
 ExplorerTree

Add structured navigation functionality to your applications. The ExplorerTree component
adds navigation functionality to your applications, it brings simple information structuring and
easy application navigation. It contains a WYSWYG designer, which is available in all
environments such as .NET, VFP or else. It simplifies the organization of information in your
applications. Hierarchical structure of Groups and Items allows perfect structuring of
information. Create Outlook style bar and tree navigation interfaces. The ExontrolTree
component combines features of the most popular ExplorerBar and ExTree components.

Features Include:

WYSWYG Template/Layout Editor support
Skinnable Interface support (ability to apply a skin to the any background part)
Shortcut bar support (Ability to group the groups of items, in the shortcut bar).
ADO and DAO support
Ability to display group's items as simple tree, multi-column tree, simple list or multi-
column list
ActiveX hosting (you can place any ActiveX component in any item of the group)
Events from contained components are fired through to your program using the exact
same model used in VB
'starts with' and 'contains' incremental searching support
Custom size pictures support.
Ability to load the icons list from a BASE64 encoded string
FilterBar Support. Ability to filter items with an easy-to-use interface
Multiple levels header support
Unlimited color/HTML options for cells, items
Multiple selection
Multi-line HTML tooltip support, XP shadow effect
Background Picture Support
Gradient colors support
Mouse wheel support
Split Cells support
Merge Cells support
Locked Items/Columns support
Divider Items support.
Computed Fields support, Conditional Format support
Hyperlinks, anchor elements support.
Radio buttons, images, check boxes
Partial Check Support. Built-in checkbox reflection to reflect that state of children,
parents

https://exontrol.com/explorerbar.jsp
https://exontrol.com/extree.jsp

Ž ExPlorerTree is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the object's alignment.

Name Value Description
LeftAlignment 0 The object is left aligned.
CenterAlignment 1 The object is centered.
RightAlignment 2 The object is right aligned.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar. See also the HeaderAppearance property.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
AutoSearch property to allow 'start with' incremental search or 'contains' incremental search
feature in the control.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Name Value Description

exHeaderFilterBarButton 0

Specifies the background color for the drop down
filter bar button. Use the DisplayFilterButton
property to specify whether the drop down filter bar
button is visible or hidden.

exFooterFilterBarButton 1
Specifies the background color for the closing
button in the filter bar. Use the ClearFilter method to
remove the filter from the control.

exCellButtonUp 2
Specifies the background color for the cell's button,
when it is up. Use the CellHasButton property to
assign a button to a cell.

exCellButtonDown 3
Specifies the background color for the cell's button,
when it is down. Use the CellHasButton property to
assign a button to a cell.
Specifies the visual appearance for the header in a

exDateHeader 8 calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSelBackColorFilter 20

Specifies the visual appearance for the selection in
the drop down filter window. The drop down filter
window shows up when the user clicks the filter
button in the column's header. Use the
DisplayFilterButton property to specify whether the
drop down filter bar button is visible or hidden.

exSelForeColorFilter 21 Specifies the foreground color for the selection in
the drop down filter window.

exBackColorFilter 26 Specifies the background color for the drop down
filter window.

exForeColorFilter 27 Specifies the foreground color for the drop down
filter window.

exSortBarLinkColor 28 Indicates the color or the visual appearance of the
links between columns in the control's sort bar.

exCursorHoverColumn 32 Specifies the visual appearance for the column
when the cursor hovers the column.

exDragDropBefore 33 Specifies the visual appearance for the drag and
drop cursor before showing the items.

exDragDropAfter 34

Specifies the visual appearance for the drag and
drop cursor after showing the items. If the
exDragDropAfter option is set on white (
0x00FFFFFF), the image is not showing on OLE
Drag and drop.
Specifies the graphic feedback of the item from the

exDragDropListTop 35

drag and drop cursor if the cursor is in the top half
of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBottom 36

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the bottom
half of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropForeColor 37 Specifies the foreground color for the items being
dragged.

exDragDropListOver 38

Specifies the graphic feedback of the item from the
cursor if it is over the item. Please note, that if a
visual effect is specified for exDragDropListOver
AND exDragDropListBetween states, and a visual
effect is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY

for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBetween 39

Specifies the graphic feedback of the item when the
drag and drop cursor is between items. Please
note, that if a visual effect is specified for
exDragDropListOver AND exDragDropListBetween
states, and a visual effect is specified for
exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropAlign 40

Specifies the alignment of the drag and drop image
relative to the cursor. By default, the
exDragDropAlign option is 0, which initially the drag
and drop image is shown centered relative to the
position of the cursor.

The valid values are listed as follows (hexa
representation):

0x00000000, (default), the drag and drop
image is shown centered relative to the cursor,
and shows up.
0x01000000, (left), the drag and drop image is
shown to the left of the cursor.
0x02000000, (right), the drag and drop image
is shown to the right of the cursor.
0x04000000, (center-down), the drag and drop
image is shown centered relative to the cursor,
and shows down.
0xFF000000, (as- is), the drag and drop image
is shown as it is clicked.

exHeaderFilterBarActive 41 Specifies the visual appearance of the drop down
filter bar button, while filter is applied to the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. se the ToolTipWidth property to
specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the
CellToolTip property to specify the cell's tooltip. Use
the ToolTip property to specify the group's tooltip..
Use the ShowToolTip method to display a custom
tooltip.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exColumnsFloatBackColor 87 Specifies the background color for the Columns
float bar.

exColumnsFloatScrollBackColor88 Specifies the background color for the scroll bars in
the Columns float bar.

exColumnsFloatScrollPressBackColor89
Specifies the background color for the scroll bars in
the Columns float bar, while the scroll part is
pressed.

exColumnsFloatScrollUp 90 Specifies the visual appearance of the up scroll bar.

exColumnsFloatScrollDown 91 Specifies the visual appearance of the down scroll
bar.

exColumnsFloatAppearance 92 Specifies the visual appearance for the
frame/borders of the Column's float bar

exColumnsFloatCaptionBackColor93
Specifies the visual appearance for caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCaptionForeColor94
Specifies the foreground color for the caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCloseButton 95

Specifies the visual appearance for the closing
button, if the
Background(exColumnsFloatAppearance) property
is specified.

exListOLEDropPosition 96
Specifies the visual appearance of the dropping
position over the list part of the control, when it is
implied in a OLE Drag and Drop operation.

exSelBackColorHide 166 Specifies the selection's background color, when
the control has no focus.

exSelForeColorHide 167 Specifies the selection's foreground color, when the
control has no focus.

exTreeGlyphOpen 180 Specifies the visual appearance for the +/- buttons
when it is collapsed.

exTreeGlyphClose 181 Specifies the visual appearance for the +/- buttons
when it is expanded.

exColumnsPositionSign 182
Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop.

exTreeLinesColor 186 Specifies the color to show the tree-lines
(connecting lines from the parent to the children)

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268
The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is

disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is

pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500
exScrollHoverAll. Indicates whether the hover-all
feature is by default (0), always on (-1) or
disabled(1).

exScrollSizeGrip 511
Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants BackModeEnum
Specifies how the control displays the selection

Name Value Description
exOpaque 0 The selection is opaque.
exTransparent 1 The selection is transparent.
exGrid 2 The control paints a grid selection.

constants CaptionFormatEnum
The CaptionFormatEnum type defines how the cell/group's caption is painted

Name Value Description
exText 0 No HTML tags are painted.

The control uses built-in HTML tags to display the
caption using HTML format. The control supports
the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray

about:blank

when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the

exHTML 1

bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),

> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to

show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

exComputedField 2
Indicates a computed field. The CellCaption or the
ComputedField property indicates the formula to
compute the field.

constants CellSingleLineEnum
The CellSingleLineEnum type defines whether the cell's caption is displayed on a single or
multiple lines. The CellSingleLine property retrieves or sets a value indicating whether the
cell is displayed using one line, or more than one line. The Def(exCellSingleLine) property
specifies that all cells in the column display their content using multiple lines. The
CellSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the cell's caption is displayed on a
single line. In this case any \r\n or
 HTML tags
is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants DefColumnEnum
The Def property retrieves or sets a value that indicates the default value of given
properties for all cells in the same column.

Name Value Description

exCellHasCheckBox 0

Assigns check boxes to all cells in the column, if it is
True. Similar with the CellHasCheckBox property.

(Boolean expression, False)

exCellHasRadioButton 1

Assigns radio buttons to all cells in the column, if it
is True. Similar with the CellHasRadioButton
property.

(Boolean expression, False)

exCellHasButton 2

Specifies that all cells in the column are buttons, if it
is True. Similar with the CellHasButton property.

(Boolean expression, False)

exCellButtonAutoWidth 3

Specifies that all buttons in the column fit the cell's
caption, if it is True. Similar with the
CellButtonAutoWidth property.

(Boolean expression, False)

exCellBackColor 4

Specifies the background color for all cells in the
column. Use the CellBackColor property to assign a
background color for a specific cell. The property
has effect only if the property is different than zero.

(Long expression)

exCellForeColor 5

Specifies the foreground color for all cells in the
column. Use the CellForeColor property to assign a
foreground color for a specific cell. The property
has effect only if the property is different than zero.

(Long expression)

exCellVAlignment 6

Specifies the column's vertical alignment. By
default, the Def(exCellVAlignment) property is
exMiddle. Use the CellVAlignment property to
specify the vertical alignment for a particular cell.

(VAlignmentEnum expression, exMiddle)

exHeaderBackColor 7

Specifies the column's header background color.
The property has effect only if the property is
different than zero. Use this option to change the
background color for a column in the header area.
The exHeaderBackColor option supports skinning,
so the last 7 bits in the high significant byte of the
color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control.

(Color expression)

exHeaderForeColor 8

Specifies the column's header background color.
The property has effect only if the property is
different than zero.

(Color expression)

exCellSingleLine 16

Specifies that all cells in the column displays its
content into single or multiple lines. Similar with the
CellSingleLine property. If using the CellSingleLine /
Def(exCellSingleLine) property, we recommend to
set the ScrollBySingleLine property on True so all
items can be scrolled.

(CellSingleLineEnum type, previously Boolean
expression)

exCellCaptionFormat 17 exCellCaptionFormat. Specifies the type of text
being displayed in the cells in the column.
Specifies the template for the column's filter when
the Filter property or the 'Filter For' field is
populated. This property customizes the filter
pattern for the column when the FilterType property
is set to exPattern. It supports the <%filter%>

exFilterPatternTemplate 21

keyword, which replaces the original filter input. For
example, setting Def(exFilterPatternTemplate) to "*
<%filter%>*" filters for all items containing the
specified sequence, while setting it to "Item*
<%filter%>" filters for all items starting with 'Item'
and ending with the typed characters. If the
Column.Def(exFilterPatternTemplate) property is
empty, the filter is applied as it is (no effect).

(String expression)

exCellDrawPartsOrder 34

Specifies the order of the drawing parts for the
entire column. By default, this option is
"check,icon,icons,picture,caption", which means that
the cell displays its parts in the following order:
check box/ radio buttons (
CellHasCheckBox/CellRadioButton), single icon (
CellImage), multiple icons (CellImages), custom
size picture (CellPicture), and the cell's caption.
Use the exCellDrawPartsOrder option to specify a
new order for the drawing parts in the cells of the
column. The RightToLeft property automatically flips
the order of the columns.

(String expression,
"check,icon,icons,picture,caption")

constants DescriptionTypeEnum
The group's Description property defines descriptions for few group parts.

Name Value Description
exFilterBarAll 0 Defines the caption of (All) in the filter bar window.

exFilterBarBlanks 1 Defines the caption of (Blanks) in the filter bar
window.

exFilterBarNonBlanks 2 Defines the caption of (NonBlanks) in the filter bar
window.

exFilterBarFilterForCaption 3 Defines the caption of "Filter For:" in the filter bar
window.

exFilterBarFilterTitle 4 Defines the title for the filter tooltip.
exFilterBarPatternFilterTitle 5 Defines the title for the filter pattern tooltip.
exFilterBarTooltip 6 Defines the tooltip for filter window.
exFilterBarPatternTooltip 7 Defines the tooltip for filter pattern window.
exFilterBarFilterForTooltip 8 Defines the tooltip for "Filter For:" window.

exFilterBarIsBlank 9 Defines the caption of the function 'IsBlank' in the
control's filter bar.

exFilterBarIsNonBlank 10 Defines the caption of the function 'not IsBlank' in
the control's filter bar.

exFilterBarAnd 11
Customizes the ' and ' text in the control's filter bar
when multiple columns are used to filter the items in
the control.

exFilterBarDate 12

Specifies the "Date:" caption being displayed in the
drop down filter window when DisplayFilterPattern
property is True, and DisplayFilterDate property is
True.

exFilterBarDateTo 13

Specifies the "to" sequence being used to split the
from date and to date in the Date field of the drop
down filter window. For instance, the "to
12/13/2004" specifies the items before 12/13/2004,
"12/23/2004 to 12/24/2004" filters the items
between 12/23/2004 and 12/24/2004, or "Feb 12
2004 to" specifies all items after a date.
Describes the tooltip that shows up when cursor is
over the Date field. "You can filter the items into a
given interval of dates. For instance, you can filter

exFilterBarDateTooltip 14 all items dated before a specified date (to
2/13/2004), or all items dated after a date (Feb
13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)."

exFilterBarDateTitle 15
Describes the title of the tooltip that shows up when
the cursor is over the Date field. By default, the
exFilterBarDateTitle is "Date".

exFilterBarDateTodayCaption 16
Specifies the caption for the 'Today' button in a date
filter window. By default, the
exFilterBarDateTodayCaption property is "Today".

exFilterBarDateMonths 17

Specifies the name for months to be displayed in a
date filter window. The list of months should be
delimitated by space characters. By default, the
exFilterBarDateMonths is "January February March
April May June July August September October
November December".

exFilterBarDateWeekDays 18

Specifies the shortcut for the weekdays to be
displayed in a date filter window. The list of shortcut
for the weekdays should be separated by space
characters. By default, the
exFilterBarDateWeekDays is "S M T W T F S".
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

exFilterBarChecked 19

Defines the caption of (Checked) in the filter bar
window. The exFilterBarChecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarChecked) property is
empty, the (Checked) predefined item is not shown
in the drop down filter window. If the user selects
the (Checked) item the control filter checked items.
The CellState property indicates the state of the
cell's checkbox.

exFilterBarUnchecked 20

Defines the caption of (Unchecked) in the filter bar
window. The exFilterBarUnchecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarUnchecked) property is
empty, the (Unchecked) predefined item is not
shown in the drop down filter window. If the user
selects the (Unchecked) item the control filter
unchecked items. The CellState property indicates

the state of the cell's checkbox.

exFilterBarIsChecked 21

Defines the caption of the 'IsChecked' function in
the control's filter bar. The 'IsChecked' function may
appear only if the user selects (Checked) item in
the drop down filter window, when the FilterType
property is exCheck.

exFilterBarIsUnchecked 22

Defines the caption of the 'not IsChecked' function
in the control's filter bar. The 'not IsChecked'
function may appear only if the user selects
(Unchecked) item in the drop down filter window,
when the FilterType property is exCheck.

exFilterBarOr 23
Customizes the 'or' operator in the control's filter
bar when multiple columns are used to filter the
items in the control.

exFilterBarNot 24 Customizes the 'not' operator in the control's filter
bar

exFilterBarExclude 25 Specifies the 'Exclude' caption being displayed in
the drop down filter.

exColumnsFloatBar 26 Specifies the caption to be shown on control's
Columns float bar.

constants DividerAlignmentEnum
Defines the alignment for a divider line into a divider item.

Name Value Description

DividerBottom 0 The divider line is displayed on bottom side of the
item.

DividerCenter 1 The divider line is displayed on center of the item.
DividerTop 2 The divider line is displayed at the top of the item.

DividerBoth 3 The divider line is displayed at the top and bottom
of the item.

constants DividerLineEnum
Defines the type of divider line. The ItemDividerLine property uses the DividerLineEnum
type.

Name Value Description
EmptyLine 0 No line.
SingleLine 1 Single line.
DoubleLine 2 Double line.
DotLine 3 Dotted line.
DoubleDotLine 4 Double dotted line.
ThinLine 5 Thin line.
DoubleThinLine 6 Double thin line.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc.

exCFBitmap 2 A bitmap compatible with Windows 2.x.

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed.

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB).

exCFPalette 9 A color-palette handle.
exCFEMetafile 14 A Windows enhanced metafile.

exCFFiles 15 A collection of files. Use Files property to get or set
the collection of files.

exCFRTF -16639A RTF document.

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled.

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648This one is not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality.

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code.

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants ExpandButtonEnum
Defines how the group displays the expanding/collapsing buttons.

Name Value Description
exNoButtons 0 The group displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed items, and a
minus sign for expanded items.()

exArrow 1 The group uses icons to display the expand buttons.
()

exCircle 2 The group uses icons to display the expand buttons.
()

exWPlus 3 The group uses icons to display the expand
buttons. ()

exCustom 4 The HasButtonsCustom property specifies the index
of icons being used for +/- signs on parent items.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side. If the control's
RightToLeft property is True, the close button of the
control's filter bar would be automatically displayed
on the left side.

exFilterBarCompact 2048

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to
the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
The FilterIncludeEnum type defines the items to include when control's filter is applied. The
FilterInclude property specifies the items being included, when the list is filtered. The
FilterIncludeEnum type supports the following values:

Name Value Description

exItemsWithoutChilds 0 Items (and parent-items) that match the filter are
shown (no child-items are included)

exItemsWithChilds 1 Items (parent and child-items) that match the filter
are shown

exRootsWithoutChilds 2 Only root-items (excludes child-items) that match
the filter are displayed

exRootsWithChilds 3 Root-items (and child-items) that match the filter
are displayed

exMatchingItemsOnly 4 Shows only the items that matches the filter (no
parent or child-items are included)

exMatchIncludeParent 240

Specifies that the item matches the filter if any of its
parent-item matches the filter. The
exMatchIncludeParent flag can be combined with
any other value.

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The FilterList property specifies the items being included to the column's
drop down filter-list, including other options for filtering. Use the DisplayFilterPattern and/or
DisplayFilterDate property to display the pattern field, a date pattern or a calendar control
inside the drop down filter window.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 The filter's list includes the leaf items only. A leaf
item is an item with no child items.

exRootItems 4 The filter's list includes the root items only.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exIncludeInnerCells 64

The exIncludeInnerCells flag specifies whether the
inner cells values are included in the drop down
filter's list. The SplitCell method adds an inner cell,
on in other words splits a cell.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items

selection in the drop down filter list.

exShowCheckBox 256

The filter's list displays a check box for each
included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses
ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A

exShowFocusItem 1024

item being focused in the drop down filter list is the
one you have in the control's selection. This flag has
effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item
in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096

This flag indicates whether the filter's tooltip is
shown. The
Description(exFilterBarTooltip,exFilterBarPatternTooltip,
...) properties defines the filter's tooltips.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
The FilterBarPromptPattern property may include
wild characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character
' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
The FilterTypeEnum type defines the type of filter applies to a column. Use the FilterType
property to specify the type of filter being used. Use the Filter property to specify the filter
being used. The value for Filter property depends on the FilterType property. Use the
Description property to customize the captions for control filter bar window. The FilterList
property indicates the values the drop-down filter includes. The FilterTypeEnum type
supports the following values:

Name Value Description

exAll 0

No filter applied. Use the Description property to
change the "(All)" caption in the drop down filter.

exBlanks 1

Only blank items are included. Use the Description
property to change the "(Blanks)" caption in the
drop down filter. The Filter property has no effect.

exNonBlanks 2

Only non blanks items are included. Use the
Description property to change the "(NonBlanks) "
caption in the drop down filter. The Filter property
has no effect.

exPattern 3

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character, and [chars]
indicates a group of characters. If any of the *, ?, #
or | characters are preceded by a \ (escape
character) it masks the character itself. The
Def(exFilterPatternTemplate) property specifies the
template for the column's filter when the Filter
property or the 'Filter For' field is populated. The
exFilterDoCaseSensitive flag can be combined with
exPattern or exFilter types, indicating that case-
sensitive filtering should be performed.

For instance:

"*1", only items that ends with 1 are included
"A*|B*", only items that starts with a/A or b/B

Only items (of date type) within the specified range
are included. The Filter property defines the interval
of dates being used to filter items. The interval of
dates should be as [dateFrom] to [dateTo]. Use the
Description property to change the "to" conjunction
used to split the dates in the interval. If the
dateFrom value is missing, the control includes only

exDate 4

the items before the dateTo date, if the dateTo
value is missing, the control includes the items after
the dateFrom date. If both dates (dateFrom and
dateTo) are present, the control includes the items
between this interval of dates. The
DisplayFilterDate property specifies whether the
drop down filter window displays a date selector to
specify the interval dates to filter for.

For instance:

"2/13/2004 to" includes all items after
2/13/2004 inclusive
"2/13/2004 to Feb 14 2005" includes all items
between 2/13/2004 and 2/14/2004

exNumeric 5

Only items (of numeric type) within the specified
range are included. The Filter property may include
operators like <, <=, =, <>, >= or > and numbers to
define rules to include numbers in the control's list.
If the FilterType property is exNumeric, the drop
down filter window doesn't display the filter list that
includes items "(All)", "(Blanks)", ... and so on.

For instance:

"100", filter items with the value 100
"> 10 < 100", indicates all numbers greater
than 10 and less than 100

exCheck 6

Only checked or unchecked items are included. The
CellState property indicates the state of the cell's
checkbox. The Filter property on "0" filters for
unchecked items, while "1" filters for checked items.
A checked item has the the CellState property
different than zero. An unchecked item has the
CellState property on zero.

For instance:

"0", only unchecked items are included
"1", only checked items are included

exImage 10

Only items showing the specified icons (icon index)
are included. The CellImage property indicates the
cell's icon. Multiple icons are separated by the '|'
character. The Filter property defines the list of
icons, separated by the '|' character, to apply the
filter.

For instance:

"1", only items that displays the icons with the
index 1 are included
"2|3", only items displaying the icons with index
2 or 3 are included

Only the items that are in the Filter property are

exFilter 240

included. Multiple items are separated by the '|'
character. The exShowCheckBox flag of FilterList
property displays a check box for each included
item. The exFilterDoCaseSensitive flag can be
combined with exPattern or exFilter types,
indicating that case-sensitive filtering should be
performed.

For instance:

"Item 1", only items with the caption 'Item 1'
are included
"Item 3|Item 3", only items displaying icons
with an index of 2 or 3 are included

exFilterDoCaseSensitive 256

If this flag is present, the column filtering is case-
sensitive. If this flag is missing, the filtering is case-
insensitive by default. The exFilterDoCaseSensitive
flag can be used to enable case-sensitive filtering
within the column. However, this flag is not applied
to the filter prompt feature. The
exFilterDoCaseSensitive flag can be combined with
exPattern or exFilter types.

exFilterExclude 512

The flag indicates that the Exclude field of the
column is checked, meaning items that match the
filter are excluded from the list. The exShowExclude
flag of FilterList property indicates whether the
Exclude option is shown in the drop down filter
window.

constants FormatApplyToEnum
The FormatApplyToEnum expression indicates whether a format is applied to an item or to
a column. Any value that's greater than 0 indicates that the conditional format is applied to
the column with the value as index. A value less than zero indicates that the conditional
format object is applied to items. Use the ApplyTo property to specify whether the
conditional format is applied to items or to columns.

Name Value Description
exFormatToItems -1 Specifies whether the condition is applied to items.

exFormatToColumns 0

Specifies whether the condition is applied to
columns. The 0 value indicates that the conditional
format is applied to the first column. The 1 value
indicates the conditional format is applied to the
second column. The 2 value indicates the
conditional format is applied to the third column, and
so on

constants GridLinesEnum
Defines how the group paints the grid lines.

Name Value Description
exNoLines 0 The group displays no grid lines.
exAllLines -1 The group displays vertical and horizontal grid lines.
exRowLines -2 The group paints grid lines only for current rows.
exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of
a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants HierarchyLineEnum
Defines how the group paints the hierarchy lines.

Name Value Description

exNoLine 0 The group displays no lines when painting the
hierarchy.

exDotLine -1 The group uses a dotted line to paint the hierarchy.
exSolidLine 1 The group uses a solid line to paint the hierarchy.
exThinLine 2 The group uses a thin line to paint the hierarchy.

constants HitTestInfoEnum
The HitTestInfoEnum expression defines the hit area within a cell. Use the ItemFromPoint
property to determine the hit test code within the cell.

Name Value Description
exHTCell 0 In the cell's client area.
exHTExpandButton 1 In the +/- button associated with a cell.
exHTCellIndent 2 In the indentation associated with a cell.

exHTCellInside 4 On the icon, picture, check or caption associated
with a cell.

exHTCellCaption 20 In the caption associated with a cell.
exHTCellCheck 36 In the check/radio button associated with a cell.
exHTCellIcon 68 In first icon associated with a cell.
exHTCellPicture 132 In a picture associated to a cell.
exHTCellCaptionIcon 1044 In the icon's area inside the cell's caption.

exHTBottomHalf 2048

(HEXA 800) The cursor is in the bottom half of the
row. If this flag is not set, the cursor is in the top
half of the row. This is an OR combination with the
rest of predefined values. For instance, you can
check if the cursor is in the bottom half of the row
using HitTestCode AND 0x800

exHTBetween 4096

(HEXA 1000) The cursor is between two rows. This
is an OR combination with the rest of predefined
values. For instance, you can check if the cursor is
between two items using HitTestCode AND 0x1000

constants LinesAtRootEnum
Defines how the control displays the lines at root. The LinesAtRoot property defines the
way the tree lines are shown. The HasLines property defines the type of the line to be
shown. The HasButtons property defines the expand/collapse buttons for parent items.

The LinesAtRootEnum type support the following values:

Name Value Description

exNoLinesAtRoot 0

No lines at root items.

exLinesAtRoot -1

The control links the root items.

The control shows no links between roots, and
divides them as being in the same group.

exGroupLinesAtRoot 1

exGroupLines 2

The lines between root items are no shown, and the
links show the items being included in the group.

exGroupLinesInside 3

The lines between root items are no shown, and the
links are shown between child only.

The lines between root items are no shown, and the
links are shown for first and last visible child item.

exGroupLinesInsideLeaf 4

exGroupLinesOutside 5

The lines between root items are no shown, and the
links are shown for first and last visible child item. A
parent item that contains flat child items only, does
not indent the child part. By a flat child we mean an
item that does not contain any child item.

constants PictureDisplayEnum
Specifies how the picture is displayed on the object's background. Use the PictureDisplay
property to specify how the object displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollBars property to specify whether the vertical or horizontal scroll bar is visible or
hidden. Use the ScrollPartVisible property to specify the visible parts in the control's scroll
bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a group.

Name Value Description
exNoScroll 0 NoScroll. No scroll bars are shown
exHorizontal 1 Horizontal. Only horizontal scroll bars are shown.
exVertical 2 Vertical. Only vertical scroll bars are shown.

exBoth 3 Both. Both horizontal and vertical scroll bars are
shown.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SortOnClickEnum
Specifies the action that group takes when user clicks the column's header. The
SortOnClick Property specifies whether the group sorts a column when its caption is
clicked.

Name Value Description

exNoSort 0 The column is not sorted when user clicks the
column's header.

exDefaultSort -1 The control sorts the column when user clicks the
column's header.

exUserSort 1 The control displays the sort icons, but it doesn't
sort the column.

constants SortOrderEnum
Specifies the column's sort order. Use the SortOrder property to specify the column's sort
order.

Name Value Description
SortNone 0 The column is not sorted.
SortAscending 1 The column is sorted ascending.
SortDescending 2 The column is sorted descending.

constants SortTypeEnum
The SortTypeEnum enumeration defines the ways how the control can sort the columns.
Use the SortType property to specify how the column gets sorted. The CellCaption property
indicates the values being sorted.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 The CellData property indicates the values being
sorted. Values are sorted as numbers.

SortUserDataString 6 The CellData property indicates the values being
sorted. Values are sorted as strings.

exSortByValue 16 The column gets sorted by cell's value rather than
cell's caption.

exSortByState 32 The column gets sorted by cell's state rather than
cell's caption.

exSortByImage 48 The column gets sorted by cell's image rather than
cell's caption.

constants ItemsAllowSizingEnum
The ItemsAllowSizingEnum type specifies whether the user can resize items individuals or
all items at once, at runtime. Use the ItemsAllowSizing property to specify whether the user
can resize items individuals or all items at once, at runtime. Curently, the
ItemsAllowSizingEnum type supports the following values:

Name Value Description
exNoSizing 0 The user can't resize the items at runtime.

exResizeItem -1 Specifies whether the user resizes the item from
the cursor.

exResizeAllItems 1 Specifies whether the user resizes all items at
runtime.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
explorerBarVisualTheme 512 explorerBarVisualTheme

constants VAlignmentEnum
Specifies how the cell's caption is vertically aligned.

Name Value Description
TopAlignment 0 The caption is aligned to top of the cell.
MiddleAlignment 1 The cell's caption is vertically centered.
BottomAlignment 2 The caption is aligned to bottom of the cell.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed.
the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.

So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

control's borders, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
and so on.

The following VB sample changes the visual appearance for group headers. The
BackColorGroup property indicates the indicates the default group's background color.
Shortly, we need to add a skin to the Appearance object using the Add method, and we
need to set the last 7 bits in the BackColorGroup property to indicates the index of the skin
that we want to use. The sample applies the " " to the headers and the control
looks like follows:

With ExplorerTree1
 .VisualAppearance.Add 1, "D:\Temp\ExplorerTree.Help\tabup2.ebn"
 .BackColorGroup = &H1000000
End With

The following C++ sample changes the visual appearance for group headers:

#include "Appearance.h"
m_explorertree.GetVisualAppearance().Add(1, COleVariant(
"D:\\Temp\\ExplorerTree.Help\\tabup2.ebn"));
m_explorertree.SetBackColorGroup(0x1000000);

The following VB.NET sample changes the visual appearance for group headers:

With AxExplorerTree1
 .VisualAppearance.Add(1, "D:\Temp\ExplorerTree.Help\tabup2.ebn")
 .Template = "BackColorGroup = 16777216"
End With

The following C# sample changes the visual appearance for group headers:

axExplorerTree1.VisualAppearance.Add(1, "D:\\Temp\\ExplorerTree.Help\\tabup2.ebn");
axExplorerTree1.Template = "BackColorGroup = 16777216";

The following VFP sample changes the visual appearance for group headers:

With thisform.ExplorerTree1
 .VisualAppearance.Add(1, "D:\Temp\ExplorerTree.Help\abup2.ebn")
 .BackColorGroup = 16777216
EndWith

where the 16777216 value represents 0x1000000 in hexadecimal.

The screen shot was generated using the following template:

BeginUpdate

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

Images("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

VisualAppearance
{
 ' Header

Add(1,"gBFLBCJwBAEHhEJAEGg4BawDg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1M4rEASIRDHL+GiACYJGCcBwGKJEFwYg2hwJACGAXAMgQTZtkaBpQhERAkEuSoZgYIpvAAVgtC4PQXHuPgen+D5Tmedp5H4Po/h+P5rnufB/l+OAFn6AIgAeRAAgCYIIBYCoBCCSAmA2ApgmgDgHHyRInkIFQlmEeBmBaBphggcgagcYgIH4IoHiISIGCWCJiGiJgfHuYQwjiIAUAMOI+DGDAjCiVg0g2Yw4mYNoOiOCJuD6DxkAichCg+ZA4mIBh8GQSQmEGEokFkNhMhOZI5EYOYRl6cogFQDJlGkYhXhYZZJG4XoWiYCR2GGF5mCmFhkhmZg5iYZoaiWeRQC4KgFHkYhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOZ2G4K5FiCToIiKKIaC6DojGkCgyhKI5pDoRoUiWaRqGaFYmmmChyhGIZFlCYIvigag6gqJIpmoaomiWKpqgqMoqisawKj6MorisSpGjWKhqAqTo2i6a4qnaN4vmuSwCj6KgmmKXBgA8bBrCKR4yGySwuk6MotAsNpRjObQrFaVI1m0OxmlaNosnsFBljILZyl6YY4m4C4WmKOYuEuHpqjobpLiKbo6m6e42nCPJuEsFBnBCCx7l6eY+C+K52nyP5vjwBp+kCMAMA8BpBHCDATAqQZwjufhuC+RoxAsEJEjEHBPBaRRxgwUwakWcY8GcHJHnGbIHB2SJyAyEwZkORpxBiP5KHKPIrCyS5ymyRwtkycwMlMMpNHODJfDqTYzkyZw9kwcJxk8KpQgufQTEaUJ0g0FxJlGdItDcTJTnSPRHE6VI1A0TxWlGZpjCMQpWgQbRzF6Vp2A0dxhledgthcZJZnYPYnGaWo2g2LxulkNYRlwJwMgbgtimHOLod4GxfD1F2G8TYzh9i9HeNwB6Oh3j8BeAUYYbwphxE8D0RLg07NNEeCEZI8R+CvBKMsOQnBfg1GYPMTgxwejNHmPwU4FAfgKFMH8JI0w6C9B+FUag9ROhHC6NUeo/Q3hhGyPYLorwxjbHsJ0Y4WRigQC6C8PQZx7j+AeH0cI+APAnEKOIfIHgfiVHGHkTwTxNjlHyN4R4hQbgaHIDgXI6h9D+FuLEdo+wvDvFmO8fYnwDi9HgPwT4HxmjxD6B8F40x3h6EIF8V49wND/EOOWLonxHjrHyP4b4zx4j9H8P8d49B/ifHGP8QATxmj2EMCccYARCBcAQIEKAHgDBAEwBsAQ4A6AREEBAJwBxghYBKAUUApALiDCgCkG4IQKAhAONAPgIRBjQEUBAEAYgBEB")

 ' HeaderFilterBarButton

Add(2,"gBFLBCJwBAEHhEJAEGg4BAQEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGPj+RwNAOF5cGm95sCQEwJAkQhBhwa5ei4E5cgGGINgcUwojiRBvDuG49iaU4EgATALgGEIJj8aJQloEgoEIQhXC0MwGBEc5AAoYpJHCdAugIYI4CoDIDmCaBGA2BJhAgUgSgUYYIF4GoFiGSBmB2BpgkAAgegiYgIhYH4JmISIiCaChhmiCgOBKII4kCF4MiMSJGDaDJjHiVg4g6Y4onYOYPmOSQCD6EBkEiagKguApigAUAMmSKQyEuExlAkPhShOJRJEYVYUmUaRmFiFplHkdhaheJQ4gYDIXmYSRyGWGAmgmHhqhmJpJFIYoCgqARQDOHBnDmSh0h2ZxpmYdYemeCZyHqHxoAmfoCh+KBKAaBYeiacI4igFZnDoMoLiMaQKD6EojikShGhWJJpGoZoYiaaR6HaGonimCgki8FoDDqDolikKhqiaKIqmoeo2iqK4qkqPoyiwaxKkKNosmseoyiIFxDgKPo8i+K5an6QowGwSwCkaMJsHsFpIjKbIrDaSYzmySxCkSLpsmsRpWjUbYLEqWo1m2OxmkOIhLHGAA9jgbg7gqZI5m4a4mmWOpuguMpqjsbwLj6co7i8S5GnWOouAGFpjj6Cx7nKfo+nAC53AGP5wCwFwEkGcA8CcBpCjCDAvA6P5uAGHBCC2cQsFME5FHGDBfBqRYxkwZwdkacZsgcIJInGfIXCKSYxioJI/BqRAsi8LZLZaRwwkycp8lcMpNjKQ5/DqTZzkyUw9k4NAMn8QvVCGPBGC+dBtCMR5SHSTQvE6Uo1A0NxKk6NRNFcUZTnULRnFiVp1H0dxakqBw9B8YQvnYPYXGKWZ2E2IxmlodRdjcbpaHcDYvHKWo3E2I4dYuRogmCMMMXoCBtjmH6L0eAGx3gDF+PALgLwEjDHgHwJ4DRihxA4F8Dowg3gjFwJwMgcguCnBOMoeYHBfg1GWHMTgzwdjNHmN0B4QRojzH6C8Io0w5uiE8D0RI3QvhbGs1UR4YRsj1H6K8MrQhOi/DqNwe4nW0DdHuP0U4VAfgKFMH8RI4w8C+B+JUcg+RPBHE668fwbxQjpH0F4V4ox1j6E8McuoEAvAvF0GcfY/wHi9HiPwD4JxijyH6B8H41R5h9LGNuJg3xHjFCIJocgOBcj6H8P8W48R+j/C+O8eQ/xvjkAAH8aABgBBABwA1RYRACptHyPoBAt4HiGF4BAQQUAfAKCCBgFYBBwC0AyIMCAbgFjBGwDUA4oByAfEIFAJwBhDAoBGAkQgXAUCFCgJ4CwQhMBbAUOEOgMRDAQGcBcYYWAygNFCKQG4hwoCpCIKIYgVwHjRCoEEQ40QFAgBEBIARAQ=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BBAEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGTj+RBpCAHJ1mm950CQEQJmQQJCDwa5ei4E5cgGGINgcUwojiRhsDeHJ9gYIxpkIQAmAWQJIESX48GgbQJAo+gVksTJBgQXJwAKGIyFwPQLiCKAyAuAxhAgPgSgOIRIEYFYEmEaBmBiBphHgdgageIZIDQAIHmISIGCaCAigiFgpgmYooH4I4DkTHwxCWYw4lYMoNmMSJiDaDhjkibg+g6JAInYQYPmQKQWDuApinCOIgBQAw5C4TYTCSaRGFCFJknkVhShWJRJF4WoWGWSRiF6FplnkUgigMZgJhYXYZiZVxohqZh5jYVYYmCMogFQDJnCmUhzh0Z4Jl4eodieSZmH2HpnmoBoAiCZ56BaAohieOZAC4KgFHmUoNiMKJqEaEIkmiehWhKJYpEoXoaiYaZKGKHommmehmgoK5FiCTokimKhah6KoqGqSoii6KpqnqNowiyawqlaMYtmsSpii2KJFlCYIvi8a56nqQIwmwKwWkGMZsEsIpGjIbJLC6Toyi0Cw2lGMRrksPpSjWbRrGaU42m2CxylqMQoiKXBgA8bgrhKY45G6C4emqOYukuJptjqbprkacI8m6e5WnKPYujuBBljkL4yl6fY/m+TAGn6QIwAwDwGj6T58CcCpBkOXArAuQRxAwEwSkMMRMAKYQZkQIpfBiRoxhwbwekccgMHMIpHnIPIDA6SethMKpIHKPIXC6SpoiKfBrBCMwslMM5NHODJfDqTYzkyZw9k6cxciMPpQnQDQXD+UZ0EycwxBuRBin8TJTjSXQ/FKVB1E0QxWlSdR9QuUI1g0dxVleNYdgcXpMEcPQ3GUL52H2JxmlqdoNjMapbHcDYXEKWo3D2Ox2lwO4fYfh6i1GiEYIwyxfgIG4AcAovx4CcAeAsYI8BuBPAiMUeA/A3gVGOHETgfwSjEDeKMXAnAyByG4McF6sxODfB6M0OgHB3hDWiF0F4SV6B9CeE1qI1AoieB6Ikbof2Sh2C6K8NI2x7B9GeG0bodwOjfD6N4fAHRziFG+PgPoxwuA/AUKYP4kXRA+C+7ofQHgzilHOPoPwjxUjrH0N4Z4qx2j7A8OcUI1wIBeCeMIM4/A/gvGKPMfgnwjjNHoP0T4Xxuj1D8B8N44x7j+C+K8ZoRQNDkBwLkfg/w/jXHwP8b49AAh/FgA4AAQAkAFACGAIgBxAhQA0AYIAmANgAE+MARYfw4BIDWMEJALQCDgGI3kGAXgGhBGwDkA44BuAhEGNARQEAhA4CaAUcAiAxCCFgKgIowhkBdAUOEQgLRDAwF8BkIYWA0gNHCJwkY0B1AcCGLgPoCxKBSBaEUSIDQKjECwIUCIogRAiBACAgI")

 ' SelectedItem
 Add(4,
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5GeRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGrcEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghgmYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJBYSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLgXiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiDIEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMijBIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCCQDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKAQTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYmQ9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvBqiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxfBumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohxoD6A+LQIwiRogqBSEUdAtQMiiFoG4RlfwahHDSAUD4pAqB6EkFIDQSwkDoEXRxLAfgpC6C2EsFIdQYimAoM4S40wtBlCaKkUoNxThUHMJ4KYig+hOHSP0HopRqCojeNEfoUQ1A9CMKkuApQqDaEmFMdQZQoCpGqEYVQVQdCtCoKoYoVRVg1C8KIV41AxCMGoEUMIrAqiOFkFYLQzQsjrCKGkVoVRXCzBIOQUAUwIhqBSK4JArhdAiFUO0Lg6xeh1FeAgUwtxKDSAEQEA=")

 ' Marks a cell

Add(5,"gBFLBCJwBAEHhEJAEGg4BEcMQAAYAQGKIYBkAKBQAGaAoDDMOILQiMQxDPBMKgBBCLIxhEqoJJuGofRSBMIgFBIaBrEiBkjSiLkMIYAAMQCQTKDfxBG4ZIhmSZ4WgwAIsSZMAwzAKkYQPHikJxlGa6p6AGqhKIoaTKNhqSoxUxVMIzcKQahLLivJ6GUYKfgmY5lVpVU5QHKFUyfFiVJYlahpCqyCQuC41No1RRdbSrHynahkWhrNrufZ8RbhU7yLSEEyHQaIaoxKp6XwWf4RWDmFoABY9RTJHzFMQyXCrPhENpTWYMcwTLidV4TKqYLAzOrcbx2ZpkXTrYAXRbVU4pLK3MYuDR8RymLKsYZvd7UbqONZlTzadwrHbLb4rOo0nOeZbH6DhuCuEocGuMpSA4k5fmWQhrjcUxuE+BwUAaRwMCyApRhePgJnEEp8n0GB9lcUx9m0aBRhQBCAgA==")

Add(6,"gBFLBCJwBAEHhEJAEGg4BaAFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSkEgNDQRaxjWZ6EgmO5TSjKYxSbJEQzpGSaIDwGZrfACRYEU7dVQxDQcNYbAYPJpwOh6LxWTZ2YjBGJ4FScPyrBLIYDFWCRHpqA5cZZOEQ2FYkRzXVy0JDzaCZQxCCQlQiIOjYLaUSRNFC+IZqMZhWw+FrGAbvIJbXakPZbVYSZ52AQuHcHY7lqAABhoDZllcEAxjwcCOD4GJbisGZPmmYQ1ggHIPg0dJnmCNYWG2D5OlkFYpmUPYaE6Xxzk+OxylAMZAHUHJGgGFBkAuBghjQcBQAEBAMEIExDCgNQWA2EIQiGahuFWIBhBYPwAnedReD+T5yjSGgekcMJ0ACCRiHiGgogqYoojYKYLmKSJCC6DBjEiTg2gyI4IlYOYNmKCIIHuCAUiieIlB8RQjHiTwxg8c4cmeEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYUiQYwaEMFIjmiPhhD0ThThYaIaiaGYuG6GxnAmMhyhuZw5kYdIdmcaZmHWHpngmch6hqZgYiIL4QA8M4MmOIRoHoGoIiKaIqDaCdXEoQoOiQaRKE6FokimChWhmJZogkAoCgoJADkSYQ4GoKoSiOKRqgqHoqimKpKiaLYqmqapGjCLJqnqVoyi2KxKhaHoJigOIAm8N5NnqfpBjALArBaRIxmwOwmkaMosgsLpOjMbQLDKUozm0OxGkKLpQDqAggDsTZTHaXI3i2Wx+mKOBuEuApmjibh7haaI6m6K42mmO5ukuQpujebYKnSfw6k2MxuniPovhubp+j8cALnMAo/nAPAHASQZwGwJwFkKcIMDMCo+m8Wxon8OhNhMZwUkWMRcF8GpGHGTBjB6RpxnwdwgkicgshcIZJnITIjCaRZxBiGhADoDRzGMMJMjMHJPDaTRzgyU2ynOPJnDyT5zm0Bw9lCdANBMQpMnKWB8n8OYNFMWxMlONJdD8UpUHUTRDFaVJ1H0VxYladYtHcWZXnWTYDF6U7QACZA0k0TYfGmWg2i2Nxsludo9kcbpcjcBsTw7RdDvA2KYeoux3h7GcNUWQxADgRFEGkOAXATgHGEPEDgPwKjDDiJwJ6ex4jcEeCEZI8R+CvBKMsOQnAXgAD+JwAweRQjOHmPwe4QRoj0C6C8IY0x6CdCOE0ag9ROhfC6NUOwHQ3hjGuPQDg2ReBmEyN0X4cxuB3C6O8PI3x7h+AeH0cIeAPAfEaOIfIHgTiVHGPkPwTw6jNE2IYLImR0D6D8JcVI6x9DeGeKsdo+1Fi1HcPwDw/xijvD4J8B4yx4j6E4NkWgZAMhfC+NsewfRviPHCPkfo/xXjlH2H4T4vx6j8H+J8Y4/B/DfH2P0Pozg2BsAYGESIAQwA8AMIECALgChAGwBMAY4AyAQECNAIwCggg4BaAQUAxAKiDBgF4AgORYisBiAYGgHxCAwEEBEIQWAkgJHCBwFIhBoCqAoEIXAXQFhhEICxIovgMjDAwER1ooBhAYEgOYDowxUB5AeOEegQRDixAcCAIgSBCgRDEEQI4iQovFCIJgTYEhwjjE2BoIYAAwhFBwKsCoIhaBZEWBENwKxijYFqBcUQ5AviMCiIYGQRgEDNAwOMHgZRFSwDQAscIgQNhjD4G4RwERnA5COFgcYHRxikDwI4aI5gfBHFwP0DwpACB9EgDEfwOJqQsAKPQQ4kQZAiCKEgbIGQRjkC4JESI0glBICSDkFoJQyDEEoJMKQXgmjJEyBR1oYBdAXEkIYKIygUhJBSOUGgqRKCyFcFQJQyQqgrDKIQV4lgpC6C0EsDKIBygjE2BkMQ4AujLFyHsF4JR6DBEwBMBwXxmBZEKDEUwJBjiZCmCYMwTBEidBkOYPgzRLywDIIsMIcwahmF4NYTYEw3BtCaNkWYNxzDkHAJsaYhg5BOByM0HApwiDlE6DMTwbJqCOBaAUXg7xPAzGEHkJ4WR0g9HOJwfInhpjqD4E8XI/QfhoAIPwUAUx/TFAyOR1oKBZAWFo8ac4GQhjoDqBEUItAnCICiEoEoRQ0DFAuKMKgWhHBRE0DsIw6AxibAwGIYAWRpA6CXYoGoKRSgUFcJMaQ2gqhLFSGUF4pgqDGE0FMBQbQmDpF6DUUksAwCKHCGMJ4aR+g+FQBUBwocRiDCiOoEoSBUDVBNkIXQnQpCqEKE0VQNQfCgBoJQYQkACj4FYBUeoZhWjVFULkK46h6hhFWLURwsArBKGKFkNYRQzitCqJoWwVhNDbCwJIAQgQriJASCIKodBAhdHWMUPIrwqjuF8FcbQ/QvjsAKIEIgCba5CEAI8SI1REhHEsC0Do2GwhjFYGUR4RwkD5BAAAAQAiAg==")

 Add(10,
"gBFLBCJwBAEHhEJAEGg4BRIGg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DIDIRhQABSDUJYjSTJcIjKKASgFBIYRoASL5UhkMocRbNMySGKMexfBoZZQGIY4eDOM46TpNcB0VLNEQHEaeJ5jYYaFh6B46R5HdQQTD0fgAf6EbAjGoaUjCVYRV5HcbCNDQUxFLiEa6sKr4aiiJp2SpAcqXSAFdxHNS3YxEfAaNo6FZkV4MdAxDQdCgLQyaKYpSqZapuBJSWZCNCRDiksIAB5OGR3DYOSzHGDMIIsei7Jhqa4JaDAYqwTgcO5JAa5bjweIbXzyfJ+SrLN76dq+QQSEaERBuDIMEj0MaJZrDNbDMJbD8FZPgGcIBl4ZZXFGT5NHQjg+hiWxbh6BJbCAdZrHQDA5lyU5SnePwdn8C4DHyCrDlkYAHieDZvHWXIwAACSSGGPBjB0RwwjgYgbEcBRYBAQJEN8MoDlEYJZAkCgQhfGByhsYBhBYPwAnefRfCsSYhmwcwPEACIeCmCgiiiNgsguYo4kYLoMiMCJODaDRjgiUg6g2Y44mYKoJAeNpgACEAKFGdBSDuSAhi4SISiSGQuE6ExlAkMhShOZQ5EYVIVmUaRmFWFplgkchahKZBREoQIME8AgUG6GRmHmGhohqZopjYaYbmaSZCG6HBnEmTh2hyJ4JlYeYdmeKIqGQIhHCOQoAC8SoijaBIhigWgegqIhokoIoOiKaJ6DaEIkmkKhWhGJZpEoYoNiCKAaAIfoKg8EgwHWKBHFMBIvCwahqiKJ4qGqSoui6KorAqNoxiuawqlaNItmsOpmjbgx60UJ5igORIPB4LAhmCRgsksawekmMgsisNpMjObI7EaTo0i0CxOlaNRtgsUpajWbY7EKRYxGwhZyCSR5LgwfAyguApqmiOouhuLpujsbwLjKco7m8O5GnSPZvGuZp1j6b4LnKcY5i46pyCWB58AwfwzkuUp/AiQowhwLwOkMcQMDMEpDnEPBHBSRZxGwZwVkacYMHMEZBjA6pzCaCAsgyAg0kwEwPCiSoyhyLwukscwMjMMpLnMPJHDSTZzGyZw1k6c4MnMMeTmyCIdCETw9AyWAxgyDQfEmUmZDcTJTnSPRHE6VI1A0TxWlUdYNFMWpVnWPRDEWUQ0DuBJ0CgCIdgyCT6DMMxolqNodi8bpbHcDYzHKW53D2Rx0l2dxtmcdZeneBscw4xZhsG2BEJARgPCcAyYoDQPAfgTGIHELgbwMjHHiHwR4HRkhyA4J8Foyh5gcFODUZY8w+CHAWMIOD3h1BTEiP0DIHg5CaEMK8KI1Q6g9C+F0aw9gOhnDKNcewfRHhpG2PYbozw1jdHuB0c4Yxph0G6BEKgSRPC+AyNQNgmwvA/EmOQPIXg3iZHOecR4nXkgeE+K0dQ+wPCnFqOsfYfhDuFDw94dgVwJDfAyCw5Axh7jRHqH0H4Xxuj2H8B8M45R7j+D+I8dI+x/DfGeOsfo/wPjnHEPkT4MxxAWBEGQPYQAYjmBwIcDgBxAgwBEAUIA2CajgC4BEQI0AlAICCDgFoBQwDEAoIMKAXgGjBAQAtP4GhwgeHENAJwQgcBKByMcHA9xCgQFUBQYQuAugLDCIQFghgoRYGGBgNIDRwi0ByIYWA7gOBDGQGMBIIQZDhA+AIcAUAiA4EUDoI4SB8CJAiCoEgxBcCdAmGIQgTBFBRB8CkYoGBUgVHELQLIihYhuBYEUZAowIgiBoEIC4YhGB8CMDEeAOhjhcDOI0GIogahGGwNkDY4wuBxEaNEZQOAjg4HaB0MYxA6CPCiN4HoxwsDNAwNcBA+QLjiE0EEJAQRtA7COMwQ4kQZAiCKEgbIGQRjkUQJEaQSgkBJByC0EoZBiCUEmFILwTRkgJAOCEMgCBhAVCGOYKIDxIjcB2KUGgqBKDyFMFYJQuQugqFKIQVolgZC+CyEsLIaQWjlE4LkSw0h1BaCUFkIguAjjQGKBUWYBgwiPACOAHwpgaDIEwPMEwZgmC5E6DIUwhBmiaBmD4NITQsipBqOYTg2RNDTDUGcZgKREgwAMEgWAHwpiEiICEcoOQzg8HNQYVwdQnDZGmDsc4ZB4CdGmMYPQTwcjtB4KcYg9ZOi6DiM4FM2QjjYGYBYSgBhAiPCCOgHw6AagIFAPQE04BdAdCEKgQoDRRA0B8IkKIWgUhFHQJ0DIohqBqEONAFQCQgAGDwLcD4dBCB+AeGEdoSQ0g9BMKUCgrhKhSG0FMJY6QygwFKNQYxtAdBtCYKkYoNRTg0F1WIFQQrQDgGmBcKoBAugPGiPAHwKgahIFQPUEwpgqC6E6FIVQhQmiqBqD4VIVQtZlHUJ0LIqhqhqFONQJQiQoAGFgL4D4lcSiPEiPMLIawehmFaBUVwtQrDaGmFsdYZQ4CtGqMYXQVwdDtC4KsYodRXg1F0LEawKr6DoG0BgGwBAwCPHCPYHw7AaiIFgPYEwxgsC7A6GIVghRGiyBsD4ZIWQtgpDKOwTomRZDWDUMcbASwEhgAMOgYgHxbCED/lAfYaQ2g9eqBYVw1QtDbCmGsdoZRYC1GsMYbQWwdhtDYK0YotRbg2F0NEbQK8kBHHgOADA9wCBjEePsRocR3BFGSLkK4LhzBcG2J0OY7hCjR0eBIcQXAAjIBkMceo1xdg3DEO0Lo2xch3HcN0cIuxriKHgF4HYzQ8hvCKOQXoVxPD1G8JsZwnxJAiCMB8cYnAzhfB22IF4tR8i/AuO4fY3xtj1D+K8co/xgBYAOAIMADAGiAykAUXwyRCgxE2IQQAjwYCCB8MIJA9wFBhA4CsQg8BZA8GCKUQHbSAg==")

