
 ExPivot

The Exontrol's eXPivot tool is our approach to provide data summarization, as a pivot table.
A pivot-table can automatically sort, count, total or give the average of the data stored in
one table or spreadsheet. The user sets up and changes the summary's structure by
dragging and dropping fields graphically. The eXPivot component lets the user changes its
visual appearance using skins, each one providing an additional visual experience that
enhances viewing pleasure. Skins are relatively easy to build and put on any part of the
control.

Features of eXPivot include:

Skinnable Interface support (ability to apply a skin to any background part)
Easy way to define the control's visual appearance in design mode, using XP-Theme
elements or EBN objects
Print and Print-Preview support, including Fit-To-Page
Summarizes the data by Drag and Drop, or by code
Undo / Redo support
Ability to import data from ADO/DAO data-source, TXT, XML or by drag and drop
from other sources
Export data as TXT, CSV, XML, EMF or by drag and drop
Ability to drag/filter the values of a column to the pivot bar, so the chart displays the
associated function by value
SUM, AVG, COUNT, MIN or MAX implementation, for numbers, string or date
expressions
Ability to add new aggregate functions, using built-in predefined operators
Total / Subtotal rows support
Computed fields support
Conditional Format Support
PDF (Portable Document Format), BMP, JPG, GIF, PNG, TIFF, EMF support (Ability
to save/export the control's content to PDF, BMP, JPG, GIF, PNG, TIFF, EMF formats)
Easy way to save / restore the control's layout ,column positions and size, sorting,
filtering, scrolling and so on
Interactive context menu to define the format to be displayed, including the colors, font,
and so on
FilterBar / FilterPrompt support
Automatically update the Total/Subtotal rows, once a filter is applied, so the aggregate
rows reflect the visible date only
Ability to define the content of the columns / rows context menu
Compact or Expanded mode support
Built-in HTML, Decorative Text, Tooltip, Mouse Wheel, Icons, Pictures support and
more ...

Ž ExPivot is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
The AlignmentEnum type defines the alignment of the object. The AlignmentEnum type
supports the following values.

Name Value Description
LeftAlignment 0 Left Alignment
CenterAlignment 1 Center Alignment
RightAlignment 2 Right Alignment

constants AllowGroupByEnum
The AllowGroupByEnum type specifies where the column can be dropped on the control's
pivot bar. The AllowGroupBy property specifies where the column can be dropped on the
control's pivot bar. The AllowGroupByEnum type supports the following values:

Name Value Description

exGroupByNone 0 The column can not be dropped the control's pivot
bar.

exGroupByRows 1 The column can make part of the PivotRows
property (group by section).

exGroupByColumnsHeader 2
The column can make part of the PivotColumns
property (generate values to be shown on the
control's columns header).

exGroupByColumnAggregate 4 The column can make part of the PivotColumns
property (generate aggregate column)).

exGroupByAny 7

The column can be dropped anywhere on the
control's pivot bar. The exGroupByAny is a
combination of exGroupByRows,
exGroupByColumnsHeader and
exGroupByColumnAggregate flags.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the control's appearance. Use the
Appearance property to specify the control's appearance. The following values are
supported:

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on. The SingleSel property specifies whether the control
supports single or multiple selection. The drag and drop operation starts once the user
clicks and moves the cursor up or down, if the SingleSel property is True, and if SingleSel
property is False, the drag and drop starts once the user clicks, and waits for a short
period of time. If SingleSel property is False, moving up or down the cursor selects the
items by drag and drop.

The AutoDragEnum type supports the following values:

Name Value Description
exAutoDragNone 0 AutoDrag is disabled.
exAutoDragPosition 1 Reserved.
exAutoDragPositionKeepIndent2 Reserved.
exAutoDragPositionAny 3 Reserved.

exAutoDragCopy 8

Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite

https://www.youtube.com/watch?v=4uA7ZI0W3Sk

exAutoDragCopyImage 10
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content.

Click here to watch a movie on how
exAutoDragScroll works.

exAutoDragPositionOnShortTouch256
exAutoDragPositionOnShortTouch. The object can
be dragged from a position to another, but not
outside of its group.

exAutoDragPositionKeepIndentOnShortTouch512

exAutoDragPositionKeepIndentOnShortTouch. The
object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnShortTouch768
exAutoDragPositionAnyOnShortTouch. The object
can be dragged to any position or to any parent,
with no restriction.

exAutoDragCopyOnShortTouch2048
exAutoDragCopyOnShortTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnShortTouch2304
exAutoDragCopyTextOnShortTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.
exAutoDragCopyImageOnShortTouch. Drag and

https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

exAutoDragCopyImageOnShortTouch2560 drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 exAutoDragCopySnapShotOnShortTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnShortTouch4096
exAutoDragScrollOnShortTouch. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnRight 65536
exAutoDragPositionOnRight. The object can be
dragged from a position to another, but not outside
of its group.

exAutoDragPositionKeepIndentOnRight131072
exAutoDragPositionKeepIndentOnRight. The object
can be dragged to any position or to any parent,
while the dragging object keeps its indentation.

exAutoDragPositionAnyOnRight196608
exAutoDragPositionAnyOnRight. The object can be
dragged to any position or to any parent, with no
restriction.

exAutoDragCopyOnRight 524288
exAutoDragCopyOnRight. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnRight 589824
exAutoDragCopyTextOnRight. Drag and drop the
selected objects to a target application, and paste
them as text only.

exAutoDragCopyImageOnRight655360
exAutoDragCopyImageOnRight. Drag and drop the
selected objects to a target application, and paste
them as image only.

exAutoDragCopySnapShotOnRight720896exAutoDragCopySnapShotOnRight. Drag and drop
a snap shot of the current component.

exAutoDragScrollOnRight 1048576
exAutoDragScrollOnRight. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnLongTouch16777216
exAutoDragPositionOnLongTouch. The object can
be dragged from a position to another, but not
outside of its group.

exAutoDragPositionKeepIndentOnLongTouch33554432

exAutoDragPositionKeepIndentOnLongTouch. The
object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.
exAutoDragPositionAnyOnLongTouch. The object

exAutoDragPositionAnyOnLongTouch50331648can be dragged to any position or to any parent,
with no restriction.

exAutoDragCopyOnLongTouch134217728
exAutoDragCopyOnLongTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnLongTouch150994944
exAutoDragCopyTextOnLongTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnLongTouch167772160
exAutoDragCopyImageOnLongTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376exAutoDragCopySnapShotOnLongTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnLongTouch268435456
exAutoDragScrollOnLongTouch. The component is
scrolled by clicking the object and dragging to a
new position.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Name Value Description

exHeaderFilterBarButton 0 Specifies the background color for the drop down
filter bar button.

exFooterFilterBarButton 1
Specifies the background color for the closing
button in the filter bar. Use the ClearFilter method to
remove the filter from the control.

exCellButtonUp 2 Specifies the background color for the cell's button,
when it is up.

exCellButtonDown 3 Specifies the background color for the cell's button,
when it is down.

exDropDownButtonUp 4
Specifies the visual appearance for the drop down
button, when it is up. Usually the editors with a drop
down portion displays a drop down button.
Specifies the visual appearance for the drop down

exDropDownButtonDown 5 button, when it is down. Usually the editors with a
drop down portion displays a drop down button.

exButtonUp 6 Specifies the visual appearance for the button
inside the editor, when it is up.

exButtonDown 7 Specifies the visual appearance for the button
inside the editor, when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a
calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSliderRange 15 Specifies the visual appearance for the slider's bar.

exSliderThumb 16 Specifies the visual appearance for the thumb of the
slider.

exSelectInPlace 17 Specifies the visual appearance for the selection
when a drop down editor is focused and closed.

exSplitBar 18 exSplitBar. Specifies the visual appearance for
control's split bar.

exSelBackColorFilter 20

Specifies the visual appearance for the selection in
the drop down filter window. The drop down filter
window shows up when the user clicks the filter
button in the column's header.

exSelForeColorFilter 21 Specifies the foreground color for the selection in
the drop down filter window.

exSpinUpButtonUp 22 Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23
Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24 Specifies the visual appearance for the down spin
button when it is not pressed.

exSpinDownButtonDown 25 Specifies the visual appearance for the down spin
button when it is pressed.

exBackColorFilter 26 Specifies the background color for the drop down
filter window.

exForeColorFilter 27 Specifies the foreground color for the drop down
filter window.

exSortBarLinkColor 28 Indicates the color or the visual appearance of the
links between columns in the control's sort bar.

exCursorHoverColumn 32

Specifies the visual appearance for the column
when the cursor hovers the column. By default, the
exCursorHoverColumn property is zero, and it has
no effect, so the visual appearance for the column
is not changed when the cursor hovers the header.

exDragDropBefore 33 Reserved.
exDragDropAfter 34 Reserved.
exDragDropListTop 35 Reserved.
exDragDropListBottom 36 Reserved.
exDragDropForeColor 37 Reserved.
exDragDropListOver 38 Reserved.
exDragDropListBetween 39 Reserved.
exDragDropAlign 40 Reserved.

exHeaderFilterBarActive 41 Specifies the visual appearance of the drop down
filter bar button, while filter is applied to the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTipWidth property to
specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the
ShowToolTip method to display a custom tooltip.

exToolTipBackColor 65 Specifies the tooltip's background color.

exToolTipForeColor 66 Specifies the tooltip's foreground color.

exColumnsFloatBackColor 87 Specifies the background color for the Columns
float bar.

exColumnsFloatScrollBackColor88 Specifies the background color for the scroll bars in
the Columns float bar.

exColumnsFloatScrollPressBackColor89
Specifies the background color for the scroll bars in
the Columns float bar, while the scroll part is
pressed.

exColumnsFloatScrollUp 90 Specifies the visual appearance of the up scroll bar.

exColumnsFloatScrollDown 91 Specifies the visual appearance of the down scroll
bar.

exColumnsFloatAppearance 92 Specifies the visual appearance for the
frame/borders of the Column's float bar

exColumnsFloatCaptionBackColor93
Specifies the visual appearance for caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCaptionForeColor94
Specifies the foreground color for the caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCloseButton 95

Specifies the visual appearance for the closing
button, if the
Background(exColumnsFloatAppearance) property
is specified.

exPivotBarAppearance 96 Specifies the visual appearance for the
frame/borders of the control's PivotBar.

exPivotBarBackColor 97 Specifies the background color for the PivotBar.
exPivotBarForeColor 98 Specifies the foreground color for the PivotBar.

exContextMenuAppearance 99 Specifies the visual appearance of the control's
context menu.

exContextMenuBackColor 100 Specifies the solid background color for the
control's context menu.

exContextMenuForeColor 101 Specifies the text foreground color for the control's
context menu.

exContextMenuSelBackColor 102 Specifies the solid/EBN selection's background
color in the control's context menu.

exContextMenuSelBorderColor103
Specifies the solid color to show the selection in the
control's context menu.

exContextMenuSelForeColor 104 Specifies the selection's text foreground color in the
control's context menu.

exColumnsPositionSign 182
Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop.

exPivotBarAddNew 183 Specifies the visual appearance for the add new
button (plus) in the control's pivot bar.

exPivotBarReload 184 Specifies the visual appearance for the reload
button in the control's pivot bar.

exPivotBarTotal 185 Specifies the visual appearance of the Total button
within the control's pivot bar.

exTreeLinesColor 186 Specifies the color to show the tree-lines
(connecting lines from the parent to the children)

exColumnIndexColor 212

Defines the color to display the column's index in
the control's header. The following screen shot
shows the index of each column in red:

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

The thumb part (exThumbPart) when cursor hovers

exVSThumbH 263 it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.

exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325
All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503 The thumb-extension part in normal state.
exVSThumbExtP 504 The thumb-extension part when it is pressed.
exVSThumbExtD 505 The thumb-extension part when it is disabled.
exVSThumbExtH 506 The thumb-extension when the cursor hovers it.
exHSThumbExt 507 The thumb-extension in normal state.
exHSThumbExtP 508 The thumb-extension when it is pressed.
exHSThumbExtD 509 The thumb-extension when it is disabled.
exHSThumbExtH 510 The thumb-extension when the cursor hovers it.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants BackModeEnum
Specifies how the control displays the selection.

Name Value Description
exOpaque 0 The selection is opaque.
exTransparent 1 The selection is transparent.
exGrid 2 The control paints a grid selection.

constants CheckStateEnum
Specifies the states for a checkbox in the control.

Name Value Description
Unchecked 0 Specifies whether the cell is unchecked.
Checked 1 Specifies whether the cell is checked.
PartialChecked 2 Specifies whether the cell is partial-checked..

constants DescriptionTypeEnum
The DescriptionTypeEnum type defines captions that control displays. The Description
property defines predefined captions being displayed on the control. The
DescriptionTypeEnum type supports the following values:

Name Value Description
exFilterBarAll 0 Defines the caption of '(All)' in the filter bar window.

exFilterBarBlanks 1 Defines the caption of '(Blanks)' in the filter bar
window.

exFilterBarNonBlanks 2 Defines the caption of '(NonBlanks)' in the filter bar
window.

exFilterBarFilterForCaption 3 Defines the caption of 'Filter For' in the filter bar
window.

exFilterBarFilterTitle 4 Defines the title for the filter tooltip.
exFilterBarPatternFilterTitle 5 Defines the title for the filter pattern tooltip.

exFilterBarTooltip 6 Defines the tooltip for the filter window when it
displays no pattern field.

exFilterBarPatternTooltip 7 Defines the tooltip for filter pattern window.
exFilterBarFilterForTooltip 8 Defines the tooltip for 'Filter For:' window.

exFilterBarIsBlank 9 Defines the caption of the function 'IsBlank' in the
control's filter bar.

exFilterBarIsNonBlank 10 Defines the caption of the function 'not IsBlank' in
the control's filter bar.

exFilterBarAnd 11
Customizes the ' and ' text in the control's filter bar
when multiple columns are used to filter the items in
the control.

exFilterBarDate 12 Specifies the 'Date:' caption being displayed in the
drop down filter.

exFilterBarDateTo 13
Specifies the 'to' sequence being used to split the
from date and to date in the Date field of the drop
down filter window.

exFilterBarDateTooltip 14 Describes the tooltip that shows up when cursor is
over the Date field.

exFilterBarDateTitle 15 Describes the title of the tooltip that shows up when
the cursor is over the Date field.
Specifies the caption for the 'Today' button in a date

exFilterBarDateTodayCaption 16 filter window.

exFilterBarDateMonths 17 Specifies the name for months to be displayed in a
date filter window.

exFilterBarDateWeekDays 18 Specifies the shortcut for the weekdays to be
displayed in a date filter window.

exFilterBarChecked 19 Defines the caption of (Checked) in the filter bar
window.

exFilterBarUnchecked 20 Defines the caption of (Unchecked) in the filter bar
window.

exFilterBarIsChecked 21 Defines the caption of the 'IsChecked' function in
the control's filter bar.

exFilterBarIsUnchecked 22 Defines the caption of the 'not IsChecked' function
in the control's filter bar.

exFilterBarOr 23
Customizes the 'or' operator in the control's filter
bar when multiple columns are used to filter the
items in the control.

exFilterBarNot 24 Customizes the 'not' operator in the control's filter
bar.

exFilterBarExclude 25 Specifies the 'Exclude' caption being displayed in
the drop down filter.

exColumnsFloatBar 26 Specifies the caption to be shown on control's
Columns float bar.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side.

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to

exFilterBarCompact 2048

the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
The FilterIncludeEnum type defines the items to include when control's filter is applied. The
FilterInclude property specifies the items being included, when the list is filtered. The
FilterIncludeEnum type supports the following values:

Name Value Description

exItemsWithoutChilds 0 Items (and parent-items) that match the filter are
shown (no child-items are included)

exItemsWithChilds 1 Items (parent and child-items) that match the filter
are shown

exRootsWithoutChilds 2 Only root-items (excludes child-items) that match
the filter are displayed

exRootsWithChilds 3 Root-items (and child-items) that match the filter
are displayed

exMatchingItemsOnly 4 Shows only the items that matches the filter (no
parent or child-items are included)

exMatchIncludeParent 240

Specifies that the item matches the filter if any of its
parent-item matches the filter. The
exMatchIncludeParent flag can be combined with
any other value.

exFilterIncludeDefault 241 Defines the default value for the FilterInclude
property.

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The DisplayFilterList property specifies the items being included to the
column's drop down filter-list, including other options for filtering. The SortType property of
the Column object determines the type of the filtering box being displayed.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 The filter's list includes the leaf items only. A leaf
item is an item with no child items.

exRootItems 4 The filter's list includes the root items only.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exIncludeInnerCells 64
The exIncludeInnerCells flag specifies whether the
inner cells values are included in the drop down
filter's list.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items
selection in the drop down filter list.
The filter's list displays a check box for each

exShowCheckBox 256

included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses
ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A
item being focused in the drop down filter list is the
one you have in the control's selection. This flag has

exShowFocusItem 1024

effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item
in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096 This flag indicates whether the filter's tooltip is
shown.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list
This flag indicates that no Filter For field is shown
on the drop down filter window. Once the Filter For
field is not shown, you can filter for items as soon
as you type like shown in the following screen shot:

exHideFilterPattern 32768

exFilterListDefault 9504

Defines the default value for the DisplayFilterList
property. The exFilterListDefault value is a bit-OR
combination of: exAllItems | exSortItemsAsc |
exShowCheckBox | exShowFocusItem |
exShowExclude

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
Can be combined with
exFilterPromptCaseSensitive. The
FilterBarPromptPattern property may include wild
characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character

' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith, exFilterPromptEndWith or
exFilterPromptPattern

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants GridLinesEnum
Defines how the control paints the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exRowLines -2 The control paints grid lines only for current rows.
exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of
a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants HierarchyLineEnum
Defines how the control paints the hierarchy lines.

Name Value Description

exNoLine 0 The control displays no lines when painting the
hierarchy.

exDotLine -1 The control uses a dotted line to paint the hierarchy.
exSolidLine 1 The control uses a solid line to paint the hierarchy.
exThinLine 2 The control uses a thin line to paint the hierarchy.

constants LayoutChangingEnum
The LayoutChangingEnum type specifies different operations in the control. The
LayoutStartChanging event notifies your application once the user/control is about to being
an operation. The LayoutEndChanging event notifies your application once the current
operation ends. Your application can be notified for the following operations:

Name Value Description

exLayoutResizePanels 0

One of the panels has been resized. The
PaneHeight property indicates the height of the
panels. THe PaneMinHeight property specifies the
minimum height of the specified panel. Include or
exclude the exPivotBarSizable flag in the
PivotBarVisible property, so you let the pivot bar to
be sizable or not. Include or exclude the
exPivotBarAutoFit flag in the PivotBarVisible
property, so the pivot bar's height fits its content.

exLayoutPivotAutoHide 1

The pivot bar is auto shown or hidden based on the
cursor position. Include or exclude the
exPivotBarAutoHide flag in the PivotBarVisible
property, to enable or disable the Auto-Hide feature
of the control's pivot bar. If the exPivotBarAutoHide
flag is included, the pivot bar is visible while the
cursor hovers it, and it is hidden while the control is
outside of the control's pivot bar. Include or exclude
the exPivotBarSizable flag in the PivotBarVisible
property, so you let the user resizes or not the pivot
bar.

exPivotDataLayoutChange 2

The layout of data in the pivot bar is changing, such
as dragging a column to pivot bar. This operation
notifies your application once the user drag a
column/aggregate to the pivot bar, or remove a
column/aggregate from the pivot bar.

In other words, this operation notifies once one of
the following property is changed at runtime:

PivotRows property, specifies the list of data
columns that build the rows in the pivot control
(Group-By columns, first column).
PivotColumns property, specifies the list of
data columns that build the columns in the pivot

control(the rest of columns, in the pivot
control).
PivotTotals property, specifies the list of
total/sub-totals/aggregate functions to be
displayed in the pivot control.

exPivotDataLayoutExecute 3

The control executes the layout. The control
arranges the data based on the current values of
the following properties:

PivotRows property, specifies the list of data
columns that build the rows in the pivot control
(Group-By columns, first column).
PivotColumns property, specifies the list of
data columns that build the columns in the pivot
control(the rest of columns, in the pivot
control).
PivotTotals property, specifies the list of
total/sub-totals/aggregate functions to be
displayed in the pivot control.

exPivotDataLayoutUndo 4

The user performs an Undo operation in the layout
of the pivot's data. The Undo operation is
performed once the user presses the CTRL+Z keys
combination. Include or exclude the
exPivotBarAllowUndoRedo flag in the
PivotBarVisible property, to enable or disable the
Undo/Redo feature of the control's pivot bar.

exPivotDataLayoutRedo 5

The user performs a Redo operation in the layout of
the pivot's data. The Redo operation is performed
once the user presses the CTRL+Y keys
combination. Include or exclude the
exPivotBarAllowUndoRedo flag in the
PivotBarVisible property, to enable or disable the
Undo/Redo feature of the control's pivot bar.

exPivotDataColumnFilterChange6 The user changes the filter for a pivot column.
exPivotDataColumnSort 7 The user sorts a pivot column.

constants LinesAtRootEnum
Defines how the control displays the lines at root. The LinesAtRoot property defines the
way the tree lines are shown. The HasLines property defines the type of the line to be
shown. The HasButtons property defines the expand/collapse buttons for parent items.

The LinesAtRootEnum type support the following values:

Name Value Description

exNoLinesAtRoot 0

No lines at root items.

exLinesAtRoot -1

The control links the root items.

The control shows no links between roots, and
divides them as being in the same group.

exGroupLinesAtRoot 1

exGroupLines 2

The lines between root items are no shown, and the
links show the items being included in the group.

exGroupLinesInside 3

The lines between root items are no shown, and the
links are shown between child only.

The lines between root items are no shown, and the
links are shown for first and last visible child item.

exGroupLinesInsideLeaf 4

exGroupLinesOutside 5

The lines between root items are no shown, and the
links are shown for first and last visible child item. A
parent item that contains flat child items only, does
not indent the child part. By a flat child we mean an
item that does not contain any child item.

constants IncludeExpandColumnEnum
The IncludeExpandColumnEnum type specifies whether the columns display its data when it
contains child columns, and it is expanded. The IncludeExpandColumn property specifies
whether the column itself is displayed in the list (header/chart), while it expanded (the
column contains child columns). The IncludeExpandColumnEnum type supports the
following values:

Name Value Description

exExcludeExpandColumn 0 The column itself is not displayed when it is
expanded and it contains child columns (default).

exIncludeExpandColumn 1

The column itself is displayed, when it is expanded
and it contains child columns. This flag can be
combined with the exIncludeExpandColumnSingle
flag.

exIncludeExpandColumnSingle16
The column itself is displayed, even if it contains a
single child column. This flag can be combined with
the exIncludeExpandColumn flag.

constants OnFilterChangeEnum
The OnFilterChangeEnum type specifies the action the control performs once the user
applies a filter to any of the columns. The OnFilterChangeEnum type supports the following
values:

Name Value Description

exFilterNope 0 No action is performed once the user applies a filter
to any of the control's columns.

exFilterHideTotals 1 The total/sub-total fields are hidden while the
control displays filtered data.

exFilterUpdateTotals 3

(default) The total/sub-total fields are updated to
reflect the visible rows, instead the entire data. For
instance, you have a Grand Total field, which
displays the total for all countries, and if the user
applies a filter for only Spain and UK is shown, the
Grand Total Field will display the total for the
displayed countries only, so just for Spain + UK.

constants PictureDisplayEnum
Specifies how a picture object is displayed.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants PivotBarVisibleEnum
The PivotBarVisibleEnum type indicates the options/flags/properties of the control's pivot
bar. The PivotBarVisible property indicates the options to be changed for the control's pivot
bar. Any of the following values can be bit-OR combinate with any other flag. The
PivotBarVisibleEnum type supports the following values:

Name Value Description

exPivotBarVisible 1

The pivot bar to show the columns is visible. Include
or exclude this flag to show or hide the control's
pivot bar. The PivotColumnsFloatBarVisible
property indicates whether the control shows a
floating panel to display the pivot columns that can
be dropped to the control's pivot bar.

exPivotBarSizable 2

The pivot bar is sizable. Include or exclude this flag
to allow or prevent resizing the pivot bar at runtime.
If this flag is present, the user can resize the pivot
bar by dragging the bottom side of the control. The
resize cursor is shown when the pivot bar is
resizable and cursor hovers the bottom side of the
pivot bar. The PaneHeight property specifies the
height of the top/bottom parts. The top panel is the
control's pivot bar, while the bottom part is the
control's list where the result goes. The
PaneMinHeight property specifies the minimum
height of the top/bottom parts.

exPivotBarFloat 4
The pivot bar is shown to a floating window. Include
this flag, to display the control's pivot bar to a
separate window (a floating panel).

exPivotBarAutoFit 8

Changes automatically the height of the pivot bar so
all elements fits the client area. When this flag is
present, the height of the pivot's bar is automatically
adjusted so the entire content fits the header. The
PaneHeight property specifies the height of
control's panels. The PaneMinHeight property
specifies the min height of control's panels.

exPivotBarShowTotals 16

Specifies if the control handles the Total/SubTotal
fields. By default, the control displays a Total field in
the pivot bar. Include or exclude this flag to show or
hide the Total field in the pivot bar. In other words,
you can use this option to allow or prevent using the

total/sub-totals function in the control.

exPivotBarAutoHide 32

Indicates if the pivot bar is hidden while the cursor
does not hover it. Include or exclude this flag to
allow or disable the Auto-Hide feature. The Auto-
Hide feature shows the pivot bar while the cursor
hovers it, while the pivot bar is hidden, when cursor
is outside of the pivot bar.

exPivotBarAllowValues 64

Specifies if the user can drop values of the columns
to the pivot bar. By default, the control allow
dragging columns as values, so actually, if the user
drags the column to the second line, the value found
on the column will compose the new column to be
shown in the control's list. For instance, if you have
a column named Region, it means that the list will
display all regions, each region to be grouped in a
single column.

Here's a screen shot of value columns:

The Federal Shipping, Speedy Express and United
Package columns indicates the values being found
on the Shippers_CompanyName column.

exPivotBarAllowFormatAppearance128

Specifies if the user can select a different
appearance for columns or total/subtotal fields. Use
the Add method of the FormatAppearances
collection to add new predefined appearance to the
context's list.

By default, the control displays the list of
appearances in the control's context menu as
shown in the following screen shot:

Include or exclude this flag to allow or prevent
applying the appearances using the control's
context menu.

exPivotBarAllowFormatConditionalAppearance16777216

Specifies if the user can select conditional
appearance for columns.

By default, the control displays the list of conditional
appearances in the control's context menu as
shown in the following screen shot:

Include or exclude this flag to allow or prevent
applying the conditional appearances using the
control's context menu.

exPivotBarAllowFormatContent256

Specifies if the user can select the way the
column's data is displayed. Use the Add method of
the FormatContents collection to add new
predefined functions to the context's list.

By default, the control displays the list of format
functions in the control's context menu under the
Content sub-menu as shown in the following screen
shot:

Include or exclude this flag to allow or prevent
applying the format functions using the control's
context menu.

exPivotBarAutoUpdate 512

Indicates whether the control' list is automatically
updated once the user drops objects in the pivot
bar. By default, the control automatically updates-
executes the control's layout as soon as the user
drag and drop columns/aggregate functions to the
control. In case this is a time-consuming depending
on how large the data you provide, you can use this
option to prevent executing the layout only when the
user clicks the Refresh buttons as shown in the
following screen shot:

Exclude this flag from the PivotBarVisible property,
and so the Refresh button is shown in the bottom
side of the control, and the changes will be applied
to the control's list once the user clicks the Refresh
button. Once the data is updated, the buttons
shows as disabled until next change occurs. The
control fires the
LayoutStartChanging(exPivotDataLayoutExecute) /
LayoutEndChanging(exPivotDataLayoutExecute)
events once the control updates / executes the
current layout.

Indicates if the pivot bar allows Undo/Redo
operations, if the user presses the CTRL+Z/Y. The
control restores the previously layout once the user

exPivotBarAllowUndoRedo 1024 presses the CTRL + Z keys combination. The
control restores the next layout once the user
presses the CTRL + Y keys combination. Exclude
this flag, and the Undo/Redo feature is disabled.

exPivotBarAllowResizeColumns2048

Indicates if the user can resizes the columns in the
pivot bar. This flag affects the columns to be
displayed din the pivot bar, not the columns to be
displayed in the control's list.

exPivotBarDefault 16781275exPivotBarDefault. Indicates the default value of the
PivotBarVisible property.

exPivotBarHideAddNew 4096

Prevents showing the add new buttons in the pivot
bar. Clicking the Add New button displays a list of
columns or aggregate functions that can be added
in the current context. For instance, the Add New
button in the Rows section, helps you to add more
columns to Group-By rows, and a Add New button
in the Columns section, adds new Group-By
Columns or new Aggregate functions to be used.
The following screen shot shows theAdd New
button:

exPivotBarContextSortAscending65536

Shows the columns alphabetically in ascending
order. This flag can be combined with
exPivotBarContextSortReverse and so, the columns
will be alphabetically displayed in descending order.
The PivotColumnsSortOrder property specifies the
sorting order of the columns to be shown on the
Columns Floating Panel (

PivotColumnsFloatBarVisible property)

exPivotBarContextSortReverse1048576

Shows the columns in reverse order. This flag can
be combined with exPivotBarContextSortAscending
and so, the columns will be alphabetically displayed
in descending order.

exPivotBarReadOnly 268435456Makes the pivot bar read only, so no changes are
allowed.

constants PivotColumnsSortOrderEnum
The PivotColumnsSortOrderEnum type specifies the way the columns are displayed. The
PivotColumnsSortOrder property specifies the sorting order of the columns to be shown on
the Columns Floating Panel (PivotColumnsFloatBarVisible property). The
exPivotBarContextSortAscending, exPivotBarContextSortReverse flags of PivotBarVisible
property specifies the sorting order of the columns to be shown on the pivot bar's context
menu. The PivotColumnsSortOrderEnum type supports the following values:

Name Value Description

exPivotColumnsUnsorted 0 The columns are displayed the way they were
loaded.

exPivotColumnsAscending 1 The columns are alphabetically displayed in
ascending order.

exPivotColumnsDescending 2 The columns are alphabetically displayed in
descending order.

exPivotColumnsReverse 3 The columns are displayed in reverse order.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.
exHChartScroll 2 Reserved.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar.

Name Value Description

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden
(R5) The fifth additional button in the right or down

exRightB5Part 2 side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants ShowBranchRowsEnum
The ShowBranchRowsEnum type specifies way the rows can be displayed on the control's
list. The ShowBranchRows property specifies the way the rows are arranged when the
control shows the summarized data. Currently, the ShowBranchRowsEnum type supports
the following values:

Name Value Description

exBranchTree 1

The exBranchTree mode displays data as a tree,
and the +/- expanding buttons are shown. This flag
cam be combined with the exBranchRowDivider or
exBranchIncludeAggregate flag.

The following screen shot shows the
exBranchTree way:

exBranchCompact 2

The exBranchCompact mode displays data more
compact, and the +/- expanding buttons are not
shown. The exBranchCompact mode displays no
subtotals (no hierarchy).

The following screen shot shows the
exBranchCompact way:

The exBranchCompact mode can not display the
inside total/sub-totals fields.

exBranchRowDivider 16

The branch rows displays information on entire line.
This flag may be combined with the exBranchTree
flag.

The following screen shot shows the
exBranchTree + exBranchRowDivider way:

The branch rows displays result of aggregate
function. This flag may be combined with the
exBranchTree flag.

The following screen shot shows the
exBranchTree + exBranchIncludeAggregate
way:

exBranchIncludeAggregate 32

constants ShowViewCompactEnum
The ShowViewCompactEnum type specifies the way the view compacts the displaying
date. The ShowViewCompact property specifies whether the neighbor columns that
generate the same values are compacted. The ShowViewCompactEnum type supports the
following values:

Name Value Description

exViewNotCompact 0

The view does not compact displaying the data. By
default, the ShowViewCompact property is
exViewNotCompact, which means that the property
has no effect. This flag can be combined with
exViewCompactAggregates.

exViewCompactSingleColumns1

The view compacts the neighbor single pivot
columns. This flag can be combined with
exViewCompactKeepSettings or
exViewCompactAggregates.

exViewCompactGroupByColumns2

The view compacts the neighbor group-by pivot
columns. This flag can be combined with
exViewCompactKeepSettings or
exViewCompactAggregates.

exViewCompact 3

The view compacts all columns. This flag can be
combined with exViewCompactKeepSettings or
exViewCompactAggregates.

exViewCompactKeepSettings 16

Applies the same filter and sort settings to all
neighbor pivot columns, while columns are shown
as compacted (multiple aggregate functions in the
same column). This flag has effect in OR
combination with exViewCompactSingleColumns,
exViewCompactGroupByColumns or
exViewCompact.

exViewCompactAggregates 32

Compacts the aggregates functions, so the
subtotals goes to the parent rows, rather than
displaying them as child rows.

constants SortOrderEnum
The SortOrderEnum type specifies how a column is sorted. The SortOrder property
specifies the default sorting order for a pivot column. For instance, the SortOrder property
specifies the default sort order when the user drags a column from the pivot columns
floating bar to the control's pivot bar.

