EP_EDITTEXT =1

EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2

EBP_HEADERPIN = 3

CBS_MIXEDPRES!
CBS_MIXEDDISAB

GBS_NORMAL = 1
GBS_DISABLED =

PBS_NORMAL = 1
= 2 PBS_PRESSEIL
PBS_DISABLED =
PBS_DEFAULTED :

RBS_UNCHECKED
1 RBS_UNCHECKE
RBS_UNCHECKED
=3

RBS_UNCHECKED
= 4 RBS_CHECKEI
5 RBS_CHECKEDF
RBS_CHECKEDPR
RBS_CHECKEDDIS

CLS_NORMAL =1

CBXS_NORMAL =
CBXS_HOT =2

CBXS_PRESSED =
CBXS_DISABLED :

ETS_NORMAL = 1
2 ETS_SELECTED
ETS_DISABLED =
ETS_FOCUSED = !
ETS_READONLY =
ETS_ASSIST = 7

EBHC_NORMAL =
EBHC_HOT = 2
EBHC_PRESSED =

EBHP_NORMAL =
EBHP_HOT = 2
EBHP_PRESSED =
EBHP_SELECTED!
4 EBHP_SELECTE
EBHP_SELECTEDF
6

HEADER

LISTVIEW

MENU

EBP_IEBARMENU = 4

EBP_NORMALGROUPBACKGROUND =5

EBP_NORMALGROUPCOLLAPSE = 6

EBP_NORMALGROUPEXPAND = 7

EBP_NORMALGROUPHEAD = 8

EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10

EBP_SPECIALGROUPEXPAND = 11

EBP_SPECIALGROUPHEAD = 12
HP_HEADERITEM = 1

HP_HEADERITEMLEFT = 2
HP_HEADERITEMRIGHT = 3

HP_HEADERSORTARROW = 4

LVP_EMPTYTEXT =5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LVP_LISTSORTEDDETAIL = 4

MP_MENUBARDROPDOWN = 4

EBM_NORMAL = 1
= 2 EBM_PRESSE]

EBNGC_NORMAL :
EBNGC_HOT = 2
EBNGC_PRESSED

EBNGE_NORMAL :
EBNGE_HOT = 2
EBNGE_PRESSED

EBSGC_NORMAL :
EBSGC_HOT = 2
EBSGC_PRESSED

EBSGE_NORMAL :
EBSGE HOT =2
EBSGE_PRESSED

HIS_NORMAL = 1 |
2 HIS_PRESSED =

HILS_NORMAL = 1
= 2 HILS_PRESSE|

HIRS_NORMAL = 1
= 2 HIRS_PRESSE

HSAS_SORTEDUP
HSAS_SORTEDDC

LIS_NORMAL =1L
2 LIS_SELECTED:
LIS_DISABLED =4
LIS_SELECTEDNO
5

MS_NORMAL = 1
MS_SELECTED =
MS_DEMOTED = ¢

MS_NORMAL = 1
MS_SELECTED =

MENUBAND

PAGE

PROGRESS

REBAR

MP_MENUBARITEM = 3

MP_CHEVRON = 5

MP_MENUDROPDOWN = 2

MP_MENUITEM = 1

MP_SEPARATOR = 6

MDP_NEWAPPBUTTON = 1

MDP_SEPERATOR = 2

PGRP_DOWN = 2

PGRP_DOWNHORZ = 4

PGRP_UP = 1

PGRP_UPHORZ = 3

PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3

PP_CHUNKVERT = 4

RP_BAND = 3

MS_DEMOTED = ¢

MS_NORMAL = 1
MS_SELECTED =
MS_DEMOTED = ¢
MS_NORMAL = 1
MS_SELECTED =
MS_DEMOTED = ¢

MS_NORMAL = 1
MS_SELECTED =
MS_DEMOTED = ¢
MS_NORMAL = 1
MS_SELECTED =
MS_DEMOTED = ¢

MDS_NORMAL = 1
= 2 MDS_PRESSE|
MDS_DISABLED =
MDS_CHECKED =
MDS_HOTCHECKE

DNS_NORMAL = 1
= 2 DNS_PRESSEI
DNS_DISABLED =

DNHZS_NORMAL =
DNHZS_HOT = 2

DNHZS_PRESSED
DNHZS_DISABLED

UPS_NORMAL = 1
= 2 UPS_PRESSEIL
UPS_DISABLED =
UPHZS_NORMAL =
UPHZS_HOT = 2

UPHZS_PRESSED
UPHZS_DISABLED

CHEVS_NORMAL -

SCROLLBAR

RP_CHEVRON =4

RP_CHEVRONVERT = 5

RP_GRIPPER = 1

RP_GRIPPERVERT = 2

SBP_ARROWBTN = 1

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT =9

SBP_LOWERTRACKHORZ = 4

SBP_LOWERTRACKVERT = 6

SBP_THUMBBTNHORZ = 2

SBP_THUMBBTNVERT = 3

CHEVS_HOT = 2
CHEVS_PRESSED

ABS_DOWNDISAB
ABS_DOWNHOT,
ABS_DOWNNORM
ABS_DOWNPRES
ABS_UPDISABLED
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED
ABS_LEFTDISABL
ABS_LEFTHOT,
ABS_LEFTNORMA
ABS_LEFTPRESSE
ABS_RIGHTDISAB
ABS_RIGHTHOT,
ABS_RIGHTNORM
ABS_RIGHTPRESS

SCRBS_NORMAL :
SCRBS_HOT =2

SCRBS_PRESSED
SCRBS_DISABLEL

SCRBS_NORMAL :
SCRBS_HOT =2

SCRBS_PRESSED
SCRBS_DISABLEL

SCRBS_NORMAL :
SCRBS_HOT =2

SCRBS_PRESSED
SCRBS_DISABLEL

SCRBS_NORMAL :
SCRBS_HOT =2

SCRBS_PRESSED
SCRBS_DISABLEL

SCRBS_NORMAL :
SCRBS_HOT =2

SBP_UPPERTRACKHORZ = 5 SCRBS_PRESSED
SCRBS_DISABLEL

SCRBS_NORMAL :
SCRBS_HOT =2

SCRBS_PRESSED
SCRBS_DISABLEL

SZB_RIGHTALIGN
SZB_LEFTALIGN =

DNS_NORMAL = 1
SPIN SPNP_DOWN = 2 = 2 DNS_PRESSEI
DNS_DISABLED =

DNHZS_NORMAL =
DNHZS_HOT = 2

DNHZS_PRESSED
DNHZS_DISABLED

UPS_NORMAL = 1
SPNP_UP = 1 = 2 UPS_PRESSEIL
UPS_DISABLED =

UPHZS_NORMAL =
UPHZS_HOT = 2

UPHZS_PRESSED
UPHZS_DISABLED

SBP_UPPERTRACKVERT =7

SBP_SIZEBOX = 10

SPNP_DOWNHORZ = 4

SPNP_UPHORZ = 3

STARTPANEL SPP_LOGOFF =8

SPLS_NORMAL = -
SPP_LOGOFFBUTTONS = 9 SPLS HOT = 2
SPLS_PRESSED =

SPP_MOREPROGRAMS = 2

SPS_NORMAL = 1
SPP_MOREPROGRAMSARROW = 3 ~ 5 5PS PRESSEL
SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10
STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB

TASKBAND

TABP_BODY = 10
TABP_PANE =9

TABP_TABITEM = 1

TABP_TABITEMBOTHEDGE = 4

TABP_TABITEMLEFTEDGE = 2

TABP_TABITEMRIGHTEDGE = 3

TABP_TOPTABITEM = 5

TABP_TOPTABITEMBOTHEDGE = 8

TABP_TOPTABITEMLEFTEDGE = 6

TABP_TOPTABITEMRIGHTEDGE = 7

TDP_GROUPCOUNT = 1

TIS_ NORMAL = 1~
2 TIS_SELECTED
TIS_DISABLED = 4
TIS_FOCUSED = 5

TIBES_NORMAL =
TIBES_HOT = 2

TIBES_SELECTED
TIBES_DISABLED
TIBES_FOCUSED

TILES NORMAL =
TILES HOT =2

TILES_SELECTED
TILES_DISABLED
TILES_FOCUSED :

TIRES_NORMAL =
TIRES_HOT = 2
TIRES_SELECTED
TIRES_DISABLED
TIRES_FOCUSED

TTIS_NORMAL = 1
= 2 TTIS_SELECTE
TTIS_DISABLED =
TTIS_FOCUSED =

TTIBES_NORMAL :
TTIBES_HOT =2

TTIBES_SELECTE
TTIBES_DISABLEL
TTIBES_FOCUSEL

TTILES._ NORMAL :
TTILES_HOT = 2

TTILES_SELECTEI
TTILES_DISABLEL
TTILES_FOCUSED

TTIRES_NORMAL
TTIRES_HOT = 2
TTIRES_SELECTE
TTIRES_DISABLEL
TTIRES_FOCUSEL

TASKBAR

TOOLBAR

TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3
TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT =4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT =8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP =7

TP_BUTTON = 1

TP_DROPDOWNBUTTON = 2

TP_SPLITBUTTON = 3

TP_SPLITBUTTONDROPDOWN = 4

TP_SEPARATOR =5

TP_SEPARATORVERT = 6

TS_NORMAL=1T
TS_PRESSED =3
TS_DISABLED =4
TS_CHECKED =5
TS_HOTCHECKED

TS_NORMAL=1T
TS_PRESSED =3
TS_DISABLED =4
TS_CHECKED = 5
TS_HOTCHECKED

TS_NORMAL=1T
TS_PRESSED =3
TS_DISABLED =4
TS_CHECKED =5
TS_HOTCHECKED

TS_NORMAL=1T
TS_PRESSED =3
TS_DISABLED =4
TS_CHECKED = 5
TS_HOTCHECKED

TS_NORMAL=1T
TS_PRESSED =3
TS_DISABLED =4
TS_CHECKED =5
TS_HOTCHECKED

TS_NORMAL=1T
TS_PRESSED =3
TS_DISABLED =4
TS_CHECKED = 5
TS_HOTCHECKED

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL =

TTBS_LINK =2
_ TTBS_NORMAL =
TTP_BALLOONTITLE =4 TTBS LINK = 2
TTCS_NORMAL =
TTP_CLOSE =5 TTCS_HOT =2

TTCS_PRESSED =

TTSS _NORMAL = -
TTSS_LINK = 2

TTSS_NORMAL =
TTSS_LINK =2

TUS NORMAL = 1
2 TUS PRESSED -
TUS_FOCUSED = -
TUS DISABLED =

TUBS_NORMAL =
TUBS_HOT = 2

TKP_THUMBBOTTOM = 4 TUBS_PRESSED =
TUBS_FOCUSED =
TUBS_DISABLED -

TUVLS_NORMAL =
TUVLS_HOT = 2

TKP_THUMBLEFT = 7 TUVLS PRESSED
TUVLS FOCUSED
TUVLS DISABLED

TUVRS_NORMAL -
TUVRS_HOT = 2
TKP_THUMBRIGHT = 8 TUVRS_PRESSED
TUVRS_FOCUSED
TUVRS_DISABLED

TUTS_NORMAL = -
TUTS HOT =2
TKP_THUMBTOP = 5 TUTS_PRESSED =
TUTS_FOCUSED =
TUTS_DISABLED =

TUVS_NORMAL =
TUVS_HOT = 2

TKP_THUMBVERT = 6 TUVS_PRESSED =
TUVS_FOCUSED =
TUVS_DISABLED -

TKP_TICS =9 TSS_NORMAL = 1

TTP_STANDARD = 1

TTP_STANDARDTITLE = 2

TRACKBAR TKP_THUMB = 3

TRAYNOTIFY

TREEVIEW

WINDOW

TKP_TICSVERT = 10

TKP_TRACK = 1

TKP_TRACKVERT = 2
TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TVP_BRANCH = 3
TVP_GLYPH =2

TVP_TREEITEM =1

WP_CAPTION = 1

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18

WP_DIALOG = 29

WP_FRAMEBOTTOM =9
WP_FRAMEBOTTOMSIZINGTEMPLATE = 36
WP_FRAMELEFT =7
WP_FRAMELEFTSIZINGTEMPLATE = 32
WP_FRAMERIGHT = 8
WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23

WP_HORZSCROLL = 25

WP_HORZTHUMB = 26

TSVS_NORMAL =
TRS_NORMAL = 1
TRVS_NORMAL =

GLPS_CLOSED =
GLPS_OPENED =

TREIS_NORMAL =
TREIS_HOT = 2
TREIS_SELECTED
TREIS_DISABLED
TREIS_SELECTED
=5

CS_ACTIVE = 1 C¢
= 2 CS_DISABLED

CBS_NORMAL = 1
=2 CBS_PUSHED
CBS_DISABLED =

FS_ACTIVE =1FS
=2

FS_ACTIVE =1FS
=2

FS_ACTIVE =1FS
=2

HBS_NORMAL = 1
= 2 HBS_PUSHED
HBS_DISABLED =

HSS_NORMAL = 1
= 2 HSS_PUSHED
HSS_DISABLED =

HTS_NORMAL = 1
2 HTS_PUSHED = :
HTS_DISABLED =

WP_MAX_BUTTON

WP_MAXCAPTION =5

WP_MDICLOSEBUTTON = 20

WP_MDIHELPBUTTON = 24

WP_MDIMINBUTTON = 16

WP_MDIRESTOREBUTTON = 22

WP_MDISYSBUTTON = 14

WP_MINBUTTON = 15

WP_MINCAPTION = 3

WP_RESTOREBUTTON = 21

WP_SMALLCAPTION = 2
WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19

WP_SMALLFRAMEBOTTOM = 12

MAXBS_NORMAL :
MAXBS_HOT = 2

MAXBS_PUSHED -
MAXBS_DISABLEL

MXCS_ACTIVE = 1
MXCS_INACTIVE =
MXCS_DISABLED

CBS_NORMAL = 1
= 2 CBS_PUSHED
CBS_DISABLED =

HBS_NORMAL = 1
= 2 HBS_PUSHED
HBS_DISABLED =

MINBS_NORMAL =
MINBS_HOT = 2

MINBS_PUSHED =
MINBS_DISABLED

RBS_NORMAL = 1
= 2 RBS_PUSHED
RBS_DISABLED =

SBS_NORMAL = 1
= 2 SBS_PUSHED
SBS_DISABLED =

MINBS_NORMAL =
MINBS_HOT = 2

MINBS_PUSHED =
MINBS_DISABLED

MNCS_ACTIVE =1
MNCS_INACTIVE =
MNCS_DISABLED

RBS_NORMAL =1
= 2 RBS_PUSHED
RBS_DISABLED =
CS_ACTIVE =1 C<
=2 CS_DISABLED

CBS_NORMAL = 1
= 2 CBS_PUSHED
CBS_DISABLED =

FS_ACTIVE =1FS

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
=37

WP_SMALLFRAMELEFT = 10

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON

WP_SMALLMAXBUTTON

WP_SMALLMAXCAPTION = 6

WP_SMALLMINCAPTION = 4

WP_SMALLRESTOREBUTTON

WP_SMALLSYSBUTTON

WP_SYSBUTTON = 13

WP_VERTSCROLL = 27

WP_VERTTHUMB = 28

=2

FS_ACTIVE =1FS
=2

FS_ACTIVE =1FS
=2

HBS_NORMAL = 1
= 2 HBS_PUSHED
HBS_DISABLED =

MAXBS_NORMAL :
MAXBS_HOT = 2

MAXBS_PUSHED -
MAXBS_DISABLEL

MXCS_ACTIVE = 1
MXCS_INACTIVE =
MXCS_DISABLED

MNCS_ACTIVE =1
MNCS_INACTIVE =
MNCS_DISABLED

RBS_NORMAL = 1
= 2 RBS_PUSHED
RBS_DISABLED =

SBS_NORMAL = 1
= 2 SBS_PUSHED
SBS_DISABLED =

SBS_NORMAL = 1
= 2 SBS_PUSHED
SBS_DISABLED =

VSS_NORMAL = 1
=2 VSS_PUSHED
VSS_DISABLED =

VTS_NORMAL =1

2 VTS_PUSHED =
VTS_DISABLED =

method Appearance.Clear ()

Removes all skins in the control.

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)

Removes a specific skin from the control.

A Long expression that indicates the index of the skin
ID as Long .
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long

Specifies the way colored EBN objects are displayed on the component.

A long expression that indicates how the EBN objects are

Long shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format OxXIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the Ox1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here (= to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
VisualAppearance.Add 1,"c\exontrol\images\normal.ebn"
.BackColorHeader = &H1000000

End With

In the following screen shot the following objects displays the current EBN with a different
color:

e "A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
e "B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0Ox100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

e "C"in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
e "Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

e -3, no color is applied. For instance, the BackColorHeader = &H1FF00O0O is displayed
as would be .BackColorHeader = &H1000000, so the OxFFO00O color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

993 45 November 7, 1993 46. November 14, 1993 47 MNovembe
F:S: 5 M TW TFiS ST W: TiFi5 5 M:T

[
Toms Speziaiizen
-
[C] Wikctuallies e S0k
Sugremes delices
C] Hanarl Cames

i | e coee

e -2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

993 45 November 7, 1993 46 November 14, 1993 47 Novembe
FiS 5T W T FiS S TFW T FiS5 5 MW:T

[

mmonr | Toms Spezisizen
B =z Cames
[C] Vichuzllies £ SA00K
S;:\ré'rmu&lbaa

C] Hararl Cames

| | e s

e -1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

993 45 November 7, 1993 46 November 14, 1993 47 Novembe
FiS: S M TW T:FIS!ISIMT W TiFIS5:S5:MT

[

O -
Default Fupndmes delices
D Hararl Cames

[]-::mp-e.ner;mmse

e 0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN obijects,
not only solid colors.

993 45 November 7, 1993 46 November 14, 1993 47 Novembe
FiSi 5 M TMW T:FISISIMIT W TiFI5 SIMiT

[
) s
o o
“ Vichuzllies e S100
Suprémes oalices

[| Chop-susy Crinese

o 0XxAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the OXOOFFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0XxAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

993 45 November 7, 1993 46 November 14, 1993 47 Novembe
FSSMTWTFSSMTWTFSSMT
[
S S——
-

[c] Wicuallles e siock

Default Suprames ddliozs
D =ararl Cames

(P

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

093 45 November 7, 1993 46: November 14, 1993 47 Movembe
FiSi B MiTM T:FIiSSItMITW TitFi5 SiMiT

A Toms Speziaiicnen
B Hararl Cames
= ichallies e shotk
Default Fupnames delices
Hamarl Cames

Chop-suey Chinese

The following picture shows the control with the RenderType property on 0xCO00FFFF
(75% Yellow, 0xCO or 192 in decimal is 75% from 256):

993 45 November 7, 1993 46. November 14, 1993 47 MNovembe
FoG iS5 M TMW T:FiS5 S5 T-W: TiFi5 5:MT

A Toms Speziaiiaten
B Hamarl Cames
C Wichallies ef siotk
Default Suprémes delices
Hanarl Cames

Chog-zusy Chinese

The following picture shows the control with the RenderType property on OxFFOOFFFF
(100% Yellow, OxFF or 255 in decimal is 100% from 255):

99345 MNovember7,1993 46 November 14,1993 47 Novembe
M TWTFSSMTWTFSSMHT

A Teens Speziaiiaten
B =amar Cames
i Vichuzllies e 590K

Default Suprames odlices

Hararl Cames

PropertiesList object

TiP The)cOM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {A703DF80-DFF3-48D7-A4C7-47CF6A48425C}. The object's program identifier is:
"Exontrol.PropertiesList". The /COM object module is: "ExPropertiesList.dll"

The ExPropertiesList control (similar to the control used to manipulate properties in Visual
Studio) provides an efficient, intuitive and visually compact way to handle data input with
minimal coding and user interface design. A built from the ground up using 100% ATL-based
code, the ExPropertiesList represents some of the most advanced properties list
technology available in the ActiveX marketplace. The ExPropertiesList ActiveX control is
easy to use and too easy to integrate into your application. The doesn't require any
additional libraries, like MFC library.

The control includes the ability to browse any COM object that exposes an implementation
of IDispatch interface. For instance, any VB class provides an implementation for IDispatch
interface, so the ExPropertiesList is able to browse your VB objects. Another nice feature
that control provides is browsing collections and their items. If you have a collection, the
ExPropertiesList can browse their items! More than that the ExPropertiesList control
expands your objects. For instance, If your object provides a property that exports another
object, the ExPropertiesList control is able to browse the exported object Here's the list of
supported properties and methods:

Add Adds a custom entry to the list.

Gets or sets a value indicating whether the control can

AllowDro accept data that the user drags into it.

Specifies whether the Add method allows adding new

AllowDuplcateEniries properties with the same caption on the Name column.

Specifies whether the enum types display bit combination
of predefined values.

AllowMultipleValuesOnEnum

Retrieves or sets a value that indicates whether the

Ao component uses a spin control to edit numeric values.

AllowS Specifies whether the control can spy other Ul

ATOWSPY components or parts of them.

AllowSpyOn Sp_ecmes handle of the window where the spy can find Ul
o objects.

AllowTooltip Sp_ecmes whether the control displays a tooltip when the

string value is too long.
AnchorFromPoint Retrieves the identifier of the anchor from point.

Attaches a script to the current object, including the

AttachTemplate

AutoDrag

Autolndent

BackColor

BackColorAlternate

BackColorCategories

BackColorDescription

BackColorHeader

Background

BeginUpdate

BorderStyle

CaptionMessageBox

Clear

ColumnAutoResize

ColumnCaption

ColumnsAllowSizing

ColumnWidth

Copy

DefaultCategory

DefaultltemHeight

events, from a string, file, a safe array of bytes.

Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

Specifies a value that indicates whether child items are
automatically indented.

Retrieves or sets a value that indicates the control's
background color.

Specifies the background color used to display alternate
items in the control.

Specifies the category items background color.
Specifies the description's background color.
Specifies the header's background color.

Returns or sets a value that indicates the background
color for parts in the control.

Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

Retrieves or sets the border style of the control.

Specifies the caption to be displayed on the message box,
in case the user inputs an invalid value.

Clears the control's content.

Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

Retrieves or sets the column's caption.

Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

Retrieves or sets the column's width.

Copies the control's content to the clipboard, in the EMF
format.

Exports the control's view to an EMF, PDF, BMP, PNG,
GIF, TIF file.

Counts the properties in the control.
Retrieves or sets the default category.
Retrieves or sets the default item height.

DescriptionHeight

DescriptionVisible

DisplayBoolAs

DisplayColorAs

EditOnKey

EditOnSelect

Enabled

EndUpdate

EventParam

ExecuteTemplate

ExpandAll
Expandltem

ExpandOnSearch

FilterBarFont

FilterBarPrompt

FilterBarPromptPattern

FilterBarPromptVisible

FirelncludeProperty

Font

ForeColor

ForeColorCategories

ForeColorDescription

Retrieves or sets a value that indicates the height of the
description area.

Retrieves or sets a value that indicates whether the
description is visible or hidden.

Specifies how the properties of boolean type are
displayed.

Specifies how the properties of color type are displayed.

Customizes the F4 key to let user edits a property using
the keys.

Retrieves or sets a value that indicates whether the
properties browser is ready to edit a value when the
selection is changed.

Enables or disables the control.

Resumes painting the control after painting is suspended
by the BeginUpdate method.

Retrieves or sets a value that indicates the current's event
parameter.

Executes a template and returns the result.
Expands all items.
Expands or collapses an item.

Expands items automatically while user types characters
to search for a specific property.

Retrieves or sets the font for control's filter bar.

Specifies the caption to be displayed when the filter
pattern is missing.

Specifies the pattern for the filter prompt.
Shows or hides the filter prompt.

Retrieves or sets a value that indicates whether the
IncludeProperty event is fired.

Retrieves or sets the control's font.

Retrieves or sets a value that indicates the control's
foreground color.

Specifies the category items foreground color.
Specifies the description's foreground color.

ForeColorHeader

FormatAnchor

GridLineColor

HasButtons

HasButtonsCustom

HasGridLines

HasLines

HeaderAppearance

HeaderEnabled

HeaderHeight

HeaderVisible

HideSelection

HotBackColor

HotForeColor

HTML Picture
hWnd

Images
ImageSize

IncrementalSearch

Indent

Specifies the header's foreground color.

Specifies the visual effect for anchor elements in HTML
captions.

Retrieves or sets the grid line color.

Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.

Specifies the index of icons for +/- signs when the
HasButtons property is exCustom.

Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

Enhances the graphic representation of a tree control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

Retrieves or sets a value that indicates the header's
appearance.

Enables or disables the control's header.

Retrieves or sets a value indicating the control's header
height.

Retrieves or sets a value that indicates whether the
control's header is visible or hidden.

Specifies whether selected property appears selected
when the control loses focus.

Retrieves or sets a value that indicates the hot-tracking
background color.

Retrieves or sets a value that indicates the hot-tracking
foreground color.

Adds or replaces a picture in HTML captions.
Retrieves the control's window handle.

Sets the control's image list at runtime.

Retrieves or sets the size of icons the control displays.

Specifies whether the incremental search feature looks for
starting of the property or if it contains the typed
characters.

Retrieves or sets the amount, in pixels, that child items are

indented relative to their parent items.

IndexltemsCollection

Interfaces

InvalidValueMessage

Ite

Layout

LinkCategories

MarkCategories

MarkLineColor

NameltemsCollection

Option
Property

ReadOnly
Refresh

Remove

Replacelcon

ScrollButtonHeight
ScrollButtonWidth
ScrollFont

ScrollHeight
ScrollOrderParts

ScrollPartCaption

ScrollPartCaptionAlignment

Retrieves or sets a value that indicates the base index
when control enumerates the items in the collection.

Retrieves the interfaces implemented by the object.

Retrieves or sets a value that indicates the error message
displayed by browser when changing property's value
fails. No error message occurs if is empty.

Returns a Property object based on its index.

Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

Retrieves or sets a value that indicates whether the
categories are linked.

Specifies whether the object's categories are splited by
separator lines

Retrieves or sets a value that indicates the color of line
that splits the categories.

Retrieves or sets a list of property's names separated by
semicolon (;), that are used by properties browser when it
requires a name for an item into a collection.

Specifies an option for the editor.

Gets a Property object given property's name or
property's identifier.

Gets or sets whether the properties browser is read-only.
Refreshes the properties values.
Removes a property from the list.

Adds a new icon, replaces an icon or clears the control's
image list.

Specifies the height of the button in the vertical scrollbar.
Specifies the width of the button in the horizontal scrollbar.
Retrieves or sets the scrollbar's font.

Specifies the height of the horizontal scrollbar.

Specifies the order of the buttons in the scroll bar.

Specifies the caption being displayed on the specified
scroll part.

Specifies the alignment of the caption in the part of the

ScrollPartEnable

ScrollPartVisible

ScrollThumbSize

ScrollToolTip

ScrollWidth

SelBackColor

Select
SelectedObiject
SelectedProperty

SelForeColor

ShowCategories

ShowHidden

ShowltemsCollection

ShowMultipleParams

ShowNonBrowsable
ShowObijects
ShowPropertyPages
ShowReadOnly
ShowRestricted
ShowToolTip

scroll bar.

Indicates whether the specified scroll part is enabled or
disabled.

Indicates whether the specified scroll part is visible or
hidden.

Specifies the size of the thumb in the scrollbar.

Specifies the tooltip being shown when the user moves the

scroll box.
Specifies the width of the vertical scrollbar.

Retrieves or sets a value that indicates the selection
background color.

Browses a new object to control.
Browses a new object (com or .net) in the control.
Specifies the selected property.

Retrieves or sets a value that indicates the selection
foreground color.

Retrieves or sets a value whether the browser includes
the object categories.

Retrieves or sets a value that indicates whether the
properties browser displays the hidden members.

Retrieves or sets a value that indicates whether the
properties browser includes the elements of a property
that contains a collection.

Specifies whether the control loads properties with
multiple parameters.

Retrieves or sets a value that indicates whether the
control displays the non browseable members.

Retrieves or sets a value that indicates whether the
properties browser includes the properties of object type.

Retrieves or sets a value that indicates whether the
properties browser displays the object property pages.

Retrieves or sets a value that indicates whether the
properties browser displays the read only properties.

Retrieves or sets a value that indicates whether the
properties browse displays the restricted members.

Shows the specified tooltip at given position.

Show Variables

Sort

SortObjects

SortOnClick

ITemplate

TemplateDef

TemplatePut

ToolTipDelay

ToolTipFont
ToolTipMargin

ToolTipPopDelay

ToolTipWidth

ToString

UseVisualTheme

Version

VisibleltemCount

VisualAppearance

VisualDesign

Retrieves or sets a value that indicates whether the
control displays the object variables. An object of
IFontDisp type has variables like: Name, Size, ...

Sorts the control.

Specifies how the object properties are positioned once a
Sort occurs.

Retrieves or sets a value that indicates whether the

control sorts automatically the data when the user click on

column's caption.
Specifies the control's template.

Defines inside variables for the next
Template/Execute Template call.

Defines inside variables for the next
Template/Execute Template call.

Specifies the time in ms that passes before the ToolTip
appears.

Retrieves or sets the tooltip's font.
Defines the size of the control's tooltip margins.

Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

Specifies a value that indicates the width of the tooltip
window, in pixels.

Saves the control's content to a string, as it is displayed.

Specifies whether the control uses the current visual
theme to display certain Ul parts.

Retrieves the control's version.

Retrieves the number of visible items.

Retrieves the control's appearance.

Invokes the control's VisualAppearance designer.

method PropertiesList.Add (Property as String, Value as Variant, Type as
EditTypeEnum, [Description as Variant], [Parent as Variant], [Template
as Variant])

Adds a custom property to the list.

Property as String A string expression that indicates the property's name.
Value as Variant A Variant value that indicates the property's value.

An EditTypeEnum expression that indicates the property's

Type as EditTypeEnum built-in editor.

A string expression that indicates the property's

Description as Variant e
description.

A string expression that indicates the name of the parent
Parent as Variant property, or a long expression that indicates the identifier
of the parent property.

Template as Variant Reserved.

A Property object that represents the newly created
Property object. Use Property property to get a property based on
its name or based on its identifier.

The Add method adds a new property to the current list. The Add method associates to the
newly created Property object an identifier, that's unique. Use the ID property to get the
property's identifier. Use the Remove property to remove a property from the collection.
Use the UserData property to associate an extra data to a property. Use the
PropertyChange event to notify your application when a property's value is changed. Use
the AddValue method to add new values to a drop down editor (EditEnum, EditDropDown
types). Use the Select method to browse for a new COM object. Use the HTMLName
property to assign icons, pictures, font attributes or colors, to parts of the caption being
displayed in the Name column. Use the Option property to specify custom settings for editor
assigned to a property. If the AllowDuplicateEntries property is False, the Add method does
not add a new property with a name that's already shown on the Name column.

The following adds few properties with different editors, to the ExPropertiesList control:

With PropertiesList1
.BeginUpdate

Add "ReadOnly", """, EXPROPERTIESLISTLibCtl.ReadOnly, "The property is read only"

Add "Edit", Me.Caption, EXPROPERTIESLISTLibCtl.Edit, "The property uses a standard
edit control, to change the property's value."
Add "Color", Me.BackColor, EXPROPERTIESLISTLibCtl.EditColor, "The property uses a
drop down color list to change the property's value."
Add "Font", Me.Font, EXPROPERTIESLISTLibCtl.EditFont, "The property uses a font
property page to change the property's value."
Add "FontName", Me.Font, EXPROPERTIESLISTLibCtl.EditFontName, "The property uses
a drop down font name list to change the property's value."
Add "Picture”, Me.lcon, EXPROPERTIESLISTLibCtl.EditPicture, "The property uses picture
page to change the property's value."
Add "Page", Me.lcon, EXPROPERTIESLISTLibCtl.EditPage, "The property uses a custom
page to change the property's value."
Add "Boolean", Me.Visible, EXPROPERTIESLISTLibCtl.EditBoolean, "The property uses a
boolean combo."
With Add("Enum", Me.BorderStyle, EXPROPERTIESLISTLibCtl.EditEnum, "Not available
in DEMO version")
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed Single"
AddValue 2, "2 - Sizable"
AddValue 3, "3 - Fixed Dialog"
AddValue 4, "4 - Fixed ToolWindow"
AddValue 5, "5 - Sizable ToolWindow"
End With
Add "Date", Date, EXPROPERTIESLISTLibCtl.EditDate, "Edits a value of DATE type"
Add "Password", "Password", EXPROPERTIESLISTLibCtl.EditPassword, "Edits a password"
With .Add("DropDown", "Mr.", EXPROPERTIESLISTLibCtl.EditDropDown, "Specifies a list
of predefined values, but allow custom entries too.")
AddValue 0, "Mr."
AddValue 1, "Ms."
AddValue 2, "Dr."
End With

.Refresh
.EndUpdate
End With

The following sample shows how to add new items for a property of EditEnum type:

Dim p As Property

Set p = PropertiesList1. Add("Enum", 1, EditEnum)
p.AddValue 0, "Zero"

p.AddValue 1, "One"

p.AddValue 2, "Two"

PropertiesList1.Refresh

You need to call Refresh method because the values for the property were unknown at
adding time.