}
Background(0) = 33554432 '0x02BBGGRR
Background(1) = 50331648 '0x03BBGGRR
Background(8) = 67108864 '0x04BBGGRR
Background(9) = 67108864 '0x04BBGGRR

Background(10) = 100663296 '0x06BBGGRR
Background(11) = 100663296 '0x06BBGGRR
Background(12) = 100663296 '0x06BBGGRR
Background(13) = 100663296 '0x06BBGGRR
Background(14) = 100663296 '0x06BBGGRR

BackColor = RGB(255,255,255)
BackColorGroup = 167772160
BackColorGroup2 = RGB(198,207,247)
GroupAppearance = 7
ToolTipWidth = 154
GroupHeight = 36
Groups
{
 Add("
Calendar ActiveX (MSCAL.Calendar) ")
 {
 CaptionFormat = 1
 Alignment = 0
 Image =
"gBHJJGHA5MIgAEIe4AAAFhwQiAbCAbigbEsWGAlGA7Eo7HcbIowIpFHZQkZQKA7IsplErlBbLZFmEzLZlMpQmxbOE2mxwn06nZ7n0+PdFMtFOCFQp7pR7SFKQtPSFPTdTTdVq9ZTalralr1fWClWFjsi7s1nYtmYtrtjQt1vbdubdzujlublvF5eDleF9eD7v77fYBwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjzsMAAhfIEAMMf4AFmmhOxAAI1r/BIcJBwcCEQYFG4ULjISG7BYQCr+bawALEAqJBozHyEPChYbFBwgISGZjYOAjY/XIqCHDRUQDZKCDYPNxETISYgLCogGCWHgIKKmY4NGpXWw4AJRGGAhGg4PJXB4YIqDIaZTA2RwZHIPI4GGBIKhURA1C6XIaBWKZLimB4TFwYBKFQJRTjKLZUDQaIZHYApNiaIY9CYOBYAGaZWCwLZuAIJZ4GEYJZDkfoTBAXA5BabYLjYJJ0G4PBqlYL5UgGHYwBqVh7nMRJUH+Ew2HQDI7nmcBBEkbIPDMTYKmIKJmggIIGFqdBLhCRBeEQaobBqRQdBqJxFkgBI7AgDodjcaJGgoS5xGcFooHqbQLkQHYflMJAIhIKJmFAPJbkQKJdFQMBAlSIZPFALp4FqbQMHANJuFyPwuHgVppmsAZeluQAIkGIoGA0FYhC8fBuCuPZwESIp6l0NB/n8PoGm4BYqlILosi0RIbA6PBwmiOABiiYh+kmCRAiYDJcA+QQEgcMpqCEMggiQTIvHaaIgDCPYUhgXBIDmPBWjKERBBYUh0A8RBHFyIxNDCRBemgDwFhSUgYXYExoEwIQwAaHQ0GsJoXiYJBRgSEQ+GgYIDhETBaiyR4BCqMgLjkBBTDAARHh4PJiHIIA/DacAQjwFgUESSAgiuHR6GeNYUkMFAvkwF4akyUgxjQUwUmgAgikKahTE2N5lBoc4gMIAAdoCA"

 Height = 168
 IndentGroupLeft = 18
 Items
 {
 Dim h
 h = InsertControlItem(,"MSCAL.Calendar")
 ItemHeight(h) = 168
 ItemObject(h)
 {
 BackColor = RGB(198,207,247)
 }
 }
 }
 "
Mail"

 {
 CaptionFormat = 1
 Expanded = True
 Alignment = 0
 Image =
"gBHJJGHA5MIiAEIe4AAAFhwFIJpApWPoFNSbCAPB4QJhLCBWKoQNRpCB+V8lXIQRDDDQZDIaEYjDRMmR+PoaSSREsxEpgFolNQ3Ep0IIlSVFWKvF43G4vSRLF6dZovU7XF9Jq65HVMHSnJdda46WNhYrDIidJZPjpPkBPWJVtzhLK7uVlLLPYZkXbXMjFdZuB4ZNzFNJ5vx5Z7NxDrQZ+NKDYp9QbZa6OB4jRyIOaYSWbSR9TCxQ6YyijDItUaIPqjTurTqHUbZUqjcbhVuqVqnQ+5SKtdzrXEjXG6XCxSPFTa4cav5ThXDuZrCEYtYSxTbCXaR7HXYqvZoZG7NXabZrFUvlV7X83q9LP9q5a7Z+G/cUdcS7Uri+X6YbicZmnE352CCJZ2DoOZ2P/BJrnYdxwnuMAvnumx7kQQ57pye5Ok2e5TlKe5dlye6ynuxJ7t+AMUxVFcWRbF0XxhGMZRnGkaxtG8cRzHUdx5HsfR/IEgyFIciIYAAQnyAgAoYf4ABZIyEyiAAESaf4Eg4JBYFAYJBgQBYTCQUAQFCIZDgUCRWCiWYTGCYZFgICpWGyDAzFEIpDgWA4aCYdAwiaTAWhOYZCAyAApEaJYagWB4HCQRIJDKDBMAQEotCiQYiEUTQaA+GZXFSHIwEADRKBYBolCoMZilOCYSCWQQFEoRApCWaRMg2UoFA4YBClOSpTDUUgABKTAgGaZJSC2JpXCCfYnnEDQVgWaocFieQKHaQAWhMOIHCYIDZioUYrCcLg4mCKBFEmWI0imBQUBwMAGk2WopzWWJBAGIYuBSIJ3nEaodngNxjkURpZk8dA4hEYphAsQ4fhsIwEkyVgkl4DZvjcJJAGCYoBgYAYJE4JJpnEFRLhaTYZh+VxcnKO54hoBA5BeChoCEVh1BqYwdhUc4EF4HB4BWLY7EMJgAHMM53lobBAmOf5vCwXp+DeFwvmmUgcmmQRbgmGhnkaT4Pi0fwyHyV5aBifguBEe59itotzCKK4gk4eIhjye5giqTYyhaWhYCMDQ2AyApugsKhSHiKYNB+WAAjAOoviyWJggiAJNEMQwJicJBKkACZ0FaCICCKdR+hgC4ugQMAwTgLYQEAIYJCOcBzHAB4tACMxijcFxOhiIgFjUEhIkABYNBQGBrgMDRcDgAQBF0SpUGoKY1n4OHnjMBh4mGCQrBAOBJAoE4wCAIoBA2EAADKAQWngFBJi4H4GEicoIASUgwgKAYI41B0vTH4C0SgwAEBoBAGYaAAAiACBqAQTgPwICZGAGgUhPRCBLCW/0IgCQdBoCLA0Cwqh4iDAcOoXIpBUAJA2GwGAgAwgkFsNcQQpAFClCiIIDQpxRDmAIEwDARBVDoFUKsfwQRgBWCEAkUA8RJhLCcBgAw1whA/FYNETwEwSiQE0FMAQSxUC6EMGEH4sRbgoEeLMMQxA1h7BwMgIoohUgxDCJQKYbhlDpGyKwWo3A7DrHaLccAhgVjuCAikAAOyAgA=="

 IndentGroupLeft = 18
 AutoHeight = True
 BeginUpdate
 ExpandOnSearch = True
 BackColorList = RGB(255,255,255)
 BorderColor = RGB(198,207,247)
 Indent = 12
 HasLines = -1
 HasButtons = 2
 LinesAtRoot = -1
 FullRowSelect = False
 'SelBackColor = RGB(198,207,247)
 SelBackColor = 67108864 '0x04BBGGRR
 SelForeColor = RGB(0,0,0)
 ShowFocusRect = False

 Columns
 {
 Item(0)
 {
 Caption = "Organizer"
 }
 }

 Items
 {
 Dim h, h1, h2
 h = AddItem("Inbox (23)")
 CellCaptionFormat(h,0) = 1
 CellImages(h,0) = "1,2"

 CellToolTip(h,0) = "An Inbox is a file in which mail is delivered by the operating
system.
Exontrol's ExplorerBar"
 CellPicture(h,0) =
"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMwJE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

 ItemHeight(h) = 26

 h1 = InsertItem(h,,"Unread Email (11)")
 CellCaptionFormat(h1,0) = 1
 CellImage(h1,0) = 2
 h1 = InsertItem(h,,"To Follow Up (7)")
 CellCaptionFormat(h1,0) = 1
 CellImage(h1,0) = 3
 h2 = InsertItem(h,,"My Folders")
 CellImage(h2,0) = 2
 h1 = InsertItem(h2,,"Info (128)")
 CellImage(h1,0) = 2
 h1 = InsertItem(h2,,"Personal (59)")
 CellImage(h1,0) = 3
 h1 = InsertItem(h2,,"Programming (159)")
 CellImage(h1,0) = 1

 h1 = InsertItem(h,,"Draft (0)")
 CellCaptionFormat(h1,0) = 1
 CellImage(h1,0) = 1
 h1 = InsertItem(h,,"OutBox")
 CellImage(h1,0) = 2
 h1 = InsertItem(h,,"SentItems")
 CellImage(h1,0) = 3
 h1 = InsertItem(h,,"Deleted Items")
 CellImage(h1,0) = 4
 }
 EndUpdate
 }
 Add("
Contacts (6)")

 {
 Expanded = True
 CaptionFormat = 1
 Alignment = 0
 AutoHeight = True
 Image =
"gBHJJGHA5MIgAEIe4AAAFhwQiAbCAFDcVEolCEXEowjg7GAbHY7CEhHZFkRFlBQIoQKEtLZQCEvIsvKBbmxlnBwnR7OAlnhbnhwPdDQp7EtFPaFQo7pSFSFLSFRTdFTaQHdVItVQqbTZbriQribUtdsdiUpwUtpWCwItrOFrWC7WBwuSbXd3YqlQrFXaQviwvi7YrFv2DaCwSGHTbQXalaDFWDQaGLyTbaCFyzFyzQbbbUudbblvLlcq70jF0jleF5eGMeDbXevYrwcrQeGt27b27wfe13rbfe0ffB4b7APH5HJ5XL5nN53P6HR6XT6nV63X7HZ7Xb7nd73f8Hh8Xj8nfhgAEL5AgBhj/AAs88J+QABHuf4JDhIOCCQgJCYXBIEhkFgUIhkCAwSkgLAglEcRCEOBwGjUHg0BgYQCAuHQ6FwOBAiEARjkGFAXgcSh4CGA5GkuGgjFEXBQDGJAlkiEgXP0WIBAKBQJB8K4kCwDI5lIKILg6NBaHIaIRhMYoGgkPorBIaIgnKH5LBIPYlDqVJ6hOKpCgiEg2HQIA7AGKhRB4WZdGwWAYlEQgEDgDZCCaXBwkEZxKh+JB9HIRJBBaIRJjgAZhhqVJYFcKoEiKK40FKJAxCGbgDEgEYhkcEA7mELJAgkIgDEqfQqgERRPFAH59nYCBAhoIRaB8HJLkaQAhGOB5Nh+LxjmsGIAgKdIEBWGo/msJRKjaZoPiQSAGCCEQyGQCANAmIgrCKZYrjUA5ZgkKwGBCSJCEIRYSD6JJ+HwDBNkIZRmB6U4nH+PpPC4JBJBAJJnBGPImnGYQFGuHhDhEaxtlqGIqHSPpInoUpYkCYgIF2BQijoConHGHoziuOQkhBcYIAUXwzA4JIDE8GwviKDpECuK4CBcfhYACIpqnia5vjYGhsBsagCBoFBjC2LIFGiUACAkJRMGOMA2BsYILHEkxCgOSg+guMxsAwBoKhUIIBWMOpwGECAXC4IhRDaMgqiQKxAB0Eh4k0CBgASeJxAeI4aGiQYHCELpSkwK4kjsMALkMDR/Gwb4FGqepqkCNo8gyZIJiqAwPDwCAGiSBholEOJzHqaAiDYHoGECUo+BIWJ8k4LIwHSNALAaRoalsawsBWegoHIH4PnCLArkAA4aiybiWGMMxUgcHouEyconB+UJ0BMTBDG0a5rgKDooGoQIkDUbQ7iCLoLj0IgBkWSxnDCOwpimK5LFIUo2gAXQUkuOhGh6LcSwbQkBtDABsVQVxIhgGkLEQAQQrCeFKHoZw6gpBTB0NgZQ6AxiSCaLYAQcAjgcCiAQCYRQaBRCIA8b49gQBDAeCgLCYBRg0HgMAIYER1jKHAO42ISg9guFGG4UIZApBEAQP0Go1BeD8DEBQCAAAdkB"

 IndentGroupLeft = 18
 Expanded = True
 BackColorList = RGB(255,255,255)
 BorderColor = RGB(198,207,247)
 BeginUpdate
 HeaderVisible = True
 HeaderAppearance = 6
' BackColorHeader = RGB(198,207,247)
 FilterBarBackColor = 16777216 '0x01BBGGRR
 FilterBarForeColor = RGB(255,255,255)
 BackColorHeader = 16777216 '0x01BBGGRR
 ForeColorHeader = RGB(255,255,255)
 BackColorLevelHeader = RGB(255,255,255)
 DrawGridLines = -1
' SelBackColor = RGB(198,207,247)
 SelBackColor = 67108864 '0x04BBGGRR
 SelForeColor = RGB(0,0,0)
 ShowFocusRect = False
 MarkSearchColumn = False
 AllowEdit = True
 TreeColumnIndex = -1
 Columns
 {
 Item(0)
 {
 Caption = "Name"
 Width = 130
 DisplayFilterButton = True
 DisplayFilterDate = True

 }
 Add("Phone")
 {
 Width = 100
 }
 1
 {
 AllowSizing = False
 HTMLCaption = "1 First"
 Def(0) = True
 LevelKey = 1
 Width = 25
 Alignment = 1
 }
 2
 {
 AllowSizing = False
 HTMLCaption = "2 Second"
 Def(0) = True
 LevelKey = 1
 Width = 25
 Alignment = 1
 }
 3
 {
 AllowSizing = False
 HTMLCaption = "3 Third"
 Def(0) = True
 LevelKey = 1
 Width = 25
 PartialCheck = True
 Alignment = 1
 }
 ""
 {
 LevelKey = 1
 Width = 20

 }

 }
 Items
 {
 Dim h
 h = AddItem("Mihai Filimon")
 CellCaptionFormat(h,0) = 1
 CellCaption(h,1) = "744-845287"
 h = AddItem("Dean Thomas")
 CellCaptionFormat(h,0) = 1
 CellCaption(h,1) = "928-120203"
 h = AddItem("Dave Nichols")
 CellCaptionFormat(h,0) = 1
 CellMerge(h,1) = 2
 CellCaption(h,1) = "121-121901"
 h = AddItem("Brian Thompson")
 CellBackColor(h,1) = 83886080
 CellCaptionFormat(h,0) = 1
 CellCaption(h,1) = "234-129011"
 h = AddItem("Alex Antolini")
 CellCaptionFormat(h,0) = 1
 CellCaption(h,1) = "234-12112"
 CellHAlignment(h,0) = 1
 CellMerge(h,0) = 1
 SortChildren(,0)
 }
 EndUpdate
 }

 Add("
Tasks")
 {
 CaptionFormat = 1
 BackColorList = RGB(255,255,255)
 BorderColor = RGB(198,207,247)
 IndentGroupLeft = 18

 Alignment = 0
 Image =
"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMwJE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

 Expanded = True
 AutoHeight = True
 BeginUpdate
 TreeColumnIndex = -1
 FullRowSelect = False
' SelBackColor = RGB(198,207,247)
' SelForeColor = RGB(0,0,0)
 SelBackColor = 67108864 '0x04BBGGRR
 SelForeColor = RGB(0,0,0)
 ShowFocusRect = False
 Columns
 {
 Item(0)
 {
 Alignment = 1
 }
 }
 Items
 {
 Dim h
 h = AddItem("no tasks")
 }
 EndUpdate
 }
}
EndUpdate

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States
CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED

BUTTON BP_CHECKBOX = 3

= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2

EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4

LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2

PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3

SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4

SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5

TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4

TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3

HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4
CS_ACTIVE = 1 CS_INACTIVE

WP_SMALLCAPTION = 2 = 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27 VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's borders, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
and so on.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's borders, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
and so on.

Column object
The group object supports multiple columns. The Columns object contains a collection of
Column objects. By default, the group adds a column. The Column object holds information
about a control's column like: Alignment, Caption, Position and so on. The Column object
supports the following properties and methods:

Name Description

Alignment Retrieves or sets the alignment of the caption into the
column's header.

AllowDragging Retrieves or sets a value indicating whether the user will
be able to drag the column.

AllowSizing
Retrieves or sets a value indicating whether the user will
be able to change the width of the visible columns by
dragging.

AutoSearch Specifies the kind of searching while user types
characters within the columns.

AutoWidth Computes the column's width required to fit the entire
group's client area.

Caption Retrieves or sets the text displayed in the column's
header.

ComputedField Retrieves or sets a value that indicates the formula of the
computed column.

CustomFilter Retrieves or sets a value that indicates the list of custom
filters.

Data Associates an extra data to the column.

Def Retrieves or sets a value that indicates the default value of
given properties for all cells in the same column.

DefaultSortOrder Specifies whether the default sort order is ascending or
descending.

DisplayFilterButton Specifies whether the column's header displays the filter
button.

DisplayFilterDate Specifies whether the drop down filter window displays a
date selector to specify the interval dates to filter for.

DisplayFilterPattern Specifies whether the dropdown filter bar contains a
textbox for editing the filter as pattern.

DisplaySortIcon Retrieves or sets a value indicating whether the sort icon
is visible on column's header, while the column is sorted.

Enabled Returns or sets a value that determines whether a
column's header can respond to user-generated events.

Filter Specifies the column's filter when filter type is exFilter,
exPattern or exDate.

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the column.

FilterList Specifies whether the drop down filter list includes visible
or all items.

FilterOnType Filters the column as user types characters in the drop
down filter window.

FilterType Specifies the column's filter type.

FireFormatColumn
Retrieves or sets a value that indicates whether the
control fires FormatColumn to format the caption of a cell
hosted by column.

FormatColumn Specifies the format to display the cells in the column.
HeaderAlignment Specifies the alignment of the column's caption.

HeaderBold Retrieves or sets a value that indicates whether the
column's caption should appear in bold.

HeaderImage
Retrieves or sets a value indicating the index of an Image
in the Images collection, which is displayed to the column's
header.

HeaderImageAlignment Retrieves or sets the alignment of the image into the
column's header.

HeaderItalic Retrieves or sets a value that indicates whether the
column's caption should appear in italic.

HeaderStrikeOut Retrieves or sets a value that indicates whether the
column's caption should appear in strikeout.

HeaderUnderline Retrieves or sets a value that indicates whether the
column's caption should appear in underline..

HTMLCaption Retrieves or sets the text in HTML format displayed in the
column's header.

Index Returns a value that represents the index of an object in a
collection.

Key Retrieves or sets the column's key.

LevelKey Retrieves or sets a value that indicates the key of the
column's level.

MaxWidthAutoResize Retrieves or sets a value that indicates the maximum
column's width when the WidthAutoResize is True.

MinWidthAutoResize Retrieves or sets a value that indicates the minimum
column's width when the WidthAutoResize is True.

PartialCheck Specifies whether the column supports partial check
feature.

Position Retrieves or sets a value that indicates the position of the
column in the header bar area.

ShowFilter Shows the column's filter window.
SortOrder Specifies the column's sort order.

SortType Returns or sets a value that indicates the way a group
sorts the values for a column.

ToolTip Specifies the column's tooltip description.

Visible Retrieves or sets a value indicating whether the column is
visible or hidden.

Width Retrieves or sets the column's width.

WidthAutoResize
Retrieves or sets a value that indicates whether the
column is automatically resized according to the width of
the contents within the column.

property Column.Alignment as AlignmentEnum

Retrieves or sets the alignment of the caption into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cells inside the column.

Use the Alignment property to change the column's alignment. Use the HeaderAlignment
property to align the column's caption inside the column's header. By default, all columns
are aligned to left. If the column displays the hierarchy lines, and if the Alignment property is
RightAlignment the hierarchy lines are painted from right to left side. Use the HasLines
property to display the group's hierarchy lines. Use the CellHAlignment property to align a
particular cell.

property Column.AllowDragging as Boolean

Retrieves or sets a value indicating whether the user will be able to drag the column.

Type Description

Boolean A boolean expression indicating whether the user will be
able to drag the column.

Use the AllowDragging property to forbid user to change the column's position by dragging.
If the AllowDragging is false, the column's position cannot be changed by dragging it to
another position.

property Column.AllowSizing as Boolean

Retrieves or sets a value indicating whether the user will be able to change the width of the
visible columns by dragging.

Type Description

Boolean
A boolean expression indicating whether the user will be
able to change the width of the visible columns by
dragging.

Use the AllowSizing property to fix the column's width. Use the ColumnAutoResize property
of the Group object to fit the columns to the group's client area.

property Column.AutoSearch as AutoSearchEnum
Specifies the kind of searching while user types characters within the columns.

Type Description

AutoSearchEnum An AutoSearchEnum expression that defines the type of
incremental searching.

By default, the AutoSearch property is exStartWith. The AutoSearch property has effect
only if the AutoSearch property of the Group object is True. Use the AutoSearch property to
define a 'contains' incremental search. If the AutoSearch property is exContains, the group
searches for items that contains the typed characters. The searching column is defined by
the SearchColumnIndex property.

property Column.AutoWidth as Long
Computes the column's width required to fit the entire group's client area

Type Description

Long A long expression that indicates the width of the column to
fit the entire group's client area.

Use the AutoWidth property to arrange the columns to fit the entire group's content. The
AutoWidth property doesn't change the column's width. Use Width property to change the
column's width at runtime.

Private Sub autoSize(ByVal t As EXPLORERTREELibCtl.Group)
 t.BeginUpdate
 Dim c As Column
 For Each c In t.Columns
 c.Width = c.AutoWidth
 Next
 t.EndUpdate
 t.Refresh
End Sub

property Column.Caption as String

Retrieves or sets the text displayed to the column's header.

Type Description
String A string expression that indicates the column's caption.

Each property of Items object that has an argument ColIndex can use the column's caption
to identify a column. Adding two columns with the same caption is accepted and these are
differentiated by their indexes. Use the HTLMCaption property to display the column's
caption using HTML tags. To hide a column use the Visible property of the Column object.
The column's caption is displayed using the following font attributes: HeaderBold,
HeaderItalic, HeaderUnderline, HeaderStrikeout

property Column.ComputedField as String
Retrieves or sets a value that indicates the formula of the computed column.

Type Description

String

A String expression that indicates the formula to compute
the field/cell. The formula is applied to all cells in the
column with the CellCaptionFormat property on exText (
the exText value is by default).

A computed field or cell displays the result of an arithmetic formula that may include
operators, variables and constants. By default, the ComputedField property is empty. If the
the ComputedField property is empty, the property have no effect. If the ComputedField
property is not empty, all cells in the column, that have the CellCaptionFormat property on
exText, uses the same formula to display their content. For instance, you can use the
CellCaptionFormat property on exHTML, for cells in the column, that need to display other
things than column's formula, or you can use the CellCaptionFormat property on
exComputedField, to change the formula for a particular cell.

Use the CellCaptionFormat property to change the type for a particular cell. Use the
CellCaption property to specify the cell's content. For instance, if the CellCaptionFormat
property is exComputedField, the Caption property indicates the formula to compute the
cell's content.

The Def(exCellCaptionFormat) property is changed to exComputedField, each time the
ComputeField property is changed to a not empty value. If the ComputedField property is
set to an empty string, the Def(exCellCaptionFormat) property is set to exText. Call the
Refresh method to force refreshing the group.

The property may include variables, constants, operators or () parenthesis. A variable is
defined as %n, where n is the index of the column (zero based). For instance, the %0
indicates the first column, the %1, indicates the second column, and so on. A constant is a
float expression (for instance, 23.45).

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if

the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument

abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)

min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++)
ie cond ? value_true : value_false, which means that once that cond is true the value_true
is used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the
value of the variable 0. For instance, the "len(%0) ? (0:=(%1+%2) ? currency(=:0) else
``) : ``" displays the sum between second and third column in currency format if it is not
zero, and only if the first column is not empty. As you can see you can use the variables
to avoid computing several times the same thing.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.
6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is

less than the sum of third and forth columns.

property Column.CustomFilter as String
Retrieves or sets a value that indicates the list of custom filters.

Type Description
String A String expression that defines the list of custom filters.

By default, the CustomFilter property is empty. The CustomFilter property has effect only if
it is not empty, and the FilterType property is not exImage, exCheck or exNumeric. Use the
DisplayFilterPattern property to hide the text box to edit the pattern, in the drop down filter
window. The All predefined item and the list of custom filter is displayed in the drop down
filter window, if the CustomFilter property is not empty. The Blanks and NonBlanks
predefined items are not defined, when custom filter is displayed. Use the
Description(exFilterBarAll) property on empty string to hide the All predefined item, in the
drop down filter window. Use the DisplayFilterButton property to show the button on the
column's header to drop down the filter window. Use the Background property to define the
visual appearance for the drop down button.

The CustomFilter property defines the list of custom filters as pairs of (caption,pattern)
where the caption is displayed in the drop down filter window, and the pattern is get
selected when the user clicks the item in the drop down filter window (the FilterType
property is set on exPattern, and the Filter property defines the custom pattern being
selected). The caption and the pattern are separated by a "||" string (two vertical bars,
character 124). The pattern expression may contains multiple patterns separated by a
single "|" character (vertical bar, character 124). A pattern may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character. If any of the *, ?, # or | characters are preceded by a \ (escape
character) it masks the character itself. If the pattern is not present in the (caption,pattern)
pair, the caption is considered as being the pattern too. The pairs in the list of custom
patterns are separated by "|||" string (three vertical bars, character 124). So, the syntax
of the CustomFilter property should be of: CAPTION [|| PATTERN [| PATTERN]] [|||
CAPTION [|| PATTERN [| PATTERN]]].

For example, you may have a list of documents and instead of listing the name of each
document in the filter drop down list for the names column you may want to list the
following:

Excel Spreadsheets
Word Documents
Powerpoint Presentations
Text Documents

And define the filter patterns for each line above as follows:

*.xls
*.doc
*.pps
*.txt, *.log

and so the CustomFilter property should be "Excel Spreadsheets (*.xls)||*.xls|||Word
Documents||*.doc|||Powerpoint Presentations||*.pps|||Text Documents
(*.log,*.txt)||*.txt|*.log". The following screen shot shows this custom filter format:

property Column.Data as Variant
Associates an extra data to the column.

Type Description

Variant A Variant expression that indicates the column's extra
data.

Use the Data property to assign any extra data to a column.

property Column.Def(Property as DefColumnEnum) as Variant
Retrieves or sets a value that indicates the default value of given properties for all cells in
the same column.

Type Description

Property as DefColumnEnum A DefColumnEnum expression that indicates the property
being changed.

Variant A Variant value that specifies the newly value.

the Def property to specify a common value for given properties for all cells in the column.

For instance, you can use the Def property to assign check boxes to all cells in the column,
without enumerating them.

ExplorerTree1.Groups(0).Columns(0).Def(exCellHasCheckBox) = True

property Column.DefaultSortOrder as Boolean

Specifies whether the default sort order is ascending or descending.

Type Description

Boolean
A boolean expression that specifies whether the default
sort order is ascending or descending. True means
ascending, False means descending.

By default, the DefaultSortOrder property is False. Use the SortOnClick property to specify
the operation when user clicks the column's caption. Use the DefaultSortOrder to specify
how the column is sorted at the first click on its header. Use the SortOrder property to sort
a column.

property Column.DisplayFilterButton as Boolean
Shows or hides the column's filter bar button.

Type Description

Boolean A boolean expression that indicates whether the column's
filter bar button is visible or hidden.

The column's filter button is displayed on the column's caption. The DisplayFilterPattern
property determines whether the column's filter window includes the pattern field. Use the
FilterBarDropDownHeight to specify the height of the drop down filter window. Use the
FilterBarHeight property to specify the height of the filter bar header.

property Column.DisplayFilterDate as Boolean
Specifies whether the drop down filter window displays a date selector to specify the
interval dates to filter for.

Type Description

Boolean
A boolean expression that indicates whether the drop
down filter window displays a date selector to filter items
into a given interval.

By default, the DisplayFilterDate property is False. Use the DisplayFilterDate property to
filter items that match a given interval of dates. The DisplayFilterDate property includes a
date button to the right of the Date field in the drop down filter window. The
DisplayFilterDate property has effect only if the DisplayFilterPattern property is True. If the
user clicks the filter's date selector the control displays a built-in calendar editor to help
user to include a date to the date field of the drop down filter window. Use the Description
property to customize the strings being displayed on the drop down filter window. If the
Date field in the filter drop down window is not empty, the FilterType property of the Column
object is set on exDate, and the Filter property of the Column object points to the interval
of dates being used when filtering.

property Column.DisplayFilterPattern as Boolean
Specifies whether the dropdown filter bar contains a textbox for editing the filter as pattern.

Type Description

Boolean A boolean expression that indicates whether the pattern
field is visible or hidden.

Use the DisplayFilterButton property to show the column's filter button. If the
DisplayFilterPattern property is False the drop down filter window doesn't include the "Filter
For" or "Date" field. Use the DisplayFilterDate property to filter items that match a given
interval of dates.

property Column.DisplaySortIcon as Boolean

Retrieves or sets a value indicating whether the sort icon is visible on column's header,
while the column is sorted.

Type Description

Boolean A boolean expression indicating whether the sort icon is
visible on column's header, while the column is sorted.

Use the DisplaySortIcon property to hide the sort icon. Use the SortChildren property of the
Items object to sort a column.

property Column.Enabled as Boolean

Returns or sets a value that determines whether a column's header can respond to user-
generated events.

Type Description

Boolean A boolean expression that determines whether a column's
header can respond to user-generated events.

If the Enabled property is False, then all cells of the column are disabled, no matter if the
CellEnabled property is true. The following sample disables the first column cells randomly:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 Group.Items.CellEnabled(Item, 0) = 4 * Rnd(4) > 2
End Sub

property Column.Filter as String
Specifies the column's filter when the filter type is exFilter or exPattern.

Type Description
String A string expression that specifies the column's filter.

If the FilterType property is exFilter the Filter property indicates the list of values being
included when filtering. The values are separated by '|' character. For instance if the
Filter property is "CellA|CellB" the control includes only the items that have captions
like: "CellA" or "CellB".

If the FilterType is exPattern the Filter property defines the list of patterns used in
filtering. The list of patterns is separated by the '|' character. A pattern filter may
contain the wild card characters like '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character. The '|' character separates
the options in the pattern. For instance: '1*|2*' specifies all items that start with '1' or
'2'.

If the FilterType property is exDate, the Filter property should be of "[dateFrom] to
[dateTo]" format, and it indicates that only items between a specified range of dates
will be included. If the dateFrom value is missing, the control includes only the items
before the dateTo date, if the dateTo value is missing, the control includes the items
after the dateFrom date. If both dates (dateFrom and dateTo) are present, the
control includes the items between this interval of dates. For instance, the "2/13/2004
to" includes all items after 2/13/2004 inclusive, or "2/13/2004 to Feb 14 2005" includes
all items between 2/13/2004 and 2/14/2004.

If the FilterType property is exNumeric, the Filter property may include operators like
<, <=, =, <>, >= or > and numbers to define rules to include numbers in the control's
list. The Filter property should be of the following format "operator number [operator
number ...]". For instance, the "> 10" indicates all numbers greater than 10. The "<>10
<> 20" filter indicates all numbers except 10 and 20. The "> 10 < 100" filter indicates
all numbers greater than 10 and less than 100. The ">= 10 <= 100 <> 50" filter
includes all numbers from 10 to 100 excepts 50. The "10" filter includes only 10 in the
list. The "=10 =20" includes no items in the list because after control filters only 10
items, the second rule specifies only 20, and so we have no items. The Filter property
may include unlimited rules. A rule is composed by an operator and a number. The
rules are separated by space characters.

If the FilterType property is exCheck the Filter property may include "0" for unchecked
items, and "1" for checked items. The CellState property specifies the state of the
cell's checkbox. If the Filter property is empty, the filter is not applied to the column,

when ApplyFilter method is called.

If the FilterType property is exImage the Filter property indicates the list of icons (index
of the icon being displayed) being filtered. The values are separated by '|' character.
The CellImage property indicates the index of the icon being displayed in the cell. For
instance, the '1|2' indicates that the filter includes the cells that display first or the
second icon (with the index 1 or 2). The drop down filter window displays the (All)
item and the list of icons being displayed in the column

The Filter property has no effect if the FilterType property is one of the followings: exAll,
exBlanks and exNonBlanks.

The ApplyFilter method should be called to update the group's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the CustomFilter property to define you custom filters. Use the CustomFilter
property to define you custom filters.

property Column.FilterBarDropDownWidth as Double
Specifies the width of the drop down filter window proportionally with the width of the
column.

Type Description

Double

A double expression that indicates the width of the drop
down filter window proportionally with the width of the
column. If the FilterBarDropDownWidth expression is
negative, the absolute value indicates the width of the drop
down filter window in pixels. Else, the value indicates how
many times the width of the column is multiply to get the
width of the drop down filter window.

By default, the FilterBarDropDownWidth property is 1, and so, the width of the drop down
filter window coincides with the width of the column. Use the Width property to specify the
width of the column. Use FilterBarDropDownHeight property to specify the height of the
drop down filter window. Use the FilterBarHeight property to specify the height of the
control's filter bar. Use the DisplayFilterButton property to display a filter button to the
column's caption. Use the Description property to define predefined strings in the filter bar

The following VB sample specifies that the width of the drop down filter window is double of
the column's width:

With ExplorerTree1.Columns(0)
 .FilterBarDropDownWidth = 2
End With

The following VB sample specifies that the width of the drop down filter window is 150
pixels:

With ExplorerTree1.Columns(0)
 .FilterBarDropDownWidth = -150
End With

property Column.FilterList as FilterListEnum
Specifies whether the drop down filter list includes visible or all items.

Type Description

FilterListEnum A FilterListEnum expression that indicates the items being
included in the drop down filter list.

By default, the FilterList property is exAllItems. Use the FilterList property to specify the
items being included in the column's drop down filter list. Use the DisplayFilterButton
property to display the column's filter bar button. The DisplayFilterDate property specifies
whether the drop down filter window displays a date selector to specify the interval dates to
filter for.

property Column.FilterOnType as Boolean
Filters the column as user types characters in the drop down filter window.

Type Description

Boolean
A Boolean expression that specifies whether the column
gets filtered as the user types characters in the drop down
filter window.

By default, the FilterOnType property is False. The Filter-On-Type feature allows you to
filter the control's data based on the typed characters. Use the DisplayFilterButton property
to add a drop down filter button to the column's header. The Filter-On-Type feature works
like follows: User clicks the column's drop down filter button, so the drop down filter window
is shown. Use starts type characters, and the control filters the column based on the typed
characters as it includes all items that starts with typed characters, if the AutoSearch
property is exStartWith, or include in the filter list only the items that contains the typed
characters, if the AutoSearch property is exContains. Click the X button on the filterbar, and
so the control removes the filter, and so all data is displayed. The control fires the
FilterChange event to notify whether the control applies a new filter to control's data. Once,
the FilterOnType property is set on True, the column's FilterType property is changed to
exPattern, and the the Filter property indicates the typed string. Use the FilterCriteria
property to specify the expression being used to filter the control's data when multiple
columns are implied in the filter. Use the Description property to customize the text being
displayed in the drop down filter window. Use the FilterHeight property to specify the height
of the control's filterbar that's displayed on the bottom side of the control, once a filter is
applied. The "Filter For" (pattern) field in the drop down filter window is always shown if
the FilterOnType property is True, no matter of the DisplayFilterPattern property.

property Column.FilterType as FilterTypeEnum
Specifies the column's filter type.

Type Description

FilterTypeEnum A FilterTypeEnum expression that indicates the filter's
type.

The FilterType property defines the filter's type. By default, the FilterType is exAll. No filter
is applied if the FilterType is exAll. The Filter property defines the column's filter. Use the
DisplayFilterButton property to display the column's filter button. Use the CustomFilter
property to define you custom filters.

The ApplyFilter method should be called to update the group's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties.

property Column.FireFormatColumn as Boolean

Retrieves or sets a value that indicates whether the control fires FormatColumn to format
the caption of a cell hosted by column.

Type Description

Boolean
A boolean expression that indicates whether the control
fires the FireFormatColumn event for the cells in the
column.

By default, the FireFormatColumn property is false. The FormatColumn event is fired only if
the FireFormatColumn property of the Column is True. The FormatColumn event lets the
user to provide the cell's caption before it is displayed on the group's list. For instance, the
FormatColumn event is very useful when the column cells contains prices (numbers), and
you want to display that column formatted as currency, like $50 instead 50.

property Column.FormatColumn as String
Specifies the format to display the cells in the column.

Type Description

String A string expression that defines the format to display the
cell, including HTML formatting, if the cell supports it.

By default, the FormatColumn property is empty. The cells in the column use the provided
format only if is valid (not empty, and syntactically correct), to display data in the column.
The FormatColumn property provides a format to display all cells in the column using a
predefined format. The expression may be a combination of variables, constants, strings,
dates and operators, and value. The value operator gives the value to be formatted. A
string is delimited by ", ` or ' characters, and inside they can have the starting character
preceded by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie
#1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The cell's HTML format is
applied only if the CellCaptionFormat or Def(exCellCaptionFormat) is exHTML. If valid, the
FormatColumn is applied to all cells for which the CellCaptionFormat property is not
exComputedField. This way you can specify which cells use or not the FormatColumn
property. The ComputedField property indicates the formula of the computed column.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is

retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,

#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long

20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.

The valid values are 0, 1, 2, 3 and 4 with the following meanings:
0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in

"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++)
ie cond ? value_true : value_false, which means that once that cond is true the value_true
is used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the
value of the variable 0. You can use variables to avoid computing several times the same
thing.

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the column's caption.

Use the HeaderAlignment property to align the column's caption inside the column's header.
Use the Alignment property to align the cells into a column. Use the HeaderImageAlignment
property to align the column's icon inside the column's header.

property Column.HeaderBold as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in bold.

The HeaderBold property specifies whether the column's caption should appear in bold. Use
the CellBold or ItemBold properties to specify whether the cell or item should appear in
bold.

For instance, the following samples shows how to bold the entire column, by handling the
AddItem event:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 Group.Items.CellBold(Item, 0) = True
End Sub

property Column.HeaderImage as Long

Retrieves or sets a value indicating the index of an Image in the Images collection, which is
displayed to the column's header.

Type Description

Long A long expression that indicates the index of image in the
column's header.

Use the HeaderImage property to assign an icon to the column's header. Use the
HeaderImageAlignment property to align the column's icon inside the column's header.

property Column.HeaderImageAlignment as AlignmentEnum
Retrieves or sets the alignment of the image into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the image in the column's header.

By default, the image is left aligned. Use the HeaderImageAlignment property to aligns the
icon in the column's header. Use the HeaderImage property to attach an icon to the
column's header.

property Column.HeaderItalic as Boolean

Retrieves or sets the Italic property of the Font object that it is used to paint the column's
caption.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in italic.

Use the HeaderItalic property to specify whether the column's caption should appear in
italic. Use the CellItalic or ItemItalic properties to specify whether the the cell or the item
should appear in italic.

For instance, the following sample shows how to bold the entire column, by handling the
AddItem event:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 Group.Items.CellBold(Item, 0) = True
End Sub

property Column.HeaderStrikeOut as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in
strikeout.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in strikeout.

Use the HeaderStrikeOut property to specify whether the column's caption should appear in
strikeout. Use the CellStrikeOut or ItemStrikeOut properties to specify whether the cell or
the item should appear in strikeout.

For instance, the following sample shows how to bold the entire column, by handling the
AddItem event:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 Group.Items.CellBold(Item, 0) = True
End Sub

property Column.HeaderUnderline as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in
underline.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in underline.

Use the HeaderUnderline property to specify whether the column's caption should appear in
underline. Use the CellUnderline or ItemUnderline properties to specify whether the cell or
the item should appear in underline.

For instance, the following samples show how to bold the entire column, by handling the
AddItem event:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 Group.Items.CellBold(Item, 0) = True
End Sub

property Column.HTMLCaption as String
Retrieves or sets the text in HTML format displayed in the column's header.

Type Description

String A string expression that indicates the column's caption
using built-in HTML tags.

If the HTMLCaption property is empty, the Caption property is displayed in the column's
header. If the HTMLCaption property is not empty, the group uses it when displays the
column's header. Use the HeaderHeight property to change the height of the group's header
bar. The list of built-in HTML tags supported are here.

property Column.Index as Long

Returns a value that represents the index of an object in a collection.

Type Description

Long A long expression that represents the index of an object in
a collection.

Use the Position property to change the column's position. The Columns collection is zero
based, so the Index property starts at 0. The last added column has the Index set to
Columns.Count - 1. When a column is removed from the collection, the group updates all
indexes.

property Column.Key as String
Retrieves or sets the column's key.

Type Description
String A string expression that defines the column's key

The column's key defines a column when using the Item property.

property Column.LevelKey as Variant
Retrieves or sets a value that indicates the key of the column's level.

Type Description

Variant A Variant expression that indicates the key of the column's
level.

By default, the LevelKey is empty. The control's header displays multiple levels if there are
two or more neighbor columns with the same non empty level key. The HeaderHeight
property specifies the height of one level when multiple levels header is on. Use the
BackColorLevelHeader property to specify the control's level header area. Use the
PictureLevelHeader property to assign a picture on the control's header. The
BackColorHeader property specifies the background color for column's captions.

property Column.MaxWidthAutoResize as Long
Retrieves or sets a value that indicates the maximum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the maximum column's
width when the WidthAutoResize is True.

Use the MaxWidthAutoResize property to set the maximum column's width while the
WidthAutoResize property is True. If the MaxWidthAutoResize property is less than zero,
there is no maximum value for the column's width. By default, the MaxWidthAutoResize
property is -1.

property Column.MinWidthAutoResize as Long
Retrieves or sets a value that indicates the minimum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the minimum column's
width when the WidthAutoResize is True.

Use the MinWidthAutoResize property to set the minimum column's width while the
WidthAutoResize property is True.

property Column.PartialCheck as Boolean

Specifies whether the column supports partial check feature.

Type Description

Boolean A boolean expression that indicates whether the column
supports the partial check feature,

The PartialCheck property specifies that the column supports partial check feature. By
default, the PartialCheck property is False. Use the CellHasCheckBox property to associate
a check box to a cell. Use the CellState property to determine the cell's state. If the
PartialCheck property is True, the CellState property has three states: 0 - Unchecked, 1 -
Checked and 2 - Partial Checked. Use the CheckImage property to define the icons for
each state.

property Column.Position as Long

Retrieves or sets a value that indicates the position of the column in the header bar area.

Type Description

Long A long expression that indicates the position of the column
in the header bar area.

The column's index is not the same with the column's position. The Index property of
Column cannot be changed by the user. Use the Position property to change the column's
position. The EnsureVisibleColumn method ensures that a given column fits the group's
client area.

method Column.ShowFilter ([Options as Variant])
Shows the column's filter window.

Type Description

Options as Variant

A string expression that indicates the position (in screen
coordinates) and the size (in pixels) where the drop
down filter window is shown. The Options parameter is
composed like follows:

the first parameter indicates the X coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the second parameter indicates the Y coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the third parameter indicates the width in pixels of the
drop down window, or empty if the width is ignored
the forth parameter indicates the height in pixels of
the drop down window, or empty if the height is
ignored

By default, the drop down filter window is shown at its
default position bellow the column's header.

Use the ShowFilter method to show the column's drop down filter programmatically. By
default, the drop down filter window is shown only if the user clicks the filter button in the
column's header, if the DisplayFilterButton property is True. The drop down filter window if
the user selects a predefined filter, or enters a pattern to match. If the Options parameter
is missing, or all parameters inside the Options are missing, the size of the drop down filter
window is automatically computed based on the FilterBarDropDownWidth property and
FilterBarDropDownHeight property. Use the ColumnFromPoint property to get the index of
the column from the point.

property Column.SortOrder as SortOrderEnum

Specifies the column's sort order.

Type Description

SortOrderEnum A SortOrderEnum expression that indicates the column's
sort order.

The SortOrder property determines the column's sort order. By default, the SortOrder
property is SortNone. Use the SortOrder property to sort a column at runtime. Use the
SortType property to determine the way how the column is sorted.

The group automatically sorts a column when the user clicks the column's header. If the
SortOnClick property is False the group disables sorting the items when user clicks the
column's header. There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

Group.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
group. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sort descending the list of root items on
the "Column 1"(if your group displays a list, all items are considered being root items).

Group.Items.SortChildren 0, "Column 1", False

property Column.SortType as SortTypeEnum

Returns or sets a value that indicates the way a group sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that indicates the way a
group sorts the values for a column.

The SortType property specifies the way how a column is sorted. By default, the column's
SortType is String. Use the SortType property to specifies how the group will sort the
column. Use the SortChildren property of Items to do a sort based on a column

property Column.ToolTip as String
Specifies the column's tooltip description.

Type Description

String A string expression that defines the column's tooltip. The
column's tooltip supports built-in HTML format

By default, the Tooltip property is empty. Use the ToolTip property to assign a tooltip to a
column. The column's tooltip shows up when the cursor is over the header of the column.

property Column.Visible as Boolean

Retrieves or sets a value indicating whether the column is visible or hidden.

Type Description

Boolean A boolean expression indicating whether the column is
visible or hidden.

Use the Visible property to hide a column. Use the Caption property to change the column's
caption. Use the Position property to specify the column's position.

property Column.Width as Long

Retrieves or sets the column's width.

Type Description

Long A long expression that indicates the column's width in
pixels.

The Width property specifies the column's width in pixels. Use the Visible property to hide a
column.

To change the column width for all columns, you can use the following sample , by handling
the AddColumn event:

Private Sub ExplorerTree1_AddColumn(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Column As EXPLORERTREELibCtl.IColumn)
 Column.Width = 196
End Sub

property Column.WidthAutoResize as Boolean
Retrieves or sets a value that indicates whether the column is automatically resized
according to the width of the contents within the column.

Type Description

Boolean
A boolean expression that indicates whether the column is
automatically resized according to the width of the
contents within the column.

If the WidthAutoResize property is True, the column's width is resized after user expands,
or collapse the items. Also, the column's width is refreshed if the user adds new items to
the group. If the WidthAutoResize property is True, the column's width is not larger than
MaxWidthAutoResize value, and it is not less than MinWidthAutoResize value. You can use
the AutoWidth property to computes the column's width to fit its content. For instance, if you
have a tree with one column, and this property True, you can simulate a simple tree,
because the group will automatically add a horizontal scroll bar when required.

Columns object
The Group object supports multiple columns. The Columns object contains a collection of
Column objects. Use the Columns property of the control to access the group columns. By
default, the group's columns collection contains a column.

Name Description

Add Adds a Column object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
Remove Removes a specific member from the Columns collection.

method Columns.Add (ColumnCaption as String)

Adds a Column object to the collection and returns a reference to the newly created object.

Type Description

ColumnCaption as String A string expression that indicates the caption for the
column being added

Return Description
Variant A Column object that indicates the newly added column.

The AddColumn event is fired when a new columns is added to Columns collection. Use the
Caption property to change the column's caption.

The following sample shows how to add columns to your group based on a recordset:

With ExplorerTree1
 With .Groups.Add("Group 1")
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
 .BeginUpdate
 .ColumnAutoResize = False
 ' Add the columns
 With .Columns
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 ' Adds items
 .PutItems rs.getRows()
 .EndUpdate
 End With
End With

method Columns.Clear ()

Removes all objects in a collection.

Type Description

Use the Remove method when you need to remove only a column. Use the Clear method
when you need to clear the entire columns collection. Also, the Clear method removes all
items. Use the RemoveAllItems method to remove all items in the group.

property Columns.Count as Long

Returns the number of objects in a collection.

Type Description
Long Counts the Column object into the collection.

You can use the following samples to enumerate the group columns:

Dim c As EXPLORERTREELibCtl.Column
With ExplorerTree1.Groups(0)
 For Each c In .Columns
 Debug.Print c.Caption
 Next
End With

Dim i As Long
With ExplorerTree1.Groups(0).Columns
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Caption
 Next
End With

property Columns.Item (Index as Variant) as Column

Returns a specific Column of the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index or a
string expression that indicates the column's key or the
column's caption.

Column A column object being returned.

Use the Item property to access to a specific column. The Item property is the default
property of the Columns object so the following statements are equivalents:

ExplorerTree1.Groups(0).Columns.Item ("Freight")
ExplorerTree1.Groups(0).Columns("Freight")

method Columns.Remove (Index as Variant)

Removes a specific member from the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

The Remove method removes a specific column in the Columns collection. Use Clear
method to remove all Column objects. The RemoveColumn event is fired when a column is
about to be removed.