Name Value Description
SortNone 0 The column is not sorted.
SortAscending 1 The column is sorted ascending.
SortDescending 2 The column is sorted descending.

constants SortTypeEnum
The SortTypeEnum enumeration defines the types of sorting in the control. Use the
SortType property to specifies the type of column's sorting.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 Reserved.
SortCellData 6 Reserved.
SortCellDataString 7 Reserved.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

Aggregate object
The Aggregate object defines an aggregate function to be used by the control. An
aggregate function is a function where the values of multiple rows are grouped together as
input on certain criteria to form a single value of more significant meaning or measurement
such as a set, a bag or a list. The Aggregates property gets access to Aggregate objects
to define aggregate functions like sum, avg, min, max, count. The Aggregate objects are
displayed (as radio buttons) on the control's context menu as shown:

The Aggregate object supports the following properties and methods:

Name Description

Base Specifies the name of the Base Aggregate function to be
used by current Aggregate object.

Caption Specifies the caption of the Aggregate to be displayed on
the column.

FormatResult Specifies the expression to be applied on the result of the
aggregate function.

FormatValue Specifies the expression to be applied on the value before
passing to the aggregate function.

Key Indicates the key of the Aggregate object.

Name Specifies the name of the Aggregate to be displayed on
the context menu.

ToolTip Specifies the tooltip of the Aggregate to be displayed
when the cursor hovers the object.

property Aggregate.Base as String
Specifies the name of the Base Aggregate function to be used by current Aggregate object.

Type Description

String

A String expression that defines the base aggregate
function to be used by the current Aggregate object. Any
of the following values are supported. In case an unknown
base function is used, the Aggregate object shows as
disabled in the control's context menu.

The Base property indicates the base aggregate function to be used by the current
Aggregate object. If the Base property points to an unknown value, the Aggregate object
shows as disabled in the control's context menu.

The Base property could be one on the following:

sum, summation is the operation of adding a sequence of numbers; the result is their
sum or total
min, minimum is the smallest value
max, maximum is the largest value
count, counts the number of objects in the set
avg, average is the arithmetic mean, which means sum of all numbers divided by the
count.

property Aggregate.Caption as String
Specifies the caption of the Aggregate to be displayed on the column.

Type Description

String
A String expression that defines the HTML Caption to be
displayed on the Column, if the Aggregate function is
applied to the column.

The Caption property indicates the HTML caption to be displayed on the column's header
when the current Aggregate object is applied to the column. In other words, the Caption
property is displayed in the column's header when the column is drag and drop to the
control's pivot bar. The FormatPivotHeader property defines the format of the caption to be
displayed on the column's header. The caggregate keyword in the FormatPivotHeader
property defines the Aggregate's Caption property. The Name property of the Aggregate
object defines the name to be displayed on the control's context menu. You can use the
 HTML tag to display icons or pictures. Use the Images or HTMLPicture method to
add icons or pictures to control.

The following screen shot shows the new Caption (SUM):

The following screen shot shows the default Caption (Sum):

The Caption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a

about:blank

piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Aggregate.FormatResult as String
Specifies the expression to be applied on the result of the aggregate function.

Type Description

String
A String expression that defines the formula to
convert/format the result. If missing or empty, the result
suffers no changes.

By default, the FormatResult property is empty. The FormatResult property can be used to
convert or format the result of the aggregate functions. The FormatValue property may be
used if you need to convert the value instead the result, else you can use the FormatResult
property to convert/format the result directly.

For instance:

you want to display the result multiplied by 1.19 to show the VAT, so all you need is to
add a new aggregate function like Aggregates.Add("vat", "sum").FormatResult =
"value * 1.19", so the result is multiplied by 1.19.
Aggregates.Add("colors", "sum").FormatResult = "(value < 500 ? '<fgcolor=FF0000>'
: '') + value", shows the values under 500 in red.

The value keyword in the FormatResult property indicates the value/result to be converted.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element

being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8

specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays

1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as

appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Aggregate.FormatValue as String
Specifies the expression to be applied on the value before passing to the aggregate
function.

Type Description

String

A String expression that defines the formula to be applied
on the input value, so it can be passed to the aggregate
function. If missing, the value itself is passed to the
Aggregate function.

The FormatValue property defines the expression to be applied on individual values before
passing to the Aggregate function. The Base property indicates the base aggregate
function, in most cases you will use the "sum" function as explained bellow. The
FormatValue property may be used if you need to convert the value instead the result, else
you can use the FormatResult property to convert/format the result directly.

For instance:

you want to get the total for negative values or to count the positive value only. In this
case, you can add a new Aggregate object such as Aggregates.Add("negative",
"sum").FormatValue = "value < 0 ? value : 0", and so the negative Aggregate function
gets the total of negative values only.
The Aggregates.Add("positive", "sum").FormatValue = "value < 0 ? 0 : 1", counts the
number of positive values.

The value keyword in the FormatValue property indicates the value to be converted.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2

and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2

value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string

lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)

sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Aggregate.Key as String
Indicates the key of the Aggregate object.

Type Description

String
A String expression that specifies the unique key of the
Aggregate object. The Key must contain alpha numeric
characters. Any other character is not included in the key.

The Aggregates object holds a collection of Aggregate objects, each object must have an
unique key that identifies the Aggregate object. The Name property of the Aggregate object
defines the name to be displayed on the control's context menu. The Caption property
indicates the HTML caption to be displayed on the column's header when the current
Aggregate object is applied to the column. The Key parameter of the Add method can be
used to assign a key at adding time.

property Aggregate.Name as String
Specifies the name of the Aggregate to be displayed on the context menu.

Type Description

String A String expression that defines the HTML name to be
displayed on the control's context menu.

The Name property defines the HTML caption to be displayed on the control's context
menu. The Caption property indicates the HTML caption to be displayed on the column's
header when the current Aggregate object is applied to the column. You can use the
HTML tag to display icons or pictures. Use the Images or HTMLPicture method to add
icons or pictures to control.

The following screen show shows the new Name (1 Sum):

The following screen show shows the default Name (Sum):

The Caption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor

about:blank

element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display

bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Aggregate.ToolTip as String
Specifies the tooltip of the Aggregate to be displayed when the cursor hovers the object.

Type Description

String
A String expression that defines the HTML tooltip to be
shown when the cursor hovers the Aggregate object in the
control's context menu.

By default, the ToolTip property is empty. Use the ToolTip property to assign a tooltip to
each Aggregate object. The ToolTip property supports the HTML format as listed bellow.
The Name property of the Aggregate object defines the name to be displayed on the
control's context menu. You can use the HTML tag to display icons or pictures. Use
the Images or HTMLPicture method to add icons or pictures to control. You can use the
ShowToolTip method to display a custom tooltip.

The ToolTip property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with

about:blank

a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Aggregates object
The Aggregates collection holds the aggregate functions the user can use and display in the
pivot control. The Aggregates property gets access to Aggregate objects to define
aggregate functions like sum, avg, min, max, count. The Aggregate objects are displayed
(as radio buttons) on the control's context menu as shown:

The Aggregates collection supports the following properties and methods:

Name Description

Add Adds an Aggregate function and returns a reference to the
newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Aggregate function giving its key.
Remove Removes a specific member from the collection.

method Aggregates.Add (Key as String, Base as Variant, [Name as
Variant], [Caption as Variant])
Adds an Aggregate function and returns a reference to the newly created object.

Type Description

Key as String

A String expression that specifies the unique key to
identify the Aggregate object. The Key parameter should
include only alpha-numeric characters. Any other
characters are not included. The Key property specifies
the Aggregate's key.

Base as Variant

A String expression that defines the base aggregate
function to be used by the Aggregate object. The valid
values are: "sum", "min", "max", "count" or "avg". Any
other value makes the Aggregate object to be shown as
disabled when showing in the control's context menu.

Name as Variant A String expression that indicates the HTML caption to be
shown on the control's context menu

Caption as Variant A String expression that indicates the HTML caption to be
shown on the column's header.

Return Description

Aggregate An Aggregate object being created, that holds the newly
object.

The Add method adds an Aggregate object to the Aggregates collection. An aggregate
function is a function where the values of multiple rows are grouped together as input on
certain criteria to form a single value of more significant meaning or measurement such as a
set, a bag or a list. The Aggregate object is identified by an unique key. By default, the
Aggregates collection contains the "sum", "min", "max", "count" or "avg" Aggregate objects.
Use the FormatValue/FormatResult property to convert/format the value/result of the
Aggregate function. The PivotColumns or PivotTotals property to display aggregate
functions on the columns.

The Aggregate objects are shown on the control's context menu as shown bellow:

The Base parameter could be one on the following:

sum, summation is the operation of adding a sequence of numbers; the result is their
sum or total
min, minimum is the smallest value
max, maximum is the largest value
count, counts the number of objects in the set
avg, average is the arithmetic mean, which means sum of all numbers divided by the
count.

method Aggregates.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all elements in the Aggregates collection. Use the Remove
method to remove an individual Aggregate object from the Aggregates collection. The Item
property of the Aggregates collection accesses an Aggregate object giving its key. The
Count property of the Aggregates collection counts the number of Aggregate objects in the
Aggregates collection.

property Aggregates.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of Aggregate
objects.

The Count property counts the number of objects in the Aggregates collection. The Item
property accesses an Aggregate object giving its key. You can use the for each statement
to enumerate all Aggregate objects in the Aggregates collection. The Clear method
removes all objects in the collection.

property Aggregates.Item (Key as Variant) as Aggregate
Returns a specific Aggregate function giving its key.

Type Description

Key as Variant A String expression that specifies the key of the
Aggregate object to be retrieved

Aggregate An Aggregate object to be accessed.

The Item property accesses an Aggregate object giving its key. The Count property counts
the number of objects in the Aggregates collection. You can use the for each statement to
enumerate all Aggregate objects in the Aggregates collection. For instance, the
Aggregates.Item("sum").FormatResult = "currency(value)", makes a sum column to display
its content as a currency, by default.

method Aggregates.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant
A String expression that specifies the key of the
Aggregate object to be removed. No error is returned if no
Aggregate with specified key is found.

Use the Remove method to remove an individual Aggregate object from the Aggregates
collection. The Clear method removes all elements in the Aggregates collection. The Item
property of the Aggregates collection accesses an Aggregate object giving its key. The
Count property of the Aggregates collection counts the number of Aggregate objects in the
Aggregates collection.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. Use the VisualDesign property
to define the control's visual appearance at design mode. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltip, and so on,
Background property

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With Pivot1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_pivot.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExPivot_Help\\selected.ebn")));
m_pivot.SetSelBackColor(0x23000000);
m_pivot.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxPivot1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExPivot_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axPivot1.VisualAppearance.Add(0x23, "D:\\Temp\\ExPivot_Help\\selected.ebn");

axPivot1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.Pivot1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExPivot_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

 The screen shot was generated using the following template:

BeginUpdate

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

Images("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzWZzmYz2X0Gbx1k0Od0uf0Wnw9g1d/omHTJmjOx2eyAG02+23G73W92u/3MZ0+84HE4PH43J30t2HL5XF53R6Fu5sZePXAHXePZ7Haib/7/hiHih/h3HD23e9XY8ft8vu8Hw822lnV7nb9fb+X79/9+Lytwtj7HVAj7wM/LyP/BUEuO9DrO7CD8PY/0GP48EApW+0EQRC0KwpDC1QHAsCHVA8IwNDr5PO0TcRJE0JO2GZMhnD0FxU+kMsFFsCw27BmRpGsgxAtMRRLF0XR7GEgvHFbOx3I0eOxGUaSmAEqxTD8cJVIoASRH0gR+jMwyXLLqR02xxzTLsRzZEskxRCkmNtB01yhEsqzxGcrT1K84zK5kzozI8CzHQswUOjMsQvLUiUCAE0nHR81UHO0X0tG7hRZNFJwLPMaO9T09xpDsho2+1ITqAFDQe7dV1VIFSUYtFTzVVFUUpVM3u9OVMydTdI1RKtcVBPli1HP760dW01THYcvzFREGVKs77G7a1JWBWtOUrL0lQRJrPNxZds0jXFu1FdFdwBWSNVpclsVTZ1W2jdVFzMhTcGvfQAWsbt4XHeM20s71wMvcVtXfW+BXPKtv3ZXrj4BgFzSjedWQNaazPtfRrgBjl+WviVt4DN0T4KyWD4ThF4YpktvOxjLHZTf+V4VbmK0tmLSUdj+e33fuaXfluMTnTSM5FlWhYXnGCYfmVf6DqObZJnOnZ3fDpORrLn604E6a5sGt6zr+xOnruzuMy+rtQ0zU7dtu4bZuTVbfue67puO1LGiwfJXvqPJAkSSAAkqUcKnDxtcpCKPK7/EkAAfIcgjPJcigwAcryfMctzXM8vz3Kc5z/RdDyvS8t0/O9JzfTcdxqAgA==")

Font
{
 Name = "Tahoma"
}

VisualAppearance
{
 ' Header

Add(1,"gBFLBCJwBAEHhEJAEGg4BawDg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1M4rEASIRDHL+GiACYJGCcBwGKJEFwYg2hwJACGAXAMgQTZtkaBpQhERAkEuSoZgYIpvAAVgtC4PQXHuPgen+D5Tmedp5H4Po/h+P5rnufB/l+OAFn6AIgAeRAAgCYIIBYCoBCCSAmA2ApgmgDgHHyRInkIFQlmEeBmBaBphggcgagcYgIH4IoHiISIGCWCJiGiJgfHuYQwjiIAUAMOI+DGDAjCiVg0g2Yw4mYNoOiOCJuD6DxkAichCg+ZA4mIBh8GQSQmEGEokFkNhMhOZI5EYOYRl6cogFQDJlGkYhXhYZZJG4XoWiYCR2GGF5mCmFhkhmZg5iYZoaiWeRQC4KgFHkYhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOZ2G4K5FiCToIiKKIaC6DojGkCgyhKI5pDoRoUiWaRqGaFYmmmChyhGIZFlCYIvigag6gqJIpmoaomiWKpqgqMoqisawKj6MorisSpGjWKhqAqTo2i6a4qnaN4vmuSwCj6KgmmKXBgA8bBrCKR4yGySwuk6MotAsNpRjObQrFaVI1m0OxmlaNosnsFBljILZyl6YY4m4C4WmKOYuEuHpqjobpLiKbo6m6e42nCPJuEsFBnBCCx7l6eY+C+K52nyP5vjwBp+kCMAMA8BpBHCDATAqQZwjufhuC+RoxAsEJEjEHBPBaRRxgwUwakWcY8GcHJHnGbIHB2SJyAyEwZkORpxBiP5KHKPIrCyS5ymyRwtkycwMlMMpNHODJfDqTYzkyZw9kwcJxk8KpQgufQTEaUJ0g0FxJlGdItDcTJTnSPRHE6VI1A0TxWlGZpjCMQpWgQbRzF6Vp2A0dxhledgthcZJZnYPYnGaWo2g2LxulkNYRlwJwMgbgtimHOLod4GxfD1F2G8TYzh9i9HeNwB6Oh3j8BeAUYYbwphxE8D0RLg07NNEeCEZI8R+CvBKMsOQnBfg1GYPMTgxwejNHmPwU4FAfgKFMH8JI0w6C9B+FUag9ROhHC6NUeo/Q3hhGyPYLorwxjbHsJ0Y4WRigQC6C8PQZx7j+AeH0cI+APAnEKOIfIHgfiVHGHkTwTxNjlHyN4R4hQbgaHIDgXI6h9D+FuLEdo+wvDvFmO8fYnwDi9HgPwT4HxmjxD6B8F40x3h6EIF8V49wND/EOOWLonxHjrHyP4b4zx4j9H8P8d49B/ifHGP8QATxmj2EMCccYARCBcAQIEKAHgDBAEwBsAQ4A6AREEBAJwBxghYBKAUUApALiDCgCkG4IQKAhAONAPgIRBjQEUBAEAYgBEB")

 ' HeaderFilterBarButton

Add(2,"gBFLBCJwBAEHhEJAEGg4BAQEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGPj+RwNAOF5cGm95sCQEwJAkQhBhwa5ei4E5cgGGINgcUwojiRBvDuG49iaU4EgATALgGEIJj8aJQloEgoEIQhXC0MwGBEc5AAoYpJHCdAugIYI4CoDIDmCaBGA2BJhAgUgSgUYYIF4GoFiGSBmB2BpgkAAgegiYgIhYH4JmISIiCaChhmiCgOBKII4kCF4MiMSJGDaDJjHiVg4g6Y4onYOYPmOSQCD6EBkEiagKguApigAUAMmSKQyEuExlAkPhShOJRJEYVYUmUaRmFiFplHkdhaheJQ4gYDIXmYSRyGWGAmgmHhqhmJpJFIYoCgqARQDOHBnDmSh0h2ZxpmYdYemeCZyHqHxoAmfoCh+KBKAaBYeiacI4igFZnDoMoLiMaQKD6EojikShGhWJJpGoZoYiaaR6HaGonimCgki8FoDDqDolikKhqiaKIqmoeo2iqK4qkqPoyiwaxKkKNosmseoyiIFxDgKPo8i+K5an6QowGwSwCkaMJsHsFpIjKbIrDaSYzmySxCkSLpsmsRpWjUbYLEqWo1m2OxmkOIhLHGAA9jgbg7gqZI5m4a4mmWOpuguMpqjsbwLj6co7i8S5GnWOouAGFpjj6Cx7nKfo+nAC53AGP5wCwFwEkGcA8CcBpCjCDAvA6P5uAGHBCC2cQsFME5FHGDBfBqRYxkwZwdkacZsgcIJInGfIXCKSYxioJI/BqRAsi8LZLZaRwwkycp8lcMpNjKQ5/DqTZzkyUw9k4NAMn8QvVCGPBGC+dBtCMR5SHSTQvE6Uo1A0NxKk6NRNFcUZTnULRnFiVp1H0dxakqBw9B8YQvnYPYXGKWZ2E2IxmlodRdjcbpaHcDYvHKWo3E2I4dYuRogmCMMMXoCBtjmH6L0eAGx3gDF+PALgLwEjDHgHwJ4DRihxA4F8Dowg3gjFwJwMgcguCnBOMoeYHBfg1GWHMTgzwdjNHmN0B4QRojzH6C8Io0w5uiE8D0RI3QvhbGs1UR4YRsj1H6K8MrQhOi/DqNwe4nW0DdHuP0U4VAfgKFMH8RI4w8C+B+JUcg+RPBHE668fwbxQjpH0F4V4ox1j6E8McuoEAvAvF0GcfY/wHi9HiPwD4JxijyH6B8H41R5h9LGNuJg3xHjFCIJocgOBcj6H8P8W48R+j/C+O8eQ/xvjkAAH8aABgBBABwA1RYRACptHyPoBAt4HiGF4BAQQUAfAKCCBgFYBBwC0AyIMCAbgFjBGwDUA4oByAfEIFAJwBhDAoBGAkQgXAUCFCgJ4CwQhMBbAUOEOgMRDAQGcBcYYWAygNFCKQG4hwoCpCIKIYgVwHjRCoEEQ40QFAgBEBIARAQ=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BBAEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGTj+RBpCAHJ1mm950CQEQJmQQJCDwa5ei4E5cgGGINgcUwojiRhsDeHJ9gYIxpkIQAmAWQJIESX48GgbQJAo+gVksTJBgQXJwAKGIyFwPQLiCKAyAuAxhAgPgSgOIRIEYFYEmEaBmBiBphHgdgageIZIDQAIHmISIGCaCAigiFgpgmYooH4I4DkTHwxCWYw4lYMoNmMSJiDaDhjkibg+g6JAInYQYPmQKQWDuApinCOIgBQAw5C4TYTCSaRGFCFJknkVhShWJRJF4WoWGWSRiF6FplnkUgigMZgJhYXYZiZVxohqZh5jYVYYmCMogFQDJnCmUhzh0Z4Jl4eodieSZmH2HpnmoBoAiCZ56BaAohieOZAC4KgFHmUoNiMKJqEaEIkmiehWhKJYpEoXoaiYaZKGKHommmehmgoK5FiCTokimKhah6KoqGqSoii6KpqnqNowiyawqlaMYtmsSpii2KJFlCYIvi8a56nqQIwmwKwWkGMZsEsIpGjIbJLC6Toyi0Cw2lGMRrksPpSjWbRrGaU42m2CxylqMQoiKXBgA8bgrhKY45G6C4emqOYukuJptjqbprkacI8m6e5WnKPYujuBBljkL4yl6fY/m+TAGn6QIwAwDwGj6T58CcCpBkOXArAuQRxAwEwSkMMRMAKYQZkQIpfBiRoxhwbwekccgMHMIpHnIPIDA6SethMKpIHKPIXC6SpoiKfBrBCMwslMM5NHODJfDqTYzkyZw9k6cxciMPpQnQDQXD+UZ0EycwxBuRBin8TJTjSXQ/FKVB1E0QxWlSdR9QuUI1g0dxVleNYdgcXpMEcPQ3GUL52H2JxmlqdoNjMapbHcDYXEKWo3D2Ox2lwO4fYfh6i1GiEYIwyxfgIG4AcAovx4CcAeAsYI8BuBPAiMUeA/A3gVGOHETgfwSjEDeKMXAnAyByG4McF6sxODfB6M0OgHB3hDWiF0F4SV6B9CeE1qI1AoieB6Ikbof2Sh2C6K8NI2x7B9GeG0bodwOjfD6N4fAHRziFG+PgPoxwuA/AUKYP4kXRA+C+7ofQHgzilHOPoPwjxUjrH0N4Z4qx2j7A8OcUI1wIBeCeMIM4/A/gvGKPMfgnwjjNHoP0T4Xxuj1D8B8N44x7j+C+K8ZoRQNDkBwLkfg/w/jXHwP8b49AAh/FgA4AAQAkAFACGAIgBxAhQA0AYIAmANgAE+MARYfw4BIDWMEJALQCDgGI3kGAXgGhBGwDkA44BuAhEGNARQEAhA4CaAUcAiAxCCFgKgIowhkBdAUOEQgLRDAwF8BkIYWA0gNHCJwkY0B1AcCGLgPoCxKBSBaEUSIDQKjECwIUCIogRAiBACAgI")

 ' SelectedItem
 Add(4,
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5GeRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGrcEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghgmYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJBYSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLgXiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiDIEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMijBIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCCQDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKAQTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYmQ9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvBqiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxfBumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohxoD6A+LQIwiRogqBSEUdAtQMiiFoG4RlfwahHDSAUD4pAqB6EkFIDQSwkDoEXRxLAfgpC6C2EsFIdQYimAoM4S40wtBlCaKkUoNxThUHMJ4KYig+hOHSP0HopRqCojeNEfoUQ1A9CMKkuApQqDaEmFMdQZQoCpGqEYVQVQdCtCoKoYoVRVg1C8KIV41AxCMGoEUMIrAqiOFkFYLQzQsjrCKGkVoVRXCzBIOQUAUwIhqBSK4JArhdAiFUO0Lg6xeh1FeAgUwtxKDSAEQEA=")

 ' Marks a cell

Add(5,"gBFLBCJwBAEHhEJAEGg4BF4Gg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYiXDCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5dAg1bAdPydDC8KjoGK6Wh+WIJZDAdZwHicOy9S6mMwjOxbHiObquWrIebaPAeQgAE6EdJuXBLDwmJtVMTqYZoFjmRpWSKHe6XPr1c6BF7hRqzWKMfwrAmUYADkXI4j0WBvlKRINm+Aw+g6SxpjuHRdCsMAwmcbxNgWRIMAcNRhkiQp4DCH5fm4EA5gwDA7AkeoAAaWYOHGGSJAkQhGGGPBjB0RwwjgYgbEcBQIBAQJECENAygSURAlkCQKB0dplF0BgREOcAPHsVJCjSGgex8dAAgoYo4ioLILmKaJGC2DJjAiUgyg0Y4Il4OoNiOSJmD2DpikiGB7GoZAihQfQUg6cgIGuEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYWmSSQYFKEIjDOQIFBuJhpiIZ4aGaSYuG6GonAmNhxhuZwplYdIdmcOZmHaHongmbgshkSIRkicIgEwYxMlaIRoHoGoIiKaIqDaCYjmiShCg6JBpEoToWiSKYKFaGYjigOgKgGH5ikPDodGoIZUm8PJPHqHopioKoqjaLIrmqOpGi6LIrAqTo2i0a4KlKOotmuOpCiWKRqAiKJxCOR4LAweA8CqCwgneMosksJpOjKbJ7DaUI0m0KxWlGNZtEsYpWjYbZLEqRoxiwEAAnIJJHskfDtkPNQ6i6G4um6OxvAuMpyjubw7kadI9m8a5mnWPpvgucpxjmLhrgScglgefAMH8PBuhwIJ4kKMJMCcDpCnCfA3BCRJxCwVwRkWcVphaRhxkwSwGkGLgTkyGggjIIgInIPRPgyHwpkplY3CyS5yjyRwukyMwMk8NpNHODJTDqTZzjyQ1QnIEh0gUPJ0CyHJ5lGNIDlcR5SjSHQvE6Ux1A0MxSlOdQ9EcVJVnUbRnFWUo0E0DxCjgTxCgCCZYEjyR2D4dhtiMZ5aHaTYvG6Wo3A2NxxludwtlcdJdncPZnHaL0No+wTDJFgBQQgYR0jAHeHwFw8RhhvE4E8CIxR4D8DcOEYI8AuANGEHoSg5A/goCOJ4Q4uR6jMHmHwa4ORnjzG6A8HY0R6AdBOEUaQ9QOg/CqNMOonQnhbGiHIfgvwTBVAkGcV4aA9DzC6MEeo3Q7idGeH0bo9x+jvEC34LwLxBjjHwJ4I4jRyD5E8C8N42nIixC4EsPQRBbBRG6J8DwxxajrH2J4Z4ux2j7G+A8YI8R9j/BeMWFInwfjVHiPoXwrxRBYEmCcW44A9gfAON8dI+w/C/F+PUfg/xPjHH4P4b4+x+iAAgA4AIQAsADACOAEgCBABPGaPgFwER3AtAIOQB4ggRjkD6I8PAKQCigFYBcQYUAzAOCCIgHoBhwD8A6IQCAjgIhCCwEMBI4QSAoEGLAIQCZajwBcAUAgLwKAQFUBoIQmA2gJFCLwGohwIDuA6EIDAZQGChDgLsCgYxxAhB6JEe4ERRBAH0IgeIKgSDEFwJ0CYYhCBMEUFEHwKRigYFSBUcQtAsiKFiDIEQxASjCB8EUfAphGAREQH2Pw8wMhjB4GYRoERXA1CMNgaYGxxhkDgI0aKPAjg4HaBwUYxA6iPN+DAYwOBfAwEKFAfIkAIBSBmA8XICwQu3ESJAaQKgiBIFyB0EYZEcCSCkD4JIyQMgpBKOQRggxIALEIH0BgUQtgnDIPwQwiQhjyCiMoLIRQUjlBIKgSg0hTBWCULkLoKhSiEFaJYGQvgshLCyF0E4pQCCcAyCIYAfQli5AYD8Mo/BggfEmAIMIzAUiJBiOYGgyRMCzBcGQJgyRKgzMKM8TQUwdBhGWNkPILhrgIH2BkQQ0g2hNGSKkGgZh+DTE4BMRwcQnBZGGDkcwjBtibFmGQM4iw4j3B2GYDA/RPAzGYH4Z4KR1g9BOLQfInwJv8GeNkeoPxTjkH+KAKgBhBBQASOsHY5w6DtC4CMeAaRFiqAyEMQ46B/CYDoEoRA0QdAtCKGgYoFBRhUC9T4TQOQjjoHqCEUYtBHCQCkEoHoQw0B9AWBoYQ+A/BSF0CIH4qQ+gxA+NQYQmRpgqDSE0dItQcimFoO4TgUxlB1CeGoAoPxUBUH0JkaQ2gshKuKP0DYQwDClAYBoM4Ux1CFCiKoKoTs1BaFaFUdQxQsirCoMIUo1BtCSBuEYEA/RWADHwH8R4+hk5zBaGfN4phbBWEUN0LTYw2iuAqM4XIVwtDjC6OsUoeBWi1EULAawBRhA/EOAAY4sABgeFkNgLYDQwjsCKIkWIVgXDGCwNsDoYx2CFDMLAGwDhfiOCCJYH4rBaiYFkPYMwzgsi7B6GYVoBROi0BsH4aIWgthJDSO0DoqRaDWFUNQLQZB/CRCkDgf6MwdDZC2EsM4bQ2jFFuLcKw2hvBbE2HsNw7R6jBFwBcBw3xuBbEKHEVwJRahMCSJECQog6B9DmNIAo0Qjj3CcOgLoS2KhRhOCkUgBCAg=")

Add(6,"gBFLBCJwBAEHhEJAEGg4BaAFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSkEgNDQRaxjWZ6EgmO5TSjKYxSbJEQzpGSaIDwGZrfACRYEU7dVQxDQcNYbAYPJpwOh6LxWTZ2YjBGJ4FScPyrBLIYDFWCRHpqA5cZZOEQ2FYkRzXVy0JDzaCZQxCCQlQiIOjYLaUSRNFC+IZqMZhWw+FrGAbvIJbXakPZbVYSZ52AQuHcHY7lqAABhoDZllcEAxjwcCOD4GJbisGZPmmYQ1ggHIPg0dJnmCNYWG2D5OlkFYpmUPYaE6Xxzk+OxylAMZAHUHJGgGFBkAuBghjQcBQAEBAMEIExDCgNQWA2EIQiGahuFWIBhBYPwAnedReD+T5yjSGgekcMJ0ACCRiHiGgogqYoojYKYLmKSJCC6DBjEiTg2gyI4IlYOYNmKCIIHuCAUiieIlB8RQjHiTwxg8c4cmeEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYUiQYwaEMFIjmiPhhD0ThThYaIaiaGYuG6GxnAmMhyhuZw5kYdIdmcaZmHWHpngmch6hqZgYiIL4QA8M4MmOIRoHoGoIiKaIqDaCdXEoQoOiQaRKE6FokimChWhmJZogkAoCgoJADkSYQ4GoKoSiOKRqgqHoqimKpKiaLYqmqapGjCLJqnqVoyi2KxKhaHoJigOIAm8N5NnqfpBjALArBaRIxmwOwmkaMosgsLpOjMbQLDKUozm0OxGkKLpQDqAggDsTZTHaXI3i2Wx+mKOBuEuApmjibh7haaI6m6K42mmO5ukuQpujebYKnSfw6k2MxuniPovhubp+j8cALnMAo/nAPAHASQZwGwJwFkKcIMDMCo+m8Wxon8OhNhMZwUkWMRcF8GpGHGTBjB6RpxnwdwgkicgshcIZJnITIjCaRZxBiGhADoDRzGMMJMjMHJPDaTRzgyU2ynOPJnDyT5zm0Bw9lCdANBMQpMnKWB8n8OYNFMWxMlONJdD8UpUHUTRDFaVJ1H0VxYladYtHcWZXnWTYDF6U7QACZA0k0TYfGmWg2i2Nxsludo9kcbpcjcBsTw7RdDvA2KYeoux3h7GcNUWQxADgRFEGkOAXATgHGEPEDgPwKjDDiJwJ6ex4jcEeCEZI8R+CvBKMsOQnAXgAD+JwAweRQjOHmPwe4QRoj0C6C8IY0x6CdCOE0ag9ROhfC6NUOwHQ3hjGuPQDg2ReBmEyN0X4cxuB3C6O8PI3x7h+AeH0cIeAPAfEaOIfIHgTiVHGPkPwTw6jNE2IYLImR0D6D8JcVI6x9DeGeKsdo+1Fi1HcPwDw/xijvD4J8B4yx4j6E4NkWgZAMhfC+NsewfRviPHCPkfo/xXjlH2H4T4vx6j8H+J8Y4/B/DfH2P0Pozg2BsAYGESIAQwA8AMIECALgChAGwBMAY4AyAQECNAIwCggg4BaAQUAxAKiDBgF4AgORYisBiAYGgHxCAwEEBEIQWAkgJHCBwFIhBoCqAoEIXAXQFhhEICxIovgMjDAwER1ooBhAYEgOYDowxUB5AeOEegQRDixAcCAIgSBCgRDEEQI4iQovFCIJgTYEhwjjE2BoIYAAwhFBwKsCoIhaBZEWBENwKxijYFqBcUQ5AviMCiIYGQRgEDNAwOMHgZRFSwDQAscIgQNhjD4G4RwERnA5COFgcYHRxikDwI4aI5gfBHFwP0DwpACB9EgDEfwOJqQsAKPQQ4kQZAiCKEgbIGQRjkC4JESI0glBICSDkFoJQyDEEoJMKQXgmjJEyBR1oYBdAXEkIYKIygUhJBSOUGgqRKCyFcFQJQyQqgrDKIQV4lgpC6C0EsDKIBygjE2BkMQ4AujLFyHsF4JR6DBEwBMBwXxmBZEKDEUwJBjiZCmCYMwTBEidBkOYPgzRLywDIIsMIcwahmF4NYTYEw3BtCaNkWYNxzDkHAJsaYhg5BOByM0HApwiDlE6DMTwbJqCOBaAUXg7xPAzGEHkJ4WR0g9HOJwfInhpjqD4E8XI/QfhoAIPwUAUx/TFAyOR1oKBZAWFo8ac4GQhjoDqBEUItAnCICiEoEoRQ0DFAuKMKgWhHBRE0DsIw6AxibAwGIYAWRpA6CXYoGoKRSgUFcJMaQ2gqhLFSGUF4pgqDGE0FMBQbQmDpF6DUUksAwCKHCGMJ4aR+g+FQBUBwocRiDCiOoEoSBUDVBNkIXQnQpCqEKE0VQNQfCgBoJQYQkACj4FYBUeoZhWjVFULkK46h6hhFWLURwsArBKGKFkNYRQzitCqJoWwVhNDbCwJIAQgQriJASCIKodBAhdHWMUPIrwqjuF8FcbQ/QvjsAKIEIgCba5CEAI8SI1REhHEsC0Do2GwhjFYGUR4RwkD5BAAAAQAiAg==")