The following sample adds two COM objects to the same browser:

With PropertiesList1
.BeginUpdate
Add "PropertiesList”, PropertiesList1.0bject, EXPROPERTIESLISTLibCtl.EditObject
Add "Form", Me, EXPROPERTIESLISTLibCtl.EditObject
EndUpdate
End With

The following sample adds a root property and two child properties:

With PropertiesList1
.BeginUpdate
Add("Root", ", ReadOnly).ID = 1234
Add("Child", ", Edit,, 1234).ID = 1235
Add "SubChild", "", Edit,, 1235
EndUpdate
End With

property PropertiesList.AllowDrop as Boolean

Gets or sets a value indicating whether the control can accept data that the user drags into
it.

A Boolean expression that specifies whether the user can

Boolean drag data to.

By default, the AllowDrop property is False. Currently, this property is reserved, so user
should not use it.

property PropertiesList.AllowDuplicateEntries as Boolean

Specifies whether the Add method allows adding new properties with the same caption on
the Name column.

A Boolean expression that specifies whether the Add
Boolean method allows adding new properties with the same
name.

By default, the AllowDuplicateEntries property is True. If the AllowDuplicateEntries property
is False, the Add method does not add a new property with a name that's already shown
on the Name column.

property PropertiesList.AllowMultipleValuesOnEnum as Boolean

Specifies whether the enum types display bit combination of predefined values.

A Boolean expression that indicates whether the EditEnum
Boolean entries may display bit combination of predefined values.
An EditEnum editor displays a list of predefined values.

By default, the AllowMultipleValuesOnEnum property is False. If the
AllowMultipleValuesOnEnum property is True, the EditEnum properties may display a
checkbox for any predefined value in the enumeration that may be a bit combination. When
user clicks the checkbox, the new value includes or excludes the clicked flag. The COM
objects may allow bit combinations for predefined values.

For instance, let's say that our control browses the AllowSelectObjects property of the
Exontrol's eXG2antt component. The AllowSelectObjects property is of SelectObjectsEnum
which allow bit combination of the following values:

exNoSelectObjects, 0, The user can't select any object in the chart area
exSelectBarsOnly, 1, The user can select bars only.

exSelectLinksOnly, 2, The user can select links only.

exSelectObjects, 3, The user can select any object in the chart.
exSelectSingleObject, 16, If present, it specifies whether the user can select one or
multiple objects. For instance, the exSelectBarsOnly Or exSelectSingleObject specifies
that the user can select a single bar in the chart. The exSelectLinksOnly Or
exSelectSingleObject specifies that the user can select a single link in the chart.

e and so on.

The exSelectSingleObject flag can be combined with any previously value that will indicates
that the control allows single selection only in the chart.

The following screen shot shows the ExPropertiesList control when the
AllowMultipleValuesOnEnum property is True, and Chart.AllowSelectObjects property is
exSelectSingleObject Or exSelectBarsOnly:

https://exontrol.com/content/products/exg2antt/help/Chart_AllowSelectObjects.htm
https://exontrol.com/exg2antt.jsp

MName £ Value >

CauszeValidateWalue exNoValidate
El Chart -
Adjustl evelsToBase Falze |i|
Allow CreateBar exCreateBarAuto
AllowInsideZoom True
AllowLinkBars True

AllowNonworkingBars Falze

Allow OverviewZoom exZoomOnRClick
AllpwResizeChart exdliowResizeChartHeader exAllowResizeChartMiddle
AllowResizelnsideZoom False
Allow SelectDate exselectiToggle exSelectZone
[=]
AllowlndoRedo exMoSelectObjects
AMEH
T excSelect LinksOnly
BackColorLevelHeader exSeIectO.bjeds :
exSelect SingleObject
[Bars [exObjectsJustAdded
¢ BarsAllowSizing [exObjectsdust Removed
CanRedo False
Start Filter... -

Chart.Allow5SelectObjects
Sets or gets a value that indicates whether the user can select objects in the chart.

The following screen shot shows the ExPropertiesList control when the
AllowMultipleValuesOnEnum property is False (by default), and Chart.AllowSelectObjects
property is exSelectSingleObject Or exSelectBarsOnly.

Name £ Walue
CauseValidateValue exMNoValidate
=l Chart —
AdjustLevelzsToBaze Falze |i|
AllowCreateBar exCreateBarAuto
AllowInsideZoom True
AllowLinkBars True
AllowNonworkingBars False
Allow Overview Zoom exZoomOnRClick
AllowResizeChart exAllowResizeChartHeader, exAllowResizeChartMiddle
AllowResizelnsideZoom False
Allow SelectDate exselectiToggle exSelectZone
B
AllowlUndoRedo exMoSelectObjects
AN
BackColor exSelect LinksOnly
BackColorLevelHeader exSeIectO_bjects :
exselect SingleCbject
Bars exObjects.ustAdded
BarsAllow Sizing exObjectsJust Removed
CanRedo False
B start Fiiter... -
Chart.Allow SelectObjects

Sets or gets a value that indicates whether the user can select objects in the chart.

property PropertiesList.AllowSpin as Boolean

Returns or sets a value indicating whether the control uses a spin control to edit numeric
values.

A boolean expression indicating whether the control uses a

Boolean . . .
spin control to edit numeric values.

Use the AllowSpin property to let user changes the numeric values using a spin control. The

property has effect only if the ReadOnly property is False, and it shows up only for

properties of numeric type. Use the SpinStep property to hide a spin control for a specified

property, or to specify the proposed change when user clicks a spin control.

property PropertiesList.AllowSpy as Boolean

Specifies whether the control can spy other Ul components or parts of them.

A Boolean expression that specifies whether the control

Boolean can spy other COM objects.

By default, the AllowSpy property is False. Use the AllowSpy property on True, to allow the
user to browse other /COM objects at runtime by drag and drop. If the AllowSpy property
is True, the control displays a spying cursor in the lower right part of the control as shown in
the bellow picture. The user clicks the spy icon, the spying cursor shows up, and so it can
be dragged to the object that needs to be browsed. The most part of our /COM Ul
components like: eXG2antt, eXGantt, eXGrid, eXTree, eXList, eXComboBox,
eXPropertiesList, eXFileView, eXCalc, ... can be spied. When you do spying the
component, the browser finds parts of the control that can be browsed by showing a
rectangle arround the Ul object. Once the user releases the button of the mouse, the
properties of the object are being loaded in the current browser, and so you can change the
properties of the objects at runtime.

e =/ This movie shows how you can spy our /COM objects at runtime.

Mame £ Value
AllowDrop c
AllowDuplicateEntries |

Allow MultipleValuesOnEnum

Allow Spin
Allow Spy
AllowTooltip
Autoindent ol
BackColor |:| SHS0000005E
BackColorAlternate Ii' SHOCO00000E
@ Start Filter.. -

DescriptionVisible
Retrieves or sets a value that indicates whether the description is visible or hidden.

https://exontrol.com/exg2antt.jsp
https://exontrol.com/exgantt.jsp
https://exontrol.com/exgrid.jsp
https://exontrol.com/extree.jsp
https://exontrol.com/exlist.jsp
https://exontrol.com/excombobox.jsp
https://exontrol.com/exfileview.jsp
https://exontrol.com/excalc.jsp
https://www.youtube.com/watch?v=wt_CQ47penk

method PropertiesList.AllowSpyOn ([Handle as Variant])

Specifies handle of the window where the spy can find Ul objects.

A long expression that specifies the handle of the window

Handle as Variant
to spy.

Reserved for internal use only.

property PropertiesList.AllowTooltip as Boolean

Specifies whether the control displays a tooltip when the string value is too long.

A boolean expression that indicates whether the property's
Boolean o :

tooltip is enabled or disabled.
By default, the AllowTooltip is False. If the AllowToolTip property is True, the control
displays the property's tooltip if the property's name or property's value is partially visible
and the cursor is over the property. Use the ToolTipDelay property to specify the time in ms
that passes before the ToolTip appears. Use the ToolTip property to assign a custom tooltip
to a property, that's displayed no matter if the property's name is partially visible.

property PropertiesList.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String

Retrieves the identifier of the anchor from point.

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The x values is always expressed in client
coordinates.

A single that specifies the current Y location of the mouse
Y as OLE_YPOS_PIXELS pointer. The y values is always expressed in client
coordinates.

A String expression that specifies the identifier (id) of the
String anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub PropertiesList1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
With PropertiesList1
ShowToolTip .AnchorFromPoint(-1, -1)
End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxPropertiesList1_MouseMoveEvent(ByVal sender As System.Object, ByVal e
As AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent) Handles
AxPropertiesList1.MouseMoveEvent
With AxPropertiesList1
ShowToolTip(.get_AnchorFromPoint(-1, -1))
End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axPropertiesList1_MouseMoveEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent e)

{
axPropertiesList1.ShowToolTip(axPropertiesList1.get_AnchorFromPoint(-1, -1));

}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMovePropertiesList1(short Button, short Shift, long X, long Y)
{
COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR,;
m_propertiesList.ShowToolTip(m_propertiesList. GetAnchorFromPoint(-1, -1), vtEmpty,
vtEmpty, vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
With .PropertiesList1
ShowToolTip((AnchorFromPoint(-1, -1))
EndWith
endwith

method PropertiesList.AttachTemplate (Template as Variant)

Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(‘internetexplorerapplication’){ Visible =
True; Navigate('https://www.exontrol.com’) } } ")

This script is equivalent with the following VB code:

Private Sub PropertiesList1_Click()
With CreateObject("internetexplorerapplication")

Visible = True
Navigate ("https://www.exontrol.com")
End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>

<lines> := <line>[<eol> <lines>] | <block>

<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]

<eol>:=";"| "\r\n"

<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eo0l>]
<lines>[<eol>]}[<eo0l>]

<dim> := "DIM" <variables>

<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>

<createobject> := "CREATEOBJECT("<type>"")"

<call> := <variable> | <property> | <variable>"."<property> | <createobject>
<property> := [<property>"."]<identifier>["("<parameters>")"]

<set> := <call> "=" <value>

<property> := <identifier> | <identifier>"("[<parameters>]")"

<parameters> := <value> [","<parameters>]

<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"

<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10>:=01]11]12|3|4|5|6|7|8]|9

<digit16> := <digit10> | A|B|C|D|E| F

<integer> := <digit10>[<integer>]

<hexa> := <digit16>[<hexa>]

<color> := "RGB("<integer>","<integer>","<integer>")"

<date> := "#"<integer>"/"<integer>"/"<integer>" "
<string> := ""<text>"" | """<text>""

<comment> := ""<text>

<handle> := "handle " <event>

<event> := <identifier>"("[<eparameters>]")"

<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

."<property>

[<integer>":"<integer>":"<integer>"]"#"

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.

<type> indicates the type the CreateObject function creates, as a proglD for /COM version
or the assembly-qualified name of the type to create for /INET or /WPF version

<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property PropertiesList.AutoDrag as AutoDragEnum

Gets or sets a value that indicates the way the component supports the AutoDrag feature.

An AutoDragEnum expression that specifies what the
AutoDragEnum control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. Also, you can use the
AutoDrag property (exAutoDragScroll + exAutoDragScrollOnShortTouch, or 4112) to let
user scrolls the control's content when user touches a capacitive screen.

property PropertiesList.Autoindent as Boolean

Specifies a value that indicates whether child items are automatically indented.

A boolean expression that indicates whether the control
Boolean automatically indents the child items relative to the position
of their parent items.

By default, the Autolndent property is True. Use the Indent property to specify the amount,
in pixels, that child items are indented relative to their parent items. Use the HasLines
property to hide the lines between parent and child items. Use HasGridLines property to

draw lines between items.

Use the Autolndent property to display all +/- signs on the first column without indentation
like in the following sample.

[+ Picture [] (Hone) [| - Picture [] (Hone) ~
Cl Properties... -1 El- Properties... -1

E e (Color) i (Color)

= b ot - (Fort)

Eobe AlloweSpin Falze R [Ty Falze

i b AllowyTool.. Falze J - AllowTooltip False J
P fatolndert - True i Autalndent Falze

| i BackColor || #HB0000005S i BackColor || 2HSO00000SE

. i Backcolor.... Ji] #H000000008 - BackColoratt...] 2H000000002

. i BackColor... [] #HB00000048 - BackColorca... [] 8HS00000048

. i BackColor... [] #HB000000FS - BackColorDe...] 8HS000000F 2

. i BackColor... [] #HB000000FS - BackColorHe... [] 8HS000000F 2

i i BorderStyle Fixec i BorderStyle Fixed

P Cauzest .. True i Cauzesialid... True

£l Columnd... True e Columndoto... True

§E cororer . Elconane s
Container Container

Returns the container of an object. Returnzs the container of an ohject.

Autolndent = True Autolndent = False

property PropertiesList.BackColor as Color

Retrieves or sets a value that indicates the control's background color.

Color A Color expression that indicates the control's background
color.

Use the BackColor property to change the control's background color. Use the ForeColor

property to change the foreground color. Use the BackColor property to specify the

background color for a specified property. Use the BackColorAlternate property to specify

the background color used to display alternate items in the control.

property PropertiesList.BackColorAlternate as Color

Specifies the background color used to display alternate items in the control.

Color A color expression that indicates the alternate background
color.

By default, the control's BackColorAlternate property is zero. The control ignores the

BackColorAlternate property if it is O (zero). Use the BackColor property to specify the

control's background color.

property PropertiesList.BackColorCategories as Color

Specifies the category items background color.

A color expression that indicates the background color for

Color)
category items.

Use the ForeColorCategories and BackColorCategories properties to customize the colors
for category items, when ShowCategories property is True.

The following sample displays the control's categories:

Private Sub Form_Load()
With PropertiesList1
Haslines = False
.BackColorCategories = vbBlue
.ForeColorCategories = vbWhite
ShowCategories = True
ShowPropertyPages = False
Select PropertiesList1.0Object
End With
End Sub

http:ll'www exontrol.com

bt 2687632

InvalidvalueMezzage Invalid property value.

MameftemsCollection Marme; Caption; tem
SelectedProperty

Wersion 1.0.53.5 DEBUG

Font
Retrieves or zets the control's fort.

property PropertiesList.BackColorDescription as Color

Specifies the description's background color.

A color expression that indicates the background color for
Color \ -

control's description bar.
Use the BackColorDescription property to change the the background color for control's
description bar. Use the ForeColorDescription property to change the foreground color for
control's description bar. Use the DescriptionVisible property to show or hide the property's
description bar. Use the DescriptionHeight property to define the height of the property's
description bar, in pixels.

property PropertiesList.BackColorHeader as Color

Specifies the header's background color.

A color expression that indicates the background color of
Color '
the control's header bar.

Use the BackColorHeader and ForeColorHeader to customize colors in the control's header
bar. Use the HeaderVisible property to show the control's header bar. Use the
ColumnCaption property to change the column's caption.

property PropertiesList.Background(Part as BackgroundPartEnum) as
Color

Returns or sets a value that indicates the background color for parts in the control.

Part as A BackgroundPartEnum expression that indicates a part in
BackgroundPartEnum the control.

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Color

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.

Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use

the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

method PropertiesList.BeginUpdate ()

Maintains performance when items are added to the control one at a time.

property PropertiesList.BorderStyle as BorderStyleEnum

Retrieves or sets the border style of the control.

A BorderStyleEnum expression that indicates the border

BorderStyleEnum style of the control.

Use the BorderStyle property to remove the control's border. By default, the BorderStyle
property is Fixed (1).

property PropertiesList.CaptionMessageBox as String

Specifies the caption to be displayed on the message box, in case the user inputs an invalid
value.

A String expression that specifies the title of the message

Strin
9 box to be shown, when any error occurs.

By default, the CaptionMessageBox property is "Exontrol.PropertiesList". Use the
CaptionMessageBox property to specify your own title when an error occurs.

method PropertiesList.Clear ()

Clears the control's content.

Clears all items into list. The Clear method doesn't clear the control columns collection. Use
the Remove method to remove a particular property.

property PropertiesList.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the control will automatically size its columns to
fit on the control's client area.

A boolean expression indicating whether the control will
Boolean automatically size its columns to fit on the control's client

area.

Use the ColumnAutoResize property to fit the columns to the control's client area. By
default, the ColumnAutoResize property is true. If the ColumnAutoResize property is True,
the horizontal scroll bar never appears. The vertical scroll bar appears if there are items
that do not fit the control's client area. Use the HeaderVisible property to display the

control's header bar.

property PropertiesList.ColumnCaption([Index as Variant]) as String

Retrieves or sets the column's caption.

A long expression that indicates the index of the column.

Index as Variant The valid values are: 0 (Name column), 1 (Value column
)
String A string expression that indicates the column's caption.

The ColumnCaption property specifies the column's caption. Use the HeaderVisible property
to show the control's header bar. The ColumnWidth property specifies the column's width.
By default, the first column's caption is "Name", and the second column's caption is "Value".

property PropertiesList.ColumnsAllowSizing as Boolean

Retrieves or sets a value that indicates whether a user can resize columns at run-time.

A Boolean expression that indicates whether a user can

Boolean : .
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. Use the HasGridLines property to
show or hide the control's grid lines. Use the HeaderVisible property to show or hide the
control's header bar. Use the ColumnsAllowSizing property to resize the columns even if the
control's header bar is not visible. At runtime, the user can use the CTRL + Left or CTRL +
Right key to resize the columns (only if the ColumnsAllowSizing property is True).

property PropertiesList.ColumnWidth([Index as Variant]) as Long

Retrieves or sets the column's width.

A long expression that indicates the column's index. The
Index as Variant valid values are: O for "Name" column, and 1 for 'Value'
column.

A long expression that indicates the column's width, in

Long :
pixels.

Use the ColumnWidth property to specify the column's width. Use the ColumnAutoResize

property to let control resizes the columns to fit the control's client area. Use the

HeaderVisible property to show the control's header bar. Use the ColumnCaption property

to define the column's caption.

method PropertiesList.Copy ()

Copies the control's content to the clipboard, in the EMF format.

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

Built-in scaling information
Built-in descriptions that are saved with the file
Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. The items
are not expanded, they are listed in the order as they are displayed on the screen.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub PropertiesList1_KeyDown(KeyCode As Integer, Shift As Integer)
If (KeyCode = vbKeyC) And Shift = 2 Then
Clipboard.Clear
PropertiesList1.Copy
SavePicture Clipboard.GetData(), App.Path & "\test.emf"
End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
BOOL bResult = FALSE;
if (::OpenClipboard(NULL))

CComPtr<IPicture> spPicture;
PICTDESC pictDesc = {0};
pictDesc.cbSizeofstruct = sizeof(pictDesc);
pictDesc.emfhemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
pictDesc.piclype = PICTYPE_ENHMETAFILE;
if (SUCCEEDED(OleCreatePicturelndirect(&pictDesc, [ID_IPicture, FALSE,
(LPVOID*)&spPicture)))
{
HGLOBAL hGlobal = NULL;
CComPtr<IStream> spStream,;
if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream)))
{
long dwSize = NULL,;
if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwsSize)))
{
USES_CONVERSION;
HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
if (hFile '= INVALID_HANDLE_VALUE)
{
LARGE_INTEGER | = {NULL};
spStream->Seek(l, STREAM_SEEK_SET, NULL);
long dwWritten = NULL;
while (dwWritten < dwSize)
{
unsigned long dwRead = NULL;
BYTE b[10240] = {0};
spStream->Read(&b, 10240, &dwRead);
DWORD dwBWritten = NULL;
WriteFile(hFile, b, dwRead, &dwBWritten, NULL);
dwWritten + = dwBWritten;
}
CloseHandle(hFile);
bResult = TRUE;

}
CloseClipboard();

}

return bResult;

}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxPropertiesList1

.Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axPropertiesList1.Copy();

property PropertiesList.CopyTo (File as String) as Variant

Exports the control's view to an EMF file.

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.

*.ipg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.

*.gif, , saves the control's content in GIF format.

*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm x 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 O O Ol|single") exports the control's content to an
A0 single PDF page, with no margins.

*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

A boolean expression that indicates whether the File was
Variant successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard.

e The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)

e The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.

e The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.

e The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.

e The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet

e The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.

o The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

Built-in scaling information
Built-in descriptions that are saved with the file
Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a file:

If (PropertiesList1.CopyTo("c\temp\test.emf")) Then
MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string

):

Dim i As Variant

For Each i In PropertiesList1.CopyTo("")
Debug.Print i

Next

property PropertiesList.Count as Long

Counts the properties in the control.

A long expression that indicates the number of items in the

Long control.

The Count property counts the items in the control. The Count property counts the items
that are on the control at one time. For instance, if you have parent items, the children items
are counted as well. Use the Item property to access a Property object giving its index.

The following sample enumerates the properties in the control:

With PropertiesList1
Dimi As Long
Fori=0To .Count- 1
Debug.Print .Item(i).Name
Next
End With

The following sample enumerates the properties in the control using the for each statement:

Dim p As EXPROPERTIESLISTLibCtl.Property
For Each p In PropertiesList1

Debug.Print p.Name
Next

property PropertiesList.DefaultCategory as String

Retrieves or sets the default category.

Stri A string expression that indicates the default category
tring

name.
Use the DefaultCategory property to specify the name of the default category. If the
ShowCategories is True, The DefaultCategory category contains all properties that has no
category specified (when Select method is used). By default, the DefaultCategory
property is empty. The DefaultCategory property doesn't create a new category, so it
should exist in the list of object categories.

http:/lwww exontrol com

- Appearance j‘

- Behavior
El- Font J
+ Font Arial
El- Misc
= by 8127130
= Invvalid aluehessage Invealicd property walue.
- MameltemsCaollection Mame; Caption; kem
=l SelectedProperty
SR | TR ~|

InvalidvalueMes=age

Retrieves or 2ets a value that indicates the error message dizplayed by
brovezer when changing property's value fails. Mo errar message ocours if
iz empty.

property PropertiesList.DefaultitemHeight as Long

Retrieves or sets the default item height.

A long expression that indicates the default item's height in

Long :
pixels.

The DefaultltemHeight property specifies the default item's height, in pixels. By default, the

DefaultitemHeight property is 16 pixels. The DefaultltemHeight property should be set

before adding items. Use the Add method to add new entries to the browser. Use the

Select method to load properties of a COM object.

property PropertiesList.DescriptionHeight as Long

Retrieves or sets a value that indicates the height in pixels of the description area.

Long A long expression that indicates the height in pixels of the
description area.

Use the DescriptionVisible property to hide the description window. The Description window

displays the description for the selected property. The Description property specifies the

description for the property. For instance, you can hide the description window, and you can

make your own description window (in this case a Label control):

Private Sub PropertiesList1_SelChange()
Label1 = PropertiesList1.SelectedProperty.Description
End Sub

property PropertiesList.DescriptionVisible as Boolean

Retrieves or sets a value that indicates whether the description is visible or hidden.

A boolean expression that indicates whether the
Boolean N :
description is visible or hidden.

The DescriptionVisible property to hide the property's description bar. Use the
DescriptionHeight property to change the description window's height. Use the
BackColorDescription and ForeColorDescription properties to define the
background/foreground colors for property's description bar. Use the Description property
to get the property's description. Use the ToolTip property to display the property's
description as tooltip.

For instance, you can hide the description window, and you can make your own description
window (in this case a Label control):

Private Sub PropertiesList1_SelChange()
Label1 = PropertiesList1.SelectedProperty.Description
End Sub

The following sample changes the property's description bar:

Private Sub Form_Load()
With PropertiesList1
.DescriptionVisible = True
.ForeColorDescription = RGB(&HDO, &HF0, &HF0)
.BackColorDescription = vbBlack
Select PropertiesList1.0Object
End With
End Sub

http:lwww exontrol.com

Falze j

Falze

[] H800000055 |

AllowSpin

property PropertiesList.DisplayBoolAs as DisplayBoolEnum

Specifies how the properties of boolean type are displayed.

A DisplayBoolEnum expression that specifies the way the

DisplayBoolEnum control displays the boolean properties.

By default, the DisplayBoolAs property is exBoolEnum, so the True and False values are
displayed for boolean properties. Use the DisplayBoolAs property on exBoolCheck to
display the boolean properties using the check-boxes.

The following screen shot shows the boolean properties using the exBoolEnum (by default

):

(Color) -

(Font) |=

(Template)

Wisual Design)

DescriptionVizible True

DescriptionHeight 53

BackColor |:| &HE000000558

ForeColor D &HE00000088

B

ShowRestricted False

ShowObjects True

Header'Visible False

ColumnAutoResize True B
ShowHidden

Retrieves or sets a value that indicates whether the properties browser displays the
hidden members.

The following screen shot shows the boolean properties using the exBoolCheck:

(Color) -
{Font) =|
(Template) '
(Wizual De=ign}
DescriptionVizible [#]
DescriptionHeight 43
BackColor |:| &HE0000005&
ForeColor D SH200000085
BT S
ShowRestricted [l
ShowObjects &
HeaderVisible]
ColumnAutoResize |:_I":| o
ShowHidden

Retrieves or sets a value that indicates whether the properties browser displays the
hidden members.

property PropertiesList.DisplayColorAs as DisplayColorEnum

Specifies how the properties of color type are displayed.

A DisplayColorEnum expression that indicates how the

DisplayColorEnum :)
S properties of color type are displayed.

By default, all color properties are displayed using the &HXXXXXXXX& form, where X is a
hex value. Use the DisplayColorAs property to change how the properties display the color
values.

The following screen shot shows the colors using the exDefault (by default):

EE R | 0000s: =
ForeColor [l aHao000008

The following screen shot shows the colors using the exRGB:

EEET R | x5 255255 =

ForeColor [l ReB(0,0,0)

property PropertiesList.EditOnKey as Long

Customizes the F4 key to let user edits a property using the keys.

A long expression that indicates the key code used instead

Long F4 key.

If the EditOnSelect property is False, you can start editing a property using the keyboard
using the F4 key. Use the EditOnKey property to specify the key being used to open the
property's editor when EditOnSelect property is False. By default, the EditOnKey property
is VK_F4.

property PropertiesList.EditOnSelect as Boolean

Retrieves or sets a value that indicates whether the properties browser is ready to edit a
value when the selection is changed.

A boolean expression that indicates whether the properties
Boolean browser is ready to edit a value when the selection is
changed.

By default, EditOnSelect property is False. Use the ReadOnly property to avoid editing the
properties.

property PropertiesList.Enabled as Boolean

Enables or disables the control.

A boolean expression that indicates whether the properties
Boolean) .
browser is enabled or disabled.

Use the Enabled property to disable the control. Use the ReadOnly property to disable
editing properties. A disabled control looks grayed. Use the Locked property to lock a
property. Use the Enabled property to disable a property.

method PropertiesList.EndUpdate ()

Resumes painting the control after painting is suspended by the BeginUpdate method.

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your custom
properties , by preventing painting the control when it suffers any change. Once that
BeginUpdate method was called, you have to make sure that EndUpdate method will be
called too.

property PropertiesList.EventParam(Parameter as Long) as Variant

Retrieves or sets a value that indicates the current's event parameter.

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

A VARIANT expression that specifies the parameter's
value.

Parameter as Long

Variant

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to O (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
KeyCode =0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method PropertiesList.ExecuteTemplate (Template as String)

Executes a template and returns the result.

Template as String A Template string being executed

A Variant expression that indicates the result after

Variant executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Iemplate property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

| Debug.Print PropertiesList1.ExecuteTemplate("BackColor")

Most of our Ul components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

e Place the control to your form or dialog.

e Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.

e Click it, and locate the Template page.

¢ Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by

commas. (Sample: Dim h, h1, h2)

variable = property(list of arguments) Assigns the result of the property to a variable.

The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments"” may include variables or values

separated by commas. (Sample: h = Insertltem(0,"New Child"))

property(list of arguments) = value Changes the property. The value can be a

variable, a string, a number, a boolean value or a RGB value.

method(list of arguments) Invokes the method. The "list or arguments” may include

variables or values separated by commas.

o { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dof)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

method PropertiesList.ExpandAll ()

Expands all items.

The ExpandAll method expands all items. Use the Expandltem method to expand an item.
Use the ExpandOnSearch property to expand items automatically while user types
characters to search for a specific property.

property PropertiesList.Expanditem(Name as Variant) as Boolean

Expands or collapses an item.

A string expression that indicates the property's name, or

Name as Variant a long expression that indicates the property's identifier.

A boolean expression that indicates whether the item is
Boolean expanded or collapsed. True means that the item is
expanded, and False means that the item is collapsed.

Use the Expandltem property to expand or collapse an item. Use the |ID property to
determine the property's identifier. Use the Name property to retrieve the property's name.
Use the ExpandAll method to expand all items. Use the ExpandOnSearch property to
expand items automatically while user types characters to search for a specific property.

The following samples collapses the "Appearance" item:

Private Type POINTAPI
X As Long
y As Long

End Type

Private Type MSG

hwnd As Long

message As Long

wParam As Long

|IParam As Long

time As Long

pt As POINTAPI
End Type
Private Declare Function PeekMessage Lib "user32" Alias "PeekMessageA" (IpMsg As MSG,
ByVal hwnd As Long, ByVal wMsgFilterMin As Long, ByVal wMsgFilterMax As Long, ByVal
wRemoveMsg As Long) As Long
Private Const PM_NOREMOVE = &H0
Private Declare Function TranslateMessage Lib "user32" (IpMsg As MSG) As Long
Private Declare Function DispatchMessage Lib "user32" Alias "DispatchMessageA" (IpMsg
As MSG) As Long

Private Sub Form_Load()
With PropertiesList1
.BeginUpdate
HasLines = False
ShowCategories = True
.MarkCategories = True
Select PropertiesList1.0Object

' When using the Select method, the list of properties is not immediately available,
so we need to proceeds few messages
Dim m As MSG
While PeekMessage(m, .hwnd, 0, O, 1)
TranslateMessage m
DispatchMessage m
Wend

Expandltem("Appearance”) = False
.EndUpdate
End With
End Sub

property PropertiesList.ExpandOnSearch as Boolean

Expands items automatically while user types characters to search for a specific property.

A Boolean expression that indicates whether the control
Boolean automatically expands items with children items when the
user searches for typed characters (incremental search)

By default, the ExpandOnSearch property is False. The IncrementalSearch property
specifies the control's incremental searching type. If the ExpandOnSearch property is True,
and user starts typing characters within the control, it takes each item, if the item is not
found but it has child items, it expands the item, and start looking inside the child items, and
so on. The property has effect only if the items display child items. When using the
ExpandOnSearch property you have to be carefully that your browsed object does not
provide recursive objects. In other words, an object that returns an already browsed object
and so on. Use the Expandltem property to programmatically expand/collapse an item. Use
the ExpandAll method to expand all items.

property PropertiesList.FilterBarFont as IFontDisp

Retrieves or sets the font for control's filter bar.

A font object that indicates the font used to paint the

IFontDisp description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use Use the Refresh method to refresh the control.

property PropertiesList.FilterBarPrompt as String

Specifies the caption to be displayed when the filter pattern is missing.

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The EilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold

<i> ... </i> displays the text in italics

<u> ... </u> underlines the text

<s> ... </s> Strike-through text

<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or

different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank

line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or

blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

o < d | y

Ml UALITI L VUi ie
<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

shadow

or "<font;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

euiline enti-EliEsing

property PropertiesList.FilterBarPromptPattern as String

Specifies the pattern for the filter prompt.

A string expression that specifies the pattern to filter the

String list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The IncrementalSearch property indicates the type of filtering.

The filter prompt works based on the IncrementalSearch property as follows:

o exStartWith, the list contains only items that starts with filter prompt's text (
FilterBarPromptPattern property).

o exContains, the list displays only items that contains the filter prompt's text (
FilterBarPromptPattern property).

property PropertiesList.FilterBarPromptVisible as FilterBarVisibleEnum

Shows or hides the filter prompt.

A FilterBarVisibleEnum expression that specifies whether

— the control's filter prompt is visible or hidden.

By default, the FilterBarPromptVisible property is False, in other words the filter prompt is
not visible. Use the FilterBarPromptVisible property to add filtering capabilities to the
component. The filter prompt feature allows you to filter the items as you type while the
filter bar is visible on the bottom part of the list area. Use the FilterBarPrompt property to
specify the HTML caption being displayed in the filter bar when the filter pattern is missing.
The FilterBarPromptPattern property specifies the pattern to filter the list. The
IncrementalSearch property indicates the type of filtering.

The filter prompt works based on the IncrementalSearch property as follows:

o exStartWith, the list contains only items that starts with filter prompt's text (
FilterBarPromptPattern property).

o exContains, the list displays only items that contains the filter prompt's text (
FilterBarPromptPattern property).

The following screen shot shows the filter prompt (FilterBarPromptVisible property is True

):

The following screen shot shows the list once the user types "allow" in the filter prompt

portion:

MHame
BackColorLevelHeader
BackColorLock
BackColorSortBar

BackColorSortBarCaption

Background

£ Value -
[] aHooCOFFFFa
[] aHoOFFFFFFa
[7] aHoBADACADS
[[] aHo3FoFoFDE

m

CausevalidateValue exhoValidate
ChartOnlLeft False

=l Checkimage

- Checked]

¢ PartialChecked 0

“ Unchecked 0
ColumnAutoResize True

Columns
ColumnzAlowSizing Falze

ConditionalFormats
ContinueColumnScrol True
CountLockedColumns]
DataSource [None)

B start Fiter... -

Chart

Gets the chart object.