ConditionalFormat object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to add new ConditionalFormat objects. Use the Item property
to access a ConditionalFormat object. The ConditionalFormat object supports the following
properties and method:

Name Description

ApplyTo Specifies whether the format is applied to items or
columns.

BackColor Retrieves or sets the background color for objects that
match the condition.

Bold Bolds the objects that match the condition.
ClearBackColor Clears the background color.
ClearForeColor Clears the foreground color.
Enabled Specifies whether the condition is enabled or disabled.

Expression Indicates the expression being used in the conditional
format.

Font Retrieves or sets the font for objects that match the
criteria.

ForeColor Retrieves or sets the foreground color for objects that
match the condition.

Italic Specifies whether the objects that match the condition
should appear in italic.

Key Checks whether the expression is syntactically correct.

StrikeOut Specifies whether the objects that match the condition
should appear in strikeout.

Underline Underlines the objects that match the condition.
Valid Checks whether the expression is syntactically correct.

property ConditionalFormat.ApplyTo as FormatApplyToEnum
Specifies whether the format is applied to items or columns.

Type Description

FormatApplyToEnum

A FormatApplyToEnum expression that indicates whether
the format is applied to items or to columns. If the ApplyTo
property is less than zero, the format is applied to the
items.

By default, the format is applied to items. The ApplyTo property specifies whether the
format is applied to the items or to the columns. If the ApplyTo property is greater or equal
than zero the format is applied to the column with the index ApplyTo. For instance, if the
ApplyTo property is 0, the format is applied to the cells in the first column. If the ApplyTo
property is 1, the format is applied to the cells in the second column, if the ApplyTo property
is 2, the format is applied to the cells in the third column, and so on. If the ApplyTo property
is -1, the format is applied to items.

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With Group1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_group.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGroup1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXPLORERTREELib.ConditionalFormat cf =
axGroup1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXPLORERTREELib.FormatApplyToEnum)1;

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Group1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.BackColor as Color
Retrieves or sets the background color for objects that match the condition.

Type Description

Color

A color expression that indicates the background color for
the object that match the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColor property to change the background color for items or cells in the column
when a certain condition is met. Use the ForeColor property to specify the foreground color
for objects that match the criteria. Use the ClearBackColor method to remove the
background color being set using previously the BackColor property. If the BackColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Bold as Boolean
Bolds the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
should appear in bold.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample bolds all cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

With Group1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_group.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGroup1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXPLORERTREELib.ConditionalFormat cf =
axGroup1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;

cf.ApplyTo = (EXPLORERTREELib.FormatApplyToEnum)1;

The following VFP sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Group1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormat.ClearBackColor ()
Clears the background color.

Type Description

Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0.

method ConditionalFormat.ClearForeColor ()
Clears the foreground color.

Type Description

Use the ClearBackColor method to remove the foreground color being set using previously
the ForeColor property. If the ForeColor property is not set, it retrieves 0.

property ConditionalFormat.Enabled as Boolean
Specifies whether the condition is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the
expression is enabled or disabled.

By default, all expressions are enabled. A format is applied only if the expression is valid
and enabled. Use the Expression property to specify the format's formula. The Valid
property checks whether the formula is valid or not valid. Use the Enabled property to
disable applying the format for the moment. Use the Remove method to remove an
expression from ConditionalFormats collection.

property ConditionalFormat.Expression as String
Indicates the expression being used in the conditional format.

Type Description

String

A formal expression that indicates the formula being used
in formatting. For instance, "%0+%1>%2", highlights the
cells or the items, when the sum between first two
columns is greater than the value in the third column

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The Expression property specifies a formula that indicates the criteria to format the
items or the columns. Use the ApplyTo property to specify when the items or the columns
are formatted. Use the Add method to specify the expression at adding time. The
Expression property may include variables, constants, operators or () parenthesis. A
variable is defined as %n, where n is the index of the column (zero based). For instance,
the %0 indicates the first column, the %1, indicates the second column, and so on. A
constant is a float expression (for instance, 23.45). Use the Valid property checks whether
the expression is syntactically correct, and can be evaluated. If the expression contains a
variable that is not known, 0 value is used instead. For instance, if your control has 2
columns, and the expression looks like "%2 +%1 ", the %2 does not exist, 0 is used
instead. When the control contains two columns the known variables are %0 and %1.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element

being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8

specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string

endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++)
ie cond ? value_true : value_false, which means that once that cond is true the value_true
is used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the
value of the variable 0. For instance, the "len(%0) ? (0:=(%1+%2) ? currency(=:0) else
``) : ``" displays the sum between second and third column in currency format if it is not

zero, and only if the first column is not empty. As you can see you can use the variables
to avoid computing several times the same thing.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

Samples:

1. "1", highlights all cells or items. Use this form, when you need to highlight all cells or
items in the column or control.

2. "%0 >= 0", highlights the cells or items, when the cells in the first column have the value
greater or equal with zero

3. "%0 = 1 and %1 = 0", highlights the cells or items, when the cells in the first column
have the value equal with 0, and the cells in the second column have the value equal
with 0

4. "%0+%1>%2", highlights the cells or the items, when the sum between first two
columns is greater than the value in the third column

5. "%0+%1 > %2+%3", highlights the cells or items, when the sum between first two
columns is greater than the sum between third and forth column.

6. "%0+%1 >= 0 and (%2+%3)/2 < %4-5", highlights the cells or the items, when the sum
between first two columns is greater than 0 and the half of the sum between third and
forth columns is less than fifth column minus 5.

The following VB samples bolds all items when the sum between first two columns is
greater than 0:

Group1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_group.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following VB.NET sample bolds all items when the sum between first two columns is

greater than 0:

AxGroup1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axGroup1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.Group1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

property ConditionalFormat.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object that's applied to items or columns.

Use the Font property to change the font for items or columns that match the criteria. Use
the Font property only, if you need to change to a different font.

You can change directly the font attributes, like follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items

The following VB sample changes the font for ALL cells in the first column:

With Group1.ConditionalFormats.Add("1")
 .ApplyTo = 0
 Set .Font = New StdFont
 With .Font
 .Name = "Comic Sans MS"
 End With
End With

property ConditionalFormat.ForeColor as Color
Retrieves or sets the foreground color for objects that match the condition.

Type Description

Color A color expression that indicates the foreground color for
the object that match the criteria.

Use the ForeColor property to specify the foreground color for objects that match the
criteria. Use the BackColor property to change the background color for items or cells in the
column when a certain condition is met. Use the ClearForeColor method to remove the
foreground color being set using previously the ForeColor property. If the ForeColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Italic as Boolean
Specifies whether the objects that match the condition should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the objects
should look in italic.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample makes italic the cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With Group1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C++ sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_group.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetItalic(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxGroup1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C# sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

EXPLORERTREELib.ConditionalFormat cf =
axGroup1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Italic = true;

cf.ApplyTo = (EXPLORERTREELib.FormatApplyToEnum)1;

The following VFP sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.Group1.ConditionalFormats.Add("%1+%2<%0")
 .Italic = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Key as Variant
Checks whether the expression is syntactically correct.

Type Description
Variant A String expression that indicates the key of the element

The Key property indicates the key of the element. Use the Add method to specify a key at
adding time. Use the Remove method to remove a formula giving its key.

property ConditionalFormat.StrikeOut as Boolean
Specifies whether the objects that match the condition should appear in strikeout.

Type Description

Boolean A Boolean expression that indicates whether the objects
should appear in strikeout.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample applies strikeout font attribute to cells in the
second column (1), if the sum between second and third column (2) is less than the value
in the first column (0):

With Group1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

COleVariant vtEmpty;
CConditionalFormat cf = m_group.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample applies strikeout font attribute to cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With AxGroup1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample applies strikeout font attribute to cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

EXPLORERTREELib.ConditionalFormat cf =
axGroup1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXPLORERTREELib.FormatApplyToEnum)1;

The following VFP sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

with thisform.Group1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Underline as Boolean
Underlines the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
are underlined.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample underlines the cells in the second column (1
), if the sum between second and third column (2) is less than the value in the first column
(0):

With Group1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C++ sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_group.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetUnderline(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxGroup1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C# sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXPLORERTREELib.ConditionalFormat cf =
axGroup1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Underline = true;

cf.ApplyTo = (EXPLORERTREELib.FormatApplyToEnum)1;

The following VFP sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.Group1.ConditionalFormats.Add("%1+%2<%0")
 .Underline = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Valid as Boolean
Checks whether the expression is syntactically correct.

Type Description

Boolean A boolean expression that indicates whether the
Expression property is valid.

Use the Valid property to check whether the Expression formula is valid. The conditional
format is not applied to objects if expression is not valid, or the Enabled property is false.
An empty expression is not valid. Use the Enabled property to disable applying the format
to columns or items. Use the Remove method to remove an expression from
ConditionalFormats collection.

ConditionalFormats object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The ConditionalFormats collection holds a collection of ConditionalFormat objects.
Use the ConditionalFormats property to access the control's ConditionalFormats collection
.The ConditionalFormats collection supports the following properties and methods:

Name Description

Add Adds a new expression to the collection and returns a
reference to the newly created object.

Clear Removes all expressions in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific expression.
Remove Removes a specific member from the collection.

method ConditionalFormats.Add (Expression as String, [Key as Variant])
Adds a new expression to the collection and returns a reference to the newly created
object.

Type Description

Expression as String

A formal expression that indicates the formula being used
when the format is applied. Please check the Expression
property that shows the syntax of the expression that may
be used. For instance, the "%0 >= 10 and %1 > 67.23"
means all cells in the first column with the value less or
equal than 10, and all cells in the second column with a
value greater than 67.23

Key as Variant

A string or long expression that indicates the key of the
expression being added. If the Key parameter is missing,
by default, the current index in the ConditionalFormats
collection is used.

Return Description

ConditionalFormat A ConditionalFormat object that indicates the newly format
being added.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on values. Use the Add method
to add new ConditionalFormat objects to the ConditionalFormats collection. By default, the
ConditionalFormats collection is empty. A ConditionalFormat object indicates a formula and
a format to apply to cells or items. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column. Use the Expression
property to retrieve or set the formula. Use the Key property to retrieve the key of the
object. Use the Refresh method to update the changes on the control's content.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB sample bolds all items when the sum between first two columns is greater
than 0:

Group1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With Group1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_group.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_group.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxGroup1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGroup1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axGroup1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXPLORERTREELib.ConditionalFormat cf =
axGroup1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXPLORERTREELib.FormatApplyToEnum)1;

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.Group1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Group1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormats.Clear ()
Removes all expressions in a collection.

Type Description

Use the Clear method to remove all objects in the collection. Use the Remove method to
remove a particular object from the collection. Use the Enabled property to disable a
conditional format.

property ConditionalFormats.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that counts the number of elements in
the collection.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In Group1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With Group1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_group.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_group.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXPLORERTREELib.ConditionalFormat
For Each c In AxGroup1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxGroup1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXPLORERTREELib.ConditionalFormat c in axGroup1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axGroup1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axGroup1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.Group1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

property ConditionalFormats.Item (Key as Variant) as ConditionalFormat
Returns a specific expression.

Type Description

Key as Variant
A long expression that indicates the index of the element
being accessed, or a string expression that indicates the
key of the element being accessed.

ConditionalFormat A ConditionalFormat object being returned.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format. Use the Key property to get the
key of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In Group1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With Group1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_group.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_group.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXPLORERTREELib.ConditionalFormat

For Each c In AxGroup1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxGroup1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXPLORERTREELib.ConditionalFormat c in axGroup1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axGroup1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axGroup1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.Group1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

method ConditionalFormats.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A Long or String expression that indicates the key of the
element to be removed.

Use the Remove method to remove a particular object from the collection. Use the Enabled
property to disable a conditional format. Use the Clear method to remove all objects in the
collection.

ExDataObject object
The OleDragDrop event notifies your application that the user drags some data on the
control. Defines the object that contains OLE drag and drop information. The ExDataObject
object supports the following method and properties:

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations.

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object

The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property. The OleDragDrop event notifies your
application that the user drags some data on the control. The ExDataObjectFiles object
supports the following properties and methods:

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index.
String A string value that indicates the filename.

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames,.

ExplorerTree object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {1036744E-4103-4987-BA7A-BB6C35BD5852}. The object's program identifier is:
"Exontrol.ExplorerTree". The /COM object module is: "ExplorerTree.dll"

Add structured navigation functionality to your applications. The ExplorerTree component
adds navigation functionality to your applications, it brings simple information structuring and
easy application navigation. It contains a WYSWYG designer, which is available in all
environments such as .NET, VFP or else. It simplifies the organization of information in your
applications. Hierarchical structure of Groups and Items allows perfect structuring of
information. Create Outlook style bar and tree navigation interfaces. The ExplorerTree
supports the following properties and methods:

Name Description

AllowResizeShortcutBar Specifies whether the user can resize the shortcutbar, to
allow multiple shortcuts to be visible.

AllowTooltip Specifies whether the control displays a tooltip when the
item's caption is too long.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Specifies the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoScrollBar Specifies whether the control adds the vertical scroll bar if
required.

BackColor Retrieves or sets a value that indicates the control's
background color.

BackColorGroup Retrieves or sets a value that indicates the group's
background color.

BackColorGroup2 Specifies the color at the ending boundary line of the
gradient group's caption.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate Maintains performance when items are added to the
control one at a time.

BorderGroupHeight Specifies the height of the border between groups.
BorderHeight Specifies the border's height.
BorderWidth Specifies the border's width.
DelayScroll Specifies the delay used when user selects a group.

DisplayExpandIcon Specifies whether the control displays the expand icon on
the group's caption.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EnsureVisible Ensures the given group/item is in the visible client area.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExpandIcon Retrieves or sets the index of the icon used to paint the
expand button.

ExpandOnClick Expands the group when its caption is clicked.

ExpandShortcutCount Retrieves or sets a value that indicates the number of
shortcuts being expanded.

ExpandShortcutImage Retrieves or sets a value that indicates the index of the
image being displayed to expand the shortcuts.

FocusGroup Retrieves the group that has the focus.
Font Retrieves or sets the control's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

ForeColorGroup Retrieves or sets a value that indicates the group's
foreground color.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

GroupAppearance Specifies the group's appearance.
GroupFromPoint Gets the group from point.
GroupHeight Specifies the group's height.
GroupListFromPoint Gets the group's list from point.
Groups Retrieves the control's groups collection.

HandCursor Specifies whether the control uses the hand cursor when
the mouse is over the group.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the handle of the control's window.
Images Sets the control's handle image list.

ImageSize Retrieves or sets the size of icons the control displays.

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

Picture Retrieves or sets a graphic to be displayed in the control's
background.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background.

Refresh Refreshes the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.
ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.
SelectShortcut Selects and displays the specified shortcut.
ShortcutBarBackColor Retrieves or sets the shortcut bar's background color.
ShortcutBarHeight Selects and displays the specified shortcut.

ShortcutBarSelBackColor Retrieves or sets the background color for the selected
icon in the shortcut bar.

ShortcutBarSelCaptionBackColorRetrieves or sets the background color for selected
shortcut when its entire caption is displayed.

ShortcutFromPoint Gets the shortcut from the cursor.
ShortcutPicture Specifies a custom-size picture assigned to a shortcut.

ShortcutPictureHeight Specifies the height in pixels of the custom size picture
being displayed in the shortcut bar.

ShortcutPictureWidth Specifies the width in pixels of the custom size picture
being displayed in the shortcut bar.

ShortcutResizeBackColor Retrieves or sets the background color for the shortcut's
resize bar.

ShowFocusRect Specifies a value that indicates whether the control draws
the focused item.

ShowImageList Retrieves or sets a value that indicates whether the image
list window is visible or hidden.

ShowShortcutBar Retrieves or sets a value that indicates whether the image
shortcut bar is visible or hidden.

ShowToolTip Shows programmatically a tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.
ToolTipMargin Defines the size of the control's tooltip margins.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

property ExplorerTree.AllowResizeShortcutBar as Boolean
Specifies whether the user can resize the shortcutbar, to allow multiple shortcuts to be
visible.

Type Description

Boolean A Boolean expression that indicates whether the user can
resize the shortcut bar.

By default, the AllowResizeShortcutBar property is True. Use the AllowResizeShortcutBar
property to hide the resize bar of the control's shortcut bar. Use the ShowShortcutBar
property to show or hide the control's shortcut bar. The ShortcutResizeBackColor property
changes the visual appearance of the resizing bar of the shortcut bar. Use the
ExpandShortcutCount property to specify the number of shortcuts that display their full
caption, else the first icon in the caption is displayed or the assigned picture is displayed.
The ExpandShortcut event notifies your application when the user resizes the control's
shortcut bar.

property ExplorerTree.AllowTooltip as Boolean
Specifies whether the control displays a tooltip when the item's caption is too long.

Type Description

Boolean A boolean expression that indicates whether the control
displays a tooltip when the item's caption is too long

By default, the AllowTooltip property is True. Use the AllowTooltip property to disable
tooltips in the control. Use the ToolTipWidth property to specify the width of the tooltip
window.

property ExplorerTree.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 With ExplorerTree1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxExplorerTree1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent) Handles
AxExplorerTree1.MouseMoveEvent
 With AxExplorerTree1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With

End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axExplorerTree1_MouseMoveEvent(object sender,
AxEXEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent e)
{
 axExplorerTree1.ShowToolTip(axExplorerTree1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveExplorerTree1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_explorerTree.ShowToolTip(m_explorerTree.GetAnchorFromPoint(-1, -1), vtEmpty,
vtEmpty, vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .ExplorerTree1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property ExplorerTree.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The groups, list/hierarchy,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The frame.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

https://exontrol.com/exbutton.jsp

With ExplorerTree1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\frame.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxExplorerTree1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\frame.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axExplorerTree1.BeginUpdate();
axExplorerTree1.VisualAppearance.Add(0x16, "c:\\temp\\frame.ebn");
axExplorerTree1.Appearance = (EXEXPLORERTREELib.AppearanceEnum)0x16000000;
axExplorerTree1.BackColor = Color.FromArgb(250, 250, 250);
axExplorerTree1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_explorerTree.BeginUpdate();
m_explorerTree.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\frame.ebn"));
m_explorerTree.SetAppearance(0x16000000);
m_explorerTree.SetBackColor(RGB(250,250,250));
m_explorerTree.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.ExplorerTree1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\frame.ebn")

 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method ExplorerTree.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ExplorerTree1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ExplorerTree.AutoScrollBar as Boolean
Specifies whether the control adds the vertical scroll bar if required.

Type Description

Boolean A Boolean expression that indicates whether the control
displays the vertical scroll bar when it is required.

By default, the AutoScrollBar property is True, that means that the vertical scroll bar for the
control is shown when it is required. Use the AutoScrollBar property on False, to hide the
control's vertical scroll bar. The control's vertical scroll bar may scroll the groups. The
scrollbars in the groups scrolls items inside the groups. Use the ScrollBars property of the
Group object to define the scrollbars being displayed in the groups. If the AutoScrollBar
property is True, the control shows the vertical scroll bar only if required. Use the
ScrollWidth property to specify the width of the vertical scroll bar. Use the ScrollThumbSize
property to define a fixed size for the scrollbar's thumb. Use the Background property to
change the visual aspect for the scrollbars.

property ExplorerTree.BackColor as Color
Retrieves or sets a value that indicates the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to specify the control's background color. Use the
BackColorGroup property to specify the default background color used to pain the groups
captions. Use the BackColor property to specify the background color group's caption, Use
the BackColorList property to specify the background color of the group's list. Use the
ItemBackColor property to specify the item's background color. Use the Picture property to
specify the control's picture displayed on its background. Use the group's Picture property
to assign a picture the group's list.

property ExplorerTree.BackColorGroup as Color
Retrieves or sets a value that indicates the default group's background color.

Type Description

Color

A color expression that indicates the group's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the BackColorGroup property to specify the background color for all groups. Use the
BackColorGroup2 property to specify the second background color when drawing the
caption of group like a gradient. The BackColorGroup property changes only the
background color of group captions. Use the BackColor, BackColorList property to change
the background color for a specific group. Use the group's Picture property to assign a
picture the group's list.

property ExplorerTree.BackColorGroup2 as Color
Specifies the color at the ending boundary line of the gradient group's caption.

Type Description

Color A color expression that specifies the color at the ending
boundary line of the gradient group's caption.

Use the BackColorGroup and BackColorGroup2 properties to display the caption of the
group using a gradient color.

property ExplorerTree.Background(Part as BackgroundPartEnum) as
Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.

method ExplorerTree.BeginUpdate ()
Maintains performance when groups are added to the control one at a time.

Type Description

Use the BeginUpdate and EndUpdate methods to avoid drawing the control while adding
multiple groups. Use the group's BeginUpdate and EndUpdate method to maintain
performance while adding new items to the group's list.

For instance, the following sample shows how to use the BeginUpdate and EndUpdate
methods:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
With ExplorerTree1
 .BeginUpdate
 With .Groups.Add("Group 1")
 .BeginUpdate
 .ColumnAutoResize = False
 .HeaderVisible = True
 With .Columns
 .Clear
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 .PutItems rs.GetRows()
 .EndUpdate
 End With
 With .Groups.Add("Group 2")
 .BeginUpdate
 .PutItems Array("Item 1", "Item 2", "Item 3")
 .EndUpdate
 End With
 .EndUpdate
End With

property ExplorerTree.BorderGroupHeight as Long
Specifies the height of the border between groups.

Type Description

Long A long expression that specifies the height of the border
between groups.

By default the BorderGroupHeight property is 2 pixels. The group's list client area is
computed based on the BorderWidth, BorderHeight, IndentGroupLeft, IndentGroupRight
and BorderGroupHeight properties.

property ExplorerTree.BorderHeight as Long
Specifies the border's height.

Type Description
Long A long expression that indicates the border's height.

By default, the BorderHeight property is 2 pixels. The group's list client area is computed
based on the BorderWidth, BorderHeight, IndentGroupLeft, IndentGroupRight and
BorderGroupHeight properties.

property ExplorerTree.BorderWidth as Long
Specifies the border's width.

Type Description
Long A long expression that indicates the border's width

By default, the BorderWidth property is 2 pixels. The group's list client area is computed
based on the BorderWidth, BorderHeight, IndentGroupLeft, IndentGroupRight and
BorderGroupHeight properties.

property ExplorerTree.DelayScroll as Long
Specifies the delay used when user selects a group.

Type Description

Long A long expression that indicates the delay used by the
control when a new group is selected.

By default, the DelayScroll property is 50. If the DelayScroll property is not zero, the
groups shows by animation when a group is being expanded or collapsed. If the DelayScroll
property is 0, the group's view is shown directly whit no animation.

property ExplorerTree.DisplayExpandIcon as Boolean
Specifies whether the control displays the expand icon on the group's caption.

Type Description

Boolean A boolean expression that specifies whether the control
displays the expand icon on the group's caption.

By default, the DisplayExpandIcon property is True. Use the DisplayExpandIcon property to
hide the icon in the group caption that indicates whether a group is expanded or collasped.
Use the ExpandIcon property to specify the icons used for expanded/collased groups.

property ExplorerTree.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control.

method ExplorerTree.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use the BeginUpdate and EndUpdate methods when you do multiple changes. Use the
group's BeginUpdate and EndUpdate method to maintain performance while adding new
items to the group's list.

For instance, the following sample shows how to use the BeginUpdate and EndUpdate
methods:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
With ExplorerTree1
 .BeginUpdate
 With .Groups.Add("Group 1")
 .BeginUpdate
 .ColumnAutoResize = False
 .HeaderVisible = True
 With .Columns
 .Clear
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 .PutItems rs.GetRows()
 .EndUpdate
 End With
 With .Groups.Add("Group 2")
 .BeginUpdate
 .PutItems Array("Item 1", "Item 2", "Item 3")
 .EndUpdate
 End With
 .EndUpdate
End With

method ExplorerTree.EnsureVisible ([Group as Variant], [Item as
Variant])
Ensures the given group/item is in the visible client area.

Type Description
Group as Variant A Long expression that specifies the index of the Group.

Item as Variant A Long expression that specifies the index of the Item
within the Group.

The EnsureVisible method ensures that giving group/item fits the control's client area.

property ExplorerTree.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method ExplorerTree.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the number of groups in the control:

Debug.Print ExplorerTree1.ExecuteTemplate("Groups.Count")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ExplorerTree.ExpandIcon(Expanded as Boolean) as Long
Retrieves or sets the index of the icon used to paint the expand button.

Type Description

Expanded as Boolean
A boolean expression that indicates the state of the icon
being changed. True means expanded, false means
collapsed.

Long A long expression that indicates the index of icon used.

Use the ExpandIcon property to change the icon used to paint an expanded/collapsed
groups. Use the DisplayExpandIcon property to hide the expanded/collapsed icon.

property ExplorerTree.ExpandOnClick as Boolean
Expands the group when its caption is clicked.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses the group when the group's caption
is clicked.

Use the ExpandOnClick property to specify whether the control expands or collapses when
the user clicks the group's caption. Use the ExpandIcon property to assign new
expanded/collapsed icons for the groups.

property ExplorerTree.ExpandShortcutCount as Long
Retrieves or sets a value that indicates the number of shortcuts being expanded.

Type Description

Long A long expression that indicates the number of shortcuts
that display their full caption.

By default, the ExpandShortcutCount property is 0. The ExpandShortcutCount property is
changed when the user resizes the shortcut bar. Use the ShowShortcutBar property to
show or hide the control's shortcut bar. Use the AllowResizeShortcutBar property to enable
or disable resizing the shortcut bar. Use the ExpandShortcutImage property to hide the
expand button in the control's shortcut bar, or to change the icon of the expand button in the
shortcut bar. The Shortcut property indicates the HTML caption of the shortcut that displays
the specified group. Groups with the same Shortcut property are displayed in the same
shortcut. The ExpandShortcut event notifies your application when the user resizes the
control's shortcut bar. The control fires the SelectShortcut event when the user selects a
shortcut, so groups that belongs to the shortcut are displayed.

property ExplorerTree.ExpandShortcutImage as Long
Retrieves or sets a value that indicates the index of the image being displayed to expand
the shortcuts.

Type Description

Long
A Long expression that indicates the index of the icon
being used to display the expand button in the control's
shortcut bar.

By default, The ExpandShortcutImage property is 0. If the ExpandShortcutImage property
is 0, the control displays the default icon to show the expand button in the shortcut bar. If
the ExpandShortcutImage property is greater than 0, it indicates the index of the icon being
used to display the expand button. The Images method assigns a collection of icons to the
control. The expand button in the shortcut bar is hidden, if the ExpandShortcutImage
property is -1. Use the AllowResizeShortcutBar property to enable or disable resizing the
shortcut bar. Use the ExpandShortcutCount property to specify the number of shortcuts
being expanded. An expanded shortcut displays its full caption, as Shortcut property
specifies.

property ExplorerTree.FocusGroup as Group
Retrieves the group that has the focus.

Type Description
Group A Group object that has the focus.

Use the FocusGroup property to get the group that has the focus. Use the FocusGroup
property determines the group where the drag and drop operations beings. The
OLEStartDrag event notifies your application that the user starts dragging data from the
control.

property ExplorerTree.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that specifies the control's font.

Use the Font property to specify the control's font. Use properties like Font, Bold, Italic or
Underline to specify the font's attribute while painting an object like group or item. The Font
property assign the Font properties for all groups in the control.

property ExplorerTree.ForeColor as Color
Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to specify the control's foreground color. Use the
ForeColorGroup property to specify the default foreground color used to paint the groups
captions. Use the ForeColor property to specify the foreground color for group's caption,
Use the ForeColorList property to specify the foreground color of the group's list. Use the
ItemForeColor property to specify the item's foreground color.

property ExplorerTree.ForeColorGroup as Color
Retrieves or sets a value that indicates the default group's foreground color.

Type Description

Color A color expression that indicates the default foreground
color for group captions.

Use the ForeColorGroup property to specify the foreground color for all groups. The
ForeColorGroup property changes only the foreground color of group captions. Use the
ForeColor, ForeColorList property to change the foreground color for a specific group.

property ExplorerTree.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

property ExplorerTree.GroupAppearance as AppearanceEnum
Specifies the group's appearance.

Type Description

AppearanceEnum An AppearaceEnum expression that indicates the group's
appearance.

Use the GroupAppearance to specify the group's appearance.

property ExplorerTree.GroupFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Group
Gets the group from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Group A Group object over the point (X, Y).

Use the GroupFromPoint property to get the group from the point specified by the {X,Y}.
The X and Y coordinates are expressed in client coordinates, so a conversion must be done
in case your coordinates are relative to the screen or to other window. If the X parameter
is -1 and Y parameter is -1 the GroupFromPoint property determines the group from
the cursor. Use the ItemFromPoint property to get the cell or item from the cursor. Use the
ColumnFromPoint property to access the column over the point. Use the GroupFromPoint
property to get the group's caption from the cursor. Use the GroupListFromPoint property
to get the group's list from cursor.

The following VB sample displays the group's caption from the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Dim g As EXPLORERTREELibCtl.Group
 With ExplorerTree1
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (g Is Nothing) Then
 Debug.Print g.Caption
 End If
 End With
End Sub

The following VFP sample displays the group's caption from the cursor:

with thisform.Olecontrol1
 local g

 g = .GroupFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 wait window .Caption nowait
 endwith
 EndIf
endwith

property ExplorerTree.GroupHeight as Long
Specifies the group's height.

Type Description

Long A long expression that indicates the height of group's
caption.

Use GroupHeight property to specify the group's caption height in pixels.

property ExplorerTree.GroupListFromPoint (X as OLE_XPOS_PIXELS, Y
as OLE_YPOS_PIXELS) as Group
Gets the group's list from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Group A Group object whose list is under the cursor.

Use the GroupFromPoint property to get the group's list from the point specified by the
{X,Y}. The X and Y coordinates are expressed in client coordinates, so a conversion must
be done in case your coordinates are relative to the screen or to other window. If the X
parameter is -1 and Y parameter is -1 the GroupListFromPoint property determines
the group'slist from the cursor. Use the ItemFromPoint property to get the cell or item
from the cursor. Use the ColumnFromPoint property to access the column over the
point. Use the GroupFromPoint property to get the group's caption from the cursor. Use the
ShortcutFromPoint property to retrieve the shortcut from the cursor.

The following VB sample prints the cell over the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Dim g As EXPLORERTREELibCtl.Group
 With ExplorerTree1
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (g Is Nothing) Then
 With g
 Dim h As Long, c As Long, hit as Long
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) Then
 With g.Items
 Debug.Print .CellCaption(h, c)
 End With
 End If
 End With

 End If
 End With
End Sub

The following VFP sample prints the cell's caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Olecontrol1
 local g
 g = .GroupListFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 local h, c, hit
 c = 0
 hit = 0
 h = .ItemFromPoint(-1,-1,@c,@hit)
 If h # 0 Then
 with .Items
 .DefaultItem = h
 wait window .CellCaption(0, c) nowait
 endwith
 EndIf
 endwith
 EndIf
endwith

property ExplorerTree.Groups as Groups
Retrieves the control's groups collection.

Type Description

Groups A Groups object that indicates the control's groups
collection.

Use the Groups property to access the control's groups collection. Use the Items property
to access the items collection of the group. Use the Columns property to access the
group's collection of columns. The Caption property specifies the group's caption, while the
CellCaption property indicates the caption of a specified cell.

The following VBA sample enumerates all groups and items being shown on the control:

Dim e As EXPLORERTREELib.ExplorerTree
Set e = ExplorerTree1.Object
With e
 Dim g As EXPLORERTREELib.Group
 For Each g In .Groups
 Debug.Print "Enumerate Group " & g.Caption
 For Each i In g.Items
 With g.Items
 Debug.Print "Item " & .CellCaption(i, 0)
 End With
 Next
 Next
End With

The following VBA sample enumerates all groups and items being checked on the control:

Dim e As EXPLORERTREELib.ExplorerTree
Set e = ExplorerTree1.Object
With e
 Dim g As EXPLORERTREELib.Group
 For Each g In .Groups
 Debug.Print "Enumerate Group " & g.Caption
 For Each i In g.Items
 With g.Items
 If Not (.CellState(i, 0) = 0) Then

 Debug.Print "Item " & .CellCaption(i, 0)
 End If
 End With
 Next
 Next
End With

property ExplorerTree.HandCursor as Boolean
Specifies whether the control uses the hand cursor when the mouse is over the group.

Type Description

Boolean A boolean expression that specifies whether the control
uses the hand cursor when the mouse is over the group.

By default, the HandCursor property is True.

property ExplorerTree.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property ExplorerTree.hWnd as Long
Retrieves the handle of the control's window.

Type Description

Long A long expression that indicates the handle of the control's
window.

Specifies the handle of the control's window used by API functions. Use the group's hWnd
property to get the handle of the group's list window.

method ExplorerTree.Images (Handle as Variant)
Sets the control's handle image list.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to control's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ShowImageList property to display the control's images panel.
The following sample uses the Microsoft Image List control:

ExplorerTree1.Images ImageList1.hImageList

The following sample adds two icons to the control's images collection using the base64
encoding strings:

ExplorerTree1.Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmEx
mUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhs
Vjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwCAw0Tf9dYGLAGLYGEvsQxGNx
mSqmOymPzGYyFvwyAyeSzGiysPpObxmozWlxOWztlyWkx+x02j2usoOcjWqzOh020xOvr
Of32J23G3GyyfHmu6jPO3vM4nA4vCqPU5nK12gjOg7WmmnEjfQ7O/03E6fm4PWpXow/f
5Gz8AA0HM7uTmmY8W7xnE6T3vU5bGPYpz1vW9zvNu+UDuq+7XJk3j9ue5MAwRBsCKp
AyNQs5T7wc+afN46SNOpDsMK/C0OQU/CjxK88NxJAMTrPFLDwk68AxNGa4QsrjqR3IEgy
FIciI0iwfJXJCPJAkSSAAkqUSgnEHyKmCKI2eZ/yyjZwH/LsuB+cAfvGB5gAe8YBmAAaNkAA
M2zZN0pIzNc1o3Ok2AOQADy4A5wT2jR8AfQKNn8B9Co2f5P0TREHoCA=="

property ExplorerTree.ImageSize as Long
Retrieves or sets the size of control' icons/images/check-boxes/radio-buttons.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays (number ex-html tag, CellImage,
CellImages)
check-box or radio-buttons (CellHasCheckBox, CellHasRadioButton)
expand/collapse glyphs (HasButtons, HasButtonsCustom)
header's sorting or drop down-filter glyphs

method ExplorerTree.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

Only for internal use.

property ExplorerTree.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode.

By default, the OLEDropMode property is exOLEDropNone. Currently, the ExExplorerTree
control supports only manual OLE Drag and Drop operation. See the OLEStartDrag and
OLEDragDrop events for more details about implementing drag and drop operations into
the ExExplorerTree control.

property ExplorerTree.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control's background.

Type Description
IPictureDisp A Picture object that identifies the control's picture.

The control's picture is displayed on the control's background. Use the PictureDisplay
property to specify the way how the picture is arranged on the control's background. Use
the group's Picture property to specify a picture for a given group.

property ExplorerTree.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is arranged on the control's background.

By default, the PictureDisplay is exTile. The PictureDisplay property has no effect if the
control's Picture is empty.

method ExplorerTree.Refresh ()
Refreshes the control.

Type Description

Use the Refresh method to force repainting the control.

method ExplorerTree.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = ExplorerTree1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), where i is the
index to insert the icon

The following sample shows how to replace an icon into control's images list::

 i = ExplorerTree1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the
i is zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 ExplorerTree1.ReplaceIcon 0, i, in this case the i must be the index of the icon that follows
to be removed

The following sample shows how to clear the control's icons collection:

 ExplorerTree1.ReplaceIcon 0, -1

property ExplorerTree.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property ExplorerTree.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property ExplorerTree.ScrollFont (ScrollBar as ScrollBarEnum) as
IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. The control fires the
ScrollButtonClick event when the user clicks a part of the scroll bar.

property ExplorerTree.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollBars property to specify
which scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property ExplorerTree.ScrollOrderParts(ScrollBar as ScrollBarEnum) as
String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property ExplorerTree.ScrollPartCaption(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. The control fires the
ScrollButtonClick event when the user clicks a part of the scroll bar. Use the ScrollFont
property to specify the font in the control's scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

property ExplorerTree.ScrollPartEnable(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property ExplorerTree.ScrollPartVisible(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

property ExplorerTree.ScrollThumbSize(ScrollBar as ScrollBarEnum) as
Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar. Use the ScrollThumbSize property to define a fixed size for the
scrollbar's thumb.

property ExplorerTree.ScrollToolTip(ScrollBar as ScrollBarEnum) as
String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. The OffsetChanged event notifies your application that
the user changes the scroll position. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

property ExplorerTree.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollBars property to specify which
scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to specify
the width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify
the height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the
height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify
the visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a
fixed size for the scrollbar's thumb.

property ExplorerTree.SelectShortcut as Variant
Selects and displays the specified shortcut.

Type Description

Variant A String expression that indicates the caption of the
Shortcut being selected.

The SelectShortcut property indicates the shortcut being selected. The Shortcut property of
the Group object indicates the shortcuts that may be selected. The Group objects with the
same Shortcut property indicates a set of groups, that may be selected using the
SelectShortcut property. The SelectShortcut event is fired when the user clicks a shortcut or
when the user calls the SelectShortcut property. The ShowShortcutBar property shows or
hides the control's shortcut bar. The ShortcutPicture property assigns a custom size picture
to a shortcut. Use the ShortcutPictureWidth and ShortcutPictureHeight properties to indicate
the size of the picture being displayed in the shortcut bar. The ShortcutBarHeight property
sets or gets a value that indicates the height in pixels of the control's shortcut bar

property ExplorerTree.ShortcutBarBackColor as Color
Retrieves or sets the shortcut bar's background color.

Type Description

Color

A color expression that indicates the shortcurt's
background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the ShortcutBarBackColor property to specify the background color of the control's
shortcut bar. The visual appearance of the items in the shortcut bar can be defined using
skins. The ShortcutBarSelBackColor property to specify the visual appearance/background
color for the selected icon/picture in the last item of the shortcut bar. The last item in the
shortcut bar displays only icons or custom size pictures for each shortcut defined using the
Shortcut property of the Group object. The ShortcutBarSelCaptionBackColor property
defines the visual appearance/background color for the selected shortcut, when the full
HTML caption is displayed. The ShortcutResizeBackColor property defines the visual
appearance/background color slider that resizes the shortcut bar.

property ExplorerTree.ShortcutBarHeight as Long
Selects and displays the specified shortcut.

Type Description

Long A long expression that indicates the height of the shortcut
bar.

By default, the ShortcutBarHeight property is 24 pixels. The ShortcutBarHeight property
defines the height for each item in the shortcut bar. For instance, if the shortcut bar has no
expanded shortcuts, the ShortcutBarHeight property defines the height of the shortcut bar,
that displays a single item where all shortcuts are displayed. Use the ShowShortcutBar
property to show or hide the control's shortcut bar. The ShortcutPicture property assigns a
custom size picture to a shortcut. Use the ShortcutPictureWidth and ShortcutPictureHeight
properties to indicate the size of the picture being displayed in the shortcut bar.

property ExplorerTree.ShortcutBarSelBackColor as Color
Retrieves or sets the background color for the selected icon in the shortcut bar.

Type Description

Color

A color expression that indicates the background color for
the selected shortcut. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The ShortcutBarSelBackColor property to specify the visual appearance/background color
for the selected icon/picture in the last item of the shortcut bar. The last item in the shortcut
bar displays only icons or custom size pictures for each shortcut defined using the Shortcut
property of the Group object. The ShortcutBarSelCaptionBackColor property defines the
visual appearance/background color for the selected shortcut, when the full HTML caption is
displayed. Use the ShortcutBarBackColor property to specify the background color of the
control's shortcut bar. The visual appearance of the items in the shortcut bar can be defined
using skins. The ShortcutResizeBackColor property defines the visual
appearance/background color slider that resizes the shortcut bar.

property ExplorerTree.ShortcutBarSelCaptionBackColor as Color
Retrieves or sets the background color for selected shortcut when its entire caption is
displayed.

Type Description

Color

A color expression that indicates the background color for
the selected shortcut. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The ShortcutBarSelCaptionBackColor property defines the visual appearance/background
color for the selected shortcut, when the full HTML caption is displayed. The
ShortcutBarSelBackColor property to specify the visual appearance/background color for
the selected icon/picture in the last item of the shortcut bar. The last item in the shortcut bar
displays only icons or custom size pictures for each shortcut defined using the Shortcut
property of the Group object. Use the ShortcutBarBackColor property to specify the
background color of the control's shortcut bar. The visual appearance of the items in the
shortcut bar can be defined using skins. The ShortcutResizeBackColor property defines the
visual appearance/background color slider that resizes the shortcut bar.

property ExplorerTree.ShortcutFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Gets the shortcut from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String A String expression that specifies the shortcut from the
point.

Use the ShortcutFromPoint property to get the shortcut from the point specified by the
{X,Y}. The X and Y coordinates are expressed in client coordinates, so a conversion must
be done in case your coordinates are relative to the screen or to other window. If the X
parameter is -1 and Y parameter is -1 the ShortcutFromPoint property determines
the shortcut from the cursor. Use the ItemFromPoint property to get the cell or item from
the cursor. Use the ColumnFromPoint property to access the column over the point. Use the
GroupFromPoint property to get the group's caption from the cursor. The Shortcut property
indicates the HTML caption of the shortcut that displays the specified group. Groups with
the same Shortcut property are displayed in the same shortcut. The ShortcutPicture
property assigns a custom size picture to a shortcut. Use the ShortcutPictureWidth and
ShortcutPictureHeight properties to indicate the size of the picture being displayed in the
shortcut bar. Use the ShowToolTip property to display programmatically a custom tooltip.

The following VB sample displays the shortcut from the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Debug.Print ExplorerTree1.ShortcutFromPoint(-1, -1)
End Sub

The following VB.NET sample displays the shortcut from the cursor:

Private Sub AxExplorerTree1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent) Handles
AxExplorerTree1.MouseMoveEvent
 Debug.Print(AxExplorerTree1.get_ShortcutFromPoint(-1, -1))

End Sub

The following C# sample displays the shortcut from the cursor:

private void axExplorerTree1_MouseMoveEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent e)
{
 System.Diagnostics.Debug.WriteLine(axExplorerTree1.get_ShortcutFromPoint(-1, -1));
}

The following C++ sample displays the shortcut from the cursor:

void OnMouseMoveExplorertree1(short Button, short Shift, long X, long Y)
{
 OutputDebugString(m_explorerTree.GetShortcutFromPoint(-1, -1));
}

The following VFP sample displays the shortcut from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.ExplorerTree1
 wait window nowait .ShortcutFromPoint(-1,-1)
endwith

property ExplorerTree.ShortcutPicture(Shortcut as String) as Variant
Specifies a custom-size picture assigned to a shortcut.

Type Description

Shortcut as String A String expression that indicates the caption of the
shortcut where a custom size picture is assigned.

Variant

A String expression that indicates the path to the picture
file or a string expression that indicates the base64
encoded string that holds a picture object. Use the
eximages tool to save your picture as base64 encoded
format. A Picture object being assigned to the shortcut.

Use the ShorcutPicture property to assign a custom size picture to a shortcut. The
ShowShortcutBar property specifies whether the control's shortcut bar is visible or hidden.
The Shortcut property indicates the HTML caption of the shortcut that displays the specified
group. Groups with the same Shortcut property are displayed in the same shortcut. The
shortcut bar displays the first icon found in the HTML caption, if a custom size picture is not
assigned to the shortcut using the ShortcutPicture property. Use the ShortcutPictureWidth
and ShortcutPictureHeight properties to indicate the size of the picture being displayed in
the shortcut bar. Use the ShortcutBarHeight property to define the height in pixels of one
shortcut items in the shortcut bar. Use the ExpandShortcutCount property to expand the
number of shortcuts in the control's shortcut bar. The ShorcutPicture property has no effect
if the shortcut bar is not visible, or there is no Group assigned to the specified shortcut.

The following VB sample assign a custom size picture to the shortcut named "
1 Set 1":

With ListBar1
 .ShortcutBarHeight = 38

https://exontrol.com/eximages.jsp

 .ShortcutPicture("1 Set 1") = "D:\Temp\Icons\misc.gif"
End With

The following screen shot shows the shortcutbar when there is no items expanded:

The following screen shot shows the shortcutbar when there is a single shortcut expanded (
Set 1)

property ExplorerTree.ShortcutPictureHeight as Long
Specifies the height in pixels of the custom size picture being displayed in the shortcut bar.

Type Description

Long A Long expression that indicates the height of the picture
to be stretched to.

By default, the ShortcutPictureHeight property is -1. If the ShortcutPictureHeight property is
-1, the shortcut's picture is not stretched on the height. If the ShortcutPictureHeight property
is positive, it indicates the height in pixels to be stretched to. The ShortcutPictureHeight
property specifies the height of the picture when assigning a custom size picture using the
ShortcutPicture property. The ShortcutPictureWidth property specifies the width in pixels of
the picture to be stretched to. Use the ShortcutBarHeight property to specify the height in
pixels of the control's shortcut bar. The ShowShortcutBar property specifies whether the
control's shortcut bar is visible or hidden. The Shortcut property indicates the HTML caption
of the shortcut that displays the specified group. Groups with the same Shortcut property
are displayed in the same shortcut. The shortcut bar displays the first icon found in the
HTML caption, if a custom size picture is not assigned to the shortcut using the
ShortcutPicture property.

property ExplorerTree.ShortcutPictureWidth as Long
Specifies the width in pixels of the custom size picture being displayed in the shortcut bar.

Type Description

Long A long expression that indicates the width of the picture to
be stretched to.

By default, the ShortcutPictureWidth property is -1. If the ShortcutPictureWidth property is
-1, the shortcut's picture is not stretched on the width. If the ShortcutPictureWidth property
is positive, it indicates the width in pixels to be stretched to. The ShortcutPictureWidth
property specifies the width of the picture when assigning a custom size picture using the
ShortcutPicture property. The ShortcutPictureHeight property specifies the height in pixels
of the picture to be stretched to. The ShowShortcutBar property specifies whether the
control's shortcut bar is visible or hidden. The Shortcut property indicates the HTML caption
of the shortcut that displays the specified group. Groups with the same Shortcut property
are displayed in the same shortcut. The shortcut bar displays the first icon found in the
HTML caption, if a custom size picture is not assigned to the shortcut using the
ShortcutPicture property.

property ExplorerTree.ShortcutResizeBackColor as Color
Retrieves or sets the background color for the shortcut's resize bar.

Type Description

Color

A color expression that indicates the background color for
the slider that resizes the shortcut bar. The last 7 bits in
the high significant byte of the color to indicates the
identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The ShortcutResizeBackColor property defines the visual appearance/background color
slider that resizes the shortcut bar. Use the ShortcutBarBackColor property to specify the
background color of the control's shortcut bar. The visual appearance of the items in the
shortcut bar can be defined using skins. The ShortcutBarSelBackColor property to specify
the visual appearance/background color for the selected icon/picture in the last item of the
shortcut bar. The last item in the shortcut bar displays only icons or custom size pictures for
each shortcut defined using the Shortcut property of the Group object. The
ShortcutBarSelCaptionBackColor property defines the visual appearance/background color
for the selected shortcut, when the full HTML caption is displayed.

property ExplorerTree.ShowFocusRect as Boolean
Specifies a value that indicates whether the control draws the focused item.

Type Description

Boolean A boolean expression that indicates whether the control's
focused item is marked.

Currently the ShowFocusRect property is not available. Use the ShowFocusRect property
to mark the focused item inside a group.

property ExplorerTree.ShowImageList as Boolean
Retrieves or sets a value that indicates whether the image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden.

The ShowImageList control has no effect at runtime. It has effect only at design time. Use
the method to change the control's images list collection, or use ReplaceIcon method to
add, remove, or clear the images collection. Use the Images method to assign a list of
images to the control.

property ExplorerTree.ShowShortcutBar as Boolean
Retrieves or sets a value that indicates whether the image shortcut bar is visible or hidden.

Type Description

Boolean A Boolean expression that indicates whether the control's
shortcut bar is visible or hidden.

By default, the ShowShortcutBar property is False, and that means that the shortcut bar is
hidden. The shortcut bar if visible, it is displayed on the bottom side of the control as seen
in the following screen shot. The Shortcut feature allows you to group the groups in sets, so
you may have sets that contains groups, and groups that contains items. The Shortcut
property indicates the HTML caption of the shortcut that displays the specified group.
Groups with the same Shortcut property are displayed in the same shortcut. The
ShortcutPicture property assigns a custom size picture to a shortcut. Use the
ShortcutPictureWidth and ShortcutPictureHeight properties to indicate the size of the picture
being displayed in the shortcut bar. The ShortcutBarHeight property sets or gets a value
that indicates the height in pixels of the control's shortcut bar. The ShortcutBarBackColor
property indicates the shortcut bar's background color or its visual appearance if using
skins. The ShortcutResizeBackColor property changes the visual appearance of the resizing
bar of the shortcut bar. The SelectShortcut property selects a shortcut. When a shortcut is
selected, the control displays only groups with the Shortcut property as being the
SelectShortcut property.

The red circle marks the control's shortcut bar. Use the AllowResizeShortcutBar property to
specify whether the user may expand the shortcut bar using the mouse. Use the
ExpandShortcutImage property to display a custom icon in the right side expand button.
Use the ExpandShortcutCount property to specify the number of shortcuts that display their

full caption, else the first icon in the caption is displayed or the assigned picture is
displayed. The ExpandShortcut event notifies your application when the user resizes the
control's shortcut bar. The control fires the SelectShortcut event when the user selects a
shortcut, so groups that belongs to the shortcut are displayed.

method ExplorerTree.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property ExplorerTree.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the initialization code.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ExplorerTree.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExplorerTree.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExplorerTree.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ToolTip property to specify a tooltip to be shown when the cursor hovers the group's
caption. Use the CellToolTip property to specify the cell's tooltip. Use the ShowToolTip
method to display a custom tooltip.

property ExplorerTree.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the CellToolTip property to specify the cell's tooltip. Use the ToolTip property
to specify a tooltip to be shown when the cursor hovers the group's caption. Use the
ShowToolTip method to display a custom tooltip. You can use the HTML element to
specify a different font for portions of text in your tooltip.

property ExplorerTree.ToolTipMargin as String
Defines the size of the control's tooltip margins.