}
BackColorHeader = 16777216 '0x01BBGGRR
BackColorSortBarCaption = 33488896 '0x01BBGGRR
FilterBarBackColor = 16777216 '0x01BBGGRR
Background(0) = 33554432 '0x02BBGGRR
Background(1) = 50331648 '0x03BBGGRR
Background(2) = 67108864 '0x04BBGGRR
Background(3) = 100663296 '0x06BBGGRR
Background(8) = 67108864 '0x04BBGGRR
Background(9) = 67108864 '0x04BBGGRR
Background(10) = 100663296 '0x06BBGGRR
Background(11) = 100663296 '0x06BBGGRR
Background(12) = 100663296 '0x06BBGGRR
Background(13) = 100663296 '0x06BBGGRR
Background(14) = 100663296 '0x06BBGGRR
Background(15) = 16777216 '0x01BBGGRR
SelBackColor = 67108864 '0x04BBGGRR
BackColorSortBar = RGB(61,101,183)
FilterBarForeColor = RGB(255,255,255)

ForeColorHeader = RGB(255,255,255)
ForeColorSortBar = RGB(255,255,255)
SelForeColor = 0

SortBarVisible = True
MarkSearchColumn = False
LinesAtRoot = 1
ForeColor = RGB(0,0,255)
BackColor = RGB(255,255,255)
BackColorLevelHeader = RGB(255,255,255)
DrawGridLines = -1
ScrollBySingleLine = True
HasLines = 2
HasButtons = 3
CheckImage(1) = 4
CheckImage(0) = 5
CheckImage(2) = 6
Chart
{
 DrawGridLines = -1
 BackColor = RGB(255,255,255)
 BackColorLevelHeader = 16777216 '0x01BBGGRR
 ForeColorLevelHeader = RGB(255,255,255)
 ScrollBar = False
 Bars
 {
 AddShapeCorner(1234,1)
 AddShapeCorner(1235,2)
 Add("Custom")
 {
 Color = RGB(255,0,0)
 Shape = 19
 Pattern = 2
 StartShape = 1234
 StartColor = RGB(255,0,0)
 EndShape = 1235
 EndColor = RGB(255,0,0)

 }
 }
}
Columns
{
 "Task"
 {
 HeaderBold = True
 DisplayFilterButton = True
 DisplayFilterDate = True
 Width = 196
 }
 1
 {
 AllowSizing = False
 HTMLCaption = "1 First"
 Def(0) = True
 LevelKey = 1
 Width = 25
 Alignment = 1
 }
 2
 {
 AllowSizing = False
 HTMLCaption = "2 Second"
 Def(0) = True
 LevelKey = 1
 Width = 25
 Alignment = 1
 }
 3
 {
 AllowSizing = False
 HTMLCaption = "3 Third"
 Def(0) = True
 LevelKey = 1
 Width = 25

 PartialCheck = True
 Alignment = 1
 }
 ""
 {
 LevelKey = 1
 Width = 20
 }
 ""
 {
 Position = 0
 Def(2) = True
 Width = 16
 }

}
Chart
{
 FirstVisibleDate = "5/29/2005"
}
Items
{
 Dim h, h1,hx
 h = AddItem(" exPivot Add an advanced pivot chart to your application.")
 CellTooltip(h,0) = "You can have a HTML multiple lines tooltip for any cell in the tree."
 CellCaptionFormat(h,0) = 1
 CellSingleLine(h,0) = False
 CellImages(h,1) = "1,2,3,"
 CellHAlignment(h,1) = 2
 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CellMerge(h,0) = 3
 AddBar(h,"Progress","5/30/2005","6/4/2005",1,"
- TODO: project -")
 AddBar(h,"Deadline","5/29/2005 16:00","6/2/2005",2)
 AddBar(h,"Deadline","6/4/2005 07:00","6/10/2005",3)

 h1 = InsertItem(h,,"Project Sumarry1")
 CellHasCheckBox(h1,0) = True
 CellImage(h1,0) = 1
 AddBar(h1,"Project Summary","5/31/2005","6/15/2005"")
 AddBar(h1,"Milestone","5/30/2005","5/31/2005","M")
 AddBar(h1,"Milestone","6/16/2005","6/17/2005","E")

 h1 = InsertItem(h,,"Task...Split")
 CellHasCheckBox(h1,0) = True
 CellState(h1,0) = 1
 CellImage(h1,0) = 2
 AddBar(h1,"Task","6/1/2005","6/4/2005","S")
 AddBar(h1,"Split","6/4/2005","6/6/2005","Split")
 AddBar(h1,"Task","6/6/2005","6/12/2005","E")

 ExpandItem(h) = True

 h = AddItem("")
 CellCaption(h,1) = "Custom icons ..."
 CellCaptionFormat(h,1) = 1
 ItemDivider(h) = 1
 ItemHeight(h) = 28
 ItemDividerLine(h) = 3
 CellHAlignment(h,1) = 1
 SelectableItem(h) = False
 CellPicture(h,1) =
"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMwJE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

 AddBar(h,"Custom","5/31/2005","6/4/2005")
 ItemBackColor(h) = 100663296

 h = AddItem("Root 2")
 CellImages(h,0) = "2,3"
 ItemBold(h) = True
 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CellMerge(h,0) = 3

 h1 = InsertItem(h,,"Task 1")
 AddBar(h1,"Task","6/4/2005","6/5/2005","S")
 AddBar(h1,"Split","6/5/2005","6/8/2005","Split")
 AddBar(h1,"Task","6/8/2005","6/10/2005","E")
 AddBar(h1,"","5/30/2005 12:00","6/3/2005 11:00",,"some text")
 ItemBar(h1,,7) = 83886080
' ItemBar(h1,,8) = RGB(255,255,255)
 ItemBar(h1,,6) = "This is a bit of text that should occur when the cursor hovers the bar
or the text."

 h1 = InsertItem(h,,"Task 2")

 ExpandItem(h) = true

}

EndUpdate

Starting with Windows XP, the following table shows how the common controls are broken
into parts and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2
PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3

BP_PUSHBUTTON = 1 PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3
MS_NORMAL = 1
MS_SELECTED = 2

MP_MENUDROPDOWN = 2 MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

ABS_DOWNDISABLED,

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4
SZB_RIGHTALIGN = 1

SBP_SIZEBOX = 10 SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2

DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2

TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2
TTCS_NORMAL = 1

TTP_CLOSE = 5 TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4
MXCS_ACTIVE = 1

WP_MAXCAPTION = 5 MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltip, and so on,
Background property

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltip, and so on,
Background property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Column object
A Column object holds information about a data column. The DataColumns property gives
access to the Column objects.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method

The Column object supports the following properties and methods:

Name Description
Alignment Specifies the column's alignment.
AllowGroupBy Specifies whether the user can group by this column.

Caption Retrieves or sets the text displayed to the column's
header.

DefaultFormatAppearances

Specifies the list of format-appearances (key of
FormatAppearance object), separated by comma, to be
applied on the column when it is displayed in the pivot-
table.

DefaultFormatContent
Specifies the default format (key of FormatContent object)
to be applied on the column when it is displayed in the
pivot-table.

FormatImage Defines the expression to determine the images the
column display.

HeaderAlignment Specifies the alignment of the column's caption.

HTML Indicates whether the column handles/displays built-in
HTML format.

Index Returns index of the object within the collection.

PivotCaption Specifies the caption of the column to be displayed on the
columns floating toolbox.

SortOrder Specifies the sorting order of the pivot column when it is
dropped to the control's pivot bar.

SortType Returns or sets a value that indicates the way a control
sorts the values for a column.

property Column.Alignment as AlignmentEnum
Specifies the column's alignment.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the column's content.

By default, the Alignment property is LeftAlignment. Use the Alignment property to change
the column's alignment. The column's alignment is keep once you drag or group by that
column. The HeaderAlignment property specifies the alignment of the caption in the
column's header.

property Column.AllowGroupBy as AllowGroupByEnum
Specifies whether the user can group by this column.

Type Description

AllowGroupByEnum An AllowGroupByEnum expression that specifies where
the column can be dropped on the control's pivot bar.

By default, the AllowGroupBy property is exGroupByAny, which indicates that the column
can be dropped anywhere on the control's pivot bar. The PivotBarVisible property shows or
hides the control's pivot bar. Use the AllowGroupBy property to prevent the column to group
by that column. For instance, you can prevent grouping by numeric columns. Use the
AllowDrop property on False, to prevent loading the data-files (TXT, XML files), by drag
and drop, into the control. The AllowGroupBy property has effect for columns dragged from
the control's Columns Floating Panel (PivotColumnsFloatBarVisible property), or from the
control's columns header.

property Column.Caption as String
Retrieves or sets the text displayed to the column's header.

Type Description

String A String expression that specifies the column's caption to
be displayed on the control' headers.

By default, the Caption property is initialized with the name of the column as it is loaded.
The Caption property supports built-HTML tags, so you can include icons or images using
the tags. The PivotCaption property specifies the caption of the column to be
displayed on the floating columns panel. The SortType property indicates the sorting type
for the column, so it indicates the type of filter being shown. The FormatPivotHeader
property indicates the format of the caption to be displayed on the headers. The caption
keyword in the FormatPivotHeader property indicates the Caption property of the Column
object.

The following screen shot shows where the Caption goes:

The Caption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with

about:blank

a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Column.DefaultFormatAppearances as String
Specifies the list of format-appearances (key of FormatAppearance object), separated by
comma, to be applied on the column when it is displayed in the pivot-table.

Type Description

String

A String expression that specifies the list of format-
appearances (key of FormatAppearance object),
separated by comma, to be applied on the column when it
is displayed in the pivot-table.

By default, the DefaultFormatAppearances property is empty. The
DefaultFormatAppearances property is not applied when the control displays initially the
data. The DefaultFormatAppearances is applied only when the column is dragged from the
control's columns panel (PivotColumnsFloatBarVisible property). The
PivotColumnsFloatBarVisible property retrieves or sets a value that indicates whether the
pivot columns float bar is visible or hidden. The DefaultFormatContent property specifies the
default format (key of FormatContent object) to be applied on the column when it is
displayed in the pivot-table. The DefaultFormatAppearances property can include any Key
on the FormatAppearances collection. For instance, "bold,italic" specifies that the column
will be displayed in bold and italic. The PivotColumns property specifies the list of columns
that shows the summarized data.

property Column.DefaultFormatContent as String
Specifies the default format (key of FormatContent object) to be applied on the column
when it is displayed in the pivot-table.

Type Description

String
A String expression that specifies the default format (key
of FormatContent object) to be applied on the column
when it is displayed in the pivot-table.

By default, the DefaultFormatContent property is empty. The DefaultFormatContent
property specifies the default format (key of FormatContent object) to be applied on the
column when it is displayed in the pivot-table. The DefaultFormatContent property is not
applied when the control displays initially the data. The DefaultFormatContent is applied
only when the column is dragged from the control's columns panel (
PivotColumnsFloatBarVisible property). The PivotColumnsFloatBarVisible property
retrieves or sets a value that indicates whether the pivot columns float bar is visible or
hidden. The DefaultFormatContent property can include any Key on the FormatContents
collection. For instance, "numeric" specifies that the column will be displayed as numeric.
The PivotColumns property specifies the list of columns that shows the summarized data.

property Column.FormatImage as String
Defines the expression to determine the images the column display.

Type Description

String
A string value that defines the expression that determines
the icons to display within the column, based on the
values.

By default, the FormatImage property is empty (it indicates that no icons is being
displayed). The FormatImage property defines the expression to determine the images the
column display. Use the Images method to insert icons at runtime. Use the ReplaceIcon
method to add, remove or clear icons in the control's images collection. The FormatImage
expression should return an integer value that specifies the index of the icon to displayed
(zero indicates that the column displays no icons). The expression may be a combination of
variables, constants, strings, dates and operators, and value. The value operator gives the
value of the cell to display the icon.

For instance:

"" or "0", no icons is being shown within the column
"1", displays the icon with the index 1 (first icon) for the entire column
""1 pos `` mod 2 ? 1 : -1"" , displays alternate icons
"%1 = 'NM' ? 1 : 0", display the first icon for all values NM within the column with the
index 1
"value case (default: -1;'Germany': 1;'USA': 2;'Mexico': 3)", displays the icon with the
index 1 for Germany, the icon with the index 2 for USA, the icon with the index 3 for
Mexico, and empty icon for every other value.

The value keyword in the FormatImage property indicates the value of the cell.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...

This property/method supports predefined constants and operators/functions as described
here.

The following screen shot shows the control with icons:

The following screen shot shows the control with no icons:

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the column's caption.

By default, the HeaderAlignment property is LeftAlignment. Use the HeaderAlignment
property to change the column's caption alignment. The column's alignment is keep once
you drag or group by that column. The Alignment property specifies the alignment of the
column's content (the cells).

property Column.HTML as Boolean
Indicates whether the column handles/displays built-in HTML format.

Type Description

Boolean A Boolean expression that specifies whether the column
built-in HTML format.

By default, the HTML property is False, which indicates that the column display plain-text,
even if it contains HTML tags. Use the HTML property to specify whether the column
includes/displays HTML tags.

The built-in HTML tags supported are:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

about:blank

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,

width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Column.Index as Long
Returns index of the object within the collection.

Type Description

Long A Long expression that specifies the index of the Column
object in the data Columns collection.

The Index property is 0-based, so the first added column has 0 as index. The Index
property is read-only, and it is assigned by the control once the data is loaded to the
control.

property Column.PivotCaption as String
Specifies the caption of the column to be displayed on the columns floating toolbox.

Type Description

String A String expression that specifies the column's caption to
be displayed on the control' headers.

By default, the PivotCaption property is initialized with the name of the column as it is
loaded (if the data provided contains no header information, the PivotCaption may display
the name such as Column 1 (value)). The PivotColumnsFloatBarVisible property specifies
whether the Columns collection is displayed to a floating bar, so user can drag and drop
columns to the control's pivot bar so it gets data summarized. The PivotCaption property
specifies the caption of the column to be displayed on the floating columns panel. The
PivotCaption property supports built-HTML tags, so you can include icons or images using
the tags. The SortType property indicates the sorting type for the column, so it
indicates the type of filter being shown. The Caption property specifies the caption to be
displayed on the column's header.

The following screen shot shows where the PivotCaption goes:

The PivotCaption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using

about:blank

the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the

offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Column.SortOrder as SortOrderEnum
Specifies the sorting order of the pivot column when it is dropped to the control's pivot bar.

Type Description

SortOrderEnum A SortOrderEnum expression that specified the default
sorting order of the column.

By default, the SortOrder property is SortNone. Use the SortOrder property to specify the
default sorting order of the pivot column. It specifies the sorting order of the pivot column
when inserted to the control's pivot bar by drag and drop or when selecting from the + (
expand button) on the control's pivot bar. The SortType property returns or sets a value that
indicates the way a control sorts the values for a column. Use the DisplayFilterList property
to specify whether the column's header displays a drop down filter button.

property Column.SortType as SortTypeEnum
Returns or sets a value that indicates the way a control sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that determines the sorting
type.

By default, the SortType property is determined by the type of the column being loaded.
Use the SortOrder property to specify the default sorting order of the pivot column. For
instance, if data is loaded using the DataSource, the Type of the Column/Field determines
the sorting type. Based on the SortType property, the control displays the associated
filtering box. Use the DisplayFilterList property to specify whether the column's header
displays a drop down filter button. You can use the FilterBarPromptVisible property to show
or hide the control's filter prompt field. Based on the column's SortType property, the
aggregate functions displays the associated columns as shown in the following screen shot:

The following screen shot shows the filtering box, if the SortType property is SortString:

The following screen shot shows the filtering box, if the SortType property is SortDate:

Columns object
The Columns objects holds a collection of Column objects. The DataColumns property gives
access to the Column objects.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method

The Columns object supports the following properties and methods:

Name Description
Count Returns the number of objects in a collection.
Item Returns a specific Column giving its index/caption.

property Columns.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of data
columns

The Count property specifies the number of data columns. The ClearData method clears
the control's data. The PivotColumnsFloatBarVisible property specifies whether the
Columns collection is displayed to a floating bar, so user can drag and drop columns to the
control's pivot bar so it gets data summarized. You can use the for each statement to
enumerate the data columns in the control. The Item property gets the Column object based
on its index or caption.

The following VB sample enumerates the data columns:

With Pivot1
 Dim c As EXPIVOTLibCtl.Column
 For Each c In .DataColumns
 Debug.Print c.Caption
 Next
End With

property Columns.Item (Index as Variant) as Column
Returns a specific Column giving its index/caption.

Type Description

Index as Variant
A Long expression that specifies the index of the column to
be requested, a String expression that indicates the
caption of the column to be accessed.

Column A Column object being requested.

The Item property gets the Column object based on its index or caption. The Count
property specifies the number of data columns. The ClearData method clears the control's
data. The PivotColumnsFloatBarVisible property specifies whether the Columns collection is
displayed to a floating bar, so user can drag and drop columns to the control's pivot bar so
it gets data summarized. You can use the for each statement to enumerate the data
columns in the control.

The following VB sample enumerates the data columns:

With Pivot1
 Dim c As EXPIVOTLibCtl.Column
 For Each c In .DataColumns
 Debug.Print c.Caption
 Next
End With

FormatAppearance object

The FormatAppearance objects can be accessed through the control's FormatAppearances
property. The FormatAppearance object changes the visual appearance of your data as
listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

 The following screen shot shows the control's context menu with the FormatAppearance
objects:

The FormatAppearance object supports the following properties and methods:

Name Description
BackColor Specifies the element's background color.
Bold Renders as bold text.
Font Retrieves or sets the text's font.
FontSize Indicates the size of the font to display the text.
ForeColor Specifies the element's foreground color.
Gradient Renders the text with a gradient color.
GradientMode Indicates the gradient mode to be applied on text.
Italic Renders as italic text.
Key Indicates the key of the FormatAppearance object.

Name Specifies the name of the FormatAppearance object to be
displayed on the context menu.

Outline Renders the text outlined with specified color.
OutlineSize Indicates the size of the outline to be applied on text.

Shadow Renders the text with a shadow of specified color.
ShadowOffset Indicates the offset of the shadow to be applied on text.
ShadowSize Indicates the size of the shadow to be applied on text.
StrikeOut Specifies that the text should appear as strikeout.

ToolTip Specifies the tooltip of the FormatAppearance object to be
displayed when the cursor hovers the object.

Underline Underlines the text.

property FormatAppearance.BackColor as Color
Specifies the element's background color.

Type Description

Color

A color expression that defines the background color to be
applied. The last 7 bits in the high significant byte of the
color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

The BackColor property defines the background color to be applied. This property supports
solid colors or EBN colors. The last 7 bits in the high significant byte of the color to
indicates the identifier of the skin being used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color being applied to the
background's part. The ForeColor property defines the foreground color to be applied on
the objects (columns/rows).

How can I display the total with a solid background color?
How can I display the total with a different background color/ebn?

How can I display the total with a solid background color?

VBA (MS Access, Excell...)

With Pivot1
 .FormatAppearances.Add("back").BackColor = RGB(240,240,240)
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

VB6

With Pivot1
 .FormatAppearances.Add("back").BackColor = RGB(240,240,240)
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"

 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

VB.NET

With Expivot1
 .FormatAppearances.Add("back").BackColor = Color.FromArgb(240,240,240)
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

VB.NET for /COM

With AxPivot1
 .FormatAppearances.Add("back").BackColor = RGB(240,240,240)
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->GetFormatAppearances()->Add(L"back",vtMissing)-
>PutBackColor(RGB(240,240,240));
spPivot1->Import("C:\\Program

Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->PutPivotRows(L"0");
spPivot1->PutPivotColumns(L"sum(5)");
spPivot1->PutPivotTotals(L"sum[back]");

C++ Builder

Pivot1->FormatAppearances->Add(L"back",TNoParam())->BackColor =
RGB(240,240,240);
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->PivotRows = L"0";
Pivot1->PivotColumns = L"sum(5)";
Pivot1->PivotTotals = L"sum[back]";

C#

expivot1.FormatAppearances.Add("back",null).BackColor =
Color.FromArgb(240,240,240);
expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.PivotRows = "0";
expivot1.PivotColumns = "sum(5)";
expivot1.PivotTotals = "sum[back]";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.FormatAppearances.Add("back",null).BackColor = 15790320;
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.PivotRows = "0";
 Pivot1.PivotColumns = "sum(5)";
 Pivot1.PivotTotals = "sum[back]";

</SCRIPT>

C# for /COM

axPivot1.FormatAppearances.Add("back",null).BackColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(240,240,240));
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.PivotRows = "0";
axPivot1.PivotColumns = "sum(5)";
axPivot1.PivotTotals = "sum[back]";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatAppearance;
 anytype var_FormatAppearance;
 ;

 super();

 var_FormatAppearance =
COM::createFromObject(expivot1.FormatAppearances()).Add("back");
com_FormatAppearance = var_FormatAppearance;
 com_FormatAppearance.BackColor(WinApi::RGB2int(240,240,240));
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 expivot1.PivotRows("0");
 expivot1.PivotColumns("sum(5)");
 expivot1.PivotTotals("sum[back]");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 FormatAppearances.Add('back',Nil).BackColor := $f0f0f0;
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);

 PivotRows := '0';
 PivotColumns := 'sum(5)';
 PivotTotals := 'sum[back]';
end

Delphi (standard)

with Pivot1 do
begin
 FormatAppearances.Add('back',Null).BackColor := $f0f0f0;
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 PivotRows := '0';
 PivotColumns := 'sum(5)';
 PivotTotals := 'sum[back]';
end

VFP

with thisform.Pivot1
 .FormatAppearances.Add("back").BackColor = RGB(240,240,240)
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
endwith

dBASE Plus

local oPivot,var_FormatAppearance

oPivot = form.Activex1.nativeObject
// oPivot.FormatAppearances.Add("back").BackColor = 0xf0f0f0
var_FormatAppearance = oPivot.FormatAppearances.Add("back")
with (oPivot)
 TemplateDef = [Dim var_FormatAppearance]
 TemplateDef = var_FormatAppearance
 Template = [var_FormatAppearance.BackColor = 0xf0f0f0]
endwith

oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[back]"

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
' oPivot.FormatAppearances.Add("back").BackColor = 15790320
var_FormatAppearance = oPivot.FormatAppearances.Add("back")
oPivot.TemplateDef = "Dim var_FormatAppearance"
oPivot.TemplateDef = var_FormatAppearance
oPivot.Template = "var_FormatAppearance.BackColor = 15790320"

oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[back]"

Visual Objects

oDCOCX_Exontrol1:FormatAppearances:Add("back",nil):BackColor :=
RGB(240,240,240)
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:PivotRows := "0"
oDCOCX_Exontrol1:PivotColumns := "sum(5)"
oDCOCX_Exontrol1:PivotTotals := "sum[back]"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.FormatAppearances.Add("back").BackColor = RGB(240,240,240)
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[back]"

How can I display the total with a different background color/ebn?

VBA (MS Access, Excell...)

With Pivot1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .FormatAppearances.Add("back").BackColor = &H1000000
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

VB6

With Pivot1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .FormatAppearances.Add("back").BackColor = &H1000000
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

VB.NET

With Expivot1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .FormatAppearances.Add("back").BackColor32 = &H1000000
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"

 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

VB.NET for /COM

With AxPivot1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .FormatAppearances.Add("back").BackColor = &H1000000
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->GetVisualAppearance()->Add(1,"c:\\exontrol\\images\\normal.ebn");
spPivot1->GetFormatAppearances()->Add(L"back",vtMissing)-
>PutBackColor(0x1000000);
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->PutPivotRows(L"0");
spPivot1->PutPivotColumns(L"sum(5)");
spPivot1->PutPivotTotals(L"sum[back]");

C++ Builder

Pivot1->VisualAppearance->Add(1,TVariant("c:\\exontrol\\images\\normal.ebn"));

Pivot1->FormatAppearances->Add(L"back",TNoParam())->BackColor = 0x1000000;
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->PivotRows = L"0";
Pivot1->PivotColumns = L"sum(5)";
Pivot1->PivotTotals = L"sum[back]";

C#

expivot1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
expivot1.FormatAppearances.Add("back",null).BackColor32 = 0x1000000;
expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.PivotRows = "0";
expivot1.PivotColumns = "sum(5)";
expivot1.PivotTotals = "sum[back]";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
 Pivot1.FormatAppearances.Add("back",null).BackColor = 16777216;
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.PivotRows = "0";
 Pivot1.PivotColumns = "sum(5)";
 Pivot1.PivotTotals = "sum[back]";
</SCRIPT>

C# for /COM

axPivot1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
axPivot1.FormatAppearances.Add("back",null).BackColor = 0x1000000;
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.PivotRows = "0";

axPivot1.PivotColumns = "sum(5)";
axPivot1.PivotTotals = "sum[back]";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatAppearance;
 anytype var_FormatAppearance;
 ;

 super();

 expivot1.VisualAppearance().Add(1,"c:\\exontrol\\images\\normal.ebn");
 var_FormatAppearance =
COM::createFromObject(expivot1.FormatAppearances()).Add("back");
com_FormatAppearance = var_FormatAppearance;
 com_FormatAppearance.BackColor(0x1000000);
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 expivot1.PivotRows("0");
 expivot1.PivotColumns("sum(5)");
 expivot1.PivotTotals("sum[back]");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');
 FormatAppearances.Add('back',Nil).BackColor := $1000000;
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 PivotRows := '0';
 PivotColumns := 'sum(5)';
 PivotTotals := 'sum[back]';
end

Delphi (standard)

with Pivot1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');
 FormatAppearances.Add('back',Null).BackColor := $1000000;
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 PivotRows := '0';
 PivotColumns := 'sum(5)';
 PivotTotals := 'sum[back]';
end

VFP

with thisform.Pivot1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .FormatAppearances.Add("back").BackColor = 0x1000000
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[back]"
endwith

dBASE Plus

local oPivot,var_FormatAppearance

oPivot = form.Activex1.nativeObject
oPivot.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
// oPivot.FormatAppearances.Add("back").BackColor = 0x1000000
var_FormatAppearance = oPivot.FormatAppearances.Add("back")
with (oPivot)
 TemplateDef = [Dim var_FormatAppearance]
 TemplateDef = var_FormatAppearance
 Template = [var_FormatAppearance.BackColor = 0x1000000]
endwith
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[back]"

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
' oPivot.FormatAppearances.Add("back").BackColor = 16777216
var_FormatAppearance = oPivot.FormatAppearances.Add("back")
oPivot.TemplateDef = "Dim var_FormatAppearance"
oPivot.TemplateDef = var_FormatAppearance
oPivot.Template = "var_FormatAppearance.BackColor = 16777216"

oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[back]"

Visual Objects

oDCOCX_Exontrol1:VisualAppearance:Add(1,"c:\exontrol\images\normal.ebn")
oDCOCX_Exontrol1:FormatAppearances:Add("back",nil):BackColor := 0x1000000
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:PivotRows := "0"
oDCOCX_Exontrol1:PivotColumns := "sum(5)"
oDCOCX_Exontrol1:PivotTotals := "sum[back]"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

oPivot.FormatAppearances.Add("back").BackColor = 16777216 /*0x1000000*/
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[back]"

property FormatAppearance.Bold as Boolean
Renders as bold text.

Type Description

Boolean A Boolean expression that specifies whether the text is
rendered in bold.

By default, the Bold property is False. Use the Bold property on True, to show the objects
in bold.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.Font as IFontDisp
Retrieves or sets the text's font.

Type Description

IFontDisp A Font object that indicates the font to be applied by the
FormatAppearance object.

By default, the Font property is nothing/empty, which indicates no effect. You can use the
Font property to specify a different font to be applied on selected columns/rows. The
FontSize property can be used to change just the size of the current font, which is applied
to the current selection.

property FormatAppearance.FontSize as Long
Indicates the size of the font to display the text.

Type Description
Long A Long expression that defines the size of the font

By default, the FontSize property is 0, which indicates no effect. The FontSize property can
be used to change just the size of the current font, which is applied to the current selection.
You can use the Font property to specify a different font to be applied on selected
columns/rows.

property FormatAppearance.ForeColor as Color
Specifies the element's foreground color.

Type Description

Color A Color expression that defines the color to be applied on
the object's foreground.

The ForeColor property specifies the foreground color to be applied on the
columns/rows. The BackColor property defines the background color to be applied on the
objects (columns/rows).

How can I display the total with a different foreground color?

VBA (MS Access, Excell...)

With Pivot1
 .FormatAppearances.Add("fore").ForeColor = RGB(255,0,0)
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[fore,bold]"
End With

VB6

With Pivot1
 .FormatAppearances.Add("fore").ForeColor = RGB(255,0,0)
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[fore,bold]"
End With

VB.NET

With Expivot1
 .FormatAppearances.Add("fore").ForeColor = Color.FromArgb(255,0,0)
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"

 .PivotTotals = "sum[fore,bold]"
End With

VB.NET for /COM

With AxPivot1
 .FormatAppearances.Add("fore").ForeColor = RGB(255,0,0)
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[fore,bold]"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->GetFormatAppearances()->Add(L"fore",vtMissing)-
>PutForeColor(RGB(255,0,0));
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->PutPivotRows(L"0");
spPivot1->PutPivotColumns(L"sum(5)");
spPivot1->PutPivotTotals(L"sum[fore,bold]");

C++ Builder

Pivot1->FormatAppearances->Add(L"fore",TNoParam())->ForeColor =
RGB(255,0,0);
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());

Pivot1->PivotRows = L"0";
Pivot1->PivotColumns = L"sum(5)";
Pivot1->PivotTotals = L"sum[fore,bold]";

C#

expivot1.FormatAppearances.Add("fore",null).ForeColor = Color.FromArgb(255,0,0);
expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.PivotRows = "0";
expivot1.PivotColumns = "sum(5)";
expivot1.PivotTotals = "sum[fore,bold]";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.FormatAppearances.Add("fore",null).ForeColor = 255;
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.PivotRows = "0";
 Pivot1.PivotColumns = "sum(5)";
 Pivot1.PivotTotals = "sum[fore,bold]";
</SCRIPT>

C# for /COM

axPivot1.FormatAppearances.Add("fore",null).ForeColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0));
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.PivotRows = "0";
axPivot1.PivotColumns = "sum(5)";
axPivot1.PivotTotals = "sum[fore,bold]";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatAppearance;
 anytype var_FormatAppearance;
 ;

 super();

 var_FormatAppearance =
COM::createFromObject(expivot1.FormatAppearances()).Add("fore");
com_FormatAppearance = var_FormatAppearance;
 com_FormatAppearance.ForeColor(WinApi::RGB2int(255,0,0));
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 expivot1.PivotRows("0");
 expivot1.PivotColumns("sum(5)");
 expivot1.PivotTotals("sum[fore,bold]");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 FormatAppearances.Add('fore',Nil).ForeColor := $ff;
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 PivotRows := '0';
 PivotColumns := 'sum(5)';
 PivotTotals := 'sum[fore,bold]';
end

Delphi (standard)

with Pivot1 do
begin
 FormatAppearances.Add('fore',Null).ForeColor := $ff;
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 PivotRows := '0';
 PivotColumns := 'sum(5)';
 PivotTotals := 'sum[fore,bold]';

end

VFP

with thisform.Pivot1
 .FormatAppearances.Add("fore").ForeColor = RGB(255,0,0)
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 .PivotColumns = "sum(5)"
 .PivotTotals = "sum[fore,bold]"
endwith

dBASE Plus

local oPivot,var_FormatAppearance

oPivot = form.Activex1.nativeObject
// oPivot.FormatAppearances.Add("fore").ForeColor = 0xff
var_FormatAppearance = oPivot.FormatAppearances.Add("fore")
with (oPivot)
 TemplateDef = [Dim var_FormatAppearance]
 TemplateDef = var_FormatAppearance
 Template = [var_FormatAppearance.ForeColor = 0xff]
endwith
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[fore,bold]"

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
' oPivot.FormatAppearances.Add("fore").ForeColor = 255
var_FormatAppearance = oPivot.FormatAppearances.Add("fore")

oPivot.TemplateDef = "Dim var_FormatAppearance"
oPivot.TemplateDef = var_FormatAppearance
oPivot.Template = "var_FormatAppearance.ForeColor = 255"

oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[fore,bold]"

Visual Objects

oDCOCX_Exontrol1:FormatAppearances:Add("fore",nil):ForeColor := RGB(255,0,0)
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:PivotRows := "0"
oDCOCX_Exontrol1:PivotColumns := "sum(5)"
oDCOCX_Exontrol1:PivotTotals := "sum[fore,bold]"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.FormatAppearances.Add("fore").ForeColor = RGB(255,0,0)
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)"
oPivot.PivotTotals = "sum[fore,bold]"

property FormatAppearance.Gradient as Color
Renders the text with a gradient color.