MHame £ Walue -
AllowChartScrolHeader True F
AllpwChartScrollPage Falze

- Allew CreateBar exCreateBarAuto
AllowInsideZoom True
AllowLinkBars True
AllpwMonworkingBars Falze
AllowOverviewZoom exZoomOnRClick E
AllowResizeChart exAllowResizeChartHeader ex...
AllpwResizelnzideZoom Falze
Allow SelectDate exSelectToggle exSelectZone
Allow SelectObjects exSelectBars0nly exSelectSin. ..

- AllewlUndoRedo False

=l Columns

¢ [Duration L&

Lo Allow Sizing True
¢ AllpwDragging True

: - AllowSort True

- # End

=] allcmdh &

Chart v

Gets the chart object.

property PropertiesList.FirelncludeProperty as Boolean

Retrieves or sets a value that indicates whether the IncludeProperty event is fired.

A Boolean expression that indicates whether the
Boolean e
IncludeProperty event is fired.
By default, the FirelncludeProperty is True. Use the FirelncludeProperty to allow the control
filtering properties using the IncludeProperty event. If the FirelncludeProperty is False, the
control doesn't fire the IncludeProperty event. Use the FirelncludeProperty property on
False, when your properties browser doesn't require custom filtering, to increase the speed
of loading objects into the browser.

The following sample excludes the "hPal" variable of a Picture property:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
If Property.Variable = True Then
If Property.Name = "hPal" Then
Cancel = True
End If
End If
End Sub

property PropertiesList.Font as IFontDisp

Retrieves or sets the control's font.

IFontDisp A Font object used to paint the items.

Use the Font property to change the font object used to paint the items. An object property
appears as bolded.

property PropertiesList.ForeColor as Color

Retrieves or sets a value that indicates the control's foreground color.

Color A Color expression that indicates the control's foreground
color.

The ForeColor property determines the foregound color used to paint the items. Use

BackColor property to change the control's background color.

property PropertiesList.ForeColorCategories as Color

Specifies the category items foreground color.

A color expression that indicates the category items

Color
foreground color..

Use the ForeColorCategories and BackColorCategories properties to customize the color
for category items. The ForeColorCategories property has effect only if the
ShowCategories property is True. Use the ForeColor property to define the control's
foreground color.

The following sample displays the control's categories:

Private Sub Form_Load()
With PropertiesList1
Haslines = False
.BackColorCategories = vbBlue
.ForeColorCategories = vbWhite
ShowCategories = True
ShowPropertyPages = False
Select PropertiesList1.0Object
End With
End Sub

http:ll'www exontrol.com

bt 2687632

InvalidvalueMezzage Invalid property value.

MameftemsCollection Marme; Caption; tem
SelectedProperty

Wersion 1.0.53.5 DEBUG

Font
Retrieves or zets the control's fort.

property PropertiesList.ForeColorDescription as Color

Specifies the description's foreground color.

A color expression that indicates the foreground color for
Color \ e

control's description bar.
Use the ForeColorDescription property to change the the foreground color for control's
description bar. Use the BackColorDescription property to change the background color for
control's description bar. Use the DescriptionVisible property to show or hide the property's
description bar. Use the DescriptionHeight property to define the height of the property's
description bar, in pixels.

property PropertiesList.ForeColorHeader as Color

Specifies the header's foreground color.

A color expression that indicates the background color of

Color :
the control's header bar.

Use the BackColorHeader and ForeColorHeader to customize colors in the control's header

bar. Use the HeaderVisible property to show the control's header. bar.

property PropertiesList.FormatAnchor(New as Boolean) as String

Specifies the visual effect for anchor elements in HTML captions.

A Boolean expression that indicates whether to specify the

New as Boolean .) :
anchors never clicked or anchors being clicked.

A String expression that indicates the HTMLformat to

String apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = ", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

property PropertiesList.GridLineColor as Color

Retrieves or sets the grid line color.

Color A color expression that indicates the grid line color.

Use the GridLineColor property to specify the control's grid line color. The HasLines
property tnhances the graphic representation of a tree control's hierarchy by drawing lines
that link child items to their parent items.

property PropertiesList.HasButtons as ExpandButtonEnum

Adds a button to the left side of each parent item. The user can click the button to expand
or collapse the child items as an alternative to double-clicking the parent item.

An ExpandButtonEnum expression that indicates whether

D e the left side button of each parent item is visible or hidden.

By default, the HasButtons property is exPlus. The HasButtons property defines the visual
appearance for the expanding/collapsing buttons. The HasButtonsCustom property
specifies the index of icons being used for +/- signs on parent items, when HasButtons
property is exCustom.

The following VB sample changes the +/- button appearance:

With PropertiesList1
.HasButtons = ExpandButtonEnum.exWPlus
End With

The following C++ sample changes the +/- button appearance:
m_PropertiesList.SetHasButtons(3 /*exWPlus*/);

The following VB.NET sample changes the +/- button appearance:

With AxPropertiesList1
.HasButtons = EXPROPERTIESLISTLib.ExpandButtonEnum.exWPlus
End With

The following C# sample changes the +/- button appearance:
axPropertiesList1.HasButtons = EXPROPERTIESLISTLib.ExpandButtonEnum.exWPlus;
The following VFP sample changes the +/- button appearance:

with thisform.PropertiesList1
.HasButtons = 3 && exWPlus
endwith

property PropertiesList.HasButtonsCustom(Expanded as Boolean) as
Long

Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

A boolean expression that indicates the sign being

Expanded as Boolean changed.

A long expression that indicates the icon being used for +/-
signs on the parent items. The last 7 bits in the high
significant byte of the long expression indicates the
identifier of the skin being used to paint the object.

Long

Use the HasButtonsCustom property to assign custom icons to the +/- signs on the parent
items. The HasButtonsCustom property has effect only if the HasButtons property is
exCustom. Use the Images, Replacelcon methods to add new icons to the control, at
runtime. Use the HTMLPicture property to display icons in the node's caption.

The following VB sample specifies different (as in the screen shot) +/- signs for the
control:

With PropertiesList1
.BeginUpdate
JImages
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEalEaEEaAlAkcbkOolUrlktlOvmExn

.HasGridLines = exNoLines

.HasButtons = exCustom

.HasButtonsCustom(False) = 1

.HasButtonsCustom(True) = 2

HTMLPicture("S1") =
"gAAAABgYACEHgUJFEEAAWAUJCEJEEJggEhMCYEXjUbjkJQECj8gj8hAEjkshQEpADAIKJf8C

With Add("I1", "", ReadOnly)
HTMLName = "S1 Item 1"

End With

With .Add("Subitem 1", ", Edit, , "I1")

End With

With .Add("Subitem 1.1", ", Edit, , "Subitem 1")
End With
With .Add("Subitem 2", ", Edit, , "I1")
End With
.EndUpdate
End With

- 'EE‘ ttem 1
H;-]-- Subitemn 1
- Sybitem 2

property PropertiesList.HasGridLines as GridLinesEnum

Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

A GridLinesEnum expression that indicates whether the

GridLinesEnum grid lines are visible or hidden.

Use the HasGridLine property to show or hide the grid lines. The grid lines are painted to
mark columns and items. Use the HasLines to draw the lines that link child items to their
parent items. Use HasButtons property to hide the buttons displayed at the left of each
parent item.

property PropertiesList.HasLines as Boolean

Enhances the graphic representation of a tree control's hierarchy by drawing lines that link
child items to their parent items.

Boolean A boolean expression that indicates whether the control
draws the lines that link child items to their parents.
Use the HasGridLines property to draw the grid lines. Use the Indent property to specify
the amount, in pixels, that child items are indented relative to their parent items. Use the
Autolndent property to indicate whether child items are automatically indented.

property PropertiesList.HeaderAppearance as AppearanceEnum

Retrieves or sets a value that indicates the header's appearance.

An AppearanceEnum expression that indicates the

AppearanceEnum \
= header's appearance.

Use the HeaderAppearance property to change the appearance of the control's header bar.
Use the HeaderVisible property to hide the control's header bar. Use the BackColorHeader
and ForeColorHeader properties to define the background/foreground colors for the
control's header bar.

property PropertiesList.HeaderEnabled as Boolean

Enables or disables the control's header.

A boolean expression that specifies whether the control's

Boolean header is enabled or disabled.

By default, the HeaderEnabled property is True. The HeaderEnabled property enables or
disables the control's header. If the header is disabled, the user can't resize, sort or drag
and drop any column. The HeaderVisible property shows or hides the control's header.

property PropertiesList.HeaderHeight as Long

Retrieves or sets a value indicating the control's header height.

A Long expression that specifies the height of the control's

Long header (in pixels).

By default, the height of the header bar is 18 pixels. The HeaderHeight property has effect
while the control's header bar is visible. The user can use the control's header bar to sort or
order the visible columns. The HeaderVisible property indicates whether the control's
header bar is visible or hidden. Use the BackColorHeader and ForeColorHeader properties
to define the background/foreground colors for the control's header bar. Use the
ColumnCaption property to change the column's caption.

Name £ Value
HideSelection alse
hind 22158
IncrementalSearch exStartiith
Indent 14
IndextemsCollection 0

InvalidalueMes=age Invalid property value.

m

LinkCategories True
MarkCategories Falze
MarkLineColor |:| &H20000003&
NametemsCollection Mame;Caption;tem
=
exDateFirstWeekDay 0
exDateMarkToday -1

exDateMonths January February Mar... _

Option
Specifies an option for the editor.

property PropertiesList.HeaderVisible as Boolean

Retrieves or sets a value that indicates whether the control's header is visible or hidden.

A boolean expression that indicates whether the control's
Boolean . :
header is visible or hidden.

By default, the control's header bar is hidden. The user can use the control's header bar to
sort or order the visible columns. If the HeaderVisible property is True, the control shows its

header bar. If the header bar is visible, the user is able to resize the columns by dragging
the mouse. For instance, you can show the control's header and set the ColumnAutoResize
property to False to let the user be able to resize the columns at runtime. Use the
BackColorHeader and ForeColorHeader properties to define the background/foreground
colors for the control's header bar. Use the ColumnCaption property to change the column's
caption. Use the ColumnsAllowSizing property to specify whether the user can resize the
columns at run-time, even if the control's header bar is hidden. The HeaderHeight property
specifies the height of the control's header bar. Use the HeaderAppearance property to
change the appearance of the control's header bar.

Mame £ Walue -
Incrementalzearch startviith
Indent 14

IndextemsCollection 0

InvalidvalueMessage Invalid property value.

LinkCategories True
MarkCategories False
MarkLineColor [[] aHao000003&

MametemsCollection Mame;Caption; tem

exDateFirstWeekDay 0
exDateMarkToday -1
ex[ateMonths January February Mar...
exDateShowScroll -1
exDateShowToday... -1
exDateTodavCaotion Todawv

Option
Specifiez an option for the editor.

The following VB6 sample displays the control's header bar:

Private Sub Form_Load()
With PropertiesList1
.BeginUpdate
HeaderVisible = True
.ColumnCaption(0) = "Property"

Select .Object
.EndUpdate
End With
End Sub

property PropertiesList.HideSelection as Boolean

Specifies whether selected property appears selected when the control loses focus.

A boolean expression that indicates whether selected
Boolean

property appears selected when the control loses focus.
Use the HideSelection property to hide the selection when the control loses the focus. By
default, the HideSelection property is False.

property PropertiesList.HotBackColor as Color

Retrieves or sets a value that indicates the hot-tracking background color.

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

Color

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The SelBackColor property specifies the selection background color.

The following sample displays a different background color mouse passes over an item.

VBA (MS Access, Excell...)

With PropertiesList1
.BeginUpdate
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select PropertiesList1
EndUpdate

End With

VB6

With PropertiesList1
.BeginUpdate
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select PropertiesList1
EndUpdate

End With

VB.NET

With Expropertieslist
.BeginUpdate()
.HotBackColor = Color.FromArgb(0,0,128)
HotForeColor = Color.FromArgb(255,255,255)
Select(Expropertieslist1)
.EndUpdate()

End With

VB.NET for /COM

With AxPropertiesList1
.BeginUpdate()
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select(AxPropertiesList1.GetOcx())
.EndUpdate()

End With

C++

/*

Copy and paste the following directives to your header file as

it defines the namespace 'EXPROPERTIESLISTLib' for the library: 'ExPropertiesList
1.0 Control Library'

#import <ExPropertiesList.dll>

using namespace EXPROPERTIESLISTLIib;
*/
EXPROPERTIESLISTLib::IPropertiesListPtr spPropertiesList1 =
GetDlgltem(IDC_PROPERTIESLIST1)->GetControlUnknown();
spPropertiesList1->BeginUpdate();
spPropertiesList1->PutHotBackColor(RGB(0,0,128));
spPropertiesList1->PutHotForeColor(RGB(255,255,255));
spPropertiesList1->Select(spPropertiesList1);
spPropertiesList1->EndUpdate();

C++ Builder

PropertiesList1->BeginUpdate();
PropertiesList1->HotBackColor = RGB(0,0,128);
PropertiesList1->HotForeColor = RGB(255,255,255);
PropertiesList1->Select(PropertiesList1);
PropertiesList1->EndUpdate();

C#

expropertieslist1.BeginUpdate();
expropertieslist1.HotBackColor = Color.FromArgb(0,0,128);
expropertieslist1.HotForeColor = Color.FromArgb(255,255,255);
expropertieslist1.Select(expropertieslist1);
expropertieslist1.EndUpdate();

JavaScript

<OBJECT classid="clsid:A703DF80-DFF3-48D7-A4C7-47CF6A48425C"
id="PropertiesList1"></OBJECT >

<SCRIPT LANGUAGE="JScript">
PropertiesList1.BeginUpdate();
PropertiesList1.HotBackColor = 8388608;
PropertiesList1.HotForeColor = 16777215;
PropertiesList1.Select(PropertiesList1);
PropertiesList1.EndUpdate();

</SCRIPT>

C# for /|COM

axPropertiesList1.BeginUpdate();
axPropertiesList1.HotBackColor = Color.FromArgb(0,0,128);
axPropertiesList1.HotForeColor = Color.FromArgb(255,255,255);
axPropertiesList1.Select(axPropertiesList1.GetOcx());
axPropertiesList1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{

super();

expropertieslist1.BeginUpdate();
expropertieslist1.HotBackColor(WinApi::RGB2int(0,0,128));
expropertieslist1.HotForeColor(WinApi::RGB2int(255,255,255));
expropertieslist1.Select(expropertieslist1);
expropertieslist1.EndUpdate();

}

Delphi 8 (.NET only)

with AxPropertiesList1 do

begin
BeginUpdate();
HotBackColor := ColorFromArgb(0,0,128);
HotForeColor := ColorFromArgb(255,255,255);
Select(AxPropertiesList1);
EndUpdate();

end

Delphi (standard)

with PropertiesList1 do

begin
BeginUpdate();
HotBackColor := RGB(0,0,128);
HotForeColor := RGB(255,255,255);
Select(PropertiesList1);
EndUpdate();

end

VFP

with thisform.PropertiesList1

.BeginUpdate
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select(thisform.PropertiesList1)
EndUpdate

endwith

dBASE Plus

local oPropertiesList

oPropertiesList = form.Activex1.nativeObject
oPropertiesList.BeginUpdate()
oPropertiesList. HotBackColor = 0x800000
oPropertiesList. HotForeColor = Oxffffff
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

XBasic (Alpha Five)

Dim oPropertiesList as P

oPropertiesList = topparent:CONTROL_ACTIVEX1.activex
oPropertiesList.BeginUpdate()

oPropertiesList. HotBackColor = 8388608
oPropertiesList. HotForeColor = 16777215
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
oDCOCX_Exontrol1:Select(oDCOCX_Exontrol1)

oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPropertiesList

oPropertiesList = ole_1.0bject
oPropertiesList.BeginUpdate()

oPropertiesList. HotBackColor = RGB(0,0,128)
oPropertiesList. HotForeColor = RGB(255,255,255)
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual DataFlex

Procedure OnCreate
Forward Send OnCreate
Send ComBeginUpdate
Set ComHotBackColor to (RGB(0,0,128))
Set ComHotForeColor to (RGB(255,255,255))
Send ComSelect (pvComObject(Self))
Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main

LOCAL oForm
LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
LOCAL oPropertiesList

oForm := XbpDialog():new(AppDesktop())
oForm:drawingArea:clipChildren := .T.

oForm:create(,,{100,100}, {640,480}, .F.)
oForm:close := {|| PostAppEvent(xbeP_Quit)}

oPropertiesList := XbpActiveXControl():new(oForm:drawingArea)

oPropertiesList:CLSID := "Exontrol.PropertiesList.1" /*{A703DF80-DFF3-48D7-
A4C7-47CF6A48425CH/

oPropertiesList:create(, {10,60},{610,370})

oPropertiesList:BeginUpdate()

oPropertiesList:SetProperty("HotBackColor",AutomationTranslateColor(
GraMakeRGBColor ({0,0,128}) ,.F.))

oPropertiesList:SetProperty("HotForeColor",AutomationTranslateColor(
GraMakeRGBColor ({?255,255,255}) ,.F))

oPropertiesList:Select(oPropertiesList)

oPropertiesList:EndUpdate()

oForm:Show()
DO WHILE nEvent = xbeP_Quit
nEvent := AppEvent(@mp1, @mp2, @oXbp)
oXbp:handleEvent(nEvent, mp1, mp2)
ENDDO
RETURN

property PropertiesList.HotForeColor as Color

Retrieves or sets a value that indicates the hot-tracking foreground color.

A color expression that indicates the foreground color for

Color item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The SelForeColor property specifies the selection foreground color.

The following sample displays a different background color mouse passes over an item.

VBA (MS Access, Excell...)

With PropertiesList1
.BeginUpdate
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select PropertiesList1
EndUpdate

End With

VB6

With PropertiesList1
.BeginUpdate
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select PropertiesList1
EndUpdate

End With

VB.NET

With Expropertieslist1
.BeginUpdate()
.HotBackColor = Color.FromArgb(0,0,128)
HotForeColor = Color.FromArgb(255,255,255)

Select(Expropertieslist1)
.EndUpdate()
End With

VB.NET for /COM

With AxPropertiesList1
.BeginUpdate()
.HotBackColor = RGB(0,0,128)
.HotForeColor = RGB(255,255,255)
Select(AxPropertiesList1.GetOcx())
.EndUpdate()

End With

C++

/*

Copy and paste the following directives to your header file as

it defines the namespace 'EXPROPERTIESLISTLib' for the library: '"ExPropertiesList
1.0 Control Library'

#import <ExPropertiesList.dll>

using namespace EXPROPERTIESLISTLib;
*/
EXPROPERTIESLISTLib::IPropertiesListPtr spPropertiesList1 =
GetDlgltem(IDC_PROPERTIESLIST1)->GetControlUnknown();
spPropertiesList1->BeginUpdate();
spPropertiesList1->PutHotBackColor(RGB(0,0,128));
spPropertiesList1->PutHotForeColor(RGB(255,255,255));
spPropertiesList1->Select(spPropertiesList1);
spPropertiesList1->EndUpdate();

C++ Builder

PropertiesList1->BeginUpdate();
PropertiesList1->HotBackColor = RGB(0,0,128);
PropertiesList1->HotForeColor = RGB(255,255,255);

PropertiesList1->Select(PropertiesList1);
PropertiesList1->EndUpdate();

expropertieslist1.BeginUpdate();
expropertieslist1.HotBackColor = Color.FromArgb(0,0,128);
expropertieslist1.HotForeColor = ColorFromArgb(255,255,255);
expropertieslist1.Select(expropertieslist1);
expropertieslist1.EndUpdate();

JavaScript

<OBJECT classid="clsid:A703DF80-DFF3-48D7-A4C7-47CF6A48425C"
id="PropertiesList1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
PropertiesList1.BeginUpdate();
PropertiesList1.HotBackColor = 8388608;
PropertiesList1.HotForeColor = 16777215;
PropertiesList1.Select(PropertiesList1);
PropertiesList1.EndUpdate();

</SCRIPT>

C# for |ICOM

axPropertiesList1.BeginUpdate();
axPropertiesList1.HotBackColor = Color.FromArgb(0,0,128);
axPropertiesList1.HotForeColor = Color.FromArgb(255,255,255);
axPropertiesList1.Select(axPropertiesList1.GetOcx());
axPropertiesList1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{

super();

expropertieslist1.BeginUpdate();
expropertieslist1.HotBackColor(WinApi::RGB2int(0,0,128));
expropertieslist1.HotForeColor(WinApi::RGB2int(255,255,255));
expropertieslist1.Select(expropertieslist1);
expropertieslist1.EndUpdate();

}

Delphi 8 (.NET only)

with AxPropertiesList1 do

begin
BeginUpdate();
HotBackColor := Color.FromArgb(0,0,128);
HotForeColor := ColorFromArgb(255,255,255);
Select(AxPropertiesList1);
EndUpdate();

end

Delphi (standard)

with PropertiesList1 do

begin
BeginUpdate();
HotBackColor := RGB(0,0,128);
HotForeColor := RGB(255,255,255);
Select(PropertiesList1);
EndUpdate();

end

VFP

with thisform.PropertiesList1
.BeginUpdate
.HotBackColor = RGB(0,0,128)

.HotForeColor = RGB(255,255,255)
Select(thisform.PropertiesList1)
EndUpdate

endwith

dBASE Plus

local oPropertiesList

oPropertiesList = form.Activex1.nativeObject
oPropertiesList.BeginUpdate()
oPropertiesList. HotBackColor = 0x800000
oPropertiesList. HotForeColor = Oxffffff
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

XBasic (Alpha Five)

Dim oPropertiesList as P

oPropertiesList = topparent:CONTROL_ACTIVEX1.activex
oPropertiesList.BeginUpdate()

oPropertiesList. HotBackColor = 8388608
oPropertiesList. HotForeColor = 16777215
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
oDCOCX_Exontrol1:Select(oDCOCX_Exontrol1)
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPropertiesList

oPropertiesList = ole_1.0bject
oPropertiesList.BeginUpdate()

oPropertiesList. HotBackColor = RGB(0,0,128)
oPropertiesList. HotForeColor = RGB(255,255,255)
oPropertiesList.Select(oPropertiesList)
oPropertiesList.EndUpdate()

Visual DataFlex

Procedure OnCreate
Forward Send OnCreate
Send ComBeginUpdate
Set ComHotBackColor to (RGB(0,0,128))
Set ComHotForeColor to (RGB(255,255,255))
Send ComSelect (pvComObject(Self))
Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main

LOCAL oForm
LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
LOCAL oPropertiesList

oForm := XbpDialog():new(AppDesktop())
oForm:drawingArea:clipChildren := .T.
oForm:create(,,{100,100}, {640,480}, .F.)
oForm:close := {|| PostAppEvent(xbeP_Quit)}

oPropertiesList := XbpActiveXControl():new(oForm:drawingArea)

oPropertiesList:CLSID := "Exontrol.PropertiesList.1" /*{A703DF80-DFF3-48D7-
AA4CT7-47CF6A48425C}H/

oPropertiesList:create(, {10,60},{610,370})

oPropertiesList:BeginUpdate()

oPropertiesList:SetProperty("HotBackColor",AutomationTranslateColor(
GraMakeRGBColor ({0,0,128}) , .F.))

oPropertiesList:SetProperty("HotForeColor",AutomationTranslateColor(
GraMakeRGBColor ({255,255,255}) ,.F.))

oPropertiesList:Select(oPropertiesList)

oPropertiesList:EndUpdate()

oForm:Show()
DO WHILE nEvent != xbeP_Quit
nEvent := AppEvent(@mp1, @mp2, @oXbp)
oXbp:handleEvent(nEvent, mp1, mp2)
ENDDO
RETURN

property PropertiesList. HTMLPicture(Key as String) as Variant

Adds or replaces a picture in HTML captions.

A String expression that indicates the key of the picture
Key as String being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

¢ a string expression that indicates the path to the
picture file, being loaded.

¢ a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.

Variant e A Picture object that indicates the picture being added

or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). Use the HTMLName property to display HTML
format in the Name column.

t Falette S_lrlgteml

https://exontrol.com/eximages.jsp

The following template sample adds two properties and a custom size picture for each
property:

BeginUpdate

HasGridLines = False

DefaultltemHeight = 52

HTMLPicture("floppy") = "D:\Temp\lcons\3floppy_1mount.gif"
HTMLPicture("hard") = "D:\Temp\lcons\3floppy_mount.gif"
Add("Floppy", "", EditColor).HTMLName = "floppyFloppy"
Add("Hard", "", EditColor).HTMLName = "hard Hard"
EndUpdate

property PropertiesList.hWnd as Long

Retrieves the control's window handle.

Long A long expression that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an

application by assigning it a handle, or hWnd. The hWnd property is used with Windows API

calls. Many Windows operating environment functions require the hWnd of the active

window as an argument.

method PropertiesList.Ilmages (Handle as Variant)

Sets the control's image list at runtime.

Handle as Variant

The Handle parameter can be:

e A string expression that specifies the ICO file to add.

The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (sfring, loads the
icon using its path)

A string expression that indicates the BASEG4
encoded string that holds the icons list. Use the
Exontrol's Eximages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (sfring, loads icons using base64
encoded string)

A reference to a Microsoft ImagelList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)

A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)

A long expression that identifies a handle to an Image
List Control (the Handle should be of HHIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
IIVal field, as VT I8 type. The LONGLONG /
LONG_PTRis __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hlmagelList)) or Images(COleVariant(
(LONGLONG)hImagelList)), where himageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the ClmagelList gets the HHMAGELIST handle (long,
loads icon from HIMAGELIST type)

Use the Images method to attach a list of icons to the control. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection. At
runtime, the user can use the Images and Replacelcon method to change the Images
collection. Use the HTMLName property to assign built-in HTML format to a property. In
design mode, user can add icons to the control using the control's Template page. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor. It's a nice feature and we don't

want you to miss it.

e Place the control to your form or dialog.

e Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.

e Click it, and locate the Template page.

e Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The Template feature lets you to use a simple x-script language to call properties and
methods of the control at design as well at runtime. You can use this feature to build x-

script strings to pass them at runtime.

For instance, the following template sample adds three properties and assign an icon to
each of them, using the tag.

BeginUpdate
Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihClo2 AEZJQAJEZFEalEaEEaAlAkcbkOolUrlktl

Add("lcon1","",1).HTMLName = "1lcon 1"
Add("lcon2","",1).HTMLName = "2lcon 2"
Add("lcon3","",1).HTMLName = "3lcon 3"
EndUpdate

property PropertiesList.IlmageSize as Long

Retrieves or sets the size of icons the control displays.

A long expression that defines the size of icons the control

Long displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property PropertiesList.lncrementalSearch as AutoSearchEnum

Specifies whether the incremental search feature looks for starting of the property or if it
contains the typed characters.

An AutoSearchEnum expression that specifies whether the
AutoSearchEnum control searches for the start of or if contains the typed
characters.

By default, the IncrementalSearch property is exStartWith. Use the IncrementalSearch
property to define a 'contains' incremental search. For instance, if the IncrementalSearch
property is exContains + exMoveOnTop, the items are re-arranged so, the first items
contain the typed characters, while the rest stay unchanged. In case the exMoveOnTop flag
is included, the FilterBarPromptVisible property should be True, else it has no effect. Use
the ExpandOnSearch property to automatically expand parent items as user types
characters.

""""" | AlowEiTEars]
LinksColor . SHO000000E
LinkzStyle exLinkTDot
LinksWidth 1 E
Showlinks [+

4r ShowlLinksColor
qr ShowlinksStyle
qr ShowlLinksWidth

DrawGridLines exhoLines
OverviewLevelLines -1
InsideZoomOnDbIClick v

SelectOnClick v
AdjustlevelsToBase P
AllowCreateBar exCreateBarfuto
AllowinsideZoom 7
AllowOverviewZoom exZoomOnRClick
AllowHesizelnsideZoom v
AllowSelectDate v

Allow SelectObjects

AllowUndoRedo il

BackColor |:| &H20000005&
BackColorLevelHeader [] 8H20000004&
BarsAllowSizing 7
DateTickerLabel ===t mmme=</b= <%d%=, "...

4r DefaultinsideZoomFor...

- ' - ' S Ty e T -

AllowLinkBars
Specifies whether the user can link the bars using the mouse.

property PropertiesList.Indent as Long

Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

A long expression that indicates the amount, in pixels, that

Long child items are indented relative to their parent items

Use the Indent property to increase or decrease the amount, in pixels, that child items are
indented relative to their parent items. By default, the Indent property is 14 pixels. If the
Indent property is 0 ,the control displays no indent for child items. Use the Autolndent
property to specify whether the control automatically indents the child items.

property PropertiesList.IndexlitemsCollection as Long

Retrieves or sets a value that indicates the base index when control enumerates the items
in the collection.

A long expression that indicates the base index of the

Lon) .)
9 items in a collection.

By default, the IndexltemsCollection property is 0. Use the IndexltemsCollection to specify
the base index of the items in a object of collection type. Use the NameltemsCollection
property to specify the possible name of the properties that could indicate the caption of the
items in the collection.

property PropertiesList.Interfaces (Object as IlUnknown FAR*) as String

Retrieves the interfaces implemented by the object.

Object as IUnknown FAR* An object being queried.

A string expression that indicates the list of the interfaces

String implemented by the object.

The following sample prints the interfaces implemented by the extended control object:

Private Sub Form_Load()
MsgBox PropertiesList1.Interfaces(PropertiesList1)
End Sub

| ko

|Dizpatch

_WBControlE stender
|PropertiesLizt
|PropertiesList

|Propertyt atifySink
|ProvideClazslnfo

| CannectionPaintContainer
| SuppartE rrarl niao

Control

The following sample prints the interfaces implemented by the object itself:

Private Sub Form_Load()
MsgBox PropertiesList1.Interfaces(PropertiesList1.0Object)
End Sub

Projectl

property PropertiesList.lnvalidValueMessage as String

Retrieves or sets a value that indicates the error message displayed by browser when
changing the property's value fails.

A string expression that indicates the error message that
String is displayed by the control when changing property's value
fails.

No message occurs if the InvalidValueMessage is empty. By default the The
InvalidValueMessage property is "Invalid property value."

property PropertiesList.ltem (Index as Variant) as Property

Returns a Property object based on its index.

A long expression that indicates the index of the Property

Index as Variant being requested

Property A Property object being accessed.

Use the Item property to access a property by its index. Use the Property property to
access a Property giving its identifier. Use the Count property to get the number of items in
the control. Use the Item and Count properties to enumerate the properties/items in the
control.

The following sample enumerates the properties in the control:

With PropertiesList1
Dimi As Long
Fori =0 To .Count - 1
Debug.Print .Item(i).Name
Next
End With

The following sample enumerates the properties in the control using the for each statement:

Dim p As EXPROPERTIESLISTLibCtl.Property
For Each p In PropertiesList1

Debug.Print p.Name
Next

property PropertiesList.Layout as String

Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

columns size and position

current selection

scrolling position and size
expanded/collapsed properties, if any
sorting columns

filtering options

These properties are serialized to a string and encoded in BASE64 format.
The following movies show how Layout works:
e (=] The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is
displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

e multiplesort="";singlesort="", removes any previously sorting

e multiplesort="C3:1", sorts ascending the column with the index 3 (and add it to the sort
bar if visible)

e singlesort="C4:2", sorts descending the column with the index 4 (it is not added to sort
bar panel)

e multiplesort="C3:1";singlesort="C4:2", sorts ascending the column with the index 3 (

https://www.youtube.com/watch?v=TbWWnDJlD9w

and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3 and 4.

e multiplesort="C3:1 C5:2";singlesort="C4:2", sorts ascending the column with the index
3 (and add it to the sort bar if visible), sorts descending the column with the index 5 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3, 5 and 4.

The format of the Layout in non-encoded form is like follows:

cOfiltertype=0
c0.position=0
cO.select=0
cO.visible=1
cO.width=96

columns=13
collapse="0-3 5-63 80-81 83"
filterprompt=""

focus=8
focuscolumnindex=0
hasfilter=1

hscroll=0
multiplesort="C12:1 C2:2"
searchcolumnindex=3
select="392 13 8"
selectcolumnindex=0
singlesort="C5:2"
treecolumnindex=0
vscroll=12
vscrolloffset=0

property PropertiesList.LinkCategories as Boolean

Retrieves or sets a value that indicates whether the categories are linked.

A boolean expression that indicates whether the
Boolean) :
categories are linked.

By default the LinkCategories property is True. The LinkCategories has effect only if the
ShowCategories is True. Use the MarkCategories property to mark categories.

property PropertiesList.MarkCategories as Boolean

Specifies whether the categories are splited by separator lines.

A boolean expression that indicates whether the

Boolean)
categories are marked.

By default, the MarkCategories property is False.