Type Description

String

A string expression that defines the horizontal and vertical
margins (separated by comma) of the control's tooltip as
one of the following formats:

"value", where value is a positive number, that
specifies the horizontal and vertical margins, such as
"4" equivalent of "4,4"
"value,", where value is a positive number, that
specifies the horizontal margin, such as "4," equivalent
of "4,0"
",value", where value is a positive number, that
specifies the vertical margin, such as ",4" equivalent
of "0,4"
"horizontal,vertical", where horizontal and vertical are
positive numbers, that specifies the horizontal and
vertical margins, such as "4,4"

By default, the size of the tooltip margin is "4" (horizontal and vertical). For instance,
ToolTipMargin = "8" changes the horizontal and vertical margins are set to 8 pixels.
ToolTipMargin = "8,4" changes the horizontal margin to 8 pixels and the vertical margin to 4
pixels. The ToolTipWidth property specifies a value that indicates the width of the tooltip
window, in pixels. Use the ShowToolTip method to display a custom tooltip. Use the
ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears.

property ExplorerTree.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the CellToolTip property to specify the cell's tooltip. Use the ToolTip
property to specify a tooltip to be shown when the cursor hovers the group's caption. Use
the ShowToolTip method to display a custom tooltip.

property ExplorerTree.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window in pixels.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the CellToolTip property to specify the cell's tooltip. Use
the ToolTip property to specify a tooltip to be shown when the cursor hovers the group's
caption. Use the ShowToolTip method to display a custom tooltip.

property ExplorerTree.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property ExplorerTree.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

For instance, the unicode version of the demo control could be 1.0.2.2.DEMO.UNICODE.

property ExplorerTree.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, and so on,
Background property
and so on.

Group object
The Group object holds a collection of columns and items that can de displayed as a tabular
view or hierarchical view. Use the Add method to Groups collection to add new groups to
the control. Use the Items property to access the group's Items collection. Use the Columns
property to access the group's Columns collection. Use the AddItem method to add new
items to the group. Use the Add method to add new columns to the group.

Name Description

Alignment Retrieves or sets a value that indicates the caption's
alignment.

AllowEdit Gets or sets a value indicating whether edits are allowed.

AllowExpand Specifies whether the group can be expanded or
collapsed.

AllowScroll Enables or disables scrolling the group when it is
expanded or collapsed.

ApplyFilter Applies the filter.
ASCIILower Specifies the set of lower characters.
ASCIIUpper Specifies the set of upper characters.

AutoHeight
Specifies a value that indicates whether the height of the
group's list is computed based on the visible items in the
group.

AutoSearch Enables or disables the group's incremental searching
feature.

BackColor Retrieves or sets the group's background color.

BackColor2 Specifies the color at the ending boundary line of the
gradient group's caption.

BackColorAlternate Specifies the background color used to display alternate
items in the group.

BackColorHeader Specifies the group header's background color.
BackColorLevelHeader Specifies the multiple levels header's background color.

BackColorList Retrieves or sets a value that indicates the background
color of the list when the group is active.

BackColorLock Retrieves or sets a value that indicates the group's
background color for the locked area.

BeginUpdate
Maintains performance when items are added to the group
one at a time. This method prevents the control from

painting until the EndUpdate method is called.

Bold Specifies a value that indicates whether the group's
caption should appear in bold.

BorderColor Specifies the color of group's border.
Caption Specifies the group's caption.
CaptionFormat Specifies how the group's caption is displayed.

CheckImage Retrieves or sets a value that indicates the image used by
cells of checkbox type.

ClearFilter Clears the filter.

ColumnAutoResize
Returns or sets a value indicating whether the group will
automatically size its visible columns to fit on the group's
list width.

ColumnFromPoint Retrieves the column from point.
Columns Retrieves the group's columns collection.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ConditionalFormats Retrieves the conditional formatting collection.

ContinueColumnScroll Retrieves or sets a value indicating whether the group
scrolls columns pixel by pixel.

CountLockedColumns Retrieves or sets a value indicating the number of locked
columns. A locked column is not scrollable.

DataSource Retrieves or sets a value that indicates the data source for
the group.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for group objects.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

EndUpdate Resumes painting the group after painting is suspended by
the BeginUpdate method.

EnsureVisibleColumn Scrolls the group's content to ensure that the column fits
the client area.

Expanded Expands or collapses the group.

ExpandOnDblClick
Specifies whether the item is expanded or collapsed if the
user dbl clicks the item.

ExpandOnKeys
Specifies a value that indicates whether the control
expands or collapses a node when user presses arrow
keys.

ExpandOnSearch Expands items automatically while user types characters
to search for a specific item.

FilterBarBackColor Specifies the background color of the group's filter bar.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the group's list.

FilterBarFont Retrieves or sets the font for group's filter bar.
FilterBarForeColor Specifies the foreground color of the group's filter bar.

FilterBarHeight
Specifies the height of the group's filter bar. If the value is
less than 0, the filter bar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.

FilterInclude Specifies the items being included after the user applies
the filter.

Font Retrieves or sets the group's font.
ForeColor Specifies the group's foreground color.
ForeColorHeader Specifies the group header's foreground color.

ForeColorList Retrieves or sets a value that indicates the foreground
color of the group's list when it is active.

ForeColorLock Retrieves or sets a value that indicates the group's
foreground color for the locked area.

FullRowSelect Enables full-row selection in the group.
GetItems Gets the collection of items into a safe array,
GridLineColor Specifies the group's grid line color.

GridLineStyle Specifies the style for gridlines in the list part of the group.

HasButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.

HasButtonsCustom Specifies the index of icons for +/- signs when the
HasButtons property is exCustom.

HasLines
Enhances the graphic representation of a group's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the appearance of
the group's header.

HeaderHeight Retrieves or sets a value indicating the group's header
height.

HeaderSingleLine Specifies whether the control resizes the columns header
and wraps the captions in single or multiple lines.

HeaderVisible Retrieves or sets a value that indicates whether the the
group's header is visible or hidden.

Height Specifies the height in pixels of the group's list.

HideSelection Returns a value that determines whether selected item
appears highlighted when the group loses the focus.

HotBackColor Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

hWnd Retrieves the group's window handle.
HyperLinkColor Specifies the hyperlink color.
Image Specifies group's image.
ImageAlignment Specifies the icon's alignment.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

IndentGroupLeft Specifies a value that indicates the indent of the group's
list to the left side.

IndentGroupRight Specifies a value that indicates the indent of the group's
list to the right side.

IndentHeaderBottom
Specifies the number of pixels to indent the group's header
from the bottom part.

IndentHeaderLeft Specifies the number of pixels to indent the group's header
from the left part.

IndentHeaderRight Specifies the number of pixels to indent the group's header
from the right part.

IndentHeaderTop Specifies the number of pixels to indent the group's header
from the top part.

Index Retrieves the index of the object into the Groups
collection..

Italic Specifies a value that indicates whether the group's
caption should appear in italic.

ItemFromPoint Retrieves the item from point.
Items Retrieves the group's items collection.

ItemsAllowSizing Retrieves or sets a value that indicates whether a user
can resize items at run-time.

Left Specifies the distance between the left edge of the control
and group's list.

LinesAtRoot Link items at the root of the hierarchy.

MarkSearchColumn Retrieves or sets a value that indicates whether the
searching column is marked or unmarked

Picture Retrieves or sets a graphic to be displayed in the group's
list.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the list's background

PictureDisplayLevelHeader Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's header background.

PictureLevelHeader Retrieves or sets a graphic to be displayed in the control's
header when multiple levels is on.

Position Specifies the group's position.

PutItems Adds an array of integer, long, date, string, double, float,
or variant arrays to the group.

RadioImage Retrieves or sets a value that indicates the image used by
cells of radio type.

RClickSelect Retrieves or sets a value that indicates whether an item is
selected using right mouse button.

Refresh Refreshes the group's content.

RightToLeft
Indicates whether the group should draw right-to-left for
RTL languages.

ScrollBars Returns or sets a value that determines whether the group
has horizontal and/or vertical scroll bars.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.

ScrollBySingleLine

Retrieves or sets a value that indicates whether the
control scrolls the lines to the end. If you have at least a
cell that has SingleLine false, you have to check the
ScrollBySingleLine property.

ScrollFont Retrieves or sets the scrollbar's font.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

SearchColumnIndex Retrieves or sets a value indicating the column's index for
incremental searching feature.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectColumn
Specifies whether the user selects cells only in
SelectColumnIndex column, while FullRowSelect property
is False.

SelectColumnIndex
Retrieves or sets a value that indicates the column's index
where the user can select an item. It has effect only if
FullRowSelect is false.

SelectColumnInner Retrieves or sets a value that indicates the index of the
inner cell that's selected.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

SelLength Returns or sets the number of characters selected.

SelStart
Returns or sets the starting point of text selected;
indicates the position of the insertion point if no text is
selected.

SetFocus Sets the keyboard focus to the group's list window.

Shortcut Specifies the name of the shortcut which displays the
group.

ShowFocusRect Retrieves or sets a value indicating whether the group
draws a thin rectangle arround the focused item.

ShowLockedItems Retrieves or sets a value that indicates whether the
control displays the locked items.

SingleSel Retrieves or sets a value that indicates whether the group
supports single or multiple selection.

SortOnClick
Retrieves or sets a value that indicates whether the group
sorts automatically the data when the user click on
column's caption.

StrikeOut Specifies a value that indicates whether the group's
caption should appear in strikeout.

ToolTip Specifies the group's tooltip.

Top Specifies the distance between the top edge of the control
and group's list.

TreeColumnIndex Retrieves or sets a value indicating the column's index
where the hierarchy will be displayed.

Underline Specifies a value that indicates whether the group's
caption is underlined.

UserData Specifies the group's extra data.
Width Retrieves the width in pixels of the group's list.

property Group.Alignment as AlignmentEnum
Retrieves or sets a value that indicates the caption's alignment.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the group
caption's alignment.

By default, the Alignment property is exCenter. The Alignment property doesn't align items
in the group. Use the Alignment property to align a cell. If you want to align the entire list of
items, you can handle the AddItem event where you can change the item's alignment each
time when a new item is added to group.

property Group.AllowEdit as Boolean

Retrieves or sets a value that indicates whether the editing group is allowed or disabled.

Type Description

Boolean A boolean expression that indicates whether the editing
group is allowed or disabled.

By default, the AllowEdit property is False. If the AllowEdit property is False, the events
BeforeCellEdit and AfterCellEdit are not fired.

property Group.AllowExpand as Boolean
Specifies whether the group can be expanded or collapsed.

Type Description

Boolean A boolean expression that indicates whether the group ca
be expanded or collapsed.

Use the AllowExpand property to disable expanding or collapsing a group. Use the
Expanded property to expand or collapse programmatically a group.

property Group.AllowScroll as Boolean
Enables or disables scrolling the group when it is expanded or collapsed.

Type Description

Boolean A boolean expression that specifies whether the control
uses animation when a group is expanded or collapsed.

By default, the AllowScroll property is True.

method Group.ApplyFilter ()
Applies the filter.

Type Description

The ApplyFilter method updates the group's content once that user sets the filter using the
Filter and FilterType properties. Use the ClearFilter method to clear the group's filter

property Group.ASCIILower as String
Specifies the set of lower characters.

Type Description

String A string expression that indicates the set of lower
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search feature. If you want to make the auto search feature case
sensitive you have to use ASCIIUpper = "" . By default, the ASCIILower property is =
"abcdefghijklmnopqrstuvwxyz�יגהאוחךכטןמלפצע�שבםףתס"

property Group.ASCIIUpper as String
Specifies the set of upper characters.

Type Description

String A string expression that indicates the set of upper
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search feature. If you want to make the auto search feature case
sensitive you have to use ASCIIUpper = "" . By default, the ASCIIUpper property is =
"ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄŔĹÇĘËČĎÎĚÔÖŇŰŮÁÍÓÚŃ"

property Group.AutoHeight as Boolean
Specifies a value that indicates whether the height of the group's list is computed based on
the visible items in the group.

Type Description

Boolean
A boolean expression that that indicates whether the
height of the group's list is computed based on the visible
items in the group.

By default, the AutoHeight property is False. If the AutoHeight property is True, the group
computes the Height property based on the visible items in the group's list. The vertical
scroll bar of the group never shows up if the AutoHeight property is True. The exVertical
flag is removed from the Scrollbars property, if the AutoHeight property is changed at
runtime. You can call the ScrollBars property after setting the AutoHeight property, in case
you need vertical scroll bar

property Group.AutoSearch as Boolean
Enables or disables the auto search feature.

Type Description

Boolean A boolean expression that indicates whether the auto
search feature is enabled or disabled.

By default, the AutoSearch property is True. The auto-search feature is is commonly known
as incremental search. An incremental search begins searching as soon as you type the
first character of the search string. As you type in the search string, the group selects the
item (and highlight the portion of the string that match where the string (as you have typed
it so far) would be found. The group supports 'starts with' or 'contains' incremental search
as described in the AutoSearch property of the Column object.

property Group.BackColor as Color
Retrieves or sets the group's background color.

Type Description

Color

A color expression that indicates the background color of
the group's caption. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the BackColor property to specify the group's caption's background color. Use the
BackColorList property to specify the background color for group's list. Use the
BackColorGroup property to specify a default background color for groups. Use the group's
Picture property to assign a picture the group's list.

property Group.BackColor2 as Color
Specifies the color at the ending boundary line of the gradient group's caption.

Type Description

Color A color expression that specifies the color at the ending
boundary line of the gradient group's caption.

Use the BackColor and BackColor2 properties to display the group's caption using a
gradient color.

property Group.BackColorAlternate as Color
Specifies the background color used to display alternate items in the group.

Type Description

Color A color expression that indicates the alternate background
color.

By default, the group's BackColorAlternate property is zero. The group ignores the
BackColorAlternate property if it is 0 (zero).

property Group.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color A color expression that indicates the background color for
the group's header.

Use the BackColorHeader and ForeColorHeader properties to customize the group's
header. Use the HeaderVisible property to hide the group's header.

property Group.BackColorLevelHeader as Color
Specifies the multiple levels header's background color.

Type Description

Color A color expression that indicates the background color of
the group's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the group's header bar. Use the BackColorLevelHeader property to specify the background
color of the group's header bar when multiple levels are displayed. Use the LevelKey
property to display the group's header bar using multiple levels. If the control displays the
header bar using multiple levels the HeaderHeight property gets the height in pixels of a
single level in the header bar. The group's header displays multiple levels if there are two or
more neighbor columns with the same non empty level key.

property Group.BackColorList as Color
Retrieves or sets a value that indicates the background color of the list when the group is
active.

Type Description

Color A color expression that indicates the background color of
the group's list.

The BackColorList property has effect only when the group is expanded. Use the BackColor
property to specify the background color for the group's caption. Use the BorderColor
property to specify the color of the group's list border. If you have not specified a the
background color for the group's list using the BackColorList property, the control's
BackColor property automatically is taken.

property Group.BackColorLock as Color

Retrieves or sets a value that indicates the group's background color for the locked area.

Type Description

Color A boolean expression that indicates the group's
background color for the locked area.

The group may contains two kind of columns: locked and unlocked. The locked category
contains all the columns that are fixed to the left area of the client area. These columns
cannot be scrolled horizontally. Use the CountLockedColumns to specify the number of
locked columns. The unlocked contains the columns that can be scrolled horizontally. To
change the background color of the group's unlocked area use BackColor property.

method Group.BeginUpdate ()

Maintains performance when items are added to the group one at a time.

Type Description

This method prevents the group from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the group when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

The following sample shows how to use the BeginUpdate and EndUpdate methods:

With ExplorerTree1.Groups.Add("Group 1")
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
 .BeginUpdate
 .ColumnAutoResize = False
 .HeaderVisible = True
 ' By default, the group adds a default colum, so we remove it first
 .Columns.Clear
 For Each f In rs.Fields
 .Columns.Add f.Name
 Next
 .PutItems rs.GetRows()
 .EndUpdate
End With

property Group.Bold as Boolean
Specifies a value that indicates whether the group's caption should appear in bold.

Type Description

Boolean A boolean expression that specifies whether the group's
caption should appear in bold.

Use the Bold, Italic, Underline and StrikeOut properties to customize the caption's font
attributes.

property Group.BorderColor as Color
Specifies the color of group's border.

Type Description

Color A color expression that specifies the color of the group's
list border.

The BorderColor property changes the color for the group's list border. The BorderColor
property has no effect if you have not specified the group's list background color using the
BackColorList property.

The following sample shows how to show the border of the group's list:

With ExplorerTree1
 With .Groups.Add("Group")
 .BackColorList = vbWhite
 .BorderColor = vbBlack
 .Expanded = True
 End With
End With

property Group.Caption as String
Specifies the group's caption.

Type Description
String A string expression that indicates the group's caption.

You can use the Add method to specify the group's caption, when the group is added to
groups collection. Use the CaptionFormat property to allow built-in HTML tags in the group's
caption. The Caption property supports the following built-in HTML tags, if the
CaptionFormat property is exHTML

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show

about:blank

lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a

known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Group.CaptionFormat as CaptionFormatEnum
Specifies how the group's caption is displayed.

Type Description

CaptionFormatEnum A CaptionFormatEnum expression that indicates whether
the group's caption uses built-in HTML tags.

By default, the CaptionFormat property is exText. Use the CaptionFormat property to allow
built-in HTML tags to the group's caption. Use the Caption property to access the group's
caption.

property Group.CheckImage(State as Long) as Long
Retrieves or sets a value that indicates the image used by cells of checkbox type.

Type Description

State as Long
A long expression that indicates the check's state: 0
means unchecked, 1 means checked, and 2 means partial
checked.

Long A long expression that indicates the index of image used to
paint the cells of check box types.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.

method Group.ClearFilter ()
Clears the filter.

Type Description

The method clears the Filter and FilterType properties for all columns in the control, excepts
for exNumeric and exCheck values where only the Filter property is set on empty. The
ApplyFilter method is automatically called when ClearFilter method is invoked. Use the
FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption property to
specify the caption in the control's filter bar. Use the Description property to change
predefined strings in the control's filter bar.

property Group.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the group will automatically size its visible
columns to fit on the group's client width.

Type Description

Boolean
A boolean expression indicating whether the group will
automatically size its visible columns to fit on the group's
client width.

Use the ColumnAutoResize property to fit all your columns in the group's client area. By
default, the ColumnAutoResize property is True. Use the HeaderVisible property to show
the group's header bar.

property Group.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the column from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long

A long expression that indicates the column's index, or -1 if
there is no column at the point. The property gets a
negative value less or equal with 256, if the point is in the
area between columns where the user can resize the
column.

Use the ColumnFromPoint property to access the column from the point specified by the
{X,Y} coordinates. The ColumnFromPoint property gets the index of the column when the
cursor hovers the control's header bar. The X and Y coordinates are expressed in client
coordinates, so a conversion must be done in case your coordinates are relative to the
screen or to other window. If the X parameter is -1 and Y parameter is -1 the
ColumnFromPoint property determines the handle of the item from the cursor. Use
the GroupFromPoint property to get the group's caption from the cursor. Use the
GroupListFromPoint property to get the group's list from cursor. Use the ItemFromPoint
property to get the cell or item from the cursor.

The following VB sample prints the caption of the column over the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Dim g As EXPLORERTREELibCtl.Group
 With ExplorerTree1
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (g Is Nothing) Then
 With g
 Dim c As Long
 c = .ColumnFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If (c >= 0) Then
 With .Columns(c)

 Debug.Print .Caption
 End With
 End If
 End With
 End If
 End With
End Sub

The following VFP sample prints the caption of the column over the cursor:

with thisform.Olecontrol1
 local g
 g = .GroupListFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 local c
 c = .ColumnFromPoint(-1,-1)
 If c >= 0 Then
 with .Columns.Item(c)
 wait window .Caption nowait
 endwith
 EndIf
 endwith
 EndIf
endwith

property Group.Columns as Columns

Retrieves the group's columns collection.

Type Description

Columns A Columns object that holds the group's columns
collection.

Use the Columns property to access the group's Columns collection. Use the Columns
collection to add, remove or change columns. By default, the group adds a default column.
Adding a new item is not allowed if the group has no columns.

property Group.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. A column can be resized only if the
AllowSizing property is True. Use the DrawGridLines property to show or hide the control's
grid lines. Use the HeaderVisible property to show or hide the control's header bar. The
HeaderAppearance property specifies the appearance of the column in the control's header
bar.

property Group.ConditionalFormats as ConditionalFormats
Retrieves the conditional formatting collection.

Type Description

ConditionalFormats A ConditionalFormats object that indicates the control's
ConditionalFormats collection.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on a formula. Use the Refresh
method to refresh the control, if a change occurs in the conditional format collection. Use
the CellCaption property indicates the cell's caption or value.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to a column

property Group.ContinueColumnScroll as Boolean

Retrieves or sets a value indicating whether the group will automatically scroll the visible
columns by pixel or by column width.

Type Description

Boolean
A boolean expression indicating whether the group will
automatically scroll the visible columns by pixel or by
column width.

Bu default, the columns are scrolled pixel by pixel. Use the ContinueColumnScroll to scroll
horizontally the group column by column.

property Group.CountLockedColumns as Long

Retrieves or sets a value indicating the number of locked columns. A locked column is not
scrollable.

Type Description

Long A long expression indicating the number of locked
columns.

The group may contains two kind of columns: locked and unlocked. The locked category
contains all the columns that are fixed to the left area of the client area. These columns
cannot be scrolled horizontally. Use the CountLockedColumns to specify the number of
locked columns. The unlocked contains the columns that can be scrolled horizontally. Use
the BackColorLock property to change the group's background color for the locked area.
Use the LockedItemCount property to lock or unlock items to the top or bottom side of the
group. Use the MergeCells method to combine two or more cells in a single cell.

property Group.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description

Object An ADO.Recordset or DAO object used bind the group to
a data source.

The DataSource property uses the ADO/DAO record set objects. Use the PutItems to load
an array to the group. The following sample binds an ADO recordset to an ExplorerTree
group:

With ExplorerTree1.Groups.Add("Group 1")
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
 .BeginUpdate
 .ColumnAutoResize = False
 .HeaderVisible = True
 Set .DataSource = rs
 .EndUpdate
End With

The DataSource clears the columns collection, and fill the record set into the group, like a
list. Use SetParent method to make your list a hierarchy.

property Group.DefaultItemHeight as Long

Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression indicates the default item height.

Changing the property fails if the group contains already items. You can change the
DefaultItemHeight property at design time, or at runtime, before adding any new items to
Items collection.

property Group.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for group objects.

Type Description
Type as
DescriptionTypeEnum

A DescriptionTypeEnum expression that indicates the part
being changed.

String A string value that indicates the part's description.

Use the Description property to customize the captions for group filter bar window. For
instance, the Description(exFilterAll) = "(Include All)" changes the "(All)" item description in
the filter bar window.

property Group.DrawGridLines as GridLinesEnum

Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the DrawGridLines property to add grid lines to the current view. Use the GridLineColor
property to specify the color for grid lines.

method Group.EndUpdate ()

Resumes painting the group after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the group when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. The following
sample shows how to use the BeginUpdate and EndUpdate methods:

With ExplorerTree1.Groups.Add("Group 1")
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
 .BeginUpdate
 .ColumnAutoResize = False
 .HeaderVisible = True
 ' By default, the group adds a default colum, so we remove it first
 .Columns.Clear
 For Each f In rs.Fields
 .Columns.Add f.Name
 Next
 .PutItems rs.GetRows()
 .EndUpdate
End With

method Group.EnsureVisibleColumn (Column as Variant)

Scrolls the group's content to ensure that the column fits the group's client area.

Type Description

Column as Variant
A long expression that indicates the index of the column, a
string expression that indicates the column's caption or the
column's key.

The EnsureVisibleColumn method ensures that the given column fits the group's client area.
The EnsureVisibleColumn method has no effect if the column is hidded. Use the Visible
property to show or hide a column. Use the Position property to change the column's
position. Use the EnsureVisibleItem method to ensure that an item fits the group's client
area.

property Group.Expanded as Boolean
Expands or collapses the group.

Type Description

Boolean A boolean expression that indicates whether the group is
expanded or collapsed.

Use the Expanded property to expand or collapse the group. The control fires
BeforeExpandItem event before expanding or collapsing the group. The AfterExpandGroup
event is fired after user expands a group. The Height property specify the height of the
group's list when it is expanded.

property Group.ExpandOnDblClick as Boolean
Specifies whether the item is expanded or collapsed if the user dbl clicks the item.

Type Description

Boolean A boolean expression that indicates whether an item is
expanded on dbl click.

Use the ExpandOnDblClick property to disable expanding or collapsing items when user dbl
clicks an item. By default, the ExpandOnDblClick property is True. Use the ExpandOnKeys
property to specify whether the control expands or collapses a node when user presses
arrow keys. The ExpandOnSearch property specifies whether the control expands nodes
when incremental searching is on (AutoSearch property is different than 0) and user types
characters when the control has the focus.

property Group.ExpandOnKeys as Boolean
Specifies a value that indicates whether the control expands or collapses a node when user
presses arrow keys.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user presses arrow
keys.

Use the ExpandOnKeys property to specify whether the control expands or collapses a
node when user presses arrow keys. By default, the ExpandOnKeys property is True. Use
the ExpandOnDblClick property to specify whether the control expands or collapses a node
when user dbl clicks a node. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. If the ExpandOnKeys property is
False, the user can expand or collapse the items using the + or - keys on the numeric
keypad.

property Group.ExpandOnSearch as Boolean
Expands items automatically while user types characters to search for a specific item.

Type Description

Boolean
A boolean expression that indicates whether the control
expands items while user types characters to search for
items.

Use the ExpandOnSearch property to expand items while user types characters to search
for items using incremental search feature. Use the AutoSearch property to enable or
disable incremental searching feature. Use the AutoSearch property of the Column object to
specify the type of incremental searching being used within the column. The
ExpandOnSearch property has no effect when the AutoSearch property is False.

property Group.FilterBarBackColor as Color
Specifies the background color of the group's filter bar.

Type Description

Color A color expression that defines the background color for
description of the group's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for group's filter bar.

property Group.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string expression that indicates the caption in the filter
bar.

Use the FilterBarCaption property to change the caption of the group's filter bar.

property Group.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
group's list.

Type Description

Double A double expression that indicates the height of the drop
down filter window.

Use the FilterBarDropDownHeight property to specify the height of the drop down window
filter window. Use the DisplayFilterButton property to display a filter button to the column's
header. By default, the FilterBarDropDownHeight property is 0.5. It means, the height of the
drop down filter window is half of the height of the group's list.

If the FilterBarDropDownHeight property is negative, the absolute value of the
FilterBarDropDownHeight property indicates the height of the drop down filter window in
pixels. In this case, the height of the drop down filter window is not proportionally with the
height of the group's list area. For instance, the following sample specifies the height of the
drop down filter window being 100 pixels:

With Group
 .FilterBarDropDownHeight = -100
End With

If the FilterBarDropDownHeight property is greater than 0, it indicates the height of the drop
down filter window proportionally with the height of the group's height list. For instance, the
following sample specifies the height of the drop down filter window being the same with
the height of the group's list area:

With Group
 .FilterBarDropDownHeight = 1
End With

The drop down filter window always include an item.

property Group.FilterBarFont as IFontDisp
Retrieves or sets the font for group's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for group's filter

Use the FilterBarFont property to specify the font for the group's filter bar.

property Group.FilterBarForeColor as Color
Specifies the foreground color of the group's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the group's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the group's filter bar.

property Group.FilterBarHeight as Long
Specifies the height of the group's filter bar. If the value is less than 0, the filter bar is
automatically resized to fit its description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the group's filter description. If the FilterBarHeight property is
less than 0 the group automatically updates the height of the filter's description to fit in the
group's client area. If the FilterBarHeight property is zero the filter's description is hidden. If
the FilterBarHeight property is greater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the group's filter.

property Group.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The DisplayFilterButton property specifies whether the column's header displays
a filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied. The FilterBarFont property specifies the font to be
used in the filter bar. The FilterBarBackColor property specifies the background color or the
visual aspect of the control's filter bar. The FilterBarForeColor property specifies the
foreground color or the control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property Group.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property Group.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

property Group.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The DisplayFilterButton property specifies whether the column's header displays a
filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may

include wild characters as follows:
'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property Group.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the filter prompt.

Type Description

FilterBarVisibleEnum

A FilterBarVisibleEnum expression that specifies whether
the filter prompt field is visible or hidden. The filter prompt
is shown in the bottom part of the control, where the filter
bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden(0). The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The DisplayFilterButton property specifies whether the
column's header displays a filter button. The VisibleItemCount property retrieves the
number of visible items in the list. The control fires the FilterChanging event just before
applying the filter, and FilterChange once the list gets filtered. Use the FilterBarCaption
property to change the caption in the filter bar once a new filter is applied.

The following screen show shows the filter prompt (FilterBarPromptVisible property is True
):

The following screen show shows the list once the user types "london":

property Group.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are treeed in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not treeed
in the FilterCriteria property, and the user filters values by that column, the AND operator is
used by default. For instance, let's say that we have three columns, and FilterCriteria
property is "%0 or %1". If the user filter for all columns, the filter clause is equivalent with (
%0 or %1) and %2, and it means all that match the third column, and is in the first or the
second column.

Use the Filter and FilterType properties to define a filter for a column. The ApplyFilter
method should be called to update the control's content after changing the Filter or
FilterType property, in code! Use the DisplayFilterButton property to display a drop down
button to filter by a column.

property Group.FilterInclude as FilterIncludeEnum
Specifies the items being included after the user applies the filter.

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds. Use the FilterInclude
property to specify whether the child items should be included to the list when the user
applies the filter. Use the Filter property and FilterType property to specify the column's
filter. Use the ApplyFilter to apply the filter at runtime. Use the ClearFilter method to clear
the control's filter.

Let's say that we have the following hierarchy:

and the Filter property is "A*", FilterType property is FilterPattern.

If the FilterInclude property is exItemsWithoutChilds, the filtered list looks like follows:

If the FilterInclude property is exItemsWithChilds, the filtered list looks like follows:

If the FilterInclude property is exRootsWithoutChilds, the filtered list looks like follows:

If the FilterInclude property is exRootsWithChilds, the filtered list looks like follows:

property Group.Font as IFontDisp

Retrieves or sets the group's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the group's font . Use the Font property to change the
control's font.

property Group.ForeColor as Color
Specifies the group's foreground color.

Type Description

Color A color expression that indicates the group's caption
foreground color.

Use the ForeColor property to specify the group's caption foreground color. Use the
ForeColorGroup property to specify the default foreground color. Use the ForeColorList
property to specify the foreground color of the group's list.

property Group.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color for
group's header.

Use the BackColorHeader and ForeColorHeader properties to customize the group's
header bar.

property Group.ForeColorList as Color
Retrieves or sets a value that indicates the foreground color of the group's list when it is
active.

Type Description

Color A color expression that indicates the group's list's
foreground color.

Use the ForeColorList property to specify the foreground color for the group's list. Use the
ForeColor property to specify the foreground color of the group's caption. If you have not
specified a foreground color for the group's list the control's ForeColor property specify the
foreground color of the group's list.

property Group.ForeColorLock as Color

Retrieves or sets a value that indicates the group's foreground color for the locked area.

Type Description

Color A color expression that indicates the group's foreground
color for the locked area.

The ExplorerTree group can group the group columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the group's locked area use
BackColorLock property.

property Group.FullRowSelect as Boolean

Enables full-row selection in the group.

Type Description

Boolean A boolean expression that indicates whether the group
support full-row selection.

For instance, you can set the FullRowSelect to False, when your list acts like a simple tree
control. The column pointed by the SelectColumnIndex specifies the column where the
selected cell is marked.

method Group.GetItems (Options as Variant)
Gets the collection of items into a safe array,

Type Description

Options as Variant

Specifies a long expression as follows:

if 0, the result is a two-dimensional array with cell's
captions. The list includes the collapsed items, and
the items are included as they are displayed (sorted,
filtered). This option exports the captions of cells.
This option exports the captions of the cells (
CellCaption property)
if 1, the result the one-dimensional array of handles of
items in the control as they are displayed (sorted,
filtered). The list does not include the collapsed
items. For instance, the first element in the array
indicates the handle of the first item in the control,
which can be different that FirstVisibleItem result,
even if the control is vertically scrolled. This option
exports the handles of the items. For instance, you
can use the ItemToIndex property to get the index of
the item based on its handle.
else if other, and the number of columns is 1, the
result is a one-dimensional array that includes the
items and its child items as they are displayed (
sorted, filtered). In this case, the array may contains
other arrays that specifies the child items. The list
includes the collapsed items, and the items are
included as they are displayed (sorted, filtered). This
option exports the captions of the cells (CellCaption
property)

If missing, the Options parameter is 0. If the control
displays no items, the result is an empty object
(VT_EMPTY).

Return Description

Variant

A safe array that holds the items in the control. If the
control has a single column, the GetItems returns a single
dimension array (object[]), else The safe array being
returned has two dimensions (object[,]). The first

dimension holds the collection of columns, and the second
holds the cells.

The GetItems method to get a safe array that holds the items in the control. The GetItems
method gets the items as they are displayed, sorted and filtered. If the Options parameter
is 0, the GetItems method collect the child items as well, no matter if the parent item is
collapsed or expanded. Use the PutItems method to load an array to the group. The
method returns nothing if the group has no columns or items. Use the Items property to
access the items collection. A safe array that holds the items in the control. If the control
has a single column, the GetItems returns a single dimension array (object[]), else The safe
array being returned has two dimensions (object[,]). The first dimension holds the collection
of columns, and the second holds the cells.

/NET Assembly:

The following C# sample converts the returned value to a object[] when the control contains
a single column:

 object[] Items = (object[])group.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 object[,] Items = (object[,])group.GetItems()

The following VB.NET sample converts the returned value to a Object() when the control
contains a single column:

 Dim Items As Object() = group.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 Dim Items As Object(,) = group.GetItems()

/COM version:

The following sample gets the items from a group and put them to the second one:

With Group2
 .BeginUpdate
 .Columns.Clear
 Dim c As EXPLORERTREELibCtl.Column
 For Each c In Group1.Columns
 .Columns.Add c.Caption
 Next

 .PutItems Group1.GetItems
 .EndUpdate
End With

property Group.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines.

property Group.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines. Use the GridLineColor
property to specify the color for grid lines. Use the LinesAtRoot property specifies whether
the control links the root items of the control. Use the HasLines property to specify whether
the control draws the link between child items to their corresponding parent item.

The following VB sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = GridLinesStyleEnum.exGridLinesHDash Or
GridLinesStyleEnum.exGridLinesVSolid

The following VB/NET sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash Or
exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid

The following C# sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash |
exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid;

The following Delphi sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle := Integer(EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash) Or
Integer(EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid);

The following VFP sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = 36

property Group.HasButtons as ExpandButtonEnum

Adds a button to the left side of each parent item.

Type Description

ExpandButtonEnum An ExpandButtonEnum expression that indicates whether
the left side button of each parent item is visible or hidden.

The HasButtons property has effect only if the data is displayed as a tree. Use the
InsertItem property to insert child items. The user can click the button to expand or collapse
the child items as an alternative to double-clicking the parent item. Use ExpandItem
property of Items to programmatically expand/collapse items. Use the HasButtonsCaption
property to assign custom icons for +/- buttons.

property Group.HasButtonsCustom(Expanded as Boolean) as Long
Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

Type Description

Expanded as Boolean A boolean expression that indicates the sign being
changed.

Long A long expression that indicates the icon being used for +/-
signs on the parent items.

Use the HasButtonsCustom property to assign custom icons to the +/- signs on the parent
items. The HasButtonsCustom property has effect only if the HasButtons property is
exCustom. Use the Images, ReplaceIcon methods to add new icons to the control.

The following sample assigns different icons for +/- buttons:

With ExplorerTree1
 .BeginUpdate

 .BackColor = vbWhite
 .ForeColor = vbBlack
 .BackColorGroup2 = SystemColorConstants.vb3DShadow

 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .Images
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA=="

 With .Groups.Add("Group")
 .BeginUpdate
 .Expanded = True
 .FullRowSelect = False
 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1
 .HasButtonsCustom(True) = 2
 .LinesAtRoot = exLinesAtRoot
 Dim h As HITEM

 With .Items
 h = .AddItem("Item 1")
 .CellImage(h, 0) = 3
 .CellCaptionFormat(h, 0) = exHTML
 .InsertItem .InsertItem(h, , "SubItem 1"), , "SubItem 1.1"
 .InsertItem h, , "SubItem 2"
 End With
 .EndUpdate
 End With

 .EndUpdate
End With

Running the sample you get:

property Group.HasLines as HierarchyLineEnum

Enhances the graphic representation of a tree group's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

HierarchyLineEnum An HierarchyLinesEnum expression that indicates whether
the group uses the lines to link the items of the hierarchy.

Use the HasLines property to hide the hierarchy lines. Use the LinesAtRoot property to
allow group displays a line that links that root items of the group. Use the InsertItem method
to insert child items to the group. Use HasButtons property to hide the buttons displayed at
the left of each parent item. Use the DrawGridLines property to display grid lines.

property Group.HeaderAppearance as AppearanceEnum

Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
header's appearance.

Use the HeaderAppearance property to change the appearance of the group's header bar.
Use the HeaderVisible property to hide the group's header bar.

property Group.HeaderHeight as Long
Retrieves or sets a value indicating the group's header height.

Type Description

Long A long expression that indicates the height of the group's
header bar.

Use the HeaderHeight property to change the height of the group's header bar. Use the
HeaderVisible property to show the group's header bar. If the HeaderSingleLine property is
False, the HeaderHeight property specifies the maximum height of the control's header
when the user resizes the columns.

For instance, the following sample displays the group's header bar using multiple lines:

With ExplorerTree1.Groups.Add("Group 2")
 .BeginUpdate
 .HeaderVisible = True
 .HeaderHeight = 32
 With .Columns(0)
 .HTMLCaption = "Line1
Line2"
 .Width = 128
 End With
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 .Width = 128
 End With
 .EndUpdate
End With

property Group.HeaderSingleLine as Boolean
Specifies whether the control resizes the columns header and wraps the captions in single
or multiple lines.

Type Description

Boolean A boolean expression that specifies whether the header
displays single or multiple lines.

By defauly, the HeaderSingleLine property is True. If the HeaderSingleLine property is False
the control breaks the column's caption as soon as the user resizes the column. In this
case the HeaderHeight property specifies the maximum height of the control's
header. The initial height is computed based on the control's Font property. The Caption
property specifies the caption of the column being displayed in the control's header. The
HTMLCaption property specifies the HTML caption of the column being displayed in the
column's header. Use the LevelKey property to display the control's header on multiple
levels.

The following screen show shows the control's header while it displays a multiple lines (
HeaderSingleLine = False):

The following screen shot shows the control's header on multiple levels using the LevelKey
property:

The following screen show shows the control's header while it displays a single line (
HeaderSingleLine = True):

property Group.HeaderVisible as Boolean

Retrieves or sets a value that indicates whether the the group's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the the
group's header is visible or hidden.

By default, the group's header bar is hidden. Use the HeaderVisible property to show the
group's header bar. Use the ColumnAutoResize property to fit all your columns in the
group's client area. Use the HeaderAppearance property to change the header bar's
appearance.

property Group.Height as Long
Retrieves the height in pixels of the group's list.

Type Description

Long A long expression that indicates the height in pixels of the
group's list.

The Left, Top, Width and Height properties determines the location of the group's list in
client coordinates. The AutoHeight property specifies whether the Height property is
computed based on the items in the group's list. The BorderWidth and BorderHeight
property specify the size of the control's border.

Use the LayoutChanged event and Left, Top, Width and Height to determine the coordinates
of the group's list on the fly.

property Group.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a group
loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selected
item appears highlighted when a group loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form or a dialog box has the focus.

property Group.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color A color expression that specifies the hot-tracking
background color

By default, the HotBackColor property is 0, which indicates no effect. The HotBackColor
property specifies hot-tracking background color. The HotForeColor property defines the
hot-tracking foreground color.

property Group.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that defines the hot-tracking foreground
color.

By default, the HotForeColor property is 0, which indicates no effect. The HotForeColor
property defines the hot-tracking foreground color. The HotBackColor property specifies
hot-tracking background color.

property Group.hWnd as Long

Retrieves the group's window handle.

Type Description

Long A long expression that indicates the group's window
handle.

Use the hWnd property to get the handle of the group's list window. Use the
ItemWindowHost property to get the handle of the container window that host an item's
ActiveX Control. Use the hWnd property to get the handle of the control's window.

property Group.HyperLinkColor as Color

Specifies the hyperlink color.

Type Description
Color A color expression that specifies the hyperlink color.

Use the HyperLinkColor property to specify the color used when the cursor is over the
hyperlink cells. A hyperlink cell has the CellHyperLink property true.

property Group.Image as Variant
Specifies the index of the group's icon.

Type Description

Variant

A long expression that indicates the index of icon being
used, a string expression that indicates the base64
encoded string that holds a picture object, a Picture
object. Use the eximages tool to save your picture as
base64 encoded format.

Use the Image property to assign an icon or a picture to the group. Use the
ImageAlignment property to align the image inside the group's header. Use the Images and
ReplaceIcon methods to update the images list collection, at runtime. Use the HTMLPicture
property to add custom-sized pictures to your caption.

The following sample adds a group that displays a custom size picture using BASE 64
encoding:

With ExplorerTree1.Groups
 With .Add("new")
 Dim s As String
 s =
"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMw"

 s = s +
"JE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

 .Image = s
 End With
End With

https://exontrol.com/eximages.jsp

property Group.ImageAlignment as AlignmentEnum
Specifies the icon's alignment.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the image in the group's caption.

By default, the ImageAlignment property is exLeft. Use the ImageAlignment property to
align the image inside the group's caption. Use the Image property to assign an icon to the
group's caption. The ImageAlignment property has no effect if the group's caption displays
no image.

property Group.Indent as Long

Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items.

Use Indent = 0 to ignore the amount, in pixels, that child items are indented relative to their
parent items. Use the IndentGroupLeft and IndentGroupRight properties to indent the
group's list to the left or to the right side. Use the IndentHeaderLeft property to indent the
group's header from left side. Use the IndentHeaderRight property to indent the group's
header from right side. Use the IndentHeaderTop property to indent the group's header
from top side. Use the IndentHeaderBottom property to indent the group's header from bott

property Group.IndentGroupLeft as Long
Specifies a value that indicates the indent of the group's list to the left side.

Type Description

Long A long expression that indicates the indent of the group's
list to the left side in pixels.

The IndentGroupLeft property is 0. Use the IndentGroupRight property to specify the indent
of the group's list to the right side. The group's list client area is computed based on the
BorderWidth, BorderHeight, IndentGroupLeft, IndentGroupRight and BorderGroupHeight
properties. Use the Left, Top, Width and Height to determine the client coordinates of the
group's list. Use the IndentHeaderLeft property to indent the group's header from left side.
Use the IndentHeaderRight property to indent the group's header from right side. Use the
IndentHeaderTop property to indent the group's header from top side. Use the
IndentHeaderBottom property to indent the group's header from bottom side.

property Group.IndentGroupRight as Long
Specifies a value that indicates the indent of the group's list to the right side.

Type Description

Long A long expression that indicates the indent of the group's
list to the right side in pixels.

The IndentGroupRight property is 0. Use the IndentGroupLeft property to specify the indent
of the group's list to the left side. The group's list client area is computed based on the
BorderWidth, BorderHeight, IndentGroupLeft, IndentGroupRight and BorderGroupHeight
properties. Use the Left, Top, Width and Height to determine the client coordinates of the
group's list. Use the IndentHeaderLeft property to indent the group's header from left side.
Use the IndentHeaderRight property to indent the group's header from right side. Use the
IndentHeaderTop property to indent the group's header from top side. Use the
IndentHeaderBottom property to indent the group's header from bott

property Group.IndentHeaderBottom as Long
Specifies the number of pixels to indent the group's header from the bottom part.

Type Description

Long A long expression that specifies the number of pixels to
indent the groups' header from the bottom side.

By default, the IndentHeaderTop property is 0. The IndentHeaderLeft property has effect
only for group's caption, image and it does not affect the group's header background
appearance. Use the BackColorGroup property to define a new background appearance
using EBN files. Use the CP option (copy option) of the EBN files to define the way EBN
file is arranged on the object. Use the IndentHeaderLeft property to indent the group's
header from left side. Use the IndentHeaderRight property to indent the group's header
from right side. Use the IndentHeaderTop property to indent the group's header from top
side. Use the IndentHeaderBottom property to indent the group's header from bottom side.
Use the Indent property to indent the child items being displayed in the group's list. Use the
IndentGroupLeft and IndentGroupRight properties to specify the left and right indentation
of the group's list.

The following screen shot shows the captions being displayed when indent properties has
been used:

The following screen shot shows the captions being displayed when indent properties has
not been used:

property Group.IndentHeaderLeft as Long
Specifies the number of pixels to indent the group's header from the left part.

Type Description

Long A long expression that specifies the number of pixels to
indent the groups' header from the left side.

By default, the IndentHeaderLeft property is 0. The IndentHeaderLeft property has effect
only for group's caption, image and it does not affect the group's header background
appearance. Use the BackColorGroup property to define a new background appearance
using EBN files. Use the CP option (copy option) of the EBN files to define the way EBN
file is arranged on the object. Use the IndentHeaderLeft property to indent the group's
header from left side. Use the IndentHeaderRight property to indent the group's header
from right side. Use the IndentHeaderTop property to indent the group's header from top
side. Use the IndentHeaderBottom property to indent the group's header from bottom side.
Use the Indent property to indent the child items being displayed in the group's list. Use the
IndentGroupLeft and IndentGroupRight properties to specify the left and right indentation
of the group's list.

The following screen shot shows the captions being displayed when indent properties has
been used:

The following screen shot shows the captions being displayed when indent properties has
not been used:

The following VFP sample changes the visual appearance for the groups:

with thisform.ExplorerTree1

 .BeginUpdate
 with .VisualAppearance
 .Add(1,"c:\images\group.ebn")
 .Add(2,"CP:1 0 0 -20 0")
 endwith
 .BackColorGroup = 0x2000000
 .GroupHeight = 48
 with .Groups
 with .Add("Group 1")
 .Alignment = 0
 .IndentHeaderLeft = 12
 .IndentHeaderTop = -8
 endwith
 with .Add("Group 2")
 .Alignment = 0
 .IndentHeaderLeft = 12
 .IndentHeaderTop = -8
 endwith
 with .Add("Group 3")
 .Alignment = 0
 .IndentHeaderLeft = 12
 .IndentHeaderTop = -8
 endwith
 endwith
 .EndUpdate
endwith

The following Delphi sample changes the visual appearance for the groups:

with AxExplorerTree1 do
begin
 BeginUpdate();
 with VisualAppearance do
 begin
 Add(1,'c:\images\group.ebn');
 Add(2,'CP:1 0 0 -20 0');
 end;

 (GetOcx() as EXPLORERTREELib.ExplorerTree).BackColorGroup := $2000000;
 GroupHeight := 48;
 with Groups do
 begin
 with Add('Group 1') do
 begin
 Alignment := EXPLORERTREELib.AlignmentEnum.LeftAlignment;
 IndentHeaderLeft := 12;
 IndentHeaderTop := -8;
 end;
 with Add('Group 2') do
 begin
 Alignment := EXPLORERTREELib.AlignmentEnum.LeftAlignment;
 IndentHeaderLeft := 12;
 IndentHeaderTop := -8;
 end;
 with Add('Group 3') do
 begin
 Alignment := EXPLORERTREELib.AlignmentEnum.LeftAlignment;
 IndentHeaderLeft := 12;
 IndentHeaderTop := -8;
 end;
 end;
 EndUpdate();
end

Here's the Template that generates the screens:

BeginUpdate
VisualAppearance
{
 Add(1,"c:/images/group.ebn")
 Add(2, "CP:1 0 0 -20 0")
}

BackColorGroup = 33554432
GroupHeight = 48

Groups
{
 "Group 1"
 {
 Alignment = 0
 IndentHeaderLeft = 12
 IndentHeaderTop = -8
 }
 "Group 2"
 {
 Alignment = 0
 IndentHeaderLeft = 12
 IndentHeaderTop = -8
 }
 "Group 3"
 {
 Alignment = 0
 IndentHeaderLeft = 12
 IndentHeaderTop = -8
 }
}
EndUpdate

You can find the EBN being used here.

property Group.IndentHeaderRight as Long
Specifies the number of pixels to indent the group's header from the right part.

Type Description

Long A long expression that specifies the number of pixels to
indent the groups' header from the right side.

By default, the IndentHeaderRight property is 0. The IndentHeaderLeft property has effect
only for group's caption, image and it does not affect the group's header background
appearance. Use the BackColorGroup property to define a new background appearance
using EBN files. Use the CP option (copy option) of the EBN files to define the way EBN
file is arranged on the object. Use the IndentHeaderLeft property to indent the group's
header from left side. Use the IndentHeaderRight property to indent the group's header
from right side. Use the IndentHeaderTop property to indent the group's header from top
side. Use the IndentHeaderBottom property to indent the group's header from bottom side.
Use the Indent property to indent the child items being displayed in the group's list. Use the
IndentGroupLeft and IndentGroupRight properties to specify the left and right indentation
of the group's list.

The following screen shot shows the captions being displayed when indent properties has
been used:

The following screen shot shows the captions being displayed when indent properties has
not been used:

property Group.IndentHeaderTop as Long
Specifies the number of pixels to indent the group's header from the top part.

Type Description

Long A long expression that specifies the number of pixels to
indent the groups' header from the top side.

By default, the IndentHeaderTop property is 0. The IndentHeaderLeft property has effect
only for group's caption, image and it does not affect the group's header background
appearance. Use the BackColorGroup property to define a new background appearance
using EBN files. Use the CP option (copy option) of the EBN files to define the way EBN
file is arranged on the object. Use the IndentHeaderLeft property to indent the group's
header from left side. Use the IndentHeaderRight property to indent the group's header
from right side. Use the IndentHeaderTop property to indent the group's header from top
side. Use the IndentHeaderBottom property to indent the group's header from bottom side.
Use the Indent property to indent the child items being displayed in the group's list. Use the
IndentGroupLeft and IndentGroupRight properties to specify the left and right indentation
of the group's list.

The following screen shot shows the captions being displayed when indent properties has
been used:

The following screen shot shows the captions being displayed when indent properties has
not been used:

property Group.Index as Long
Retrieves the index of the object into the Groups collection..

Type Description

Long A long expression that indicates the group's index into the
groups collection.

Use the Index property to identify a Group object into the groups collection. Use the
Position property to specify the group's position.

property Group.Italic as Boolean
Specifies a value that indicates whether the group's caption should appear in italic.

Type Description

Boolean A boolean expression that specifies whether the group's
caption should appear in italic.

Use the Bold, Italic, Underline and StrikeOut properties to customize the caption's font
attributes.

property Group.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, ColIndex as Long, HitTestInfo as HitTestInfoEnum)
as HITEM

Retrieves the item from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

ColIndex as Long
A long expression that indicates on return, the column
where the point belongs. If the return value is zero, the
ColIndex may indicate the handle of the cell (inner cell).

HitTestInfo as
HitTestInfoEnum

A HitTestInfoEnum expression that determines on return
the position of the cursor within the cell.

HITEM A long expression that indicates the item's handle where
the point is.

Use the ItemFromPoint property to get the item from the point specified by the {X,Y}. The X
and Y coordinates are expressed in client coordinates, so a conversion must be done in
case your coordinates are relative to the screen or to other window. If the X parameter is
-1 and Y parameter is -1 the ItemFromPoint property determines the handle of the
item from the cursor. Use the ColumnFromPoint property to access the column over the
point. Use the GroupFromPoint property to get the group's caption from the cursor. Use the
GroupListFromPoint property to get the group's list from cursor.