Type Description

Color A Color expression to define the second gradient color to
end with.

By default, the Gradient property is 0, which indicates no effect. The GradientMode
property specifies the way the gradient text is shown.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.GradientMode as Long
Indicates the gradient mode to be applied on text.

Type Description

Long A Long expression that indicates the way the gradient text
is shown. The valid value is between 0 and 4.

By default, the GradientMode property is 1. The GradientMode property specifies the way
the gradient text is shown.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.Italic as Boolean
Renders as italic text.

Type Description

Boolean A Boolean expression that specifies whether the text is
rendered in italics.

By default, the Italic property is False. Use the Italic property on True, to show the objects
in italics.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.Key as String
Indicates the key of the FormatAppearance object.

Type Description

String

A String expression that specifies the unique key of the
FormatAppearance object. The Key of the
FormatAppearance should include only alpha-numeric
characters, any other character will be ignored.

The Key property indicates the key of the FormatAppearance. Use the Key of the
FormatAppearance in [] to apply the specified object to any column or row. For instance,
the PivotRows property on "0[bold,italic]" to group by the first column and shows the
column's content in bold and italic. The same rule is applied to PivotColumns or
PivotTotals property.

By default, the FormatAppearances collection contains the following keys:

"bold",
"italic",
"strikeout"
"underline"

property FormatAppearance.Name as String
Specifies the name of the FormatAppearance object to be displayed on the context menu.

Type Description

String A String expression that defines the HTML caption to be
displayed on the control's context menu.

The Name property indicates the name to be displayed on the control's context menu as
shown bellow. The Key property specifies the key of the FormatAppearance object. The
ToolTip property defines the FormatAppearance's tooltip.

The Name property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text

about:blank

with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the

red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property FormatAppearance.Outline as Color
Renders the text outlined with specified color.

Type Description

Color A Color expression that defines the color to show the
outline text.

By default, the Outline property is 0, which indicates no effect. The OutlineSize property
specifies the size of the outlined text/line.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.OutlineSize as Long
Indicates the size of the outline to be applied on text.

Type Description
Long A Long expression that defines the size of the outline text.

By default, the OutlineSize property is 1. If 0, the Outline has no effect. The OutlineSize
property specifies the size of the outlined text/line.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.Shadow as Color
Renders the text with a shadow of specified color.

Type Description

Color A Color expression that defines the color of the shadow to
be shown around the text

By default, the Shadow property is 0. If 0, this property has no effect. The ShadowOffset
property defines the offset to show the text's shadow. The ShadowSize property define the
size of the shadow to be shown.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.ShadowOffset as Long
Indicates the offset of the shadow to be applied on text.

Type Description

Long A Long expression that defines the offset where the text's
shadow is shown.

By default, the ShadowOffset property is 2. If 0, this property shows the fine effect. The
ShadowOffset property defines the offset to show the text's shadow. The ShadowColor
property defines the color to show the text's shadow. The ShadowSize property define the
size of the shadow to be shown.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.ShadowSize as Long
Indicates the size of the shadow to be applied on text.

Type Description

Long A Long expression that defines the size of the text's
shadow.

By default, the ShadowSize property is 4. If 0, this property shows no shadow effect. The
ShadowOffset property defines the offset to show the text's shadow. The ShadowColor
property defines the color to show the text's shadow. The ShadowSize property define the
size of the shadow to be shown.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.StrikeOut as Boolean
Specifies that the text should appear as strikeout.

Type Description

Boolean A Boolean expression that specifies whether the text is
strikeout.

By default, the StrikeOut property is False. Use the StrikeOut property on True, to show
the objects as strikeout.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatAppearance.ToolTip as String
Specifies the tooltip of the FormatAppearance object to be displayed when the cursor
hovers the object.

Type Description

String
A String expression that defines the HTML caption to be
shown when the cursor hovers the FormatAppearance
object on the control's context menu.

The ToolTip property defines the FormatAppearance's tooltip. The Name property indicates
the name to be displayed on the control's context menu. The Key property specifies the key
of the FormatAppearance object.

The Name property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

about:blank

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The

HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property FormatAppearance.Underline as Boolean
Underlines the text.

Type Description

Boolean A Boolean expression that specifies whether the text is
underlined.

By default, the Underline property is False. Use the Underline property on True, to show the
objects underlined.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

FormatAppearances object

The FormatAppearances collection can be accessed through the control's
FormatAppearances property. The FormatAppearance object changes the visual
appearance of your data as listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

 By default, the control's context menu displays the following FormatAppearance objects:

By default, the FormatAppearances collection contains the following keys:

"bold",
"italic",
"strikeout"
"underline"

The FormatAppearances collection supports the following properties and methods:

Name Description

Add Adds a FormatAppearance object and returns a reference
to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific FormatAppearance object giving its key.
Remove Removes a specific member from the collection.

method FormatAppearances.Add (Key as String, [Name as Variant])
Adds a FormatAppearance object and returns a reference to the newly created object.

Type Description

Key as String

A String expression that specifies the unique key of the
FormatAppearance object. The Key of the
FormatAppearance should include only alpha-numeric
characters, any other character will be ignored.

Name as Variant A String expression that indicates the HTML caption to be
displayed on the control's context menu.

Return Description
FormatAppearance A FormatAppearance object being created.

By default, the FormatAppearances collection contains the following keys: "bold", "italic",
"underline" and "strikeout". Use the Clear method to remove all FormatAppearance objects
from the FormatAppearances collection. Use the Remove method to remove a
FormatAppearance object giving its key. Use the Item property to access a
FormatAppearance object giving its key. The Key property indicates the key of the
FormatAppearance object.

The FormatAppearance object changes the visual appearance of your data as listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

Use the Key of the FormatAppearance in [] to apply the specified object to any column or
row. For instance, the PivotRows property on "0[bold,italic]" to group by the first column
and shows the column's content in bold and italic. The same rule is applied to
PivotColumns or PivotTotals property.

method FormatAppearances.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all elements in the FormatAppearances collection. Excludes the
exPivotBarAllowFormatAppearance flag from the PivotBarVisible property, and so no
FormatAppearance objects are displayed on the control's context menu. The Remove
method removes a FormatAppearance object giving its key. Use the Add method to add a
new FormatAppearance object. You can use the for each statement to enumerate all
objects in the FormatAppearances collection.

property FormatAppearances.Count as Long
Returns the number of objects in a collection.

Type Description

Long
A Long expression that indicates the number of
FormatAppearance objects in the FormatAppearances
collection.

The Count property gets the number of FormatAppearance objects in the
FormatAppearances collection. The Clear method removes all elements in the
FormatAppearances collection. The Item property accesses a FormatAppearance object
based on its key. Use the Add method to add a new FormatAppearance object. You can
use the for each statement to enumerate all objects in the FormatAppearances collection.

The following samples show how to change the "bold" caption being displayed in the
control's context menu.

VBA (MS Access, Excell...)

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

VB6

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

VB.NET

With Expivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

VB.NET for /COM

With AxPivot1

 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->GetFormatAppearances()->GetItem("bold")->PutName(L"Ingrosat");

C++ Builder

Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->FormatAppearances->get_Item(TVariant("bold"))->Name = L"Ingrosat";

C#

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.FormatAppearances["bold"].Name = "Ingrosat";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);

 Pivot1.FormatAppearances.Item("bold").Name = "Ingrosat";
</SCRIPT>

C# for /COM

axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.FormatAppearances["bold"].Name = "Ingrosat";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatAppearance;
 anytype var_FormatAppearance;
 ;

 super();

 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_FormatAppearance =
COM::createFromObject(expivot1.FormatAppearances()).Item("bold");
com_FormatAppearance = var_FormatAppearance;
 com_FormatAppearance.Name("Ingrosat");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 FormatAppearances.Item['bold'].Name := 'Ingrosat';
end

Delphi (standard)

with Pivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);

 FormatAppearances.Item['bold'].Name := 'Ingrosat';
end

VFP

with thisform.Pivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatAppearances.Item("bold").Name = "Ingrosat"
endwith

dBASE Plus

local oPivot,var_FormatAppearance

oPivot = form.Activex1.nativeObject
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
// oPivot.FormatAppearances.Item("bold").Name = "Ingrosat"
var_FormatAppearance = oPivot.FormatAppearances.Item("bold")
with (oPivot)
 TemplateDef = [Dim var_FormatAppearance]
 TemplateDef = var_FormatAppearance
 Template = [var_FormatAppearance.Name = "Ingrosat"]
endwith

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
' oPivot.FormatAppearances.Item("bold").Name = "Ingrosat"
var_FormatAppearance = oPivot.FormatAppearances.Item("bold")
oPivot.TemplateDef = "Dim var_FormatAppearance"
oPivot.TemplateDef = var_FormatAppearance
oPivot.Template = "var_FormatAppearance.Name = \"Ingrosat\""

Visual Objects

oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:FormatAppearances:[Item,"bold"]:Name := "Ingrosat"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatAppearances.Item("bold").Name = "Ingrosat"

property FormatAppearances.Item (Key as Variant) as FormatAppearance
Returns a specific FormatAppearance object giving its key.

Type Description

Key as Variant A String expression that specifies the key of the object to
be retrieved.

FormatAppearance A FormatAppearance object being requested.

The Item property accesses a FormatAppearance object based on its key. Use the Add
method to add a new FormatAppearance object. The Count property gets the number of
FormatAppearance objects in the FormatAppearances collection. You can use the for each
statement to enumerate all objects in the FormatAppearances collection.

The following samples show how to change the "bold" caption being displayed in the
control's context menu.

VBA (MS Access, Excell...)

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

VB6

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

VB.NET

With Expivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

VB.NET for /COM

With AxPivot1

 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatAppearances.Item("bold").Name = "Ingrosat"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->GetFormatAppearances()->GetItem("bold")->PutName(L"Ingrosat");

C++ Builder

Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->FormatAppearances->get_Item(TVariant("bold"))->Name = L"Ingrosat";

C#

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.FormatAppearances["bold"].Name = "Ingrosat";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);

 Pivot1.FormatAppearances.Item("bold").Name = "Ingrosat";
</SCRIPT>

C# for /COM

axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.FormatAppearances["bold"].Name = "Ingrosat";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatAppearance;
 anytype var_FormatAppearance;
 ;

 super();

 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_FormatAppearance =
COM::createFromObject(expivot1.FormatAppearances()).Item("bold");
com_FormatAppearance = var_FormatAppearance;
 com_FormatAppearance.Name("Ingrosat");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 FormatAppearances.Item['bold'].Name := 'Ingrosat';
end

Delphi (standard)

with Pivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);

 FormatAppearances.Item['bold'].Name := 'Ingrosat';
end

VFP

with thisform.Pivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatAppearances.Item("bold").Name = "Ingrosat"
endwith

dBASE Plus

local oPivot,var_FormatAppearance

oPivot = form.Activex1.nativeObject
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
// oPivot.FormatAppearances.Item("bold").Name = "Ingrosat"
var_FormatAppearance = oPivot.FormatAppearances.Item("bold")
with (oPivot)
 TemplateDef = [Dim var_FormatAppearance]
 TemplateDef = var_FormatAppearance
 Template = [var_FormatAppearance.Name = "Ingrosat"]
endwith

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
' oPivot.FormatAppearances.Item("bold").Name = "Ingrosat"
var_FormatAppearance = oPivot.FormatAppearances.Item("bold")
oPivot.TemplateDef = "Dim var_FormatAppearance"
oPivot.TemplateDef = var_FormatAppearance
oPivot.Template = "var_FormatAppearance.Name = \"Ingrosat\""

Visual Objects

oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:FormatAppearances:[Item,"bold"]:Name := "Ingrosat"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatAppearances.Item("bold").Name = "Ingrosat"

method FormatAppearances.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A String expression that indicates the Key of the
FormatAppearance object to be removed.

The Remove method removes a FormatAppearance object giving its key. The Clear method
removes all elements in the FormatAppearances collection. Excludes the
exPivotBarAllowFormatAppearance flag from the PivotBarVisible property, and so no
FormatAppearance objects are displayed on the control's context menu. Use the Add
method to add a new FormatAppearance object. You can use the for each statement to
enumerate all objects in the FormatAppearances collection.

FormatConditionalAppearance object

The FormatConditionalAppearance objects can be accessed through the control's
FormatConditionalAppearances property. The Expression property defines the conditional
expression that determines whether the current format is applied on the pivot's cell based
on the cell's value. The FormatConditionalAppearance object changes the visual
appearance of your data as listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

 The following screen shot shows the control's context menu with the
FormatConditionalAppearance objects:

The FormatConditionalAppearance object supports the following properties and methods:

Name Description
BackColor Specifies the element's background color.
Bold Renders as bold text.

ContextEditExpression
Indicates whether the item of the current conditional-
format object in the control's content menu displays/edits
the conditional expression, at runtime.

Expression Specifies the conditional expression that determines
whether the current format is applied on the pivot's data.

Font Retrieves or sets the text's font.
FontSize Indicates the size of the font to display the text.
ForeColor Specifies the element's foreground color.
Gradient Renders the text with a gradient color.
GradientMode Indicates the gradient mode to be applied on text.
Italic Renders as italic text.

Indicates the key of the FormatConditionalAppearance

Key object.

Name Specifies the name of the FormatConditionalAppearance
object to be displayed on the context menu.

Outline Renders the text outlined with specified color.
OutlineSize Indicates the size of the outline to be applied on text.
Shadow Renders the text with a shadow of specified color.
ShadowOffset Indicates the offset of the shadow to be applied on text.
ShadowSize Indicates the size of the shadow to be applied on text.
StrikeOut Specifies that the text should appear as strikeout.

ToolTip Specifies the tooltip of the FormatConditionalAppearance
object to be displayed when the cursor hovers the object.

Underline Underlines the text.

property FormatConditionalAppearance.BackColor as Color
Specifies the element's background color.

Type Description

Color

A color expression that defines the background color to be
applied. The last 7 bits in the high significant byte of the
color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

The BackColor property defines the background color to be applied. This property supports
solid colors or EBN colors. The last 7 bits in the high significant byte of the color to
indicates the identifier of the skin being used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color being applied to the
background's part. The ForeColor property defines the foreground color to be applied on
the objects (columns/rows). The Expression property defines the conditional expression
that determines whether the current format is applied on the pivot's cell based on the cell's
value.

The following samples show how you can mark not-empty values in the chart:

VBA (MS Access, Excell...)

With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("nempty","not empty","")
 .Expression = "len(value) != 0"
 .BackColor = RGB(240,240,240)
 End With
 .PivotColumns = "sum(5)[nempty]/12"
 .EndUpdate
End With

VB6

With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("nempty","not empty","")
 .Expression = "len(value) != 0"
 .BackColor = RGB(240,240,240)
 End With
 .PivotColumns = "sum(5)[nempty]/12"
 .EndUpdate
End With

VB.NET

With Expivot1
 .BeginUpdate()
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("nempty","not empty","")
 .Expression = "len(value) != 0"
 .BackColor = Color.FromArgb(240,240,240)
 End With
 .PivotColumns = "sum(5)[nempty]/12"
 .EndUpdate()

End With

VB.NET for /COM

With AxPivot1
 .BeginUpdate()
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("nempty","not empty","")
 .Expression = "len(value) != 0"
 .BackColor = RGB(240,240,240)
 End With
 .PivotColumns = "sum(5)[nempty]/12"
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->BeginUpdate();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->PutPivotRows(L"0");
EXPIVOTLib::IFormatConditionalAppearancePtr var_FormatConditionalAppearance =
spPivot1->GetFormatConditionalAppearances()->Add(L"nempty","not empty","");
 var_FormatConditionalAppearance->PutExpression(L"len(value) != 0");
 var_FormatConditionalAppearance->PutBackColor(RGB(240,240,240));
spPivot1->PutPivotColumns(L"sum(5)[nempty]/12");
spPivot1->EndUpdate();

C++ Builder

Pivot1->BeginUpdate();
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->PivotRows = L"0";
Expivotlib_tlb::IFormatConditionalAppearancePtr var_FormatConditionalAppearance
= Pivot1->FormatConditionalAppearances->Add(L"nempty",TVariant("not
empty"),TVariant(""));
 var_FormatConditionalAppearance->Expression = L"len(value) != 0";
 var_FormatConditionalAppearance->BackColor = RGB(240,240,240);
Pivot1->PivotColumns = L"sum(5)[nempty]/12";
Pivot1->EndUpdate();

C#

expivot1.BeginUpdate();
expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.PivotRows = "0";
exontrol.EXPIVOTLib.FormatConditionalAppearance
var_FormatConditionalAppearance =
expivot1.FormatConditionalAppearances.Add("nempty","not empty","");
 var_FormatConditionalAppearance.Expression = "len(value) != 0";
 var_FormatConditionalAppearance.BackColor = Color.FromArgb(240,240,240);
expivot1.PivotColumns = "sum(5)[nempty]/12";
expivot1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{

 Pivot1.BeginUpdate();
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.PivotRows = "0";
 var var_FormatConditionalAppearance =
Pivot1.FormatConditionalAppearances.Add("nempty","not empty","");
 var_FormatConditionalAppearance.Expression = "len(value) != 0";
 var_FormatConditionalAppearance.BackColor = 15790320;
 Pivot1.PivotColumns = "sum(5)[nempty]/12";
 Pivot1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("nempty","not empty","")
 .Expression = "len(value) != 0"
 .BackColor = RGB(240,240,240)
 End With
 .PivotColumns = "sum(5)[nempty]/12"
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axPivot1.BeginUpdate();
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.PivotRows = "0";
EXPIVOTLib.FormatConditionalAppearance var_FormatConditionalAppearance =
axPivot1.FormatConditionalAppearances.Add("nempty","not empty","");
 var_FormatConditionalAppearance.Expression = "len(value) != 0";
 var_FormatConditionalAppearance.BackColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(240,240,240));
axPivot1.PivotColumns = "sum(5)[nempty]/12";
axPivot1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatConditionalAppearance;
 anytype var_FormatConditionalAppearance;
 ;

 super();

 expivot1.BeginUpdate();
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 expivot1.PivotRows("0");
 var_FormatConditionalAppearance =
COM::createFromObject(expivot1.FormatConditionalAppearances()).Add("nempty","not
 empty",""); com_FormatConditionalAppearance =
var_FormatConditionalAppearance;
 com_FormatConditionalAppearance.Expression("len(value) != 0");
 com_FormatConditionalAppearance.BackColor(WinApi::RGB2int(240,240,240));
 expivot1.PivotColumns("sum(5)[nempty]/12");
 expivot1.EndUpdate();
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 BeginUpdate();
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 PivotRows := '0';
 with FormatConditionalAppearances.Add('nempty','not empty','') do
 begin
 Expression := 'len(value) != 0';
 BackColor := $f0f0f0;
 end;
 PivotColumns := 'sum(5)[nempty]/12';
 EndUpdate();
end

Delphi (standard)

with Pivot1 do
begin
 BeginUpdate();
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 PivotRows := '0';
 with FormatConditionalAppearances.Add('nempty','not empty','') do
 begin
 Expression := 'len(value) != 0';
 BackColor := $f0f0f0;
 end;
 PivotColumns := 'sum(5)[nempty]/12';
 EndUpdate();
end

VFP

with thisform.Pivot1
 .BeginUpdate
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 with .FormatConditionalAppearances.Add("nempty","not empty","")
 .Expression = "len(value) != 0"

 .BackColor = RGB(240,240,240)
 endwith
 .PivotColumns = "sum(5)[nempty]/12"
 .EndUpdate
endwith

dBASE Plus

local oPivot,var_FormatConditionalAppearance

oPivot = form.EXPIVOTACTIVEXCONTROL1.nativeObject
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("nempty","not empty","")
 var_FormatConditionalAppearance.Expression = "len(value) != 0"
 var_FormatConditionalAppearance.BackColor = 0xf0f0f0
oPivot.PivotColumns = "sum(5)[nempty]/12"
oPivot.EndUpdate()

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatConditionalAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("nempty","not empty","")
 var_FormatConditionalAppearance.Expression = "len(value) != 0"
 var_FormatConditionalAppearance.BackColor = 15790320
oPivot.PivotColumns = "sum(5)[nempty]/12"
oPivot.EndUpdate()

Visual Objects

local var_FormatConditionalAppearance as IFormatConditionalAppearance

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:PivotRows := "0"
var_FormatConditionalAppearance :=
oDCOCX_Exontrol1:FormatConditionalAppearances:Add("nempty","not empty","")
 var_FormatConditionalAppearance:Expression := "len(value) != 0"
 var_FormatConditionalAppearance:BackColor := RGB(240,240,240)
oDCOCX_Exontrol1:PivotColumns := "sum(5)[nempty]/12"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPivot,var_FormatConditionalAppearance

oPivot = ole_1.Object
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("nempty","not empty","")
 var_FormatConditionalAppearance.Expression = "len(value) != 0"
 var_FormatConditionalAppearance.BackColor = RGB(240,240,240)
oPivot.PivotColumns = "sum(5)[nempty]/12"
oPivot.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Get ComImport "C:\Program Files\Exontrol\ExPivot\Sample\data.txt" Nothing to
Nothing

 Set ComPivotRows to "0"
 Variant voFormatConditionalAppearances
 Get ComFormatConditionalAppearances to voFormatConditionalAppearances
 Handle hoFormatConditionalAppearances
 Get Create (RefClass(cComFormatConditionalAppearances)) to
hoFormatConditionalAppearances
 Set pvComObject of hoFormatConditionalAppearances to
voFormatConditionalAppearances
 Variant voFormatConditionalAppearance
 Get ComAdd of hoFormatConditionalAppearances "nempty" "not empty" "" to
voFormatConditionalAppearance
 Handle hoFormatConditionalAppearance
 Get Create (RefClass(cComFormatConditionalAppearance)) to
hoFormatConditionalAppearance
 Set pvComObject of hoFormatConditionalAppearance to
voFormatConditionalAppearance
 Set ComExpression of hoFormatConditionalAppearance to "len(value) != 0"
 Set ComBackColor of hoFormatConditionalAppearance to (RGB(240,240,240))
 Send Destroy to hoFormatConditionalAppearance
 Send Destroy to hoFormatConditionalAppearances
 Set ComPivotColumns to "sum(5)[nempty]/12"
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oFormatConditionalAppearance
 LOCAL oPivot

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.

 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oPivot := XbpActiveXControl():new(oForm:drawingArea)
 oPivot:CLSID := "Exontrol.Pivot.1" /*{5C9DF3D3-81B1-42C4-BED6-
658F17748686}*/
 oPivot:create(,, {10,60},{610,370})

 oPivot:BeginUpdate()
 oPivot:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 oPivot:PivotRows := "0"
 oFormatConditionalAppearance :=
oPivot:FormatConditionalAppearances():Add("nempty","not empty","")
 oFormatConditionalAppearance:Expression := "len(value) != 0"

oFormatConditionalAppearance:SetProperty("BackColor",AutomationTranslateColor(
GraMakeRGBColor ({ 240,240,240 }) , .F.))
 oPivot:PivotColumns := "sum(5)[nempty]/12"
 oPivot:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property FormatConditionalAppearance.Bold as Boolean
Renders as bold text.

Type Description

Boolean A Boolean expression that specifies whether the text is
rendered in bold.

By default, the Bold property is False. Use the Bold property on True, to show the objects
in bold. The Expression property defines the conditional expression that determines
whether the current format is applied on the pivot's cell based on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.ContextEditExpression as
Boolean
Indicates whether the item of the current conditional-format object in the control's content
menu displays/edits the conditional expression, at runtime.

Type Description

Boolean

A Boolean expression that indicates whether the item of
the current conditional-format object in the control's
content menu displays/edits the conditional expression, at
runtime.

By default, the ContextEditExpression property is False, so the format's expression is not
editable at runtime. Use the ContextEditExpression property on True, to allow user to edit
the format's Expression at runtime. The value keyword in the Expression property indicates
the value/result to be evaluated. For instance, "value > 2000" indicates all values greater
than 2000. While typing the FormatConditionalAppearance's Expression the item gets
checked, and it shows as disabled if the Expression is not valid (empty or syntactically
incorrect). The FormatConditionalAppearance format is not applied to any value, if not
checked, or the expression is not valid (empty or syntactically incorrect)

The following screen show shows the "custom" FormatConditionalAppearance object, that
allows editing the Expression property:

The following samples shows how you can edit the conditional-expression at runtime:

VBA (MS Access, Excell...)

With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 With .FormatConditionalAppearances.Add("custom","custom","")
 .Bold = True
 .FontSize = 12
 .Expression = "value > 2000"
 .ContextEditExpression = True
 End With
 .PivotRows = "0"
 .PivotColumns = "sum(5)[custom]/12"
 .EndUpdate
End With

VB6

With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 With .FormatConditionalAppearances.Add("custom","custom","")
 .Bold = True
 .FontSize = 12
 .Expression = "value > 2000"
 .ContextEditExpression = True
 End With
 .PivotRows = "0"
 .PivotColumns = "sum(5)[custom]/12"
 .EndUpdate
End With

VB.NET

With Expivot1
 .BeginUpdate()
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 With .FormatConditionalAppearances.Add("custom","custom","")

 .Bold = True
 .FontSize = 12
 .Expression = "value > 2000"
 .ContextEditExpression = True
 End With
 .PivotRows = "0"
 .PivotColumns = "sum(5)[custom]/12"
 .EndUpdate()
End With

VB.NET for /COM

With AxPivot1
 .BeginUpdate()
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 With .FormatConditionalAppearances.Add("custom","custom","")
 .Bold = True
 .FontSize = 12
 .Expression = "value > 2000"
 .ContextEditExpression = True
 End With
 .PivotRows = "0"
 .PivotColumns = "sum(5)[custom]/12"
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->BeginUpdate();
spPivot1->Import("C:\\Program

Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
EXPIVOTLib::IFormatConditionalAppearancePtr var_FormatConditionalAppearance =
spPivot1->GetFormatConditionalAppearances()->Add(L"custom","custom","");
 var_FormatConditionalAppearance->PutBold(VARIANT_TRUE);
 var_FormatConditionalAppearance->PutFontSize(12);
 var_FormatConditionalAppearance->PutExpression(L"value > 2000");
 var_FormatConditionalAppearance->PutContextEditExpression(VARIANT_TRUE);
spPivot1->PutPivotRows(L"0");
spPivot1->PutPivotColumns(L"sum(5)[custom]/12");
spPivot1->EndUpdate();

C++ Builder

Pivot1->BeginUpdate();
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Expivotlib_tlb::IFormatConditionalAppearancePtr var_FormatConditionalAppearance
= Pivot1->FormatConditionalAppearances-
>Add(L"custom",TVariant("custom"),TVariant(""));
 var_FormatConditionalAppearance->Bold = true;
 var_FormatConditionalAppearance->FontSize = 12;
 var_FormatConditionalAppearance->Expression = L"value > 2000";
 var_FormatConditionalAppearance->ContextEditExpression = true;
Pivot1->PivotRows = L"0";
Pivot1->PivotColumns = L"sum(5)[custom]/12";
Pivot1->EndUpdate();

C#

expivot1.BeginUpdate();
expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
exontrol.EXPIVOTLib.FormatConditionalAppearance
var_FormatConditionalAppearance =
expivot1.FormatConditionalAppearances.Add("custom","custom","");
 var_FormatConditionalAppearance.Bold = true;
 var_FormatConditionalAppearance.FontSize = 12;

 var_FormatConditionalAppearance.Expression = "value > 2000";
 var_FormatConditionalAppearance.ContextEditExpression = true;
expivot1.PivotRows = "0";
expivot1.PivotColumns = "sum(5)[custom]/12";
expivot1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Pivot1.BeginUpdate();
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 var var_FormatConditionalAppearance =
Pivot1.FormatConditionalAppearances.Add("custom","custom","");
 var_FormatConditionalAppearance.Bold = true;
 var_FormatConditionalAppearance.FontSize = 12;
 var_FormatConditionalAppearance.Expression = "value > 2000";
 var_FormatConditionalAppearance.ContextEditExpression = true;
 Pivot1.PivotRows = "0";
 Pivot1.PivotColumns = "sum(5)[custom]/12";
 Pivot1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 With .FormatConditionalAppearances.Add("custom","custom","")
 .Bold = True
 .FontSize = 12
 .Expression = "value > 2000"
 .ContextEditExpression = True
 End With
 .PivotRows = "0"
 .PivotColumns = "sum(5)[custom]/12"
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axPivot1.BeginUpdate();
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
EXPIVOTLib.FormatConditionalAppearance var_FormatConditionalAppearance =
axPivot1.FormatConditionalAppearances.Add("custom","custom","");
 var_FormatConditionalAppearance.Bold = true;
 var_FormatConditionalAppearance.FontSize = 12;
 var_FormatConditionalAppearance.Expression = "value > 2000";
 var_FormatConditionalAppearance.ContextEditExpression = true;
axPivot1.PivotRows = "0";
axPivot1.PivotColumns = "sum(5)[custom]/12";
axPivot1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()

{
 COM com_FormatConditionalAppearance;
 anytype var_FormatConditionalAppearance;
 ;

 super();

 expivot1.BeginUpdate();
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_FormatConditionalAppearance =
COM::createFromObject(expivot1.FormatConditionalAppearances()).Add("custom","custom"
 com_FormatConditionalAppearance = var_FormatConditionalAppearance;
 com_FormatConditionalAppearance.Bold(true);
 com_FormatConditionalAppearance.FontSize(12);
 com_FormatConditionalAppearance.Expression("value > 2000");
 com_FormatConditionalAppearance.ContextEditExpression(true);
 expivot1.PivotRows("0");
 expivot1.PivotColumns("sum(5)[custom]/12");
 expivot1.EndUpdate();
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 BeginUpdate();
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 with FormatConditionalAppearances.Add('custom','custom','') do
 begin
 Bold := True;
 FontSize := 12;
 Expression := 'value > 2000';
 ContextEditExpression := True;
 end;
 PivotRows := '0';
 PivotColumns := 'sum(5)[custom]/12';
 EndUpdate();

end

Delphi (standard)

with Pivot1 do
begin
 BeginUpdate();
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 with FormatConditionalAppearances.Add('custom','custom','') do
 begin
 Bold := True;
 FontSize := 12;
 Expression := 'value > 2000';
 ContextEditExpression := True;
 end;
 PivotRows := '0';
 PivotColumns := 'sum(5)[custom]/12';
 EndUpdate();
end

VFP

with thisform.Pivot1
 .BeginUpdate
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 with .FormatConditionalAppearances.Add("custom","custom","")
 .Bold = .T.
 .FontSize = 12
 .Expression = "value > 2000"
 .ContextEditExpression = .T.
 endwith
 .PivotRows = "0"
 .PivotColumns = "sum(5)[custom]/12"
 .EndUpdate
endwith

dBASE Plus

local oPivot,var_FormatConditionalAppearance

oPivot = form.EXPIVOTACTIVEXCONTROL1.nativeObject
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("custom","custom","")
 var_FormatConditionalAppearance.Bold = true
 var_FormatConditionalAppearance.FontSize = 12
 var_FormatConditionalAppearance.Expression = "value > 2000"
 var_FormatConditionalAppearance.ContextEditExpression = true
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)[custom]/12"
oPivot.EndUpdate()

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatConditionalAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("custom","custom","")
 var_FormatConditionalAppearance.Bold = .t.
 var_FormatConditionalAppearance.FontSize = 12
 var_FormatConditionalAppearance.Expression = "value > 2000"
 var_FormatConditionalAppearance.ContextEditExpression = .t.
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)[custom]/12"
oPivot.EndUpdate()

Visual Objects

local var_FormatConditionalAppearance as IFormatConditionalAppearance

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
var_FormatConditionalAppearance :=
oDCOCX_Exontrol1:FormatConditionalAppearances:Add("custom","custom","")
 var_FormatConditionalAppearance:Bold := true
 var_FormatConditionalAppearance:FontSize := 12
 var_FormatConditionalAppearance:Expression := "value > 2000"
 var_FormatConditionalAppearance:ContextEditExpression := true
oDCOCX_Exontrol1:PivotRows := "0"
oDCOCX_Exontrol1:PivotColumns := "sum(5)[custom]/12"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPivot,var_FormatConditionalAppearance

oPivot = ole_1.Object
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("custom","custom","")
 var_FormatConditionalAppearance.Bold = true
 var_FormatConditionalAppearance.FontSize = 12
 var_FormatConditionalAppearance.Expression = "value > 2000"
 var_FormatConditionalAppearance.ContextEditExpression = true
oPivot.PivotRows = "0"
oPivot.PivotColumns = "sum(5)[custom]/12"
oPivot.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Get ComImport "C:\Program Files\Exontrol\ExPivot\Sample\data.txt" Nothing to

Nothing
 Variant voFormatConditionalAppearances
 Get ComFormatConditionalAppearances to voFormatConditionalAppearances
 Handle hoFormatConditionalAppearances
 Get Create (RefClass(cComFormatConditionalAppearances)) to
hoFormatConditionalAppearances
 Set pvComObject of hoFormatConditionalAppearances to
voFormatConditionalAppearances
 Variant voFormatConditionalAppearance
 Get ComAdd of hoFormatConditionalAppearances "custom" "custom" "" to
voFormatConditionalAppearance
 Handle hoFormatConditionalAppearance
 Get Create (RefClass(cComFormatConditionalAppearance)) to
hoFormatConditionalAppearance
 Set pvComObject of hoFormatConditionalAppearance to
voFormatConditionalAppearance
 Set ComBold of hoFormatConditionalAppearance to True
 Set ComFontSize of hoFormatConditionalAppearance to 12
 Set ComExpression of hoFormatConditionalAppearance to "value > 2000"
 Set ComContextEditExpression of hoFormatConditionalAppearance to True
 Send Destroy to hoFormatConditionalAppearance
 Send Destroy to hoFormatConditionalAppearances
 Set ComPivotRows to "0"
 Set ComPivotColumns to "sum(5)[custom]/12"
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oFormatConditionalAppearance
 LOCAL oPivot

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oPivot := XbpActiveXControl():new(oForm:drawingArea)
 oPivot:CLSID := "Exontrol.Pivot.1" /*{5C9DF3D3-81B1-42C4-BED6-
658F17748686}*/
 oPivot:create(,, {10,60},{610,370})

 oPivot:BeginUpdate()
 oPivot:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 oFormatConditionalAppearance :=
oPivot:FormatConditionalAppearances():Add("custom","custom","")
 oFormatConditionalAppearance:Bold := .T.
 oFormatConditionalAppearance:FontSize := 12
 oFormatConditionalAppearance:Expression := "value > 2000"
 oFormatConditionalAppearance:ContextEditExpression := .T.
 oPivot:PivotRows := "0"
 oPivot:PivotColumns := "sum(5)[custom]/12"
 oPivot:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property FormatConditionalAppearance.Expression as String
Specifies the conditional expression that determines whether the current format is applied
on the pivot's data.