The following sample shows how to split the categories using the MarkLineColor and
MarkCategories properties:

With PropertiesList1
.BeginUpdate

HasGridLines = False

DescriptionVisible = False

ShowCategories = True

LinkCategories = False

MarkCategories = True

MarkLineColor = vbBlack

' Adds a category

Add "Appearance"”, "", ReadOnly

' Adds items to 'Appearance' category

With .Add("Border", 0, EditEnum, , "Appearance")
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed"

End With

Add "Width", 64, Edit, , "Appearance"

Add "Height", 64, Edit, , "Appearance"

Expandltem("Appearance") = True

' Adds a category

Add "Misc", "", ReadOnly

' Adds items to 'Misc' category

Add "ControlBox", True, EditBoolean, , "Misc"

Add "KeyPreview", False, EditBoolean, , "Misc"

Refresh

.EndUpdate
End With

http-l'www exontrol.com B

El- Appearance

i Barder 0 - Mane
- yiictth B4

" Height g4

E- Misc

' CantrolBo True
KeyPreview Falze

property PropertiesList.MarkLineColor as Color

Retrieves or sets a value that indicates the color of lines that splits the categories.

A color expression that indicates the color of lines that
Color : :
splits the categories.

Use the MarkLineColor property to specify the color of lines that splits the categories. Use
the MarkLineColor property has effect only if the MarkCategories property is True and
ShowCategories is True.

The following sample shows how to split the categories using the MarkLineColor and
MarkCategories properties:

With PropertiesList1
.BeginUpdate

HasGridLines = False

DescriptionVisible = False

ShowCategories = True

LinkCategories = False

MarkCategories = True

MarkLineColor = vbBlack

' Adds a category

Add "Appearance"”, "", ReadOnly

' Adds items to 'Appearance' category

With .Add("Border", 0, EditEnum, , "Appearance")
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed"

End With

Add "Width", 64, Edit, , "Appearance"

Add "Height", 64, Edit, , "Appearance"

Expandltem("Appearance") = True

' Adds a category

Add "Misc", "", ReadOnly

' Adds items to 'Misc' category

Add "ControlBox", True, EditBoolean, , "Misc"

Add "KeyPreview", False, EditBoolean, , "Misc"

Refresh

.EndUpdate
End With

property PropertiesList.NameltemsCollection as String

Retrieves or sets a list of property's names separated by semicolon (;), that are used by
properties browser when it requires a name for an item into a collection.

A string expression that indicates a list of property's
names separated by semicolon (;), that are used by
properties browser when it requires a name for an item
into a collection.

String

By default, the NameltemsCollection is "Name;Caption;ltem". Change the
NameltemsCollection is your collection has different item's names. During loading the
control uses the NameltemsCollection property to determine the name of each element into
collection, if it is a collection of objects. If the ltemCollection property is True use the Object
property to find the owner collection. For instance, if the collection contains only strings, the
items added to browser's list will be numerated. Instead if the collection contains another
objects, it uses the NameltemsCollection property to determine the caption that will be
displayed on the name column. Use the IndexltemsCollection to specify the base index of
the items in a object of collection type.

property PropertiesList.Option(Name as OptionEnum) as Variant

Specifies an option for the editor.

An OptionEnum expression that indicates the option being

Name as OptionEnum
changed.

Variant A Variant value that indicates the option's newly value.

Use the Option property to change particular options for a specified type editor. Use the
Option property to customize the strings or behavior for different editors. For instance, you
can specify the filter for EditFile properties, or specify the months for a drop down calendar
control. The Option property applies the options to all editors, while the Option property of
Property object may specify different options for different entries in the control. For
instance, you can display a filter for some EditFile entries, and other filters for other EditFile
entries in the same control.

In conclusion, you can specify options for the editors as follows:

e the same settings for all editors using Option property (by default).
e custom settings for the editor of an entry/property using the Property.Object property

The following VB sample customizes the EditDate editor to display strings in Romanian
language:

With PropertiesList1

.Option(exDateTodayCaption) = "Azi"

.Option(exDateMonths) = "lanuarie Februarie Martie Aprilie Mai lunie lulie August
Septembrie Octombrie Decembrie"

.Option(exDateWeekDays) = "DLM M JV S"

.Option(exDateFirstWeekDay) = 1

Add "Date", Date, EditDate
End With

The following VB sample changes the default filter for EditFile editors :

With PropertiesList1
.Option(exEditFileFilter) = "INI Files|*.ini;*.init|All (*.*)[*.*"
.Option(exEditFileTitle) = "Select an INI file"
Add "INI", "c\temp\test.ini", EditFile, "Selects a file", "Custom"
End With

property PropertiesList.Property (Property as Variant) as Property

Gets a Property object given property's name or property's identifier.

A string expression that indicates the property's name. or

Property as Variant a long expression that indicates the property's identifier.

Property A Property object being accessed.

Use the Property property to access at runtime to the control items. Use the Item property
to access a Property by its index. Use the ID property to retrieve the property's identifier.
The property's identifier is defined when adding new properties using the Add method. Use
the SelectedProperty to retrieve the selected property.

property PropertiesList.ReadOnly as Boolean

Gets or sets whether the properties browser is read-only.

A boolean expression that indicates whether the properties

Boolean)
browser is read-only.

Use the ReadOnly property to disable editing properties. By default, the ReadOnly property

is False. Use the Enabled property to disable the control. Use the Locked property to lock a

property. Use the Enabled property to disable a property.

method PropertiesList.Refresh ()

Refreshes the properties values.

Refreshes the control. Use the BeginUpdate and EndUpdate methods to maintain
performances while adding new entries. If a property is added manually, using the Add
method, you need to call the Value property each time when you need to refresh the
property's value. In case the properties list browses a COM object, using the Select
method, you need to call the Refresh method to refresh the values for the properties in the
browser, in case some changes occurs to the browsed object or if you need to. Also, if a
property contains another COM object (EditObject type), the Refresh method updates the
values for all browsed properties.

Use the Refresh method when adding values to a drop down editor like in the following
sample:

With PropertiesList1
.BeginUpdate
Add "Appearance"”, "", ReadOnly
With .Add("Border”, 0, EditEnum, , "Appearance")
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed"
End With
.Refresh
.EndUpdate
End With

If the Refresh method is not called in the above sample, the value for the Border property
will be empty, because the predefined list of values for Border property were added after
adding the property Border.

method PropertiesList.Remove (Property as Variant)

Removes a property from the list.

: A string expression that indicates the property's name, or
Property as Variant : - 2 .
a long expression that indicates the property's identifier.
The Remove method removes a property. The Remove method removes recursively the
items/properties. Use Clear method if you need to clear the entire collection.

method PropertiesList.Replacelcon ([lcon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Icon as Variant

Index as Variant

Long

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)

a string expression that indicates the path to the
picture file

a string expression that defines the picture's content
encoded as BASEG64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is O, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

A long expression that defines the index of the icon to
insert or remove, as follows:

e A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the lcon parameter is zero)

¢ A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

A long expression that indicates the index of the icon in the
images collection

Use the Replacelcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the Replacelcon property can clear the images collection. Use the Images
method to attach an image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following sample shows how to add a new icon to control's images list:

i = PropertiesList1.Replacelcon(LoadPicture("d:\icons\help.ico").Handle), where i is the
index to insert the icon

The following sample shows how to replace an icon into control's images list::

i = PropertiesList1.Replacelcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case
the i is zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:
PropertiesList1.Replacelcon 0, i, in this case the i is the index of the icon to remove
The following sample shows how to clear the control's icons collection:

PropertiesList1.Replacelcon 0, -1

property PropertiesList.ScrollButtonHeight as Long

Specifies the height of the button in the vertical scrollbar.

A long expression that defines the height of the button in

Long the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property PropertiesList.ScrollButtonWidth as Long

Specifies the width of the button in the horizontal scrollbar.

A long expression that defines the width of the button in

Long the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property PropertiesList.ScrollFont (ScrollBar as ScrollIBarEnum) as
IFontDisp

Retrieves or sets the scrollbar's font.

A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

ScrollBar as ScrollBarEnum

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property PropertiesList.ScrollHeight as Long

Specifies the height of the horizontal scrollbar.

A long expression that defines the height of the horizontal

Long scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property PropertiesList.ScrollOrderParts(ScrollBar as ScrollBarEnum)
as String

Specifies the order of the buttons in the scroll bar.

A ScrollBar expression that indicates the scrollbar where

ScrollBar as ScrollBarEoum o' 4o of buttons is displayed.

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like |, I1, ...,

String 15, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

L1 |L2 | L3|Ld L5 | < ¥ R1|RZ|R3|R4 R5| R

so, the order of the parts is: 11, 12, 13, 14, 15, |, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,11,r1" puts the left and right buttons to the left of the thumb area, and the I1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

£l > L1 | R1|LZ (L3 | L4 L5 Rz R3|R<4 RS RE

The list of supported literals in the ScrollOrderParts property is:

e | for exLeftBPart, (<) The left or top button.

e |1 for exLeftB1Part, (L1) The first additional button, in the left or top area.

12 for exLeftB2Part, (L2) The second additional button, in the left or top area.

I3 for exLeftB3Part, (L3) The third additional button, in the left or top area.

14 for exLeftB4Part, (L4) The forth additional button, in the left or top area.

I5 for exLeftBSPart, (L5) The fifth additional button, in the left or top area.

t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.

¢ r for exRightBPart, (>) The right or down button.

e r1 for exRightB1Part, (R1) The first additional button in the right or down side.
e r2 for exRightB2Part, (R2) The second additional button in the right or down side.
e r3 for exRightB3Part, (R3) The third additional button in the right or down side.
e r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
e r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
e r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,|,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property PropertiesList.ScrollPartCaption(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as String

Specifies the caption being displayed on the specified scroll part.

A ScrollBar expression that indicates the scrollbar where

ScrollBar as ScrollBarEnum the caption is displayed.

A ScrollPartEnum expression that specifies the parts of

Part as ScrollPartEnum the scroll where the text is displated

A String expression that specifies the caption being

String displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the ScrollFont property to specify the font in the
control's scroll bar.

[:
v exThumbPart [(R s e |
---------------- - Ly —— i_exLlpperElan:kPar‘t

| ;
i exLoverBackPart | Lo v e 4
Lo T R T, i — o Il
. '\ | .'I JEEEe
e 1 e
v

Ll L2 | L3 e 5|« s il R1| R2| R3| R4 | RS |RG

By default, the following parts are shown:

o exLeftBPart (the left or up button of the control)

e exLowerBackPart (the part between the left/up button and the thumb part of the
control)

e exThumbPart (the thumb/scrollbox part)

o exUpperBackPart (the part between the the thumb and the right/down button of the
control)

e exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With PropertiesList1
.BeginUpdate
ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

ScrollPartCaption(exVScroll, exLeftB1Part) = " 1"
ScrollPartCaption(exVScroll, exRightB1Part) = " 2"
.EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxPropertiesList1
.BeginUpdate()
set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part Or
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, True)
set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part, " 1")
set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, " 2")
.EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axPropertiesList1.BeginUpdate();
axPropertiesList1.set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollIBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part |
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, true);
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part , " 1");
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, " 2");
axPropertiesList1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_propertiesList.BeginUpdate();
m_propertiesList.SetScrollBars(15 /*exDisableBoth*/);
m_propertiesList.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/, _T("
1"));

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/, _T("
2"));

m_propertiesList.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.PropertiesList1
.BeginUpdate
ScrollPartVisible(0, bitor(32768,32)) = t.
ScrollPartCaption(0,32768) = "1"
ScrollPartCaption(0, 32) = " 2"
.EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait Itrim(str(scrollpart))

property PropertiesList.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum

Specifies the alignment of the caption in the part of the scroll bar.

A ScrollBar expression that indicates the scrollbar where

ScrollBar as ScrollBarEnum the caption is displayed.

A ScrollPartEnum expression that specifies the parts of

Part as ScrollPartEnum the scroll where the text is displayed

An AlignmentEnum expression that specifies the alignment

AlignmentEnum of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

property PropertiesList.ScrollPartEnable(ScrollBar as ScrolIBarEnum,
Part as ScrollPartEnum) as Boolean

Indicates whether the specified scroll part is enabled or disabled.

A ScrollBar expression that indicates the scrollbar where

ScrollBar as ScrollBarEnum the part is enabled or disabled.

A ScrollPartEnum expression that specifies the parts of

Part as ScrollPartEnum the scroll bar being enabled or disabled.

A Boolean expression that specifies whether the

Boolean scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar.

................ — Loy r—--—--—- 1 exUpperBackPart

| ;
DoexLowerBackPart | v jp e 4
Lo T R T, i — o Il
'\\\._ l'\ = I|I ___-'.__.:-"'-
e 1 e
»

Ll L2 | L3 e 5|« s il R1| R2| R3| R4 | RS |RG

property PropertiesList.ScrollPartVisible(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean

Indicates whether the specified scroll part is visible or hidden.

A ScrollBar expression that indicates the scrollbar where

ScrollBar as ScrollBarEnum the part is visible or hidden.

A ScrollPartEnum expression that specifies the parts of

Part as ScrollPartEnum the scroll bar being visible

A Boolean expression that specifies whether the

Boolean scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the Background property to change the visual appearance for
any part in the control's scroll bar.

[
v exThumbPart [(R s e |
---------------- - Ly —— i_exLlpperElan:kPar‘t

| ;
i exLoverBackPart | Lo v e 4
Lo T R T, i — o Il
. '\ | .'I JEEEe
e 1 e
v

Ll L2 | L3 e 5|« s il R1| R2| R3| R4 | RS |RG

By default, the following parts are shown:

o exLeftBPart (the left or up button of the control)

e exLowerBackPart (the part between the left/up button and the thumb part of the
control)

e exThumbPart (the thumb/scrollbox part)

o exUpperBackPart (the part between the the thumb and the right/down button of the
control)

e exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With PropertiesList1
.BeginUpdate
ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

ScrollPartCaption(exVScroll, exLeftB1Part) = " 1"
ScrollPartCaption(exVScroll, exRightB1Part) = " 2"
.EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxPropertiesList1
.BeginUpdate()
set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part Or
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, True)
set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part, " 1")
set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, " 2")
.EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axPropertiesList1.BeginUpdate();
axPropertiesList1.set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollIBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part |
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, true);
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part , " 1");
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, " 2");
axPropertiesList1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_propertiesList.BeginUpdate();
m_propertiesList.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/, _T("
1"));

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/, _T("
2"));

m_propertiesList.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.PropertiesList1
.BeginUpdate
ScrollPartVisible(0, bitor(32768,32)) = .t.
ScrollPartCaption(0,32768) = "1"
ScrollPartCaption(0, 32) = " 2"
.EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait Itrim(str(scrollpart))

property PropertiesList.ScrollIThumbSize(ScrollBar as ScrollBarEnum)
as Long

Specifies the size of the thumb in the scrollbar.

A ScrollBarEnum expression that indicates the vertical or

ScrollBar as ScrollBarEnum the horizontal scroll bar.

A long expression that defines the size of the scrollbar's

Long thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property PropertiesList.ScrollToolTip(ScrollBar as ScrollIBarEnum) as
String

Specifies the tooltip being shown when the user moves the scroll box.

A ScrollBarEnum expression that indicates the vertical

ScrollBar as ScrollBarEnum)
scroll bar or the horizontal scroll bar.

A string expression being shown when the user clicks and

String moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar.

property PropertiesList.ScrollWidth as Long

Specifies the width of the vertical scrollbar.

A long expression that defines the width of the vertical

Long scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonWidth property to specify the
width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify the
height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the height
of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify the
visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a fixed
size for the scrollbar's thumb.

property PropertiesList.SelBackColor as Color

Retrieves or sets a value that indicates the selection background color.

A color expression that indicates the selection background

Color
color.

Use the SelBackColor and SelForeColor properties to define the colors for selected
property. Use the HotForeColor property to specify a different foreground color for property
when cursor hovers it. Use the HotBackColor property to specify a different background
color for property when cursor hovers it.

method PropertiesList.Select (Object as Object)

Browses a new object to control.

Object as Object An Obiject being browsed.

Use the Select method to browse the properties of a COM object. Use the SelectedObject
property to browse properties of .NET objects (objects in the .NET framework). If the
FirelncludeProperty is True, the Select method invokes the IncludeProperty event to let user
filters the properties being browsed. Use the Add method to insert custom entries to the
list.

The following VB sample browses the properties of the object itself (including the
properties of the extended control, Visible, Top, and so on):

| PropertiesList1.Select PropertiesList1
The following VB sample browses only the properties of the object itself:
| PropertiesList1.Select PropertiesList1.0bject

The following C++ sample browses the control's properties:

IDispatch* pObject = NULL;

if (SUCCEEDED(m_propertieslist. GetControlUnknown()->QuerylInterface(IID_IDispatch,

(LPVOID*)&pObiject)))

{
m_propertieslist.Select(pObject);
pObject->Release();

}

In case you are using ATL (atlbase.h) classes you can use a code like follows:

CComQlIPtr<IDispatch> spObject(m_propertieslist. GetControlUnknown());
m_propertieslist.Select(spObject);

The following VB.NET sample browses the control's properties:

| AxPropertiesList1.CtISelect(AxPropertiesList1.GetOcx())

The following C# sample browses the control's properties:

axPropertiesList1.CtlSelect(axPropertiesList1.GetOcx());

The following VFP sample browses the control's properties:

with thisform.PropertiesList1
Select(.Object)
endwith

If the Select method is called, and you need immediately after the list of browsed
properties the following trick is required:

Private Type POINTAPI
x As Long
y As Long

End Type

Private Type MSG

hwnd As Long

message As Long

wParam As Long

|IParam As Long

time As Long

pt As POINTAPI
End Type
Private Declare Function PeekMessage Lib "user32" Alias "PeekMessageA" (IpMsg As MSG,
ByVal hwnd As Long, ByVal wMsgFilterMin As Long, ByVal wMsgFilterMax As Long, ByVal
wRemoveMsg As Long) As Long
Private Const PM_NOREMOVE = &HO0
Private Declare Function TranslateMessage Lib "user32" (IpMsg As MSG) As Long
Private Declare Function DispatchMessage Lib "user32" Alias "DispatchMessageA" (IpMsg
As MSG) As Long

' The list of properties is not immediately available, so we need to proceeds few messages
Private Sub waitSelect(ByVal h As Long)

Dim m As MSG

While PeekMessage(m, h, 0, 0, 1)

TranslateMessage m

DispatchMessage m
Wend
End Sub

The following sample uses the trick, to expand the "Appearance" item:

Private Sub Form_Load()
With PropertiesList1
.BeginUpdate
HasLines = False
ShowCategories = True
MarkCategories = True
Select PropertiesList1.0Object

waitSelect .hwnd

Expandltem("Appearance") = False
EndUpdate
End With
End Sub

Note that if the waitSelect method is not called, the "Appearance" item is still expanded.

In VC++ the waitSelect method looks like follows:

// Function name : waitSelect

// Description :The list of properties is not immediately available, so we need to
proceeds few messages

// Return type :void

// Argument : HWND h

void waitSelect(HWND h)

{

MSG m = {0};
while (PeekMessage(&m, h, 0, 0, PM_REMOVE))
{

TranslateMessage(&m);
DispatchMessage(&m);

}

The following VB sample browses the Form contains that hosts the ExPropertiesList
control:

| PropertiesList1.Select Me

The following VB sample clears the browsed object:

| PropertiesList1.Select Nothing

The following VB sample browses an object and its categories:

Private Sub Form_Load()
With PropertiesList1
.BeginUpdate
HasLines = False
ShowCategories = True
MarkCategories = True
Select PropertiesList1.0Object
EndUpdate
End With
End Sub

http:lNwww exontrol.com

[Calar)

(Fort)
Appearance
Behavior

= Font
Font Arial
El Misc
e 1835506
Invalid slueMeszage Imvalid propery value.
MametemsCollection Matne; Caption; kem
-l SelectedProperty
BiackCalor [:Ho00000002 |
Category True
Categaryilame d|
BackColor

Specifies the property's background calor.

property PropertiesList.SelectedObject as Variant

Browses a new object (com or .net) in the control.

A Variant expression that holds a COM object or a .NET

Variant object

Use the SelectedObject property to browse the properties of a .NET object. If the
FirelncludeProperty is True, the Select method invokes the IncludeProperty event to let user
filters the properties being browsed. Use the Add method to insert custom entries to the
list. Use the Select method to browse properties of .COM objects.

The following VB.NET sample browses the properties of the form that contains the control:

| AxPropertiesList1.SelectedObject = Me

The following C# sample browses the properties of the form that contains the control:

| axPropertiesList1.SelectedObject = this;

property PropertiesList.SelectedProperty as Property

Retrieves a Property object that is currently selected.

Property A Property object that is currently selected.

Use the SelChange event to notify your application when the current selection is changed.
Use the Property property to retrieve a property giving its index or its name. Use the
Selectable property to prevent a property to be selected.

The following sample prints the name and the type of the selected property (for instance,
the sample is useful to find out the type of the property selected, when you need to include
or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()
Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.

The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

property PropertiesList.SelForeColor as Color

Retrieves or sets a value that indicates the selection foreground color.

Color A color expression that indicates the selection foreground
color.

Use the SelBackColor and SelForeColor properties to define the colors for selected

property. Use the HotForeColor property to specify a different foreground color for property

when cursor hovers it. Use the HotBackColor property to specify a different background

color for property when cursor hovers it.

property PropertiesList.ShowCategories as Boolean

Retrieves or sets a value whether the browser includes the object categories.

A boolean expression indicating whether the browser
Boolean : . .
includes the object categories.
The ExPropertiesList control has the ability to categorize the object properties. Use the
ShowCategories to display the object categories. Use the BackColorCategories and
ForeColorCategories properties to define the background/foreground colors for category
items. The LinkCategories specifies whether the control links the categories. Use the
CategoryName property to get the property's category name. The Category property
checks whether an items is category item or a property item. Use the DefaultCategory
property to specify the default category. The default category includes all properties that
have no category associated.

The following sample displays the control's categories:

Private Sub Form_Load()
With PropertiesList1
Haslines = False
.BackColorCategories = vbBlue
.ForeColorCategories = vbWhite
ShowCategories = True
ShowPropertyPages = False
Select PropertiesList1.0Object
End With
End Sub

bt 2687632

InvalidvalueMeszzage Invalid property value.

MameftemsCollection Marme; Caption; tem
SelectedProperty

Wersion 1.0.53.5 DEBUG

Font
Retrieves or zets the control's fort.

property PropertiesList.ShowHidden as Boolean

Retrieves or sets a value that indicates whether the properties browser displays the hidden
members.

A boolean expression that indicates whether the properties

Boolean browser displays the hidden members.

Use the ShowHidden property to show hidden members. Changing the ShowHidden
property at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowltemsCollection as Boolean

Retrieves or sets a value that indicates whether the properties browser includes the
elements of a property that contains a collection.

A boolean expression that indicates whether the properties
Boolean browser includes the elements of a property that contains
a collection.

Use the ShowltemsCollection property to expand properties that export collections. If you
want to browse the collections, make sure that ShowObijects property is True. Changing the
ShowltemsCollection property at runtime invokes refreshing the control.

property PropertiesList.ShowMultipleParams as Boolean

Specifies whether the control loads properties with multiple parameters.

A Boolean expression that indicates whether the control

Boolean loads properties that have multiple parameters.

By default, the ShowMultipleParams property is True. Use the ShowMultipleParams
property to include properties with multiple parameters when browsing a COM object, using
the Select method. If the ShowMultipleParams property is True, only the properties with
parameters of predefined type like enumeration or boolean are included. For instance, the
property Grid.ltemFromPoint (X as OLE_XPOS PIXELS, Y as OLE_YPOS_ PIXELS,
Colindex as Long, HitTestinfo as HitTestinfoEnum) as HITEM can't be included in the
browser, because it contains parameters that are not predefined like long type. The Name
property indicates the name of the property. If the property includes multiple parameters,
the Name property displays the name of the property and the parameters separated by
comma, like "Background(exButtonDown)". If the property has a single parameter, the
Description property indicates the description of the value in the predefined type. The Value
property indicates the value of the property. Use the ToString property to save the control's
properties and values to a string. Use the EditProperty option when adding a new property,
to add properties one at the time, with none, one or more parameters.

For instance, let's say that we browse the eXGrid control that includes the "property
Grid.Background(Part as BackgroundPartEnum) as Color. The property returns or sets
a value that indicates the background color for parts in the control.". The Background
property has a single parameter of BackgroundPartEnum type (enumeration type). The
Background property retrieves different values based on the Part parameter. The Part
parameter is of BackgroundPartEnum type. When the control includes the Background
property, it combines all parameters with their values, and add a new property for each, as
seen bellow.

https://exontrol.com/content/products/exgrid/help/Grid_Background.htm

BackColorSortBar . EHOO0BTES3DE -l
BackCalor=ortBarC. . . SHO1FFO0002
= Background J
exButtonDoswn . &HO40000005 j
exButtonlp I :Hos0000008
exCelButtonDo...] aHos0000004
exCelButtonllp] aH040000004
exDateHeacder . &HD40000003
exDatescrolRa... . EHOE0000003
exDateScrolThu... JJ] #H0s0000002
exDateSelect Il zHosoooo00:
exDateSeparato. . . SHOG000000

exDateTodayDo. .. . EHOG0000002
B EC R ol WO

Background{exButtonDown)

exButtonDowen. Specifies the visual appearance for
the button inside the editar, swhen it iz down.

This feature is new, and it is not available for other propertieslist controls. For instance,
browses the ExPropertiesList with another browser, and check if the Option property is
included in the browser? Definitely, this property may be browsed using the
ExPropertiesList control.

property PropertiesList.ShowNonBrowsable as Boolean

Retrieves or sets a value that indicates whether the control displays the non browseable
members.

A boolean expression indicating whether the control

Boolean displays the non browseable members.

Use the ShowNonBrowsable property to include non browseable members. Changing the
ShowNonBrowsable property at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowObjects as Boolean

Retrieves or sets a value that indicates whether the properties browser includes the
properties of object type.

A boolean expression that indicates whether the properties
Boolean) : :
browser includes the properties of object type.

Use the ShowObjects property to let the control browsing the properties of object type.
Changing the ShowQObijects at runtime invokes refreshing the control.

property PropertiesList.ShowPropertyPages as Boolean

Retrieves or sets a value that indicates whether the properties browser displays the object
property pages.

A boolean expression that indicates whether the properties

Boolean browser displays the object property pages.

Use the ShowPropertyPages property to include the properties pages of the browsed
object. Changing the ShowPropertyPages at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowReadOnly as Boolean

Retrieves or sets a value that indicates whether the properties browser displays the read
only properties.

A boolean expression that indicates whether the properties

Boolean browser displays the read only properties.

Use the ShowReadOnly property to exclude properties that read only. Use the ReadOnly
property to make the control editable. A read only member appears as grayed. Changing
the ShowPropertyPages at runtime invokes refreshing the control. Here's a sample that
shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

property PropertiesList.ShowRestricted as Boolean

Retrieves or sets a value that indicates whether the properties browse displays the
restricted members.

A boolean expression that indicates whether the properties

Boolean browse displays the restricted members.

Use the ShowRestricted property to include restricted members. Changing the
ShowPropertyPages at runtime invokes refreshing the control.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

method PropertiesList.ShowToolTip (ToolTip as String, [Title as
Variant], [Alignment as Variant], [X as Variant], [Y as Variant])

Shows the specified tooltip at given position.

The ToolTip parameter can be any of the following:

e NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed

e A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

ToolTip as String

The Title parameter can be any of the following:

e missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
Title as Variant changed.
e A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft

1 - exTopRight

2 - exBottomLeft

3 - exBottomRight
0x10 - exCenter

0x11 - exCenterlLeft
0x12 - exCenterRight
0x13 - exCenterTop

e 0x14 - exCenterBottom

Alignment as Variant

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

Specifies the horizontal position to display the tooltip as
one of the following:

e missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)

e -1, indicates the current horizontal position of the

X as Variant cursor (current x-position)

¢ a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)

¢ a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Specifies the vertical position to display the tooltip as one
of the following:

e missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)

e -1, indicates the current vertical position of the cursor
(current y-position)

e a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)

¢ a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Y as Variant

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

e ShowToolTip("<null>", <null>",,"+8","+8"), shows the tooltip of the object moved relative

to its default position

e ShowToolTip("<null>", new title’), adds, changes or replaces the title of the object's
tooltip

e ShowToolTip('new content’), adds, changes or replaces the object's tooltip

e ShowToolTip('new content’, new title’), shows the tooltip and title at current position

e ShowToolTip('new content’, new title’,,"+8","+8"), shows the tooltip and title moved
relative to the current position

e ShowToolTip('new content’,"",,128,128), displays the tooltip at a fixed position

e ShowToolTip("", "), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

o ... displays the text in bold

e <i> ... </i> displays the text in italics

e <u> ... </u> underlines the text

o <s> .. </s> Strike-through text

e <aid;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

o ... displays portions of text with a different font and/or

different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

o <fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

e <bhgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

¢ <solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

o <dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

e <upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.

key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, O if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

9 :
<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb

represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

shadow

or "<font;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

eutlinefantizaliasing

property PropertiesList.ShowVariables as Boolean

Retrieves or sets a value that indicates whether the control displays the object variables.

A boolean expression that indicates whether the control

Boolean displays the object variables.

For instance, the properties of IFontDisp (font) type has variables like: Name, Size, and so
on. Changing the ShowVariables at runtime executes a refresh of the browsed control. If
you want to filter the object properties that has some special flags you can use Flags
property of Property object.

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

method PropertiesList.Sort ([Ascending as Variant], [Reserved as
Variant])

Sorts the control.

A boolean expression that indicates the sort order. True

Ascending as Variant : :
means ascending, False means descending.

Reserved as Variant Reserved.

The Sort method sorts the properties. Use the SortObjects property to specify if the object
properties should be placed on top or bottom side of the control once the user sorts a
column. Use the SortOnClick property to specify whether a column gets sorted once the
user clicks the column's header. Use the Sortable property to specify an un-sortable
property.

property PropertiesList.SortObjects as SortObjectsEnum

Specifies how the object properties are positioned once a Sort occurs.

The SortObjectsEnum expression that specifies how the

SortObjectsEnum . .
objects are positioned once the user sorts a column.

By default, the SortObjects property is exSortObjectsDefault. Use the SortObjects property
to specify if the object properties should be placed on top or bottom side of the control
once the user sorts a column. The Sort method sorts programmatically the control. Use the
SortOnClick property to specify whether a column gets sorted once the user clicks the
column's header. Use the Sortable property to specify an un-sortable property.

The following sample shows a sorted control, when SortObjects property is
exSortObjectsDefault:

EditOnKey 15 -
EditOnSelect False
Enabled True
ExpandOnSearch Falze
FiterBarPrompt <i==fgcolor=308080=5tart Fiter. </fgcol... |=
FiterBarPromptPattern
FiterBarPromptVisible exFilterBarHidden
FirelncludeProperty True
et T ————————
ForeColor |i| &HE0000008&
ForeColorCategories |:| SHE0000003&
ForeColorDescription |E| SHE0000012&
ForeColorHeader |§| &HE0000008& -

Font
Retrieves or 2ets the controls font.

The following sample shows a sorted control, when SortObjects property is
exSortObjectsTop:

- N -

ScrollFont{ScrollBarEnum)
ToolTipFont
VisualAppearance

E

(Color)

(Font})

(Template)

(WVizual Design}

AllowDrop Falze

Allow DuplicateEntries True

Allow MuttipleValuesOnEnum Falze

Allow Spin Falze

AllowSpy Falze -
Font

Retrieves or sets the controls font.

property PropertiesList.SortOnClick as SortOnClickEnum

Retrieves or sets a value that indicates whether the control sorts automatically the data
when the user click on column's caption.

A SortOnClickEnum expression that indicates whether the
SortOnClickEnum control sorts the columns when clicking the control's
header.

By default, the SortOnClick property is exDefaultSort, that means that the control sorts the
column's being clicked. Use the SortOnClick property to disable sorting items when the user
clicks on the column's header. Use the HeaderVisible property to show or hide the control's
header. Use the ColumnsAllowSizing property to specify whether the user can resize a
column at runtime. Use the Sortable property to specify an un-sortable property.

property PropertiesList.Template as String

Specifies the control's template.

String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our Ul components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

e Place the control to your form or dialog.

e Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.

e Click it, and locate the Template page.

e Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for

newer versions of the components.
An x-script instruction/line can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)

e variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property” is the property name

of the object in the context. The "list or arguments"” may include variables or values
separated by commas. (Sample: h = Insertltem(0,"New Child"))

e property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.

e method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.

e { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dof)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

e boolean expression with possible values as True or False

e numeric expression may starts with Ox which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45

e date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971

e string expression is delimited by " or * characters. If using the * character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

o Me property indicates the original object.

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

e LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property PropertiesList.TemplateDef as Variant

Defines inside variables for the next Template/ExecuteTemplate call.