The following VB sample prints the cell's caption from the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 With ExplorerTree1
 ' Determines the group's list from cursor
 Dim g As EXPLORERTREELibCtl.Group
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not g Is Nothing Then
 ' Determines the item from the cursor within the group
 Dim h As HITEM, c As Long, hit As EXPLORERTREELibCtl.HitTestInfoEnum

 h = g.ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) or Not (c = 0) Then
 Debug.Print g.Items.CellCaption(h, c) & " HT = " & hit
 End If
 End If
 End With
End Sub

The following VFP sample prints the cell's caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Olecontrol1
 local g
 g = .GroupListFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 local h, c, hit
 c = 0
 hit = 0
 h = .ItemFromPoint(-1,-1,@c,@hit)
 If h # 0 Then
 with .Items
 .DefaultItem = h
 wait window .CellCaption(0, c) nowait
 endwith
 EndIf
 endwith
 EndIf
endwith

property Group.Items as Items

Retrieves the group's item collection.

Type Description
Items An Items object that holds the group's items collection.

Use the Items property to access the group's Items collection. Use the Items collection to
add, remove or change the group items. Use the GetItems method to get items collection
into a safe array. Use the PutItems method to load items from a safe array.

The following VBA sample enumerates all groups and items being shown on the control:

Dim e As EXPLORERTREELib.ExplorerTree
Set e = ExplorerTree1.Object
With e
 Dim g As EXPLORERTREELib.Group
 For Each g In .Groups
 Debug.Print "Enumerate Group " & g.Caption
 For Each i In g.Items
 With g.Items
 Debug.Print "Item " & .CellCaption(i, 0)
 End With
 Next
 Next
End With

The following VBA sample enumerates all groups and items being checked on the control:

Dim e As EXPLORERTREELib.ExplorerTree
Set e = ExplorerTree1.Object
With e
 Dim g As EXPLORERTREELib.Group
 For Each g In .Groups
 Debug.Print "Enumerate Group " & g.Caption
 For Each i In g.Items
 With g.Items
 If Not (.CellState(i, 0) = 0) Then
 Debug.Print "Item " & .CellCaption(i, 0)

 End If
 End With
 Next
 Next
End With

property Group.ItemsAllowSizing as ItemsAllowSizingEnum
Retrieves or sets a value that indicates whether a user can resize items at run-time.

Type Description

ItemsAllowSizingEnum A ItemsAllowSizingEnum expression that indicates whether
the user can resize the items at run-time.

By default, the ItemsAllowSizing property is exNoSizing(0). Use the ItemsAllowSizing
property to specify whether all items are resizable. Use the ItemAllowSizing property of the
Items object to specify only when few items are resizable or not. Use the ItemHeight
property to specify the height of the item. The CellSingleLine property specifies whether a
cell displays its caption using multiple lines. The DefaultItemHeight property specifies the
default height of the items. The DefaultItemHeight property affects only items that are going
to be added. It doesn't affect items already added.

property Group.Left as Long
Specifies the distance between the left edge of the control and group's list.

Type Description

Long A long expression that specifies the distance between the
left edge of the control and group's list

The Left, Top, Width and Height properties determines the location of the group's list in
client coordinates.

Use the LayoutChanged event and Left, Top, Width and Height to determine the coordinates
of the group's list on the fly.

property Group.LinesAtRoot as LinesAtRootEnum

Link items at the root of the hierarchy.

Type Description

LinesAtRootEnum A LinesAtRootEnum expression that indicates whether the
group link items at the root of the hierarchy.

The group paints the hierarchy lines to the right if the Column's Alignment property is
RightAlignment. The TreeColumnIndex property specifies the index of column where the
hierarchy lines are painted. Use the Indent property to increase or decrease the amount, in
pixels, that child items are indented relative to their parent items. Use the HasLines property
to enhances the graphic representation of a tree group's hierarchy by drawing lines that link
child items to their corresponding parent item.

property Group.MarkSearchColumn as Boolean

Retrieves or sets a value that indicates whether the searching column is marked or
unmarked

Type Description

Boolean A boolean expression that indicates whether the searching
column is marked or unmarked.

Use SearchColumnIndex property to change the current searching column. Use the
AutoSearch property to enable or disable the incremental searching feature

property Group.Picture as IPictureDisp

Retrieves or sets a graphic to be displayed in the group.

Type Description

IPictureDisp A Picture object that's displayed on the group's
background.

By default, the group has no picture associated. The group uses the PictureDisplay
property to determine how the picture is displayed on the group's background.

property Group.PictureDisplay as PictureDisplayEnum

Retrieves or sets a value that indicates the way how the graphic is displayed on the group's
background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. Use the PictureDisplay property specifies
how the Picture is displayed on the group's background. If the group has no picture
associated the PictureDisplay property has no effect.

property Group.PictureDisplayLevelHeader as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's header background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed on the control's header.

Use the PictureDisplayLevelHeader property to arrange the picture on the control's multiple
levels header bar. Use the PictureLevelHeader property to load a picture on the control's
header bar when it displays multiple levels. The control's header bar displays multiple levels
if there are two or more neighbor columns with the same non empty level key. Use the
LevelKey property to specify the control's level key.

property Group.PictureLevelHeader as IPictureDisp
Retrieves or sets a graphic to be displayed in the control's header when multiple levels is
on.

Type Description

IPictureDisp A Picture object being displayed on the control's header
bar when multiple levels is on.

Use the PictureLevelHeader property to display a picture on the control's header bar when
it displays the columns using multiple levels. Use the PictureDisplayLevelHeader property to
arrange the picture on the control's multiple levels header bar. The control's header bar
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the LevelKey property to specify the control's level key. Use the Picture
property to display a picture on the control's list area. Use the BackColorLevelHeader
property to specify the background color for parts of the control's header bar that are not
occupied by column's headers.

property Group.Position as Long
Specifies the group's position.

Type Description
Long A long expression that indicates the group's position.

Use the Position property to arrange groups. Use the Index property to identify a group.
Use the ItemByPos property to access groups by position. The Position property is zero
based.

method Group.PutItems (Items as Variant, [Parent as Variant])
Adds data to the control from a SafeArray containing numbers, strings, dates, or nested
SafeArrays of numbers, strings, and dates, positioning them as child items of the specified
parent item

Type Description

Items as Variant

An array that control uses to fill with. The array can be
one or two- dimensional. If the array is one-dimensional,
the control requires one column being added before calling
the PutItems method. If the Items parameter indicates a
two-dimensional array, the first dimension defines the
columns, while the second defines the number of items to
be loaded. For instance, a(2,100) means 2 columns and
100 items.

For instance:

PutItems Array("Item 1", "Item 2", "Item 3"), adds the
rows at the end of the list
PutItems Array("Root", Array("Child 1", "Child 2")),
adds data in a hierarchical structure, at the end of the
list
PutItems rs.GetRows(), appends data from a
recordset using the GetRows method of the
Recordset
PutItems rs.GetRows(10), inserts the first 10 records
from a Recordset using the GetRows method, at the
end of the list

where GetRows() method in ADO retrieves multiple
records from a Recordset object and stores them in a
two-dimensional array.

Indicates one of the following:

missing, empty or 0 {number}, specifies that the
data(Items) is being appended (added to the end of
the list)
a long expression, that specifies the handle of the
item where the array is being inserted
a string expression of of
"parent;IDColumn;ParentIDColumn" format, where,

Parent as Variant

'parent' denotes the handle of the item where the data
is being inserted, 'IDColumn' refers to the index of the
column containing row identifiers, and
'ParentIDColumn' indicates the index of the column
containing identifiers of parent rows. This way, you
can insert data hierarchically using parent-id
relationship. A parent-id relationship is a way of
organizing data in a hierarchical structure where each
element (or "child") is associated with a parent
element. Please be aware that the rows of the data
are inserted as they were provided by the Items
parameter. Therefore, it is important that the data
provided be sorted by the IDColumn so that the
parent row referred to by the ParentIDColumn value
is already present and can be used to insert the
current row as a child of it.

For instance:

PutItems Array("Item 1", "Item 2", "Item 3"),
Items.ItemByIndex(2), inserts the rows as children of
the item with index 2
PutItems Array("Root", Array("Child 1", "Child 2")),
Items.FirstVisibleItem, Inserts data as a hierarchical
structure, placing it as a child of the first visible item
PutItems rs.GetRows(), Items.ItemByIndex(0),
inserts the records from the recordset using the
GetRows method of the Recordset, placing them as
children of the item with index 0
PutItems rs.GetRows(), ";0;3", inserts the records
from the recordset using the GetRows method of the
Recordset, utilizing parent-child relationships. The first
column (index 0) contains the identifiers of the rows,
while the fourth column (index 3) contains the keys of
the parent rows.

where GetRows() method in ADO retrieves multiple
records from a Recordset object and stores them in a
two-dimensional array.

The PutItems method loads items from a safe array. The PutItems method may raise one
of the following exceptions:

The array dimension exceeds 2 (In simpler terms, a two-dimensional array (or 2D
array) is like a table with rows and columns. If an array exceeds 2 dimensions, it
means it has three or more dimensions, such as a 3D array (which can be thought of
as a collection of tables) or even higher dimensions) You need to provide a one-
dimensional or two-dimensional array
The number of columns does not match the array size (either the control has no
columns or the number of columns is too small). You need to add more columns (Add
property).
The element type of the array is not valid (the type of the array is either unknown or
not supported) You need to provide a valid type, which must be one of the following:
Variant, String, Integer, Long, Double, Float, or Date.

The PutItems method performs:

1. Insertion Order: The data is inserted into the system in the same order as it is
provided by the Items parameter. This means that the sequence of rows in the Items
parameter directly affects how the data is inserted.

2. Sorting Requirement: To ensure correct insertion, it's crucial that the data is sorted by
the IDColumn (when the Parent parameter is of "parent;IDColumn;ParentIDColumn"
format). This sorting ensures that parent rows are inserted before their corresponding
child rows.

3. Parent-Child Relationship: The sorting ensures that when a row refers to a parent
row using the ParentIDColumn value (when the Parent parameter is of
"parent;IDColumn;ParentIDColumn" format). The parent row is already present in the
control. This allows the current row to be inserted as a child of the parent row without
encountering errors or inconsistencies.

In essence, by sorting the data appropriately, you establish a clear hierarchy where parent
rows are inserted before child rows, maintaining the integrity of the parent-child
relationships within the dataset.

For instance, let's say we have the following data:

 EmployeeID EmployeeName DepartmentID ParentID
 1 John 101
 2 Alice 102 1
 3 Bob 101 1
 4 Sarah 102 1
 5 Emma 101 2
 6 Mike 102 2

Each row represents an employee.

EmployeeID uniquely identifies each employee (represents the column with the index 0)
EmployeeName denotes the name of the employee (represents the column with the
index 1)
DepartmentID indicates the department to which the employee belongs (represents the
column with the index 2)
ParentID establishes the relationship between employees (represents the column with
the index 3), where it references the EmployeeID of the parent employee. An empty
value indicates the absence of a parent, typically representing the head of the
department.

Having this data organized into a two-dimensional array, the statement PutItems d loads it
as a flat table:

whereas PutItems d, ";0;3" loads it as a group structure:

where d is an array as defined next:

Dim d(3, 5) As Variant
d(0, 0) = "1": d(1, 0) = "John": d(2, 0) = "101": d(3, 0) = ""
d(0, 1) = "2": d(1, 1) = "Alice": d(2, 1) = "102": d(3, 1) = "1"
d(0, 2) = "3": d(1, 2) = "Bob": d(2, 2) = "101": d(3, 2) = "1"
d(0, 3) = "4": d(1, 3) = "Sarah": d(2, 3) = "102": d(3, 3) = "1"
d(0, 4) = "5": d(1, 4) = "Emma": d(2, 4) = "101": d(3, 4) = "2"
d(0, 5) = "6": d(1, 5) = "Mike": d(2, 5) = "102": d(3, 5) = "2"

Use the GetItems method to get a safe array with the items in the control. The PutItems
method fires AddItem event for each item added to Items collection. Use the Items property
to access the items collection. Use the ConditionalFormats method to apply formats to a
cell or range of cells, and have that formatting change depending on the value of the cell or

the value of a formula.

property Group.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio's state. True
means checked, and False means unchecked.

Long A long expression that indicates the index of image used to
paint the radio button.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells.

The following sample shows how to change the default icon for cells of radio type:

Group.RadioImage(True) = 1 ' Sets the icon for cells of radio type that are checked
Group.RadioImage(False) = 2 ' Sets the icon for cells of radio type that are
unchecked

The Group.RadioImage(True) = 0 makes the group to use the default icon for painting cells
of radio type that are checked.

property Group.RClickSelect as Boolean

Retrieves or sets a value that indicates whether an item is selected using right mouse
button.

Type Description

Boolean A boolean expression that indicates whether an item is
selected using the right mouse button.

Use the RClickSelect property to allow selecting items by right click. By default, the
RClickSelect property is False.

method Group.Refresh ()

Refreshes the group's content.

Type Description

The Refresh method forces repainting the group.

property Group.RightToLeft as Boolean
Indicates whether the group should draw right-to-left for RTL languages.

Type Description

Boolean A boolean expression that specifies whether the control is
drawn from right to left or from left to right.

By default, the RightToLeft property is False. The RightToLeft gets or sets a value indicating
whether control's elements are aligned to right or left. The RightTolLeft property affects all
columns, and future columns being added.

Changing the RightToLeft property on True does the following:

displays the vertical scroll bar on the left side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to right, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "caption,picture,icons,icon,check")

property Group.ScrollBars as ScrollBarsEnum
Returns or sets a value that determines whether the group has horizontal and/or vertical
scroll bars.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that identifies which scroll
bars are visible.

Use the ScrollBars property to disable the group's scroll bars. By default, the ScrollBars
property is exBoth, so both scroll bars are used if necessarily. For instance, if the
ScrollBars property is exNone the group displays no scroll bars. If the AutoHeight property
is True, the group displays no vertical scroll bar. The exVertical flag is removed if the
AutoHeight property is changing at runtime. You can call the ScrollBars property after
setting the AutoHeight property, in case you need vertical scroll bar. The control displays a
scroll bar only if it is required. Use the AutoScrollBar property to hide the control's vertical
scroll bar.

property Group.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Group.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Group.ScrollBySingleLine as Boolean

Retrieves or sets a value that indicates whether the group scrolls the lines to the end, item
by item.

Type Description

Boolean A boolean expression that indicates whether the group
scrolls the lines to the end, item by item.

We recommend to set the ScrollBySingleLine property if you have one of the following:

If you have at least a cell that has CellSingleLine property on false
If the group contains items with different heights.
If your group contains at least an item that hosts an ActiveX group. See
InsertControlItem property.

property Group.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. The control fires the
ScrollButtonClick event when the user clicks a part of the scroll bar.

property Group.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. The control fires the
ScrollButtonClick event when the user clicks a part of the scroll bar. Use the ScrollFont
property to specify the font in the control's scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

property Group.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

property Group.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property Group.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

property Group.ScrollThumbSize(ScrollBar as ScrollBarEnum) as Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property Group.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. The OffsetChanged event notifies your application that
the user changes the scroll position. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

property Group.SearchColumnIndex as Long

Retrieves or sets a value indicating the column's index that is used for auto search feature.

Type Description

Long A long expression indicating the column's index that is used
for auto search feature.

The SearchColumnIndex is changed if the user press TAB or Shift + TAB.

property Group.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color A color expression that indicates the selection background
color.

Use the SelBackColor and SelForeColor properties to define the colors used for selected
items.

property Group.SelBackMode as BackModeEnum

Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates whether the
selection is transparent or opaque.

Use the SelBackMode property to specify how the selection appears. Use the
SelBackMode property to specify how the group displays the selection when the group has
a picture on its background.

property Group.SelectColumn as Boolean

Specifies whether the user selects cells only in SelectColumnIndex column, while
FullRowSelect property is False.

Type Description

Boolean
A boolean expression that specifies whether the user
selects cells only in SelectColumnIndex column, while the
FullRowSelect property is False

By default, the SelectColumn property is False. The SelectColumn property has effect only
if the FullRowSelect is False. The group displays the selected cell in the SelectColumnIndex
column. The SelectColumnIndex property specifies the index of selected column.

property Group.SelectColumnIndex as Long

Retrieves or sets a value that indicates the column's index where the user can select an
item by clicking.

Type Description

Long A long expression that indicates the column's index where
the user can select the item.

The property has effect only if the FullRowSelect property is False.

property Group.SelectColumnInner as Long
Retrieves or sets a value that indicates the index of the inner cell that's selected.

Type Description

Long A long expression that indicates the index of the inner cell
that's focused or selected.

Use the SelectColumnInner property to get the index of the inner cell that's selected or
focused. The SelectColumnInner property may be greater than zero, if the control contains
inner cells. The SplitCell method splits a cell in two cells. The newly created cell is called
inner cell. The FocusItem property indicates the focused item. The SelectColumnIndex
property determines the index of the column that's selected when FullRowSelect property is
False.

property Group.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

Use the SelForeColor and SelBackColor properties to change the colors used for selected
items.

property Group.SelLength as Long
Returns or sets the number of characters selected.

Type Description

Long A long expression that indicates the number of characters
selected.

The SelStart and SelLength properties are valid only if the group's textbox field is visible.
Use the AllowEdit property to allow group edits the data using a text box field. Use the Edit
method to start editing a cell using a textbox field.

property Group.SelStart as Long
Returns or sets the starting point of text selected; indicates the position of the insertion
point if no text is selected.

Type Description

Long A long expression that indicates the starting point of text
selected

The SelStart and SelLength properties are valid only if the group's textbox field is visible.
Use the AllowEdit property to allow group edits the data using a text box field. Use the Edit
method to start editing a cell using a textbox field.

method Group.SetFocus ()
Sets the keyboard focus to the group's list window.

Type Description

Use the hWnd property to access the group's list window. Use the SetFocus to focus the
group's list window.

The following sample sets the keyboard focus to the group that's expanded or collapsed:

Private Sub ExplorerTree1_SelectGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
 Group.SetFocus
End Sub

property Group.Shortcut as String
Specifies the name of the shortcut which displays the group.

Type Description

String A HTML expression that indicates the caption of the
shortcut.

The Group objects with the same Shortcut property belongs to the same set, and displays
the Shortcut caption in the control's shortcut bar. The ShowShortcutBar property specifies
whether the control's shortcut bar is visible or hidden. By default, the Shortcut property is
empty, so all Group in the Groups collection belongs to the same set. The shortcut bar
displays the first icon in the HTML caption, if found, or it displays a custom size picture if
specified using the the ShortcutPicture property. If the Shortcut has associated a custom
size picture (ShortcutPicture property), the first icon found in the HTML caption is not
displayed in the shortcut bar. The entire Shortcut caption is displayed when the shortcut is
expanded. Use the ExpandShortcutCount property to expand the number of shortcuts in the
control's shortcut bar. The ExpandShortcut event notifies your application when the user
resizes the control's shortcut bar. The control fires the SelectShortcut event when the user
selects a shortcut, so groups that belongs to the shortcut are displayed.

The Shortcut property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+

about:blank

" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being

inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Group.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the group draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that indicates whether the group
draws a thin rectangle around the focused item.

Use the ShowFocusRect property to hide the rectangle drawn around the focused item.

property Group.ShowLockedItems as Boolean
Retrieves or sets a value that indicates whether the control displays the locked items.

Type Description

Boolean A boolean expression that specifies whether the locked
items are shown or hidden.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the ShowLockedItems property to show or
hide the locked items. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the CellCaption property to specify the caption for
a cell.

property Group.SingleSel as Boolean

Retrieves or sets a value that indicates whether the group supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the group
supports single or multiple selection.

Use the SingleSel property to enable multiple selection.

property Group.SortOnClick as SortOnClickEnum

Retrieves or sets a value that indicates whether the group sorts automatically the data
when the user click on column's caption.

Type Description

SortOnClickEnum
A SortOnClick expression that indicates whether the group
sorts automatically the data when the user click on the
column's caption.

Use the SortOnClick property to disable sorting items when the user clicks on the column's
header.

There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

Group.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
group. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sort descending the list of root items on
the "Column 1"(if your group displays a list, all items are considered being root items).

Group.Items.SortChildren 0, "Column 1", False

property Group.StrikeOut as Boolean
Specifies a value that indicates whether the group's caption should appear in strikeout.

Type Description

Boolean A boolean expression that specifies whether the group's
caption should appear in strikeout.

Use the Bold, Italic, Underline and StrikeOut properties to customize the caption's font
attributes.

property Group.ToolTip as Variant
Specifies the group's tooltip.

Type Description

Variant A string expression that indicates the group's tooltip. The
ToolTip supports built-in HTML format as described here.

The ToolTip shows up when the cursor hovers the group's caption. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the CellToolTip property to specify the
cell's tooltip. Use the ShowToolTip method to programmatically display a custom tooltip.

property Group.Top as Long
Specifies the distance between the top edge of the control and group's list.

Type Description

Long A long expression that indicates the distance between the
top edge of the control and group's list.

The Left, Top, Width and Height properties determines the location of the group's list in
client coordinates. Use the LayoutChanged event and Left, Top, Width and Height to
determine the coordinates of the group's list on the fly.

property Group.TreeColumnIndex as Long

Retrieves or sets a value indicating the column's index where the hierarchy will be
displayed.

Type Description

Long A long expression that indicates the index of the column
where the group's hierarchy is displayed.

Use the TreeColumnIndex property to change the column's index where the hierarchy lines
are painted. Use HasLines and LinesAtRoot properties to show the hierarchy lines.

property Group.Underline as Boolean
Specifies a value that indicates whether the group's caption is underlined.

Type Description

Boolean A boolean expression that specifies whether the group's
caption is underlined.

Use the Bold, Italic, Underline and StrikeOut properties to customize the caption's font
attributes.

property Group.UserData as Variant
Specifies an extra data.

Type Description
Variant A Variant that indicates the item's extra data

The UserData property associates an extra data to the item. The UserData property is not
used by the group or control.

property Group.Width as Long
Retrieves the width in pixels of the group's list.

Type Description

Long A long expression that indicates the width in pixels of the
group's list

The Left, Top, Width and Height properties determines the location of the group's list in
client coordinates. Use the IndentGroupLeft and IndentGroupRight properties to indent the
group's list to the left or right side. Use the LayoutChanged event and Left, Top, Width and
Height to determine the coordinates of the group's list on the fly.

Groups object
The Groups collection holds Group objects. Each Group holds a collection of columns and
items that displays data as a tree or list as well. Use the Items property to access the
group's Items collection. Use the Columns property to access the group's Columns
collection. Use the AddItem method to add new items to the group. Use the Add method to
add new columns to the group.

Name Description

Add Adds a Group object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in the collection.
Count Returns the number of objects in the collection.
Item Returns a specific Group from the collection.
ItemByPos Retrieves the group given its position.
Remove Removes a specific member from the collection.

method Groups.Add (Caption as String)
Adds a Group object to the collection and returns a reference to the newly created object.

Type Description

Caption as String
A string expression that indicates the group's caption. The
Caption supports built-in HTML format as described here,
if the CaptionFormat property is exHTML.

Return Description
Group A Group object being added to Groups collection.

The Add method adds a new Group object to the Groups collection. The AddGroup event is
fired each time when a new group is added to Groups collection. Use the Items property to
access the group's Items collection. Use the Columns property to access the group's
Columns collection. Use the AddItem method to add new items to the group. Use the Add
method to add new columns to the group. The caption may contain built-in HTML tags, if the
CaptionFormat property is exHTML. Use the Caption property to access the group's
caption.

method Groups.Clear ()
Removes all objects in the collection.

Type Description

Clears the Groups collection. Use the Remove method to remove a specific group. The
RemoveGroup event is fired when user removes a group.

property Groups.Count as Long
Returns the number of objects in the collection.

Type Description

Long A long expression that specifies the count of Group
objects into Groups collection.

Counts the Group objects in the Groups collection.

property Groups.Item (Index as Variant) as Group
Returns a specific Group from the collection.

Type Description

Index as Variant A long expression that indicates the group's index, or a
string expression that indicates the group's caption.

Group A Group object being retrieved.

use the Item property to access a given Group object. The Item property is the default
property in the Groups object, and Groups.Item(x) is similar with Groups(x). Use the
ItemByPos property to access a Group object by its position.

property Groups.ItemByPos (Position as Long) as Group
Retrieves the group given its position.

Type Description

Position as Long A long expression that indicates the position of the
requested group

Group A Group object being accessed by its position.

Use the ItemByPos property to access the Group object by its position.

method Groups.Remove (Index as Variant)
Removes a specific member from the collection.

Type Description

Index as Variant A long expression that indicates the the group's index, or a
string expression that indicates the group's caption.

Use the Remove method to remove a specific Group object. The RemoveGroup event is
fired when the user removes a group. Use the Clear method to clear the entire Groups
collection.

Items object
The Items object contains a collection of items. Each item is identified by a handle HITEM.
The HITEM is of long type. Each item contains a collection of cells. The number of cells is
determined by the number of Column objects in the group. To access the Items collection
use Items property of the control. Using the Items collection you can add, remove or
change the items in the group. The Items collection can be organized as a hierarchy or as a
tabular data. The Items collection supports the following properties and methods:

Name Description

AcceptSetParent Retrieves a value indicating whether the SetParent method
can be accomplished..

AddItem Adds a new item, and returns a handle to the newly
created item.

CellBackColor Retrieves or sets the cell's background color.

CellBold Retrieves or sets a value that indicates whether the cell's
caption should appear in bold.

CellButtonAutoWidth Retrieves or sets a value indicating whether the cell's
button fits the cell's caption.

CellCaption Retrieves or sets the text displayed on a specific cell.
CellCaptionFormat Specifies how the cell's caption is displayed.

CellChecked Retrieves the cell's handle that is checked on a specific
radio group.

CellData Retrieves or sets the extra data for a specific cell.

CellEnabled Returns or sets a value that determines whether a cell can
respond to user-generated events.

CellFont Retrieves or sets the cell's font.
CellForeColor Retrieves or sets the cell's foreground color.

CellHAlignment Retrieves or sets a value that indicates the alignment of
the cell's caption.

CellHasButton Retrieves or sets a value indicating whether the cell has
associated a push button or not.

CellHasCheckBox Retrieves or sets a value indicating whether the cell has
associated a checkbox or not.

CellHasRadioButton Retrieves or sets a value indicating whether the cell has
associated a radio button or not.

CellHyperLink Specifies whether the cell's is highlighted when the cursor

mouse is over the cell.

CellImage Retrieves or sets an Image that is displayed on the cell's
area.

CellImages Specifies an additional list of icons shown in the cell.

CellItalic Retrieves or sets a value that indicates whether the cell's
caption should appear in italic.

CellItem Retrieves the handle of item that is the owner of a specific
cell.

CellMerge Retrieves or sets a value that indicates the index of the
cell that's merged to.

CellParent Retrieves the parent of an inner cell.

CellPicture Retrieves or sets a value that indicates the Picture object
displayed by the cell.

CellPictureHeight Retrieves or sets a value that indicates the height of the
cell's picture.

CellPictureWidth Retrieves or sets a value that indicates the width of the
cell's picture.

CellRadioGroup Retrieves or sets a value indicating the radio group where
the cell is contained.

CellSingleLine Retrieves or sets a value indicating whether the cell's
caption is painted using one or more lines.

CellState Retrieves or sets the cell's state. Has effect only for check
and radio cells.

CellStrikeOut Retrieves or sets a value that indicates whether the cell's
caption should appear in strikeout.

CellToolTip Retrieves or sets a text that is used to show the tooltip's
cell.

CellUnderline Retrieves or sets a value that indicates whether the cell's
caption should appear in underline.

CellVAlignment Retrieves or sets a value that indicates how the cell's
caption is vertically aligned.

CellWidth Retrieves or sets a value that indicates the width of the
inner cell.

ChildCount Retrieves the number of children items.
ClearCellBackColor Clears the cell's background color.
ClearCellForeColor Clears the cell's foreground color.

ClearCellHAlignment Clears the cell's alignment.
ClearItemBackColor Clears the item's background color.
ClearItemForeColor Clears the item's foreground color.
DefaultItem Retrieves or sets the default item.
Edit Edits a cell.

EnableItem Returns or sets a value that determines whether a item
can respond to user-generated events.

EnsureVisibleItem Ensures the given item is in the visible client area.

ExpandItem Expands, or collapses, the child items of the specified
item.

FindItem Finds an item, looking for Caption in ColIndex colum. The
searching starts at StartIndex item.

FindItemData Finds the item giving its data.

FindPath Finds the item, given its path. The group searches the
path on the SearchColumnIndex column.

FirstVisibleItem Retrieves the handle of the first visible item in the group.
FocusItem Retrieves the handle of item that has the focus.
FormatCell Specifies the custom format to display the cell's content.

FullPath
Returns the fully qualified path of the referenced item in
the group. The caption is taken from the column
SearchColumnIndex.

InnerCell Retrieves the inner cell.

InsertControlItem Inserts a new item of ActiveX type, and returns a handle
to the newly created item.

InsertItem Inserts a new item, and returns a handle to the newly
created item.

IsItemLocked Returns a value that indicates whether the item is locked
or unlocked.

IsItemVisible Checks if the specific item is in the visible client area.

ItemAllowSizing Retrieves or sets a value that indicates whether a user
can resize the item at run-time.

ItemAppearance Specifies the item's appearance when the item hosts an
ActiveX control.

ItemBackColor Retrieves or sets a background color for a specific item.

ItemBold Retrieves or sets a value that indicates whether the item
should appear in bold.

ItemByIndex Retrieves the handle of the item given its index in Items
collection..

ItemCell Retrieves the cell's handle based on a specific column.
ItemChild Retrieves the child of a specified item.

ItemControlID Retrieves the item's control identifier that was used by
InsertControlItem.

ItemCount Retrieves the number of items.
ItemData Retrieves or sets the extra data for a specific item.

ItemDivider
Specifies whether the item acts like a divider item. The
value indicates the index of column used to define the
divider's title.

ItemDividerLine Defines the type of line in the divider item.
ItemDividerLineAlignment Specifies the alignment of the line in the divider item.
ItemFont Retrieves or sets the item's font.
ItemForeColor Retrieves or sets a foreground color for a specific item.

ItemHasChildren Adds an expand button to left side of the item even if the
item has no child items.

ItemHeight Retrieves or sets the item's height.

ItemItalic Retrieves or sets a value that indicates whether the item
should appear in italic.

ItemMaxHeight Retrieves or sets a value that indicates the maximum
height when the item's height is variable.

ItemObject Retrieves the ActiveX object associated, if the item was
created using InsertControlItem method.

ItemParent Returns the handle of parent item.

ItemPosition Retrieves or sets a value that indicates the item's position
in the children list.

ItemStrikeOut Retrieves or sets a value that indicates whether the item
should appear in strikeout.

ItemToIndex Retrieves the index of item into Items collection given its
handle.

ItemUnderline Retrieves or sets a value that indicates whether the item
should appear in underline.

ItemWidth Retrieves or sets a value that indicates the item's width
while it contains an ActiveX control.

ItemWindowHost
Retrieves the window's handle that hosts an ActiveX
control when the item was created using
InsertControlItem.

ItemWindowHostCreateStyle Retrieves or sets a value that indicates a combination of
window styles used to create the ActiveX window host.

LastVisibleItem Retrieves the handle of the last visible item.
LockedItem Retrieves the handle of the locked/fixed item.

LockedItemCount Specifies the number of items fixed on the top or bottom
side of the control.

MergeCells Merges a list of cells.

NextSiblingItem Retrieves the next sibling of the item in the parent's child
list.

NextVisibleItem Retrieves the handle of next visible item.

PathSeparator Returns or sets the delimiter character used for the path
returned by the FullPath property.

PrevSiblingItem Retrieves the previous sibling of the item in the parent's
child list.

PrevVisibleItem Retrieves the handle of previous visible item.
RemoveAllItems Removes all items from the group.
RemoveItem Removes a specific item.
RootCount Retrieves the number of root objects into Items collection.

RootItem Retrieves the handle of the root item giving its index into
the root items collection.

SelectableItem Specifies whether the user can select the item.
SelectAll Selects all items.

SelectCount Retrieves the handle of selected item giving its index in
selected items collection.

SelectedItem Retrieves the selected item's handle given its index in
selected items collection.

SelectItem Selects or unselects a specific item.
SetParent Changes the parent of the given item.
SortableItem Specifies whether the item is sortable.

SortChildren
Sorts the child items of the given parent item in the group.
SortChildren will not recurse through the tree, only the
immediate children of Item will be sorted.

SplitCell Splits a cell, and returns the inner created cell.
UnmergeCells Unmerges a list of cells.
UnselectAll Unselects all items.
UnsplitCell Unsplits a cell.
VisibleCount Retrieves the number of visible items.
VisibleItemCount Retrieves the number of visible items.

property Items.AcceptSetParent (Item as HITEM, NewParent as HITEM) as
Boolean
Retrieves a value indicating whether the SetParent method can be accomplished.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being moved.

NewParent as HITEM A long expression that indicates the handle of the parent
item where the item should be moved.

Boolean A boolean expression that indicates whether the item can
be child of the NewParent item.

Use this property to make sure that SetParent can be called.

method Items.AddItem ([Caption as Variant])

Adds a new item, and returns a handle to the newly created item.

Type Description

Caption as Variant

A string expression that indicates the cell's caption for the
first column. or a safe array that contains the captions for
each column. The Caption accepts HTML format, if the
CellCaptionFormat property is exHTML.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

Use the AddItem property when your group acts like a list. Use InsertItem when your group
looks like a tree. Use the InsertControlItem property when the item needs to host an
ActiveX control. The AddItem property adds a new item that has no parent. When a new
item is added (inserted) to the Items collection, the control fires the AddItem event. If the
group contains more than one column use the CellCaption property to set the cell's caption.
If there are no columns the AddItem method fails. By default, the group adds a default
column. Use the LockedItemCount property to lock or unlock items to the top or bottom
side of the group. Use the MergeCells method to combine two or more cells in a single cell.
Use the SplitCell property to split a cell.

The following sample uses the VB Array function to add two items:

With ExplorerTree1
 With .Groups.Add("Group 1")
 .BeginUpdate

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 With .Items
 .AddItem Array("Item 1.1", "Item 1.2", "Item 1.3")
 .AddItem Array("Item 2.1", "Item 2.2", "Item 2.3")
 End With

 .EndUpdate
 End With

End With

Use the PutItems method to load an array, like in the following sample:

With ExplorerTree1
 With .Groups.Add("Group 1")
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
 .ColumnAutoResize = False
 .HeaderVisible = True
 .BeginUpdate
 ' Add the columns
 With .Columns
 ' By default the control adds a column, so we delete it first
 .Clear
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 .PutItems rs.getRows()
 .EndUpdate
 End With
End With

property Items.CellBackColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Color

A color expression that indicates the cell's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

To change the background color for the entire item you can use ItemBackColor property.
Use the ClearCellBackColor method to clear the cell's background color. Use the BackColor
property to specify the control's background color. Use the CellForeColor property to
specify the cell's foreground color. Use the ItemForeColor property to specify the item's
foreground color.

For instance, the following code shows how to change the left top cell of your group:
Group.Items.CellBackColor(Group.Items(0), 0) = vbBlue

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellBold([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in bold.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
should appear in bold.

Use the CellBold property to bold a cell. Use the ItemBold property to specify whether the
item should appear in bold. Use the HeaderBold property of the Column object to bold the
column's caption.

Here's a snippet of code that shows how to bold the first column in the first group(it
enumerates all cells in the column):

Dim h As Variant
With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 For Each h In ExplorerTree1.Groups(0).Items
 .CellBold(h, 0) = True
 Next
 End With
 .EndUpdate
End With

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True

Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellButtonAutoWidth([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell's button fits the cell's caption.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression indicating whether the cell's button
fits the cell's caption.

By default, the CellButtonAutoWidth property is False. The CellButtonAutoWidth property
has effect only if the CellHasButton property is true. Use the Def property to specify
whether all buttons in the column fit the cell's content.

property Items.CellCaption([Item as Variant], [ColIndex as Variant]) as
Variant

Retrieves or sets the text displayed on a specific cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant

A long expression that indicates the column's index, or the
handle to the cell, if the Item parameter is 0, a string
expression that indicates the column's caption or the
column's key.

Variant A variant expression that indicates the cell's caption. The
cell's caption supports built-in HTML format.

The CellCaption property specifies the cell's caption. To associate an user data for a cell
you can use CellData property. Use the CellCaptionFormat property to use HTML tags in
the cell's caption. Use the ItemData property to associate an extra data to an item. To hide
a column you have to use Visible property of the Column object. The AddItem method
specifies also the caption for the first cell in the item. Use the SplitCell property to split a
cell.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellCaptionFormat([Item as Variant], [ColIndex as
Variant]) as CaptionFormatEnum
Specifies how the cell's caption is displayed.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or
cell's handle, or a string expression that specifies the
column's caption

CaptionFormatEnum A CaptionFormatEnum expression that defines the way
how the cell's caption is displayed.

The component supports built-in HTML format. That means that you can use HTML tags
when displays the cell's caption . By default, the CellCaptionFormat property is exText. If
the CellCaptionFormat is exText, the cell displays the CellCaption property like it is. If the
CellCaptionFormat is exHTML, the cell displays the CellCaption property using the HTML
tags specified in the CaptionFormatEnum type.

property Items.CellChecked (RadioGroup as Long) as HCELL

Retrieves the cell's handle that is checked on a specific radio group.

Type Description
RadioGroup as Long A long expression that indicates the radio group identifier.

HCELL

A long expression that identifies the handle of the cell
that's checked in the specified radio group. To retrieve the
handle of the owner item you have to use CellItem
property.

A radio group contains a set of cells of radio types. Use the CellHasRadioButton property to
set the cell of radio type. To change the state for a cell you can use the CellState property.
To add or remove a cell to a given radio group you have to use CellHasRadioButton
property. The following sample group all cells of the first column into a radio group, and
display the cell's checked on the radio group when the state of a radio group has been
changed:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasRadioButton(Item, 0) = True
 .CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents the identifier
for the radio group
 End With
End Sub

Private Sub ExplorerTree1_CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & Group.Items.CellCaption(,
Group.Items.CellChecked(1234)) & """ is checked."
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellData([Item as Variant], [ColIndex as Variant]) as
Variant

Retrieves or sets the extra data for a specific cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant A variant expression that indicates the cell's user data.

Use the CellData to associate an extra data to your cell. Use ItemData when you need to
associate an extra data with an item. The CellData value is not used by the control/group, it
is only for user use.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellEnabled([Item as Variant], [ColIndex as Variant]) as
Boolean

Returns or sets a value that determines whether a cell can respond to user-generated
events.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell is
enabled or disabled.

Once that one cell is disabled it cannot be checked or clicked. To disable a column you can
use Enabled property of the Column object.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellFont ([Item as Variant], [ColIndex as Variant]) as
IFontDisp
Retrieves or sets the cell's font.

Type Description

Item as Variant
A long expression that indicates the item's handle, or
optional if the cell's handle is passed to ColIndex
parameter

ColIndex as Variant
A long expression that indicates the column's index or
cell's handle, or a string expression that indicates the
column's caption.

IFontDisp A Font object that indicates the cell's font.

By default, the CellFont property is nothing. If the CellFont property is noting, the cell uses
the item's font. Use the CellFont and ItemFont properties to specify different fonts for cells
or items. Use the CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline,
ItemStrikeout, ItemItalic or CellCaptionFormat to specify different font attributes.

property Items.CellForeColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Color A color expression that indicates the cell's foreground
color.

The CellForeColor property identifies the cell's foreground color. Use the
ClearCellForeColor property to clear the cell's foreground color. To change the background
color for an item you can use ItemBackColor property.

For instance, the following code shows how to change the left top cell of your control:
Group.Items.CellForeColor(Group.Items(0), 0) = vbBlue

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellHAlignment ([Item as Variant], [ColIndex as Variant])
as AlignmentEnum
Retrieves or sets a value that indicates the alignment of the cell's caption.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cell's caption.

The CellHAlignment property aligns a particular cell. Use the Alignment property of the
Column object to align all the cells in the column. Use the CellVAlignment property to align
vertically the caption of the cell, when the item displays its content using multiple lines. Use
the ClearCellHAlignment method to clear the cell's alignment previously set by the
CellHAlignment property. If the CellHAlignment property is not set, the Alignment property of
the Column object indicates the cell's alignment.

property Items.CellHasButton([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value indicating whether the cell has associated a push button or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a button.

When cell's button is clicked the control fires CellButtonClick event. The caption of the push
button is specified by the CellCaption property.

The following sample sets the cells of the first column to be of button type, and displays a
message if the button is clicked:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasButton(Item, 0) = True
 End With
End Sub

Private Sub ExplorerTree1_CellButtonClick(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 MsgBox "The cell '" & Group.Items.CellCaption(Item, ColIndex) & "' has been clicked"
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True

Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellHasCheckBox([Item as Variant], [ColIndex as Variant])
as Boolean

Retrieves or sets a value indicating whether the cell has associated a checkbox or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a check box button.

To change the state for a check cell you have to use CellState property. The cell cannot
display in the same time a radio and a check button. The control fires CellStateChanged
event when the cell's state has been changed. To set the cell of radio type you have call
CellHasRadioButton property. Use the FilterType property on exCheck to filter for checked
or unchecked items.

The following sample shows how to set the check type for all cells of the first column in the
first group:

Dim h As Variant
With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 For Each h In ExplorerTree1.Groups(0).Items
 .CellHasCheckBox(h, 0) = True
 Next
 End With
 .EndUpdate
End With

Another sample that shows how how set the type of cells to radio is:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasCheckBox(Item, 0) = True
 End With

End Sub

The following sample shows how to use the CellStateChanged event to display a message
when a cell of radio or check type has changed its state:

Private Sub ExplorerTree1_CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print "The cell """ & Group.Items.CellCaption(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(Group.Items.CellState(Item, ColIndex) = 0, "Unchecked",
"Checked")
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellHasRadioButton([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell has associated a radio button or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a radio button.

Retrieves or sets a value indicating whether the cell has associated a radio button or not. To
change the state for a radio cell you have to use CellState property. The cell cannot display
in the same time a radio and a check button. The control fires CellStateChanged event
when the cell's state has been changed. To set the cell of check type you have call
CellHasCheckBox property. To add or remove a cell to a given radio group you have to
use CellRadioGroup property. The following sample shows how to set the radio type for all
cells of the first column, and group all of them in the same radio group (1234):

Dim h As Variant
With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 For Each h In ExplorerTree1.Groups(0).Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
 Next
 End With
 .EndUpdate
End With

or

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasRadioButton(Item, 0) = True

 .CellRadioGroup(Item, 0) = 1234
 End With
End Sub

To find out the radio cell that is checked in the radio group 1234 you have to call: MsgBox
Group.Items.CellCaption(, Group.Items.CellChecked(1234))

The following sample group all cells of the first column into a radio group, and display the
cell's checked on the radio group when the state of a radio group has been changed:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasRadioButton(Item, 0) = True
 .CellRadioGroup(Item, 0) = 1234
 End With
End Sub

Private Sub ExplorerTree1_CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & Group.Items.CellCaption(,
Group.Items.CellChecked(1234)) & """ is checked."
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellHyperLink ([Item as Variant], [ColIndex as Variant]) as
Boolean

Specifies whether the cell's is highlighted when the cursor mouse is over the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant A long expression that indicates the column's index, or a
string expression that indicates the column's caption.

Boolean A boolean expression that indicates whether the cell is
highlighted when the cursor is over the cell.

Use the CellHyperLink property to add hyperlink cells to your group. Use the HyperLinkClick
event to notify your application when a hyperlink cell is clicked. Use the CellForeColor
property to specify the cell's foreground color. Use the HyperLinkColor property to specify
the hyperlink color.

property Items.CellImage ([Item as Variant], [ColIndex as Variant]) as
Long

Retrieves or sets an Image that is displayed on the cell's area.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long value that indicates the image index.

Use the CellImage property to assign a single icon to a cell. Use the CellImages property to
assign multiple icons to a cell. Use the Images method to assign icons to the control at
runtime. You can add images at design time by dragging a file to image editor of the
control. The CellImage = 0 removes the cell's image. The collection of Images is 1 based.
The CellImageClick event occurs when the cell's image is clicked. Use the FilterType
property on exImage to filter items by icons. Use the CellPicture property to load a custom
size picture to a cell. Use the HTML tag to insert icons inside the cell's caption, if the
CellCaptionFormat property is exHTML.

The following sample sets cell's image for the first column (to run the sample make sure
that control's images collection is not empty):

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellImage(Item, 0) = 1
 End With
End Sub

The following sample changes the cell's image when the user has clicked on the cell's
image (to run the following sample you have to add two images to the tree's images
collection.),

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellImage(Item, 0) = 1
 End With

End Sub

Private Sub ExplorerTree1_CellImageClick(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 With Group.Items
 .CellImage(Item, ColIndex) = .CellImage(Item, ColIndex) Mod 2 + 1
 End With
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellImages ([Item as Variant], [ColIndex as Variant]) as
Variant
Specifies an additional list of icons shown in the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant A string expression that indicates the list of icons shown in
the cell.

The CellImages property assigns multiple icons to a cell. The CellImage property assign a
single icon to the cell. Instead if multiple icons need to be assigned to a single cell you have
to use the CellImages property. The CellImages property takes a list of additional icons and
display them in the cell. The list is separated by ',' and should contain numbers that
represent indexes to Images list collection.

The following sample assigns the first and the third icon to the cell:

With ExplorerTree1.Groups(0).Items
 .CellImages(.ItemByIndex(0), 1) = "1,3"
End With

property Items.CellItalic([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in italic.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
should appear in italic.

The CellItalic property specifies whether the cell should appear in italic. To change the italic
attribute for the whole item call ItemItalic property.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellItem (Cell as HCELL) as HITEM

Retrieves the handle of the item that is owner for a specfic cell.

Type Description
Cell as HCELL A long expression that indicates the handle of the cell.
HITEM A long expression that indicates the handle of the item.

Use the CellItem property to retrieve the item's handle. Use the ItemCell property to gets
the cell's handle given an item and a column.

property Items.CellMerge([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the index of the cell that's merged to.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A long expression that indicates the index of the cell that's
merged with, a safe array that holds the indexes of the
cells being merged.

Use the CellMerge property to combine two or more cells in the same item in a single cell.
The data of the source cell is displayed in the new larger cell. All the other cells' data is not
lost. Use the ItemDivider property to display a single cell in the entire item. Use the
UnmergeCells method to unmerge the merged cells. Use the CellMerge property to
unmerge a single cell. Use the MergeCells method to combine one or more cells in a single
cell.

The following sample shows few methods to unmerge cells:

With ExplorerTree1.Groups(0)
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With ExplorerTree1.Groups(0)
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items

 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

You can merge the first three cells in the root item using any of the following methods:

 With ExplorerTree1.Groups(0)
 With .Items
 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With ExplorerTree1.Groups(0)

 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With ExplorerTree1.Groups(0)
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

property Items.CellParent ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves the parent of an inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the parent
cell.

Use the CellParent property to get the parent of the inner cell. The SplitCell method splits a
cell in two cells (the newly created cell is called inner cell). Use the InnerCell property to
get the inner cell. Use the CellItem property to get the item that's the owner of the cell. The
CellParent property gets 0 if the cell is not an inner cell. The parent cell is always displayed
to the left side of the cell. The inner cell (InnerCell) is displayed to the right side of the cell.

property Items.CellPicture ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the Picture object displayed by the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant

A Picture object that indicates the cell's picture. (A Picture
object implements IPicture interface), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

The group can associate to a cell a check or radio button, an icon, multiple icons, a picture
and a caption. Use the CellPicture property to associate a picture to a cell. You can use
the CellPicture property when you want to display images with different widths into a cell.
Use the CellImage, CellImages property to associate an icon from the control's Images
collection.

The following sample shows how to load a picture to a cell:

Group.Items.CellPicture(h, 0) = LoadPicture("c:\winnt\logo.gif")

The following sample associates a picture to a cell by loading a base64 encoded string:

Dim s As String
s =
"gBCJr+BAAg0HGwEgwog4jg4ig4BAEFg4AZEKisZjUbAAzg5mg6Zg7Mg7/g0ek8oGcgjsijskjsmAEsmcoM0sM0uM0wM0ylwATMoTMsTMuTMwTMymAAZkoZksZkuZkwZkymQAf8of8sf8uf8wf8mlEdskekEekUekkesUqGcet9nGdpGdrGdilkruE3js5vtrnstk9BltnosttdJl8npsvs9Rl9rqsxk9ZmNnrsxtdhmcfskg0FAzskkEmM02t810Fzmuku8znGn2Ggv030mBv0zwk50GHnOkxU7g07s1PmeQnekyeBmeWnugzM90mcn9p0UgkXZpmik2EoGpoPY1lBklB7tE2VD7F+oflwOHoGEovYw9F8uKo8Go9o41H7KpqAybFKAyykuwzKkvKzilrW7aQPK7aSJIkzGqY1Kmwe1imwk17jKY2SnwevynwkwLIKYwiowew6owkxUAKYxqpweyCpwkybJqYyyqwezKqwkzirrErDOu7IkJyIyysNSrLStYrMJteraDK2ti+K2kStwmwLMqwwiutKw6uwmxSvyoxqvtKyCvwmybOKwyywtKzKwwnN6OTxPM9T3Pk+z9P9AUDP5V0JQtDUPRFE0SAFFUbR1FAAa9JUnSlJlnSZo0xStJGtStI03UFJUvUdQmuVtKU/TdT1RSpoGvS5WVKa9U1lWdRVrTtWVBS9c1nWlI0vSlY09WVg18a9MgAEla0nWliUkABHjXYCDUzSVY2daFSoNaBHWnWZH1/blN1TY1"

s = s +
"XgBadlDXdYSXRb9wWBclK2taF1gAI5HiPaN8oPdlNWbaF23KAwyWkNYyXxg9p3WNYjU/c1bWgABZoMiQS4YR984YNdpEeMgA2bgVtVHil0DVdY1CPhON44IGOI1XVPCPjl14RlmZ3XmZH3aWdYW1VF3DWMuWXXlw15PhlI3pgGJEfpGiZZgw1kTe1s0+g2Dalhmh6Pjgg5zrVx5/iV74bjGN41k9pCNl6D1dilKWDrGZ6ftmcZyNYAhKAGl7HemgoNs415XjI1XLmNm3sEho2jwdw4zmd+2+aFjFZVJWYpndf3xSPG2/koSWXW+I7JURZmtzO+XPe1K9RZ+S9HS1PllWfB9FiHEWZVBZWzeXdU32Fa973/SW34lr0nV1meH4/heb5/mWL4no+fUAAICA"

With ExplorerTree1.Groups(1).Items
 .CellPicture(.ItemByIndex(0), 0) = s
 .ItemHeight(.ItemByIndex(0)) = 24
End With

https://exontrol.com/eximages.jsp

property Items.CellPictureHeight ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the height of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the height of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureHeight property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. Use the CellPictureWidth property to specify the width of the cell's
picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the area
where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureHeight
property is greater than 0, it indicates the height of the area where the cell's picture is
stretched. Use the ItemHeight property to specify the height of the item.

property Items.CellPictureWidth ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the width of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the width of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureWidth property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. Use the CellPictureHeight property to specify the height of the cell's
picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the area
where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureWidth
property is greater than 0, it indicates the width of the area where the cell's picture is
stretched.

property Items.CellRadioGroup([Item as Variant], [ColIndex as Variant])
as Long

Retrieves or sets a value indicating the radio group where the cell is contained.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long value that identifies the cell's radio group.