Type Description

String

A String expression that defines the conditional-expression
that needs to match the value, so the current format is
applied to the cell. For instance, "len(value) = 0" indicates
any empty value.

The Expression property defines the conditional expression that determines whether the
current format is applied on the pivot's value. The Expression parameter of the Add method,
is equivalent with the Expression property. When the current format is applied to a column,
the Expression is evaluated (value keyword in the Expression indicates the value in the
column), and if it is True, the current format is applied to the cell, else it is not. The
ContextEditExpression property indicates whether the item of the current conditional-format
object in the control's content menu displays/edits the conditional expression, at runtime.
The FormatConditionalAppearance format is not applied to any value, if the expression is
not valid (empty or syntactically incorrect).

For instance:

"len(value) != 0", indicates not-empty values
"len(value) = 0", indicates empty values
"value < 0", indicates negative value
"len(value) != 0 ? (value < 0) : 0", indicates any negative value, by checking first it is it
an not-empty cell/value

The value keyword in the Expression property indicates the value/result to be evaluated.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not

greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)

day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property FormatConditionalAppearance.Font as IFontDisp
Retrieves or sets the text's font.

Type Description

IFontDisp A Font object that indicates the font to be applied by the
FormatConditionalAppearance object.

By default, the Font property is nothing/empty, which indicates no effect. You can use the
Font property to specify a different font to be applied on selected columns/rows. The
FontSize property can be used to change just the size of the current font, which is applied
to the current selection. The Expression property defines the conditional expression that
determines whether the current format is applied on the pivot's cell based on the cell's
value.

property FormatConditionalAppearance.FontSize as Long
Indicates the size of the font to display the text.

Type Description
Long A Long expression that defines the size of the font

By default, the FontSize property is 0, which indicates no effect. The FontSize property can
be used to change just the size of the current font, which is applied to the current selection.
You can use the Font property to specify a different font to be applied on selected
columns/rows. The Expression property defines the conditional expression that determines
whether the current format is applied on the pivot's cell based on the cell's value.

property FormatConditionalAppearance.ForeColor as Color
Specifies the element's foreground color.

Type Description

Color A Color expression that defines the color to be applied on
the object's foreground.

The ForeColor property specifies the foreground color to be applied on the
columns/rows. The BackColor property defines the background color to be applied on the
objects (columns/rows). The Expression property defines the conditional expression that
determines whether the current format is applied on the pivot's cell based on the cell's
value.

The following sample shows how you can shows the value with a value less than 100, with
a gray color:

VBA (MS Access, Excell...)

With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("lower","lower","")
 .Expression = "len(value) != 0 ? (value < 100) : 0"
 .ForeColor = RGB(128,128,128)
 End With

 .PivotColumns = "sum(5)[lower]/12"
 .EndUpdate
End With

VB6

With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("lower","lower","")
 .Expression = "len(value) != 0 ? (value < 100) : 0"
 .ForeColor = RGB(128,128,128)
 End With
 .PivotColumns = "sum(5)[lower]/12"
 .EndUpdate
End With

VB.NET

With Expivot1
 .BeginUpdate()
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("lower","lower","")
 .Expression = "len(value) != 0 ? (value < 100) : 0"
 .ForeColor = Color.FromArgb(128,128,128)
 End With
 .PivotColumns = "sum(5)[lower]/12"
 .EndUpdate()
End With

VB.NET for /COM

With AxPivot1
 .BeginUpdate()
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"

 With .FormatConditionalAppearances.Add("lower","lower","")
 .Expression = "len(value) != 0 ? (value < 100) : 0"
 .ForeColor = RGB(128,128,128)
 End With
 .PivotColumns = "sum(5)[lower]/12"
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->BeginUpdate();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->PutPivotRows(L"0");
EXPIVOTLib::IFormatConditionalAppearancePtr var_FormatConditionalAppearance =
spPivot1->GetFormatConditionalAppearances()->Add(L"lower","lower","");
 var_FormatConditionalAppearance->PutExpression(L"len(value) != 0 ? (value <
100) : 0");
 var_FormatConditionalAppearance->PutForeColor(RGB(128,128,128));
spPivot1->PutPivotColumns(L"sum(5)[lower]/12");
spPivot1->EndUpdate();

C++ Builder

Pivot1->BeginUpdate();
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->PivotRows = L"0";
Expivotlib_tlb::IFormatConditionalAppearancePtr var_FormatConditionalAppearance

= Pivot1->FormatConditionalAppearances-
>Add(L"lower",TVariant("lower"),TVariant(""));
 var_FormatConditionalAppearance->Expression = L"len(value) != 0 ? (value <
100) : 0";
 var_FormatConditionalAppearance->ForeColor = RGB(128,128,128);
Pivot1->PivotColumns = L"sum(5)[lower]/12";
Pivot1->EndUpdate();

C#

expivot1.BeginUpdate();
expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.PivotRows = "0";
exontrol.EXPIVOTLib.FormatConditionalAppearance
var_FormatConditionalAppearance =
expivot1.FormatConditionalAppearances.Add("lower","lower","");
 var_FormatConditionalAppearance.Expression = "len(value) != 0 ? (value < 100) :
0";
 var_FormatConditionalAppearance.ForeColor = Color.FromArgb(128,128,128);
expivot1.PivotColumns = "sum(5)[lower]/12";
expivot1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Pivot1.BeginUpdate();
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.PivotRows = "0";
 var var_FormatConditionalAppearance =
Pivot1.FormatConditionalAppearances.Add("lower","lower","");

 var_FormatConditionalAppearance.Expression = "len(value) != 0 ? (value < 100)
: 0";
 var_FormatConditionalAppearance.ForeColor = 8421504;
 Pivot1.PivotColumns = "sum(5)[lower]/12";
 Pivot1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Pivot1
 .BeginUpdate
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 With .FormatConditionalAppearances.Add("lower","lower","")
 .Expression = "len(value) != 0 ? (value < 100) : 0"
 .ForeColor = RGB(128,128,128)
 End With
 .PivotColumns = "sum(5)[lower]/12"
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axPivot1.BeginUpdate();
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);

axPivot1.PivotRows = "0";
EXPIVOTLib.FormatConditionalAppearance var_FormatConditionalAppearance =
axPivot1.FormatConditionalAppearances.Add("lower","lower","");
 var_FormatConditionalAppearance.Expression = "len(value) != 0 ? (value < 100) :
0";
 var_FormatConditionalAppearance.ForeColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(128,128,128));
axPivot1.PivotColumns = "sum(5)[lower]/12";
axPivot1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatConditionalAppearance;
 anytype var_FormatConditionalAppearance;
 ;

 super();

 expivot1.BeginUpdate();
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 expivot1.PivotRows("0");
 var_FormatConditionalAppearance =
COM::createFromObject(expivot1.FormatConditionalAppearances()).Add("lower","lower",
 com_FormatConditionalAppearance = var_FormatConditionalAppearance;
 com_FormatConditionalAppearance.Expression("len(value) != 0 ? (value < 100) :
0");
 com_FormatConditionalAppearance.ForeColor(WinApi::RGB2int(128,128,128));
 expivot1.PivotColumns("sum(5)[lower]/12");
 expivot1.EndUpdate();
}

Delphi 8 (.NET only)

with AxPivot1 do
begin

 BeginUpdate();
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 PivotRows := '0';
 with FormatConditionalAppearances.Add('lower','lower','') do
 begin
 Expression := 'len(value) != 0 ? (value < 100) : 0';
 ForeColor := $808080;
 end;
 PivotColumns := 'sum(5)[lower]/12';
 EndUpdate();
end

Delphi (standard)

with Pivot1 do
begin
 BeginUpdate();
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 PivotRows := '0';
 with FormatConditionalAppearances.Add('lower','lower','') do
 begin
 Expression := 'len(value) != 0 ? (value < 100) : 0';
 ForeColor := $808080;
 end;
 PivotColumns := 'sum(5)[lower]/12';
 EndUpdate();
end

VFP

with thisform.Pivot1
 .BeginUpdate
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .PivotRows = "0"
 with .FormatConditionalAppearances.Add("lower","lower","")
 .Expression = "len(value) != 0 ? (value < 100) : 0"
 .ForeColor = RGB(128,128,128)
 endwith

 .PivotColumns = "sum(5)[lower]/12"
 .EndUpdate
endwith

dBASE Plus

local oPivot,var_FormatConditionalAppearance

oPivot = form.EXPIVOTACTIVEXCONTROL1.nativeObject
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("lower","lower","")
 var_FormatConditionalAppearance.Expression = "len(value) != 0 ? (value < 100) :
0"
 var_FormatConditionalAppearance.ForeColor = 0x808080
oPivot.PivotColumns = "sum(5)[lower]/12"
oPivot.EndUpdate()

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatConditionalAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("lower","lower","")
 var_FormatConditionalAppearance.Expression = "len(value) != 0 ? (value < 100) :
0"
 var_FormatConditionalAppearance.ForeColor = 8421504
oPivot.PivotColumns = "sum(5)[lower]/12"
oPivot.EndUpdate()

Visual Objects

local var_FormatConditionalAppearance as IFormatConditionalAppearance

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:PivotRows := "0"
var_FormatConditionalAppearance :=
oDCOCX_Exontrol1:FormatConditionalAppearances:Add("lower","lower","")
 var_FormatConditionalAppearance:Expression := "len(value) != 0 ? (value < 100) :
0"
 var_FormatConditionalAppearance:ForeColor := RGB(128,128,128)
oDCOCX_Exontrol1:PivotColumns := "sum(5)[lower]/12"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oPivot,var_FormatConditionalAppearance

oPivot = ole_1.Object
oPivot.BeginUpdate()
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.PivotRows = "0"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Add("lower","lower","")
 var_FormatConditionalAppearance.Expression = "len(value) != 0 ? (value < 100) :
0"
 var_FormatConditionalAppearance.ForeColor = RGB(128,128,128)
oPivot.PivotColumns = "sum(5)[lower]/12"
oPivot.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate

 Get ComImport "C:\Program Files\Exontrol\ExPivot\Sample\data.txt" Nothing to
Nothing
 Set ComPivotRows to "0"
 Variant voFormatConditionalAppearances
 Get ComFormatConditionalAppearances to voFormatConditionalAppearances
 Handle hoFormatConditionalAppearances
 Get Create (RefClass(cComFormatConditionalAppearances)) to
hoFormatConditionalAppearances
 Set pvComObject of hoFormatConditionalAppearances to
voFormatConditionalAppearances
 Variant voFormatConditionalAppearance
 Get ComAdd of hoFormatConditionalAppearances "lower" "lower" "" to
voFormatConditionalAppearance
 Handle hoFormatConditionalAppearance
 Get Create (RefClass(cComFormatConditionalAppearance)) to
hoFormatConditionalAppearance
 Set pvComObject of hoFormatConditionalAppearance to
voFormatConditionalAppearance
 Set ComExpression of hoFormatConditionalAppearance to "len(value) != 0 ?
(value < 100) : 0"
 Set ComForeColor of hoFormatConditionalAppearance to (RGB(128,128,128))
 Send Destroy to hoFormatConditionalAppearance
 Send Destroy to hoFormatConditionalAppearances
 Set ComPivotColumns to "sum(5)[lower]/12"
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oFormatConditionalAppearance
 LOCAL oPivot

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oPivot := XbpActiveXControl():new(oForm:drawingArea)
 oPivot:CLSID := "Exontrol.Pivot.1" /*{5C9DF3D3-81B1-42C4-BED6-
658F17748686}*/
 oPivot:create(,, {10,60},{610,370})

 oPivot:BeginUpdate()
 oPivot:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 oPivot:PivotRows := "0"
 oFormatConditionalAppearance :=
oPivot:FormatConditionalAppearances():Add("lower","lower","")
 oFormatConditionalAppearance:Expression := "len(value) != 0 ? (value < 100)
: 0"

oFormatConditionalAppearance:SetProperty("ForeColor",AutomationTranslateColor(
GraMakeRGBColor ({ 128,128,128 }) , .F.))
 oPivot:PivotColumns := "sum(5)[lower]/12"
 oPivot:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property FormatConditionalAppearance.Gradient as Color
Renders the text with a gradient color.

Type Description

Color A Color expression to define the second gradient color to
end with.

By default, the Gradient property is 0, which indicates no effect. The GradientMode
property specifies the way the gradient text is shown. The Expression property defines the
conditional expression that determines whether the current format is applied on the pivot's
cell based on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.GradientMode as Long
Indicates the gradient mode to be applied on text.

Type Description

Long A Long expression that indicates the way the gradient text
is shown. The valid value is between 0 and 4.

By default, the GradientMode property is 1. The GradientMode property specifies the way
the gradient text is shown. The Expression property defines the conditional expression that
determines whether the current format is applied on the pivot's cell based on the cell's
value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.Italic as Boolean
Renders as italic text.

Type Description

Boolean A Boolean expression that specifies whether the text is
rendered in italics.

By default, the Italic property is False. Use the Italic property on True, to show the objects
in italics. The Expression property defines the conditional expression that determines
whether the current format is applied on the pivot's cell based on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.Key as String
Indicates the key of the FormatConditionalAppearance object.

Type Description

String

A String expression that specifies the unique key of the
FormatConditionalAppearance object. The Key of the
FormatConditionalAppearance should include only alpha-
numeric characters, any other character will be ignored.

The Key property indicates the key of the FormatConditionalAppearance. Use the Key of
the FormatConditionalAppearance in [] to apply the specified object to any column or row,
that matches the expression. For instance, the PivotRows property on "0[positive]" to
group by the first column and shows the column's content in green for all positive values.
The same rule is applied to PivotColumns or PivotTotals property. The Expression property
defines the conditional expression that determines whether the current format is applied on
the pivot's cell based on the cell's value.

By default, the FormatConditionalAppearances collection contains the following keys:

"positive",
"negative"

property FormatConditionalAppearance.Name as String
Specifies the name of the FormatConditionalAppearance object to be displayed on the
context menu.

Type Description

String A String expression that defines the HTML caption to be
displayed on the control's context menu.

The Name property indicates the name to be displayed on the control's context menu as
shown bellow. The Key property specifies the key of the FormatConditionalAppearance
object. The ToolTip property defines the FormatConditionalAppearance's tooltip. The
Expression property defines the conditional expression that determines whether the current
format is applied on the pivot's cell based on the cell's value.

The Name property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the

about:blank

color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property FormatConditionalAppearance.Outline as Color
Renders the text outlined with specified color.

Type Description

Color A Color expression that defines the color to show the
outline text.

By default, the Outline property is 0, which indicates no effect. The OutlineSize property
specifies the size of the outlined text/line. The Expression property defines the conditional
expression that determines whether the current format is applied on the pivot's cell based
on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.OutlineSize as Long
Indicates the size of the outline to be applied on text.

Type Description
Long A Long expression that defines the size of the outline text.

By default, the OutlineSize property is 1. If 0, the Outline has no effect. The OutlineSize
property specifies the size of the outlined text/line. The Expression property defines the
conditional expression that determines whether the current format is applied on the pivot's
cell based on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.Shadow as Color
Renders the text with a shadow of specified color.

Type Description

Color A Color expression that defines the color of the shadow to
be shown around the text

By default, the Shadow property is 0. If 0, this property has no effect. The ShadowOffset
property defines the offset to show the text's shadow. The ShadowSize property define the
size of the shadow to be shown. The Expression property defines the conditional
expression that determines whether the current format is applied on the pivot's cell based
on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.ShadowOffset as Long
Indicates the offset of the shadow to be applied on text.

Type Description

Long A Long expression that defines the offset where the text's
shadow is shown.

By default, the ShadowOffset property is 2. If 0, this property shows the fine effect. The
ShadowOffset property defines the offset to show the text's shadow. The ShadowColor
property defines the color to show the text's shadow. The ShadowSize property define the
size of the shadow to be shown. The Expression property defines the conditional
expression that determines whether the current format is applied on the pivot's cell based
on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.ShadowSize as Long
Indicates the size of the shadow to be applied on text.

Type Description

Long A Long expression that defines the size of the text's
shadow.

By default, the ShadowSize property is 4. If 0, this property shows no shadow effect. The
ShadowOffset property defines the offset to show the text's shadow. The ShadowColor
property defines the color to show the text's shadow. The ShadowSize property define the
size of the shadow to be shown. The Expression property defines the conditional
expression that determines whether the current format is applied on the pivot's cell based
on the cell's value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.StrikeOut as Boolean
Specifies that the text should appear as strikeout.

Type Description

Boolean A Boolean expression that specifies whether the text is
strikeout.

By default, the StrikeOut property is False. Use the StrikeOut property on True, to show
the objects as strikeout. The Expression property defines the conditional expression that
determines whether the current format is applied on the pivot's cell based on the cell's
value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

property FormatConditionalAppearance.ToolTip as String
Specifies the tooltip of the FormatConditionalAppearance object to be displayed when the
cursor hovers the object.

Type Description

String

A String expression that defines the HTML caption to be
shown when the cursor hovers the
FormatConditionalAppearance object on the control's
context menu.

The ToolTip property defines the FormatConditionalAppearance's tooltip. The Name
property indicates the name to be displayed on the control's context menu. The Key
property specifies the key of the FormatConditionalAppearance object. The Expression
property defines the conditional expression that determines whether the current format is
applied on the pivot's cell based on the cell's value.

The Name property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

about:blank

<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property FormatConditionalAppearance.Underline as Boolean
Underlines the text.

Type Description

Boolean A Boolean expression that specifies whether the text is
underlined.

By default, the Underline property is False. Use the Underline property on True, to show the
objects underlined. The Expression property defines the conditional expression that
determines whether the current format is applied on the pivot's cell based on the cell's
value.

The following properties can be applied on objects:

Bold, renders the text in bold ()
Italic, renders the text in italic ()
Underline, underlines the text ()
StrikeOut, draws a line over the text. ()

Also, the decorative text is allowed as following:

Shadow, shows the text with a shadow ()
Outline, shows the text as outlined ()
Gradient, shows the text in gradient ()
Fine, shows the text combined with a shadow around ()

FormatConditionalAppearances object

The FormatConditionalAppearances collection can be accessed through the control's
FormatConditionalAppearances property. The FormatConditionalAppearance object
changes the visual appearance of your data as listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

 By default, the control's context menu displays the following FormatConditionalAppearance
objects:

By default, the FormatConditionalAppearances collection contains the following keys:

"negative",
"positive"

The FormatConditionalAppearances collection supports the following properties and
methods:

Name Description

Add Adds a FormatConditionalAppearance object and returns
a reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

Item Returns a specific FormatConditionalAppearance object
giving its key.

Remove Removes a specific member from the collection.

method FormatConditionalAppearances.Add (Key as String, [Name as
Variant], [Expression as Variant])
Adds a FormatConditionalAppearance object and returns a reference to the newly created
object.

Type Description

Key as String

A String expression that specifies the unique key of the
FormatConditionalAppearance object. The Key of the
FormatConditionalAppearance should include only alpha-
numeric characters, any other character will be ignored.

Name as Variant A String expression that indicates the HTML caption to be
displayed on the control's context menu.

Expression as Variant

A String expression that defines the conditional-expression
to apply the current FormatConditionalAppearance. The
Expression property defines the conditional-expression to
apply the current format. For instance, "len(value) != 0"
indicates any not-empty value.

Return Description
FormatConditionalAppearanceA FormatConditionalAppearance object being created.

By default, the FormatConditionalAppearances collection contains the following keys:
"positive", and "negative". The FormatConditionalAppearances helps you to provide
conditional-format for your data, or in other words, ability to highlight values that matches a
specified expression. Use the Clear method to remove all FormatConditionalAppearance
objects from the FormatConditionalAppearances collection. Use the Remove method to
remove a FormatConditionalAppearance object giving its key. Use the Item property to
access a FormatConditionalAppearance object giving its key. The Key property indicates
the key of the FormatConditionalAppearance object. The FormatAppearances collection
provides formatting for entire column, no matter of what values it contains.

The following screen shows shows the negative/positive values with different colors/EBNs:

By default, the FormatConditionalAppearances collection contains the following:

"positive", shows positive values in green, while the expression is: "(dbl(value) != 0) ?
(value > 0) : 0"
"negative", shows negative values in red, while the expression is: "(dbl(value) != 0) ?
(value < 0) : 0"

If the PivotBarVisible property includes the exPivotBarAllowFormatConditionalAppearance,
the control's context menu include the "Conditional" item as shown bellow:

The FormatConditionalAppearance object changes the visual appearance of your values as
listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

method FormatConditionalAppearances.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all elements in the FormatConditionalAppearances collection.
Excludes the exPivotBarAllowFormatConditionalAppearance flag from the PivotBarVisible
property, and so no FormatConditionalAppearance objects are displayed on the control's
context menu. The Remove method removes a FormatConditionalAppearance object giving
its key. Use the Add method to add a new FormatConditionalAppearance object. You can
use the for each statement to enumerate all objects in the FormatConditionalAppearances
collection.

property FormatConditionalAppearances.Count as Long
Returns the number of objects in a collection.

Type Description

Long
A Long expression that indicates the number of
FormatConditionalAppearance objects in the
FormatConditionalAppearances collection.

The Count property gets the number of FormatConditionalAppearance objects in the
FormatConditionalAppearances collection. The Clear method removes all elements in the
FormatConditionalAppearances collection. The Item property accesses a
FormatConditionalAppearance object based on its key. Use the Add method to add a new
FormatConditionalAppearance object. You can use the for each statement to enumerate all
objects in the FormatConditionalAppearances collection.

The following samples show how to change the "positive" caption being displayed in the
control's context menu.

VBA (MS Access, Excell...)

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatConditionalAppearances.Item("positive").Name = "Numere Positive"
End With

VB6

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatConditionalAppearances.Item("positive").Name = "Numere Positive"
End With

VB.NET

With Expivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatConditionalAppearances.Item("positive").Name = "Numere Positive"
End With

VB.NET for /COM

With AxPivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatConditionalAppearances.Item("positive").Name = "Numere Positive"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->GetFormatConditionalAppearances()->GetItem("positive")-
>PutName(L"Numere Positive");

C++ Builder

Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->FormatConditionalAppearances->get_Item(TVariant("positive"))->Name =
L"Numere Positive";

C#

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.FormatConditionalAppearances["positive"].Name = "Numere Positive";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.FormatConditionalAppearances.Item("positive").Name = "Numere Positive";
</SCRIPT>

C# for /COM

axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.FormatConditionalAppearances["positive"].Name = "Numere Positive";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatConditionalAppearance;
 anytype var_FormatConditionalAppearance;
 ;

 super();

 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_FormatConditionalAppearance =
COM::createFromObject(expivot1.FormatConditionalAppearances()).Item("positive");
com_FormatConditionalAppearance = var_FormatConditionalAppearance;
 com_FormatConditionalAppearance.Name("Numere Positive");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 FormatConditionalAppearances.Item['positive'].Name := 'Numere Positive';
end

Delphi (standard)

with Pivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 FormatConditionalAppearances.Item['positive'].Name := 'Numere Positive';
end

VFP

with thisform.Pivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatConditionalAppearances.Item("positive").Name = "Numere Positive"
endwith

dBASE Plus

local oPivot,var_FormatConditionalAppearance

oPivot = form.Activex1.nativeObject
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
// oPivot.FormatConditionalAppearances.Item("positive").Name = "Numere
Positive"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Item("positive")
with (oPivot)
 TemplateDef = [Dim var_FormatConditionalAppearance]
 TemplateDef = var_FormatConditionalAppearance
 Template = [var_FormatConditionalAppearance.Name = "Numere Positive"]
endwith

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatConditionalAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
' oPivot.FormatConditionalAppearances.Item("positive").Name = "Numere

Positive"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Item("positive")
oPivot.TemplateDef = "Dim var_FormatConditionalAppearance"
oPivot.TemplateDef = var_FormatConditionalAppearance
oPivot.Template = "var_FormatConditionalAppearance.Name = \"Numere Positive\""

Visual Objects

oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:FormatConditionalAppearances:[Item,"positive"]:Name :=
"Numere Positive"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatConditionalAppearances.Item("positive").Name = "Numere Positive"

property FormatConditionalAppearances.Item (Key as Variant) as
FormatConditionalAppearance
Returns a specific FormatConditionalAppearance object giving its key.

Type Description

Key as Variant A String expression that specifies the key of the object to
be retrieved.

FormatConditionalAppearanceA FormatConditionalAppearance object being requested.

The Item property accesses a FormatConditionalAppearance object based on its key. Use
the Add method to add a new FormatConditionalAppearance object. The Count property
gets the number of FormatConditionalAppearance objects in the
FormatConditionalAppearances collection. You can use the for each statement to
enumerate all objects in the FormatConditionalAppearances collection.

The following samples show how to change the "negative" caption being displayed in the
control's context menu.

VBA (MS Access, Excell...)

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatConditionalAppearances.Item("negative").Name = "Numere Negative"
End With

VB6

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatConditionalAppearances.Item("negative").Name = "Numere Negative"
End With

VB.NET

With Expivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatConditionalAppearances.Item("negative").Name = "Numere Negative"
End With

VB.NET for /COM

With AxPivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatConditionalAppearances.Item("negative").Name = "Numere Negative"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->GetFormatConditionalAppearances()->GetItem("negative")-
>PutName(L"Numere Negative");

C++ Builder

Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->FormatConditionalAppearances->get_Item(TVariant("negative"))->Name =
L"Numere Negative";

C#

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.FormatConditionalAppearances["negative"].Name = "Numere Negative";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.FormatConditionalAppearances.Item("negative").Name = "Numere
Negative";
</SCRIPT>

C# for /COM

axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.FormatConditionalAppearances["negative"].Name = "Numere Negative";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatConditionalAppearance;
 anytype var_FormatConditionalAppearance;
 ;

 super();

 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_FormatConditionalAppearance =
COM::createFromObject(expivot1.FormatConditionalAppearances()).Item("negative");
com_FormatConditionalAppearance = var_FormatConditionalAppearance;
 com_FormatConditionalAppearance.Name("Numere Negative");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 FormatConditionalAppearances.Item['negative'].Name := 'Numere Negative';
end

Delphi (standard)

with Pivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 FormatConditionalAppearances.Item['negative'].Name := 'Numere Negative';
end

VFP

with thisform.Pivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatConditionalAppearances.Item("negative").Name = "Numere Negative"
endwith

dBASE Plus

local oPivot,var_FormatConditionalAppearance

oPivot = form.Activex1.nativeObject
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
// oPivot.FormatConditionalAppearances.Item("negative").Name = "Numere
Negative"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Item("negative")
with (oPivot)
 TemplateDef = [Dim var_FormatConditionalAppearance]
 TemplateDef = var_FormatConditionalAppearance
 Template = [var_FormatConditionalAppearance.Name = "Numere Negative"]
endwith

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatConditionalAppearance as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
' oPivot.FormatConditionalAppearances.Item("negative").Name = "Numere

Negative"
var_FormatConditionalAppearance =
oPivot.FormatConditionalAppearances.Item("negative")
oPivot.TemplateDef = "Dim var_FormatConditionalAppearance"
oPivot.TemplateDef = var_FormatConditionalAppearance
oPivot.Template = "var_FormatConditionalAppearance.Name = \"Numere
Negative\""

Visual Objects

oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:FormatConditionalAppearances:[Item,"negative"]:Name :=
"Numere Negative"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatConditionalAppearances.Item("negative").Name = "Numere Negative"

method FormatConditionalAppearances.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A String expression that indicates the Key of the
FormatConditionalAppearance object to be removed.

The Remove method removes a FormatConditionalAppearance object giving its key. The
Clear method removes all elements in the FormatConditionalAppearances collection.
Excludes the exPivotBarAllowFormatConditionalAppearance flag from the PivotBarVisible
property, and so no FormatConditionalAppearance objects are displayed on the control's
context menu. Use the Add method to add a new FormatConditionalAppearance object. You
can use the for each statement to enumerate all objects in the
FormatConditionalAppearances collection.

FormatContent object
The FormatContent object holds information about how a column or row can be displayed,
formatted or converted. For instance, you need to display a column in numeric format with
grouping by digits, or as date in long format, and so on. Each FormatContent object is
shown in the control's context menu under the Content submenu as radio buttons as shown
bellow:

The FormatContent object supports the following properties and methods.

Name Description

Expression Specifies the expression format the content of the column
or row.

Key Indicates the key of the FormatContent object.

Name Specifies the name of the FormatContent object to be
displayed on the context menu.

ToolTip Specifies the tooltip of the FormatContent object to be
displayed when the cursor hovers the object.