A string expression that indicates the Dim declaration, or
Variant any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
TemplateDef = [Dim var_Column]
TemplateDef = var_Column
Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
.Columns.Add("Column 1").Def(exCellBackColor) = 255
.Columns.Add "Column 2"
Items.AddItem O
Jtems.Addltem 1

Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)

TemplateDef = [Dim var_Column]

TemplateDef = var_Column

Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.ltems.AddItem(0)
Control.ltems.AddItem(1)
Control.ltems.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent: CONTROL_ACTIVEX1.activex

' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.ltems.AddItem(0)
Control.ltems.AddItem(1)
Control.ltems.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column®, which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)

e variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments” may include variables or values
separated by commas. (Sample: h = Insertltem(0, "New Child"))

o property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.

e method(list of arguments) Invokes the method. The "list or arguments” may include
variables or values separated by commas.

e { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

e boolean expression with possible values as True or False

e numeric expression may starts with Ox which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45

e date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971

e string expression is delimited by " or * characters. If using the = character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

e Me property indicates the original object.

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

o LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method PropertiesList.TemplatePut (NewVal as Variant)

Defines inside variables for the next Template/ExecuteTemplate call.

A string expression that indicates the Dim declaration, or
New\Val as Variant any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

e Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)

e variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property” is the property name
of the object in the context. The "list or arguments” may include variables or values
separated by commas. (Sample: h = Insertltem(0, "New Child"))

e property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.

e method(list of arguments) Invokes the method. The "list or arguments” may include
variables or values separated by commas.

e { Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.

e } Ending the object's context

e object. property(list of arguments).property(list of arguments).... The .(dof)
character splits the object from its property. For instance, the

Columns.Add("Column1”).HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

e boolean expression with possible values as True or False

e numeric expression may starts with Ox which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45

o date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971

o string expression is delimited by " or * characters. If using the = character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

o Me property indicates the original object.

e RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)

e LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

e CreateObject(proglD) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property PropertiesList.ToolTipDelay as Long

Specifies the time in ms that passes before the ToolTip appears.

A long expression that specifies the time in ms that passes
Long :
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip.

property PropertiesList.ToolTipFont as IFontDisp

Retrieves or sets the tooltip's font.

IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip

window.

property PropertiesList.ToolTipMargin as String

Defines the size of the control's tooltip margins.

A string expression that defines the horizontal and vertical
margins (separated by comma) of the control's tooltip as
one of the following formats:

e "value", where value is a positive number, that
specifies the horizontal and vertical margins, such as
"4" equivalent of "4,4"

e "value,", where value is a positive number, that

String specifies the horizontal margin, such as "4," equivalent
of "4,0"

e " value", where value is a positive number, that
specifies the vertical margin, such as ",4" equivalent
of "0,4"

¢ "horizontal,vertical", where horizontal and vertical are
positive numbers, that specifies the horizontal and
vertical margins, such as "4,4"

By default, the size of the tooltip margin is "4" (horizontal and vertical). For instance,
ToolTipMargin = "8" changes the horizontal and vertical margins are set to 8 pixels.
ToolTipMargin = "8,4" changes the horizontal margin to 8 pixels and the vertical margin to 4
pixels. The ToolTipWidth property specifies a value that indicates the width of the tooltip
window, in pixels. Use the ShowToolTip method to display a custom tooltip. Use the
ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears.

property PropertiesList.ToolTipPopDelay as Long

Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

A long expression that specifies the period in ms of time
Long the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip.

property PropertiesList.ToolTipWidth as Long

Specifies a value that indicates the width of the tooltip window, in pixels.

Long A long expression that indicates the width of the tooltip
window.
Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ShowToolTip method to display a custom tooltip.

Marme: Walle I:l
= FillStyle 1
[+ Font M5 Sans Serif
- FontBold Falze
- Fonthalic Falze
- FartMarme 5 Sans Serif
- FontSize 8.25
- Font=trikethru Falze
- FortTransparent True
- FontUnclerline Falze

- ForeColor | ForeColor
- HazDhc Returnsizets the foreground calor used

- Oz to dizplay text and graphics in an object.
- Height 2430 i
- HelpContextiD 1]
- it G4EE552

- lcon ({lcon)

[+ Image [] titmap)
- By Previewy Falze

] qan ;I

property PropertiesList.ToString (Type as ToStringEnum) as String

Saves the control's content to a string, as it is displayed.

A ToStringEnum expression that indicates whether the

Type as ToStringEnum values of the properties use literals or numbers.

A string expression that indicates the list of properties with

String their values.

The ToString property gets the list of properties with their values to a string, as they are
displayed. Use the ToString property to save the properties and their values to a string for
the object being browsed. The ToString(exLiterals) property lists the properties closely as
being displayed in the control. The ToString(exNumbers) property lists the properties being
displayed in the control, after the predefined literals are replaced. Use the Select method to
browse a COM object. Use the ExpandAll method to expand all items in the control.

Here's how the properties are listed, when the control browses the eXGrid control:

(Color)

(Font)

(Template)

Appearance = Sunken

ASClILower = "abcdefghijklmnopqrstuvwxyziéaariceecdiedoniaaionn”
ASCllUpper = "ABCDEFGHUKLMNOPQRSTUVWXYZUEAARLCEECDIEOONUUAIOUN"
AutoEdit = True

AutoSearch = True

BackColor = &H80000005;&

BackColorAlternate = &H00000000;&
BackColorHeader = & H8000000F;&
BackColorLevelHeader = &H8000000F;&
BackColorLock = &H80000005;&
BackColorSortBar = &H80000010;&
BackColorSortBarCaption = &H8000000F;&
Background(exButtonDown) = &H00000000;&
Background(exButtonUp) = &HO00000000;&
Background(exCellButtonDown) = &H00000000;&
Background(exCellButtonUp) = &H00000000;&
Background(exDateHeader) = &H00000000;&
Background(exDateScrollRange) = &H00000000;&

Background(exDateScrollThumb) = &H00000000;&
Background(exDateSelect) = &H00000000;&
Background(exDateSeparatorBar) = &H00000000;&
Background(exDateTodayDown) = &H00000000;&
Background(exDateTodayUp) = &HO00000000;&
Background(exDropDownButtonDown) = &H00000000;&
Background(exDropDownButtonUp) = &H00000000;&
Background(exFooterFilterBarButton) = &H00000000;&
Background(exHeaderFilterBarButton) = &H00000000;&
Background(exSelBackColorFilter) = &H00000000;&
Background(exSelectinPlace) = &H00000000;&
Background(exSelForeColorFilter) = &H00000000;&
Background(exSliderRange) = &H00000000;&
Background(exSliderThumb) = &H00000000;&
Background(exSpinDownButtonDown) = &H00000000;&
Background(exSpinDownButtonUp) = &H00000000;&
Background(exSpinUpButtonDown) = &H00000000;&
Background(exSpinUpButtonUp) = &H00000000;&
CauseValidateValue = False
ColumnAutoResize = True
Columns
Column 1

Alignment = LeftAlignment

AllowDragging = True

AllowSizing = True

AllowSort = True

AutoSearch = exStartWith

[AutoWidth = 24]

Caption = "Column 1"

Data

Def(exCellBackColor)

Def(exCellButtonAutoWidth) = 0

Def(exCellForeColor)

Def(exCellFormatLevel) =

Def(exCellHasButton) = 0

Def(exCellHasCheckBox) = 0

Def(exCellHasRadioButton) = 0

Def(exCellSingleLine) = -1
Def(exCellValueFormat) = 0
DefaultSortOrder = False
DisplayFilterButton = False
DisplayFilterDate = False
DisplayFilterPattern = True
DisplaySorticon = True
Editor

Appearance = NoApp

ButtonWidth = 13

DropDownAlignment = LeftAlignment

DropDownAutoWidth = exDropDownAutoWidth

DropDownMinWidth = 164

DropDownRows = 7

DropDownVisible = True

EditType = EditType

Locked = False

Mask = ""

MaskChar = 95

Numeric = exAllChars

Option(exAutoDropDownlList) = 0

Option(exAutoSearch) = 0

Option(exCalcButtonHeight) = 24

Option(exCalcButtons) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-,.,.+,="

Option(exCalcButtonWidth) = 24

Option(exCalcCannotDivideByZero) = "Cannot divide by zero."

Option(exCalcExecuteKeys) = -1

Option(exCalcPictureDown) =
Option(exCalcPictureUp) =
(
(
(
(
(
(
(
(

Option(exCheckValueQ) = 0
Option(exCheckValuet) = 1
Option(exCheckValue2) = 2
Option(exColorListShowName) = 0
Option(exColorShowPalette) = -1
Option(exColorShowSystem) = -1
Option(exDateAllowNullDate) = -1
Option(exDateFirstWeekDay) = 0

Option(exDateMarkToday) = 0
Option(exDateMonths) = "January February March April May June July August
September October November December”
Option(exDateShowScroll) = -1
Option(exDateShowTodayButton) = -1
Option(exDateTodayCaption) = "Today"
Option(exDateWeekDays) = "SMTW TF S"
Option(exDateWeeksHeader) = 0
Option(exDownArrow) = -1
Option(exDropDownlmage) = -1
Option(exEditDecimalSymbol) = 46
Option(exEditLimitText) = 0
Option(exEditLockedBackColor) = -2147483633
Option(exEditLockedForeColor) = 0
Option(exEditPassword) = 0
Option(exEditPasswordChar) = 42
Option(exEditRight) = 0
Option(exEditSelLength) = -1
Option(exEditSelStart) = 0
Option(exEndKey) = -1
Option(exExpandOnSearch) = 0
Option(exHomeKey) = -1
Option(exKeepSelBackColor) = 0
Option(exLeftArrow) = -1
Option(exMemoAutoSize) = -1
Option(exMemoDropDownAcceptReturn) = -1
Option(exMemoDropDownHeight) = 116
Option(exMemoDropDownWidth) = 128
Option(exMemoHScrollBar) = 0
Option(exMemoVScrollBar) = 0
Option(exPageDownKey) = -1
Option(exPageUpKey) = -1
Option(exProgressBarAlignment) = 0
Option(exProgressBarBackColor) = -2147483635
Option(exProgressBarMarkTicker) = -1
Option(exRightArrow) = -1
Option(exShowPictureType) = -1

Option(exSliderMax) = 100

Option(exSliderMin) = 0

Option(exSliderStep) = 1

Option(exSliderWidth) = 64
Option(exSpinStep) = 1
Option(exUpArrow) = -1
PartialCheck = False
PopupAppearance = ShadowApp
UserEditorObject

Enabled = True

Filter = ""

FilterBarDropDownWidth = 1

FilterList = exAllltems

FilterType = exAll

FireFormatColumn = False

FormatLevel = ""

HeaderAlignment = LeftAlignment

HeaderBold = False

Headerlmage = 0

HeaderlmageAlignment = LeftAlignment

Headerltalic = False

HeaderStrikeOut = False

HeaderUnderline = False

HeaderVertical = False

HTMLCaption = ""

[Index = 0]

Key = "

LevelKey

MaxWidthAutoResize = -1

MinWidthAutoResize = 0

PartialCheck = False

Position = 0

Selected = False

SortOrder = SortNone

SortPosition = -1

SortType = SortString

ToolTip = "...

Visible = True

Width = 269

WidthAutoResize = False

[Count = 1]

ColumnsAllowSizing = False
ContinueColumnScroll = True
CountLockedColumns = 0
DataSource
DefaultEditorOption(exAutoDropDownlList) = 0
DefaultEditorOption(exAutoSearch) = 0
DefaultEditorOption(exCalcButtonHeight) = 24
DefaultEditorOption(exCalcButtons) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0, +/-
I‘I+I=“
DefaultEditorOption(exCalcButtonWidth) = 24
DefaultEditorOption(exCalcCannotDivideByZero) = "Cannot divide by zero."
DefaultEditorOption(exCalcExecuteKeys) = -1
DefaultEditorOption(exCalcPictureDown) = "*
DefaultEditorOption(exCalcPictureUp) = "*
DefaultEditorOption(exCheckValue0) = 0
DefaultEditorOption(exCheckValue1) = 1
DefaultEditorOption(exCheckValue2) = 2
DefaultEditorOption(exColorListShowName) = 0
DefaultEditorOption(exColorShowPalette) = -1
DefaultEditorOption(exColorShowSystem) = -1
DefaultEditorOption(exDateAllowNullDate) = -1
DefaultEditorOption(exDateFirstWeekDay) = 0
DefaultEditorOption(exDateMarkToday) = 0
DefaultEditorOption(exDateMonths) = "January February March April May June July
August September October November December"
DefaultEditorOption(exDateShowScroll) = -1
DefaultEditorOption(exDateShowTodayButton) = -1
DefaultEditorOption(exDateTodayCaption) = "Today"
DefaultEditorOption(exDateWeekDays) = "SM TW TF S"
DefaultEditorOption(exDateWeeksHeader) = 0
DefaultEditorOption(exDownArrow) = -1
DefaultEditorOption(exDropDownlmage) = -1
DefaultEditorOption(exEditDecimalSymbol) = 46

DefaultEditorOption(exEditLimitText) = 0
DefaultEditorOption(exEditLockedBackColor) = -2147483633
DefaultEditorOption(exEditLockedForeColor) = 0
DefaultEditorOption(exEditPassword) = 0
DefaultEditorOption(exEditPasswordChar) = 42
DefaultEditorOption(exEditRight) = 0
DefaultEditorOption(exEditSelLength) = -1
DefaultEditorOption(exEditSelStart) = 0
DefaultEditorOption(exEndKey) = -1
DefaultEditorOption(exExpandOnSearch) = 0
DefaultEditorOption(exHomeKey) = -1
DefaultEditorOption(exKeepSelBackColor) = 0
DefaultEditorOption(exLeftArrow) = -1
DefaultEditorOption(exMemoAutoSize) = -1
DefaultEditorOption(exMemoDropDownAcceptReturn) = -1
DefaultEditorOption(exMemoDropDownHeight) = 116
DefaultEditorOption(exMemoDropDownWidth) = 128
DefaultEditorOption(exMemoHScrollBar) = 0
DefaultEditorOption(exMemoVScrollBar) = 0
DefaultEditorOption(exPageDownKey) = -1
DefaultEditorOption(exPageUpKey) = -1
DefaultEditorOption(exProgressBarAlignment) = 0
DefaultEditorOption(exProgressBarBackColor) = -2147483635
DefaultEditorOption(exProgressBarMarkTicker) = -1
DefaultEditorOption(exRightArrow) = -1
DefaultEditorOption(exShowPictureType) = -1
DefaultEditorOption(exSliderMax) = 100
DefaultEditorOption(exSliderMin) = 0
DefaultEditorOption(exSliderStep) = 1
DefaultEditorOption(exSliderWidth) = 64
DefaultEditorOption(exSpinStep) = 1
DefaultEditorOption(exUpArrow) = -1
DefaultltemHeight = 18

Description(exFilterBarAll) = "(All)"
Description(exFilterBarAnd) = " and "
Description(exFilterBarBlanks) = "(Blanks)"
Description(exFilterBarChecked) = "(Checked)"

Description(exFilterBarDate) = "Date:"

Description(exFilterBarDateMonths) = "January February March April May June July
August September October November December"

Description(exFilterBarDateTitle) = "Date"

Description(exFilterBarDateTo) = "to"

Description(exFilterBarDateTodayCaption) = "Today"

Description(exFilterBarDateTooltip) = "You can filter the items into a given interval of
dates. For instance, you can filter all items dated before a specified date (to 2/13/2004),
or all items dated after a date (Feb 13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)."

Description(exFilterBarDateWeekDays) = "SMTW TF S"
Description(exFilterBarFilterForCaption) = "Filter For:"
Description(exFilterBarFilterForTooltip) = "A pattern filter may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character, '|' determines the options in the pattern. For instance: '1*|2*'
specifies all items that start with '1' or '2". If the filter is of numeric type you can filter
numbers giving numeric rules. For instance, ">10 <100" filter indicates all numbers
greater than 10 and less than 100."

Description(exFilterBarFilterTitle) = "Filter"

Description(exFilterBarlsBlank) = "IsBlank"

Description(exFilterBarlsChecked) = "IsChecked"

Description(exFilterBarlsNonBlank) = "not IsBlank"

Description(exFilterBarlsUnchecked) = "not IsChecked"

Description(exFilterBarNonBlanks) = "(NonBlanks)"
Description(exFilterBarPatternFilterTitle) = "Pattern/Numeric Filter"
Description(exFilterBarPatternTooltip) = "You can select multiple filter items as many as
you like by keeping the CTRL key pressed. Start typing characters if you like to enter a filter
as a pattern that may include wild card characters like *,? or #. Press ENTER key to filter the
items using the typed pattern. If the filter is of numeric type you can filter numbers giving
numeric rules. For instance, ">10 <100" filter indicates all numbers greater than 10 and
less than 100."

Description(exFilterBarTooltip) = "You can select multiple filter items as many as you like
by keeping the CTRL key pressed. "

Description(exFilterBarUnchecked) = "(Unchecked)"

DetectAddNew = False

DetectDelete = False

DrawGridLines = exNoLines

[Editing = O]
Enabled = True
EnsureOnSort = True
ExpandOnDblClick = True
ExpandOnKeys = True
ExpandOnSearch = False
FilterBarBackColor = & H8000000F;&
FilterBarCaption = ""
FilterBarDropDownHeight = 0.5
FilterBarFont

Bold = True

Charset = 0

Italic = False

Name = "Arial"

Size = 8.25

Strikethrough = False

Underline = False

Weight = 700
FilterBarForeColor = &H80000008;&
FilterBarHeight = -1
FilterInclude = exltemsWithoutChilds
FocusColumnindex = 0

Font
Bold = False
Charset = 0
ltalic = False
Name = "Arial"
Size = 8.25

Strikethrough = False

Underline = False

Weight = 400
ForeColor = &H80000008;&
ForeColorHeader = & H80000008;&
ForeColorLock = &H80000008;&
ForeColorSortBar = & H80000010;&
FullRowSelect = exltemSel
GridLineColor = &H00889048;&

HasButtons = exPlus
HasButtonsCustom(False) = 0
HasButtonsCustom(True) = O
HasLines = exDotLine
HeaderAppearance = Raised
HeaderHeight = 18
HeaderVisible = True
HideSelection = False
[hWnd = 4391834]
HyperLinkColor = &HOOFF6531;&
Indent = 22
ltems
[(000) = 68282272]
Defaultltem = 0
[FirstVisibleltem = 68282272]
[Focusltem = 68282272]
[ItemCount = 1]
LockedltemCount(exBottom) = 0
LockedltemCount(exMiddle) = 0
LockedltemCount(exTop) = 0
PathSeparator = "\"
[RootCount = 1]
[SelectCount = 1]
SelectPos = 0
[VisibleCount = 1]
ItemsAllowSizing = False
LinesAtRoot = exNoLinesAtRoot
MarkSearchColumn = True
MarkTooltipCells = False
MarkTooltipCellsimage = 0
OLEDropMode = exOLEDropNone
Picture
PictureDisplay = Tile
PictureDisplayLevelHeader = Tile
PictureLevelHeader
Radiolmage(False) = 0
Radiolmage(True) = 0

RClickSelect = False

ReadOnly = exReadWrite

ScrollBars = exBoth

ScrollBySingleLine = False

ScrollPos(False) = 0

ScrollPos(True) = 0

SearchColumnindex = 0

SelBackColor = &H8000000D;&

SelBackMode = exOpaque

SelectByDrag = True

SelectColumnindex = 0

SelectColumnlinner = 0

SelForeColor = &H8000000E; &

ShowFocusRect = True

Showlmagelist = False

ShowLockedltems = True

SingleSel = True

SingleSort = True

SortBarCaption = "Drag a column header here to sort by that column.”
SortBarColumnWidth = -96

SortBarHeight = 18

SortBarVisible = False

SortOnClick = exDefaultSort

Template = "BeginUpdate\r\nColumns\r\n{\r\n\t"Column
T \\N\t{\r\n\t\tEditor\r\n\t\t{\r\n\t\t\tEditType =
INANE\AAN\AANN\NNItems\A\AN{\\N\tDim h\r\n\th = AddIltem(16)\r\n\tSelectltem(h) =
True\r\nA\r\nEndUpdate"

TooltipCellsColor = &HOOFF6531;&

ToolTipDelay = 500

ToolTipPopDelay = 5000

ToolTipWidth = 196

TreeColumnindex = 0

UnboundHandler

UseTabKey = True

Version = "3.1.0.3.DEBUG"

VirtualMode = False

VisualAppearance

property PropertiesList.UseVisualTheme as UlVisualThemeEnum

Specifies whether the control uses the current visual theme to display certain Ul parts.

An UlVisualThemeEnum expression that specifies which Ul
UlVisualThemeEnum parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known Ul parts are shown as in the current theme. The UseVisualTheme property may
specify the Ul parts that you need to enable or disable the current visual theme. The Ul
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

property PropertiesList.Version as String

Retrieves the control's version.

A string expression that indicates the version of the

String control.

The Version property retrieves the control's version.

property PropertiesList.VisibleltemCount as Long

Retrieves the number of visible items.

A long expression that specifies the number if visible

Long items.

The VisibleltemCount property provides valuable insight into the total count of visible items
within a given context. This count includes items that are currently visible on the screen as
well as those that are not visible due to scrolling. By encompassing both visible and
potentially hidden items, developers gain a comprehensive understanding of the complete
item count, facilitating more informed decision-making and enhanced user experiences. The
OversizeChanged event is triggered whenever there is a modification to the scroll range.
The DefaultitemHeight property specifies the default item's height, in pixels.

property PropertiesList.VisualAppearance as Appearance

Retrieves the control's appearance.

Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

Mlame £ v alue
Column&utoResize True
ColumnzAllow iz, True
Court
Date

DefaultCated (3 october 2006 M|
DefaultterrH =\ 7w T F =
Dezcriptionh 1 2 & d 5 57

De=cription & 910 11 12 15 14

DisplayColon
151617 18119 20
EditOnk ey

Etonsaed 22 23 24 25 26[27] 28
2913003 1; 2| 3i 4

Enabled
Firainciucer S R R
=l Font "}
Charset
ttalic Falze L
Date

Specifies the current date.

property PropertiesList.VisualDesign as String

Invokes the control's VisualAppearance designer.

A String expression that encodes the control's Visual

String Appearance.

By default, the VisualDesign property is ". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

e For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.

e Click here =/ to watch a movie on how you define the control's visual appearance using
the XP-Theme

e Click here =/ to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

L ™
T N IIIH--H- SAiAieA A A e e B =
Property Pages u

The Visual Design page allows you to change the visual appearance for different parts of the control. Right click or drag any EBN files to the left panel, and nesxt
click the EBM and drag to the part of the control you want to change its visual appearance.

Name [=] walue
[=] Expanded Property Walue]
]
Selected Property “alue
|
Hot Property “Walue I
[+] Collapsed Property Walue !
]
|
|]
|
]
]
= otart Filter.. -
control's tooltip i
[Hame] ="
]
Selected Property i
]

QK I Cancel | Apply |

F—
(S

The following picture shows the control's VisualDesign form after applying some EBN
objects:

i — 1l
Invokes the contrel's VisualAppearance designer. Properties u
Wisual Design
The Visual Design page allows you to change the visual appearance for different parts of the control. Right click or drag any EBM files to the left panel, and nest
click the EBN and drag to the part of the contral you want to change its visual appearance. 4564
@ Expanded Property “alue N
02
Selected Property “alue
05 [+ Hot Property Value
06 @ Collapzed Property “alue
*
07
08
03 _ Start Filter.. e
control's tooltip
[Hame] ="' S e
Selected Property
: o |
| oK || Cancel Apply

This layout generates the following code:

With PropertiesList1
VisualDesign =

"gBFLBWIgBAEHhEJAEGg6pBcHF4eAo0ABslIfj/jEJAcKhYEjgCicKA4GjgBA8cAgljgDBOCBAPjgJ(
&

"M_AAREEHfObAECIROoEcn8IALIoOSYAQG KIYBKAKBQAGaAoDDQOQ5QwWAAwWjCK8EwsACE!
&

"kA_YQEiKLoaRzAcwyDAcQRFCKUJxIKa5PjaL4OU BFRipGx4ASHIqLJygOSaLigAo/SAEUZ1FKs!
&

"] B'F8EzHI\/Iqu7q SgZfiKSgAUxcEpyJZsXxnGaQJ6jKalcrKfZxW5GYgRWINLQvLCsKRvezxQo +
&

"AA_\KO4chWIshEHAMGsJAAjWZRujoSS1 DcFxQg2XoABobRUGsGYMkcS4qDgblOllbwcjChb!
&

"gS_FANCYM4hISZBIBiSANkAeAZAiG 5ag0DYhCKCBOIlISgYguDg7HyRh6EyS5sncex9n8L4PIO
&

"szlAGASAOAaAIggg FgJgGYloAUAwmk4U5+BCBIhBg+4FGGCBSBqBZhjgZgcgSUAYyGCZA
&
"aI_/AMJRODOnggZIxYI40oOGOSJiD6DpjnidhAg3TFeD+ZBpCIR4SGSSQuE6EoIAkNthOZ
&

"gJT—IIYoXmYOYGGSFtM DIWYag+eYyG6GpnAmNhxhuZwplYdldmWFAMgkOF6G4fYfCeak8i(
&

"6D_q ElkmkKhWhGJZpEoYoWiYaQEAyAg3g+eh+4oKgghallpmoOomiaKoqgqglLoiECR5zHST:
&

"Gs_RAM HwNwPnsDpFjFpQmkiMpsHsNpKjOLJLD6RmihsEpVD+bR7GaVo2m2CxylgNxuAsft
&

"wE42nGOSvabIck2I5+ niPovhubp+j8cALnMAo/nAPAHASPpQDGQJZD +clsDMC5DHEDA/
&

"R4_X|WfWi kgchMOGSJyHyFwokf2 AolcP5ymyQwvkwcxMk8NpMjODIXDmTZziyRQDBmcp9A
&

§ F4_QII BzhBH+KgdQehLCpFWOobQzhVitHWBocwtRXDgEQBkLQAQP;7A8MsWQbBthOGiILL
&

"uI—TZLYerREB hbHcPMX47xOAGHE6MAd7Lw4B3A + PwH4ExiBxC4G8DKwA + CPA6MkOQHBPg!
&

"w(_)g nCKNIecHRDB5A+POL7Tw6jdEeGEbI9R +ivDKNsOwnRfhcECJkA40R/jeHuPOe4gRwj4Ci
&

"fw_fojoDO F4V4gR1j6D8M8Vo7Q9geG+KQQImgzjBH+PAfgfwLjJHMPwb4TxlyAA+Gcao9h+

&
" + O8ekzhyj/D8MQBgbwHy4ACGAHgBhAGQBCAUIA2E/DgDIBAQIOAJAEKoMgH4hx + AXEG
&
"A(;CAM8b|+ hChHHMBYIQmAtBI9CQBKAIAIEFCIOF2jhRwsFJIKWUwoAAQiIUhKkVQgxW CtFcl
&
"dy_8l7L6X8WngCiOGGGQWAOQCCKBG CgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcT
&
"YUQOQRDRNwbo3hvjgHCOlJ4a0YhagpFKD4boSRSjSFKAIOgVgxAAF2NAMo8wShVHsJkP
&
"BC_COOAIRpthkAsMAAWEg DFUEAeAThsVXAyloRY2AWgXEWAOTQyQxDTHIOoXIcADBXBt
&
*ag6GMFEVQ5G5DbESLQOYSWGEACWIQ]QOBLD6FYXoawwg6GcCYHwqgECEEOAOEWMXC
&
"WE_AMCLFQDkag RtD9GIPVNAvwPi/GuPceQ/xQBvGCMwPwWHx4AcAWAIIAOAMARAKJ8d4x
&
! Bo_fYQYEiWD4J +XQQwIBECiICwJIExhhnCIDoNANhzj8 CyBclosQ+BIAWMZVAOgygeUMHEDoI
&
"IHT(DQSIJRkhS DYISflpxlj/BQMoOQIBUgrGUNIZgnh9gWGPGIFwyx5DO0GCDEZgUwWC2Dol
&
"A(SqGYCE4WYVB6gSGeJI\/|HIQg7LOH6AMIAUAthASEI\/IZgSBojUD+ NEKgZQLhGGkBQPoJ
&
"¢4/QghRCoDUD0TQpDVAMDKBgCchPj1C6FskwVRqINDCFKZg4x8jGD-+1AYobwuDXEGNOPo
&
"4A?Cfr6QSi2 D6KUNAZ2h)Jg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQEhRKCUM/
&
"Id;\WNQI\/IWN 6agjDDTgtRbC3FwLkXQuzLhEDIDUCUSQyRxA]CiIIQUQEWWCXCMIAKISASAn
&
i gCA2EIDGTIWQDDUEWJAbQeweCeEICEGoKr4gvBAAQIS2RgZGgO00QMhGTVFWBKBAMM
&
"4d_g8heA6FeE4TY5 R7JpGAGAN8YAQjhHKHYPo4RNCYFqP4GoeRH;jIDIHILIPBTA/AOL8YotQY
&
! FO_N EM40BcjUFcBIfYggxiwGwCwAo6h0iAF4ANsNwWNh9hOhzB3g+hdBtB2AsAdBWADBGhEE
&
*gHBLgkgxhjgvhOB4AEAWGJgOhEBhgshWAKhvAPGPhFhB/h6A9A + BPBfgbhFheBhh3AQBS
&
tsBfg4AFh9B+ BfBTAVhxB2hdhDAwhKAYAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATA
&

"hQH1BSgAgcAmghglg2AugLBigiBgAnAzBiQtAIATANA]BEgbAMAJMwA +gLgjgyBWA4AQE
&

"Ak_BJHpg RgLBIAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWANAJgCBaBn
&

"A5_gOBTgQgTAkAIhpAsgSgTRiAZgAAIBkhiBQg Sgehlhphghkgd AXhWASBOA7tXgwgNAiHp
&

"hi,;ugTAhhpADgyBOBhAYBmgOgnghpAao/Arg rAKg2gyA7AaA2AZglApArgCANgfBgArhk
&

"q R_uguhCmifg MOjCpiqukgXumOnOoCyOpOgKdOrgeutBxOuOvOwOxOyOzO00102030-
&

"PII;JArPKPLPM PNPOPPPQPRPSPTPUPVPWPXPYPZPaPbPcPdPePfPgPhPiPjPkPIPmPnPoPpP¢
&

" P3_P4P5 P6P7P8PIP+P/QAQBQCQDQEQFQGQHQIQIQKQLOQMQNQOQPQQQRQSQTQUAQV
&

"A\/_BaquU B9g/AfJnBzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGKhCgEgeAogJhyB2
&

"hIAggthAUgCAOAM hjAOggRkAjh+GghihixBgKhiByBgAkRFACAKAIRHRIRJRKA +JmBjxMxI
&

"gI,_AZBOBQFpAZAZBKAIAszBaBFthIAZg EhhA3gNoSg7AlgJhCBggWgZhmhJggBntSNTBN
&

"gO_uwApAZQCAIBJA6AOg FghAoAJh0gOgegOBJhZB9BhUgA4htA7AlhSAkgHRWBSAsgRgr
&

"Br7_1ARgGNjh6929Tg rgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQBaBGB+g6ApAYgEAE
&

"1 c_gZVYVXi EVZAAVaAagQAWgaViVjVkKAEiEVe1gVaAbVj1oVkCAg=="

End With

If running the empty control we get the following picture:

Hame 1 Value -

ForeColorDeszcription IEI EHE0000012&

ForeColorHeader IEI &HE00000088
=l Format&nchor(BOOL)
Falze <u==fgcolor=000080=% |E
True <u==fgcolor=0000FF=#

GridLineColor |:| &HE0000004&

]

[+] Ha=zButtonsCustom(BOOL)
HasGridLines exdlllines
Start Filter... -

HasButtons
Adds a button to the left side of each parent item. The user can click the button to expand
or collapse the child tems as an alternative to double-clicking the parent item.

If running the control using the code being generated by the VisualAppearance designer we
get:

Name £ Value =
ForeColorDescription IEI EHB00000125
ForeColorHeader IEI &HE00000088
Format&ncher(BOOL)
Falze <u==fgcolor=0000a0=-# |E
True <u==fgcolor=0000FF =%
GridLineColor |:| &HEQ000004&
HasButtons exCustom IEI
[E7| HasButtonsCustom({BOOL)
HasGridLines exdllines
Start Filter... =
HasButtons

Adds a button to the left side of each parent item. The user can click the button to expand
or cellapse the child tems as an alternative to double-clicking the parent item.

Property object

The Property object represents an object property, a category item, a property object page
or a variable. Use the SelectedProperty to get the selected property. Use the
IncludeProperty event to filter the object properties. The Property object supports the
following properties and methods

AddValue
BackColor
Bold

Caption

Category

CategoryName
CellBackColor

CellBackgroundExt

CellBackgroundExtValue

CellForeColor

Clear
Description

DisplayCaption

DisplayCheck
DisplayColor

DisplayDate

DisplayFile
DisplayFolder

DisplaySlider

DisplayValue

Adds a new item, when the property is of EnumType.
Specifies the property's background color.
Specifies a value whether the property appears as bold.

Retrieves or sets the value's description in the predefined
list.

Retrieves a value indicating whether the item hosts a
category.

Retrieves the property's category name.
Specifies the cell's background color.