A radio cell cannot be contained by two different radio groups. When a cell state is changed
the control fires CellStateChanged event. To change the radio cell state you have to call
CellState property. The value for radio group number is not important. You can allocate any
number that you want. To add or remove a cell to a given radio group you have to use
CellRadioGroup property. By default, when a cell of radio type is created the radio cell is
not grouped to any of existent radio groups.

The following sample shows how to set the radio type for all cells of the first column in the
first group, and group all of them in the same radio group (1234):

Dim h As Variant
With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 For Each h In ExplorerTree1.Groups(0).Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
 Next
 End With
 .EndUpdate
End With

or

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasRadioButton(Item, 0) = True

 .CellRadioGroup(Item, 0) = 1234
 End With
End Sub

To find out the radio cell that is checked in the radio group 1234 you have to call: MsgBox
Group.Items.CellCaption(, Group.Items.CellChecked(1234))

The following sample group all cells of the first column into a radio group, and display the
cell's checked on the radio group when the state of a radio group has been changed:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasRadioButton(Item, 0) = True
 .CellRadioGroup(Item, 0) = 1234
 End With
End Sub

Private Sub ExplorerTree1_CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & Group.Items.CellCaption(,
Group.Items.CellChecked(1234)) & """ is checked."
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellSingleLine([Item as Variant], [ColIndex as Variant]) as
CellSingleLineEnum

Retrieves or sets a value indicating whether the cell's caption is painted using one or more
lines.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

CellSingleLineEnum A CellSingleLineEnum expression that indicates whether
the cell displays its caption using one or more lines.

By default the cell uses only a line to display its caption. Use the
 HTML tag inside the
CellCaption to break a line. When the CellSingleLine is False, the height of the item is
computed based on each cell caption.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellState([Item as Variant], [ColIndex as Variant]) as Long

Retrieves or sets the cell's state. Has effect only for check and radio cells.

Type Description

Item as Variant A long expression that indicates the item's handle that
indicates the owner of the cell.

ColIndex as Variant
A long expression that identifies the column's index, or a
string expression that specifies the column's caption or the
column's key.

Long A long value that indicates the cell's state.

The CellState property has effect only for check and radio cells. When the cell's state is
changed the control fires the CellStateChanged event. Use the FilterType property on
exCheck to filter for checked or unchecked items.

The following sample shows how to change the state for a cell to checked state:
Group.Items.CellState(Group.Items(0), 0) = 1,

The following sample shows how to change the state for a cell to unchecked state:
Group.Items.CellState(Group.Items(0), 0) = 0,

The following sample shows how to change the state for a cell to partial checked state:
Group.Items.CellState(Group.Items(0), 0) = 2

The following sample displays a message when a cell of radio or check type has changed
its state:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasCheckBox(Item, 0) = True
 End With
End Sub

Private Sub ExplorerTree1_CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print "The cell """ & Group.Items.CellCaption(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(Group.Items.CellState(Item, ColIndex) = 0, "Unchecked",
"Checked")
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellStrikeOut([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in
strikeout.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell's
caption should appear in strikeout.

The CellStrikeOut property specifies whether the cell's caption should appear in strikeout.
To change the strike out attribute for the whole item call ItemStrikeOut property.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellToolTip([Item as Variant], [ColIndex as Variant]) as
String

Retrieves or sets a text that is used to show the tooltip's cell.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

String A string expression that indicates the cell's tooltip.

By default, the CellToolTip property is "..." (three dots). If the CellToolTip property is "..." the
control displays the cell's caption if it doesn't fit the cell's client area. If the CellToolTip
property is different than "...", the control shows a tooltip that displays the CellToolTip
value. The control fires the ToolTip event when the column's tooltip is about to be
displayed. The ToolTipPopDelay property specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary within a control. Use the ToolTipWidth
property to specify the width of the tooltip window. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTip property to specify a tooltip to be shown when the cursor
hovers the group's caption. Use the ShowToolTip method to programmatically display a
custom tooltip.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once

about:blank

the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb

represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. Almost all properties of Items object have two parameters Item and ColIndex, that
refers a cell.

property Items.CellUnderline([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in
underline.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell is
underlined.

To change the underline attribute for the whole item call ItemUnderline property.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.CellVAlignment ([Item as Variant], [ColIndex as Variant])
as VAlignmentEnum
Retrieves or sets a value that indicates how the cell's caption is vertically aligned.

Type Description
Item as Variant A long expression that identifies the item's handle

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

VAlignmentEnum A VAlignmentEnum expression that indicates the cell's
vertically alignment.

Use the CellVAlignment property to specify the vertically alignment for the cell's caption.
Use the CellSingleLine property to specify whether a cell uses single or multiple lines. Use
the CellHAlignment property to align horizontally the cell. The +/- button is aligned
accordingly to the cell's caption. Use the Def(exCellVAlignment) property to specify the
same vertical alignment for the entire column.

property Items.CellWidth([Item as Variant], [ColIndex as Variant]) as Long
Retrieves or sets a value that indicates the width of the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Long A long expression that indicates the width of the cell.

The CellWidth property specifies the cell's width. The CellWidth property has effect only if
the cell contains inner cells. The SplitCell method splits a cell in two cells (the newly
created cell is called inner cell). Use the InnerCell property to get the inner cell. Use the
CellParent property to get the parent of the inner cell. Use the CellItem property to get the
item that's the owner of the cell.

The CellWidth property specifies the width of the cell, where the cell is divided in two or
multiple (inner) cells like follows:

if the CellWidth property is less than zero, the master cell calculates the width of the
inner cell, so all the inner cells with CellWidth less than zero have the same width in the
master cell.
if the CellWidth property is greater than zero, it indicates the width in pixels of the inner
cell.

By default, the CellWidth property is -1, and so when the user splits a cell the inner cell
takes the right half of the area occupied by the master cell.

The following sample splits the first visible cell in three cells:

With Tree1
 .BeginUpdate
 .DrawGridLines = exAllLines
 With .Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)

 .CellCaption(, f) = "Split 1"
 f = .SplitCell(, f)
 .CellCaption(, f) = "Split 2"
 End With
 .EndUpdate
End With

The following sample specifies that the inner cell should have 32 pixels:

With Tree1
 .BeginUpdate
 .DrawGridLines = exAllLines
 With .Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)
 .CellCaption(, f) = "Split"
 .CellWidth(, f) = 32
 End With
 .EndUpdate
End With

property Items.ChildCount (Item as HITEM) as Long

Retrieves the number of children items.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long value that indicates the number of child items.

Use the ChildCount property checks whether an item has child items. Use the ItemChild
property to get the first child item, if there is one, 0 else.

method Items.ClearCellBackColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

The ClearCellBackColor method clears the cell's background color when the CellBackColor
property is used.

method Items.ClearCellForeColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

The ClearCellForeColor method clears the cell's foreground color when CellForeColor
property was used.

method Items.ClearCellHAlignment ([Item as Variant], [ColIndex as
Variant])
Clears the cell's alignment.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

Use the ClearCellHAlignment method to clear the alignment of the cell's caption previously
set using the CellHAlignment property. If the CellHAlignment property is not called, the
Alignment property of the Column object specifies the alignment of the cell's caption.

method Items.ClearItemBackColor (Item as HITEM)
Clears the item's background color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property was used.

method Items.ClearItemForeColor (Item as HITEM)
Clears the item's foreground color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemForeColor method clears the item's foreground color when ItemForeColor
property is used.

property Items.DefaultItem as HITEM

Retrieves or sets the default item's handle.

Type Description

HITEM
A long expression that indicates the handle of the item
that's used by all properties of the Items object, that have
a parameter Item.

The property is used in VFP implementation. The VFP fires "Invalid Subscript Range" error,
while it tries to process a number grater than 65000. Since, the HITEM is a long value that
most of the time exceeds 65000, the VFP users have to use this property, instead passing
directly the handles to properties.

The following sample shows to change the cell's image:

.Items.DefaultItem = .Items.AddItem("Item 1")

.Items.CellImage(0,1) = 2

In VFP the following sample fires: "Invalid Subscript Range":

i = .Items.AddItem("Item 1")
.Items.CellImage(i,1) = 2

because the i variable is grater than 65000.

So, if you pass zero to a property that has a parameter titled Item, the group takes instead
the DefaultItem value.

method Items.Edit ([Item as Variant], [ColIndex as Variant])

Edits a cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

The Edit method starts edit operation. The edit operation starts only if the group's AllowEdit
property is True. When the edit operation starts the control fires the BeforeCellEdit event.
Use the BeforeCellEdit event to cancel the edit operation. When the edit operation ends the
control fires the AfterCellEdit event. Use the AfterCellEdit event to change the cell's caption
after edit operation ends. The following snippet of code shows how to start editing the first
cell: Group.Items.Edit Group.Items(0), 0.

The following sample shows how to change the cell's caption when the edit operation ends.

Private Sub ExplorerTree1_AfterCellEdit(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long, ByVal NewCaption As
String)
 Group.Items.CellCaption(Item, ColIndex) = NewCaption
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.EnableItem(Item as HITEM) as Boolean

Returns or sets a value that determines whether a item can respond to user-generated
events.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
enabled or disabled.

Boolean A boolean expression that indicates whether the item is
enabled or disabled.

Once that an item is disabled all the cells of the item are disabled, so CellEnabled property
has no effect. To disable a column you can use Enabled property of a Column object.

method Items.EnsureVisibleItem (Item as HITEM)

Ensures the given item is in the visible client area.

Type Description

Item as HITEM A long expression that indicates the item's handle that fits
the client area.

The method doesn't expand parent items. The EnsureVisibleItem method scrolls the
control's content until the item is visible. Use the IsItemVisible to check if an item fits the
control's client area.

The following sample shows how to make visible the first item in the group:
Group.Items.EnsureVisibleItem Group.Items(0)

property Items.ExpandItem(Item as HITEM) as Boolean

Expands, or collapses, the child items of the specified item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being expanded or collapsed.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

Use ExpandItem property to programmatically expand or collapse an item. Before
expanding/collapsing an item, the control fires the BeforeExpandItem event. Use the
BeforeExpandIvent to cancel expanding/collapsing of an item. After item was
expanded/collapsed the control fires the AfterExpandItem event. The following samples
shows how to expand the selected item:
Group.Items.ExpandItem(Group.Items.SelectedItem()) = True. The property has no effect
if the item has no child items. To check if the item has child items you can use ChildCount
property.

The following sample shows how to programmatically expand the selected item:

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 With Group.Items
 .ExpandItem(.SelectedItem()) = True
 End With
End Sub

property Items.FindItem (Caption as Variant, [ColIndex as Variant],
[StartIndex as Variant]) as HITEM

Finds an item, looking for Caption in ColIndex column. The searching starts at StartIndex
item.

Type Description

Caption as Variant A Variant expression that indicates the caption that is
searched for.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

StartIndex as Variant A long value that indicates the index of item from where
the searching starts.

HITEM A long expression that indicates the item's handle that
matches the criteria.

Use the FindItem to search for an item. Finds a group's item that matches CellCaption(
Item, ColIndex) = Caption. The searching starts from item index Start Index. The searching
is case sensitive only if the ASCIIUpper property is empty. The following sample shows hot
to select the first item that matches "DUMON" on the first column:
Group.Items.SelectItem(Group.Items.FindItem("DUMON", 0)) = True

property Items.FindItemData (UserData as Variant, [StartIndex as
Variant]) as HITEM

Finds the item giving its data.

Type Description

UserData as Variant A Variant expression that indicates the value being
searched.

StartIndex as Variant A long expression that indicates the index of the item
where the searching starts.

HITEM A long expression that indicates the handle of the item
found.

Use the FindItemData property to search for an item giving its extra-data. Use the ItemData
property to associate an extra data to an item. Use the FindItem property to locate an item
given its caption. Use the FindPath property to search for an item given its path.

property Items.FindPath (Path as String) as HITEM

Finds an item given its path.

Type Description
Path as String A string expression that indicates the item's path.

HITEM A long expression that indicates the item's handle that
matches the criteria.

The FindPath property searches the item on the column SearchColumnIndex. Use the
FullPath property in order to get the item's path. Use the FindItem to search for an item.

The following sample selects the item based on its path:

Group.Items.SelectItem(Group.Items.FindPath("Files and Folders\Hidden Files and
Folders\Do not show hidden files and folder")) = True

property Items.FirstVisibleItem as HITEM

Retrieves the handle of the first visible item into control.

Type Description

HITEM A long expression that indicates the handle of the first
visible item.

Use the FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that
fit the client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the group's client area.

The following sample enumerates the items that fit the group's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
With ExplorerTree1.Groups(0)
 nCols = .Columns.Count
 With .Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellCaption(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
 End With
End With

property Items.FocusItem as HITEM

Retrieves the handle of item that has the focus.

Type Description

HITEM A long expression that indicates the handle of the focused
item.

If there is no focused item the FocusItem property retrieves 0. At one moment, only one
item can be focused. When the selection is changed the focused item is changed too.

property Items.FormatCell([Item as Variant], [ColIndex as Variant]) as
String
Specifies the custom format to display the cell's content.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

String
A string expression that indicates the format to be applied
on the cell's value, including HTML formatting, if the cell
supports it.

By default, the FormatCell property is empty. The format is being applied if valid (not
empty, and syntactically correct). The expression may be a combination of variables,
constants, strings, dates and operators, and value. The value operator gives the value to
be formatted. A string is delimited by ", ` or ' characters, and inside they can have the
starting character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The
FormatColumn property applies the predefined format for all cells in the columns. The
CellCaption property indicates the cell's caption.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".

the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string

9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit

indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++)
ie cond ? value_true : value_false, which means that once that cond is true the value_true
is used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the
value of the variable 0. You can use variables to avoid computing several times the same
thing.

property Items.FullPath (Item as HITEM) as String

Returns the fully qualified path of the referenced item in the group.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
String A string expression that indicates the fully qualified path.

Use the FullPath property in order to get the fully qualified path of the referenced item. Use
PathSeparator to change the separator used by FullPath property. Use the FindPath
property to get the item's selected based on its path. The fully qualified path is the
concatenation of the text in the given cell's caption property on the column
SearchColumnIndex with the CellCaption property values of all its ancestors.

property Items.InnerCell ([Item as Variant], [ColIndex as Variant], [Index
as Variant]) as Variant
Retrieves the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Index as Variant
A long expression that indicates the index of the inner
being requested. If the Index parameter is missing or it is
zero, the InnerCell property retrieves the master cell.

Variant A long expression that indicates the handle of the inner
cell.

Use the InnerCell property to get the inner cell. The InnerCell(, , 0) property always
retrieves the same cell. The InnerCell(, , 1) retrieves the first inner cell, and so on. The
SplitCell method splits a cell in two cells (the newly created cell is called inner cell). Use
the CellParent property to get the parent of the inner cell. Use the CellItem property to get
the item that's the owner of the cell. Use the CellWidth property to specify the width of the
inner cell.

method Items.InsertControlItem (Parent as HITEM, ControlID as String,
[License as Variant])

Inserts a new item of ActiveX type, and returns a handle to the newly created item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the ActiveX will be inserted. If the argument is
0 then the InsertControlItem property inserts the ActiveX
control as a root item. If the Parent property is referring a
locked item (ItemLocked property), the
InsertControlItem property doesn't insert a new child
ActiveX, instead insert the ActiveX control to the locked
item that's specified by the Parent property.

ControlID as String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

License as Variant
A string expression that indicates the runtime license key,
if it is required. An empty string, if the control doesn't
require a runtime license key.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

The control supports ActiveX hosting, so you can insert any ActiveX component. The
ControlID must be formatted in one of the following ways:

A ProgID such as "Exontrol.ExplorerTree"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

Once that an item of ActiveX type has been added you can get the OLE control created
using the ItemObject property. To check if an item contains an ActiveX control you can use
ItemControlID property. To change the height of an ActiveX item you have to use ItemHeight
property. When the group contains at least an item of ActiveX type, it is recommend to set
ScrollBySingleLine property of group to true. Events from contained components are fired

through to your program using the exact same model used in VB6 for components added at
run time (See ItemOleEvent event, OleEvent and OleEventParam). For instance, when an
ActiveX control fires an event, the control forwards that event to your container using
ItemOleEvent event of the control.

The following sample adds dynamically an ExplorerTree ActiveX Control and a Microsoft
Calendar Control:

With ExplorerTree1.Groups(0)
 Dim hExplorerTree As HITEM
 hExplorerTree = .Items.InsertControlItem(.Items(0), "Exontrol.ExplorerTree")
 .Items.ItemHeight(hExplorerTree) = 212
 With .Items.ItemObject(hExplorerTree)
 With .Groups.Add("Inside Group")
 With .Items
 .AddItem "One"
 .AddItem "Two"
 .AddItem "Three"
 End With
 End With
 End With

 Dim hCalc As HITEM
 hCalc = .Items.InsertControlItem(, "MSCal.Calendar")
 With .Items.ItemObject(hCalc)
 .ShowTitle = False
 .ShowDateSelectors = False
 End With
End With

The following sample shows how to handle any event that a contained ActiveX fires:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 On Error Resume Next
 Dim i As Long
 Debug.Print "The " & Ev.Name & " was fired. "
 If Not (Ev.CountParam = 0) Then
 Debug.Print "The event has the following parameters: "

 For i = 0 To Ev.CountParam - 1
 Debug.Print " - " & Ev(i).Name & " = " & Ev(i).Value
 Next
 End If
End Sub

Some of ActiveX controls requires additional window styles to be added to the conatiner
window. For instance, the Web Brower added by the Group.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = Group.Items.InsertControlItem(, "https://www.exontrol.com")
Group.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 If (Group.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page
 Group.Items.ItemWindowHostCreateStyle(Item) =
Group.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

If somehow the InsertItemControl wasn't able to create your ActiveX on some Windows
platforms, and you don't know why, you can use the following code to make sure that
ActiveX control can be created properly by using (the sample is trying to add a new
Microsoft RichText ActivX control into your form):

https://www.exontrol.com

Controls.Add "RICHTEXT.RichtextCtrl", "rich"

method Items.InsertItem ([Parent as HITEM], [UserData as Variant],
[Caption as Variant])

Inserts a new item, and returns a handle to the newly created item.

Type Description

Parent as HITEM A long expression that indicates the item's handle that
indicates the parent item where the newly item is inserted.

UserData as Variant A Variant expression that indicates the item's extra data.

Caption as Variant
A string expression that indicates the cell's caption on the
first column, a safe array that holds the caption for each
column.

Return Description
HITEM Retrieves the handle of the newly created item.

The InsertItem property fires the AddItem event. Use the InsertItem property to add a new
child to an item. You can use the InsertItem(,,"Root") or AddItem("Root") to add a root
item. An item that has no parent is a root item. To insert an ActiveX control, use the
InsertControlItem property of the Items property. Use the CellCaptionFormat property to
specify whether the cell displays the caption using the HTML format. Use the CelllCaption
property to assign captions for cells in a multi-column group. Use the LockedItemCount
property to lock or unlock items to the top or bottom side of the group. Use the MergeCells
method to combine two or more cells in a single cell. Use the SplitCell property to split a
cell.

The following sample shows how to create a simple hierarchy into your group:

With ExplorerTree1.Groups.Add("Simple Tree")

 .AutoHeight = True
 .ColumnAutoResize = True
 .LinesAtRoot = True
 .FullRowSelect = False
 .MarkSearchColumn = False

 .BeginUpdate
 ' By default the group adds a default column
 With .Items
 Dim h As HITEM

 h = .InsertItem(, , "Root")
 .InsertItem h, , "Child1"
 h = .InsertItem(h, , "Child2")
 .InsertItem h, , "SubChild21"
 h = .InsertItem(h, , "SubChild22")
 End With
 .EndUpdate

End With

The following VB sample adds items when control has multiple columns:

With ExplorerTree1.Groups.Add("Simple Tree")

 .AutoHeight = True
 .ColumnAutoResize = False
 .LinesAtRoot = exLinesAtRoot
 .HeaderVisible = True

 .BeginUpdate

 ' By default the group adds a default column, so we only change it's caption
 With .Columns(0)
 .Caption = "Column 1"
 .Width = 64
 End With
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 Dim h As HITEM
 With .Items
 h = .AddItem(Array("Item 1.1", "Item 1.2", "Item 1.3"))
 .InsertItem h, , Array("Item 2.1", "Item 2.2", "Item 2.3")

 End With

 .EndUpdate
End With

With ExplorerTree1.Groups.Add("Empty Group")
End With

property Items.IsItemLocked (Item as HITEM) as Boolean
Returns a value that indicates whether the item is locked or unlocked.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item is
locked or unlocked.

Use the IsItemLocked property to check whether an item is locked or unlocked. A locked
item is always displayed on the top or bottom side of the control no matter if the control's
list is scrolled up or down. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the ShowLockedItems property to show or hide
the locked items.

property Items.IsItemVisible (Item as HITEM) as Boolean

Checks if the specific item fits the group's client area.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
fits the client area.

Boolean A boolean expression that indicates whether the item fits
the client area.

To make sure that an item fits the client area call EnsureVisibleItem method. Use the
FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that fit the
client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the group's client area.

The following sample enumerates the items that fit the group's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
With ExplorerTree1.Groups(0)
 nCols = .Columns.Count
 With .Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellCaption(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
 End With
End With

property Items.ItemAllowSizing(Item as HITEM) as Boolean
Retrieves or sets a value that indicates whether a user can resize the item at run-time.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
that can be resized.

Boolean A Boolean expression that specifies whether the user can
resize the item at run-time.

By default, the user can resize the item at run-time using mouse movements. Use the
ItemAllowSizing property to specify whether a user can resize the item at run-time. Use the
ItemsAllowSizing property to specify whether all items are resizable or not. Use the
ItemHeight property to specify the height of the item. An item is resizable if the
ItemAllowSizing property is True, or if the ItemsAllowSizing property is True (that means all
items are resizable), and the ItemAllowSizing property is not False. For instance, if your
application requires all items being resizable but only few of them being not resizable, you
can have the ItemsAllowSizing property on True, and for those items that are not resizable,
you can call the ItemAllowSizing property on False. The user can resize an item by moving
the mouse between two items, so the vertical split cursor shows up, click and drag the
mouse to the new position. Use the CellSingleLine property to specify whether the cell
displays its caption using multiple lines. The ScrollBySingleLine property is automatically set
on True, as soon as the user resizes an item.

property Items.ItemAppearance(Item as HITEM) as AppearanceEnum
Specifies the item's appearance when the item hosts an ActiveX control.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem property.

AppearanceEnum An AppearanceEnum expression that indicates the item's
appearance.

Use the ItemAppearance property to specify the item's appearance if the item is of ActiveX
type.

property Items.ItemBackColor(Item as HITEM) as Color

Retrieves or sets a background color for a specific item.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Color A color expression that indicates the item's background
color.

To change the background color for a cell you can call CellBackColor. To change the
background color of the entire control you can call BackColor property of the control.

The following sample changes the background color for cells in the first column:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellBackColor(Item, 0) = vbBlue
 End With
End Sub

property Items.ItemBold(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in bold.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item
should appear in bold.

To change the bold attribute for a cell you can call CellBold property.

The following sample bolds the selected item:

Dim hOldBold As HITEM

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 If (Group.Index = 0) Then
 With Group.Items
 If Not hOldItem = 0 Then
 .ItemBold(hOldItem) = False
 End If
 hOldItem = .SelectedItem()
 .ItemBold(hOldItem) = True
 End With
 End If
End Sub

property Items.ItemByIndex (Index as Long) as HITEM

Retrieves the handle of the item given its index in Items collection..

Type Description
Index as Long A long expression that indicates the index of the item.
HITEM A long expression that indicates the item's handle.

Use the ItemByIndex to get the index of an item. Use the ItemPosition property to get the
item's position. Use the ItemToIndex property to get the index of giving item.

The following statements are equivalents: Group.Items(0), Group.Items.ItemByIndex(0).

The following sample displays the handle for each item into Items collection:

Dim i As Long, n As Long
With Group.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

property Items.ItemCell (Item as HITEM, ColIndex as Variant) as HCELL

Retrieves the cell's handle based on a specific column.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

HCELL A long expression that indicates the handle of the cell.

A cell is the intersection of an item with a column. All properties that has an Item and a
ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Group.Items.CellBold(, Group.Items.ItemCell(Group.Items(0), 0)) = True
Group.Items.CellBold(Group.Items(0), 0) = True
Group.Items.CellBold(Group.Items(0), "ColumnName") = True

property Items.ItemChild (Item as HITEM) as HITEM

Retrieves the first child item of a specified item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the first child
item.

If the ItemChild property gets 0, the item has no child items. Use this property to get the
first child of an item. NextVisibleItem or NextSiblingItem to get the next visible, sibling item.

The following snippet of code shows how to recursively scan all child items in the group:

Sub RecItem(ByVal g As EXPLORERTREELibCtl.Group, ByVal h As
EXPLORERTREELibCtl.HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With g.Items
 Debug.Print .CellCaption(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem g, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

property Items.ItemControlID (Item as HITEM) as String

Retrieves the item's control identifier that was used by InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by the InsertControlItem property.

String
A string expression that indicates the control identifier
used by InsertControlItem method to create an item that
hosts an ActiveX control.

The ItemControlID property retrieves the control identifier used by the InsertControlItem
property. If the item was created using AddItem or InsertItem properties the ItemControlID
property retrieves an empty string. For instance, the ItemControlID property can be used to
check if an item contains an ActiveX control or not.

property Items.ItemCount as Long

Retrieves the number of items.

Type Description

Long A long value that indicates the number of items into the
Items collection.

The ItemCount property counts the items in the collection. Use ChildCount to get the
number of child items.

The following sample enumerates all control items:

Dim i As Long, n As Long
With Group.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

property Items.ItemData(Item as HITEM) as Variant

Retrieves or sets the extra data for a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle that has
associated some extra data.

Variant A variant value that indicates the item's extra data.

Use CellData property to associate an extra data with a cell. The ItemData and CellData
are of Variant type, so you will be able to save here what ever you want: numbers, objects,
strings, and so on. The user data is only for user use. The group doesn't use this value.

property Items.ItemDivider(Item as HITEM) as Long
Specifies whether the item acts like a divider item. The value indicates the index of column
used to define the divider's title.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long expression that indicates the column's index.

A divider item uses the item's client area to display a single cell. The ItemDivider property
specifies the index of the cell being displayed. In other words, the divider item merges the
item cells into a single cell. Use the ItemDividerLine property to define the line that a divider
item paints. Use the LockedItemCount property to lock items on the top or bottom side of
the control.

The following sample adds a divider item that's locked to the top side of the first group in
the control: (Before running this sample please make sure that your control contains groups
objects):

With ExplorerTree1.Groups(0)
 .BeginUpdate
 .DrawGridLines = exNoLines
 With .Items
 .LockedItemCount(TopAlignment) = 1
 Dim h As HITEM
 h = .LockedItem(TopAlignment, 0)
 .ItemDivider(h) = 0
 .ItemHeight(h) = 24
 .CellCaption(h, 0) = "Total: $12.344.233"
 .CellCaptionFormat(h, 0) = exHTML
 .CellHAlignment(h, 0) = RightAlignment
 End With
 .EndUpdate
End With

property Items.ItemDividerLine(Item as HITEM) as DividerLineEnum
Defines the type of line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerLineEnum A DividerLineEnum expression that indicates the type of
the line in the divider item.

Use the ItemDivider property to define a divider item. Use the ItemDividerLine and
ItemDividerAlignment properties to define the style of the line into a divider item.

property Items.ItemDividerLineAlignment(Item as HITEM) as
DividerAlignmentEnum
Specifies the alignment of the line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerAlignmentEnum A DividerAlignmentEnum expression that specifies the
line's alignment.

Use the ItemDividerLine and ItemDividerLineAlignment properties to define the style of the
line into a divider item. Use the ItemDivider property to define a divider item.

property Items.ItemFont (Item as HITEM) as IFontDisp
Retrieves or sets the item's font.

Type Description
Item as HITEM A long expression that specifies the item's handle.
IFontDisp A Font object that specifies the item's font.

By default, the ItemFont property is nothing. If the ItemFont property is nothing, the item
uses the group's Font, and the ItemFont property is nothing. Use the CellFont and ItemFont
properties to specify different fonts for cells or items. Use the CellBold, CellItalic,
CellUnderline, CellStrikeout, ItemBold, ItemUnderline, ItemStrikeout, ItemItalic or
CellCaptionFormat to specify different font attributes.

property Items.ItemForeColor(Item as HITEM) as Color

Retrieves or sets a foreground color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Color A color expression that defines the item's foreground
color.

To change the foreground color for a cell call CellForeColor property. To change the
foreground color for the entire control call ForeColor property of the control.

The following sample to change the foreground color for the first column:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellForeColor(Item, 0) = vbBlue
 End With
End Sub

property Items.ItemHasChildren (Item as HITEM) as Boolean

Adds an expand button to left side of the item even if the item has no child items.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates whether the control
adds an expand button to the left side of the item even if
the item has no child items.

Use the ItemHasChildren property to build a virtual tree. Use the BeforeExpandItem event
to add new child items before expanding a fake item. Use the ItemChild property to get the
first child item. Use the ItemChild or ChildCount property to determine whether an item
contains child items.

Private Sub ExplorerTree1_BeforeExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, Cancel As Variant)
 With Group.Items
 If (.ItemData(Item) = 1234) Then
 add (Item)
 .ItemData(Item) = 1111
 End If
 End With
End Sub

property Items.ItemHeight(Item as HITEM) as Long

Retrieves or sets the item's height.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long value that indicates the item's height in pixels.

To change the default height of the item before inserting items to collection you can call
DefaultItemHeight property of the group. The control supports items with different heights.
When an item hosts an ActiveX control (was previously created by the InsertControlItem
property), the ItemHeight property changes the height of contained ActiveX control. Also,
please check the CellSingleLine property.

property Items.ItemItalic(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in italic.

Type Description

Item as HITEM A long expression that indicates the item's handle that
uses italic font attribute.

Boolean A boolean expression that indicates whether the item
should appear in italic.

To change the italic attribute for a cell you can call CellItalic property.

The following sample applies an italic font attribute to the selected item in the first group:

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 If (Group.Index = 0) Then
 With Group.Items
 If Not hOldItem = 0 Then
 .ItemItalic(hOldItem) = False
 End If
 hOldItem = .SelectedItem()
 .ItemItalic(hOldItem) = True
 End With
 End If
End Sub

property Items.ItemMaxHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the maximum height when the item's height is
variable.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Long A long value that indicates the maximum height when the
item's height is variable.

By default, the ItemMaxHeight property is -1. The ItemMaxHeight property has effect only if
it is greater than 0, and item contains cells with CellSingleLine property on False. Use the
ItemHeight property to get the item's height.

property Items.ItemObject (Item as HITEM) as Object

Retrieves the item's ActiveX object associated, if the item was previously created by
InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem property.

Object An object that indicates the ActiveX hosted by the item.

Use the ItemObject to access item's ActiveX properties and methods, if the item was
created by the InsertControlItem property.

The following sample adds an ExplorerTree ActiveX control:

With ExplorerTree1.Groups.Add("ActiveX")
 Dim hExplorerTree As HITEM
 hExplorerTree = .Items.InsertControlItem(.Items(0), "Exontrol.ExplorerTree")
 .Items.ItemHeight(hExplorerTree) = 212
 With .Items.ItemObject(hExplorerTree)
 With .Groups.Add("Inside Group")
 With .Items
 .AddItem "One"
 .AddItem "Two"
 .AddItem "Three"
 End With
 End With
 End With
End With

property Items.ItemParent (Item as HITEM) as HITEM

Returns the handle of the parent item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the parent
item.

To change the item's parent call SetParent method. To verify if an item can be parent for
another item you can call AcceptSetParent property. If the item has no parent the
ItemParent property retrieves 0. If the ItemParent gets 0 for an item, than the item is called
root. The group is able to handle more root items. To get the collection of root items you
can use RootCount and RootItem properties.

property Items.ItemPosition(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's position in the children list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's position in the
children list.

The ItemPosition property gets the item's position in the children items list. You can use the
ItemPosition property to change the item's position after it been added to collection. When
the group sorts the tree, the item for each position can be changed, so you can use the
item's handle or item's index to identify an item.

property Items.ItemStrikeOut(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in strikeout.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item
should appear in strikeout.

To change the strike out attribute for a cell you can call CellStrikeOut property.

The following sample applies a strikeout font attribute for the selected item in the first
group:

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 If (Group.Index = 0) Then
 With Group.Items
 If Not hOldItem = 0 Then
 .ItemStrikeOut(hOldItem) = False
 End If
 hOldItem = .SelectedItem()
 .ItemStrikeOut(hOldItem) = True
 End With
 End If
End Sub

property Items.ItemToIndex (Item as HITEM) as Long
Retrieves the index of item into Items collection given its handle.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the index of the item in
Items collection.

Use the ItemToIndex property to get the item's index into Items collection. Use ItemPosition
property to change the item's position. Use the ItemByIndex property to get an item giving
its index.

property Items.ItemUnderline(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in underline.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item
should appear in underline.

To change the underline attribute for a cell you can call CellUnderline property.

The following sample underlines the selected item in the first group:

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 If (Group.Index = 0) Then
 With Group.Items
 If Not hOldItem = 0 Then
 .ItemUnderline(hOldItem) = False
 End If
 hOldItem = .SelectedItem()
 .ItemUnderline(hOldItem) = True
 End With
 End If
End Sub

property Items.ItemWidth(Item as HITEM) as Long

Retrieves or sets a value that indicates the item's width while it contains an ActiveX control.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's width, when the
item contains an ActiveX control.

By default, the ItemWidth property is -1. If the ItemWidth property is -1, the control resizes
the ActiveX control to fit the control's client area. Use the ItemHeight property to specify the
item's height. The property has effect only if the item contains an ActiveX control. Use the
InsertControlItem property to insert ActiveX controls. Use the ItemObject property to
retrieve the ActiveX object that's hosted by an item.

The ItemWidth property is interpreted like follows:

If the ItemWidth property is greater than zero, the ItemWidth property indicates the
width in pixels of the ActiveX control. The TreeColumnIndex property indicates the
column where the ActiveX control is shown. For instance, ItemWidth = 64, indicates
that the width of the inside ActiveX control is 64 pixels.
If the ItemWidth property is zero, the ActiveX control uses the full item area to display
the inside ActiveX control.
If the ItemWidth property is -1, the TreeColumnIndex property indicates the column
where the ActiveX control is shown and the inside ActiveX control is shown to the end
of the control.
If the ItemWidth property is less than -32000, the formula -(ItemWidth+32000)
indicates the index of the column where the inside ActiveX is displayed. For instance,
-32000 indicates that the cell in the first column displays the inside ActiveX control,
-32001 indicates that the cell in the second column displays the inside ActiveX control,
-32002 indicates that the cell in the third column displays the inside ActiveX control, and
so on.
If the ItemWidth property is -InnerCell or ItemCell, the ItemWidth property indicates the
handle of the cell that shows the inside ActiveX. This option should be used when you
need to display the ActiveX control in an inner cell. Use the SplitCell property to create
inner cells, to divide a cell or to split a cell. For instance, .ItemWidth(.FirstVisibleItem)
= -.InnerCell(.FirstVisibleItem, 1, 1) indicates that the inside ActiveX control is shown in
the second inner cell in the second column, in the first visible item. Use the CellWidth
property to specify the width of the inner cell

property Items.ItemWindowHost (Item as HITEM) as Long

Retrieves the window's handle that hosts an ActiveX control when the item was created
using InsertControlItem method.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem method.

Long A long value that indicates the window handle that hosts
the item's ActiveX.

The ItemWindowHost property retrieves the window's handle that is the container for the
item's ActiveX control. Use the ItemObject property to access the ActiveX properties and
methods.

property Items.ItemWindowHostCreateStyle(Item as HITEM) as Long

Retrieves or sets a value that indicates a combination of window styles used to create the
ActiveX window host.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem method.

Long A long value that indicates the container window's style.

The ItemWindowHostCreateStyle property has no effect for regular items.
ItemWindowHostCreateStyle property must be change in the AddItem event.

Some of ActiveX controls requires additional window styles to be added to the conatiner
window. For instance, the Web Brower added by the Group.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = Group.Items.InsertControlItem(, "https://www.exontrol.com")
Group.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 If (Group.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page
 Group.Items.ItemWindowHostCreateStyle(Item) =
Group.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

https://www.exontrol.com

property Items.LastVisibleItem ([Partially as Variant]) as HITEM

Retrieves the handle of the last visible item.

Type Description

Partially as Variant
A boolean expression that indicates whether the item is
partially visible. By default, the Partially parameter is
False.

HITEM A long expression that indicates handle of the last visible
item.

To get the first visible item use FirstVisibleItem property. The LastVisibleItem property
retrieves the handle for the last visible item. Use the FirstVisibleItem, NextVisibleItem and
IsItemVisible properties to get the items that fit the client area. Use the NextVisibleItem
property to get the next visible item. Use the IsVisibleItem property to check whether an
item fits the group's client area.

The following sample enumerates the items that fit the group's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
With ExplorerTree1.Groups(0)
 nCols = .Columns.Count
 With .Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellCaption(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
 End With
End With

property Items.LockedItem (Alignment as VAlignmentEnum, Index as
Long) as HITEM
Retrieves the handle of the locked/fixed item.

Type Description

Alignment as
VAlignmentEnum

A VAlignmentEnum expression that indicates whether the
locked item requested is on the top or bottom side of the
control.

Index as Long A long expression that indicates the position of item being
requested.

HITEM A long expression that indicates the handle of the locked
item

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItem property to access a locked
item by its position. Use the LockedItemCount property to add or remove items fixed/locked
to the top or bottom side of the control. Use the ShowLockedItems property to show or
hide the locked items. Use the IsItemLocked property to check whether an item is locked or
unlocked. Use the CellCaption property to specify the caption for a cell. Use the
InsertControlItem property to assign an ActiveX control to a locked item only.

The following sample adds a divider item that's locked to the top side of the first group in
the control: (Before running this sample please make sure that your control contains groups
objects):

With ExplorerTree1.Groups(0)
 .BeginUpdate
 .DrawGridLines = exNoLines
 With .Items
 .LockedItemCount(TopAlignment) = 1
 Dim h As HITEM
 h = .LockedItem(TopAlignment, 0)
 .ItemDivider(h) = 0
 .ItemHeight(h) = 24
 .CellCaption(h, 0) = "Total: $12.344.233"
 .CellCaptionFormat(h, 0) = exHTML
 .CellHAlignment(h, 0) = RightAlignment
 End With
 .EndUpdate

End With

property Items.LockedItemCount(Alignment as VAlignmentEnum) as
Long
Specifies the number of items fixed on the top or bottom side of the group.

Type Description
Alignment as
VAlignmentEnum

A VAlignmentEnum expression that specifies the top or
bottom side of the group.

Long A long expression that indicates the number of items
locked to the top or bottom side of the group.

A locked or fixed item is always displayed on the top or bottom side of the group no matter
if the group's list is scrolled up or down. Use the LockedItemCount property to add or
remove items fixed/locked to the top or bottom side of the group. Use the LockedItem
property to access a locked item by its position. Use the ShowLockedItems property to
show or hide the locked items. Use the CellCaption property to specify the caption for a
cell. Use the CountLockedColumns property to lock or unlock columns in the group. Use the
ItemBackColor property to specify the item's background color. Use the ItemDivider
property to merge the cells.

The following sample adds a divider item that's locked to the top side of the first group in
the control: (Before running this sample please make sure that your control contains groups
objects):

With ExplorerTree1.Groups(0)
 .BeginUpdate
 .DrawGridLines = exNoLines
 With .Items
 .LockedItemCount(TopAlignment) = 1
 Dim h As HITEM
 h = .LockedItem(TopAlignment, 0)

 .ItemDivider(h) = 0
 .ItemHeight(h) = 24
 .CellCaption(h, 0) = "Total: $12.344.233"
 .CellCaptionFormat(h, 0) = exHTML
 .CellHAlignment(h, 0) = RightAlignment
 End With
 .EndUpdate
End With

method Items.MergeCells ([Cell1 as Variant], [Cell2 as Variant], [Options
as Variant])
Merges a list of cells.

Type Description

Cell1 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell
(in the list, if exists) specifies the cell being displayed in
the new larger cell.

Cell2 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell in
the list specifies the cell being displayed in the new larger
cell.

Options as Variant Reserved.

The MergeCells method combines two or more cells into one cell. The data in the first
specified cell is displayed in the new larger cell. All the other cells' data is not lost. Use the
CellMerge property to merge or unmerge a cell with another cell in the same item. Use the
ItemDivider property to display a single cell in the entire item. Use the UnmergeCells
method to unmerge the merged cells. Use the CellCaption property to specify the cell's
caption. Use the ItemCell property to retrieves the handle of the cell. Use the BeginMethod
and EndUpdate methods to maintain performance, when merging multiple cells in the same
time. The MergeCells methods creates a list of cells from Cell1 and Cell2 parameters that
need to be merged, and the first cell in the list specifies the displayed cell in the merged
cell.

The following sample adds three columns to a group, a root item and few child items:

With ExplorerTree1
 .BeginUpdate
 With .Groups.Add("Group")
 .BeginUpdate
 .Expanded = True
 .AutoHeight = True
 .MarkSearchColumn = False
 .DrawGridLines = exAllLines

 .LinesAtRoot = exLinesAtRoot
 With .Columns.Item(0)
 .Def(exCellCaptionFormat) = exHTML
 .Width = 64
 End With
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"
 .ColumnAutoResize = True
 With .Items
 Dim h As Long
 h = .AddItem("Root. This is the root item")
 .InsertItem h, , Array("Child 1", "SubItem 2", "SubItem 3")
 .InsertItem h, , Array("Child 2", "SubItem 2", "SubItem 3")
 .ExpandItem(h) = True
 End With
 .EndUpdate
 End With
 .EndUpdate
End With

(Notice that the caption of the root item is truncated by the column that belongs to).

If we are merging the first three cells in the root item we get:

You can merge the first three cells in the root item using any of the following methods:

 With ExplorerTree1.Groups(0)
 With .Items
 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With ExplorerTree1.Groups(0)
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With ExplorerTree1.Groups(0)
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With ExplorerTree1.Groups(0)
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End

property Items.NextSiblingItem (Item as HITEM) as HITEM

Retrieves the next sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
sibling item.

Use ItemChild and NextSiblingItem properties to scan the collection of child items.

The following sample shows how to scan recursively all child items hosted by an item:

Sub RecItem(ByVal g As EXPLORERTREELibCtl.Group, ByVal h As
EXPLORERTREELibCtl.HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With g.Items
 Debug.Print .CellCaption(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem g, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

property Items.NextVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of next visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
visible item.

Use the NextVisibleItem property to access the visible items. The NextVisibleItem property
retrieves 0 if there are no more visible items. Use the IsItemVisible property to check
whether an item fits the control's client area.

The following sample enumerates the visible items:

Private Sub VisItems(ByVal g As EXPLORERTREELibCtl.Group)
 Dim h As HITEM
 With g.Items
 h = .FirstVisibleItem
 While Not (h = 0)
 Debug.Print .CellCaption(h, 0)
 h = .NextVisibleItem(h)
 Wend
 End With
End Sub

property Items.PathSeparator as String

Returns or sets the delimiter character used for the path returned by the FullPath and
FindPath properties.

Type Description

String
A string expression that indicates the delimiter character
used for the path returned by the FullPath and FindPath
properties.

By default the PathSeparator is "\".

property Items.PrevSiblingItem (Item as HITEM) as HITEM

Retrieves the previous sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
sibling item

The PrevSiblingItem retrieves 0 if there are no more previous sibling items. Also, please
check the NextSiblingItem property.

property Items.PrevVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of previous visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
visible item

The PrevVisibleItem property retrieves 0 if there are no more previous visible items. Also,
please check the NextVisibleItem property.

method Items.RemoveAllItems ()

Removes all items from the control.

Type Description

Use the Clear method of Columns object to erase the group's content. Use the
RemoveAllItems to clear the Items collection. To remove an item from the Items collection
use RemoveItem method.

method Items.RemoveItem (Item as HITEM)

Removes a specific item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being removed.

The following sample shows how to remove the first item in the group:
Group.Items.RemoveItem Group.Items(0). To remove all items in the collection you can use
RemoveAllItems method. The RemoveItem method doesn't remove recursively the item.

The following removes recursively an item:

Private Sub RemoveItemRec(ByVal g As EXPLORERTREELibCtl.Group, ByVal h As
EXPLORERTREELibCtl.HITEM)
 With g.Items
 g.BeginUpdate
 If (.ChildCount(h) > 0) Then
 Dim hChild As HITEM
 hChild = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As HITEM
 hNext = .NextSiblingItem(hChild)
 RemoveItemRec g, hChild
 hChild = hNext
 Wend
 End If
 .RemoveItem h
 g.EndUpdate
 End With
End Sub

property Items.RootCount as Long

Retrieves the number of root objects into Items collection.

Type Description

Long A long value that indicates the count of root items in the
Items collection.

A root item is an item that has no parent (ItemParent() = 0). Use the RootItem property of
the Items object to enumerates the root items.

The following sample enumerates all root items:

Dim i As Long, n As Long
With Group.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellCaption(.RootItem(i), 0)
 Next
End With

property Items.RootItem ([Position as Long]) as HITEM

Retrieves the handle of the root item giving its index into the root items collection.

Type Description

Position as Long A long value that indicates the position of the root item
being accessed.

HITEM A long expression that indicates the handle of the root
item.

A root item is an item that has no parent (ItemParent() = 0). Use the RootCount property of
to count the root items.

The following sample enumerates all root items:

Dim i As Long, n As Long
With Group.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellCaption(.RootItem(i), 0)
 Next
End With

property Items.SelectableItem(Item as HITEM) as Boolean
Specifies whether the user can select the item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being selectable.

Boolean A boolean expression that specifies whether the item is
selectable.

By default, all items are selectable, excepts the locked items that are not selectable. A
selectable item is an item that user can select using the keys or the mouse. The
SelectableItem property specifies whether the user can select an item. The SelectableItem
property doesn't change the item's appearance. The LockedItemCount property specifies
the number of locked items to the top or bottom side of the control. Use the ItemDivider
property to define a divider item. Use the ItemForeColor property to specify the item's
foreground color. Use the ItemBackColor property to specify the item's background color.
Use the ItemFont, ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to assign a
different font to the item. Use the EnableItem property to disable an item. A disabled item
looks grayed, but it is selectable. For instance, the user can't change the check box state in
a disabled item. Use the SelectItem property to select an item. The ItemFromPoint property
gets the item from point. For instance, if the user clicks a non selectable item the
SelectionChanged event is not fired. A non selectable item is not focusable as well. It
means that if the incremental searching is on, the non selectable items are ignored. Use the
SelectCount property to get the number of selected items. Use the SelForeColor and
SelBackColor properties to customize the colors for selected items.

method Items.SelectAll ()
Selects all items.

Type Description

property Items.SelectCount as Long

Counts the number of items that are selected into control.

Type Description

Long A long expression that identifies the number of selected
items.

Each group supports multiple items selection. Use SingleSel property of the Group object to
allow multiple selection. The SelectCount property counts the selected items in the group. If
the control's SingleSel is False, the following statement retrieves the handle for the selected
item: Group.Items.SelectedItem(). If the control supports multiple selection the following
sample enumeratee all selected items:

Private Sub selItems(ByVal g As EXPLORERTREELibCtl.Group)
 Dim h As HITEM
 Dim i As Long, j As Long, nCols As Long, nSels As Long
 With g
 nCols = .Columns.Count
 With .Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellCaption(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
 End With
 End With
End Sub

property Items.SelectedItem ([Index as Long]) as HITEM

Retrieves the selected item's handle given its index in selected items collection.

Type Description

Index as Long Identifies the index of the selected item into the selected
items collection.

HITEM A long expression that indicates the handle of the selected
item.

If the control support multiple selection, you can use the SelectCount property to find out
how many items are selected in the control.

The following sample shows hot to print the caption for the selected cell: Debug.Print
Group.Items.CellCaption(Group.Items.SelectedItem(0), 0).

The following sample underlines the selected item in the first group:

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 If (Group.Index = 0) Then
 With Group.Items
 If Not hOldItem = 0 Then
 .ItemUnderline(hOldItem) = False
 End If
 hOldItem = .SelectedItem()
 .ItemUnderline(hOldItem) = True
 End With
 End If
End Sub

property Items.SelectItem(Item as HITEM) as Boolean

Selects or unselects a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
selected or unselected.

Boolean
A boolean expression that indicates the item's state. True
if the item is selected, and False if the item is not
selected.

Use the SelectedItem property to get the selected items.

The following sample shows how to select the first created item:
Tree1.Items.SelectItem(Tree1.Items(0)) = True

method Items.SetParent (Item as HITEM, NewParent as HITEM)

Changes the parent of the given item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being moved.

NewParent as HITEM A long expression that indicates the handle of the new
parent item.

Use AcceptSetParent property to verify if the the parent of an item can be changed. The
following sample shows how to set the parent of first item to second item:
Group.Items.SetParent Group.Items(0), Group.Items(1). To retrieve the parent of a given
item you can use ItemParent property

property Items.SortableItem(Item as HITEM) as Boolean
Specifies whether the item is sortable.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being sortable.

Boolean A boolean expression that specifies whether the item is
sortable.

By default, all items are sortable. A sortable item can change its position after sorting. An
unsortable item keeps its position after user performs a sort operation. Thought, the
position of an unsortable item can be changed using the ItemPosition property. Use the
SortableItem to specify a group item, a total item or a separator item. An unsortable item is
not counted by a total field. The SortType property specifies the type of repositioning is
being applied on the column when a sort operation is performed. The SortOrder property
specifies whether the column is sorted ascendant or descendent. Use the SortChildren
method to sort the items. The ItemDivider property indicates whether the item displays a
single cell, instead showing all cells. The SelectableItem property specifies whether an item
can be selected.

The following screen shots shows the control when no column is sorted: (Group 1 and
Group 2 has the SortableItem property on False)

The following screen shots shows the control when the column A is being sorted: (Group 1
and Group 2 keeps their original position after sorting)

method Items.SortChildren (Item as HITEM, ColIndex as Variant,
Ascending as Boolean)

Sorts the child items of the given parent item in the group.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
going to be sorted.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

Ascending as Boolean A boolean expression that defines the sort order.

The SortChildren will not recurse through the tree, only the immediate children of item will
be sorted. If your group looks like a simple list you can use the following line of code to sort
ascending the list by first column: Group.Items.SortChildren 0, 0. To change the way how a
column is sorted use SortType property of Column object. The SortChildren property
doesn't display the sort icon on column's header. The group automatically sorts the children
items when user clicks on column's header. The SortOrder property sorts the items and
displays the sorting icon in the column's header.

property Items.SplitCell ([Item as Variant], [ColIndex as Variant]) as
Variant
Splits a cell, and returns the inner created cell.

Type Description

Item as Variant

A long expression that indicates the handle of the item
where a cell is being divided, or 0. If the Item parameter is
0, the ColIndex parameter must indicate the handle of the
cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the cell
being created.