Visible Shows or hides the current FormatContent object within
the column's drop down Content menu.

property FormatContent.Expression as String
Specifies the expression format the content of the column or row.

Type Description
String A String expression that defines the format to be shown

The Expression property indicates the format to be displayed instead the value itself. If the
Expression is not valid, the FormatContent object shows as disabled in the control's context
menu. The Visible property shows or hides the current FormatContent object within the
column's drop down content menu. The Name property specifies the HTML caption to be
displayed on the control's context menu. The ToolTip property specifies the HTML tooltip to
be displayed on the control's context menu, when the cursor hovers the object. For
instance, you can use the Expression to display a computed column.

For instance:

"len(value) ? (value format '') : ''", displays the value in numeric format, if it is not
empty
"len(value) ? currency(value) :''", displays the value in currency format, if it is not
empty
"upper(value)", displays the value in upper-case
"%2 + %3/%4" adds the value of the third generated column to the result of dividing the
fourth column by the fifth generated column (computed column)

The value keyword in the Expression property indicates the value/result to be converted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...

This property/method supports predefined constants and operators/functions as described
here.

property FormatContent.Key as String
Indicates the key of the FormatContent object.

Type Description

String
A String expression that defines the key of the
FormatContent object. The Key must includes alpha-
numeric characters, any other character is ignored.

The Key property specifies the key of the FormatContent object. The Expression property
defines the format to be applied. The Name property specifies the HTML caption to be
displayed on the control's context menu. The ToolTip property specifies the HTML tooltip to
be displayed on the control's context menu, when the cursor hovers the object.

By default, the FormatContents collection contains the following keys:

"numeric", with the Expression as "len(value) ? (value format '') : ''"
"currency", with the Expression as "len(value) ? currency(value) :''"
"date", with the Expression as "date(dbl(value))"

property FormatContent.Name as String
Specifies the name of the FormatContent object to be displayed on the context menu.

Type Description

String A String expression that defines the HTML caption to be
displayed on the control's context menu.

The Name property defines the HTML caption to be displayed on the control's context
menu. You can use the HTML tag to display icons or pictures. Use the Images or
HTMLPicture method to add icons or pictures to control. The ToolTip property specifies the
HTML tooltip to be displayed on the control's context menu, when the cursor hovers the
object.

The following screen shot shows the Content sub menu:

The Name property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text

about:blank

with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the

red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property FormatContent.ToolTip as String
Specifies the tooltip of the FormatContent object to be displayed when the cursor hovers
the object.

Type Description

String
A String expression that defines the HTML tooltip to be
shown when the cursor hovers the object in the control's
context menu.

The ToolTip property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires

about:blank

<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines

the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property FormatContent.Visible as Boolean
Shows or hides the current FormatContent object within the column's drop down content
menu.

Type Description

Boolean A boolean expression that specifies whether the current
FormatContent object is visible hidden.

By default, the Visible property is True, which indicates that the FormatContent is shown in
control's context menu. The Visible property shows or hides the current FormatContent
object within the column's drop down content menu. The Expression property indicates the
format to be displayed instead the value itself. The Name property defines the HTML
caption to be displayed on the control's context menu.The ToolTip property specifies the
HTML tooltip to be displayed on the control's context menu, when the cursor hovers the
object.

FormatContents object
The FormatContents object holds a collection of FormatContent objects. The
FormatContent object holds information about how a column or row can be displayed,
formatted or converted. The FormatContents property accesses the FormatContents
collection. The following sample shows the control's context menu with a different
appearance and more converting functions:

If the PivotBarVisible property includes the exPivotBarAllowFormatContent flag, the
control's context menu includes the FormatContent objects. If the
exPivotBarAllowFormatContent flag is missing from the PivotBarVisible property, the
control's context menu displays no FormatContent objects.

By default, the FormatContents collection contains the following keys:

"numeric", with the Expression as "len(value) ? (value format '') : ''"
"currency", with the Expression as "len(value) ? currency(value) :''"
"date", with the Expression as "date(dbl(value))"

The FormatContents collection supports the following properties and methods:

Name Description

Add Adds a FormatContent object and returns a reference to
the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific FormatContent object giving its key.
Remove Removes a specific member from the collection.

method FormatContents.Add (Key as String, Expression as String,
[Name as Variant])
Adds a FormatContent object and returns a reference to the newly created object.

Type Description

Key as String
A String expression that defines the unique key to identify
the FormatContent object. The Key must includes alpha-
numeric characters, any other character will be ignored.

Expression as String

The Expression parameter defines the format to be
applied on the column or row. If the Expression is not
valid, the FormatContent objects shows as disabled on the
control's context menu. The value keyword defines the
value to be converted, and the Expression supports a lot
of predefined functions as shown here.

Name as Variant A String expression that defines the HTML Caption to be
shown on the control's context menu.

Return Description
FormatContent A FormatContent object being created.

The Add method adds a new FormatContent object to the collection. The Expression
property defines the format to be applied on the column or row. If the Expression is not
valid, the FormatContent objects shows as disabled on the control's context menu. The
ToolTip property defines the FormatContent's tooltip, which is shown when the cursor
hovers the object in the control's context menu.

Here's a few samples on how to use the FormatContent objects:

FormatContents.Add("upper","upper(value)"), displays the column/row in upper-case,
such as 'ROMANIA' instead 'Romania'

FormatContents.Add("longdate","longdate(date(value))"), displays the object's content
as date in long format, such as 'Monday, December 31, 2012'

FormatContents.Add("letter","'<fgcolor=808080>' + upper(value left 1) +
'</fgcolor> ' + value"), shows the first letter twice in bold and gray, such as 'R

Romania' instead 'romania'

FormatContents.Add("proper","'' + ((0:=proper(value)) left 1) + '' + (=:0 mid
2)"), displays the first letter in bold and upper-case, and let the rest unchanged, such
as 'Mihai Filimon' instead 'mihai filimon'.

Use the Key of the FormatContent in [content=key] to apply the specified object to any
column or row. For instance, the PivotRows property on "0[content=numeric]" to group by
the first column and shows the column's content as numeric. The same rule is applied to
PivotColumns or PivotTotals property.

The following samples show how you can display the column in upper-case.

VBA (MS Access, Excell...)

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatContents.Add "upper","upper(value)"
 .PivotRows = "0[content=upper]"
End With

VB6

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .FormatContents.Add "upper","upper(value)"
 .PivotRows = "0[content=upper]"
End With

VB.NET

With Expivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatContents.Add("upper","upper(value)")
 .PivotRows = "0[content=upper]"
End With

VB.NET for /COM

With AxPivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")

 .FormatContents.Add("upper","upper(value)")
 .PivotRows = "0[content=upper]"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->GetFormatContents()->Add(L"upper",L"upper(value)",vtMissing);
spPivot1->PutPivotRows(L"0[content=upper]");

C++ Builder

Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->FormatContents->Add(L"upper",L"upper(value)",TNoParam());
Pivot1->PivotRows = L"0[content=upper]";

C#

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.FormatContents.Add("upper","upper(value)",null);
expivot1.PivotRows = "0[content=upper]";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.FormatContents.Add("upper","upper(value)",null);
 Pivot1.PivotRows = "0[content=upper]";
</SCRIPT>

C# for /COM

axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.FormatContents.Add("upper","upper(value)",null);
axPivot1.PivotRows = "0[content=upper]";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 expivot1.FormatContents().Add("upper","upper(value)");
 expivot1.PivotRows("0[content=upper]");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 FormatContents.Add('upper','upper(value)',Nil);
 PivotRows := '0[content=upper]';
end

Delphi (standard)

with Pivot1 do

begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 FormatContents.Add('upper','upper(value)',Null);
 PivotRows := '0[content=upper]';
end

VFP

with thisform.Pivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .FormatContents.Add("upper","upper(value)")
 .PivotRows = "0[content=upper]"
endwith

dBASE Plus

local oPivot

oPivot = form.Activex1.nativeObject
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatContents.Add("upper","upper(value)")
oPivot.PivotRows = "0[content=upper]"

XBasic (Alpha Five)

Dim oPivot as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatContents.Add("upper","upper(value)")
oPivot.PivotRows = "0[content=upper]"

Visual Objects

oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:FormatContents:Add("upper","upper(value)",nil)

oDCOCX_Exontrol1:PivotRows := "0[content=upper]"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.FormatContents.Add("upper","upper(value)")
oPivot.PivotRows = "0[content=upper]"

method FormatContents.Clear ()
Removes all objects in a collection.

Type Description

The Clear method clears all FormatContent objects from the collection. The Remove
method removes a FormatContent object based on its key. If the PivotBarVisible property
includes the exPivotBarAllowFormatContent flag, the control's context menu includes the
FormatContent objects. If the exPivotBarAllowFormatContent flag is missing from the
PivotBarVisible property, the control's context menu displays no FormatContent
objects. The Count property specifies the number of FormatContent objects in the
collection. The Item property accesses a FormatContent object based on its key.

property FormatContents.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of
FormatContent objects.

The Count property specifies the number of FormatContent objects in the collection. The
Item property accesses a FormatContent object based on its key. You can use the for
each statement to enumerate the FormatContent objects in the FormatContents collection.

property FormatContents.Item (Key as Variant) as FormatContent
Returns a specific FormatContent object giving its key.

Type Description

Key as Variant A String expression that indicates the Key of the
FormatContent to be accessed.

FormatContent A FormatContent object being requested.

The Item property accesses a FormatContent object based on its key. The Count property
specifies the number of FormatContent objects in the collection. You can use the for each
statement to enumerate the FormatContent objects in the FormatContents collection. You
can use the HTML tag to display icons or pictures. Use the Images or HTMLPicture
method to add icons or pictures to control.

The following samples show how to assign an icon/image/picture to a FormatContent object
being shown in the control's context menu:

VBA (MS Access, Excell...)

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .FormatContents.Item("numeric").Name = "1 Numeric"
 .PivotRows = "5[content=numeric]"
End With

VB6

With Pivot1
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"

 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .FormatContents.Item("numeric").Name = "1 Numeric"
 .PivotRows = "5[content=numeric]"
End With

VB.NET

With Expivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")

.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=")
 .FormatContents.Item("numeric").Name = "1 Numeric"
 .PivotRows = "5[content=numeric]"
End With

VB.NET for /COM

With AxPivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")

.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"

 & _
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 & _
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 & _
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 & _
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=")
 .FormatContents.Item("numeric").Name = "1 Numeric"
 .PivotRows = "5[content=numeric]"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1-
>Images(_bstr_t("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
spPivot1->GetFormatContents()->GetItem("numeric")->PutName(L"
1 Numeric");
spPivot1->PutPivotRows(L"5[content=numeric]");

C++ Builder

Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1-
>Images(TVariant(String("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="));
Pivot1->FormatContents->get_Item(TVariant("numeric"))->Name = L"
1 Numeric";
Pivot1->PivotRows = L"5[content=numeric]";

C#

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
expivot1.FormatContents["numeric"].Name = "1 Numeric";
expivot1.PivotRows = "5[content=numeric]";

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);

Pivot1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +

"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +

"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +

"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
 "NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
 Pivot1.FormatContents.Item("numeric").Name = "1 Numeric";
 Pivot1.PivotRows = "5[content=numeric]";
</SCRIPT>

C# for /COM

axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0"
 +
"/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1"
 +
"/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qO"
 +
"x3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/y"
 +
"NAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=");
axPivot1.FormatContents["numeric"].Name = "1 Numeric";
axPivot1.PivotRows = "5[content=numeric]";

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_FormatContent;
 anytype var_FormatContent;
 str var_s;
 ;

 super();

 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=";
 expivot1.Images(COMVariant::createFromStr(var_s));
 var_FormatContent =
COM::createFromObject(expivot1.FormatContents()).Item("numeric");
com_FormatContent = var_FormatContent;
 com_FormatContent.Name("1 Numeric");
 expivot1.PivotRows("5[content=numeric]");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin

 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);

Images('gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/'
 +

'oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/'
 +

'wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx'
 +

'3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN'
 +
 'AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=');
 FormatContents.Item['numeric'].Name := '1 Numeric';
 PivotRows := '5[content=numeric]';
end

Delphi (standard)

with Pivot1 do
begin
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);

Images('gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/'
 +

'oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/'
 +

'wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx'
 +

'3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN'
 +
 'AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA=');
 FormatContents.Item['numeric'].Name := '1 Numeric';

 PivotRows := '5[content=numeric]';
end

VFP

with thisform.Pivot1
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 var_s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/"

 var_s = var_s +
"oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/"

 var_s = var_s +
"wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx"

 var_s = var_s +
"3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yN"

 var_s = var_s +
"AOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="
 .Images(var_s)
 .FormatContents.Item("numeric").Name = "1 Numeric"
 .PivotRows = "5[content=numeric]"
endwith

dBASE Plus

local oPivot,var_FormatContent

oPivot = form.Activex1.nativeObject
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

// oPivot.FormatContents.Item("numeric").Name = "1 Numeric"
var_FormatContent = oPivot.FormatContents.Item("numeric")
with (oPivot)
 TemplateDef = [Dim var_FormatContent]

 TemplateDef = var_FormatContent
 Template = [var_FormatContent.Name = "1 Numeric"]
endwith
oPivot.PivotRows = "5[content=numeric]"

XBasic (Alpha Five)

Dim oPivot as P
Dim var_FormatContent as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

' oPivot.FormatContents.Item("numeric").Name = "1 Numeric"
var_FormatContent = oPivot.FormatContents.Item("numeric")
oPivot.TemplateDef = "Dim var_FormatContent"
oPivot.TemplateDef = var_FormatContent
oPivot.Template = "var_FormatContent.Name = \"1 Numeric\""

oPivot.PivotRows = "5[content=numeric]"

Visual Objects

oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oDCOCX_Exontrol1:FormatContents:[Item,"numeric"]:Name := "1
Numeric"
oDCOCX_Exontrol1:PivotRows := "5[content=numeric]"

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx0xiFdyOTh8Tf9ZymXx+QytcyNgz8r0OblWjyWds+m0ka1Vf1ta1+r1mos2xrG2xeZ0+a0W0qOx3GO4NV3WeyvD2XJ5XL5nN51aiw+lfSj0gkUkAEllHanHI5j/cHg8EZf7w8vl8j4f/qfEZeB09/vjLAB30+kZQAP/P5/H6/yNAOAEAwCjMBwFAEDwJBMDwLBYAP2/8Hv8/gAGAD8LQs9w/nhDY/oygIA="

oPivot.FormatContents.Item("numeric").Name = "1 Numeric"
oPivot.PivotRows = "5[content=numeric]"

method FormatContents.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A String expression that defines the key of the
FormatContent object to be removed.

The Remove method removes a FormatContent object based on its key. The Clear method
clears all FormatContent objects from the collection. If the PivotBarVisible property includes
the exPivotBarAllowFormatContent flag, the control's context menu includes the
FormatContent objects. If the exPivotBarAllowFormatContent flag is missing from the
PivotBarVisible property, the control's context menu displays no FormatContent
objects. The Count property specifies the number of FormatContent objects in the
collection. The Item property accesses a FormatContent object based on its key.

Pivot object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {5C9DF3D3-81B1-42C4-BED6-658F17748686}. The object's program identifier is: "Exontrol.Pivot". The
/COM object module is: "ExPivot.dll"

The Exontrol's eXPivot tool is our approach to provide data summarization, as a pivot table.
A pivot-table can automatically sort, count, total or give the average of the data stored in
one table or spreadsheet. The user sets up and changes the summary's structure by
dragging and dropping fields graphically.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method

The AppendData method appends data to the control (prevents clearing data already
loaded).

The following properties may be used to group and summarize the data, once it is loaded:

PivotRows property specifies the list of DATA columns that determines the first column
in the control's list. In other words, the Group-By columns
PivotColumns property specifies the list of DATA columns that determines the rest of
the columns to be displayed on the control's list
PivotTotals property specifies the list of total/sub-total functions to be displayed on the
control's list.

The Pivot object supports the following properties and methods:

Name Description
Aggregates Retrieves the Aggregates collection of the pivot control.

AllowDrop Gets or sets a value indicating whether the control can be
used as the target of a drag-and-drop operation.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

AppendData Appends data to the control (prevents clearing data
already loaded).
Attaches a script to the current object, including the

AttachTemplate events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

BackColor Specifies the control's background color.

BackColorAlternate Specifies the background color used to display alternate
items in the control.

BackColorHeader Specifies the header's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

CheckImage Retrieves or sets a value that indicates the image used by
cells of checkbox type.

ClearData Removes the control's data.
ClearFilter Clears the filter.
CollapseAll Collapses all rows.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnFromPoint Retrieves the column from the point.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.
DataColumnFromPoint Retrieves the index of the data column from the point.
DataColumns Retrieves the Data Columns collection of the pivot control.

DataSource Retrieves or sets a value that indicates the data source for
object.

DefaultColumnWidth Retrieves or sets a value that indicates the default column
width.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for control objects.
DisplayFilterList Specifies what the column's filter displays.

DisplayPivotData Retrieves or sets the maximum number of rows to be
displayed on the control's list.

DisplayPivotFields Retrieves or sets the maximum number of columns to be
displayed on the control's list.

DisplayPivotRows Retrieves or sets the maximum number of rows to be
generated on the control's list.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
ExpandAll Expands all rows.

ExpandOnDblClick Specifies whether the item is expanded or collapsed if the
user dbl clicks the item.

Export Exports the control's data to a CSV format.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarCaption Specifies the filter bar's caption.
FilterBarFont Retrieves or sets the font for control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FilterBarHeight
Specifies the height of the control's filter bar. If the value is
less than 0, the filterbar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.

FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.

FilterInclude Specifies the items being included after the user applies
the filter.

Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
ForeColorHeader Specifies the header's foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FormatAppearances Retrieves the FormatAppearances collection of the pivot
control.

FormatConditionalAppearancesRetrieves the FormatConditionalAppearances collection of
the pivot control.

FormatContents Retrieves the FormatContents collection of the pivot
control.

FormatPivotAggregate Specifies the format to display an aggregate function.

FormatPivotHeader Specifies the format to display the columns in the pivot
bar.

FormatPivotTotal Specifies the format to display an aggregate/total
functions.

FreezeEvents Prevents the control to fire any event.
GetHeaders Gets a safe array of all generated columns/headers.
GetItems Gets a safe array of all generated items/values.
GridLineColor Specifies the grid line color.

GridLineStyle Specifies the style for gridlines in the list part of the
control.

HasLines
Enhances the graphic representation of a grid control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderHeight Retrieves or sets a value indicating the control's header
height.

HeaderVisible
Retrieves or sets a value that indicates whether the the
grid's header is visible or hidden.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays.
Import Imports the control's data from a CSV format.

IncludeExpandColumn
Specifies whether the column itself is displayed in the list
(header/chart), while it expanded (the column contains
child columns).

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

LinesAtRoot Link items at the root of the hierarchy.
LoadHeadersOnly Loads the headers only, so no data is loaded.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

LockRowsColumn Retrieves or sets a value that indicates whether the rows
column in the list is locked or scrollable.

LockTotalRows Retrieves or sets a value that indicates whether the total
rows in the list are locked or scrollable.

OnFilterChange Specifies the action that the control performs once the
user changes the filter at runtime.

PaneHeight Specifies the height for the top or bottom panel.
PaneMinHeight Specifies the minimum height for the top or bottom panel.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PivotBarVisible Specifies how the control displays its pivot bar.
PivotColumns Specifies the list of columns to be displayed in the list.

PivotColumnsFloatBarVisible Retrieves or sets a value that indicates whether the pivot
columns float bar is visible or hidden.

PivotColumnsSortOrder Specifies the sorting order for the columns being shown in
the control's columns floating panel.

PivotRows Specifies the list of group-by columns that determines the
rows in the list.

PivotTotalDefaultFormatAppearances

Specifies the list of format-appearances (key of
FormatAppearance object), separated by comma, to be
applied on the Total field when it is displayed in the pivot-
table.

PivotTotalDefaultFormatContent
Specifies the default format (key of FormatContent object)
to be applied on the Total field when it is displayed in the
pivot-table.

PivotTotals Indicates the list of totals/subtotals to be shown in the list.

RadioImage Retrieves or sets a value that indicates the image used by
cells of radio type.

Refresh Refreses the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

Reset Resets the control's layouts, so no filtering, sorting, ... is
applied to the view.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectableAggregateRows Specifies whether the aggregate rows are selectable or
un-selectable.

SelectAll Selects all rows.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowBranchRows Indicates how the branch rows displays the information (
divider items).

ShowDataOnDblClick Specifies whether the user shows the original data that
generated the result when user double clicks a cell.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.

ShowViewCompact Indicates whether the view compacts the data being
displayed.

SingleSel Retrieves or sets a value that indicates whether the
control supports single or multiple selection.

Statistics Gives statistics data of objects being hold by the control.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.
ToolTipMargin Defines the size of the control's tooltip margins.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UnselectAll Unselects all rows.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

ValueFromPoint Retrieves the value from the point.
Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.
VisualDesign Invokes the control's VisualAppearance designer.

property Pivot.Aggregates as Aggregates
Retrieves the Aggregates collection of the pivot control.

Type Description

Aggregates The Aggregates collection that holds the Aggregate
objects.

The Aggregates property gives access to the Aggregates collection. The Aggregates
collection holds a collection of Aggregate objects. An aggregate function is a function where
the values of multiple rows are grouped together as input on certain criteria to form a single
value of more significant meaning or measurement such as a set, a bag or a list. The
Aggregate object is identified by an unique key. By default, the Aggregates collection
contains the "sum", "min", "max", "count" or "avg" Aggregate objects. Use the Add method
to add a new Aggregate function/object to the control. Use the FormatValue/FormatResult
property to convert/format the value/result of the Aggregate function. The PivotColumns or
PivotTotals property to display aggregate functions on the columns. Use the
FormatPivotAggregate / FormatPivotTotal property to display aggregate functions in a
different format.

The following screen shot shows the Aggregate objects in the control's context menu:

By default, the Aggregates collection contains the following elements:

"sum", summation is the operation of adding a sequence of numbers; the result is their
sum or total
"min", minimum is the smallest value
"max", maximum is the largest value
"count", counts the number of objects in the set
"avg", average is the arithmetic mean, which means sum of all numbers divided by the
count.

For instance:

you want to get the total for negative values or to count the positive value only. In this
case, you can add a new Aggregate object such as Aggregates.Add("negative",

"sum").FormatValue = "value < 0 ? value : 0", and so the negative Aggregate function
gets the total of negative values only.
The Aggregates.Add("positive", "sum").FormatValue = "value < 0 ? 0 : 1", counts the
number of positive values.

property Pivot.AllowDrop as Boolean
Gets or sets a value indicating whether the control can be used as the target of a drag-and-
drop operation.

Type Description

Boolean A Boolean expression that indicates whether the control
allows OLE Drag and Drop data.

By default, the AllowDrop property is True. Use the AllowDrop property on False, to
prevent loading the data-files (TXT, XML files), by drag and drop, into the control. Use the
AllowGroupBy property to specify whether the user can group by specified column. The
Import/DataSource/LoadXML method loads programmatically data to the control.

property Pivot.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

property Pivot.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub Pivot1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Pivot1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxPivot1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_MouseMoveEvent) Handles AxPivot1.MouseMoveEvent
 With AxPivot1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axPivot1_MouseMoveEvent(object sender,
AxEXPIVOTLib._IPivotEvents_MouseMoveEvent e)
{
 axPivot1.ShowToolTip(axPivot1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMovePivot1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_pivot.ShowToolTip(m_pivot.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .Pivot1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property Pivot.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy/chart,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With Pivot1

https://exontrol.com/exbutton.jsp

 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\normal.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxPivot1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\normal.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axPivot1.BeginUpdate();
axPivot1.VisualAppearance.Add(0x16, "c:\\temp\\normal.ebn");
axPivot1.Appearance = (EXPIVOTLib.AppearanceEnum)0x16000000;
axPivot1.BackColor = Color.FromArgb(250, 250, 250);
axPivot1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_pivot.BeginUpdate();
m_pivot.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\normal.ebn"));
m_pivot.SetAppearance(0x16000000);
m_pivot.SetBackColor(RGB(250,250,250));
m_pivot.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.Pivot1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\normal.ebn")
 .Appearance = 0x16000000

 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method Pivot.AppendData ([Source as Variant], [Options as Variant])
Appends data to the control (prevents clearing data already loaded).

Type Description

Source as Variant

Indicates the data to append as one of the following:

ADO.Recordset, ADODB.Recordset or DAO
recordset (similar with DataSource, Options
parameter has no effect)
An indicator of the object that specifies the source for
the XML document. The object can represent a file
name, a URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument (similar with LoadXML, Options
parameter has no effect)
A String expression that indicates the path to a CSV
file to be loaded or the content itself (If the expression
points to a file, the file's content is loaded) (similar
with Import, Options parameter specifies different
options to be used when loading data using the
Import method as explained bellow.)
a Safe Array one-dimension or two dimensional to be
loaded. If the Source parameter points to a one-
dimension safe array, it indicates the rows to be
loaded. If the Source parameter refers a two-
dimension safe array, the first dimension indicates the
rows, while the second indicates the column. If the
Options parameter includes the word "reverse", the
first dimension indicates the columns, while the
second indicates the rows of data (similar with
Import, Options parameter specifies different options
to be used when loading data using the Import
method as explained bellow.)

Options as Variant
A String expression that specifies different options to be
used when loading data using the Import method as
explained bellow (similar with Import).

Return Description
Variant Reserved for future use only.

The AppendData(Source, Options, Result) method appends data to the control. the
AppendData method does not clear the data already loaded into the control. The

AppendData method can add a new data source (ADO or DAO recordset), XML file
(previously saved by SaveXML method) or anything that Import method accept. The
ClearData method clears the control's data. You can use the Layout property to store the
control's layout and to restore the layout later.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control. Use the AllowDrop
property on False, to prevent loading the data-files (TXT, XML files), by drag and
drop, into the control.

method Pivot.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Pivot1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Pivot.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection. The AutoDrag feature
adds automatically Drag and Drop.

The drag and drop operation starts:

once the user clicks and moves the cursor up or down, if the SingleSel property is
True.
once the user clicks, and waits for a short period of time, if SingleSel property is False
(multiple items in selection is allowed). In this case, you can drag and drop any item
that is not selected, or a contiguously selection

Once the drag and drop operation starts the mouse pointer is changed to MOVE cursor if
the operation is possible, else if the Drag and Drop operation fails or if it is not possible, the
mouse pointer is changed to NO cursor.

Use the AutoDrag property to allow Drag and Drop operations like follows:

Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant

https://www.youtube.com/watch?v=4uA7ZI0W3Sk

Ability to drag and drop the data as it looks, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or down
and more ...

https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

property Pivot.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that specifies the control's background
color.

The BackColor property specifies the control's background color. The ForeColor property
specifies the control's foreground color. The BackColor property changes the background
color of the control's pivot bar. You can use the Background(exPivotBarBackColor) property
to specify a different background color for the control's pivot bar. Use the Appearance
property to specify the visual appearance of the control's frame. The BackColorAlternate
property specifies a different background color for even/odd rows.

property Pivot.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color A color expression that indicates the alternate background
color.

By default, the control's BackColorAlternate property is zero. The control ignores the
BackColorAlternate property if it is 0 (zero). Use the BackColor property to specify the
control's background color. Use the SelBackColor property to specify the selection
background color.

property Pivot.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color A color expression that indicates the background color for
the control's header.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. Use the BackColor property to specify the control's background color.

The following VB sample changes the visual appearance for the control's header. Shortly,
we need to add a skin to the Appearance object using the Add method, and we need to set
the last 7 bits in the BackColorHeader property to indicates the index of the skin that we
want to use. The sample applies the " " to the control' header bar:

With Pivot1
 With .VisualAppearance
 .Add &H24, App.Path + "\header.ebn"
 End With
 .BackColorHeader = &H24000000
End With

The following C++ sample changes the visual aspect of the control' header bar:

#include "Appearance.h"
m_pivot.GetVisualAppearance().Add(0x24,
COleVariant(_T("D:\\Temp\\ExPivot.Help\\header.ebn")));
m_pivot.SetBackColorHeader(0x24000000);

The following VB.NET sample changes the visual aspect of the control' header bar:

With AxPivot1
 With .VisualAppearance
 .Add(&H24, "D:\Temp\ExPivot.Help\header.ebn")
 End With
 .Template = "BackColorHeader = 603979776"

End With

The 603979776 value indicates the &H24000000 in hexadecimal.

The following C# sample changes the visual aspect of the control' header bar:

axPivot1.VisualAppearance.Add(0x24, "D:\\Temp\\ExPivot.Help\\header.ebn");
axPivot1.Template = "BackColorHeader = 603979776";

The 603979776 value indicates the 0x24000000 in hexadecimal.

The following VFP sample changes the visual aspect of the control' header bar:

With thisform.Pivot1
 With .VisualAppearance
 .Add(36, "D:\Temp\ExPivot.Help\header.ebn")
 EndWith
 .BackColorHeader = 603979776
EndWith

property Pivot.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the "drop down" filter button.
The sample applies the skin " " to the "drop down" filter buttons:

With Pivot1
 With .VisualAppearance
 .Add &H1, App.Path + "\fbardd.ebn"
 End With
 .Background(exHeaderFilterBarButton) = &H1000000
End With

The following C++ sample changes the visual appearance for the "drop down" filter button:

#include "Appearance.h"
m_pivot.GetVisualAppearance().Add(0x01,
COleVariant(_T("D:\\Temp\\ExPivot.Help\\fbardd.ebn")));

m_pivot.SetBackground(0 /*exHeaderFilterBarButton*/, 0x1000000);

The following VB.NET sample changes the visual appearance for the "drop down" filter
button:

With AxPivot1
 With .VisualAppearance
 .Add(&H1, "D:\Temp\ExPivot.Help\fbardd.ebn")
 End With
 .set_Background(EXPIVOTLib.BackgroundPartEnum.exHeaderFilterBarButton,
&H1000000)
End With

The following C# sample changes the visual appearance for the "drop down" filter button:

axPivot1.VisualAppearance.Add(0x1, "D:\\Temp\\ExPivot.Help\\fbardd.ebn");
axPivot1.set_Background(EXPIVOTLib.BackgroundPartEnum.exHeaderFilterBarButton,
0x1000000);

The following VFP sample changes the visual appearance for the "drop down" filter button:

With thisform.Pivot1
 With .VisualAppearance
 .Add(1, "D:\Temp\ExPivot.Help\fbardd.ebn")
 EndWith
 .Object.Background(0) = 16777216
EndWith

The 16777216 value is the 0x1000000 value in hexadecimal.

method Pivot.BeginUpdate ()
Maintains performance when items are added to the control one at a time. This method
prevents the control from painting until the EndUpdate method is called.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your events, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. You can use
the Refresh method to refresh the control's content.

property Pivot.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that specifies the height of the border
being applied to the top and bottom side of the control.

By default, the BorderHeight property is 0. The BorderHeight property specifies the height
of the border in pixels, being applied to the top and bottom side of the control. The
BorderWidth property specifies the width of the border on the left and right side of the
control. The borders delimit the margin of the control and the client area, where the
calendar and the pivot panel is displayed.

property Pivot.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that specifies the width of the border
being applied to the left and right side of the control.

By default, the BorderWidth property is 0. The BorderWidth property specifies the width of
the border in pixels, being applied to the left and right side of the control. The BorderHeight
property specifies the height of the border on the top and bottom side of the control. The
borders delimit the margin of the control and the client area, where the calendar and the
pivot panel is displayed.

property Pivot.CheckImage(State as CheckStateEnum) as Long
Retrieves or sets a value that indicates the image used by cells of checkbox type.

Type Description

State as CheckStateEnum
A CheckStateEnum expression that indicates the check's
state: 0 means unchecked, 1 means checked, and 2
means partial checked.

Long

A long expression that indicates the index of image used to
paint the cells of check box types. The last 7 bits in the
high significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.
The CheckImage property defines the index of the icon being used by check boxes. The
ImageSize property defines the size (width/height) of the check-boxes.

method Pivot.ClearData ()
Removes the control's data.

Type Description

The ClearData method clears the control's data. The ClearData method clears/empties the
DataColumns collection and the PivotRows, PivotColumns, PivotTotals properties.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method

The following properties may be used to group and summarize the data, once it is loaded:

PivotRows property specifies the list of DATA columns that determines the first column
in the control's list. In other words, the Group-By columns
PivotColumns property specifies the list of DATA columns that determines the rest of
the columns to be displayed on the control's list
PivotTotals property specifies the list of total/sub-total functions to be displayed on the
control's list.

method Pivot.ClearFilter ()
Clears the filter.

Type Description

method Pivot.CollapseAll ()
Collapses all rows.