Indicates additional colors, text, images that can be
displayed on the cell's background using the EBN string
format.

Specifies at runtime, the value of the giving property for
specified part of the background extension.

Specifies the cell's foreground color.

Clears the predefined list values.

Specifies the property's description.

Retrieves the property's full name.

Specifies whether the property displays a check box.
Specifies whether the property displays colors.
Specifies whether the property displays dates.
Specifies whether the property displays files.
Specifies whether the property displays folders.
Specifies whether the property displays a slider.

Retrieves the property's display value. The value is
displayed by the properties browser.

Retrieves or sets a value that indicates the maximum

DropDownltems

EditType
Enabled

Flags

ForeColor
Height
HTMLName

HTMLValue

1D

ItemCollection

Locked
Mask
MaskChar
Name
Numeric
NumericFloat
Object
Option

Parameter

Parent

Position

PropertyObject

PropertyPage

ReadOnly

number of visible rows in a drop-down list.

Specifies the type of the property's editor.
Enables or disables a property.

Retrieves the property's flags. This is a combination of
FUNCFLAGS

Specifies the property's foreground color.
Specifies the height in pixels of the property.

Displays the name of the property using built-in HTML
format.

Displays the value of the property using built-in HTML
format.

Specifies the property's identifier

Retrieves a value that indicates whether the property is an
item of a collection.

Specifies whether the property can be edited.
Specifies the property's mask.

Specifies the property's masking character.
Retrieves the property's name.

Specifies whether the property is of numeric type.
Specifies whether the property is of float type.
Retrieves the owner object of the property.
Specifies an option for the property's editor.

Specifies whether the item holds a parameter of the
parent property.

Retrieves the parent of the property in the properties
browser. Nothing if the property has no parent.

Retrieves or sets a value that indicates the item's position
in the children list.

Retrieves a value that indicates whether the property is an
object or non object.

Retrieves a value that indicates whether the property
contains a property page.

Retrieves a value that indicates whether the property is

RemoveValue

Selectable

SingleLine

SliderMax
SliderMin

SliderStep

SliderTickFrequency

SliderWidth

Sortable

Sortltems

SpinStep

ToolTip

Type
UserData

Value

Variable

read-only.
Removes an item, when the property is of EnumType.
Specifies whether the user can select the property.

Specifies whether the property is shown using single or
multiple lines.

Specifies the slider's maximum value.
Specifies the slider's minimum value.

Specifies a value that represents the proposed change in
the slider control's position.

Returns or sets a value that indicates the ratio of ticks on
the slider control.

Specifies the width the property's slider.

Specifies whether the item that hosts the property may
change its position while sorting. An unsortable item does
not change its position while sort is performed.

Sorts the list of items in a drop down list editor.

Specifies a value that represents the proposed change in
the up-down control's position.

Specifies the property's tooltip.

Retrieves the property's type.

Gets or sets the user-definable data for the current object.
Retrieves or sets the property's value.

Retrieves a value that indicates whether the property is a
variable or a property.

method Property. AddValue (Value as Long, Description as String)

Adds a new item, when the property is of EditEnum type.

Value as Long A long expression that indicates the item's value.
Description as String A long expression that indicates the item's caption.

Use the AddValue method to add new value to the list of property of EditEnum,
EditDropDown type. Use the RemoveValue method to remove values from the property's
list values. Use the Sortltems to sort the values by description. Use the Caption property of
a predefined value at runtime. Use the Add method to insert new properties to the

browser.

The following sample adds few values to a property of EditEnum type:

With PropertiesList1
With .Add("Border", 0, EditEnum)
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed"
End With
.Refresh
End With

property Property.BackColor as Color

Specifies the property's background color.

A color expression that indicates the background color of
Color

the property

Use the BackColor property to apply a background color to a property. Use the ForeColor
property to change the property's foreground color. Use the CellBackColor property to
change the cell's background color.

property Property.Bold as Boolean

Specifies a value whether the property appears as bold.

A boolean expression that indicates whether a property

Boolean appears as bold.

Use the Bold property to bold a property. The value for the ShowObjects property is
important for the Bold property before adding items. Changing the ShowObjects property
has no effect after adding items.

By default,

o if the ShowObijects property is True, the Bold property is true for all parent items. A
parent items contains at least a child item inserted using the Add method. For instance,
if the ShowObijects is True, when adding a new item to a parent item, the Bold
property of the parent item will be set on True.

e if the ShowObijects property is False, the Bold property is false, for all items.

The following sample shows how to avoid bolding the parent items while building a
hierarchy:

With PropertiesList1

BeginUpdate

.ShowObjects = False

Add "Root", ", ReadOnly

With .Add("Child 1", O, Edit, , "Root")
.Bold = True

End With

With .Add("Child 2", O, Edit, , "Root")
.Bold = True

End With

Expandltem("Root") = True

.ShowObjects = True

EndUpdate
End With
i Child 2 1]

In the sample, the root item is not bolded, instead the child items are bolded.

In the following sample the root item is automatically bolded, and the child items are not:

With PropertiesList1
.BeginUpdate
.ShowObjects = True
Add "Root", """, ReadOnly
With .Add("Child 1", 0, Edit, , "Root")

End With
With .Add("Child 2", O, Edit, , "Root")
End With
Expandltem("Root") = True
EndUpdate
End With
El- Root
Mo F -

property Property.Caption(Value as Long) as String

Retrieves or sets the value's description in the predefined list.

A long expression that indicates the index of the item being

Value as Long changed

String A string expression that indicates the item's caption.

Use the Caption property to change the description for a predefined value. Use the
AddValue method to add new items to an editor of drop down type. Use the Name property
to retrieves the property's name.

property Property.Category as Boolean

Retrieves a value indicating whether the item hosts a category.

A boolean expression that indicates whether the current
Boolean L :

object is a category object.
Use the CategoryName property to get the property's category name. Use the Category
property to find whether the current object is a property item or a category item. Use the
ShowCategories property to show the object properties. Use the Select method to browse
an object. The Name property specifies the property's name. The Value property specifies
the property's value.

property Property.CategoryName as String

Retrieves the property's category name.

. A string expression that indicates the property's category
String

name.
The ExPropertiesList control is able to categorize object properties. Use the
ShowCategories property to enable categories into your control. Use the Category property
to check if an item is a property or it is a category.

The following sample shows how to include only the properties in the "Misc" category:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.CategoryName = "Misc")
End Sub

property Property.CellBackColor([Index as Variant]) as Color

Specifies the cell's background color.

A long expression that indicates the column's index. Valid

Index as Variant " " " "
values are: 0 for "Name" column, and 1 for "Value" column.

A color expression that specifies the cell's background

Color
color.

Use the CellBackColor property to change the cell's foreground color. Use the BackColor
property to change the foreground color for the entire property. Use the CellForeColor
property to change the cell's foreground color.

The following sample changes the background/foreground color for the Border's value:

Private Sub Form_Load()
With PropertiesList1
.BeginUpdate
Add "Appearance"”, "", ReadOnly
With .Add("Border", 0, EditEnum, , "Appearance")
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed"

.CellBackColor(1) = vbRed
.CellForeColor(1) = vbWhite
End With
.Refresh
.EndUpdate
End With
End Sub

http:Nwww exontrol com

[=I Appearance
& Barder

Border

Specifies the border style of an ohject. Available st
dezign time and run time.

property Property.CellBackgroundExt(Column as Variant) as String

Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

A Long expression that specifies the index where the
Column as Variant background extension is applied. The valid values are O for
Name column, and 1 for Value column.

A String expression ("EBN String Format") that defines
the layout of the Ul to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

String

By default, the CellCellBackgroundExt property is empty. Using the CellCellIBackgroundExt
property you have unlimited options to show any HTML text, images, colors, EBNS,
patterns, frames anywhere on the object's background. For instance, let's say you need to
display more colors on the object's background, or just want to display an additional
caption or image to a specified location on the object's background. The EBN String
Format defines the parts of the EBN to be applied on the object's background. The EBN is
a set of Ul elements that are built as a tree where each element is anchored to its parent
element. Use the CellBackgroundExtValue property to change at runtime any Ul property for
any part that composes the EBN String Format. The CellCellBackgroundExt property is
applied right after setting the object's backcolor, and before drawing the default object's
captions, icons or pictures.

The following screen shot shows how you can extend the node as follows:

e displays the picture to a different place
e assign more HTML captions to the node
o different type of borders/frames

e and so on.

Complex samples:

https://exontrol.com/ebn.jsp

corner bottom-lefl opague { color 2)

Event Name

0%
oclgre.
T0%
corner botlom-left transpareni
------------- Event Mame e
30%
folorl D
0%

Easy samples:

o "[pattern=6]", shows the BDiagonal pattern on the object's background.

e "[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

¢ "[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

e "[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006, patterncolor=RGB(255,0,0),frame=RGB(2¢
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

e "top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

object

o "[text="caption’,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

object

caption

e "[text="flag",align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

o "left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

object

e "bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

e "root[text="caption 2",align=0x22](client[text="caption 1",align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

object

caption 1 caption 2

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

' ; Builder (httpu//wiw.e

B EQ | w = | R 8 = |2
#: | Yl C:|50% B
To Sting; |right[EEIX,I:uau:k=FlGB[255,255,EI],te:-:t=‘<sha sxpart 17 ,align=0:11]

The To String field of the EBN Builder defines the EBN String Format that can be used on
CellCellBackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

https://exontrol.com/exbutton.jsp

<EBN> = <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]

<root> = "root" [<attributes>] | [<attributes>]

<element> ;1= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> = "none" | "left" | "right" | "client" | "top" | "bottom"

<attributes> = "[" [<client> ","] <attribute> ["," <attributes>] "]"

<client> = <expression> | <expression> "," <expression> "," <expression> ""
<expression>

<expression> = <number> | <number> "%"

<attribute> = <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>

<equal> ="="

<digit>:=0[1]2]3|4|5|6]7|8]9

<decimal> := <digit> <decimal>

<hexadigit> = <digit> | "A" | "B" "C"|"D" | "E" "F"

<hexa> := <hexadigit><hexa>

<number> = <decimal> | "0x" <hexa>

<color> ::= <rgbcolor> | number

<rgbcolor> = "RGB" "(" <number> "" <number> "," <number> ")"

<string> = """ <characters> <characters> """ | " <characters>
<characters> = <char>|<characters>

<char> ::= <any_character_excepts_null>

[T | min mnin 1]

<backcolor> ::= "back" <equal> <color>

<text> ;= "text" <equal> <string>

<align> = "align" <equal> <number>

<pattern> ;= "pattern” <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> = "frame" <equal> <color>

<data> := "data" <equal> <number> | <string>
<framethick> ::= "framethick"

<wordwrap> = "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

corner boltom-left opague { color 2)

Event Name

Color 1

We define the CellCellBackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100°
(top[90%,back=RGB(0,0,0)])", and it looks as:

To Sting: ItDp[SDZ,back=H GEB[253.218.101]).clent[back=RGE[31.157 .21 0]] none (0%, 0% 10% 1003 top[90% back=RGE[0,0.0]])

Topags, 1
Client 2

Topags

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

corner botlom-left transpareni

Event Name

Color1

We define CellCellBackgroundExt property such as "left[10%]

(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],clientfback=RGB(91,156,
and it looks as:

Tao String; |Ieft[1 0%](top[30% back=RGE(0,0,00]).tep[30% back=RGE[254.217.102]] client[back=RGE(31.156.212]]

Topans 2
Topags
Client

so, if we apply to our object we got:

property Property.CellBackgroundExtValue(Column as Variant, Index as
IndexExtEnum, Property as BackgroundExtPropertyEnum) as Variant

Specifies at runtime, the value of the giving property for specified part of the background

extension.

Column as Variant

Index as IndexExtEnum

Property as

A Long expression that specifies the index where the
background extension is applied. The valid values are O for
Name column, and 1 for Value column.

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

BEEEQ > (W = EE"wEEEER 2
¥ | i | g [
To String: |buttum[EDZ,back=HGB[EEE,EEE,D],tE:-:tE@ha c0xlndews Ashar <sha 20r<bxE align=0x1

Leftype
Topzss

Right 105
ED‘HDI’I’I;‘E:_D

Moneagsg as 505 505
i Bottomsps w

2 d o

Index & |

flndex

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

A BackgroundExtPropertyEnum expression that specifies

BackgroundExtPropertyEnum the property to be changed as explained bellow.

Variant

A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any Ul property for any part

that composes the EBN String Format. The BackgroundExtValue property has no effect if
the CellBackgroundExt property is empty (by default). The idea is as follows: first you
need to decide the layout of the Ul to put on the object's background, using the
BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following Ul properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)

exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)

exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)

exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)

exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)

exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)

exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)

o exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)

o exUserDataExt(12), Specifies an extra-data associated with the object. (Variant
expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

object
7 7

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"
.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Property.CellForeColor([Index as Variant]) as Color

Specifies the cell's foreground color.

A long expression that indicates the column's index. Valid

Index as Variant " " " "
values are: 0 for "Name" column, and 1 for "Value" column.

A color expression that specifies the cell's foreground

Color
color.

Use the CellForeColor property to change the cell's foreground color. Use the ForeColor
property to change the foreground color for the entire property. Use the CellBackColor
property to change the cell's background color.

The following sample changes the background/foreground color for the Border's value:

Private Sub Form_Load()
With PropertiesList1
.BeginUpdate
Add "Appearance"”, "", ReadOnly
With .Add("Border", 0, EditEnum, , "Appearance")
AddValue 0, "0 - None"
AddValue 1, "1 - Fixed"

.CellBackColor(1) = vbRed
.CellForeColor(1) = vbWhite
End With
.Refresh
.EndUpdate
End With
End Sub

http:Nwww exontrol com

[=I Appearance
& Barder

Border

Specifies the border style of an ohject. Available st
dezign time and run time.

method Property.Clear ()

Clears the predefined list values.

Use the Clear method to clear all items of the property. Use the RemoveValue method to
remove a particular value.

property Property.Description as String

Specifies the property's description.

Stri A string expression that indicates the property's
tring ey
description.
Use the Description property to get the property's description. The property's description
describes briefly what a property does. By default, the ExPropertiesList control displays in
its description window the description for selected property. Use DescriptionVisible property
to hide the control's description window. The Name property gets the property's name. The
Value property gets the property's value.

The following sample shows how to implement by yourself a description window (to run the
sample please include to your form a Label control):

Private Sub PropertiesList1_SelChange()
Label1 = PropertiesList1.SelectedProperty.Description
End Sub

property Property.DisplayCaption (Mode as DisplayCaptionEnum) as
Variant

Retrieves the property's full name.

Mode as A DisplayCaptionEnum expression that specifies the
DisplayCaptionEnum caption to retrieve.
. A String/Variant expression that indicates the retrieved
Variant)
caption.

The DisplayCaption property gets the caption to be displayed in the Name or Value
columns. The Name or HTMLName property specifies the caption to be displayed on the
Name column. The Value property indicates the property's value, which is displayed on the
Value column. The Description property specifies the property's description.

The DisplayCaption property gets:

e Gets the caption as displayed on Name column. The Name or HTMLName property
specifies the caption to be displayed on the Name column.

e Gets the value as displayed on Value column. The Value property indicates the
property's value, which is displayed on the Value column. For instance, if the property
is of an enumeration type, the property displays its literals, instead the value of the
property, so the DisplayCaption returns the literals.

e Gets the value as displayed on Description panel. The Description property specifies
the property's description.

property Property.DisplayCheck as Boolean

Specifies whether the property displays a check box.

A Boolean expression that indicates whether the property

Boolean displays a check box.

By default, the DisplayCheck property is False. Use the DisplayCheck property to display a
checkbox for boolean values. The PropertyChange event notifies your application that user
is about to change a property. The control fires the PropertyChanged event when the user
changes any property in the control. The DisplayColor, DisplayDate, DisplayFile or
DisplaySlider property specifies whether the property displays a color, date, file, or slider.

For instance, the following screen shot lists the boolean properties on top, using True/False
values, while the second screen shot shows the same properties displaying a checkbox
instead True/False values.

= Chart - = Chart
Allow CreateBar exCreateBarfuto Allow CreateBar exCreateBarauto
PWnsideZoom True (=] _ PnsideZoom Il
AllowlLinkBars True - AllowLinkBars J_
AllowOverviewZoom exZoomOnRClck Allow OverviewZoom exZoomOnRClick E
Allow ResizelnsideZoom True AllowResizelnzsideZoom _JI
AllowSelectDate True AllowSelectDate ¥
Allow SelectObjects Allow SelectObjects
AllowUndoRedo True AllowUndoRedo ¥
BarsAlowSizing True BarsAlowSizing ¥
ResizelnitScale exDay ResizelnitScale exDay
UnitScale exDay UnitScale exDay
AdjusilevelzToBase Falzse AdjustilevelsToBase _
AKPH AN PM AMPH AN PK
BackColor |:| &HE0000005& BackColor |:| &HB00000055
BackColorLevelHeader] &H80000004& BackColorLevelHeader] &H800000045&
or Bars or Bars
CanRedo Falze CanRedo _.
CanUndo True CanlUndo J
DateTickerLabel <b==Yemmmes</b= <%ed%, ... DateTickerLabel <b=<tommmie=</b= <%d%=, ...
=r DefaultinsideZoompFaor... =r DefaultinsideZoomFor...
DrawDateTicker False DrawDateTicker L.
DrawGridLines exMoLines DrawGridLines exMolLines
DrawlLevelSeparator exlLevelDefaultLine DrawlLevelSeparator exlevelDefaultLine
EndPrintDate 100442008 EndPrintDate 100442008
L20/2008

FirstVizibleDate

FirstVizibleDate

B R - an -

Gr20e2008

S e

AllowlinsideZoom
Specifies whether the chart can magnify only partz of the chart.

AllowlinsideZoom
Specifies whether the chart can magnify only partz of the chart.

The following VB sample changes the DisplayCheck property for properties of Boolean
type:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
Property.DisplaySlider = InStr(1, Property.Name, "transparent”, vbTextCompare) > 0
If (Not Property.DisplaySlider) Then
Property.DisplayDate = VarType(Property.Value) = vbDate
If (Not Property.DisplayDate) Then
Property.DisplayCheck = VarType(Property.Value) = vbBoolean
If (Not Property.DisplayCheck) Then
Property.DisplayColor = InStr(1, Property.Name, "color”, vbTextCompare) > 0
End If
End If
End If
End Sub

property Property.DisplayColor as Boolean

Specifies whether the property displays colors.

A Boolean expression that indicates whether the property

Boolean : :
displays and edits a color value.

By default, the DisplayColor property is False. Use the DisplayColor property to let a
property display and edit a color expression. For instance, let's say that your object lists a
property of long type, but it changes the color for some part of the control. In this case, you
can force the property to display the property as a color, and use the color editor to edit the
value for the color. The PropertyChange event notifies your application that user is about to
change a property. The control fires the PropertyChanged event when the user changes any
property in the control. The DisplayCheck, DisplayDate, DisplayFile or DisplaySlider
property specifies whether the property displays a checkbox, date, file, or slider.

property Property.DisplayDate as Boolean
Specifies whether the property displays dates.

A Boolean expression that indicates whether the property

Boolean displays and edits a date expression.

By default, the DisplayDate property is False. Use the DisplayDate property to let a
property display and edit a date expression. For instance, let's say that your object lists a
property of double type, but it changes the date. In this case, you can force the property to
display the property as a date, and use the date editor to edit the value for the date. The
PropertyChange event notifies your application that user is about to change a property. The
control fires the PropertyChanged event when the user changes any property in the control.
The DisplayCheck, DisplayColor, DisplayFile or DisplaySlider property specifies whether
the property displays a checkbox, color, file, or slider.

property Property.DisplayFile as Boolean
Specifies whether the property displays files.

A Boolean expression that indicates whether the property

Boolean displays a path to a file.

By default, the DisplayFile property is False. Use the DisplayFile property to let a property
display and edit a string expression that represents the path to a file. For instance, let's say
that your object lists a property of string type that changes the path to a file, so you can
assign the open file editor to change the listed path. The PropertyChange event notifies
your application that user is about to change a property. The control fires the
PropertyChanged event when the user changes any property in the control. The
DisplayCheck, DisplayColor, DisplaySlider or DisplayDate property specifies whether the
property displays a checkbox, color, slider, or date.

property Property.DisplayFolder as Boolean
Specifies whether the property displays folders.

A Boolean expression that indicates whether the property

Boolean displays a path to a file.

By default, the DisplayFolder property is False. Use the DisplayFolder property to let a
property display and edit a string expression that represents the path to a file. For instance,
let's say that your object lists a property of string type that changes the path to a file, so
you can assign the open file editor to change the listed path. The PropertyChange event
notifies your application that user is about to change a property. The control fires the
PropertyChanged event when the user changes any property in the control. The
DisplayCheck, DisplayColor, DisplaySlider or DisplayDate property specifies whether the
property displays a checkbox, color, slider, or date.

property Property.DisplaySlider as Boolean

Specifies whether the property displays a slider.

A Boolean expression that indicates whether the property

Boolean displays a slider control.

By default, the DisplaySlider property is False. Use the DisplaySlider property to let a
property display and edit a long expression between 0 and 100. For instance, let's say that
your object lists a property Transparency of long type and so, you can assign a slider
control to display and change the transparency for the object. The PropertyChange event
notifies your application that user is about to change a property. The control fires the
PropertyChanged event when the user changes any property in the control. The
DisplayCheck, DisplayColor, DisplayFile or DisplayDate property specifies whether the
property displays a checkbox, color, file, or date.

property Property.DisplayValue as String

Retrieves the property's display value. The value is displayed by the properties browser.

String A string expression that indicates the item's caption.

The control uses the DisplayValue property to display the property's value into the browser.
To get the value of the property you should use the Value property. If the Category property
is True, the DisplayValue gets the category name. For instance, a property of Color type,
has the DisplayValue like &H80000005&, since the property's value is 0x80000005. A
property of boolean type has DisplayValue like "True" or "False". The following sample
shows how to print the property"s display value when selection is changing:

Private Sub PropertiesList1_SelChange()
Debug.Print PropertiesList1.SelectedProperty.DisplayValue
End Sub

property Property.DropDownltems as Long

Retrieves or sets a value that indicates the maximum number of visible rows in a drop-down
list.

A long expression that indicates the number of visible rows

Long in the drop down list editor.

By default, the DropDownRows property is 7. Use the DropDownRows property to specify
number of visible items in a drop down list editor. The DropDownRows property has effect

for editors like EditEnum, EditDropDown or EditFontName. The EditType property specifies
the type of the editor assigned to a property.

property Property.EditType as EditTypeEnum
Specifies the type of the property's editor.

An EditTypeEnum expression that indicates the type of the

EditTypeEnum editor being used when the property is edited.

Use the Add method to add a custom property.

property Property.Enabled as Boolean

Enables or disables a property.

A boolean expression that indicates whether the property

Boolean is enabled or disabled.

By default, the Enabled property is True. A disabled property is locked and it looks grayed.
Use the Locked property to lock a property. A locked property doesn't look grayed.

Mokl =20 i

i~ Enabled = Falze 0 —————————

i Locked = Fales 20 —_—

property Property.Flags as Long

Retrieves the property's flags.

Long A long expression that indicates the property's flags.

You can use the Flags property to filter only properties that have some flags, using the
IncludeProperty event. Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

Here's the list of all flags:

Name Value Description

The function should not be accessible from
macro languages. This flag is intended for
system-level functions or functions that type
browsers should not display.

The function returns an object that is a

source of events.

FUNCFLAG_FBINDABLE 0x0004 The function that supports data binding.
When set, any call to a method that sets the
property results first in a call to

FUNCFLAG_FREQUESTEDIT 0x0008 IPropertyNotifySink::OnRequestEdit. The
implementation of OnRequestEdit determines
if the call is allowed to set the property.

The function that is displayed to the user as

FUNCFLAG_FRESTRICTED 0x0001

FUNCFLAG_FSOURCE 0x0002

FUNCFLAG_FDISPLAYBIND 0x0010 bindable. FUNC_FBINDABLE must also be
set.
The function that best represents the object.
FUNCFLAG_FDEFAULTBIND 0x0020 Only one function in a type information can

have this attribute.

The function should not be displayed to the
user, although it exists and is bindable.

The function supports GetLastError. If an

FUNCFLAG USESGETLASTERROR 0x0080 error occurs during the function, the caller
- can call GetLastError to retrieve the error

FUNCFLAG_FHIDDEN 0x0040

code.

Permits an optimization in which the compiler
looks for a member named "xyz” on the type
of "abc”. If such a member is found and is
flagged as an accessor function for an
element of the default collection, then a call
is generated to that member function.
Permitted on members in dispinterfaces and
interfaces; not permitted on modules.

The type information member is the default
member for display in the user interface.
The property appears in an object browser,
but not in a properties browser.

Tags the interface as having default
behaviors.

FUNCFLAG_FIMMEDIATEBIND 0x1000 Mapped as individual bindable properties

FUNCFLAG_FDEFAULTCOLLELEM 0x0100

FUNCFLAG_FUIDEFAULT 0x0200
FUNCFLAG_FNONBROWSABLE 0x0400

FUNCFLAG_FREPLACEABLE 0x0800

property Property.ForeColor as Color

Specifies the property's foreground color.

A color expression that indicates the foreground color of
Color

the property.
Use the ForeColor property to apply a foreground color to a property. Use the BackColor
property to change the property's background color. Use the CellForeColor property to
change the cell's foreground color.

property Property.Height as Long
Specifies the height in pixels of the property.

A long expression that indicates the height of a particular

Long item/property.

Use the Height property to specify the height for a property. Use the DefaultltemHeight
property to specify the height of the properties before loading properties to the control.Use
the
 tag in HTMLName property to break a line.

property PropertyHTMLName as String

Displays the name of the property using built-in HTML format.

String

A string expression that indicates the HTML format being
displayed in the Name column, instead Name property.

By default, the HTMLName property is empty. |If the HTMLName property is empty, the
Name property is displayed in the name column. Use the HTMLName property to assign
pictures, icons or font attributes to parts of the caption being displayed in the Name column.
The HTMLValue property specifies the HTML caption to be displayed on the Value column.
The SingleLine property indicates whether the property is displaying by single or multiple
lines.

The HTMLName property supports the following built-in HTML tags:

 ... displays the text in bold

<i> ... </i> displays the text in italics

<u> ... </u> underlines the text

<s> ... </s> Strike-through text

<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or

different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified [JEGROIOBNE color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on

about:blank

the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, O if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

e <out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

e <sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

shadow

or "<sha 404040;5,0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

eutlinefantizaliasing

For instance, the "<u>B</u>old" sequence displays a string like follows: Bold. The
control displays the HTMLName property instead Name property, only if the HTMLName is
not empty. Use the IncludeProperty to assign a new html format for a specified property,
like in the following sample.

For instance, the following VB sample adds an icon to the Appearance property.

Private Sub PropertiesList1_IncludeProperty(ByVal Property As

EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
If Property.Name Like "Appearance” Then
PropertyHTMLName = "1" & Property.Name
End If
End Sub

For instance, the following template sample adds three properties and assign an icon to
each of them, using the tag.

BeginUpdate
Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZJQAJEZFEalEaEEaAlAkcbkOolUrlktl

Add("lcon1","",1).HTMLName = "1lcon 1"
Add("lcon2","",1).HTMLName = "2lcon 2"
Add("lcon3","",1).HTMLName = "3lcon 3"
EndUpdate

The following VB sample adds a picture to a property:

With PropertiesList1
HasGridLines = False
.DefaultltemHeight = 52
HTMLPicture("floppy") = "D:\Temp\lcons\3floppy_T1mount.gif
HTMLPicture("hard") = "D:\Temp\lcons\3floppy_mount.gif"
With .Add("Floppy", "", EditColor)
HTMLName = "floppyFloppy"
End With
With .Add("Hard", ", EditColor)
HTMLName = "hard Hard"
End With
End With

property Property.HTMLValue as String

Displays the value of the property using built-in HTML format.

String

A String expression that defines the HTML caption to be
displayed on the Value column.

By default, the HTMLValue property is empty. If HTMLValue property is empty, the Value
property is displayed on the Value column. The SingleLine property indicates whether the
property is displaying by single or multiple lines.

The HTMLValue property supports the following built-in HTML tags:

 ... displays the text in bold

<i> ... </i> displays the text in italics

<u> ... </u> underlines the text

<s> ... </s> Strike-through text

<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or

different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

about:blank

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text

<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.

key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with gypscript The "Text with <off -6>superscript” displays the

text such as: Text with Subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, O if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

o " e _
<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb

represents the red/green/blue values of the outline color, 808080 if missing as gray,

width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

outlined

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

shadow

or "<font;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

eUtlinefantizaliasing

property Property.ID as Long

Retrieves the property's identifier

Long A long expression that indicates the property's identifier.

The property's identifier identifies a property. The property's identifier is used by Invoke
method of IDispatch property to invoke a property. Use the Add method to specify the
property's identifier when adding properties manually.

property Property.ltemCollection as Boolean

Retrieves a value that indicates whether the property is an item of a collection.

A boolean expression that indicates whether the property
Boolean : : :
is an item of a collection.
If the ItemCollection is True, the Property object contains an element of the collection. The
ExPropertiesList control is able to display collections and their elements. When the control
finds a property that exports a collection it adds the elements of the collection as child items
of the property. During loading the control uses the NameltemsCollection property to
determine the name of each element into collection, if it is a collection of objects. If the
ltemCollection is True use the Object property to find the owner collection. For instance, if
the collection contains only strings, the items added to browser's list will be numerated.
Instead if the collection contains another objects, it uses the NameltemsCollection property
to determine the caption that will be displayed on the name column. Let's suppose that we
have the following collection:

Dim n As New Collection
n.Add 10
n.Add 20
n.Add 30

When the control browses for the collection n (PropertiesList1.Select n), the elements of
collection are not of object type, so the control will not be able to find each element name.
Instead, if we have the following sample:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet. OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

and we call PropertiesList1.Select rs.Fields, the control will browse the rs.Fields collection.
The Fields property of an ADO recordset contains a collection of Field objects. Since each
Field object has a property called "Name", the browser will be able to find the element
name using the NameltemsCollection property that contains by default:
"Name;Caption;ltem".

Here's a screen shot of how the ExPropertiesList browses the Fields collection (rs.Fields):

& ProperticsList]. Sedect rs.Finlds (3] x]

= Cugtomier i) LILAS
Ermplageeil 3

B 4 ii:
ARrbues (=]

DetinedSze
MumericSoals
Precation

L Propertics
- BASECOLUMHL., EmployeciD

AL LIFARRLAMAE

i AfvarChar
iy e EmployesD

w B H a
HSAUTOIMCRE... 0
OISCASESENSL. 0
e ;

Type adirdager
Wakis 3
* Freiglht 1275
= OrderDate 116994 =

If we are using the following sample (make sure that you have set the
NameltemsCollection to empty at design time):

Set rs = CreateObject("ADODB.Recordset")

rs.Open "Orders", "Provider=Microsoft.Jet. OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
PropertiesList1.Select rs.Fields

property Property.Locked as Boolean

Specifies whether the property can be edited.

Boolean A boolean_expression that specifies whether the property
can be edited.

By default, the Locked property is False. Use the Locked property to lock a property. A

locked property is not editable, and doesn't look grayed. Use the Enabled property to

disable a property. A disabled property is locked and looks grayed. Use the ForeColor

property to change the foreground color for a locked property.

Martmal -20 i

et Peabhe ol - Pk 4M —_—
i~ Enabled = Falze 10

- Locked = Falzse 20 —_——

Use the ReadOnly property to lock the entire control. Use the Enabled property to disable
the entire control.

property Property.Mask as String

Specifies the property's mask.

String A string expression that indicates the control's mask

he Mask property is composed by a combination of regular characters, literal escape
characters, and masking characters. The Mask property can contain also alternative
characters, or range rules. A literal escape character is preceded by a \ character, and it is
used to display a character that is used in masking rules. Here's the list of all rules and
masking characters:

Rule Name Description
Digit Masks a digit character. [0-9]
X Hexa Lower Masks a lower hexa character. [0-9],[a-f]
X Hexa Upper Masks a upper hexa character. [0-9],[A-F]
A AlphaNumeric Masks a letter or a digit. [0-9], [a-Z], [A-Z]
? Alphabetic Masks a letter. [a-Z],[A-Z]
< Alphabetic Masks a lower letter. [a-Z]
Lower
> 'S:f;ea:)et'c Masks an upper letter. [A-Z]
* Any Mask any combination of characters.
\ Literal Displays any masking characters. The following combinations
Escape are valid: \#,\x,\X \A\?\<\> \\\{,\[
Masks a number in a range. The nMin and nMax values should
{nMin,nMax} Range be numbers. For instance the mask {0,255} will mask any
number between 0 and 255.
L] Alternative Masks any characters that are contained by brackets []. For

instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following sample shows how to mask an IP address:

Mask = "{0,255).{0,255}\.{0,255)\.{0,255}"

property Property.MaskChar as Long

Specifies the property's masking character.

A value that indicates the character used for masking

Long characters.