The SplitCell method splits a cell in two cells. The newly created cell is called inner cell. The
SplitCell method always returns the handle of the inner cell. If the cell is already divided
using the SplitCell method, it returns the handle of the inner cell without creating a new inner
cell. You can split an inner cell too, and so you can have a master cell divided in multiple
cells. Use the CellWidth property to specify the width of the inner cell. Use the CellCaption
property to assign a caption to a cell. Use the InnerCell property to access an inner cell
giving its index. Use the CellParent property to get the parent of the inner cell. Use the
CellItem property to get the owner of the cell. Use the UnsplitCell method to remove the
inner cell if it exists. Use the MergeCells property to combine two or more cells in a single
cell.

("Merge" means multiple cells in a single cell, "Split" means multiple cells inside a single
cell)

(the picture shows a cell that's divided in three cells)

The following sample shows how to split a cell in three cells:

bInner = True

With ExplorerTree1
 .BeginUpdate
 .BackColor = vbWhite
 With .Groups.Add("Tree")
 .BeginUpdate
 .Expanded = True
 .LinesAtRoot = exLinesAtRoot
 .DrawGridLines = exAllLines
 .MarkSearchColumn = False
 .HeaderVisible = True
 .Columns.Add("Column 2").Width = 256
 With .Items
 Dim h As HITEM, hCell As hCell
 h = .AddItem(Array("Item", "subitem 1"))
 If (bInner) Then
 f = .SplitCell(h, 0)
 .CellCaption(, f) = "inner cell 1"
 .CellCaptionFormat(, f) = exHTML
 f = .SplitCell(, f)
 .CellCaption(, f) = "inner cell 2"
 .CellCaptionFormat(, f) = exHTML
 End If
 h = .AddItem("Root ")
 .CellMerge(h, 0) = 1
 .InsertItem h, , "Child 1"
 .InsertItem h, , "Child 2"
 .ExpandItem(h) = True
 End With
 .EndUpdate
 End With
 .EndUpdate
End With

(the picture shows a cell without being divided)

method Items.UnmergeCells ([Cell as Variant])
Unmerges a list of cells.

Type Description

Cell as Variant

A long expression that indicates the handle of the cell
being unmerged, or a safe array that holds a collection of
handles for the cells being unmerged. Use the ItemCell
property to retrieves the handle of the cell.

Use the UnmergeCells method to unmerge merged cells. Use the MergeCells method or
CellMerge property to combine (merge) two or more cells in a single one. The
UnmergeCells method unmerges all the cells that was merged. The CellMerge property
unmerges only a single cell. The rest of merged cells remains combined.

The following sample shows few methods to unmerge cells:

With ExplorerTree1.Groups (0)
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With ExplorerTree1.Groups (0)
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With ExplorerTree1.Groups (0)
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

method Items.UnselectAll ()
Unselects all items.

Type Description

method Items.UnsplitCell ([Item as Variant], [ColIndex as Variant])
Unsplits a cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item, or
0. If the Item parameter is 0, the ColIndex parameter must
indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Use the UnsplitCells method to remove the inner cells. The SplitCell method splits a cell in
two cells, and retrieves the newly created cell. The UnsplitCell method has no effect if the
cell contains no inner cells. The UnplitCells method remove recursively all inner cells. For
instance, if a cell contains an inner cell, and this inner cell contains another inner cell, when
calling the UnplitCells method for the master cell, all inner cells inside of the cell will be
deleted. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the InnerCell property to access an inner cell
giving its index. Use the UnmergeCells method to unmerge merged cells. ("Merge" means
multiple cells in a single cell, "Split" means multiple cells inside a single).

property Items.VisibleCount as Long

Retrieves the number of visible items.

Type Description
Long Counts the visible items.

Use FirstVisibleItem and NextVisibleItem properties to determine the items that fit the
group's client area.

property Items.VisibleItemCount as Long
Retrieves the number of visible items.

Type Description

Long A long expression that specifies the number of visible
items in the list.

The VisibleItemCount property specifies the number of visible items in the list. For instance,
you can use the VisibleItemCount property to specify the number of items being displayed
after a filter is applied. The VisibleCount property retrieves the number of items being
displayed in the control's client area. Use FirstVisibleItem and NextVisibleItem properties to
determine the items being displayed in the control's client area. Use the IsItemVisible
property to check whether an item fits the control's client area. Use the ItemCount property
to count the items in the control. Use the ChildCount property to count the child items

OleEvent object

The OleEvent object holds information about an event fired by an ActiveX control hosted by
in item that was created using the InsertControlItem method.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 On Error Resume Next
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the identifier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602.

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the Name property to get the name of the event. Use the ID property to specify a
specified even by its identifier. Use the ToString property to display information about fired
event such us name, parameters, types and values. Using the ToString property you can
quickly identifies the event that you should handle in your application. The following sample
shows how to enumerate the arguments of an OLE event:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 On Error Resume Next
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEvent.Param (Item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

Item as Variant A long expression that indicates the argument's index or a
string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 On Error Resume Next
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object

The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves or sets the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 On Error Resume Next
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEventParam.Value as Variant

Retrieves or sets the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 On Error Resume Next
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

ExplorerTree events
The ExplorerTree component supports the following events:

Name Description
AddColumn Fired after a new column is added.
AddGroup Occurs when a new group is added to collection.

AddItem Occurs after a new Item is inserted to the Items
collection.

AfterCellEdit Occurs after data in the current cell is edited.
AfterExpandGroup Occurs when a group is expanded or collapsed.
AfterExpandItem Fired after an item is expanded (collapsed).
AnchorClick Occurs when an anchor element is clicked.

BeforeCellEdit Occurs just before the user enters edit mode by clicking in
a cell.

BeforeExpandGroup Occurs just before expanding or collapsing a group.
BeforeExpandItem Fired before an item is about to be expanded (collapsed).
CellButtonClick Fired after the user clicks on the cell of button type.
CellImageClick Fired after the user clicks on the image's cell area.
CellStateChanged Fired after cell's state is changed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

ColumnClick Fired after the user clicks on column's header.

DblClick Occurs when the user dblclk the left mouse button over an
object.

ExpandShortcut Notifies your application that the user just expanded the
shortcut bar.

FilterChange Occurs when filter was changed.
FilterChanging Occurs just before applying the filter.
FormatColumn Fired when a cell requires to format its caption.
HyperLinkClick Occurs when the user clicks on a hyperlink cell.

ItemOleEvent Fired when an ActiveX control hosted by an item has fired
an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutChanged Occurs when control's layout is changed.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OffsetChanged Occurs when the scroll position is changed.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.
OversizeChanged Occurs when the right range of the scroll is changed.
RClick Fired when right mouse button is clicked
RemoveColumn Fired before deleting a Column.
RemoveGroup Fired when a group was removed.
RemoveItem Occurs before deleting an Item.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelectGroup Occurs when a group is clicked.
SelectionChanged Fired after a new item is selected.
SelectShortcut Fired when the user selects a new shortcut.
ToolTip Fired when the control prepares the object's tooltip.

C#

VB

private void AddColumn(object sender,exontrol.EXPLORERTREELib.Group
Group,exontrol.EXPLORERTREELib.Column Column)
{
}

Private Sub AddColumn(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Column As
exontrol.EXPLORERTREELib.Column) Handles AddColumn
End Sub

C#

C++

C++
Builder

private void AddColumn(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AddColumnEvent e)
{
}

void OnAddColumn(LPDISPATCH Group,LPDISPATCH Column)
{
}

void __fastcall AddColumn(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::IColumn *Column)
{

event AddColumn (Group as Group, Column as Column)
Fired after a new column is added.

Type Description
Group as Group A Group object where a new column is inserted.

Column as Column A Column object that's inserted to the group's Columns
collection.

The AddColumn event is fired when a new column is inserted to the group's Columns
collection. Use the AddColumn event to associate extra data to a new column. Use the Add
method to add new columns to Columns collection. Use the AddItem, InsertItem,
InsertControlItem, PutItems or DataSource methods to add new items to the group.

Syntax for AddColumn event, /NET version, on:

Syntax for AddColumn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure AddColumn(ASender: TObject; Group : IGroup;Column : IColumn);
begin
end;

procedure AddColumn(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AddColumnEvent);
begin
end;

begin event AddColumn(oleobject Group,oleobject Column)
end event AddColumn

Private Sub AddColumn(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AddColumnEvent) Handles AddColumn
End Sub

Private Sub AddColumn(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Column As EXPLORERTREELibCtl.IColumn)
End Sub

Private Sub AddColumn(ByVal Group As Object,ByVal Column As Object)
End Sub

LPARAMETERS Group,Column

PROCEDURE OnAddColumn(oExplorerTree,Group,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AddColumn(Group,Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddColumn(Group,Column)

Syntax for AddColumn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComAddColumn Variant llGroup Variant llColumn
 Forward Send OnComAddColumn llGroup llColumn
End_Procedure

METHOD OCX_AddColumn(Group,Column) CLASS MainDialog
RETURN NIL

void onEvent_AddColumn(COM _Group,COM _Column)
{
}

function AddColumn as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Column
as OLE::Exontrol.ExplorerTree.1::IColumn)
end function

function nativeObject_AddColumn(Group,Column)
return

The following VB sample changes the column's width:

Private Sub ExplorerTree1_AddColumn(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Column As EXPLORERTREELibCtl.IColumn)
 Column.Width = 196
End Sub

C#

VB

private void AddGroup(object sender,exontrol.EXPLORERTREELib.Group Group)
{
}

Private Sub AddGroup(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles AddGroup
End Sub

C#

C++

C++
Builder

Delphi

private void AddGroup(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AddGroupEvent e)
{
}

void OnAddGroup(LPDISPATCH Group)
{
}

void __fastcall AddGroup(TObject *Sender,Explorertreelib_tlb::IGroup *Group)
{
}

procedure AddGroup(ASender: TObject; Group : IGroup);
begin
end;

event AddGroup (Group as Group)
Occurs when a new group is added to the Groups collection.

Type Description
Group as Group A Group object being added.

Use the AddGroup event to notify your application that a new group is to Groups collection.
The Add method adds a new group to Groups collection. Use the AddGroup event to
associate an extra data to the group. Use the AddItem, InsertItem, InsertControlItem,
PutItems or DataSource methods to add new items to the group.

Syntax for AddGroup event, /NET version, on:

Syntax for AddGroup event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddGroup(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AddGroupEvent);
begin
end;

begin event AddGroup(oleobject Group)
end event AddGroup

Private Sub AddGroup(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AddGroupEvent) Handles AddGroup
End Sub

Private Sub AddGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub AddGroup(ByVal Group As Object)
End Sub

LPARAMETERS Group

PROCEDURE OnAddGroup(oExplorerTree,Group)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddGroup(Group)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddGroup(Group)
End Function
</SCRIPT>

Procedure OnComAddGroup Variant llGroup
 Forward Send OnComAddGroup llGroup
End_Procedure

Syntax for AddGroup event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_AddGroup(Group) CLASS MainDialog
RETURN NIL

void onEvent_AddGroup(COM _Group)
{
}

function AddGroup as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_AddGroup(Group)
return

The following sample changes the background and foreground colors of each group being
added:

Private Sub ExplorerTree1_AddGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
 With Group
 .BackColor = vbBlue
 .ForeColor = vbWhite
 End With
End Sub

C#

VB

private void AddItem(object sender,exontrol.EXPLORERTREELib.Group Group,int
Item)
{
}

Private Sub AddItem(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer) Handles AddItem
End Sub

C#

C++

C++
Builder

private void AddItem(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AddItemEvent e)
{
}

void OnAddItem(LPDISPATCH Group,long Item)
{
}

void __fastcall AddItem(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item)
{
}

event AddItem (Group as Group, Item as HITEM)
Occurs after a new Item is inserted to the Items collection.

Type Description
Group as Group A Group object where the newly item is inserted

Item as HITEM A long expression that indicates the handle of the item
that's inserted to the Items collection.

The AddItem event notifies your application that a new items is inserted to the group. Use
the AddItem, InsertItem, InsertControlItem, PutItems or DataSource methods to add new
items to the group. Use the Add method to add new columns to Columns Collection.

Syntax for AddItem event, /NET version, on:

Syntax for AddItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddItem(ASender: TObject; Group : IGroup;Item : HITEM);
begin
end;

procedure AddItem(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AddItemEvent);
begin
end;

begin event AddItem(oleobject Group,long Item)
end event AddItem

Private Sub AddItem(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AddItemEvent) Handles AddItem
End Sub

Private Sub AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal Item As
EXPLORERTREELibCtl.HITEM)
End Sub

Private Sub AddItem(ByVal Group As Object,ByVal Item As Long)
End Sub

LPARAMETERS Group,Item

PROCEDURE OnAddItem(oExplorerTree,Group,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AddItem(Group,Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddItem(Group,Item)
End Function

Syntax for AddItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComAddItem Variant llGroup HITEM llItem
 Forward Send OnComAddItem llGroup llItem
End_Procedure

METHOD OCX_AddItem(Group,Item) CLASS MainDialog
RETURN NIL

void onEvent_AddItem(COM _Group,int _Item)
{
}

function AddItem as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM)
end function

function nativeObject_AddItem(Group,Item)
return

The following sample changes the bolds the first column in the group, only if the group
contains multiple columns:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 If (Group.Columns.Count > 1) Then
 With Group.Items
 .CellBold(Item, 0) = True
 End With
 End If
End Sub

C#

VB

private void AfterCellEdit(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex,string NewCaption)
{
}

Private Sub AfterCellEdit(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As
Integer,ByVal NewCaption As String) Handles AfterCellEdit
End Sub

C#

C++

private void AfterCellEdit(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AfterCellEditEvent e)
{
}

void OnAfterCellEdit(LPDISPATCH Group,long Item,long ColIndex,LPCTSTR

event AfterCellEdit (Group as Group, Item as HITEM, ColIndex as Long,
NewCaption as String)
Occurs after data in the current cell is edited.

Type Description
Group as Group A Group object where the user edits an item.

Item as HITEM A long expression that indicates the handle of the item
being changed.

ColIndex as Long
A long expression that specifies the index of the column
where the change occurs, or a handle to a cell being
edited if the Item parameter is 0.

NewCaption as String A string expression that indicates the newly cell's caption.

The AfterCellEdit and BeforeCellEdit events are fired only if the AllowEdit property of the
group is True. Use the Edit method to programmatically edits a cell. If the user doesn't
handle the AfterCellEdit event the cell's caption remains unchanged. Use the AfterCellEdit
event to change the cell's caption after user edits a cell. The AfterCellEdit event is not fired
if the user has canceled the edit operation using BeforeCellEdit event.

Syntax for AfterCellEdit event, /NET version, on:

Syntax for AfterCellEdit event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

NewCaption)
{
}

void __fastcall AfterCellEdit(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex,BSTR NewCaption)
{
}

procedure AfterCellEdit(ASender: TObject; Group : IGroup;Item : HITEM;ColIndex :
Integer;NewCaption : WideString);
begin
end;

procedure AfterCellEdit(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AfterCellEditEvent);
begin
end;

begin event AfterCellEdit(oleobject Group,long Item,long ColIndex,string
NewCaption)
end event AfterCellEdit

Private Sub AfterCellEdit(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AfterCellEditEvent) Handles
AfterCellEdit
End Sub

Private Sub AfterCellEdit(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal Item
As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long,ByVal NewCaption As
String)
End Sub

Private Sub AfterCellEdit(ByVal Group As Object,ByVal Item As Long,ByVal
ColIndex As Long,ByVal NewCaption As String)
End Sub

LPARAMETERS Group,Item,ColIndex,NewCaption

Xbas… PROCEDURE OnAfterCellEdit(oExplorerTree,Group,Item,ColIndex,NewCaption)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

XBasic

dBASE

<SCRIPT EVENT="AfterCellEdit(Group,Item,ColIndex,NewCaption)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterCellEdit(Group,Item,ColIndex,NewCaption)
End Function
</SCRIPT>

Procedure OnComAfterCellEdit Variant llGroup HITEM llItem Integer llColIndex
String llNewCaption
 Forward Send OnComAfterCellEdit llGroup llItem llColIndex llNewCaption
End_Procedure

METHOD OCX_AfterCellEdit(Group,Item,ColIndex,NewCaption) CLASS
MainDialog
RETURN NIL

void onEvent_AfterCellEdit(COM _Group,int _Item,int _ColIndex,str _NewCaption)
{
}

function AfterCellEdit as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N,NewCaption as C)
end function

function nativeObject_AfterCellEdit(Group,Item,ColIndex,NewCaption)
return

Syntax for AfterCellEdit event, /COM version (others), on:

The following sample shows how to change the cell's caption when the edit operation ends.

Private Sub ExplorerTree1_AfterCellEdit(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long, ByVal NewCaption As
String)
 With Group.Items
 .CellCaption(Item, ColIndex) = NewCaption
 End With
End Sub

Use the BeforeCellEdit is you need to cancel editing cells. The following sample shows how
to cancel editing of any cell owned by the first column:

Private Sub ExplorerTree1_BeforeCellEdit(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long, Value As Variant,
Cancel As Variant)
 Cancel = ColIndex = 0
End Sub

C#

VB

private void AfterExpandGroup(object sender,exontrol.EXPLORERTREELib.Group
Group)
{
}

Private Sub AfterExpandGroup(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles AfterExpandGroup
End Sub

C#

C++

C++
Builder

private void AfterExpandGroup(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AfterExpandGroupEvent e)
{
}

void OnAfterExpandGroup(LPDISPATCH Group)
{
}

void __fastcall AfterExpandGroup(TObject *Sender,Explorertreelib_tlb::IGroup
*Group)
{
}

event AfterExpandGroup (Group as Group)
Occurs when a group is expanded or collapsed.

Type Description
Group as Group A Group object being expanded or collapsed.

Use the AfterExpandGroup event to notify your application that a group is expanded or
collapsed. The BeforeExpandGroup event is fired just before expanding or collapsing a
group. Use the AllowExpand property to disable expanding or collapsing groups when user
clicks the group's caption. Use the DelayScroll property to specifies the delay used for
animation during expanding or collapsing. Use the Expanded property to expand or collapse
programmatically a group.

Syntax for AfterExpandGroup event, /NET version, on:

Syntax for AfterExpandGroup event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AfterExpandGroup(ASender: TObject; Group : IGroup);
begin
end;

procedure AfterExpandGroup(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AfterExpandGroupEvent);
begin
end;

begin event AfterExpandGroup(oleobject Group)
end event AfterExpandGroup

Private Sub AfterExpandGroup(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AfterExpandGroupEvent) Handles
AfterExpandGroup
End Sub

Private Sub AfterExpandGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub AfterExpandGroup(ByVal Group As Object)
End Sub

LPARAMETERS Group

PROCEDURE OnAfterExpandGroup(oExplorerTree,Group)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpandGroup(Group)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpandGroup(Group)
End Function
</SCRIPT>

Syntax for AfterExpandGroup event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterExpandGroup Variant llGroup
 Forward Send OnComAfterExpandGroup llGroup
End_Procedure

METHOD OCX_AfterExpandGroup(Group) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpandGroup(COM _Group)
{
}

function AfterExpandGroup as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_AfterExpandGroup(Group)
return

The following sample displays the caption of group being expanded or collapsed:

Private Sub ExplorerTree1_AfterExpandGroup(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 Debug.Print Group.Caption
End Sub

C#

VB

private void AfterExpandItem(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item)
{
}

Private Sub AfterExpandItem(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer) Handles
AfterExpandItem
End Sub

C#

C++

C++
Builder

private void AfterExpandItem(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AfterExpandItemEvent e)
{
}

void OnAfterExpandItem(LPDISPATCH Group,long Item)
{
}

void __fastcall AfterExpandItem(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item)
{
}

event AfterExpandItem (Group as Group, Item as HITEM)
Fired after an item is expanded (collapsed).

Type Description
Group as Group A Group object where the item is expanded or collapsed.

Item as HITEM A long expression that indicates the item's handle that
indicates the item expanded or collapsed.

The AfterExapndItem event notifies your application that an item is collapsed or expanded.
Use the ExpandItem method to programmatically expand or collapse an item. Use the
BeforeExpandItem event to cancel expanding or collapsing items.

Syntax for AfterExpandItem event, /NET version, on:

Syntax for AfterExpandItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AfterExpandItem(ASender: TObject; Group : IGroup;Item : HITEM);
begin
end;

procedure AfterExpandItem(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AfterExpandItemEvent);
begin
end;

begin event AfterExpandItem(oleobject Group,long Item)
end event AfterExpandItem

Private Sub AfterExpandItem(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AfterExpandItemEvent) Handles
AfterExpandItem
End Sub

Private Sub AfterExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM)
End Sub

Private Sub AfterExpandItem(ByVal Group As Object,ByVal Item As Long)
End Sub

LPARAMETERS Group,Item

PROCEDURE OnAfterExpandItem(oExplorerTree,Group,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpandItem(Group,Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpandItem(Group,Item)
End Function

Syntax for AfterExpandItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComAfterExpandItem Variant llGroup HITEM llItem
 Forward Send OnComAfterExpandItem llGroup llItem
End_Procedure

METHOD OCX_AfterExpandItem(Group,Item) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpandItem(COM _Group,int _Item)
{
}

function AfterExpandItem as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item
as OLE::Exontrol.ExplorerTree.1::HITEM)
end function

function nativeObject_AfterExpandItem(Group,Item)
return

The following sample shows how to cancel expanding or collapsing items:

Private Sub ExplorerTree1_BeforeExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, Cancel As Variant)
 Cancel = True
End Sub

The following sample prints the item's state when it is expanded or collapsed:

Private Sub ExplorerTree1_AfterExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM)
 Debug.Print "The " & Item & " item is " & IIf(Group.Items.ExpandItem(Item), "expanded",
"collapsed")
End Sub

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oExplorerTree,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void BeforeCellEdit(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex,ref object Value,ref object Cancel)
{
}

Private Sub BeforeCellEdit(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As
Integer,ByRef Value As Object,ByRef Cancel As Object) Handles BeforeCellEdit
End Sub

C# private void BeforeCellEdit(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeCellEditEvent e)

event BeforeCellEdit (Group as Group, Item as HITEM, ColIndex as Long,
ByRef Value as Variant, ByRef Cancel as Variant)
Occurs just before the user enters edit mode by clicking in a cell.

Type Description
Group as Group A Group object where the change occurs.

Item as HITEM A long expression that indicates the handle of the item
being changed.

ColIndex as Long
A long expression that specifies the index of the column
where the change occurs, or the handle of the cell being
edited if the Item parameter is 0.

Value as Variant

(By Reference) A Variant expression that indicates the
edit's caption. By default, the caption of the edit control is
the cell's caption. The user can change the text that the
edit control displays.

Cancel as Variant (By Reference) A boolean expression that indicates
whether the control cancels the default operation.

The BeforeCellEdit event notifies your application that the user starts editing a cell. Use the
Edit method to programmatically edits a cell. Use the AllowEdit property to enable edit
feature in the group. Use the BeforeCellEdit event to cancel editing cells or to change the
edit's caption before it is displayed. Use the AfterCellEdit to change the cell's caption when
the edit operation ends.

Syntax for BeforeCellEdit event, /NET version, on:

Syntax for BeforeCellEdit event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

{
}

void OnBeforeCellEdit(LPDISPATCH Group,long Item,long ColIndex,VARIANT FAR*
Value,VARIANT FAR* Cancel)
{
}

void __fastcall BeforeCellEdit(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex,Variant * Value,Variant *
Cancel)
{
}

procedure BeforeCellEdit(ASender: TObject; Group : IGroup;Item : HITEM;ColIndex
: Integer;var Value : OleVariant;var Cancel : OleVariant);
begin
end;

procedure BeforeCellEdit(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeCellEditEvent);
begin
end;

begin event BeforeCellEdit(oleobject Group,long Item,long ColIndex,any Value,any
Cancel)
end event BeforeCellEdit

Private Sub BeforeCellEdit(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeCellEditEvent) Handles
BeforeCellEdit
End Sub

Private Sub BeforeCellEdit(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal Item
As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long,Value As Variant,Cancel As
Variant)
End Sub

VBA

VFP

Xbas…

Private Sub BeforeCellEdit(ByVal Group As Object,ByVal Item As Long,ByVal ColIndex As
Long,Value As Variant,Cancel As Variant)
End Sub

LPARAMETERS Group,Item,ColIndex,Value,Cancel

PROCEDURE OnBeforeCellEdit(oExplorerTree,Group,Item,ColIndex,Value,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

XBasic

<SCRIPT EVENT="BeforeCellEdit(Group,Item,ColIndex,Value,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeCellEdit(Group,Item,ColIndex,Value,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeCellEdit Variant llGroup HITEM llItem Integer llColIndex
Variant llValue Variant llCancel
 Forward Send OnComBeforeCellEdit llGroup llItem llColIndex llValue llCancel
End_Procedure

METHOD OCX_BeforeCellEdit(Group,Item,ColIndex,Value,Cancel) CLASS
MainDialog
RETURN NIL

void onEvent_BeforeCellEdit(COM _Group,int _Item,int _ColIndex,COMVariant
/*variant*/ _Value,COMVariant /*variant*/ _Cancel)
{
}

function BeforeCellEdit as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as

Syntax for BeforeCellEdit event, /COM version (others), on:

dBASE

OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N,Value as A,Cancel as A)
end function

function nativeObject_BeforeCellEdit(Group,Item,ColIndex,Value,Cancel)
return

The following sample cancels editing cells on the first column only for the first group:

Private Sub ExplorerTree1_BeforeCellEdit(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long, Value As Variant,
Cancel As Variant)
 If (Group.Index = 0) Then
 Cancel = ColIndex = 0
 End If
End Sub

C#

VB

private void BeforeExpandGroup(object sender,exontrol.EXPLORERTREELib.Group
Group,ref object Cancel)
{
}

Private Sub BeforeExpandGroup(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByRef Cancel As Object) Handles
BeforeExpandGroup
End Sub

C#

C++

C++
Builder

private void BeforeExpandGroup(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeExpandGroupEvent e)
{
}

void OnBeforeExpandGroup(LPDISPATCH Group,VARIANT FAR* Cancel)
{
}

void __fastcall BeforeExpandGroup(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Variant * Cancel)

event BeforeExpandGroup (Group as Group, ByRef Cancel as Variant)
Occurs just before expanding or collapsing a group.

Type Description
Group as Group A Group object being expanded or collapsed.

Cancel as Variant (By Reference) A boolean expression that indicates
whether the expanding/collapsing operation is canceled.

Use the BeforeExpandGroup event to disable expanding groups on the fly. Use the
AllowExpand property to disable expanding or collapsing groups when user clicks the
group's caption. The BeforeExandGroup event notifies your application that a group is
expanding or collapsing. The control fires the AfterExpandGroup event after group is
expanded or collapsed. Use the Expanded property to expand programmatically the group

Syntax for BeforeExpandGroup event, /NET version, on:

Syntax for BeforeExpandGroup event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure BeforeExpandGroup(ASender: TObject; Group : IGroup;var Cancel :
OleVariant);
begin
end;

procedure BeforeExpandGroup(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeExpandGroupEvent);
begin
end;

begin event BeforeExpandGroup(oleobject Group,any Cancel)
end event BeforeExpandGroup

Private Sub BeforeExpandGroup(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeExpandGroupEvent) Handles
BeforeExpandGroup
End Sub

Private Sub BeforeExpandGroup(ByVal Group As
EXPLORERTREELibCtl.IGroup,Cancel As Variant)
End Sub

Private Sub BeforeExpandGroup(ByVal Group As Object,Cancel As Variant)
End Sub

LPARAMETERS Group,Cancel

PROCEDURE OnBeforeExpandGroup(oExplorerTree,Group,Cancel)
RETURN

Java… <SCRIPT EVENT="BeforeExpandGroup(Group,Cancel)" LANGUAGE="JScript">
</SCRIPT>

Syntax for BeforeExpandGroup event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpandGroup(Group,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeExpandGroup Variant llGroup Variant llCancel
 Forward Send OnComBeforeExpandGroup llGroup llCancel
End_Procedure

METHOD OCX_BeforeExpandGroup(Group,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpandGroup(COM _Group,COMVariant /*variant*/ _Cancel)
{
}

function BeforeExpandGroup as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,Cancel as A)
end function

function nativeObject_BeforeExpandGroup(Group,Cancel)
return

The following sample disables expanding or collapsing the second group:

Private Sub ExplorerTree1_BeforeExpandGroup(ByVal Group As
EXPLORERTREELibCtl.IGroup, Cancel As Variant)
 Cancel = Group.Index = 1
End Sub

C#

VB

private void BeforeExpandItem(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,ref object Cancel)
{
}

Private Sub BeforeExpandItem(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByRef Cancel As Object)
Handles BeforeExpandItem
End Sub

C#

C++

private void BeforeExpandItem(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeExpandItemEvent e)
{
}

void OnBeforeExpandItem(LPDISPATCH Group,long Item,VARIANT FAR* Cancel)
{

event BeforeExpandItem (Group as Group, Item as HITEM, ByRef Cancel
as Variant)
Fired before an item is about to be expanded (collapsed).

Type Description

Group as Group A Group object where the user expands or collapse an
item.

Item as HITEM A long expression that indicates the handle of the item
being expanded or collapsed.

Cancel as Variant
(By Reference) A boolean expression that indicates
whether the control cancel expanding or collapsing the
item.

The BeforeExpandItem event notifies your application that an item is about to be collapsed
or expanded. Use the BeforeExpandItem event to cancel expanding or collapsing items. The
AfterExapandItem event is fired after an item is expanded or collapsed. Use the
ExpandItem method to programmatically expand or collapse an item.

Syntax for BeforeExpandItem event, /NET version, on:

Syntax for BeforeExpandItem event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall BeforeExpandItem(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,Variant * Cancel)
{
}

procedure BeforeExpandItem(ASender: TObject; Group : IGroup;Item : HITEM;var
Cancel : OleVariant);
begin
end;

procedure BeforeExpandItem(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeExpandItemEvent);
begin
end;

begin event BeforeExpandItem(oleobject Group,long Item,any Cancel)
end event BeforeExpandItem

Private Sub BeforeExpandItem(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_BeforeExpandItemEvent) Handles
BeforeExpandItem
End Sub

Private Sub BeforeExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM,Cancel As Variant)
End Sub

Private Sub BeforeExpandItem(ByVal Group As Object,ByVal Item As Long,Cancel
As Variant)
End Sub

LPARAMETERS Group,Item,Cancel

PROCEDURE OnBeforeExpandItem(oExplorerTree,Group,Item,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BeforeExpandItem(Group,Item,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpandItem(Group,Item,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeExpandItem Variant llGroup HITEM llItem Variant llCancel
 Forward Send OnComBeforeExpandItem llGroup llItem llCancel
End_Procedure

METHOD OCX_BeforeExpandItem(Group,Item,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpandItem(COM _Group,int _Item,COMVariant /*variant*/
_Cancel)
{
}

function BeforeExpandItem as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM,Cancel as A)
end function

function nativeObject_BeforeExpandItem(Group,Item,Cancel)
return

Syntax for BeforeExpandItem event, /COM version (others), on:

The following sample cancels expanding or collapsing items in the first group:

Private Sub ExplorerTree1_BeforeExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, Cancel As Variant)
 If (Group.Index = 0) Then
 Cancel = True
 End If

End Sub

If your application expands items programmatically and you need to disable expanding or
collapsing items only when user tries to click the left button of each parent item you can use
an internal counter like in the following sample:

Dim iExpanding As Long

iExpanding = 0

iExpanding = iExpanding + 1
....
do expanding/collapsing items
...
iExpanding = iExpanding - 1

Private Sub ExplorerTree1_BeforeExpandItem(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, Cancel As Variant)
 If iExpanding = 0 Then
 If (Group.Index = 0) Then
 Cancel = True
 End If
 End If
End Sub

C#

VB

private void CellButtonClick(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex)
{
}

Private Sub CellButtonClick(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As Integer)
Handles CellButtonClick
End Sub

C#

C++

private void CellButtonClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_CellButtonClickEvent e)
{
}

void OnCellButtonClick(LPDISPATCH Group,long Item,long ColIndex)
{

event CellButtonClick (Group as Group, Item as HITEM, ColIndex as
Long)
Fired after the user clicks on the cell of button type.

Type Description
Group as Group A Group object where user clicks a button.

Item as HITEM A long expression that indicates the handle of the item
where the user clicks the cell's button.

ColIndex as Long

A long expression that specifies the index of the column
where the user clicks the cell's button, or a long
expression that indicates the handle of the cell being
clicked, if the Item parameter is 0.

The CellButtonClick event is fired after the user released the left mouse button over a cell of
button type. Use the CellHasButton property to specify whether a cell is of button type. The
CellButtonClick event notifies your application that user presses a cell of the button type.

The following sample prints the caption of the clicked cell:

Syntax for CellButtonClick event, /NET version, on:

Syntax for CellButtonClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall CellButtonClick(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex)
{
}

procedure CellButtonClick(ASender: TObject; Group : IGroup;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure CellButtonClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_CellButtonClickEvent);
begin
end;

begin event CellButtonClick(oleobject Group,long Item,long ColIndex)
end event CellButtonClick

Private Sub CellButtonClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_CellButtonClickEvent) Handles
CellButtonClick
End Sub

Private Sub CellButtonClick(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub CellButtonClick(ByVal Group As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Group,Item,ColIndex

PROCEDURE OnCellButtonClick(oExplorerTree,Group,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellButtonClick(Group,Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellButtonClick(Group,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellButtonClick Variant llGroup HITEM llItem Integer llColIndex
 Forward Send OnComCellButtonClick llGroup llItem llColIndex
End_Procedure

METHOD OCX_CellButtonClick(Group,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellButtonClick(COM _Group,int _Item,int _ColIndex)
{
}

function CellButtonClick as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item
as OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N)
end function

function nativeObject_CellButtonClick(Group,Item,ColIndex)
return

Syntax for CellButtonClick event, /COM version (others), on:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasButton(Item, 0) = True
 End With
End Sub

Private Sub ExplorerTree1_CellButtonClick(ByVal Group As EXPLORERTREELibCtl.IGroup,

ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 MsgBox Group.Items.CellCaption(Item, ColIndex)
End Sub

C#

VB

private void CellImageClick(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex)
{
}

Private Sub CellImageClick(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As Integer)
Handles CellImageClick
End Sub

C#

C++

private void CellImageClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_CellImageClickEvent e)
{
}

void OnCellImageClick(LPDISPATCH Group,long Item,long ColIndex)
{
}

event CellImageClick (Group as Group, Item as HITEM, ColIndex as Long)
Fired after the user clicks on the image's cell area.

Type Description
Group as Group A Group object where the user clicks an icon.

Item as HITEM A long expression that indicates the handle of the item
where the user clicks the cell's icon.

ColIndex as Long

A long expression that indicates the index of the column
where the user clicks the cell's icon, or a long expression
that indicates the handle of the cell being clicked, if the
Item parameter is 0.

The CellImageClick event is fired when user clicks on the cell's icon. Use the CellImage
property to assign an icon to a cell. Use the CellImages property to assign multiple icons to
a cell.

Syntax for CellImageClick event, /NET version, on:

Syntax for CellImageClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall CellImageClick(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex)
{
}

procedure CellImageClick(ASender: TObject; Group : IGroup;Item : HITEM;ColIndex
: Integer);
begin
end;

procedure CellImageClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_CellImageClickEvent);
begin
end;

begin event CellImageClick(oleobject Group,long Item,long ColIndex)
end event CellImageClick

Private Sub CellImageClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_CellImageClickEvent) Handles
CellImageClick
End Sub

Private Sub CellImageClick(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub CellImageClick(ByVal Group As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Group,Item,ColIndex

PROCEDURE OnCellImageClick(oExplorerTree,Group,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellImageClick(Group,Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellImageClick(Group,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellImageClick Variant llGroup HITEM llItem Integer llColIndex
 Forward Send OnComCellImageClick llGroup llItem llColIndex
End_Procedure

METHOD OCX_CellImageClick(Group,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellImageClick(COM _Group,int _Item,int _ColIndex)
{
}

function CellImageClick as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N)
end function

function nativeObject_CellImageClick(Group,Item,ColIndex)
return

Syntax for CellImageClick event, /COM version (others), on:

The following sample displays the caption of the cell whose icon is clicked:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellImage(Item, 0) = 1
 End With
End Sub

Private Sub ExplorerTree1_CellImageClick(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 With Group.Items
 MsgBox .CellCaption(Item, ColIndex)
 End With
End Sub

C#

VB

private void CellStateChanged(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex)
{
}

Private Sub CellStateChanged(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As Integer)
Handles CellStateChanged
End Sub

C#

C++

private void CellStateChanged(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_CellStateChangedEvent e)
{
}

void OnCellStateChanged(LPDISPATCH Group,long Item,long ColIndex)
{

event CellStateChanged (Group as Group, Item as HITEM, ColIndex as
Long)
Fired after cell's state is changed.

Type Description
Group as Group A Group object where the user clicks a check box cell.

Item as HITEM A long expression that indicates the handle of the item
where the cell's state is changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

A cell that contains a radio button or a check box button fires the CellStateChanged event
when its state is changed. Use the CellState property to change the cell's state. Use the
CellHasRadioButton or CellHasCheckBox property to enable radio or check box button into
a cell.

Syntax for CellStateChanged event, /NET version, on:

Syntax for CellStateChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall CellStateChanged(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex)
{
}

procedure CellStateChanged(ASender: TObject; Group : IGroup;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure CellStateChanged(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_CellStateChangedEvent);
begin
end;

begin event CellStateChanged(oleobject Group,long Item,long ColIndex)
end event CellStateChanged

Private Sub CellStateChanged(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_CellStateChangedEvent) Handles
CellStateChanged
End Sub

Private Sub CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub CellStateChanged(ByVal Group As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Group,Item,ColIndex

PROCEDURE OnCellStateChanged(oExplorerTree,Group,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellStateChanged(Group,Item,ColIndex)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanged(Group,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellStateChanged Variant llGroup HITEM llItem Integer
llColIndex
 Forward Send OnComCellStateChanged llGroup llItem llColIndex
End_Procedure

METHOD OCX_CellStateChanged(Group,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanged(COM _Group,int _Item,int _ColIndex)
{
}

function CellStateChanged as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N)
end function

function nativeObject_CellStateChanged(Group,Item,ColIndex)
return

Syntax for CellStateChanged event, /COM version (others), on:

The following sample displays the cell's caption whose check box is clicked:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 With Group.Items
 .CellHasCheckBox(Item, 0) = True

 End With
End Sub

Private Sub ExplorerTree1_CellStateChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 With Group.Items
 Debug.Print .CellCaption(Item, ColIndex)
 End With
End Sub

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The ExpandOnClick property expands the group when its caption is
clicked.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oExplorerTree)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ColumnClick(object sender,exontrol.EXPLORERTREELib.Group
Group,exontrol.EXPLORERTREELib.Column Column)
{
}

Private Sub ColumnClick(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Column As
exontrol.EXPLORERTREELib.Column) Handles ColumnClick
End Sub

C#

C++

C++
Builder

private void ColumnClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_ColumnClickEvent e)
{
}

void OnColumnClick(LPDISPATCH Group,LPDISPATCH Column)
{
}

void __fastcall ColumnClick(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::IColumn *Column)
{
}

event ColumnClick (Group as Group, Column as Column)
Fired after the user clicks on column's header.

Type Description
Group as Group A Group object where the user clicks the column's caption.
Column as Column A Column object being clicked.

The ColumnClick event is fired when the user clicks the column's header. By default, the
control sorts by the column when user clicks the column's header. Use the SortOnClick
property to specify the operation that control does when user clicks the column's caption.
Use the Columns property to access the group's Columns collection.

Syntax for ColumnClick event, /NET version, on:

Syntax for ColumnClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ColumnClick(ASender: TObject; Group : IGroup;Column : IColumn);
begin
end;

procedure ColumnClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_ColumnClickEvent);
begin
end;

begin event ColumnClick(oleobject Group,oleobject Column)
end event ColumnClick

Private Sub ColumnClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_ColumnClickEvent) Handles
ColumnClick
End Sub

Private Sub ColumnClick(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Column As EXPLORERTREELibCtl.IColumn)
End Sub

Private Sub ColumnClick(ByVal Group As Object,ByVal Column As Object)
End Sub

LPARAMETERS Group,Column

PROCEDURE OnColumnClick(oExplorerTree,Group,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ColumnClick(Group,Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ColumnClick(Group,Column)
End Function

Syntax for ColumnClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComColumnClick Variant llGroup Variant llColumn
 Forward Send OnComColumnClick llGroup llColumn
End_Procedure

METHOD OCX_ColumnClick(Group,Column) CLASS MainDialog
RETURN NIL

void onEvent_ColumnClick(COM _Group,COM _Column)
{
}

function ColumnClick as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Column
as OLE::Exontrol.ExplorerTree.1::IColumn)
end function

function nativeObject_ColumnClick(Group,Column)
return

The following sample displays the caption of the column being clicked:

Private Sub ExplorerTree1_ColumnClick(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Column As EXPLORERTREELibCtl.IColumn)
 Debug.Print "The '" & Group.Caption & "." & Column.Caption & "' column is clicked."
End Sub

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the GroupFromPoint
property to get the group's caption from the point. Use the GroupListFromPoint property to
get the group's list from point. Use the ItemFromPoint property to get the item over the
cursor. Use the ColumnFromPoint property to get the column's caption over the cursor. The
ExpandOnDblClick property specifies whether the item is expanded or collapsed if the user
dbl clicks the item. The ExpandOnClick property expands the group when its caption is
clicked.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oExplorerTree,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.ExplorerTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExplorerTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following sample expands a group only when user double clicks the group's caption (
The sample requires ExpandOnClick property on False):

Private Sub ExplorerTree1_DblClick(Shift As Integer, X As Single, Y As Single)
 With ExplorerTree1
 Dim g As EXPLORERTREELibCtl.Group
 Set g = .GroupFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not g Is Nothing Then
 g.Expanded = Not g.Expanded
 End If
 End With

End Sub

C#

VB

private void ExpandShortcut(object sender,int OldCount,int NewCount)
{
}

Private Sub ExpandShortcut(ByVal sender As System.Object,ByVal OldCount As
Integer,ByVal NewCount As Integer) Handles ExpandShortcut
End Sub

C#

C++

private void ExpandShortcut(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_ExpandShortcutEvent e)
{
}

void OnExpandShortcut(long OldCount,long NewCount)
{
}

event ExpandShortcut (OldCount as Long, NewCount as Long)
Notifies your application that the user just expanded the shortcut bar.

Type Description

OldCount as Long A long expression that indicates the count of expanded
shortcuts before expanding the shortcut bar

NewCount as Long
A long expression that indicates the count of expanded
shortcuts after expanding the shortcut bar. The NewCount
parameter is the same as ExpandShortcutCount property.

The ExpandShortcut event notifies your application when the user resizes the control's
shortcut bar. The ExpandShortcutCount property retrieves or sets a value that indicates the
number of shortcuts being expanded. Use the ExpandShortcutCount property to
programmatically expand the shortcut bar. Use the ShortcutFromPoint property to retrieve
the shortcut from the cursor. Use the ShowShortcutBar property to show or hide the
control's shortcut bar. Use the AllowResizeShortcutBar property to enable or disable
resizing the shortcut bar. The Shortcut property indicates the HTML caption of the shortcut
that displays the specified group. Groups with the same Shortcut property are displayed in
the same shortcut.

Syntax for ExpandShortcut event, /NET version, on:

Syntax for ExpandShortcut event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall ExpandShortcut(TObject *Sender,long OldCount,long NewCount)
{
}

procedure ExpandShortcut(ASender: TObject; OldCount : Integer;NewCount :
Integer);
begin
end;

procedure ExpandShortcut(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_ExpandShortcutEvent);
begin
end;

begin event ExpandShortcut(long OldCount,long NewCount)
end event ExpandShortcut

Private Sub ExpandShortcut(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_ExpandShortcutEvent) Handles
ExpandShortcut
End Sub

Private Sub ExpandShortcut(ByVal OldCount As Long,ByVal NewCount As Long)
End Sub

Private Sub ExpandShortcut(ByVal OldCount As Long,ByVal NewCount As Long)
End Sub

LPARAMETERS OldCount,NewCount

PROCEDURE OnExpandShortcut(oExplorerTree,OldCount,NewCount)
RETURN

Java… <SCRIPT EVENT="ExpandShortcut(OldCount,NewCount)" LANGUAGE="JScript">
</SCRIPT>

Syntax for ExpandShortcut event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function ExpandShortcut(OldCount,NewCount)
End Function
</SCRIPT>

Procedure OnComExpandShortcut Integer llOldCount Integer llNewCount
 Forward Send OnComExpandShortcut llOldCount llNewCount
End_Procedure

METHOD OCX_ExpandShortcut(OldCount,NewCount) CLASS MainDialog
RETURN NIL

void onEvent_ExpandShortcut(int _OldCount,int _NewCount)
{
}

function ExpandShortcut as v (OldCount as N,NewCount as N)
end function

function nativeObject_ExpandShortcut(OldCount,NewCount)
return

C#

VB

private void FilterChange(object sender,exontrol.EXPLORERTREELib.Group Group)
{
}

Private Sub FilterChange(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles FilterChange
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChange(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_FilterChangeEvent e)
{
}

void OnFilterChange(LPDISPATCH Group)
{
}

void __fastcall FilterChange(TObject *Sender,Explorertreelib_tlb::IGroup *Group)
{
}

procedure FilterChange(ASender: TObject; Group : IGroup);
begin
end;

event FilterChange (Group as Group)
Occurs when filter was changed.

Type Description
Group as Group A Group object where the filter is changed.

Use the FilterChange event to notify your application that the group's filter is changed. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to display the column's filter button.

Syntax for FilterChange event, /NET version, on:

Syntax for FilterChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure FilterChange(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_FilterChangeEvent);
begin
end;

begin event FilterChange(oleobject Group)
end event FilterChange

Private Sub FilterChange(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_FilterChangeEvent) Handles
FilterChange
End Sub

Private Sub FilterChange(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub FilterChange(ByVal Group As Object)
End Sub

LPARAMETERS Group

PROCEDURE OnFilterChange(oExplorerTree,Group)
RETURN

Java…

VBSc…

<SCRIPT EVENT="FilterChange(Group)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChange(Group)
End Function
</SCRIPT>

Syntax for FilterChange event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComFilterChange Variant llGroup
 Forward Send OnComFilterChange llGroup
End_Procedure

METHOD OCX_FilterChange(Group) CLASS MainDialog
RETURN NIL

void onEvent_FilterChange(COM _Group)
{
}

function FilterChange as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_FilterChange(Group)
return

The following sample displays a new caption on the group's filter bar when the user
changes the group's filter:

Private Sub ExplorerTree1_FilterChange(ByVal Group As EXPLORERTREELibCtl.IGroup)
 Group.FilterBarCaption = "Displays items that start with 'M'"
End Sub

C#

VB

private void FilterChanging(object sender,exontrol.EXPLORERTREELib.Group
Group)
{
}

Private Sub FilterChanging(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles FilterChanging
End Sub

C#

C++

private void FilterChanging(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_FilterChangingEvent e)
{
}

void OnFilterChanging(LPDISPATCH Group)
{
}

event FilterChanging (Group as Group)
Notifies your application that the filter for a group is about to change

Type Description
Group as Group A Group object where the filter is about to be change.

The FilterChanging event occurs just before applying the filter. The FilterChange event
occurs once the filter is applied, so the list gets filtered. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar. For instance, you can use the FilterChanging event to start a
timer, and count the time to get the filter applied, when the FilterChange event is fired. The
FilterBarPromptVisible property specifies whether the filter prompt is visible or hidden. The
filter prompt feature allows you to filter the items as you type while the filter bar is visible on
the bottom part of the list area. The Filter prompt feature allows at runtime filtering data on
hidden columns too.

Syntax for FilterChanging event, /NET version, on:

Syntax for FilterChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall FilterChanging(TObject *Sender,Explorertreelib_tlb::IGroup *Group)
{
}

procedure FilterChanging(ASender: TObject; Group : IGroup);
begin
end;

procedure FilterChanging(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_FilterChangingEvent);
begin
end;

begin event FilterChanging(oleobject Group)
end event FilterChanging

Private Sub FilterChanging(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_FilterChangingEvent) Handles
FilterChanging
End Sub

Private Sub FilterChanging(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub FilterChanging(ByVal Group As Object)
End Sub

LPARAMETERS Group

PROCEDURE OnFilterChanging(oExplorerTree,Group)
RETURN

Java… <SCRIPT EVENT="FilterChanging(Group)" LANGUAGE="JScript">
</SCRIPT>

Syntax for FilterChanging event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function FilterChanging(Group)
End Function
</SCRIPT>

Procedure OnComFilterChanging Variant llGroup
 Forward Send OnComFilterChanging llGroup
End_Procedure

METHOD OCX_FilterChanging(Group) CLASS MainDialog
RETURN NIL

void onEvent_FilterChanging(COM _Group)
{
}

function FilterChanging as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_FilterChanging(Group)
return

C#

VB

private void FormatColumn(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex,ref object Value)
{
}

Private Sub FormatColumn(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As
Integer,ByRef Value As Object) Handles FormatColumn
End Sub

C# private void FormatColumn(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_FormatColumnEvent e)
{
}

event FormatColumn (Group as Group, Item as HITEM, ColIndex as Long,
ByRef Value as Variant)
Fired when a cell requires to format its caption.

Type Description
Group as Group A Group object where the cell needs to be formatted

Item as HITEM A long expression that indicates the handle of the item
being formatted.

ColIndex as Long A long expression that indicates the index of the column
being formatted.

Value as Variant
(By Reference) A Variant value that indicates the value
being formatted. By default, the Value parameter has the
CellCaption value.

The FormatColumn event is fired only if the FireFormatColumn property of the Column
object is True. The FormatColumn event lets the user provides the cell's caption before it
being displayed on the group's list. For instance, the FormatColumn event is very useful
when the column cells contains prices(numbers), and you want to display that column
formatted as currency, like $50 instead 50.