Type Description

property Pivot.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

By default, the ColumnAutoResize property is False. Use the ColumnAutoResize property to
fit all your columns in the client area. Use the DefaultColumnWidth property to specify the
default column's width.

property Pivot.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the column from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Variant A NULL expression (VT_NULL) if no column at the point,
or the column's name from the point.

 The ColumnFromPoint property gets the column's name from the cursor. The
ValueFromPoint property gets the value from the cursor, while it hovers the control's list
part. The ColumnFromPoint(-1,-1) gets the column from the current cursor position, while it
hovers the control's list part. The DataColumnFromPoint property retrieves the index of the
data column from the point, or -1 if not data column is found.

method Pivot.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. Use the
CopyTo method to copy the control's view to an EMF file. The items are not expanded, they
are listed in the order as they are displayed on the screen. Use the HeaderVisible property
to show or hide the control's header. The background of the copied control is
transparent. You can use the Export method to export the control's DATA in CSV format.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub Pivot1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 Pivot1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)

{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc;, IID_IPicture, FALSE,
(LPVOID*)&spPicture;)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream;)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize;)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b;, 10240, &dwRead;);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten;, NULL);
 dwWritten += dwBWritten;
 }

 CloseHandle(hFile);
 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxPivot1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axPivot1.Copy();

property Pivot.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard. You can use the Export method to export the control's DATA in
CSV format.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a file:

If (Pivot1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Pivot1.CopyTo("")
 Debug.Print i
Next

property Pivot.DataColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the index of the data column from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long

A Long expression that determines the index of the data
column from the cursor. The DataColumnFromPoint
property returns -1, if no data column is found at the
cursor.

The DataColumnFromPoint property retrieves the index of the data column from the point,
or -1 if not data column is found. The ColumnFromPoint(-1,-1) gets the column from the
current cursor position, while it hovers the control's list part. The ValueFromPoint property
gets the value from the cursor, while it hovers the control's list part.

property Pivot.DataColumns as Columns
Retrieves the Data Columns collection of the pivot control.

Type Description
Columns A Columns object that holds a collection of Column object.

By default, the DataColumns collection is empty. Once you load data to the controls, the
DataColumns collection is filled. The PivotColumnsFloatBarVisible property specifies
whether the Columns collection is displayed to a floating bar, so user can drag and drop
columns to the control's pivot bar so it gets data summarized. The ClearData method clears
the control's data.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method

You can use the DataColumns property to rename the columns, change the column's
alignment, specify the sorting-filtering type, and so on.

property Pivot.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description

Object
An Object that defines the control's data. Currently, the
control accepts ADO.Recordset, ADODB.Recordset
objects, DAO recordset.

The DataSource property may be used to load data from a table or a record set using the
ADO or DAO recordsets. Microsoft's ActiveX Data Objects (ADO) is a set of Component
Object Model (COM) objects for accessing data sources. In computer software, a data
access object (DAO) is an object that provides an abstract interface to some type of
database or other persistence mechanism. By mapping application calls to the persistence
layer, DAOs provide some specific data operations without exposing details of the
database. The DataColumns property accesses the control's Columns collection, so you
can rename or specify the column's type once the control's data is loaded. The
PivotColumnsFloatBarVisible property specifies whether the Columns collection is displayed
to a floating bar, so user can drag and drop columns to the control's pivot bar so it gets
data summarized. The ClearData method clears the control's data. Use the
DisplayPivotData property to specify the number of rows to be displayed on the control's
list. The LoadHeadersOnly property loads the headers only, so no data is loaded.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control.

The AppendData method appends data to the control (prevents clearing data already
loaded).

The following properties may be used to group and summarize the data, once it is loaded:

PivotRows property specifies the list of DATA columns that determines the first column
in the control's list. In other words, the Group-By columns
PivotColumns property specifies the list of DATA columns that determines the rest of
the columns to be displayed on the control's list
PivotTotals property specifies the list of total/sub-total functions to be displayed on the
control's list.

Is it possible to load data from a data source?

VBA (MS Access, ...)

With Pivot1
 .DataSource = CurrentDb.OpenRecordset("Data")
End With

VB6

With Pivot1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3
 End With
 .DataSource = rs
End With

VB.NET

Dim rs
With Expivot1
 rs = New ADODB.Recordset()
 With rs
 .Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3)
 End With
 .DataSource = rs
End With

VB.NET for /COM

Dim rs
With AxPivot1
 rs = CreateObject("ADOR.Recordset")
 With rs
 .Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3)
 End With
 .DataSource = rs

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
/*
 Includes the definition for CreateObject function like follows:

 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };

*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'ADODB' for the library: 'Microsoft ActiveX Data Objects
6.0 Library'

 #import <msado15.dll> rename("EOF","REOF")
*/
ADODB::_RecordsetPtr rs = ::CreateObject(L"ADOR.Recordset");
 rs->Open("Data",_bstr_t("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\Access2007\\sample.accdb",ADODB::adOpenStatic,ADODB::adLockOptimistic,0);

spPivot1->PutDataSource(((ADODB::_RecordsetPtr)(rs)));

C++ Builder

/*
 Select the Component\Import Component...\Import a Type Library,
 to import the following Type Library:

 Microsoft ActiveX Data Objects 6.0 Library

 TypeLib: C:\Program Files\Common Files\System\ado\msado15.dll

 to define the namespace: Adodb_tlb
*/
//#include "ADODB_TLB.h"
Adodb_tlb::_RecordsetPtr rs = Variant::CreateObject(L"ADOR.Recordset");
 rs-
>Open(TVariant("Data"),TVariant(String("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\Access2007\\sample.accdb"),Adodb_tlb::CursorTypeEnum::adOpenStatic,Adodb_tlb::LockTypeEnum::adLockOptimistic,0);

Pivot1->DataSource = (IDispatch*)rs;

C#

// Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
ADODB.Recordset rs = new ADODB.Recordset();
 rs.Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\Access2007\\sample.accdb",exontrol.ADODB.CursorTypeEnum.adOpenStatic,exontrol.ADODB.LockTypeEnum.adLockOptimistic,0);

expivot1.DataSource = (rs as ADODB.Recordset);

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 var rs = new ActiveXObject("ADOR.Recordset");
 rs.Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\Access2007\\sample.accdb",3,3,null);
 Pivot1.DataSource = rs;
</SCRIPT>

C# for /COM

// Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your project.
ADODB.Recordset rs = new ADODB.Recordset();
 rs.Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\Access2007\\sample.accdb",ADODB.CursorTypeEnum.adOpenStatic,ADODB.LockTypeEnum.adLockOptimistic,0);

axPivot1.DataSource = (rs as ADODB.Recordset);

X++ (Dynamics Ax 2009)

public void init()
{
 anytype rs;
 str var_s;
 ;

 super();

 // Add 'Microsoft ActiveX Data Objects 6.0 Library' reference to your
project.
 rs = COM::createFromObject(new ADODB.Recordset()); rs = rs;
 var_s = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\Access2007\\sample.accdb";

rs.Open("Data",COMVariant::createFromStr(var_s),3/*adOpenStatic*/,3/*adLockOptimistic*/

 expivot1.DataSource(rs);
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 rs := (ComObj.CreateComObject(ComObj.ProgIDToClassID('ADOR.Recordset')) as
ADODB.Recordset);
 with rs do
 begin
 Open('Data','Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb',3,3,Nil);
 end;
 DataSource := (rs as ADODB.Recordset);
end

Delphi (standard)

with Pivot1 do
begin
 rs :=
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('ADOR.Recordset')))
as ADODB_TLB.Recordset);
 with rs do
 begin
 Open('Data','Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb',3,3,Null);
 end;
 DataSource := (IUnknown(rs) as ADODB_TLB.Recordset);
end

VFP

with thisform.Pivot1
 rs = CreateObject("ADOR.Recordset")
 with rs
 var_s = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb"
 .Open("Data",var_s,3,3)
 endwith

 .DataSource = rs
endwith

dBASE Plus

local oPivot,rs

oPivot = form.Activex1.nativeObject
rs = new OleAutoClient("ADOR.Recordset")
 rs.Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3)
oPivot.DataSource = rs

XBasic (Alpha Five)

Dim oPivot as P
Dim rs as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
rs = OLE.Create("ADOR.Recordset")
 rs.Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3)
oPivot.DataSource = rs

Visual Objects

local rs as _Recordset

// Generate Source for 'Microsoft ActiveX Data Objects 6.0 Library' server
from Tools\Automation Server...
rs := _Recordset{"ADOR.Recordset"}
 rs:Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3,0)
oDCOCX_Exontrol1:DataSource := _Recordset{rs}

PowerBuilder

OleObject oPivot,rs

oPivot = ole_1.Object
rs = CREATE OLEObject
rs.ConnectToNewObject("ADOR.Recordset")
 rs.Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb",3,3)
oPivot.DataSource = rs

property Pivot.DefaultColumnWidth as Long
Retrieves or sets a value that indicates the default column width.

Type Description

Long A Long expression that defines the default width of the
column.

By default, the DefaultColumnWidth property is 128 pixels. Use the DefaultColumnWidth
property to specify the default for the width of the columns. The DefaultItemHeight property
specifies the default height of the rows/items. The HeaderHeight property specifies the
height of the control's header, and so the height of the columns to be displayed on the
control's pivot bar. Use the Refresh method to refresh the control.

property Pivot.DefaultItemHeight as Long

Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression indicates the default item height.

By default, the DefaultColumnWidth property is 18 pixels. The DefaultItemHeight property
specifies the default height of the rows/items. Use the DefaultColumnWidth property to
specify the default for the width of the columns. The HeaderHeight property specifies the
height of the control's header, and so the height of the columns to be displayed on the
control's pivot bar. Use the Refresh method to refresh the control.

property Pivot.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for control objects.

Type Description
Type as
DescriptionTypeEnum

A DescriptionTypeEnum expression that indicates the
caption begin changed

String A String expression that defines the new caption to be
shown.

The Description property defines pre-defined captions being shown on the control.

instead of

The following samples show how you can change the name for months in the drop-down
filter window (localization)?

VBA (MS Access, Excell...)

With Pivot1
 Debug.Print(.Description(17))
 .Description(17) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie"
 .Description(0) = "(Toate)"
 .Description(1) = "(Gol)"
 .Description(2) = "(Plin)"
 .Description(3) = "Filtreaza:"
 .Description(16) = "Azi"

 .Description(18) = "D L Ma Mi J V S"
 .Description(25) = "Exclud"
 .Description(26) = "Coloane"
 .Description(11) = "si"
 .Description(12) = "Data:"
 .Description(15) = "Data"
 .Description(13) = "la"
 .Description(24) = "nu"
 .Description(23) = "sau"
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .DataColumns.Item("OrderDate").SortType = 2
 .PivotRows = "9"
 .Refresh
End With

VB6

With Pivot1
 Debug.Print(.Description(exFilterBarDateMonths))
 .Description(exFilterBarDateMonths) = "Ianuarie Februarie Martie Aprilie Mai Iunie
Iulie August Septembrie Octombrie Noiembrie Decembrie"
 .Description(exFilterBarAll) = "(Toate)"
 .Description(exFilterBarBlanks) = "(Gol)"
 .Description(exFilterBarNonBlanks) = "(Plin)"
 .Description(exFilterBarFilterForCaption) = "Filtreaza:"
 .Description(exFilterBarDateTodayCaption) = "Azi"
 .Description(exFilterBarDateWeekDays) = "D L Ma Mi J V S"
 .Description(exFilterBarExclude) = "Exclud"
 .Description(exColumnsFloatBar) = "Coloane"
 .Description(exFilterBarAnd) = "si"
 .Description(exFilterBarDate) = "Data:"
 .Description(exFilterBarDateTitle) = "Data"
 .Description(exFilterBarDateTo) = "la"
 .Description(exFilterBarNot) = "nu"
 .Description(exFilterBarOr) = "sau"
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .DataColumns.Item("OrderDate").SortType = SortDate

 .PivotRows = "9"
 .Refresh
End With

VB.NET

With Expivot1
 Debug.Print(
.get_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths)
)

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths,"Ianuarie
 Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie
Decembrie")
 .set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarAll,"
(Toate)")
 .set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarBlanks,"
(Gol)")

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarNonBlanks,"
(Plin)")

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarFilterForCaption,"Filtreaza:"

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTodayCaption,

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateWeekDays,"D
 L Ma Mi J V S")

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarExclude,"Exclud")

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exColumnsFloatBar,"Coloane"

 .set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarAnd,"si")

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDate,"Data:")

.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTitle,"Data")

 .set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTo,"la")
 .set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarNot,"nu")
 .set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarOr,"sau")
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .DataColumns.Item("OrderDate").SortType =
exontrol.EXPIVOTLib.SortTypeEnum.SortDate
 .PivotRows = "9"
 .Refresh()
End With

VB.NET for /COM

With AxPivot1
 Debug.Print(
.get_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths))

.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths,"Ianuarie
Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie
Decembrie")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarAll,"(Toate)")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarBlanks,"(Gol)")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarNonBlanks,"(Plin)")

.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarFilterForCaption,"Filtreaza:"

.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTodayCaption,"Azi")

 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateWeekDays,"D L
Ma Mi J V S")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarExclude,"Exclud")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exColumnsFloatBar,"Coloane")

 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarAnd,"si")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDate,"Data:")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTitle,"Data")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTo,"la")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarNot,"nu")
 .set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarOr,"sau")
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .DataColumns.Item("OrderDate").SortType = EXPIVOTLib.SortTypeEnum.SortDate
 .PivotRows = "9"
 .Refresh()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
OutputDebugStringW(spPivot1-
>GetDescription(EXPIVOTLib::exFilterBarDateMonths));
spPivot1->PutDescription(EXPIVOTLib::exFilterBarDateMonths,L"Ianuarie Februarie
Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie Decembrie");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarAll,L"(Toate)");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarBlanks,L"(Gol)");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarNonBlanks,L"(Plin)");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarFilterForCaption,L"Filtreaza:");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarDateTodayCaption,L"Azi");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarDateWeekDays,L"D L Ma Mi J V
S");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarExclude,L"Exclud");
spPivot1->PutDescription(EXPIVOTLib::exColumnsFloatBar,L"Coloane");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarAnd,L"si");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarDate,L"Data:");

spPivot1->PutDescription(EXPIVOTLib::exFilterBarDateTitle,L"Data");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarDateTo,L"la");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarNot,L"nu");
spPivot1->PutDescription(EXPIVOTLib::exFilterBarOr,L"sau");
spPivot1->Import("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt",vtMissing);
spPivot1->GetDataColumns()->GetItem("OrderDate")-
>PutSortType(EXPIVOTLib::SortDate);
spPivot1->PutPivotRows(L"9");
spPivot1->Refresh();

C++ Builder

OutputDebugString(Pivot1-
>Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDateMonths]);
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDateMonths] =
L"Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie
Noiembrie Decembrie";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarAll] = L"
(Toate)";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarBlanks] = L"
(Gol)";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarNonBlanks] =
L"(Plin)";
Pivot1-
>Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarFilterForCaption] =
L"Filtreaza:";
Pivot1-
>Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDateTodayCaption] =
L"Azi";
Pivot1-
>Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDateWeekDays] = L"D
L Ma Mi J V S";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarExclude] =
L"Exclud";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exColumnsFloatBar] =

L"Coloane";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarAnd] = L"si";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDate] =
L"Data:";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDateTitle] =
L"Data";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarDateTo] = L"la";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarNot] = L"nu";
Pivot1->Description[Expivotlib_tlb::DescriptionTypeEnum::exFilterBarOr] = L"sau";
Pivot1->Import(TVariant("C:\\Program
Files\\Exontrol\\ExPivot\\Sample\\data.txt"),TNoParam());
Pivot1->DataColumns->get_Item(TVariant("OrderDate"))->SortType =
Expivotlib_tlb::SortTypeEnum::SortDate;
Pivot1->PivotRows = L"9";
Pivot1->Refresh();

C#

System.Diagnostics.Debug.Print(
expivot1.get_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths)
);
expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths,
 Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie
Decembrie");
expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarAll,"
(Toate)");
expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarBlanks,"
(Gol)");
expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarNonBlanks,
(Plin)");
expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarFilterForCaption,

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTodayCaption,

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateWeekDays,
 L Ma Mi J V S");

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarExclude,"Exclud"

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exColumnsFloatBar,

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarAnd,"si");

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDate,"Data:"

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTitle,

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTo,"la"

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarNot,"nu");

expivot1.set_Description(exontrol.EXPIVOTLib.DescriptionTypeEnum.exFilterBarOr,"sau");

expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
expivot1.DataColumns["OrderDate"].SortType =
exontrol.EXPIVOTLib.SortTypeEnum.SortDate;
expivot1.PivotRows = "9";
expivot1.Refresh();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 alert(Pivot1.Description(17));
 Pivot1.Description(17) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie";
 Pivot1.Description(0) = "(Toate)";
 Pivot1.Description(1) = "(Gol)";

 Pivot1.Description(2) = "(Plin)";
 Pivot1.Description(3) = "Filtreaza:";
 Pivot1.Description(16) = "Azi";
 Pivot1.Description(18) = "D L Ma Mi J V S";
 Pivot1.Description(25) = "Exclud";
 Pivot1.Description(26) = "Coloane";
 Pivot1.Description(11) = "si";
 Pivot1.Description(12) = "Data:";
 Pivot1.Description(15) = "Data";
 Pivot1.Description(13) = "la";
 Pivot1.Description(24) = "nu";
 Pivot1.Description(23) = "sau";
 Pivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
 Pivot1.DataColumns.Item("OrderDate").SortType = 2;
 Pivot1.PivotRows = "9";
 Pivot1.Refresh();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686"
id="Pivot1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Pivot1
 alert(.Description(17))
 .Description(17) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie"
 .Description(0) = "(Toate)"
 .Description(1) = "(Gol)"
 .Description(2) = "(Plin)"
 .Description(3) = "Filtreaza:"

 .Description(16) = "Azi"
 .Description(18) = "D L Ma Mi J V S"
 .Description(25) = "Exclud"
 .Description(26) = "Coloane"
 .Description(11) = "si"
 .Description(12) = "Data:"
 .Description(15) = "Data"
 .Description(13) = "la"
 .Description(24) = "nu"
 .Description(23) = "sau"
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .DataColumns.Item("OrderDate").SortType = 2
 .PivotRows = "9"
 .Refresh
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

System.Diagnostics.Debug.Print(
axPivot1.get_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths)
);
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths,"Ianuarie
 Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie
Decembrie");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarAll,"(Toate)");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarBlanks,"
(Gol)");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarNonBlanks,"
(Plin)");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarFilterForCaption,"Filtreaza:"

axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTodayCaption,

axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateWeekDays,"D
 L Ma Mi J V S");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarExclude,"Exclud");

axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exColumnsFloatBar,"Coloane"

axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarAnd,"si");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDate,"Data:");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTitle,"Data");

axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTo,"la");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarNot,"nu");
axPivot1.set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarOr,"sau");
axPivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt",null);
axPivot1.DataColumns["OrderDate"].SortType =
EXPIVOTLib.SortTypeEnum.SortDate;
axPivot1.PivotRows = "9";
axPivot1.Refresh();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Column;
 anytype var_Column;
 ;

 super();

 print(expivot1.Description(17/*exFilterBarDateMonths*/));
 expivot1.Description(17/*exFilterBarDateMonths*/,"Ianuarie Februarie Martie
Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie Decembrie");
 expivot1.Description(0/*exFilterBarAll*/,"(Toate)");
 expivot1.Description(1/*exFilterBarBlanks*/,"(Gol)");
 expivot1.Description(2/*exFilterBarNonBlanks*/,"(Plin)");
 expivot1.Description(3/*exFilterBarFilterForCaption*/,"Filtreaza:");

 expivot1.Description(16/*exFilterBarDateTodayCaption*/,"Azi");
 expivot1.Description(18/*exFilterBarDateWeekDays*/,"D L Ma Mi J V S");
 expivot1.Description(25/*exFilterBarExclude*/,"Exclud");
 expivot1.Description(26/*exColumnsFloatBar*/,"Coloane");
 expivot1.Description(11/*exFilterBarAnd*/,"si");
 expivot1.Description(12/*exFilterBarDate*/,"Data:");
 expivot1.Description(15/*exFilterBarDateTitle*/,"Data");
 expivot1.Description(13/*exFilterBarDateTo*/,"la");
 expivot1.Description(24/*exFilterBarNot*/,"nu");
 expivot1.Description(23/*exFilterBarOr*/,"sau");
 expivot1.Import("C:\\Program Files\\Exontrol\\ExPivot\\Sample\\data.txt");
 var_Column =
COM::createFromObject(expivot1.DataColumns()).Item("OrderDate"); com_Column =
var_Column;
 com_Column.SortType(2/*SortDate*/);
 expivot1.PivotRows("9");
 expivot1.Refresh();
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 OutputDebugString(
get_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths));

set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateMonths,'Ianuarie
Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie
Decembrie');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarAll,'(Toate)');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarBlanks,'(Gol)');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarNonBlanks,'(Plin)');

set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarFilterForCaption,'Filtreaza:'

set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTodayCaption,'Azi');

 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateWeekDays,'D L
Ma Mi J V S');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarExclude,'Exclud');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exColumnsFloatBar,'Coloane');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarAnd,'si');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDate,'Data:');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTitle,'Data');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarDateTo,'la');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarNot,'nu');
 set_Description(EXPIVOTLib.DescriptionTypeEnum.exFilterBarOr,'sau');
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Nil);
 DataColumns.Item['OrderDate'].SortType := EXPIVOTLib.SortTypeEnum.SortDate;
 PivotRows := '9';
 Refresh();
end

Delphi (standard)

with Pivot1 do
begin
 OutputDebugString(Description[EXPIVOTLib_TLB.exFilterBarDateMonths]);
 Description[EXPIVOTLib_TLB.exFilterBarDateMonths] := 'Ianuarie Februarie Martie
Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie Decembrie';
 Description[EXPIVOTLib_TLB.exFilterBarAll] := '(Toate)';
 Description[EXPIVOTLib_TLB.exFilterBarBlanks] := '(Gol)';
 Description[EXPIVOTLib_TLB.exFilterBarNonBlanks] := '(Plin)';
 Description[EXPIVOTLib_TLB.exFilterBarFilterForCaption] := 'Filtreaza:';
 Description[EXPIVOTLib_TLB.exFilterBarDateTodayCaption] := 'Azi';
 Description[EXPIVOTLib_TLB.exFilterBarDateWeekDays] := 'D L Ma Mi J V S';
 Description[EXPIVOTLib_TLB.exFilterBarExclude] := 'Exclud';
 Description[EXPIVOTLib_TLB.exColumnsFloatBar] := 'Coloane';
 Description[EXPIVOTLib_TLB.exFilterBarAnd] := 'si';
 Description[EXPIVOTLib_TLB.exFilterBarDate] := 'Data:';
 Description[EXPIVOTLib_TLB.exFilterBarDateTitle] := 'Data';
 Description[EXPIVOTLib_TLB.exFilterBarDateTo] := 'la';
 Description[EXPIVOTLib_TLB.exFilterBarNot] := 'nu';

 Description[EXPIVOTLib_TLB.exFilterBarOr] := 'sau';
 Import('C:\Program Files\Exontrol\ExPivot\Sample\data.txt',Null);
 DataColumns.Item['OrderDate'].SortType := EXPIVOTLib_TLB.SortDate;
 PivotRows := '9';
 Refresh();
end

VFP

with thisform.Pivot1
 DEBUGOUT(.Description(17))
 .Object.Description(17) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie"
 .Object.Description(0) = "(Toate)"
 .Object.Description(1) = "(Gol)"
 .Object.Description(2) = "(Plin)"
 .Object.Description(3) = "Filtreaza:"
 .Object.Description(16) = "Azi"
 .Object.Description(18) = "D L Ma Mi J V S"
 .Object.Description(25) = "Exclud"
 .Object.Description(26) = "Coloane"
 .Object.Description(11) = "si"
 .Object.Description(12) = "Data:"
 .Object.Description(15) = "Data"
 .Object.Description(13) = "la"
 .Object.Description(24) = "nu"
 .Object.Description(23) = "sau"
 .Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 .DataColumns.Item("OrderDate").SortType = 2
 .PivotRows = "9"
 .Refresh
endwith

dBASE Plus

local oPivot

oPivot = form.EXPIVOTACTIVEXCONTROL1.nativeObject

? oPivot.Description(17)
oPivot.Template = [Description(17) = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie
August Septembrie Octombrie Noiembrie Decembrie"] // oPivot.Description(17) =
"Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie
Noiembrie Decembrie"
oPivot.Template = [Description(0) = "(Toate)"] // oPivot.Description(0) = "(Toate)"
oPivot.Template = [Description(1) = "(Gol)"] // oPivot.Description(1) = "(Gol)"
oPivot.Template = [Description(2) = "(Plin)"] // oPivot.Description(2) = "(Plin)"
oPivot.Template = [Description(3) = "Filtreaza:"] // oPivot.Description(3) = "Filtreaza:"
oPivot.Template = [Description(16) = "Azi"] // oPivot.Description(16) = "Azi"
oPivot.Template = [Description(18) = "D L Ma Mi J V S"] // oPivot.Description(18) =
"D L Ma Mi J V S"
oPivot.Template = [Description(25) = "Exclud"] // oPivot.Description(25) = "Exclud"
oPivot.Template = [Description(26) = "Coloane"] // oPivot.Description(26) =
"Coloane"
oPivot.Template = [Description(11) = "si"] // oPivot.Description(11) = "si"
oPivot.Template = [Description(12) = "Data:"] // oPivot.Description(12) = "Data:"
oPivot.Template = [Description(15) = "Data"] // oPivot.Description(15) = "Data"
oPivot.Template = [Description(13) = "la"] // oPivot.Description(13) = "la"
oPivot.Template = [Description(24) = "nu"] // oPivot.Description(24) = "nu"
oPivot.Template = [Description(23) = "sau"] // oPivot.Description(23) = "sau"
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.DataColumns.Item("OrderDate").SortType = 2
oPivot.PivotRows = "9"
oPivot.Refresh()

XBasic (Alpha Five)

Dim oPivot as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
? oPivot.Description(17)
oPivot.Template = "Description(17) = `Ianuarie Februarie Martie Aprilie Mai Iunie Iulie
August Septembrie Octombrie Noiembrie Decembrie`" // oPivot.Description(17) =
"Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie
Noiembrie Decembrie"

oPivot.Template = "Description(0) = `(Toate)`" // oPivot.Description(0) = "(Toate)"
oPivot.Template = "Description(1) = `(Gol)`" // oPivot.Description(1) = "(Gol)"
oPivot.Template = "Description(2) = `(Plin)`" // oPivot.Description(2) = "(Plin)"
oPivot.Template = "Description(3) = `Filtreaza:`" // oPivot.Description(3) = "Filtreaza:"
oPivot.Template = "Description(16) = `Azi`" // oPivot.Description(16) = "Azi"
oPivot.Template = "Description(18) = `D L Ma Mi J V S`" // oPivot.Description(18) =
"D L Ma Mi J V S"
oPivot.Template = "Description(25) = `Exclud`" // oPivot.Description(25) = "Exclud"
oPivot.Template = "Description(26) = `Coloane`" // oPivot.Description(26) =
"Coloane"
oPivot.Template = "Description(11) = `si`" // oPivot.Description(11) = "si"
oPivot.Template = "Description(12) = `Data:`" // oPivot.Description(12) = "Data:"
oPivot.Template = "Description(15) = `Data`" // oPivot.Description(15) = "Data"
oPivot.Template = "Description(13) = `la`" // oPivot.Description(13) = "la"
oPivot.Template = "Description(24) = `nu`" // oPivot.Description(24) = "nu"
oPivot.Template = "Description(23) = `sau`" // oPivot.Description(23) = "sau"
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.DataColumns.Item("OrderDate").SortType = 2
oPivot.PivotRows = "9"
oPivot.Refresh()

Visual Objects

OutputDebugString(String2Psz(oDCOCX_Exontrol1:
[Description,exFilterBarDateMonths]))
oDCOCX_Exontrol1:[Description,exFilterBarDateMonths] := "Ianuarie Februarie Martie
Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie Decembrie"
oDCOCX_Exontrol1:[Description,exFilterBarAll] := "(Toate)"
oDCOCX_Exontrol1:[Description,exFilterBarBlanks] := "(Gol)"
oDCOCX_Exontrol1:[Description,exFilterBarNonBlanks] := "(Plin)"
oDCOCX_Exontrol1:[Description,exFilterBarFilterForCaption] := "Filtreaza:"
oDCOCX_Exontrol1:[Description,exFilterBarDateTodayCaption] := "Azi"
oDCOCX_Exontrol1:[Description,exFilterBarDateWeekDays] := "D L Ma Mi J V S"
oDCOCX_Exontrol1:[Description,exFilterBarExclude] := "Exclud"
oDCOCX_Exontrol1:[Description,exColumnsFloatBar] := "Coloane"

oDCOCX_Exontrol1:[Description,exFilterBarAnd] := "si"
oDCOCX_Exontrol1:[Description,exFilterBarDate] := "Data:"
oDCOCX_Exontrol1:[Description,exFilterBarDateTitle] := "Data"
oDCOCX_Exontrol1:[Description,exFilterBarDateTo] := "la"
oDCOCX_Exontrol1:[Description,exFilterBarNot] := "nu"
oDCOCX_Exontrol1:[Description,exFilterBarOr] := "sau"
oDCOCX_Exontrol1:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt",nil)
oDCOCX_Exontrol1:DataColumns:[Item,"OrderDate"]:SortType := SortDate
oDCOCX_Exontrol1:PivotRows := "9"
oDCOCX_Exontrol1:Refresh()

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
MessageBox("Information",string(oPivot.Description(17)))
oPivot.Description(17,"Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie")
oPivot.Description(0,"(Toate)")
oPivot.Description(1,"(Gol)")
oPivot.Description(2,"(Plin)")
oPivot.Description(3,"Filtreaza:")
oPivot.Description(16,"Azi")
oPivot.Description(18,"D L Ma Mi J V S")
oPivot.Description(25,"Exclud")
oPivot.Description(26,"Coloane")
oPivot.Description(11,"si")
oPivot.Description(12,"Data:")
oPivot.Description(15,"Data")
oPivot.Description(13,"la")
oPivot.Description(24,"nu")
oPivot.Description(23,"sau")
oPivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
oPivot.DataColumns.Item("OrderDate").SortType = 2
oPivot.PivotRows = "9"

oPivot.Refresh()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Showln (ComDescription(Self,OLEexFilterBarDateMonths))
 Set ComDescription OLEexFilterBarDateMonths to "Ianuarie Februarie Martie
Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie Decembrie"
 Set ComDescription OLEexFilterBarAll to "(Toate)"
 Set ComDescription OLEexFilterBarBlanks to "(Gol)"
 Set ComDescription OLEexFilterBarNonBlanks to "(Plin)"
 Set ComDescription OLEexFilterBarFilterForCaption to "Filtreaza:"
 Set ComDescription OLEexFilterBarDateTodayCaption to "Azi"
 Set ComDescription OLEexFilterBarDateWeekDays to "D L Ma Mi J V S"
 Set ComDescription OLEexFilterBarExclude to "Exclud"
 Set ComDescription OLEexColumnsFloatBar to "Coloane"
 Set ComDescription OLEexFilterBarAnd to "si"
 Set ComDescription OLEexFilterBarDate to "Data:"
 Set ComDescription OLEexFilterBarDateTitle to "Data"
 Set ComDescription OLEexFilterBarDateTo to "la"
 Set ComDescription OLEexFilterBarNot to "nu"
 Set ComDescription OLEexFilterBarOr to "sau"
 Get ComImport "C:\Program Files\Exontrol\ExPivot\Sample\data.txt" Nothing to
Nothing
 Variant voColumns
 Get ComDataColumns to voColumns
 Handle hoColumns
 Get Create (RefClass(cComColumns)) to hoColumns
 Set pvComObject of hoColumns to voColumns
 Variant voColumn
 Get ComItem of hoColumns "OrderDate" to voColumn
 Handle hoColumn
 Get Create (RefClass(cComColumn)) to hoColumn
 Set pvComObject of hoColumn to voColumn
 Set ComSortType of hoColumn to OLESortDate

 Send Destroy to hoColumn
 Send Destroy to hoColumns
 Set ComPivotRows to "9"
 Send ComRefresh
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oPivot

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oPivot := XbpActiveXControl():new(oForm:drawingArea)
 oPivot:CLSID := "Exontrol.Pivot.1" /*{5C9DF3D3-81B1-42C4-BED6-
658F17748686}*/
 oPivot:create(,, {10,60},{610,370})

 DevOut(oPivot:Description(17/*exFilterBarDateMonths*/))
 oPivot:SetProperty("Description",17/*exFilterBarDateMonths*/,"Ianuarie
Februarie Martie Aprilie Mai Iunie Iulie August Septembrie Octombrie Noiembrie
Decembrie")
 oPivot:SetProperty("Description",0/*exFilterBarAll*/,"(Toate)")
 oPivot:SetProperty("Description",1/*exFilterBarBlanks*/,"(Gol)")
 oPivot:SetProperty("Description",2/*exFilterBarNonBlanks*/,"(Plin)")
 oPivot:SetProperty("Description",3/*exFilterBarFilterForCaption*/,"Filtreaza:")
 oPivot:SetProperty("Description",16/*exFilterBarDateTodayCaption*/,"Azi")
 oPivot:SetProperty("Description",18/*exFilterBarDateWeekDays*/,"D L Ma Mi J V
S")

 oPivot:SetProperty("Description",25/*exFilterBarExclude*/,"Exclud")
 oPivot:SetProperty("Description",26/*exColumnsFloatBar*/,"Coloane")
 oPivot:SetProperty("Description",11/*exFilterBarAnd*/,"si")
 oPivot:SetProperty("Description",12/*exFilterBarDate*/,"Data:")
 oPivot:SetProperty("Description",15/*exFilterBarDateTitle*/,"Data")
 oPivot:SetProperty("Description",13/*exFilterBarDateTo*/,"la")
 oPivot:SetProperty("Description",24/*exFilterBarNot*/,"nu")
 oPivot:SetProperty("Description",23/*exFilterBarOr*/,"sau")
 oPivot:Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 oPivot:DataColumns:Item("OrderDate"):SortType := 2/*SortDate*/
 oPivot:PivotRows := "9"
 oPivot:Refresh()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Pivot.DisplayFilterList as FilterListEnum
Specifies what the column's filter displays.