Use the MaskChar property to change the masking character. By default, the MaskChar is

property Property.Name as String

Retrieves the property's name.

String A string expression that indicates the property's name.

If the Property object hosts a category the Name property retrieves the category name.
Use the SelectedProperty event to find out the selected property. The Value property gets
the property's value. The ID property gets the identifier of the property. The Description
property gets the description of the property being displayed in the control's description bar.
Use the UserData property to associate an extra data to the property. Use the HTMLName
property to assign icons, pictures, font attributes or colors, to parts of the caption being
displayed in the Name column.

The following sample prints the name and the type of the selected property (for instance,
the sample is useful to find out the type of the property selected, when you need to include
or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()

Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

property Property.Numeric as Boolean

Specifies whether the property is of numeric type.

A boolean expression that indicates whether property's
Boolean : .

edit box allows only digits to be entered.
The Numeric property allows only digits to be entered into the property's edit box. Use the
AllowSpin property to specify whether the numeric properties show a spin control. Use the
SpinStep property to define the proposed change when user clicks the spin.

property Property.NumericFloat as Boolean

Specifies whether the property is of float type.

A boolean expression that indicates whether the property

Boolean is of float type.

A float type is represented in the format: [+/-]digit[.]digit[e/E/d/D][+/-]digit, where digit is
any combination of digit characters. Use the Numeric property to specify when only long
values are allowed in the property. Use the AllowSpin property to specify whether the
numeric properties show a spin control. Use the SpinStep property to define the proposed
change when user clicks the spin. If the NumericFloat property is True, the input characters
are filtered, and so characters that are not in the number representation can't be inserted.
For instance, if you have a number such of 100, and you type 'e' character, the number will
be 100e, but if you would type again a new 'e' it will not be accepted, so the number will
stay as 100e.

property Property.Object as Object

Retrieves the owner object of the property.

Object An object that's the owner of the property.

The Object property retrieves the owner object of the property. Use the Value property to
get the object contained by the property. For instance if a Property object has the
ltemCollection property to True, then the Object property retrieves the owner object
collection. Also, if a Property object contains is of Variable type, the Object property
retrieves the object where the variable belong. Use the PropertyObject property to
determine whether the property contains an object. For instance a property of font type is
considered as been of object type. You can use the Type property to determine the type of
the property. The following sample shows how to exclude variables of IPictureDisp
properties:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
If Not (Property.Object Is Nothing) Then
Cancel = Property.Variable And TypeOf Property.Object Is IPictureDisp
End If
End Sub

property Property.Option(Name as OptionEnum) as Variant

Specifies an option for the property's editor.

An OptionEnum expression that indicates the option being

Name as OptionEnum
changed.

Variant A Variant value that indicates the option's newly value.

Use the Option property to change a particular option for a specified entry/property. If no
option is specified for the current entry, the Option property of the control indicates the
default options. The Option property applies the options to all editors, while the Option
property of Property object may specify different options for different entries in the control.
For instance, you can display a filter for some EditFile entries, and other filters for other
EditFile entries in the same control.

In conclusion, you can specify options for the editors as follows:

e the same settings for all editors using Option property (by default).
e custom settings for the editor of an entry/property using the Property.Option property

The following VB sample adds a custom EditDate editor that uses Romanian calendar:

With PropertiesList1

With .Add("Date", Date, EditDate)

.Option(exDateTodayCaption) = "Azi"

.Option(exDateMonths) = "lanuarie Februarie Martie Aprilie Mai lunie lulie August
Septembrie Octombrie Decembrie”

.Option(exDateWeekDays) = "DLM M JV S"

.Option(exDateFirstWeekDay) = 1

Wnd With
End With

The following VB sample adds a custom EditFile editor with INI filter:

With PropertiesList1
With Add("INI", "c\temp\test.ini", EditFile, "Selects a file", "Custom")
.Option(exEditFileFilter) = "INI Files|*.ini;*.init|All (*.*)[*.*"
.Option(exEditFileTitle) = "Select an INI file"
End With

End With

property Property.Parameter as Boolean

Specifies whether the item holds a parameter of the parent property.

A Boolean expression that indicates whether the property

Boolean
holds a parameter

The control may browse properties with multiple parameters.

property Property.Parent as Property

Retrieves the parent of the property in the properties browser.

A Property object that's the parent of the property in the

Property properties browser.

If the property has no parent, the Parent retrieves nothing.

property Property.Position as Long

Retrieves or sets a value that indicates the item's position in the children list.

A long expression that indicates the position of the
Property in the list of children items. 0 means the first
property, 1, the second, and so on.

Long

The Position property specifies the position of the property in the browser. Use the Position
property to change the property's position. For instance, if the IncrementalSearch property

is exContains + exMoveOnTop, the items are re-arranged so, the first items contain the
typed characters, while the rest stay unchanged.

property Property.PropertyObject as Boolean

Retrieves a value that indicates whether the property is an object or non object.

A boolean expression that indicates whether the Property
Boolean : : :
object contains an Object.
Use the Value property to get the object contained by the property. All the properties of
object type are displayed as bold. If the Property object contains a category item, the
PropertyObject property is False. Use the ShowObjects property to show properties of
object type into the control. For instance a property of IFontDisp type is considered as
been as object type. Use the Type to get the string representation of the property's object
type. The following sample shows how to simulate the VB browser (make sure that
ShowObjects property is True):

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
Cancel = Property.PropertyObject
If (Cancel) Then
Cancel = Not (Property.Type = "Font*" Or Property.Type = "Picture*")
End If
End Sub

property Property.PropertyPage as Boolean

Retrieves a value that indicates whether the Property object contains a property page.

A boolean expression that indicates whether the Property

Boolean : :
object contains a property page.

The ExPropertiesList control supports browsing property pages. The PropertPage property
specifies whether the Property object contains a property page. The following sample
shows how to include into your browser only the property pages:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not Property.PropertyPage
End Sub

property Property.ReadOnly as Boolean

Retrieves a value that indicates whether the property is read-only.

A boolean expression that indicates whether the property
Boolean :
is read-only.
The control displays the read-only properties in a grayed color. Use the ReadOnly property
to disable user editing. Use the ShowReadOnly property to ignore read-only properties. If
the item is of category type or property page type, the ReadOnly property has no effect.
Use the Enabled property to disables a property. Use the Locked property to lock a
property.

method Property.RemoveValue (Value as Long)

Removes an item, when the property is of EnumType.

A long expression that indicates the value of the item being
Value as Long

removed.
Use the RemoveValue method to remove an item from the property's list values when it is of
EnumType type. Use the AddValue property to add new values to property's list values.

property Property.Selectable as Boolean

Specifies whether the user can select the property.

A Boolean expression that specifies whether the user can

Boolean select the property at runtime.

By default, the Selectable property is True. Use the Selectable property to prevent a
property to be selected. The Sortable property indicates whether the property's position is
changed once the user sorts a column. The SelectedProperty property indicates the
currently selected property. The control fires the SelChange event once a new property
gets selected in the properties browser control.

property Property.SingleLine as Boolean

Specifies whether the property is shown using single or multiple lines.

A Boolean expression that specifies whether the property

Boolean is displaying by single or multiple lines.

By default, the SingleLine property is True. Use the SingleLine property to display the
property's name or value on multiple lines. Use the Name or HTMLName property to specify
the caption of the property to be displayed on the Name column. Use the Value or
HTMLValue property to specify the caption of the property to be displayed on the Value
column.

property Property.SliderMax as Double

Specifies the slider's maximum value.

A double expression that indicates the maximum value for

Double the slider control.

By default, the SliderMax property is 100. Use the EditSlider type when adding the property
to assign a slider control to a property. The SliderWidth property determines the width of
the slider in the property. The SliderStep property determines the slider step, when user
moves the slider. The SliderMin and SliderMax properties determine the range being used
by the Value property. The SliderTickFrequency property specifies the frequency to display
ticks on a slider control.

property Property.SliderMin as Double

Specifies the slider's minimum value.

A double expression that indicates the minimum value for

Double the slider.

By default, the SliderMin property is 0. Use the EditSlider type to assign a slider to a
property. The SliderWidth property determines the width of the slider in the property. The
SliderStep property determines the slider step, when user moves the slider. The SliderMin
and SliderMax properties determine the range being used by the Value property. The
SliderTickFrequency property specifies the frequency to display ticks on a slider control.

property Property.SliderStep as Double

Specifies a value that represents the proposed change in the slider control's position.

Double A double expression that indicates the slider's step.

The SliderStep property determines the slider step, when user moves the slider. Use the
EditSlider type to assign a slider to a property. The SliderWidth property determines the
width of the slider in the property. The SliderMin and SliderMax properties determine the
range being used by the Value property. By default, the SliderStep property is 1.

property Property.SliderTickFrequency as Double

Returns or sets a value that indicates the ratio of ticks on the slider control.

A Double expression that indicates the ratio of ticks on the

Double slider control.

By default, the SliderTickFrequency property is 0. If the SliderTickFrequency property is O
the slider displays no ticks. The SliderTickFrequency property specifies the frequency to
display ticks on a slider control. Use the EditSlider type when adding the property to assign
a slider control to a property. The SliderWidth property determines the width of the slider in
the property. The SliderStep property determines the slider step, when user moves the
slider. The SliderMin and SliderMax properties determine the range being used by the Value
property.

Suercranes ——— PolERS

Slider wih no ticks 70 1

property Property.SliderWidth as Long
Specifies the width the property's slider.

A long expression that indicates the width of the slider in

Long the property like explained bellow.

Use the EditSlider type to assign a slider to a property. By default, the SliderWidth property
is 64 pixels.

e |f the SliderWidth property is 0O, the slider control is not visible.

e |f the SliderWidth property is greater than 0, the SliderWidth property represents the
width in pixels of the slider in the control.

e |f the SliderWidth property is less than 0O, the absolute value of the SliderWidth
property represents the percent being used by the slider in the property. For instance,
if the SliderWidth property is -50, that means the that slider's width will be 50% (half)

of the cell's width.

Use the SliderMin and SliderMax properties to hold the property's Value within a range. The
SliderStep property determines the slider step, when user moves the slider. The
SliderTickFrequency property specifies the frequency to display ticks on a slider control.

The following sample adds different types of sliders:

With PropertiesList1

AllowSpin = True

With .Add("Spin", 0.2, Edit)
.NumericFloat = True

End With

With .Add("Slider with a non fixed width", 0.2, EditSlider)
SliderWidth = -60
SliderStep = 0.05
SpinStep = 0.05
SliderMin =0
SliderMax = 50

End With

With .Add("Slider with a fixed width", 0, EditSlider)
SliderMin = -50
SliderMax = 50

End With

With .Add("Slider with unknown step"”, 0, EditSlider)
SliderWidth = -70

SpinStep =0
SliderStep = 0
SliderMin = -50
SliderMax = 50
End With
End With

nz
236 i

53 -
-30.7947 L

property Property.Sortable as Boolean

Specifies whether the item that hosts the property may change its position while sorting.

A Boolean expression that specifies whether the property

Boolean .
is sortable or not.

By default, the Sortable property is True. An unsortable item does not change its position
while sort is performed. The Sort method sorts the properties. Use the SortObjects
property to specify if the object properties should be placed on top or bottom side of the
control once the user sorts a column. Use the SortOnClick property to specify whether a
column gets sorted once the user clicks the column's header.

method Property.Sortlitems ([Ascending as Variant], [Reserved as
Variant])

Sorts the list of items in a drop down list editor.

A boolean expression that indicates the sort order of the

Ascending as Variant items. By default, is the Ascending parameter is True, if it
IS missing.
Reserved as Variant Not used. For future use only.

Use the Sortltems method to sort the items in a drop down list editor. Use the AddValue
method to add predefined values to the drop down list. Call the Sortltems after adding
values to a drop down list editor.

property Property.SpinStep as Double

Specifies a value that represents the proposed change in the up-down control's position.

A double expression that indicates the proposed change in

Double the spin control.

Use the AllowSpin property to associate a spin (up/down control) to a property of numeric
type. Use the SpinStep property to specify the proposed change when user clicks a spin
control. By default, the SpinStep property is 1. If the SpinStep property is 0, the property
doesn't show a spin control even if the property is of numeric type and AllowSpin property
is True. The SliderTickFrequency property specifies the frequency to display ticks on a
slider control.

property Property.ToolTip as String
Specifies the property's tooltip.

String A string expression that indicates the property's tooltip.

Use the ToolTip property to assign a custom tooltip to a property. By default, the ToolTip
property is "...". The AllowToolTip property specifies whether the control displays a tooltip
when the string value is too long to be displayed in the property's client area. The control
pops up a tooltip when the mouse pointer hovers the property's name or value in the
following cases:

e |f the ToolTip property is "...", and the property's name or property's value is too long to
be displayed in the property's client area.
e The ToolTip property is not empty, and it is different than "..." (three dots).

The following sample shows how to display the property's description when the mouse
pointer hovers the property's name:

Private Sub Form_Load()

With PropertiesList1
.DescriptionVisible = False
AllowTooltip = True
Select Me

End With

End Sub

Private Sub PropertiesList1_IncludeProperty(ByVal Property As

EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
Property.ToolTip = Property.Description

End Sub

Marme Walue
- FillStyle 1
[+ Font MS Sans Serif
- FontBald Falze
- Fonthalic Falze
- Fonthsme M5 Sans Senf
- FontSize 8.25
- FontStrikethru Falze
- FantTranzparent True
- FontUnderline Falze

 ForeColot | ForeColor
- HazDi Returnzizets the foreground color used

o |t 0o

- hDC to display text and graphics in an object.
- Height S440 i
-~ HelpContextiD 0
- g E4E5E852

- leon (lcon)

- Image [] (Bitmap)
- HeyPrevies Falze

property Property.Type as String

Retrieves the property's type.

String A string expression that represents the property's type.

Use the PropertyObject property to check whether a property is of object type. For
instance, the Type property is useful to determine whether a variable is member of a
IFontDisp object, using the following statement: typeof Property.Object is IFontDisp. Use
the Value property to determine the property's value. It is not recommended using the
typeof Property.Value is IFontDisp, because the VB operator typeof is not able to check
the type objects that are set to nothing. Use the SelectedProperty event to find out the
selected property. The following sample prints the name and the type of the selected
property (for instance, the sample is useful to find out the type of the property selected,
when you need to include or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()

Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name &
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

property Property.UserData as Variant

Gets or sets the user-definable data for the current object.

Variant A Variant value that defines the property's user data.

Use the UserData event to associate a user value to a property. Use the Property property
to access to a property object. The Name property specifies the property's name. The
Value property specifies the property's value. Use the ID property to identify a property.

The following sample associates an extra string to the property "Visible":

PropertiesList1.Property("Visible").UserData = "A constant string"

property Property.Value as Variant

Retrieves or sets the property's value

Variant A variant expression that indicates the property's value.

If the property object holds a property page or a category, the Value property has no
sense. Use the PropertyObject property to check whether the property is of object type.
Use the value property to determine the object contained by the property. Use the Object to
get the owner object of a property. Use the DisplayValue property to get the text that
control displays in the browser. The control fires the EditChange event while user types
characters in the property's text box control. The Name property retrieves the name of the
property. Use the AddValue method to add predefined values to a drop down list editor. The
DisplayValue property gets the string being displayed in the browser. The HTMLValue
property specifies the HTML caption to be displayed on the Value column.

If the property is added manually, using the Add method, you need to call the Value
property each time when you need to refresh the property's value. In case the properties
list browses a COM object, using the Select method, you need to call the Refresh method
to refresh the values for the properties in the browser, in case some changes occurs to the
browsed object or if you need to. Also, if a property contains another COM object (
EditObject type), the Refresh method updates the values for all browsed properties.

property Property.Variable as Boolean

Retrieves a value indicating whether the property is a variable.

Boolean A b.oollean expression indicating whether the property is a
variable.

If the Variable is False, that doesn't means that the Property object contains a real

property. Use the PropertyPage property to determine if the Property object contains a

properties page, or use the Category to check whether the Property object contains a

category. Use the Show\Variables property to exclude variables. Use the Variable property

to filter your items like in the following sample:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
If Not (Property.Object Is Nothing) Then
Cancel = Property.Variable And TypeOf Property.Object Is IPictureDisp
End If
End Sub

ExPropertiesList events

AnchorClick

EditChange
Event

IncludeProperty

KeyDown
KeyPress

KeyUp

ModalPropertyChange

MouseDown

MouseMove

MouseUp
OffsetChanged

OversizeChanged

PropertyChange

PropertyChanged
ScrollButtonClick

SelChange

The ExPropertiesList component supports the following events:

Occurs when an anchor element is clicked.

Occurs when the user presses and then releases the
mouse button over the control.

Occurs when the user dblclk the left mouse button over an
object.

Fired when user alters the text of an edit control.
Notifies the application once the control fires an event.

Fired when the properties browser is about to include a
new property.

Occurs when the user presses a key while an object has
the focus.

Occurs when the user presses and releases an ANSI key.

Occurs when the user releases a key while an object has
the focus.

Fired when the properties browser is about to change a
property's value using a modal dialog.

Occurs when the user presses a mouse button.
Occurs when the user moves the mouse.

Occurs when the user releases a mouse button.
Occurs when the scroll position has been changed.
Occurs when the range of the scroll has been changed.

Fired when the properties browser is about to change a
property's value.

Occurs after the property's value is changed.
Occurs when the user clicks a button in the scrollbar.
Fired when the selected property is changed.

event AnchorClick (AnchorlD as String, Options as String)

Occurs when an anchor element is clicked.

A string expression that indicates the identifier of the

AnchorlID as String anchor

A string expression that specifies options of the anchor

Options as String element

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorlD parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1,yourextradata>anchor, the AnchorlD parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, INET version, on:

private void AnchorClick(object sender,string AnchorlD,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorlID As
String,ByVal Options As String) Handles AnchorClick
End Sub

Syntax for AnchorClick event, /COM version, on:
private void AnchorClick(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_AnchorClickEvent e)

{
}

C++

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)

{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorlD,BSTR Options)
Builder |l

}
procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

R procedure AnchorClick(sender: System.Object; e:
Ol AXEXPROPERTIESLISTLib._IPropertiesListEvents_AnchorClickEvent);

only)
begin
end;
begin event AnchorClick(string AnchorlD,string Options)

end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_AnchorClickEvent) Handles

AnchorClick
End Sub
V'3l Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub
¥ YWl Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub
LPARAMETERS AnchorlD,Options
PROCEDURE OnAnchorClick(oPropertiesList, AnchorlD,Options)

RETURN

Syntax for AnchorClick event, /COM version (Others) qon.

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorlD,Options)
End Function
</SCRIPT>

NS Procedure OnComAnchorClick String lIAnchorID String IIOptions
Data... Forward Send OnComAnchorClick lIAnchorlID lIOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

Visual
Objects

V| void onEvent_AnchorClick(str _AnchorlID,str _Options)

{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

event Click (Property as Property, Button as Integer, Shift as Integer)

Occurs when the user presses and then releases the mouse button over the control.

Property as Property A Property object that indicates the property being clicked.

An integer that identifies the button that was pressed to

Button as Integer cause the event

An integer that corresponds to the state of the SHIFT,
Shift as Integer CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

The Click event is fired when user clicks a property. The Property parameter gets the

property being clicked. The Value property gets the property's value. The Name property
gets the property's name.

Syntax for Click event, INET version, on:

private void Click(object sender,exontrol. EXPROPERTIESLISTLib.Property
Property,short Button,short Shift)
{
}

Private Sub Click(ByVal sender As System.Object,ByVal Property As
exontrol. EXPROPERTIESLISTLib.Property,ByVal Button As Short,ByVal Shift As
Short) Handles Click
End Sub

Syntax for Click event, ICOM version, on:

private void ClickEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ClickEvent e)
{
}

| void OnClick(LPDISPATCH Property,short Button,short Shift)
{
}

C++
Builder

void __fastcall Click(TObject *Sender,Expropertieslistlib_tlb::IProperty *Property,short
Button,short Shift)

{
}

procedure Click(ASender: TObject; Property : IProperty;Button : Smallint;Shift :
Smallint);
begin
end;

R procedure ClickEvent(sender: System.Object; e:
SOl AXEXPROPERTIESLISTLib._IPropertiesListEvents_ClickEvent);

only)
begin
end;
begin event Click(oleobject Property,integer Button,integer Shift)

end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ClickEvent) Handles ClickEvent
End Sub

VYl Private Sub Click(Property As EXPROPERTIESLISTLibCtl.IProperty,Button As
Integer,Shift As Integer)
End Sub

VYWl Private Sub Click(ByVal Property As Object,ByVal Button As Integer,ByVal Shift As
Integer)
End Sub

LPARAMETERS Property,Button,Shift

PROCEDURE OnClick(oPropertiesList,Property,Button,Shift)
RETURN

Syntax for Click event, /COM version (others) op:

<SCRIPT EVENT="Click(Property,Button,Shift)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function Click(Property,Button,Shift)
End Function
</SCRIPT>

Yl Procedure OnComClick Variant lIProperty Short lIButton Short IIShift
sacll| Forward Send OnComClick IIProperty lIButton lIShift
End_Procedure

METHOD OCX_Click(Property,Button,Shift) CLASS MainDialog
RETURN NIL

Visual
Objects

Ve void onEvent_Click(COM _Property,int _Button,int _Shift)

{
}

function Click as v (Property as OLE::Exontrol.PropertiesList.1:IProperty,Button as
N,Shift as N)
end function

function nativeObject_Click(Property,Button,Shift)
return

The following sample prints the property's name if the user clicks the property:

Private Sub PropertiesList1_Click(Property As EXPROPERTIESLISTLibCtl.IProperty, Button
As Integer, Shift As Integer)

Debug.Print Property.Name
End Sub

event DbIClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)

Occurs when the user dbliclk the left mouse button over an object.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

A single that specifies the current X location of the mouse
X as OLE_XPOS _PIXELS pointer. The x values is always expressed in container
coordinates.

Shift as Integer

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The y values is always expressed in container
coordinates.

The DbIClick event is fired when user double clicks the control.

Syntax for DbIClick event, INET version, on:

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

Syntax for DbIClick event, /COM version, on:
private void DblClick(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_DblClickEvent e)

{
}

S void OnDblClick(short Shift,long X,long Y)
{
}

void _ fastcall DbIClick(TObject *Sender,short Shift,int X,int Y)
Builder {

|}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

R procedure DblClick(sender: System.Object; e:

((-)EE/)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_DblClickEvent);

begin
end;
begin event DblClick(integer Shift,long X,long Y)

end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_DblClickEvent) Handles DblClick

End Sub
V=3l Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub
Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub
LPARAMETERS Shift,X,Y
PROCEDURE OnDblClick(oPropertiesList,Shift,X,Y)

RETURN

Syntax for DbIClick event, /COM version (Others) qon.

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function

| </scripT>

¥R Procedure OnComDblClick Short lIShift OLE_XPOS_PIXELS IIX OLE_YPOS_PIXELS
Data... 1\%

Forward Send OnComDDblClick lIShift IIX [lY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

N void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N, X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblIClick(Shift,X,Y)
return

event EditChange (Property as Property, ByRef Value as Variant)

Fired when user alters the text of an edit control.

Property as Property A Property object being changed.

: (By Reference) A string expression that indicates the
Value as Variant :

caption of the text box control.

The EditChange event is fired when user alters the text of the control's edit box. The
PropertyChange event is fired when user changes the property's value. Use the Value
property to access the old value for the property being changed. Use the ID property to
identify a property. The KeyDown event is fired when user presses a key. The KeyPress
event occurs when the user presses and releases an ANSI key. The control fires the
SelChange event when a new property is selected. Use the UserData property to associate
an extra data to a property.

Syntax for EditChange event, INET version, on:

private void EditChange(object sender,exontrol. EXPROPERTIESLISTLib.Property
Property,ref object Value)
{
}

Private Sub EditChange(ByVal sender As System.Object,ByVal Property As
exontrol. EXPROPERTIESLISTLib.Property,ByRef Value As Object) Handles
EditChange
End Sub

Syntax for EditChange event, /COM version, on:

private void EditChange(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_EditChangeEvent e)
{
}

S void OnEditChange(LPDISPATCH Property,VARIANT FAR* Value)

{
}

C++
Builder

void _ fastcall EditChange(TObject *Sender,Expropertieslistlib_tlb:IProperty
*Property,Variant * Value)

{
}

procedure EditChange(ASender: TObject; Property : IProperty;var Value :
OleVariant);
begin
end;

R procedure EditChange(sender: System.Object; e:
QM| AXEXPROPERTIESLISTLib._IPropertiesListEvents_EditChangeEvent);

only)
begin
end;
begin event EditChange(oleobject Property,any Value)

end event EditChange

Private Sub EditChange(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_EditChangeEvent) Handles
EditChange
End Sub

VY3l Private Sub EditChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Value As Variant)
End Sub

Private Sub EditChange(ByVal Property As Object,Value As Variant)
End Sub

LPARAMETERS Property,Value

PROCEDURE OnEditChange(oPropertiesList,Property,Value)
RETURN

Syntax for EditChange event, /ICOM version (Others) o

<SCRIPT EVENT="EditChange(Property,Value)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function EditChange(Property,Value)
End Function
</SCRIPT>

Y| Procedure OnComEditChange Variant lIProperty Variant lIValue
saull| Forward Send OnComeEditChange IIProperty IIValue
End_Procedure

METHOD OCX_EditChange(Property,Value) CLASS MainDialog
RETURN NIL

Visual
Objects

Y void onEvent_EditChange(COM _Property,COMVariant /*variant*/ _Value)

{
}

function EditChange as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Value as A)
end function

function nativeObject_EditChange(Property,Value)
return

The following sample prints the current text of the control's editing box:

Private Sub PropertiesList1_EditChange(ByVal Property As

EXPROPERTIESLISTLibCtl.IProperty, Value As Variant)
Debug.Print Value

End Sub

event Event (EventID as Long)

Notifies the application once the control fires an event.

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties

).

The Event notification occurs ANY time the control fires an event.

EventID as Long

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)

{
print expropertieslist1.EventParam(-2).toString();

}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1,0, 145,36)" VT_BSTR
"BarParentChange/125(192998632, 'B', 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 ,-1962866148, =0, =0, =0, =0, =false)" VT_BSTR

"AfterDrawPart/55(2,-1962866148 ,0,0,0,0)" VT_BSTR
"MouseMove/-606(1,0, 145, 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)

{

if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, Newltem
as HITEM, Cancel as Boolean) */

expropertieslist1.EventParam(3 /*Cancel*/, COMVariant:.createFromBoolean(true));

}

The code checks if the BarParentChange (_EventlD == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Iltems.Enableltem(Newltem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)

{

if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, Newltem
as HITEM, Cancel as Boolean) */

if (!expropertieslist1.ltems().Enableltem(expropertieslist1.EventParam(2 /*Newltem*/

)))

expropertieslist1.EventParam(3 /*Cancel*/, COMVariant:createFromBoolean(true));

}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, INET version, on:

private void Event(object sender,int EventID)

{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

Syntax for Event event, /COM version, on:
private void Event(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_EventEvent e)

{
}

S void OnEvent(long EventlD)

{
}

Sl void _ fastcall Event(TObject *Sender,long EventID)
Builder | I

}

procedure Event(ASender: TObject; EventlD : Integer);
begin
end;

R procedure Event(sender: System.Object; e:

(cIEE/)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_EventEvent);
begin
end;

Powe...

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oPropertiesList,EventID)
RETURN

Syntax for Event event, /COM version (Others) qon.

<SCRIPT EVENT="Event(EventID)" LANGUAGE=")Script" >
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

YS Procedure OnComEvent Integer Il[EventID
| Forward Send OnComEvent lIEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

Visual
Objects

X++

void onEvent_Event(int _EventID)

{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

event IncludeProperty (Property as Property, ByRef Cancel as Boolean)

Fired when the properties browser is about to include a new property.

A Property object that contains information about the item

Property as Property that is going to be included.

(By Reference) A boolean expression that indicates
Cancel as Boolean : :
whether the property is excluded or included.
Use the IncludeProperty event to filter the object properties. The event is fired only if the
FirelncludeProperty property is True. Use the Cancel argument of the event to include or
exclude a property. Use Cancel = True to exclude a property from the list. Use the
HTMLName property to display HTML format in the Name column.

Syntax for IncludeProperty event, INET version, on:

private void IncludeProperty(object
sender,exontrol. EXPROPERTIESLISTLib.Property Property,ref bool Cancel)
{
}

Private Sub IncludeProperty(ByVal sender As System.Object,ByVal Property As
exontrol. EXPROPERTIESLISTLib.Property,ByRef Cancel As Boolean) Handles
IncludeProperty
End Sub

Syntax for IncludeProperty event, /COM version, on:

private void IncludeProperty(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_IncludePropertyEvent e)
{
}

S void OnincludeProperty(LPDISPATCH Property,BOOL FAR* Cancel)

{
}

void _ fastcall IncludeProperty(TObject *Sender,Expropertieslistlib_tlb::IProperty
*Property,VARIANT_BOOL * Cancel)

C++
Builder

‘ {
)

procedure IncludeProperty(ASender: TObject; Property : IProperty;var Cancel :
WordBool);
begin
end;

Rl procedure IncludeProperty(sender: System.Object; e:

({)EE/)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_IncludePropertyEvent);
begin
end;

begin event IncludeProperty(oleobject Property,boolean Cancel)
end event IncludeProperty

Private Sub IncludeProperty(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_IncludePropertyEvent) Handles

IncludeProperty
End Sub

Y3l Private Sub IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Cancel As Boolean)
End Sub

Private Sub IncludeProperty(ByVal Property As Object,Cancel As Boolean)
End Sub

VBA

LPARAMETERS Property,Cancel

PROCEDURE OnlncludeProperty(oPropertiesList,Property,Cancel)
RETURN

Syntax for IncludeProperty event, /ICOM version (Others) o

<SCRIPT EVENT="IncludeProperty(Property,Cancel)" LANGUAGE="JScript" >
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function IncludeProperty(Property,Cancel)
End Function
</SCRIPT>

YR Procedure OnComincludeProperty Variant lIProperty Boolean lICancel
sacll| Forward Send OnComincludeProperty lIProperty llCancel

End_Procedure
Visual
Objects

VA void onEvent_IncludeProperty(COM _Property,COMVariant /*bool*/ _Cancel)

{
}

METHOD OCX_IncludeProperty(Property,Cancel) CLASS MainDialog
RETURN NIL

function IncludeProperty as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Cancel as L)
end function

function nativeObject_IncludeProperty(Property,Cancel)
return

For instance, if the control's ShowVariables is True, the control includes also the variables
for an IPictureDisp object (hPal variable).

The following sample shows how to exclude variables of IPictureDisp (picture) properties:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
If Not (Property.Object Is Nothing) Then
Cancel = Property.Variable And TypeOf Property.Object Is IPictureDisp
End If
End Sub

The following sample includes only the properties of IFontDisp type, and their variables:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As

EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
Cancel = Not Property.Type = "Font*"
If (Cancel) Then
If Not (Property.Object Is Nothing) Then
Cancel = Not Property.Variable
End If
End If
End Sub

The following sample include only the properties of boolean type, and properties of Object
type:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
Cancel = Not Property.Type = "BOOL"

If (Cancel) Then
Cancel = Not Property.PropertyObject
End If
End Sub

The following sample includes all properties contained by "Misc" category:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.CategoryName = "Misc")
End Sub

The following sample shows how to simulate the VB browser (the ShowObjects property is
True):

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
Cancel = Property.PropertyObject
If (Cancel) Then
Cancel = Not (Property.Type = "Font*" Or Property.Type = "Picture*")
End If
End Sub

The following sample shows how to include into your browser only the property pages:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not Property.PropertyPage
End Sub

Here's a sample that shows how to include only hidden members:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)

Cancel = Not (Property.Flags And &H40) = &H40
End Sub

The following sample excludes the "hPal" variable of a Picture property:

Private Sub PropertiesList1_IncludeProperty(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Cancel As Boolean)
If Property.Variable = True Then
If Property.Name = "hPal" Then
Cancel = True
End If
End If
End Sub

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

KeyCode as Integer (By Reference) An integer that represent the key code

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit

Shift as Integer 1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a
stemporary integer variable and then comparing shift to a bit mask. The control fires the
EditChange event while user types characters in the property's text box control. Use the
And operator with the shift argument to test whether the condition is greater than 0,
indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0

CtrlDown = (Shift And 2) > 0

AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrIDown Then

Syntax for KeyDown event, /INET version, on:
private void KeyDown(object senderref short KeyCode,short Shift)

{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

Syntax for KeyDown event, /COM version, on:
private void KeyDownEvent(object sender,

AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyDownEvent e)

{
}

S void OnKeyDown(short FAR* KeyCode,short Shift)

{
}

void _ fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
Builder

{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

R procedure KeyDownEvent(sender: System.Object; e:
SOl AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyDownEvent);

only)
begin
end;
begin event KeyDown(integer KeyCode,integer Shift)

end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyDownEvent) Handles

KeyDownEvent
End Sub
VYl Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub
Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)

End Sub

LPARAMETERS KeyCode,Shift

Xbas...

PROCEDURE OnKeyDown(oPropertiesList,KeyCode,Shift)
RETURN

Syntax for KeyDown event, /ICOM version (Others) op.