Syntax for FormatColumn event, /NET version, on:

Syntax for FormatColumn event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void OnFormatColumn(LPDISPATCH Group,long Item,long ColIndex,VARIANT FAR* Value)
{
}

void __fastcall FormatColumn(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex,Variant * Value)
{
}

procedure FormatColumn(ASender: TObject; Group : IGroup;Item :
HITEM;ColIndex : Integer;var Value : OleVariant);
begin
end;

procedure FormatColumn(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_FormatColumnEvent);
begin
end;

begin event FormatColumn(oleobject Group,long Item,long ColIndex,any Value)
end event FormatColumn

Private Sub FormatColumn(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_FormatColumnEvent) Handles
FormatColumn
End Sub

Private Sub FormatColumn(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long,Value As Variant)
End Sub

Private Sub FormatColumn(ByVal Group As Object,ByVal Item As Long,ByVal
ColIndex As Long,Value As Variant)
End Sub

LPARAMETERS Group,Item,ColIndex,Value

Xbas… PROCEDURE OnFormatColumn(oExplorerTree,Group,Item,ColIndex,Value)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="FormatColumn(Group,Item,ColIndex,Value)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FormatColumn(Group,Item,ColIndex,Value)
End Function
</SCRIPT>

Procedure OnComFormatColumn Variant llGroup HITEM llItem Integer llColIndex
Variant llValue
 Forward Send OnComFormatColumn llGroup llItem llColIndex llValue
End_Procedure

METHOD OCX_FormatColumn(Group,Item,ColIndex,Value) CLASS MainDialog
RETURN NIL

void onEvent_FormatColumn(COM _Group,int _Item,int _ColIndex,COMVariant
/*variant*/ _Value)
{
}

function FormatColumn as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item
as OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N,Value as A)
end function

function nativeObject_FormatColumn(Group,Item,ColIndex,Value)
return

Syntax for FormatColumn event, /COM version (others), on:

The following sample uses the FormatCurrency function provided by the VB to display
numbers as currency:

Private Sub ExplorerTree1_FormatColumn(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long, Value As Variant)
 Value = FormatCurrency(Value)
End Sub

Private Sub Form_Load()
 With ExplorerTree1
 With .Groups.Add("Group 1")
 .BeginUpdate
 With .Columns(0)
 .FireFormatColumn = True
 End With
 .PutItems Array(10, 20, 30, 40)
 .EndUpdate
 End With
 End With
End Sub

C#

VB

private void HyperLinkClick(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,int ColIndex)
{
}

Private Sub HyperLinkClick(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As Integer)
Handles HyperLinkClick
End Sub

C#

C++

C++
Builder

private void HyperLinkClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_HyperLinkClickEvent e)
{
}

void OnHyperLinkClick(LPDISPATCH Group,long Item,long ColIndex)
{
}

void __fastcall HyperLinkClick(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex)

event HyperLinkClick (Group as Group, Item as HITEM, ColIndex as
Long)
Occurs when the user clicks on a hyperlink cell.

Type Description
Group as Group A Group object where user clicks a hyper link cell.
Item as HITEM A long expression that indicates the item's handle.
ColIndex as Long A long expression that indicates the column's index.

The HyperLinkClick event is fired when user clicks a hyperlink cell. A hyperlink cell has the
CellHyperLink property true. Use the HyperLinkClick event to notify your application that a
hyperlink cell is clicked. Use the HyperLinkColor property to specify the color of the hyper
links items.

Syntax for HyperLinkClick event, /NET version, on:

Syntax for HyperLinkClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure HyperLinkClick(ASender: TObject; Group : IGroup;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure HyperLinkClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_HyperLinkClickEvent);
begin
end;

begin event HyperLinkClick(oleobject Group,long Item,long ColIndex)
end event HyperLinkClick

Private Sub HyperLinkClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_HyperLinkClickEvent) Handles
HyperLinkClick
End Sub

Private Sub HyperLinkClick(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Item As EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub HyperLinkClick(ByVal Group As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Group,Item,ColIndex

PROCEDURE OnHyperLinkClick(oExplorerTree,Group,Item,ColIndex)
RETURN

Java… <SCRIPT EVENT="HyperLinkClick(Group,Item,ColIndex)" LANGUAGE="JScript">
Syntax for HyperLinkClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function HyperLinkClick(Group,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComHyperLinkClick Variant llGroup HITEM llItem Integer llColIndex
 Forward Send OnComHyperLinkClick llGroup llItem llColIndex
End_Procedure

METHOD OCX_HyperLinkClick(Group,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_HyperLinkClick(COM _Group,int _Item,int _ColIndex)
{
}

function HyperLinkClick as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item
as OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N)
end function

function nativeObject_HyperLinkClick(Group,Item,ColIndex)
return

The following sample displays the caption of the clicked cell:

Private Sub ExplorerTree1_AddItem(ByVal Group As EXPLORERTREELibCtl.IGroup, ByVal
Item As EXPLORERTREELibCtl.HITEM)
 Group.Items.CellHyperLink(Item, 0) = True
End Sub

Private Sub ExplorerTree1_HyperLinkClick(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print Group.Items.CellCaption(Item, ColIndex)
End Sub

Private Sub Form_Load()
 With ExplorerTree1
 With .Groups.Add("Group 1")
 .SelForeColor = .HyperLinkColor
 .SelBackColor = .BackColorList
 .PutItems Array("https://www.exontrol.com", "https://www.exontrol.net")
 End With
 End With
End Sub

C#

VB

private void ItemOleEvent(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item,exontrol.EXPLORERTREELib.OleEvent Ev)
{
}

Private Sub ItemOleEvent(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal Ev As
exontrol.EXPLORERTREELib.OleEvent) Handles ItemOleEvent
End Sub

C#

C++

C++
Builder

private void ItemOleEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_ItemOleEventEvent e)
{
}

void OnItemOleEvent(LPDISPATCH Group,long Item,LPDISPATCH Ev)
{
}

void __fastcall ItemOleEvent(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,Explorertreelib_tlb::IOleEvent *Ev)

event ItemOleEvent (Group as Group, Item as HITEM, Ev as OleEvent)
Fired when an ActiveX control hosted by an item has fired an event.

Type Description
Group as Group A Group object

Item as HITEM A long expression that indicates the handle of the item that
hosts an ActiveX control.

Ev as OleEvent An OleEvent object that contains information about the
fired event.

The ExplorerTree control supports ActiveX hosting. The InsertItemControl method inserts
an item that hosts an ActiveX control. The ItemOleEvent event notifies your application
when a hosted ActiveX control fires an event.

Syntax for ItemOleEvent event, /NET version, on:

Syntax for ItemOleEvent event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure ItemOleEvent(ASender: TObject; Group : IGroup;Item : HITEM;Ev :
IOleEvent);
begin
end;

procedure ItemOleEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_ItemOleEventEvent);
begin
end;

begin event ItemOleEvent(oleobject Group,long Item,oleobject Ev)
end event ItemOleEvent

Private Sub ItemOleEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_ItemOleEventEvent) Handles
ItemOleEvent
End Sub

Private Sub ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal Item
As EXPLORERTREELibCtl.HITEM,ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
End Sub

Private Sub ItemOleEvent(ByVal Group As Object,ByVal Item As Long,ByVal Ev As
Object)
End Sub

LPARAMETERS Group,Item,Ev

PROCEDURE OnItemOleEvent(oExplorerTree,Group,Item,Ev)
RETURN

Java… <SCRIPT EVENT="ItemOleEvent(Group,Item,Ev)" LANGUAGE="JScript">
Syntax for ItemOleEvent event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ItemOleEvent(Group,Item,Ev)
End Function
</SCRIPT>

Procedure OnComItemOleEvent Variant llGroup HITEM llItem Variant llEv
 Forward Send OnComItemOleEvent llGroup llItem llEv
End_Procedure

METHOD OCX_ItemOleEvent(Group,Item,Ev) CLASS MainDialog
RETURN NIL

void onEvent_ItemOleEvent(COM _Group,int _Item,COM _Ev)
{
}

function ItemOleEvent as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM,Ev as OLE::Exontrol.ExplorerTree.1::IOleEvent)
end function

function nativeObject_ItemOleEvent(Group,Item,Ev)
return

 The following sample adds an item that hosts the Microsoft Calendar Control and prints
each event fired by this ActiveX control:

Private Sub ExplorerTree1_ItemOleEvent(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Item As EXPLORERTREELibCtl.HITEM, ByVal Ev As EXPLORERTREELibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value

 Next
 End If
End Sub

Private Sub Form_Load()
 With ExplorerTree1
 With .Groups.Add("Group 1")
 .Height = 172
 .Expanded = True
 .Items.ItemHeight(.Items.InsertControlItem(, "MSCAL.Calendar")) = .Height
 End With
 End With
End Sub

The ItemObject property gets the ActiveX object hosted by an item that is inserted using
the InsertControlItem method. The ItemObject property gets nothing if the item doesn't host
an ActiveX control, or if inserting an ActiveX control failed).

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_KeyDownEvent) Handles
KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oExplorerTree,KeyCode,Shift)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oExplorerTree,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oExplorerTree,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutChanged(object sender)
{
}

Private Sub LayoutChanged(ByVal sender As System.Object) Handles
LayoutChanged
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void LayoutChanged(object sender, EventArgs e)
{
}

void OnLayoutChanged()
{
}

void __fastcall LayoutChanged(TObject *Sender)
{
}

procedure LayoutChanged(ASender: TObject;);
begin
end;

procedure LayoutChanged(sender: System.Object; e: System.EventArgs);
begin
end;

event LayoutChanged ()
Occurs when control's layout is changed.

Type Description

Use the LayoutChanged event to notify your application that the control's content is
changed. The LayoutChanged event is called if the control is resized, if a group is expanded
or collapsed, if the control is scrolled, and so on.

Syntax for LayoutChanged event, /NET version, on:

Syntax for LayoutChanged event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event LayoutChanged()
end event LayoutChanged

Private Sub LayoutChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LayoutChanged
End Sub

Private Sub LayoutChanged()
End Sub

Private Sub LayoutChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnLayoutChanged(oExplorerTree)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="LayoutChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutChanged()
End Function
</SCRIPT>

Procedure OnComLayoutChanged
 Forward Send OnComLayoutChanged
End_Procedure

METHOD OCX_LayoutChanged() CLASS MainDialog
RETURN NIL

void onEvent_LayoutChanged()
{

Syntax for LayoutChanged event, /COM version (others), on:

XBasic

dBASE

}

function LayoutChanged as v ()
end function

function nativeObject_LayoutChanged()
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the GroupFromPoint property to get the group's caption from the
point. Use the GroupListFromPoint property to get the group's list from point. Use the
ItemFromPoint property to get the item over the cursor. Use the ColumnFromPoint property
to get the column's caption over the cursor. The ExpandOnClick property expands the group
when its caption is clicked. Use the ShortcutFromPoint property to retrieve the shortcut
from the cursor.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseDownEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oExplorerTree,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.ExplorerTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExplorerTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample prints the cell over the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Dim g As EXPLORERTREELibCtl.Group
 With ExplorerTree1
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (g Is Nothing) Then
 With g
 Dim h As Long, c As Long, hit as Long
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) Then
 With g.Items
 Debug.Print .CellCaption(h, c)
 End With
 End If
 End With
 End If
 End With
End Sub

The following VFP sample prints the cell's caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Olecontrol1
 local g
 g = .GroupListFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 local h, c, hit
 c = 0
 hit = 0
 h = .ItemFromPoint(-1,-1,@c,@hit)
 If h # 0 Then
 with .Items
 .DefaultItem = h

 wait window .CellCaption(0, c) nowait
 endwith
 EndIf
 endwith
 EndIf
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent e)
{

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the GroupFromPoint property to get
the group's caption from the point. Use the GroupListFromPoint property to get the group's
list from point. Use the ItemFromPoint property to get the item over the cursor. Use the
ColumnFromPoint property to get the column's caption over the cursor. Use the
ShortcutFromPoint property to retrieve the shortcut from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseMove(oExplorerTree,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.ExplorerTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExplorerTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the cell over the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y

As Single)
 Dim g As EXPLORERTREELibCtl.Group
 With ExplorerTree1
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (g Is Nothing) Then
 With g
 Dim h As Long, c As Long, hit as Long
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) Then
 With g.Items
 Debug.Print .CellCaption(h, c)
 End With
 End If
 End With
 End If
 End With
End Sub

The following VFP sample prints the cell's caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Olecontrol1
 local g
 g = .GroupListFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 local h, c, hit
 c = 0
 hit = 0
 h = .ItemFromPoint(-1,-1,@c,@hit)
 If h # 0 Then
 with .Items
 .DefaultItem = h
 wait window .CellCaption(0, c) nowait
 endwith

 EndIf
 endwith
 EndIf
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the GroupFromPoint property to get the group's caption from the
point. Use the GroupListFromPoint property to get the group's list from point. Use the
ItemFromPoint property to get the item over the cursor. Use the ColumnFromPoint property
to get the column's caption over the cursor. The ExpandOnClick property expands the group
when its caption is clicked. Use the ShortcutFromPoint property to retrieve the shortcut
from the cursor.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseUpEvent(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_MouseUpEvent) Handles
MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oExplorerTree,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.ExplorerTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExplorerTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample prints the cell over the cursor:

Private Sub ExplorerTree1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Dim g As EXPLORERTREELibCtl.Group
 With ExplorerTree1
 Set g = .GroupListFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (g Is Nothing) Then
 With g
 Dim h As Long, c As Long, hit as Long
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) Then
 With g.Items
 Debug.Print .CellCaption(h, c)
 End With
 End If
 End With
 End If
 End With
End Sub

The following VFP sample prints the cell's caption from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Olecontrol1
 local g
 g = .GroupListFromPoint(-1,-1)
 If !isnull(g) Then
 with g
 local h, c, hit
 c = 0
 hit = 0
 h = .ItemFromPoint(-1,-1,@c,@hit)
 If h # 0 Then
 with .Items
 .DefaultItem = h

 wait window .CellCaption(0, c) nowait
 endwith
 EndIf
 endwith
 EndIf
endwith

C#

VB

private void OffsetChanged(object sender,exontrol.EXPLORERTREELib.Group
Group,bool Horizontal,int NewVal)
{
}

Private Sub OffsetChanged(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Horizontal As Boolean,ByVal NewVal As
Integer) Handles OffsetChanged
End Sub

C#

C++

private void OffsetChanged(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OffsetChangedEvent e)
{
}

void OnOffsetChanged(LPDISPATCH Group,BOOL Horizontal,long NewVal)
{
}

event OffsetChanged (Group as Group, Horizontal as Boolean, NewVal
as Long)
Occurs when the scroll position is changed.

Type Description
Group as Group A Group object where the scroll position is changed.

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value in
pixels.

If the group has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. Use the ScrollBars property of the control to determine which scroll bars are visible
within the control.

Syntax for OffsetChanged event, /NET version, on:

Syntax for OffsetChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OffsetChanged(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,VARIANT_BOOL Horizontal,long NewVal)
{
}

procedure OffsetChanged(ASender: TObject; Group : IGroup;Horizontal :
WordBool;NewVal : Integer);
begin
end;

procedure OffsetChanged(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OffsetChangedEvent);
begin
end;

begin event OffsetChanged(oleobject Group,boolean Horizontal,long NewVal)
end event OffsetChanged

Private Sub OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OffsetChangedEvent) Handles
OffsetChanged
End Sub

Private Sub OffsetChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OffsetChanged(ByVal Group As Object,ByVal Horizontal As
Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Group,Horizontal,NewVal

PROCEDURE OnOffsetChanged(oExplorerTree,Group,Horizontal,NewVal)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OffsetChanged(Group,Horizontal,NewVal)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OffsetChanged(Group,Horizontal,NewVal)
End Function
</SCRIPT>

Procedure OnComOffsetChanged Variant llGroup Boolean llHorizontal Integer
llNewVal
 Forward Send OnComOffsetChanged llGroup llHorizontal llNewVal
End_Procedure

METHOD OCX_OffsetChanged(Group,Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OffsetChanged(COM _Group,boolean _Horizontal,int _NewVal)
{
}

function OffsetChanged as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,Horizontal as L,NewVal as N)
end function

function nativeObject_OffsetChanged(Group,Horizontal,NewVal)
return

Syntax for OffsetChanged event, /COM version (others), on:

The following sample displays the position of the scroll bar that user changes:

Private Sub ExplorerTree1_OffsetChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,
ByVal Horizontal As Boolean, ByVal NewVal As Long)
 Debug.Print "The user changes the " & IIf(Horizontal, "horizontal", "vertical") & " scroll
bar position. The new position is " & NewVal
End Sub

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OLECompleteDragEvent e)
{

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to set the OLEDropMode and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oExplorerTree,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLEDragDrop(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

void __fastcall OLEDragDrop(TObject *Sender,Explorertreelib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y)
{
}

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the AddItem method to add a
new item to the control. Use the InsertItem method to insert a new child item. Use the
ItemPosition property to specify the item's position.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OLEDragDropEvent) Handles
OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As
EXPLORERTREELibCtl.IExDataObject,Effect As Long,ByVal Button As Integer,ByVal
Shift As Integer,ByVal X As Single,ByVal Y As Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oExplorerTree,Data,Effect,Button,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">

Syntax for OLEDragDrop event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as
OLE::Exontrol.ExplorerTree.1::IExDataObject,Effect as N,Button as N,Shift as N,X as
OLE::Exontrol.ExplorerTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExplorerTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C# // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

State as Integer An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed in Remarks.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

VB // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OLEDragOver(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Explorertreelib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OLEDragOverEvent) Handles
OLEDragOver
End Sub

Syntax for OLEDragOver event, /COM version, on:

VB6

VBA

VFP

Xbas…

Private Sub OLEDragOver(ByVal Data As EXPLORERTREELibCtl.IExDataObject,Effect
As Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oExplorerTree,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

Syntax for OLEDragOver event, /COM version (others), on:

XBasic

dBASE

function OLEDragOver as v (Data as
OLE::Exontrol.ExplorerTree.1::IExDataObject,Effect as N,Button as N,Shift as N,X as
OLE::Exontrol.ExplorerTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExplorerTree.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed in Remarks.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OLEGiveFeedbackEvent) Handles
OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oExplorerTree,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Explorertreelib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not currently supported.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXPLORERTREELibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oExplorerTree,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as
OLE::Exontrol.ExplorerTree.1::IExDataObject,Format as N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the AllowedEffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You
may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use exCFFiles
and Files property to add files to the drag and drop data object.

The idea of drag and drop in exExplorerTree control is the same as in other controls. To
start accepting drag and drop sources the exExplorerTree control should have the
OLEDropMode to exOLEDropManual. Once that is is set, the exExplorerTree starts
accepting any drag and drop sources.

The first step is if you want to be able to drag items from your exExplorerTree control to
other controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects can be changed only in
the OLEStartDrag event. The OLE_StartDrag event is fired when user is about to drag

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void OLEStartDrag(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Explorertreelib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OLEStartDragEvent);
begin
end;

items from the control. The AllowedEffect parameter and SetData property must be set
to continue drag and drop operation, else the drag and drop operation is not started.
Use the FocusGroup property determines the group where the drag and drop operations
beings. Use the FocusItem property to determine the item that has the focus in the group.
Use the CellCaption property to get the caption of the cell.

Syntax for OLEStartDrag event, /NET version, on:

Syntax for OLEStartDrag event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OLEStartDragEvent) Handles
OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXPLORERTREELibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oExplorerTree,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

Syntax for OLEStartDrag event, /COM version (others), on:

X++

XBasic

dBASE

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.ExplorerTree.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

C#

VB

private void OversizeChanged(object sender,exontrol.EXPLORERTREELib.Group
Group,bool Horizontal,int NewVal)
{
}

Private Sub OversizeChanged(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Horizontal As Boolean,ByVal NewVal As
Integer) Handles OversizeChanged
End Sub

C#

C++

private void OversizeChanged(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_OversizeChangedEvent e)
{
}

void OnOversizeChanged(LPDISPATCH Group,BOOL Horizontal,long NewVal)
{
}

event OversizeChanged (Group as Group, Horizontal as Boolean,
NewVal as Long)
Occurs when the right range of the scroll is changed.

Type Description
Group as Group A Group object where change occurs.

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. When the scroll bar range is changed the OversizeChanged event is fired. Use the
ScrollBars property of the control to determine which scroll bars are visible within the
control.

Syntax for OversizeChanged event, /NET version, on:

Syntax for OversizeChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OversizeChanged(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,VARIANT_BOOL Horizontal,long NewVal)
{
}

procedure OversizeChanged(ASender: TObject; Group : IGroup;Horizontal :
WordBool;NewVal : Integer);
begin
end;

procedure OversizeChanged(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_OversizeChangedEvent);
begin
end;

begin event OversizeChanged(oleobject Group,boolean Horizontal,long NewVal)
end event OversizeChanged

Private Sub OversizeChanged(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_OversizeChangedEvent) Handles
OversizeChanged
End Sub

Private Sub OversizeChanged(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OversizeChanged(ByVal Group As Object,ByVal Horizontal As
Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Group,Horizontal,NewVal

PROCEDURE OnOversizeChanged(oExplorerTree,Group,Horizontal,NewVal)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OversizeChanged(Group,Horizontal,NewVal)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OversizeChanged(Group,Horizontal,NewVal)
End Function
</SCRIPT>

Procedure OnComOversizeChanged Variant llGroup Boolean llHorizontal Integer
llNewVal
 Forward Send OnComOversizeChanged llGroup llHorizontal llNewVal
End_Procedure

METHOD OCX_OversizeChanged(Group,Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OversizeChanged(COM _Group,boolean _Horizontal,int _NewVal)
{
}

function OversizeChanged as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,Horizontal as L,NewVal as N)
end function

function nativeObject_OversizeChanged(Group,Horizontal,NewVal)
return

Syntax for OversizeChanged event, /COM version (others), on:

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

event RClick ()
Fired when right mouse button is clicked

Type Description

The RClick event is fired each time the user releases the right mouse button over the
control. Use the MouseDown or MouseUp event if you need the cursor coordinates. Else,
you can use the GetCursorPos API function.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oExplorerTree)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{

Syntax for RClick event, /COM version (others), on:

XBasic

dBASE

}

function RClick as v ()
end function

function nativeObject_RClick()
return

C#

VB

private void RemoveColumn(object sender,exontrol.EXPLORERTREELib.Group
Group,exontrol.EXPLORERTREELib.Column Column)
{
}

Private Sub RemoveColumn(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Column As
exontrol.EXPLORERTREELib.Column) Handles RemoveColumn
End Sub

C#

C++

C++
Builder

private void RemoveColumn(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveColumnEvent e)
{
}

void OnRemoveColumn(LPDISPATCH Group,LPDISPATCH Column)
{
}

void __fastcall RemoveColumn(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::IColumn *Column)
{
}

event RemoveColumn (Group as Group, Column as Column)
Fired before deleting a Column.

Type Description
Group as Group A Group object where a column is removed.
Column as Column A Column object being removed.

The RemoveColumn event is invoked when the control is about to remove a column. Use the
RemoveColumn event to release any extra data associated to the column. Use the Remove
method to remove a specific column from Columns collection.

Syntax for RemoveColumn event, /NET version, on:

Syntax for RemoveColumn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveColumn(ASender: TObject; Group : IGroup;Column : IColumn);
begin
end;

procedure RemoveColumn(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveColumnEvent);
begin
end;

begin event RemoveColumn(oleobject Group,oleobject Column)
end event RemoveColumn

Private Sub RemoveColumn(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveColumnEvent) Handles
RemoveColumn
End Sub

Private Sub RemoveColumn(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
Column As EXPLORERTREELibCtl.IColumn)
End Sub

Private Sub RemoveColumn(ByVal Group As Object,ByVal Column As Object)
End Sub

LPARAMETERS Group,Column

PROCEDURE OnRemoveColumn(oExplorerTree,Group,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveColumn(Group,Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveColumn(Group,Column)

Syntax for RemoveColumn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComRemoveColumn Variant llGroup Variant llColumn
 Forward Send OnComRemoveColumn llGroup llColumn
End_Procedure

METHOD OCX_RemoveColumn(Group,Column) CLASS MainDialog
RETURN NIL

void onEvent_RemoveColumn(COM _Group,COM _Column)
{
}

function RemoveColumn as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,Column as
OLE::Exontrol.ExplorerTree.1::IColumn)
end function

function nativeObject_RemoveColumn(Group,Column)
return

C#

VB

private void RemoveGroup(object sender,exontrol.EXPLORERTREELib.Group
Group)
{
}

Private Sub RemoveGroup(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles RemoveGroup
End Sub

C#

C++

C++
Builder

Delphi

private void RemoveGroup(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveGroupEvent e)
{
}

void OnRemoveGroup(LPDISPATCH Group)
{
}

void __fastcall RemoveGroup(TObject *Sender,Explorertreelib_tlb::IGroup *Group)
{
}

procedure RemoveGroup(ASender: TObject; Group : IGroup);
begin

event RemoveGroup (Group as Group)
Fired when a group is removed.

Type Description
Group as Group A Group object being removed.

Use the RemoveGroup event to notify your application that a group is released. Use the
RemoveGroup event to release any extra data stored by the group. The Remove method
fires the RemoveGroup event for each group removed. Use the RemoveItem event to notify
your application that an item is deleted.

Syntax for RemoveGroup event, /NET version, on:

Syntax for RemoveGroup event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure RemoveGroup(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveGroupEvent);
begin
end;

begin event RemoveGroup(oleobject Group)
end event RemoveGroup

Private Sub RemoveGroup(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveGroupEvent) Handles
RemoveGroup
End Sub

Private Sub RemoveGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub RemoveGroup(ByVal Group As Object)
End Sub

LPARAMETERS Group

PROCEDURE OnRemoveGroup(oExplorerTree,Group)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveGroup(Group)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveGroup(Group)
End Function
</SCRIPT>

Syntax for RemoveGroup event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveGroup Variant llGroup
 Forward Send OnComRemoveGroup llGroup
End_Procedure

METHOD OCX_RemoveGroup(Group) CLASS MainDialog
RETURN NIL

void onEvent_RemoveGroup(COM _Group)
{
}

function RemoveGroup as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_RemoveGroup(Group)
return

The following sample displays the group's caption being deleted:

Private Sub ExplorerTree1_RemoveGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
 Debug.Print Group.Caption
End Sub

C#

VB

private void RemoveItem(object sender,exontrol.EXPLORERTREELib.Group
Group,int Item)
{
}

Private Sub RemoveItem(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal Item As Integer) Handles RemoveItem
End Sub

C#

C++

C++
Builder

private void RemoveItem(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveItemEvent e)
{
}

void OnRemoveItem(LPDISPATCH Group,long Item)
{
}

void __fastcall RemoveItem(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item)
{
}

event RemoveItem (Group as Group, Item as HITEM)
Occurs before deleting an Item.

Type Description
Group as Group A Group object where the item is removed

Item as HITEM A long expression that indicates the handle of the item
being removed.

Use the RemoveItem to release any extra data that you might have used. The control fires
the RemoveItem event before removing the item. Use the RemoveItem method to remove
an item from Items collection.

Syntax for RemoveItem event, /NET version, on:

Syntax for RemoveItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveItem(ASender: TObject; Group : IGroup;Item : HITEM);
begin
end;

procedure RemoveItem(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveItemEvent);
begin
end;

begin event RemoveItem(oleobject Group,long Item)
end event RemoveItem

Private Sub RemoveItem(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_RemoveItemEvent) Handles
RemoveItem
End Sub

Private Sub RemoveItem(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal Item
As EXPLORERTREELibCtl.HITEM)
End Sub

Private Sub RemoveItem(ByVal Group As Object,ByVal Item As Long)
End Sub

LPARAMETERS Group,Item

PROCEDURE OnRemoveItem(oExplorerTree,Group,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveItem(Group,Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveItem(Group,Item)

Syntax for RemoveItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComRemoveItem Variant llGroup HITEM llItem
 Forward Send OnComRemoveItem llGroup llItem
End_Procedure

METHOD OCX_RemoveItem(Group,Item) CLASS MainDialog
RETURN NIL

void onEvent_RemoveItem(COM _Group,int _Item)
{
}

function RemoveItem as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM)
end function

function nativeObject_RemoveItem(Group,Item)
return

C#

VB

private void ScrollButtonClick(object sender,exontrol.EXPLORERTREELib.Group
Group,exontrol.EXPLORERTREELib.ScrollBarEnum
ScrollBar,exontrol.EXPLORERTREELib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group,ByVal ScrollBar As
exontrol.EXPLORERTREELib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXPLORERTREELib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C# private void ScrollButtonClick(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_ScrollButtonClickEvent e)
{

event ScrollButtonClick (Group as Group, ScrollBar as ScrollBarEnum,
ScrollPart as ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

Group as Group
A Group object that indicates the group where the user
clicked the scroll. If nothing, the user clicked the control's
scroll bar, else it clicked the group's scroll bar

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scrollbar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollPartVisible property to add
or remove buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to
specify enable or disable parts in the control's scrollbar. Use the ScrolPartCaption property
to specify the caption of the scroll's part. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

}

void OnScrollButtonClick(LPDISPATCH Group,long ScrollBar,long ScrollPart)
{
}

void __fastcall ScrollButtonClick(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::ScrollBarEnum
ScrollBar,Explorertreelib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; Group : IGroup;ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(oleobject Group,long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal
ScrollBar As EXPLORERTREELibCtl.ScrollBarEnum,ByVal ScrollPart As
EXPLORERTREELibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal Group As Object,ByVal ScrollBar As Long,ByVal
ScrollPart As Long)
End Sub

VFP

Xbas…

LPARAMETERS Group,ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oExplorerTree,Group,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(Group,ScrollBar,ScrollPart)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(Group,ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick Variant llGroup OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llGroup llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(Group,ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(COM _Group,int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (Group as
OLE::Exontrol.ExplorerTree.1::IGroup,ScrollBar as
OLE::Exontrol.ExplorerTree.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.ExplorerTree.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(Group,ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

C#

VB

private void SelectGroup(object sender,exontrol.EXPLORERTREELib.Group Group)
{
}

Private Sub SelectGroup(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles SelectGroup
End Sub

C#

C++

C++
Builder

Delphi

private void SelectGroup(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_SelectGroupEvent e)
{
}

void OnSelectGroup(LPDISPATCH Group)
{
}

void __fastcall SelectGroup(TObject *Sender,Explorertreelib_tlb::IGroup *Group)
{
}

procedure SelectGroup(ASender: TObject; Group : IGroup);
begin
end;

event SelectGroup (Group as Group)
Occurs when a group is clicked.

Type Description
Group as Group A Group object being selected.

Use the SelectGroup event to notify your application that a new group is selected (clicked
).

Syntax for SelectGroup event, /NET version, on:

Syntax for SelectGroup event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure SelectGroup(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_SelectGroupEvent);
begin
end;

begin event SelectGroup(oleobject Group)
end event SelectGroup

Private Sub SelectGroup(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_SelectGroupEvent) Handles
SelectGroup
End Sub

Private Sub SelectGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub SelectGroup(ByVal Group As Object)
End Sub

LPARAMETERS Group

PROCEDURE OnSelectGroup(oExplorerTree,Group)
RETURN

Java…

VBSc…

<SCRIPT EVENT="SelectGroup(Group)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectGroup(Group)
End Function
</SCRIPT>

Syntax for SelectGroup event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComSelectGroup Variant llGroup
 Forward Send OnComSelectGroup llGroup
End_Procedure

METHOD OCX_SelectGroup(Group) CLASS MainDialog
RETURN NIL

void onEvent_SelectGroup(COM _Group)
{
}

function SelectGroup as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_SelectGroup(Group)
return

The following sample focuses the group's list window when user selects the group:

Private Sub ExplorerTree1_SelectGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
 Group.SetFocus
End Sub

The following sample highlights the group being clicked, and restores the last selected
group:

Dim gSelected As EXPLORERTREELibCtl.Group

Private Sub highGroup(ByVal g As EXPLORERTREELibCtl.Group)
 g.UserData = g.BackColor2
 g.BackColor2 = vbBlue
End Sub

Private Sub unHighGroup(ByVal g As EXPLORERTREELibCtl.Group)
 g.BackColor2 = g.UserData
End Sub

Private Sub ExplorerTree1_SelectGroup(ByVal Group As EXPLORERTREELibCtl.IGroup)
 If Not gSelected.Index = Group.Index Then
 gSelected.Expanded = False
 unHighGroup gSelected
 Set gSelected = Group
 highGroup gSelected
 End If
End Sub

Private Sub Form_Load()
 Dim g As EXPLORERTREELibCtl.Group
 ExplorerTree1.DelayScroll = 0
 ExplorerTree1.BeginUpdate
 For Each g In ExplorerTree1.Groups
 g.Expanded = False
 g.BackColor = ExplorerTree1.BackColorGroup
 g.BackColor2 = ExplorerTree1.BackColorGroup2
 Next
 Set gSelected = ExplorerTree1.Groups(0)
 gSelected.Expanded = True
 highGroup gSelected
 ExplorerTree1.EndUpdate
End Sub

C#

VB

private void SelectionChanged(object sender,exontrol.EXPLORERTREELib.Group
Group)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object,ByVal Group As
exontrol.EXPLORERTREELib.Group) Handles SelectionChanged
End Sub

C# private void SelectionChanged(object sender,

event SelectionChanged (Group as Group)
Fired after a new item is selected.

Type Description
Group as Group A Group object where selection is changed.

The group supports multiple selection. When an item is selected or unselected the control
fires the SelectionChanged event. Use the SingleSel property to specify if your control
supports single or multiple selection. Use the SelectCount property to get the number of
selected items within the group. Use the SelectedItem property to access the selected item
by its index. Use the SelectItem property to select programmatically an item.

The following sample displays the list of selected items within the group:

Private Sub ExplorerTree1_SelectionChanged(ByVal Group As
EXPLORERTREELibCtl.IGroup)
 With Group.Items
 If (.SelectCount > 0) Then
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Print .CellCaption(.SelectedItem(i), 0)
 Next
 End If
 End With
End Sub

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXPLORERTREELib._IExplorerTreeEvents_SelectionChangedEvent e)
{
}

void OnSelectionChanged(LPDISPATCH Group)
{
}

void __fastcall SelectionChanged(TObject *Sender,Explorertreelib_tlb::IGroup
*Group)
{
}

procedure SelectionChanged(ASender: TObject; Group : IGroup);
begin
end;

procedure SelectionChanged(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_SelectionChangedEvent);
begin
end;

begin event SelectionChanged(oleobject Group)
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_SelectionChangedEvent) Handles
SelectionChanged
End Sub

Private Sub SelectionChanged(ByVal Group As EXPLORERTREELibCtl.IGroup)
End Sub

Private Sub SelectionChanged(ByVal Group As Object)
End Sub

LPARAMETERS Group

Xbas… PROCEDURE OnSelectionChanged(oExplorerTree,Group)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="SelectionChanged(Group)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged(Group)
End Function
</SCRIPT>

Procedure OnComSelectionChanged Variant llGroup
 Forward Send OnComSelectionChanged llGroup
End_Procedure

METHOD OCX_SelectionChanged(Group) CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged(COM _Group)
{
}

function SelectionChanged as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup)
end function

function nativeObject_SelectionChanged(Group)
return

Syntax for SelectionChanged event, /COM version (others), on:

C#

VB

private void SelectShortcut(object sender,object OldShortcut,object
NewShortcut)
{
}

Private Sub SelectShortcut(ByVal sender As System.Object,ByVal OldShortcut As
Object,ByVal NewShortcut As Object) Handles SelectShortcut
End Sub

C#

C++

C++
Builder

private void SelectShortcut(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_SelectShortcutEvent e)
{
}

void OnSelectShortcut(VARIANT OldShortcut,VARIANT NewShortcut)
{
}

void __fastcall SelectShortcut(TObject *Sender,Variant OldShortcut,Variant
NewShortcut)

event SelectShortcut (OldShortcut as Variant, NewShortcut as Variant)
Fired when the user selects a new shortcut.

Type Description

OldShortcut as Variant A String expression that indicates the caption of the
shortcut being unselected.

NewShortcut as Variant A String expression that indicates the caption of the
shortcut being unselected.

The SelectShortcut event notifies your application when the user selects a shortcut. The
SelectShortcut event is fired if the user clicks a shortcut in the shortcut bar, or if the code
calls the SelectShortcut property. The ShowShortcutBar property shows or hides the
control's shortcut bar. The Shortcut property indicates the HTML caption of the shortcut that
displays the specified group. Groups with the same Shortcut property are displayed in the
same shortcut. The ShortcutPicture property assigns a custom size picture to a shortcut.

Syntax for SelectShortcut event, /NET version, on:

Syntax for SelectShortcut event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure SelectShortcut(ASender: TObject; OldShortcut :
OleVariant;NewShortcut : OleVariant);
begin
end;

procedure SelectShortcut(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_SelectShortcutEvent);
begin
end;

begin event SelectShortcut(any OldShortcut,any NewShortcut)
end event SelectShortcut

Private Sub SelectShortcut(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_SelectShortcutEvent) Handles
SelectShortcut
End Sub

Private Sub SelectShortcut(ByVal OldShortcut As Variant,ByVal NewShortcut As
Variant)
End Sub

Private Sub SelectShortcut(ByVal OldShortcut As Variant,ByVal NewShortcut As
Variant)
End Sub

LPARAMETERS OldShortcut,NewShortcut

PROCEDURE OnSelectShortcut(oExplorerTree,OldShortcut,NewShortcut)
RETURN

Java… <SCRIPT EVENT="SelectShortcut(OldShortcut,NewShortcut)"
Syntax for SelectShortcut event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectShortcut(OldShortcut,NewShortcut)
End Function
</SCRIPT>

Procedure OnComSelectShortcut Variant llOldShortcut Variant llNewShortcut
 Forward Send OnComSelectShortcut llOldShortcut llNewShortcut
End_Procedure

METHOD OCX_SelectShortcut(OldShortcut,NewShortcut) CLASS MainDialog
RETURN NIL

void onEvent_SelectShortcut(COMVariant _OldShortcut,COMVariant
_NewShortcut)
{
}

function SelectShortcut as v (OldShortcut as A,NewShortcut as A)
end function

function nativeObject_SelectShortcut(OldShortcut,NewShortcut)
return

C#

VB

private void ToolTip(object sender,exontrol.EXPLORERTREELib.Group Group,int
Item,int ColIndex,ref bool Visible,ref int X,ref int Y,int CX,int CY)
{
}

Private Sub ToolTip(ByVal sender As System.Object,ByVal Group As

event ToolTip (Group as Group, Item as HITEM, ColIndex as Long, ByRef
Visible as Boolean, ByRef X as Long, ByRef Y as Long, CX as Long, CY
as Long)
Fired when the control prepares the object's tooltip.

Type Description
Group as Group A Group object where the tooltip is about to appear

Item as HITEM A long expression that indicates the item's handle or 0 if
the cursor is not over the cell.

ColIndex as Long A long expression that indicates the column's index.

Visible as Boolean (By Reference) A boolean expression that indicates
whether the object's tooltip is visible.

X as Long
(By Reference) A long expression that indicates the left
location of the tooltip window. The x values is always
expressed in screen coordinates.

Y as Long
(By Reference) A long expression that indicates the top
location of the tooltip window. The y values is always
expressed in screen coordinates.

CX as Long A long expression that indicates the width of the tooltip
window.

CY as Long A long expression that indicates the height of the tooltip
window.

The ToolTip event notifies your application that the control prepares the tooltip for a cell or
column. Use the ToolTip event to change the default position of the tooltip window. Use the
CellToolTip property to specify the cell's tooltip. Use the Tooltip property to assign a tooltip
to a column. Use the ToolTipWidth property to specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. The
ToolTipPopDelay specifies the period in ms of time the ToolTip remains visible if the mouse
pointer is stationary within a control.

Syntax for ToolTip event, /NET version, on:

exontrol.EXPLORERTREELib.Group,ByVal Item As Integer,ByVal ColIndex As
Integer,ByRef Visible As Boolean,ByRef X As Integer,ByRef Y As Integer,ByVal CX As
Integer,ByVal CY As Integer) Handles ToolTip
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void ToolTip(object sender,
AxEXPLORERTREELib._IExplorerTreeEvents_ToolTipEvent e)
{
}

void OnToolTip(LPDISPATCH Group,long Item,long ColIndex,BOOL FAR*
Visible,long FAR* X,long FAR* Y,long CX,long CY)
{
}

void __fastcall ToolTip(TObject *Sender,Explorertreelib_tlb::IGroup
*Group,Explorertreelib_tlb::HITEM Item,long ColIndex,VARIANT_BOOL *
Visible,long * X,long * Y,long CX,long CY)
{
}

procedure ToolTip(ASender: TObject; Group : IGroup;Item : HITEM;ColIndex :
Integer;var Visible : WordBool;var X : Integer;var Y : Integer;CX : Integer;CY :
Integer);
begin
end;

procedure ToolTip(sender: System.Object; e:
AxEXPLORERTREELib._IExplorerTreeEvents_ToolTipEvent);
begin
end;

begin event ToolTip(oleobject Group,long Item,long ColIndex,boolean
Visible,long X,long Y,long CX,long CY)
end event ToolTip

Syntax for ToolTip event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub ToolTip(ByVal sender As System.Object, ByVal e As
AxEXPLORERTREELib._IExplorerTreeEvents_ToolTipEvent) Handles ToolTip
End Sub

Private Sub ToolTip(ByVal Group As EXPLORERTREELibCtl.IGroup,ByVal Item As
EXPLORERTREELibCtl.HITEM,ByVal ColIndex As Long,Visible As Boolean,X As
Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

Private Sub ToolTip(ByVal Group As Object,ByVal Item As Long,ByVal ColIndex As
Long,Visible As Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

LPARAMETERS Group,Item,ColIndex,Visible,X,Y,CX,CY

PROCEDURE OnToolTip(oExplorerTree,Group,Item,ColIndex,Visible,X,Y,CX,CY)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="ToolTip(Group,Item,ColIndex,Visible,X,Y,CX,CY)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolTip(Group,Item,ColIndex,Visible,X,Y,CX,CY)
End Function
</SCRIPT>

Procedure OnComToolTip Variant llGroup HITEM llItem Integer llColIndex Boolean
llVisible Integer llX Integer llY Integer llCX Integer llCY
 Forward Send OnComToolTip llGroup llItem llColIndex llVisible llX llY llCX llCY
End_Procedure

METHOD OCX_ToolTip(Group,Item,ColIndex,Visible,X,Y,CX,CY) CLASS MainDialog
RETURN NIL

Syntax for ToolTip event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_ToolTip(COM _Group,int _Item,int _ColIndex,COMVariant /*bool*/
_Visible,COMVariant /*long*/ _X,COMVariant /*long*/ _Y,int _CX,int _CY)
{
}

function ToolTip as v (Group as OLE::Exontrol.ExplorerTree.1::IGroup,Item as
OLE::Exontrol.ExplorerTree.1::HITEM,ColIndex as N,Visible as L,X as N,Y as N,CX as
N,CY as N)
end function

function nativeObject_ToolTip(Group,Item,ColIndex,Visible,X,Y,CX,CY)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method

	Column
	Alignment property
	AllowDragging property
	AllowSizing property
	AutoSearch property
	AutoWidth property (readonly)
	Caption property
	ComputedField property
	CustomFilter property
	Data property
	Def property
	DefaultSortOrder property
	DisplayFilterButton property
	DisplayFilterDate property
	DisplayFilterPattern property
	DisplaySortIcon property
	Enabled property
	Filter property
	FilterBarDropDownWidth property
	FilterList property
	FilterOnType property
	FilterType property
	FireFormatColumn property
	FormatColumn property
	HeaderAlignment property
	HeaderBold property
	HeaderImage property
	HeaderImageAlignment property
	HeaderItalic property
	HeaderStrikeOut property
	HeaderUnderline property
	HTMLCaption property
	Index property (readonly)
	Key property
	LevelKey property
	MaxWidthAutoResize property
	MinWidthAutoResize property
	PartialCheck property
	Position property
	ShowFilter method
	SortOrder property
	SortType property
	ToolTip property
	Visible property
	Width property
	WidthAutoResize property

	Columns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ConditionalFormat
	ApplyTo property
	BackColor property
	Bold property
	ClearBackColor method
	ClearForeColor method
	Enabled property
	Expression property
	Font property
	ForeColor property
	Italic property
	Key property (readonly)
	StrikeOut property
	Underline property
	Valid property (readonly)

	ConditionalFormats
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExplorerTree
	AllowResizeShortcutBar property
	AllowTooltip property
	AnchorFromPoint property (readonly)
	Appearance property
	AttachTemplate method
	AutoScrollBar property
	BackColor property
	BackColorGroup property
	BackColorGroup2 property
	Background property
	BeginUpdate method
	BorderGroupHeight property
	BorderHeight property
	BorderWidth property
	DelayScroll property
	DisplayExpandIcon property
	Enabled property
	EndUpdate method
	EnsureVisible method
	EventParam property
	ExecuteTemplate method
	ExpandIcon property
	ExpandOnClick property
	ExpandShortcutCount property
	ExpandShortcutImage property
	FocusGroup property (readonly)
	Font property
	ForeColor property
	ForeColorGroup property
	FormatAnchor property
	GroupAppearance property
	GroupFromPoint property (readonly)
	GroupHeight property
	GroupListFromPoint property (readonly)
	Groups property (readonly)
	HandCursor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	OLEDrag method
	OLEDropMode property
	Picture property
	PictureDisplay property
	Refresh method
	ReplaceIcon method
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SelectShortcut property
	ShortcutBarBackColor property
	ShortcutBarHeight property
	ShortcutBarSelBackColor property
	ShortcutBarSelCaptionBackColor property
	ShortcutFromPoint property (readonly)
	ShortcutPicture property
	ShortcutPictureHeight property
	ShortcutPictureWidth property
	ShortcutResizeBackColor property
	ShowFocusRect property
	ShowImageList property
	ShowShortcutBar property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipWidth property
	UseVisualTheme property
	Version property
	VisualAppearance property (readonly)

	Group
	Alignment property
	AllowEdit property
	AllowExpand property
	AllowScroll property
	ApplyFilter method
	ASCIILower property
	ASCIIUpper property
	AutoHeight property
	AutoSearch property
	BackColor property
	BackColor2 property
	BackColorAlternate property
	BackColorHeader property
	BackColorLevelHeader property
	BackColorList property
	BackColorLock property
	BeginUpdate method
	Bold property
	BorderColor property
	Caption property
	CaptionFormat property
	CheckImage property
	ClearFilter method
	ColumnAutoResize property
	ColumnFromPoint property (readonly)
	Columns property (readonly)
	ColumnsAllowSizing property
	ConditionalFormats property (readonly)
	ContinueColumnScroll property
	CountLockedColumns property
	DataSource property
	DefaultItemHeight property
	Description property
	DrawGridLines property
	EndUpdate method
	EnsureVisibleColumn method
	Expanded property
	ExpandOnDblClick property
	ExpandOnKeys property
	ExpandOnSearch property
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	FilterInclude property
	Font property
	ForeColor property
	ForeColorHeader property
	ForeColorList property
	ForeColorLock property
	FullRowSelect property
	GetItems method
	GridLineColor property
	GridLineStyle property
	HasButtons property
	HasButtonsCustom property
	HasLines property
	HeaderAppearance property
	HeaderHeight property
	HeaderSingleLine property
	HeaderVisible property
	Height property
	HideSelection property
	HotBackColor property
	HotForeColor property
	hWnd property (readonly)
	HyperLinkColor property
	Image property
	ImageAlignment property
	Indent property
	IndentGroupLeft property
	IndentGroupRight property
	IndentHeaderBottom property
	IndentHeaderLeft property
	IndentHeaderRight property
	IndentHeaderTop property
	Index property (readonly)
	Italic property
	ItemFromPoint property (readonly)
	Items property (readonly)
	ItemsAllowSizing property
	Left property (readonly)
	LinesAtRoot property
	MarkSearchColumn property
	Picture property
	PictureDisplay property
	PictureDisplayLevelHeader property
	PictureLevelHeader property
	Position property
	PutItems method
	RadioImage property
	RClickSelect property
	Refresh method
	RightToLeft property
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollBySingleLine property
	ScrollFont property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	SearchColumnIndex property
	SelBackColor property
	SelBackMode property
	SelectColumn property
	SelectColumnIndex property
	SelectColumnInner property
	SelForeColor property
	SelLength property
	SelStart property
	SetFocus method
	Shortcut property
	ShowFocusRect property
	ShowLockedItems property
	SingleSel property
	SortOnClick property
	StrikeOut property
	ToolTip property
	Top property (readonly)
	TreeColumnIndex property
	Underline property
	UserData property
	Width property (readonly)

	Groups
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemByPos property (readonly)
	Remove method

	Items
	AcceptSetParent property (readonly)
	AddItem method
	CellBackColor property
	CellBold property
	CellButtonAutoWidth property
	CellCaption property
	CellCaptionFormat property
	CellChecked property (readonly)
	CellData property
	CellEnabled property
	CellFont property
	CellForeColor property
	CellHAlignment property
	CellHasButton property
	CellHasCheckBox property
	CellHasRadioButton property
	CellHyperLink property
	CellImage property
	CellImages property
	CellItalic property
	CellItem property (readonly)
	CellMerge property
	CellParent property (readonly)
	CellPicture property
	CellPictureHeight property
	CellPictureWidth property
	CellRadioGroup property
	CellSingleLine property
	CellState property
	CellStrikeOut property
	CellToolTip property
	CellUnderline property
	CellVAlignment property
	CellWidth property
	ChildCount property (readonly)
	ClearCellBackColor method
	ClearCellForeColor method
	ClearCellHAlignment method
	ClearItemBackColor method
	ClearItemForeColor method
	DefaultItem property
	Edit method
	EnableItem property
	EnsureVisibleItem method
	ExpandItem property
	FindItem property (readonly)
	FindItemData property (readonly)
	FindPath property (readonly)
	FirstVisibleItem property (readonly)
	FocusItem property (readonly)
	FormatCell property
	FullPath property (readonly)
	InnerCell property (readonly)
	InsertControlItem method
	InsertItem method
	IsItemLocked property (readonly)
	IsItemVisible property (readonly)
	ItemAllowSizing property
	ItemAppearance property
	ItemBackColor property
	ItemBold property
	ItemByIndex property (readonly)
	ItemCell property (readonly)
	ItemChild property (readonly)
	ItemControlID property (readonly)
	ItemCount property (readonly)
	ItemData property
	ItemDivider property
	ItemDividerLine property
	ItemDividerLineAlignment property
	ItemFont property
	ItemForeColor property
	ItemHasChildren property
	ItemHeight property
	ItemItalic property
	ItemMaxHeight property
	ItemObject property (readonly)
	ItemParent property (readonly)
	ItemPosition property
	ItemStrikeOut property
	ItemToIndex property (readonly)
	ItemUnderline property
	ItemWidth property
	ItemWindowHost property (readonly)
	ItemWindowHostCreateStyle property
	LastVisibleItem property (readonly)
	LockedItem property (readonly)
	LockedItemCount property
	MergeCells method
	NextSiblingItem property (readonly)
	NextVisibleItem property (readonly)
	PathSeparator property
	PrevSiblingItem property (readonly)
	PrevVisibleItem property (readonly)
	RemoveAllItems method
	RemoveItem method
	RootCount property (readonly)
	RootItem property (readonly)
	SelectableItem property
	SelectAll method
	SelectCount property (readonly)
	SelectedItem property (readonly)
	SelectItem property
	SetParent method
	SortableItem property
	SortChildren method
	SplitCell property (readonly)
	UnmergeCells method
	UnselectAll method
	UnsplitCell method
	VisibleCount property (readonly)
	VisibleItemCount property (readonly)

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	ExplorerTree events
	AddColumn event
	AddGroup event
	AddItem event
	AfterCellEdit event
	AfterExpandGroup event
	AfterExpandItem event
	AnchorClick event
	BeforeCellEdit event
	BeforeExpandGroup event
	BeforeExpandItem event
	CellButtonClick event
	CellImageClick event
	CellStateChanged event
	Click event
	ColumnClick event
	DblClick event
	ExpandShortcut event
	FilterChange event
	FilterChanging event
	FormatColumn event
	HyperLinkClick event
	ItemOleEvent event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutChanged event
	MouseDown event
	MouseMove event
	MouseUp event
	OffsetChanged event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	OversizeChanged event
	RClick event
	RemoveColumn event
	RemoveGroup event
	RemoveItem event
	ScrollButtonClick event
	SelectGroup event
	SelectionChanged event
	SelectShortcut event
	ToolTip event