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Y| Procedure OnComKeyDown Short lIKeyCode Short IIShift
sauml| Forward Send OnComKeyDown lIKeyCode IIShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

Visual
Objects

V| void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)

{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

event KeyPress (KeyAscii as Integer, Shift as Integer)

Occurs when the user presses and releases an ANSI key.

KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

An integer that corresponds to the state of the SHIFT,
Shift as Integer CTRL, and ALT keys when the key specified in the
KeyAsci argument is pressed or released.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters

Syntax for KeyPress event, INET version, on:

private void KeyPress(object sender,ref short KeyAscii,short Shift)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short,ByVal
Shift As Short) Handles KeyPress
End Sub

Syntax for KeyPress event, /ICOM version, on:
private void KeyPressEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyPressEvent e)

{
}

S void OnKeyPress(short FAR* KeyAscii,short Shift)

{
}

C++
Builder

void _ fastcall KeyPress(TObject *Sender,short * KeyAscii,short Shift)

{
}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint;Shift : Smallint);
begin
end;

R procedure KeyPressEvent(sender: System.Object; e:

(C-E:Ey)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii,integer Shift)
end event KeyPress

Powe...

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyPressEvent) Handles

KeyPressEvent
End Sub
VYWl Private Sub KeyPress(KeyAscii As Integer,Shift As Integer)
End Sub
VYWl Private Sub KeyPress(KeyAscii As Integer,ByVal Shift As Integer)

End Sub

LPARAMETERS KeyAscii,Shift

PROCEDURE OnKeyPress(oPropertiesList,KeyAscii,Shift)
RETURN

Syntax for KeyPress event, /COM version (0thers) .
<SCRIPT EVENT="KeyPress(KeyAscii,Shift)* LANGUAGE="JScript">

| </scripT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii,Shift)
End Function
</SCRIPT>

YNl Procedure OnComKeyPress Short lIKeyAscii Short lIShift
sauml| Forward Send OnComKeyPress lIKeyAscii lIShift
End_Procedure

METHOD OCX_KeyPress(KeyAscii,Shift) CLASS MainDialog
RETURN NIL

Visual
Objects

N void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii,int _Shift)

{
}

function KeyPress as v (KeyAscii as N,Shift as N)
end function

function nativeObject_KeyPress(KeyAscii,Shift)
return

Use the KeyPress event to handle keyboard events. The following sample shows how to
handle Delete key:

Private Sub PropertiesList1_KeyPress(KeyAscii As Integer, Shift As Integer)
If KeyAscii = KeyCodeConstants.vbKeyDelete Then
MsgBox PropertiesList1.SelectedProperty.Name
End If
End Sub

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user releases a key while an object has the focus.

KeyCode as Integer (By Reference) An integer that represent the key code.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit

Shift as Integer 1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key. The control fires the
KeyDown event when user presses a key.

Syntax for KeyUp event, INET version, on:

private void KeyUp(object sender,ref short KeyCode,short Shift)

{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

Syntax for KeyUp event, /COM version, on:

private void KeyUpEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyUpEvent e)
{
}

Sl void OnKeyUp(short FAR* KeyCode,short Shift)

{
}

C++
Builder

void _ fastcall KeyUp(TObject *Sender,;short * KeyCode,short Shift)

{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

R procedure KeyUpEvent(sender: System.Object; e:

(C-E:Ey)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Powe...

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_KeyUpEvent) Handles KeyUpEvent

End Sub
VYl Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub
Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub
LPARAMETERS KeyCode,Shift
PROCEDURE OnKeyUp(oPropertiesList,KeyCode,Shift)

RETURN

Syntax for KeyUp event, /ICOM version (Others) qn.

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

YSP Procedure OnComKeyUp Short lIKeyCode Short lIShift
sacll| Forward Send OnComKeyUp lIKeyCode IIShift

End_Procedure
Visual
Objects

V| void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)

{
}

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

event ModalPropertyChange (Property as Property, Value as Variant,
ByRef Cancel as Boolean)

Fired when the properties browser is about to change a property's value using a modal
dialog.

Property as Property A Property object being changed using a modal dialog.

A Variant expression that indicates the newly property's

Value as Variant
value.

(By Reference) A boolean expression that indicates
Cancel as Boolean whether the control disables or enables the default
implementation.

Use the ModalPropertyChange event to replace the default implementation of modal type
editors (IFontDisp (font) properties, IPictureDisp (picture) properties, object properties
pages, EditPage, EditColorPage, EditButton types). The "Invalid property value" message
is displayed if the Property does not accept the Value. To avoid showing error messages
set the InvalidValueMessage property to an empty string.

Syntax for ModalPropertyChange event, INET version, on:

| private void ModalPropertyChange(object

sender,exontrol. EXPROPERTIESLISTLib.Property Property,ref object Value,ref bool
Cancel)

{
}

Private Sub ModalPropertyChange(ByVal sender As System.Object,ByVal Property
As exontrol. EXPROPERTIESLISTLib.Property,ByRef Value As Object,ByRef Cancel As
Boolean) Handles ModalPropertyChange
End Sub

Syntax for ModalPropertyChange event, /COM version, on:

private void ModalPropertyChange(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ModalPropertyChangeEvent e)
{
}

C++

{
}

C++
Builder

Delphi 8
(.NET
only)

VB6

VBA

void OnModalPropertyChange(LPDISPATCH Property,VARIANT FAR* Value,BOOL FAR*
Cancel)

void _ fastcall ModalPropertyChange(TObject
*Sender,Expropertieslistlib_tlb::IProperty *Property,Variant * Value, VARIANT_BOOL
* Cancel)

{

}

procedure ModalPropertyChange(ASender: TObject; Property : IProperty;var
Value : OleVariant;var Cancel : WordBool);

begin

end;

procedure ModalPropertyChange(sender: System.Object; e:
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ModalPropertyChangeEvent);
begin

end;

begin event ModalPropertyChange(oleobject Property,any Value,boolean Cancel)
end event ModalPropertyChange

Private Sub ModalPropertyChange(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ModalPropertyChangeEvent)
Handles ModalPropertyChange

End Sub

Private Sub ModalPropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Value As Variant,Cancel As Boolean)
End Sub

Private Sub ModalPropertyChange(ByVal Property As Object,Value As
Variant,Cancel As Boolean)
End Sub

LPARAMETERS Property,Value,Cancel

PROCEDURE OnModalPropertyChange(oPropertiesList,Property,Value,Cancel)
RETURN

Syntax for ModalPropertyChange event, /COM version (Others) .

<SCRIPT EVENT="ModalPropertyChange(Property,Value,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ModalPropertyChange(Property,Value,Cancel)
End Function
</SCRIPT>

Y| Procedure OnComModalPropertyChange Variant [IProperty Variant I[Value
Raal| Boolean lICancel
Forward Send OnComModalPropertyChange IIProperty IIValue lICancel
End_Procedure

METHOD OCX_ModalPropertyChange(Property,Value,Cancel) CLASS MainDialog
RETURN NIL

Visual
Objects

Y void onEvent_ModalPropertyChange(COM _Property,COMVariant /*variant*/
_Value,COMVariant /*bool*/ _Cancel)

{
}

function ModalPropertyChange as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Value as A,Cancel as L)
end function

function nativeObject_ModalPropertyChange(Property,Value,Cancel)
return

The following sample replaces the editor for properties of IPictureDisp (picture) type (the
sample uses Type property of the Property to check the property's type. The sample
doesn't use the statement typeof Property.Obiject is IPictureDisp because the Object

property might be set to nothing, and so the operator typeof will be unable to determine the
type of the object):

Private Sub PropertiesList1_ModalPropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant, Cancel As Boolean)
If Property.Type = "Picture*" Then

MsgBox "Invoke your dialog here, and change the Value parameter, when your dialog
is closed.”

Value = StdFunctions.LoadPicture("c:\winnt\system32\setup.bomp")
Cancel = True
End If
End Sub

The following sample shows how to change the default font editor:

Private Sub PropertiesList1_ModalPropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant, Cancel As Boolean)
If (Property.Type = "Font*") Then
MsgBox "Use your implementation here"
Set Value = Me.Font
Cancel = True
End If
End Sub

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user presses a mouse button.

An integer that identifies the button that was pressed to

Button as Integer cause the event

An integer that corresponds to the state of the SHIFT,
Shift as Integer CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

A single that specifies the current X location of the mouse
X as OLE XPOS PIXELS pointer. The X value is always expressed in container
coordinates

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseDown event, /INET version, on:

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)

{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

Syntax for MouseDown event, /COM version, on:

private void MouseDownEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ MouseDownEvent e)
{

}

Sl void OnMouseDown(short Button,short Shift,long X,long Y)

{
}

void _ fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
Builder

{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

)| procedure MouseDownEvent(sender: System.Object; e:

((-)ﬁE/)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oPropertiesList,Button,Shift,X,Y)
RETURN

Syntax for MouseDown event, /COM version (Others) o

<SCRIPT EVENT="MouseDown(Button,Shift X,Y)" LANGUAGE="JScript" >
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

VAP Procedure OnComMouseDown Short lIButton Short [IShift OLE_XPOS_PIXELS IIX
micictt®| OLE_YPOS_PIXELS IlY
Forward Send OnComMouseDown l[Button lIShift [IX IIY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

PR void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)

{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

An integer that corresponds to the state of the mouse

Button as Integer buttons in which a bit is set if the button is down.

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

A single that specifies the current X location of the mouse
X as OLE _XPOS PIXELS pointer. The x values is always expressed in container
coordinates.

Shift as Integer

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders.

Syntax for MouseMove event, INET version, on:

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

Syntax for MouseMove event, /COM version, on:

private void MouseMoveEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shiftlong X,long Y)

‘{
)

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
Builder

{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
IntegerY : Integer);
begin
end;

R procedure MouseMoveEvent(sender: System.Object; e:

((-)EE/)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Powe...

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

VB6

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oPropertiesList,Button,Shift,X,Y)
RETURN

Syntax for MouseMove event, /ICOM version (Others) on.

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

VAR Procedure OnComMouseMove Short [IButton Short lIShift OLE_XPOS_PIXELS IIX
Raall| OLE_YPOS_PIXELS IlY
Forward Send OnComMouseMove |IButton IIShift IIX [IY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

V| void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)

{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

An integer that identifies the button that was pressed to

Button as Integer cause the event.

An integer that corresponds to the state of the SHIFT,
Shift as Integer CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

A single that specifies the current X location of the mouse
X as OLE _XPOS PIXELS pointer. The x values is always expressed in container
coordinates.

A single that specifies the current Y location of the mouse
Y as OLE_YPOS PIXELS pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, INET version, on:

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)

{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

Syntax for MouseUp event, /COM version, on:

private void MouseUpEvent(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseUpEvent e)
{

}

Sl void OnMouseUp(short Button,short Shift,long X,long Y)

{
}

void _ fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
Builder

{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

)| procedure MouseUpEvent(sender: System.Object; e:
SOl AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseUpEvent);

only)
begin
end;
begin event MouseUp(integer Button,integer Shift,long X,long Y)

end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_MouseUpEvent) Handles

MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

VB6

VYWl Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)

End Sub
Y3l LPARAMETERS Button,Shift,X,Y
PROCEDURE OnMouseUp(oPropertiesList,Button,Shift,X,Y)

RETURN

Syntax for MouseUp event, /COM version (Others) o

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

S| Procedure OnComMouseUp Short lIButton Short [IShift OLE_XPOS_PIXELS IIX
nckalsl| OLE_YPOS_PIXELS IIY
Forward Send OnComMouseUp lIButton lIShift IIX [IY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

Visual
Objects

PR void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)

{
}

function MouseUp as v (Button as N,Shift as N, X as
OLE::Exontrol.PropertiesList.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.PropertiesList.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

event OffsetChanged (Horizontal as Boolean, NewVal as Long)

Occurs when the scroll position has been changed.

A boolean expression that indicates whether the horizontal

Horizontal as Boolean
scroll bar has changed.

A long value that indicates the new scroll bar value in

NewVal as Long pixels

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. The OffsetChanged event is not fired when the user scrolls the chart's part of the
control. In this case. The OffsetChanged event is fired only when the user scrolls
horizontally the columns section of the control, or when the user scrolls vertically the items
part of the control.

Syntax for OffsetChanged event, INET version, on:

private void OffsetChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OffsetChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OffsetChanged
End Sub

Syntax for OffsetChanged event, /COM version, on:

private void OffsetChanged(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_OffsetChangedEvent e)
{
}

S void OnOffsetChanged(BOOL Horizontal,long NewVal)
{
}

Sl void _ fastcall OffsetChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
Builder NeWV8|)

{

|}

procedure OffsetChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

)| procedure OffsetChanged(sender: System.Object; e:
Ol AXEXPROPERTIESLISTLib._IPropertiesListEvents_OffsetChangedEvent);

only)
begin
end;
begin event OffsetChanged(boolean Horizontal,long NewVal)

end event OffsetChanged

Private Sub OffsetChanged(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_OffsetChangedEvent) Handles

OffsetChanged
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal, NewVal

PROCEDURE OnOffsetChanged(oPropertiesList,Horizontal, NewVal)
RETURN

Syntax for OffsetChanged event, /COM version (Others) .

<SCRIPT EVENT="0ffsetChanged(Horizontal, NewVal)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">

Function OffsetChanged(Horizontal,NewVal)
End Function
</SCRIPT>

YR Procedure OnComOffsetChanged Boolean lIHorizontal Integer [INewVal
sl Forward Send OnComOffsetChanged IIHorizontal [INewVal
End_Procedure

METHOD OCX_OffsetChanged(Horizontal, NewVal) CLASS MainDialog
RETURN NIL

Visual
Objects

Yl void onEvent_OffsetChanged(boolean _Horizontal,int _NewVal)

{
}

function OffsetChanged as v (Horizontal as LNewVal as N)
end function

function nativeObject_OffsetChanged(Horizontal, NewVal)
return

The following VB sample displays the new scroll position when user scrolls horizontally the
control:

Private Sub PropertiesList1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As
Long)
If (Horizontal) Then
Debug.Print "The horizontal scroll bar has been moved to " & NewVal
End If
End Sub

The following VC sample displays the new scroll position when the user scrolls vertically the
control:

void OnOffsetChangedPropertiesList1(BOOL Horizontal, long NewVal)
{

if ('Horizontal)

{

CString strFormat;
strFormat.Format("NewPos = %i\n", NewVal);
OutputDebugString(strFormat);

}

}

The following VB.NET sample displays the new scroll position when the user scrolls
vertically the control:

Private Sub AxPropertiesList1_OffsetChanged(ByVal sender As Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_OffsetChangedEvent) Handles
AxPropertiesList1.0ffsetChanged
If (Not e.horizontal) Then
Debug.WriteLine(e.newVal)
End If
End Sub

The following C# sample displays the new scroll position when the user scrolls vertically the
control:

private void axPropertiesList1_OffsetChanged(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_OffsetChangedEvent e)
{
if ('e.horizontal)
System.Diagnostics.Debug.WriteLine(e.newVal);

}

The following VFP sample displays the new scroll position when the user scrolls vertically
the control:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

if (O # horizontal)
wait window nowait str(newval)
endif

event OversizeChanged (Horizontal as Boolean, NewVal as Long)

Occurs when the range of the scroll has been changed.

A boolean expression that indicates whether the horizontal

Horizontal as Boolean
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value.

This OversizeChanged event is fired whenever there is a change detected in the range of
the scroll, indicating that the scrolling boundaries or limits have been adjusted in some way.
It serves as a notification mechanism to inform observers or subscribers about any
alterations made to the scroll range, providing valuable insights into the dynamics of
scrolling behavior within the application. If the control has no scroll bars the OffsetChanged
and OversizeChanged events are not fired. When the scroll bar range is changed the
OversizeChanged event is fired. The VisibleltemCount property gets the number of visible-
items (including hidden visible. The VisibleltemCount property retrieves the total count of
visible items, encompassing those that are not currently displayed due to scrolling.

Syntax for OversizeChanged event, INET version, on:

private void OversizeChanged(object sender,bool Horizontal,int NewVal)

{
}

Private Sub OversizeChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OversizeChanged
End Sub

Syntax for OversizeChanged event, /COM version, on:

private void OversizeChanged(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_OversizeChangedEvent e)
{
}

S void OnOversizeChanged(BOOL Horizontal,long NewVal)

{
}

C++
Builder

void _ fastcall OversizeChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)

{
}

procedure OversizeChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

R procedure OversizeChanged(sender: System.Object; e:

(C-EE)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_OversizeChangedEvent);
begin
end;

begin event OversizeChanged(boolean Horizontal,long NewVal)
end event OversizeChanged

Powe...

Private Sub OversizeChanged(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_OversizeChangedEvent) Handles
OversizeChanged
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

VB6

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal NewVal

PROCEDURE OnOversizeChanged(oPropertiesList,Horizontal, NewVal)
RETURN

Syntax for OversizeChanged event, /ICOM version (Others) op.

<SCRIPT EVENT="0OversizeChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function OversizeChanged(Horizontal, NewVal)
End Function
</SCRIPT>

Y| Procedure OnComOversizeChanged Boolean lIHorizontal Integer lINewVal
Data... Forward Send OnComOversizeChanged IIHorizontal IINewVal
End_Procedure

METHOD OCX_OversizeChanged(Horizontal, NewVal) CLASS MainDialog
RETURN NIL

Visual
Objects

Ve void onEvent_OversizeChanged(boolean _Horizontal,int _NewVal)

{
}

function OversizeChanged as v (Horizontal as L, NewVal as N)
end function

function nativeObject_OversizeChanged(Horizontal,NewVal)
return

event PropertyChange (Property as Property, ByRef Value as Variant)

Fired when the properties browser is about to change the property's value.

A Property object that was changed using one of the
Property as Property control's editors, and it is about to change the property's
value.

. (By Reference) A Variant expression that specifies the
Value as Variant .

newly value that will be passed to the property.
The PropertyChange event notifies your application that user is about to change a property.
If you are going to change the Value parameter during this event, make sure that your value
is accepted by the property, else the control will popup an error message: "Invalid property
value". To avoid showing error messages by the control when changing properties, set the
InvalidValueMessage property to empty message. The PropertyChange event is called,
even if the user canceled the default implementation in ModalPropertyChange event. The
control fires the EditChange event when user types characters in the property's text box
control. The PropertyChanged event is fired after changing the value of the property. Use
the Value property to retrieve the property's value. Use the Name property to retrieve the
name of the property. Use the ID property to identify a property by its identifier.

Syntax for PropertyChange event, /INET version, on:

private void PropertyChange(object
sender,exontrol. EXPROPERTIESLISTLib.Property Property,ref object Value)
{
}

Private Sub PropertyChange(ByVal sender As System.Object,ByVal Property As
exontrol. EXPROPERTIESLISTLib.Property,ByRef Value As Object) Handles
PropertyChange
End Sub

Syntax for PropertyChange event, /COM version, on:

private void PropertyChange(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangeEvent e)
{
}

S void OnPropertyChange(LPDISPATCH Property, VARIANT FAR* Value)

{
}

void _ fastcall PropertyChange(TObject *Sender,Expropertieslistlib_tlb:IProperty
SLlell| *Property,Variant * Value)

{

}
procedure PropertyChange(ASender: TObject; Property : IProperty;var Value :
OleVariant);
begin
end;

R procedure PropertyChange(sender: System.Object; e:
SOl AXEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangeEvent);

only)
begin
end;
begin event PropertyChange(oleobject Property,any Value)

end event PropertyChange

Private Sub PropertyChange(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangeEvent) Handles

PropertyChange
End Sub

V'3l Private Sub PropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty,Value As Variant)
End Sub

Private Sub PropertyChange(ByVal Property As Object,Value As Variant)
End Sub

LPARAMETERS Property,Value

PROCEDURE OnPropertyChange(oPropertiesList,Property,Value)

| RETURN

Syntax for PropertyChange event, /ICOM version (Others) o

<SCRIPT EVENT="PropertyChange(Property,Value)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function PropertyChange(Property,Value)
End Function
</SCRIPT>

VS| Procedure OnComPropertyChange Variant lIProperty Variant lIValue
Bacll| Forward Send OnComPropertyChange lIProperty lIValue
End_Procedure

METHOD OCX_PropertyChange(Property,Value) CLASS MainDialog
RETURN NIL

Visual
Objects

P void onEvent_PropertyChange(COM _Property,COMVariant /*variant*/ _Value)

{
}

function PropertyChange as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty,Value as A)

end function

function nativeObject_PropertyChange(Property,Value)
return

The following sample prints the property's name and the property's newly value when user
changes the property:

Private Sub PropertiesList1_PropertyChange(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty, Value As Variant)

Debug.Print "The """ & Property.Name & """'s value is changed. The newly value is " &
Value

event PropertyChanged (Property as Property)

Occurs after the property's value is changed.

Property as Property A Property object being changed

The PropertyChanged event notifies your application that the user changes the value of the
property. Use the Value property to retrieve the property's value. Use the Name property to
retrieve the name of the property. Use the ID property to identify a property by its identifier.
The PropertyChange event is fired before changing the value of the property.

Syntax for PropertyChanged event, INET version, on:

private void PropertyChanged(object
sender,exontrol.EXPROPERTIESLISTLib.Property Property)
{
}

Private Sub PropertyChanged(ByVal sender As System.Object,ByVal Property As
exontrol. EXPROPERTIESLISTLib.Property) Handles PropertyChanged
End Sub

Syntax for PropertyChanged event, /COM version, on:

private void PropertyChanged(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangedEvent e)
{
}

S void OnPropertyChanged(LPDISPATCH Property)
{
}

void _ fastcall PropertyChanged(TObject *Sender,Expropertieslistlib_tlb::IProperty
Builder *Property)
{
}

procedure PropertyChanged(ASender: TObject; Property : IProperty);

begin
end;

R procedure PropertyChanged(sender: System.Object; e:
Sl AXEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangedEvent);

only)
begin
end;
begin event PropertyChanged(oleobject Property)

end event PropertyChanged

Private Sub PropertyChanged(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_PropertyChangedEvent) Handles

PropertyChanged
End Sub

VY3 Private Sub PropertyChanged(ByVal Property As
EXPROPERTIESLISTLibCtl.IProperty)
End Sub

Private Sub PropertyChanged(ByVal Property As Object)
End Sub

VBA

LPARAMETERS Property

PROCEDURE OnPropertyChanged(oPropertiesList,Property)
RETURN

Syntax for PropertyChanged event, /COM version (Others) .

<SCRIPT EVENT="PropertyChanged(Property)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function PropertyChanged(Property)
End Function

</SCRIPT>

YNl Procedure OnComPropertyChanged Variant [IProperty
sl Forward Send OnComPropertyChanged IIProperty

End_Procedure
Visual
Objects

Y void onEvent_PropertyChanged(COM _Property)

{
}

METHOD OCX_PropertyChanged(Property) CLASS MainDialog
RETURN NIL

function PropertyChanged as v (Property as
OLE::Exontrol.PropertiesList.1::IProperty)
end function

function nativeObject_PropertyChanged(Property)
return

event ScrollButtonClick (ScrollBar as ScrolIBarEnum, ScrollPart as
ScrollPartEnum)

Occurs when the user clicks a button in the scrollbar.

A ScrollBarEnum expression that specifies the scrollbar

ScrollBar as ScrollBarEnum . .
being clicked.

A ScrollPartEnum expression that indicates the part of the

ScrollPart as ScrollPartEnum . .
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollPartVisible property to add
or remove buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to
specify enable or disable parts in the control's scrollbar. Use the ScrolPartCaption property
to specify the caption of the scroll's part. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, INET version, on:

| private void ScrollButtonClick(object
sender,exontrol. EXPROPERTIESLISTLib.ScrollIBarEnum
ScrollBar,exontrol. EXPROPERTIESLISTLib.ScrollPartEnum ScrollPart)

{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXPROPERTIESLISTLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXPROPERTIESLISTLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

Syntax for ScrollButtonClick event, /COM version, on:
private void ScrollButtonClick(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent e)

{
}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{

|}

void _ fastcall ScrollButtonClick(TObject
Llel| *SenderExpropertieslistlib_tlb:ScrollBarEnum

ScrollBar,Expropertieslistlib_tlb::ScrollPartEnum ScrollPart)

{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

R procedure ScrollButtonClick(sender: System.Object; e:

({)EE/)T AXEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXPROPERTIESLISTLibCtl.ScrollIBarEnum,ByVal ScrollPart As
EXPROPERTIESLISTLibCtl.ScrollPartEnum)

End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oPropertiesList,ScrollBar,ScrollPart)

| RETURN

Syntax for ScrollButtonClick event, /COM version (Others) .

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

AP Procedure OnComScrollButtonClick OLEScrollBarEnum lIScrollBar
il OLEScrollPartEnum lIScrollPart
Forward Send OnComScrollButtonClick IIScrollBar lIScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

Visual
Objects

VAR void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)

{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.PropertiesList.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.PropertiesList.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

The following VB sample displays the identifier of the scroll's button being clicked:

With PropertiesList1
.BeginUpdate
ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

ScrollPartCaption(exVScroll, exLeftB1Part) = " 1"
ScrollPartCaption(exVScroll, exRightB1Part) = " 2"
.EndUpdate
End With

Private Sub PropertiesList1_ScrollButtonClick(ByVal ScrollPart As
EXPROPERTIESLISTLibCtl.ScrollPartEnum)

MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxPropertiesList1
.BeginUpdate()
set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part Or
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, True)
set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part, " 1")
set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, " 2")
.EndUpdate()
End With

Private Sub AxPropertiesList1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent) Handles
AxPropertiesList1.ScrollButtonClick

MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axPropertiesList1.BeginUpdate();
axPropertiesList1.set_ScrollPartVisible(EXPROPERTIESLISTLib.ScrollIBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part |
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, true);
axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exLeftB1Part , “ 1");

axPropertiesList1.set_ScrollPartCaption(EXPROPERTIESLISTLib.ScrollBarEnum.exVScroll,
EXPROPERTIESLISTLib.ScrollPartEnum.exRightB1Part, “ 2");
axPropertiesList1.EndUpdate();

private void axPropertiesList1_ScrollButtonClick(object sender,
AXEXPROPERTIESLISTLib._IPropertiesListEvents_ScrollButtonClickEvent e)

{
MessageBox.Show(e.scrollPart.ToString());

}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_propertiesList.BeginUpdate();

m_propertiesList.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/, _T("
1"));

m_propertiesList.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/, _T("
2"));

m_propertiesList.EndUpdate();

void OnScrollButtonClickPropertiesList1(long ScrollPart)

{
CString strFormat;

strFormat.Format(_T("%i"), ScrollPart);
MessageBox(strFormat),

}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.PropertiesList1
.BeginUpdate
ScrollPartVisible(0, bitor(32768,32)) = .t.
ScrollPartCaption(0,32768) = "1"
ScrollPartCaption(0, 32) = " 2"
.EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

event SelChange ()

Fired when the selected property is changed.

The SelChange event notifies your application that user changes the selection. The
SelChange event is not called when the control browses a new object using the Select
method. The SelectedProperty property gets the selected property. The Name property
gets the property's name. The Value property gets the property's value.

Syntax for SelChange event, INET version, on:

private void SelChange(object sender)
{
}

Private Sub SelChange(ByVal sender As System.Object) Handles SelChange
End Sub

Syntax for SelChange event, /COM version, on:

private void SelChange(object sender, EventArgs e)
{
}

| void OnSelChange()

{
}

void _ fastcall SelChange(TObject *Sender)
Builder {
}

procedure SelChange(ASender: TObject;);
begin
end;

R} procedure SelChange(sender: System.Object; e: System.EventArgs);
((-)EE/)T begin

l end;

begin event SelChange()
end event SelChange

Powe...

Private Sub SelChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelChange
End Sub

Private Sub SelChange()
End Sub

Private Sub SelChange()
End Sub

LPARAMETERS nop

PROCEDURE OnSelChange(oPropertiesList)
RETURN

Syntax for SelChange event, /ICOM version (Others) o,

<SCRIPT EVENT="SelChange()" LANGUAGE="JScript">
</SCRIPT>

Java...

<SCRIPT LANGUAGE="VBScript">
Function SelChange()

End Function
</SCRIPT>

Y3 Procedure OnComSelChange
Data... Forward Send OnComSelChange
End_Procedure

METHOD OCX_SelChange() CLASS MainDialog
RETURN NIL

Visual
Objects

X++

void onEvent_SelChange()

{
}

function SelChange as v ()
end function

function nativeObject_SelChange()
return

The following sample prints the name and the type of the selected property (for instance,
the sample is useful to find out the type of the property selected, when you need to include
or exclude properties using the IncludeProperty event):

Private Sub PropertiesList1_SelChange()

Debug.Print "You have selected the """ & PropertiesList1.SelectedProperty.Name & """.
The type for it is: " & PropertiesList1.SelectedProperty.Type
End Sub

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	PropertiesList
	Add method
	AllowDrop property
	AllowDuplicateEntries property
	AllowMultipleValuesOnEnum property
	AllowSpin property
	AllowSpy property
	AllowSpyOn method
	AllowTooltip property
	AnchorFromPoint property (readonly)
	AttachTemplate method
	AutoDrag property
	AutoIndent property
	BackColor property
	BackColorAlternate property
	BackColorCategories property
	BackColorDescription property
	BackColorHeader property
	Background property
	BeginUpdate method
	BorderStyle property
	CaptionMessageBox property
	Clear method
	ColumnAutoResize property
	ColumnCaption property
	ColumnsAllowSizing property
	ColumnWidth property
	Copy method
	CopyTo property (readonly)
	Count property (readonly)
	DefaultCategory property
	DefaultItemHeight property
	DescriptionHeight property
	DescriptionVisible property
	DisplayBoolAs property
	DisplayColorAs property
	EditOnKey property
	EditOnSelect property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	ExpandAll method
	ExpandItem property
	ExpandOnSearch property
	FilterBarFont property
	FilterBarPrompt property
	FilterBarPromptPattern property
	FilterBarPromptVisible property
	FireIncludeProperty property
	Font property
	ForeColor property
	ForeColorCategories property
	ForeColorDescription property
	ForeColorHeader property
	FormatAnchor property
	GridLineColor property
	HasButtons property
	HasButtonsCustom property
	HasGridLines property
	HasLines property
	HeaderAppearance property
	HeaderEnabled property
	HeaderHeight property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	IncrementalSearch property
	Indent property
	IndexItemsCollection property
	Interfaces property (readonly)
	InvalidValueMessage property
	Item property (readonly)
	Layout property
	LinkCategories property
	MarkCategories property
	MarkLineColor property
	NameItemsCollection property
	Option property
	Property property (readonly)
	ReadOnly property
	Refresh method
	Remove method
	ReplaceIcon method
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SelBackColor property
	Select method
	SelectedObject property
	SelectedProperty property
	SelForeColor property
	ShowCategories property
	ShowHidden property
	ShowItemsCollection property
	ShowMultipleParams property
	ShowNonBrowsable property
	ShowObjects property
	ShowPropertyPages property
	ShowReadOnly property
	ShowRestricted property
	ShowToolTip method
	ShowVariables property
	Sort method
	SortObjects property
	SortOnClick property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipWidth property
	ToString property (readonly)
	UseVisualTheme property
	Version property
	VisibleItemCount property (readonly)
	VisualAppearance property (readonly)
	VisualDesign property

	Property
	AddValue method
	BackColor property
	Bold property
	Caption property
	Category property (readonly)
	CategoryName property (readonly)
	CellBackColor property
	CellBackgroundExt property
	CellBackgroundExtValue property
	CellForeColor property
	Clear method
	Description property
	DisplayCaption property (readonly)
	DisplayCheck property
	DisplayColor property
	DisplayDate property
	DisplayFile property
	DisplayFolder property
	DisplaySlider property
	DisplayValue property (readonly)
	DropDownItems property
	EditType property
	Enabled property
	Flags property (readonly)
	ForeColor property
	Height property
	HTMLName property
	HTMLValue property
	ID property
	ItemCollection property (readonly)
	Locked property
	Mask property
	MaskChar property
	Name property (readonly)
	Numeric property
	NumericFloat property
	Object property (readonly)
	Option property
	Parameter property (readonly)
	Parent property (readonly)
	Position property
	PropertyObject property (readonly)
	PropertyPage property (readonly)
	ReadOnly property (readonly)
	RemoveValue method
	Selectable property
	SingleLine property
	SliderMax property
	SliderMin property
	SliderStep property
	SliderTickFrequency property
	SliderWidth property
	Sortable property
	SortItems method
	SpinStep property
	ToolTip property
	Type property (readonly)
	UserData property
	Value property
	Variable property (readonly)

	ExPropertiesList events
	AnchorClick event
	Click event
	DblClick event
	EditChange event
	Event event
	IncludeProperty event
	KeyDown event
	KeyPress event
	KeyUp event
	ModalPropertyChange event
	MouseDown event
	MouseMove event
	MouseUp event
	OffsetChanged event
	OversizeChanged event
	PropertyChange event
	PropertyChanged event
	ScrollButtonClick event
	SelChange event