Type Description

FilterListEnum
A FilterListEnum expression that specifies the options for
filtering box being shown when the user clicks the drop
down filter button.

By default, the DisplayFilterList property is exFilterListDefault, which is a bit-OR
combination of : exAllItems | exSortItemsAsc | exShowCheckBox | exShowFocusItem |
exShowExclude. For instance, you can use the DisplayFilterList property to allow displaying
the drop down filter in the column's header, if the DisplayFilterList property is exNoItems(2),
or you can hide the Exclude field, by setting the DisplayFilterList property on exAllItems |
exSortItemsAsc | exShowCheckBox | exShowFocusItem. The FilterInclude property
determines the items to be shown when the user applies a filter. The FilterCriteria property
determines whether the OR or AND is used between columns. You can use the
FilterBarPromptVisible property to show or hide the control's filter prompt field. The
SortType property of the Column object determines the type of the filtering box being
displayed as shown bellow:

The following screen shot shows the filtering box, if the SortType property is SortString:

The following screen shot shows the filtering box, if the SortType property is SortDate:

property Pivot.DisplayPivotData as Long
Retrieves or sets the maximum number of rows to be displayed from the pivot's data.

Type Description

Long
A Long expression that specifies the number of rows to be
displayed on the control's list once the data is loaded. If
negative, the control displays all loaded rows.

By default, the DisplayPivotData property is 256, which means that the control displays max
256 rows in the control's list (for the data being imported). This property does not affect
the number of items / rows to be loaded from the DATA you provide , it just adjusts the
number of rows to be displayed on the control's list. If negative, all items/rows are being
displayed on the control's list. You can use the property to prevent displaying the entire data
once the data is loaded to the control (this could be a time consuming if you load a large
data). The ... (three dots) is on the last line, indicating that there is more data that can be
displayed The DisplayPivotFields property specifies the number of maximum columns to be
added during the execution of the current layout. The LoadHeadersOnly property loads the
headers only, so no data is loaded.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method

 The DisplayPivotData property has effect only if calling before any of the previously
methods. This property does not affect the control's list once the control display grouping
data (the pivot bar shows no empty content). In other words, the DisplayPivotData
property affects only the data to be displayed once new data is drop to the control. Use the
DisplayPivotRows property to limit the number of generated rows (PivotRows property is
not empty).

The following screen shot shows the control's list if the DisplayPivotData property is 6:

property Pivot.DisplayPivotFields as Long
Retrieves or sets the maximum number of columns to be displayed on the control's list.

Type Description

Long

A Long expression that specifies the number of columns to
be to be added during the execution of the current layout.
If negative all executing columns are shown in the control's
list

By default, the The DisplayPivotFields property is 256. The DisplayPivotFields property
specifies the number of maximum columns to be added during the execution of the current
layout. The DisplayPivotData property retrieves or sets the maximum number of rows to be
displayed from the pivot's data. For instance, this property is useful to limit the columns to
be added to the control's list, when you are grouping more columns, which can generate a
lot of columns to be shown. This property prevent showing all of them during executing of
the layout. The PivotColumns property indicates the list of data columns to be shown on the
control's list. The DisplayPivotRows property retrieves or sets the maximum number of
rows to be generated on the control's list.

property Pivot.DisplayPivotRows as Long
Retrieves or sets the maximum number of rows to be generated on the control's list.

Type Description

Long A Long expression that specifies the number of rows when
the control generates the result.

By default, the DisplayPivotRows property is 16384, which indicates that the number of
rows is limited to 16384 rows. If the DisplayPivotRows property is -1, there is no limit for
generated rows. The DisplayPivotFields property specifies the number of maximum columns
to be added during the execution of the current layout. The DisplayPivotData property
retrieves or sets the maximum number of rows to be displayed from the pivot's data.

property Pivot.DrawGridLines as GridLinesEnum
Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that specifies the grid lines to
be shown on the control's list.

Use the DrawGridLines property to add grid lines to the current view. Use the GridLineColor
property to specify the color for grid lines. The GridLineStyle property to specify the style
for horizontal or/and vertical gridlines in the control. Use the LinesAtRoot property specifies
whether the control links the root items of the control. Use the HasLines property to specify
whether the control draws the link between child items to their corresponding parent item

property Pivot.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ForeColor property to change the
control's foreground color. Use the BackColor property to change the control's background
color.

method Pivot.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your events, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. You can use
the Refresh method to refresh the control's content.

property Pivot.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Pivot.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

For instance, the following sample retrieves the the handle of the first visible item:

Debug.Print Pivot1.ExecuteTemplate("Items.FirstVisibleItem()")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Pivot.ExpandAll ()
Expands all rows.

Type Description

property Pivot.ExpandOnDblClick as Boolean
Specifies whether the item is expanded or collapsed if the user dbl clicks the item.

Type Description

Boolean A boolean expression that indicates whether an item is
expanded on dbl click.

 By default, the ExpandOnDblClick property is TrueUse the ExpandOnDblClick property to
disable expanding or collapsing items when user dbl clicks an item. The control fires the
DblClick event when user double clicks the control. Use the ShowDataOnDblClick property
on True, to let the user to display the data that generated the result when a cell is double
clicked.

method Pivot.Export ([Destination as Variant], [Options as Variant])
Exports the control's data to a CSV or HTML format.

Type Description

Destination as Variant

A String expression that specifies the file/format to be
created. The Destination parameter indicates the format
to be created as follows:

"array" indicates that the Export method returns the
control's data as a two-dimensional array
if "htm" or "html", the control returns the HTML format
(including CSS style)
Any file-name that ends on ".htm" or ".html" creates
the file with the HTML format inside
missing, empty, or any other case the Export exports
the control's data in CSV format.

No error occurs, if the Export method can not create the
file.

Options as Variant A String expression that specifies the options to be used
when exporting the control's data, as explained bellow.

Return Description

Variant

The result of the Export method is a:

two-dimensional array, if the Destination is "array".
For instance Export("array","vis") method exports the
control's data as it is displayed into a two-dimensional
array (zero-based). The result includes the columns
headers into the first line, while the rest of lines
contains the control's visible data. For instance,
Export("array", "vis")(1, 5) returns the value of the cell
on the second column and fifth row.
string, that indicates the format being exported. It
could be CSV or HTML format based on the
Destination parameter

The Export method can export the control's DATA to a CSV or HTML format. The Export
method can export a collection of columns from selected, visible, check or all items. By
default, the control export all items, unless there is no filter applied on the control, where
only visible items are exported. No visual appearance is saved in CSV format, instead the

HTML format includes the visual appearance in CSS style.

The following file samples, shows the format the Export method can export the control's
DATA:

CSV format
HTML format

The following screen shot shows the control's DATA in CSV format:

The following screen shot shows the control's DATA in HTML format:

The Options parameter consists a list of fields separated by | character, in the following
order:

1. The first field could be all, vis, sel or chk, to export all, just visible, selected or
checked items. The all option is used, if the field is missing. The all option displays all
items, including the hidden or collapsed items. The vis option includes the visible items
only, not including the child items of a collapsed item, or not-visible items (item's height
is 0). The sel options lists the items being selected. The chk option lists all check and
visible items. If chk option is used, the first column in the columns list should indicate
the index of the column being queried for a check box state.

2. the second field indicates the column to be exported. All visible columns are exported,
if missing. The list of columns is separated by , character, and indicates the index of
the column to be shown on the exported data. The first column in the list indicates the
column being queried, if the option chk is used.

3. the third field indicates the character to separate the fields inside each exported line
[tab character-if missing]. This field is valid, only when exporting to a CSV format

4. the forth field could be ansi or unicode, which indicates the character-set to save the
control's content to Destination. For instance, Export(Destination,"|||unicode") saves
the control's content to destination in UNICODE format (two-bytes per character). By
default, the Export method creates an ANSI file (one-byte character)

The Destination parameter indicates the file to be created where exported date should be
saved. For instance, Export("c:\temp\export.html") exports the control's DATA to
export.html file in HTML format, or Export("","sel|0,1|;") returns the cells from columns 0, 1
from the selected items, to a CSV format using the ; character as a field separator.

The "CSV" refers to any file that:

CSV stands for Comma Separated Value
is plain text using a character set such as ASCII, Unicode,
consists of records (typically one record per line),
with the records divided into fields separated by delimiters (typically a single reserved
character such as tab, comma, or semicolon; sometimes the delimiter may include
optional spaces),
where every record has the same sequence of fields

The "HTML" refers to any file that:

HTML stands for HyperText Markup Language.
is plain text using a character set such as ASCII, Unicode
It's the way web pages are encoded to handle things like bold, italics and even color
text red.

You can use the Copy/CopyTo to export the control's view to
clipboard/EMF/BMP/JPG/PNG/GIF or PDF format.

Currently, the /COM version allows you to use the Export method in window-less mode (no
user interface). In order to use the control in window-less mode, after creation of the /COM
object it is required to call any of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method.

Any of the following templates creates dynamically the /COM component, and uses the
Export method to display the result of imported data:

CreateObject("Exontrol.Pivot")
{
 Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 PivotRows = "0"
 PivotColumns = "avg(5)"
 print(Export())
}

or:

CreateObject("Exontrol.Pivot")
{

 Dim rs
 rs = CreateObject("ADOR.Recordset")
 {
 ' Change the Path to the SAMPLE.MDB if nothing is displayed
 Open("Data","Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\Access2007\sample.accdb", 3, 3)
 }
 DataSource = rs
 PivotRows = "0"
 PivotColumns = "max(5)"
 print(Export())
}

or:

CreateObject("Exontrol.Pivot")
{
 LoadXML("https://www.exontrol.net/testing.xml")
 PivotRows = "1"
 PivotColumns = "max(6)"
 print(Export())
}

You can use the eXHelper tool to convert any of these templates to your programming
languages. For instance, in VB6 the code shows as:

With CreateObject("Exontrol.Pivot")
 .Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt"
 .PivotRows = "0"
 .PivotColumns = "avg(5)"
 Debug.Print(.Export())
End With

or in PowerBuilder shows as:

OleObject var_Pivot

var_Pivot = CREATE OLEObject
var_Pivot.ConnectToNewObject("Exontrol.Pivot")

 var_Pivot.Import("C:\Program Files\Exontrol\ExPivot\Sample\data.txt")
 var_Pivot.PivotRows = "0"
 var_Pivot.PivotColumns = "avg(5)"
 MessageBox("Information",string(String(var_Pivot.Export())))

property Pivot.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color

A color expression that defines the background color for
description of the control's filter. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color.

The following VB sample changes the visual appearance for control's filter bar. The sample
applies the skin " " to the "close" button in the control's filter bar, and the " " skin to the
filter bar caption area:

With Pivot1
 With .VisualAppearance
 .Add &H2, App.Path + "\fbarclose.ebn"
 .Add &H12, App.Path + "\filterbar.ebn"
 End With
 .Background(exFooterFilterBarButton) = &H2000000
 .FilterBarBackColor = &H12000000
 .FilterBarForeColor = RGB(255, 255, 255)
End With

The following C++ sample changes the visual appearance for the "close" button in the
control's filter bar:

#include "Appearance.h"
m_pivot.GetVisualAppearance().Add(0x2,
COleVariant(_T("D:\\Temp\\ExPivot.Help\\fbarclose.ebn")));
m_pivot.GetVisualAppearance().Add(0x12,
COleVariant(_T("D:\\Temp\\ExPivot.Help\\filterbar.ebn")));
m_pivot.SetBackground(1 /*exFooterFilterBarButton*/, 0x2000000);
m_pivot.SetFilterBarBackColor(0x12000000);
m_pivot.SetFilterBarForeColor(RGB(255,255,255));

The following VB.NET sample changes the visual appearance for the "close" button in the
control's filter bar:

With AxPivot1
 With .VisualAppearance
 .Add(&H2, "D:\Temp\ExPivot.Help\fbarclose.ebn")
 .Add(&H12, "D:\Temp\ExPivot.Help\filterbar.ebn")
 End With
 .Template = "FilterBarBackColor = 301989888"
 .FilterBarForeColor = Color.White
 .set_Background(EXTREELib.BackgroundPartEnum.exFooterFilterBarButton, &H2000000)
End With

The following C# sample changes the visual appearance for the "close" button in the
control's filter bar:

axPivot1.VisualAppearance.Add(0x2, "D:\\Temp\\ExPivot.Help\\fbarclose.ebn");
axPivot1.VisualAppearance.Add(0x12, "D:\\Temp\\ExPivot.Help\\filterbar.ebn");
axPivot1.set_Background(EXTREELib.BackgroundPartEnum.exFooterFilterBarButton,

0x2000000);
axPivot1.Template = "FilterBarBackColor = 301989888";
axPivot1.FilterBarForeColor = Color.White;

The following VFP sample changes the visual appearance for the "close" button in the
control's filter bar:

With thisform.Pivot1
 With .VisualAppearance
 .Add(2, "D:\Temp\ExPivot.Help\fbarclose.ebn")
 .Add(18, "D:\Temp\ExPivot.Help\filterbar.ebn")
 EndWith
 .Object.Background(1) = 33554432
 .FilterBarBackColor = 301989888
 .FilterBarForeColor = RGB(255,255,255)
EndWith

The 301989888 value is the 0x12000000 value in hexadecimal.

property Pivot.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. For instance, if the control filters items based on the columns "EmployeeID" and
"ShipVia", the control's filter bar caption would appear such as "[EmployeeID] = '...' and
[ShipVia] = '...'". The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include

the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the

height of the control's filter bar. Use the FilterBarFont property to specify the font for the
control's filter bar. Use the Description property to define predefined strings in the filter bar
caption. The FilterBarPromptVisible property specifies whether how/where the control's
filter/prompt is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items. At runtime the itemcount is a
positive integer that indicates the count of all items. For instance, "value + `<r>
<fgcolor=808080>Total: ` + itemcount" includes in the filter bar the number of items
aligned to the right.
visibleitemcount keyword returns the number of visible items. At runtime, the
visibleitemcount is a positive integer if no filter is applied, and negative if a filter is
applied. If positive, it indicates the number of visible items. The visible items does not
include child items of a collapsed item. If negative, a filter is applied, and the absolute
value minus one, indicates the number of visible items after filter is applied. 0 indicates
no visible items, while -1 indicates that a filter is applied, but no item matches the filter
criteria. For instance, "value + `<r><fgcolor=808080>` + (visibleitemcount < 0 ? (
`Result: ` + (abs(visibleitemcount) - 1)) : (`Visible: ` + visibleitemcount))" includes
"Visible: " plus number of visible items, if no filter is applied or "Result: " plus number of
visible items, if filter is applied, aligned to the right
matchitemcount keyword returns the number of items that match the filter. At runtime,
the matchitemcount is a positive integer if no filter is applied, and negative if a filter is
applied. If positive, it indicates the number of items within the control. If negative, a
filter is applied, and the absolute value minus one, indicates the number of matching
items after filter is applied. A matching item includes its parent items, if the control's
FilterInclude property allows including child items. 0 indicates no visible items, while -1
indicates that a filter is applied, but no item matches the filter criteria. For instance,
"value + `<r><fgcolor=808080>` + (matchitemcount < 0 ? (`Result: ` + (
abs(matchitemcount) - 1)) : (`Visible: ` + matchitemcount))" includes "Visible: " plus
number of visible items, if no filter is applied or "Result: " plus number of macthing
items, if filter is applied, aligned to the right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the
number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned

to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The
FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. At runtime, the available keyword may return a
string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]<fgcolor> </fgcolor>
[<s>RequiredDate</s>]<fgcolor> </fgcolor>[<s>ShippedDate</s>]<fgcolor>
</fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>[<s>Select</s>]</fgcolor>", so
the control automatically applies HTML format, which you can change it. For instance,
"value + ` ` + available", displays the current filter, including all available columns to be
filtered. For instance, the "value + `<r>` + available replace `C0C0C0` with `FF0000`"
displays the available columns aligned to the right with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. At runtime, the allui keyword may return a string such as "
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results
all keyword returns the list of all columns (visible or hidden). At runtime, the all
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor>
<fgcolor> </fgcolor>[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor>
<fgcolor=C0C0C0>[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor>
<fgcolor=C0C0C0>[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "all",
displays the current filter, including all other columns. For instance, the "((all +
`<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all

columns with different background/foreground colors including the number of
items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the

about:blank

index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Pivot.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use the FilterBarHeight property to specify the height
of the filter bar. Use the FilterBarCaption property to define the control's filter bar caption.
Use the Refresh method to refresh the control.

property Pivot.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarFont property to specify the filter bar's
font. Use the FilterBarCaption property to specify the caption of the control's filter bar.

property Pivot.FilterBarHeight as Long
Specifies the height of the control's filter bar description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the FilterBarFont property to specify
the font for the control's filter bar.

property Pivot.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. Use the FilterBarCaption property to change the caption in the filter bar once a
new filter is applied. The FilterBarFont property specifies the font to be used in the filter
bar. The FilterBarBackColor property specifies the background color or the visual aspect of
the control's filter bar. The FilterBarForeColor property specifies the foreground color or the
control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

about:blank

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The

HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property Pivot.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. The FilterBarPromptType property specifies the type
of filtering when the user edits the prompt in the filter bar.

property Pivot.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering.

property Pivot.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. The FilterBarPromptColumns property specifies the list of columns to be used
when filtering by prompt. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may
include wild characters as follows:

'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property Pivot.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. The FilterBarCaption property defines the caption to be displayed on the
control's filter bar. The FilterBarPromptType property specifies the type of filtering when the
user edits the prompt in the filter bar. The FilterBarPromptColumns property specifies the
list of columns to be used when filtering by prompt.

The following screen show shows the filter prompt:

The following screen show shows the list once the user types "london":

property Pivot.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered. Use the
DisplayFilterList property to specify whether the column's header displays a drop down
filter button. You can use the FilterBarPromptVisible property to show or hide the control's
filter prompt field.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are grided in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not grided in
the FilterCriteria property, and the user filters values by that column, the AND operator is
used by default. For instance, let's say that we have three columns, and FilterCriteria
property is "%0 or %1". If the user filter for all columns, the filter clause is equivalent with (
%0 or %1) and %2, and it means all that match the third column, and is in the first or the
second column.

property Pivot.FilterInclude as FilterIncludeEnum
Specifies the items being included after the user applies the filter.

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds, which specifies that only
items (and parent-items) that match the filter are being displayed. Use the FilterInclude
property to specify whether the child- items should be displayed when the user applies the
filter. Use the ClearFilter method to clear the control's filter. Use the FilterCriteria property
to filter items using the AND, OR and NOT operators. Use the FilterBarPromptVisible
property to show the control's filter-prompt, that allows you to filter items as you type.

The following table shows items to display, when filter for "A" items, using different values
for FilterInclude property:

no filter exItemsWithoutChilds
0

exItemsWithChilds
1

exRootsWithoutChilds
2

exRootsWithChilds
3

property Pivot.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font . Use the FilterBarFont property to
assign a different font for the control's filter bar. Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while
perform multiple changes on the control.

The following VB sample assigns by code a new font to the control:

With Pivot1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_pivot.GetFont();
font.SetName("Tahoma");
m_pivot.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxPivot1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);

axPivot1.Font = font;
axPivot1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.Pivot1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property Pivot.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that specifies the control's foreground
color.

The ForeColor property specifies the control's foreground color. The BackColor property
specifies the control's background color. The ForeColor property changes the foreground
color of the control's pivot bar. You can use the Background(exPivotBarForeColor) property
to specify a different foreground color for the control's pivot bar. Use the Appearance
property to specify the visual appearance of the control's frame.

property Pivot.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color for
control's header.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. Use the Font property to change the control's font. Use the HeaderVisible property
to hide the control's header bar.

method Pivot.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the Pivot.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property Pivot.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. You can use the <a> anchor
elements to insert hyperlinks to cells, bars or links.

The visual effect is applied to the anchor elements, if the FormatAnchor property is not
empty. For instance, if you want to do not show with a new effect the clicked anchor
elements, you can use the FormatAnchor(False) = "", that means that the clicked or not-
clicked anchors are shown with the same effect that's specified by FormatAnchor(True). An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick event to notify that the user clicks an anchor element. This
event is fired only if prior clicking the control it shows the hand cursor. The AnchorClick
event carries the identifier of the anchor, as well as application options that you can specify
in the anchor element. The hand cursor is shown when the user hovers the mouse on the
anchor elements.

property Pivot.FormatAppearances as FormatAppearances
Retrieves the FormatAppearances collection of the pivot control.

Type Description

FormatAppearances
A FormatAppearances object that holds a collection of
FormatAppearance objects to be displayed on the
control's context menu.

The FormatAppearances property gives access to a collection of FormatAppearance
objects to be displayed on the control's context menu as seen bellow. Each
FormatAppearance object contains font or color attributes that can be applied to any
column/row on the control's list. If the PivotBarVisible property includes the
exPivotBarAllowFormatAppearance flag, the control's context menu includes the
FormatAppearance objects. If the exPivotBarAllowFormatAppearance flag is missing from
the PivotBarVisible property, the control's context menu displays no FormatAppearance
objects. The Add method adds a new FormatAppearance object to the collection. The
FormatConditionalAppearances helps you to provide conditional-format for your data, or in
other words, ability to highlight values that matches a specified expression.

The FormatAppearance object changes the visual appearance of your data as listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

 By default, the control's context menu displays the following FormatAppearance objects:

The following screen shot show the control's context menu that contains more
FormatAppearance objects

property Pivot.FormatConditionalAppearances as
FormatConditionalAppearances
Retrieves the FormatConditionalAppearances collection of the pivot control.

Type Description

FormatConditionalAppearances
A FormatConditionalAppearances object that holds a
collection of FormatConditionalAppearance objects to be
displayed on the control's context menu.

The FormatConditionalAppearances property gives access to a collection of
FormatConditionalAppearance objects to be displayed on the control's context menu as
seen bellow. Each FormatConditionalAppearance object contains font or color attributes
that can be applied to any column/row on the control's list, based on an expression. If the
PivotBarVisible property includes the exPivotBarAllowFormatConditionalAppearance flag,
the control's context menu includes the FormatConditionalAppearance objects. If the
exPivotBarAllowFormatConditionalAppearance flag is missing from the PivotBarVisible
property, the control's context menu displays no FormatConditonalAppearance objects. The
Add method adds a new FormatConditionalAppearance object to the collection. Use the
FormatAppearances property to add support for format the entire column of the pivot table.

The FormatCondtionalAppearance object changes the visual appearance of your data as
listed:

font attributes, like bold, italic,...
different foreground colors
different background colors, including the ability to show EBN objects

 By default, the control's context menu displays the following FormatConditionalAppearance
objects:

property Pivot.FormatContents as FormatContents
Retrieves the FormatContents collection of the pivot control.

Type Description

FormatContents A FormatContents object that holds a collection of
FormatContent object.

The FormatContent object formats or converts the values to be displayed on the
columns/rows. For instance, you can specify a column to be display its content as currency,
or you can show the control's content in uppercase. The Expression property specifies the
format to be applied on objects. The FormatContents collection is displayed on the control's
context menu under the Content sub menu as shown bellow. Use the Add method to add
new FormatContent objects. If the FormatContent's Expression is not valid, the object
shows as disabled in the control's context menu. If the PivotBarVisible property includes the
exPivotBarAllowFormatContent flag, the control's context menu includes the FormatContent
objects. If the exPivotBarAllowFormatContent flag is missing from the PivotBarVisible
property, the control's context menu displays no FormatContent objects.

Here's a few samples on how to use the FormatContent objects:

FormatContents.Add("upper","upper(value)"), displays the column/row in upper-case,
such as 'ROMANIA' instead 'Romania'

FormatContents.Add("longdate","longdate(date(value))"), displays the object's content
as date in long format, such as 'Monday, December 31, 2012'

FormatContents.Add("letter","'<fgcolor=808080>' + upper(value left 1) +
'</fgcolor> ' + value"), shows the first letter twice in bold and gray, such as 'R
Romania' instead 'romania'

FormatContents.Add("proper","'' + ((0:=proper(value)) left 1) + '' + (=:0 mid
2)"), displays the first letter in bold and upper-case, and let the rest unchanged, such
as 'Mihai Filimon' instead 'mihai filimon'.

property Pivot.FormatPivotAggregate as String
Specifies the format to display an aggregate function.

Type Description

String A String expression that specifies the format to display the
aggregate functions in the control.

By default, the FormatPivotAggregate property is "proper(caggregate)". Use the
FormatPivotHeader property to determine the way the column displays the captions in the
control.

The following keywords are supported by the FormatPivotAggregate:

aggregate, indicates the Key of the Aggregate object associated with the Column, or
empty if the Column belongs to PivotRows collection.
iaggregate, indicates the index/position of the Aggregate object associated with the
Column, or 0 if no Aggregate function associated. This value indicates the 1-based
position of the Aggregate object in the Aggregates collection.
naggregate, indicates the Name of the Aggregate object associated with the Column,
or empty if the Column belongs to PivotRows collection.
caggregate, indicates the Caption of the Aggregate object associated with the
Column, or empty if the Column belongs to PivotRows collection
ilevel, indicates the index of the level where the Aggregate function is displayed. This is
valid only for PivotTotals property, else it is -1.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and

Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters

proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Pivot.FormatPivotHeader as String
Specifies the format to display the columns in the pivot bar.

Type Description

String A String expression that determines the format to show
the column's caption in the control's pivot bar.

By default, the FormatPivotHeader property is "iaggregate ? (caggregate + ' of ' +
caption) : caption", which indicates that the column's default caption is being displayed in
no aggregate function is associated with the column, and Caption of the Aggregate object
associated with the column, followed by of keyword, and the column's caption, something
like Sum of Column 1. Use the FormatPivotHeader property to determine the way the
column displays the captions in the control.

The following keywords are supported by the FormatPivotHeader:

aggregate, indicates the Key of the Aggregate object associated with the Column, or
empty if the Column belongs to PivotRows collection.
iaggregate, indicates the index/position of the Aggregate object associated with the
Column, or 0 if no Aggregate function associated. This value indicates the 1-based
position of the Aggregate object in the Aggregates collection.
naggregate, indicates the Name of the Aggregate object associated with the Column,
or empty if the Column belongs to PivotRows collection.
caggregate, indicates the Caption of the Aggregate object associated with the
Column, or empty if the Column belongs to PivotRows collection.
ilevel, indicates the index of the level where the Aggregate function is displayed. This is
valid only for PivotTotals property, else it is -1.
caption, indicates the Caption property of the Column
icaption, indicates the Index property of the Column
display, specifies whether the caption is shown on the control's pivot bar (0), or in the
columns header(1)

For instance, "icaption + ' ' + caption" displays the index + caption in the column's header.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended

using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)

yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

property Pivot.FormatPivotTotal as String
Specifies the format to display an aggregate/total functions.

Type Description

String A String expression that specifies the caption to be
displayed for Total/Sub-Total fields.

By default, the FormatPivotTotal property is "(iaggregate = 5 ? (ilevel = 0 ? 'Total' :
'Subtotal') : caggregate)". Use the FormatPivotHeader property to determine the way the
column displays the captions in the control. Use the FormatPivotAggregate property to
determine the way the control displays the aggregate functions.

The following keywords are supported by the FormatPivotTotal:

aggregate, indicates the Key of the Aggregate object associated with the Column, or
empty if the Column belongs to PivotRows collection.
iaggregate, indicates the index/position of the Aggregate object associated with the
Column, or 0 if no Aggregate function associated. This value indicates the 1-based
position of the Aggregate object in the Aggregates collection.
naggregate, indicates the Name of the Aggregate object associated with the Column,
or empty if the Column belongs to PivotRows collection.
caggregate, indicates the Caption of the Aggregate object associated with the
Column, or empty if the Column belongs to PivotRows collection
ilevel, indicates the index of the level where the Aggregate function is displayed. This is
valid only for PivotTotals property, else it is -1.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and

Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters

proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

method Pivot.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to improve performance of the
control while loading data into it.

method Pivot.GetHeaders ()
Gets a safe array of all generated columns/headers.

Type Description
Return Description

Variant A safe array (two dimensional), that contains the
headers of the control's list.

The GetHeaders method returns a two-dimensional safe array that includes all headers
being shown on the control's list. The GetItems method gets a two-dimensional safe array
that includes all values/items being shown on the control's list.

Having the following layout:

The GetHeaders method gets the following result:

- GetHeaders() as object[,] {Dimensions:[5, 2]} object[,]
 [0, 0] "ShipCountry ShipCity" object {string}
 [0, 1] null object
 [1, 0] "Sum of Freight" object {string}
 [1, 1] null object
 [2, 0] "Federal Shipping" object {string}
 [2, 1] "Sum of Freight" object {string}
 [3, 0] "Speedy Express" object {string}
 [3, 1] "Sum of Freight" object {string}
 [4, 0] "United Package" object {string}
 [4, 1] "Sum of Freight" object {string}

method Pivot.GetItems ()
Gets a safe array of all generated items/values.

Type Description
Return Description

Variant A safe array (two dimensional), that contains the
values/items of the control's list.

The GetItems method gets a two-dimensional safe array that includes all values/items being
shown on the control's list. The GetHeaders method returns a two-dimensional safe array
that includes all headers being shown on the control's list.

Having the following layout:

The GetItems method gets the following result:

- GetItems() as object[,] {Dimensions:[5, 16]} object[,]
 [0, 0] "Brazil" object {string}
 [0, 1] "Canada" object {string}
 [0, 2] "Finland" object {string}
 [0, 3] "France" object {string}
 [0, 4] "France" object {string}
 [0, 5] "France" object {string}
 [0, 6] "Germany" object {string}
 [0, 7] "Germany" object {string}
 [0, 8] "Germany" object {string}
 [0, 9] "Ireland" object {string}
 [0, 10] "Mexico" object {string}

 [0, 11] "Poland" object {string}
 [0, 12] "Portugal" object {string}
 [0, 13] "Switzerland" object {string}
 [0, 14] "USA" object {string}
 [0, 15] "USA" object {string}
 [1, 0] 108.0 object {double}
 [1, 1] 45.0 object {double}
 [1, 2] 59.0 object {double}
 [1, 3] 2.0 object {double}
 [1, 4] 30.0 object {double}
 [1, 5] -96.0 object {double}
 [1, 6] 77.0 object {double}
 [1, 7] -45.0 object {double}
 [1, 8] 1.0 object {double}
 [1, 9] 142.0 object {double}
 [1, 10] -35.0 object {double}
 [1, 11] 81.0 object {double}
 [1, 12] -13.0 object {double}
 [1, 13] 1.0 object {double}
 [1, 14] -147.0 object {double}
 [1, 15] -13.0 object {double}

property Pivot.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines. The GridLineStyle property to specify the style for
horizontal or/and vertical gridlines in the control. Use the LinesAtRoot property specifies
whether the control links the root items of the control. Use the HasLines property to specify
whether the control draws the link between child items to their corresponding parent item.

property Pivot.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines. Use the GridLineColor
property to specify the color for grid lines. Use the LinesAtRoot property specifies whether
the control links the root items of the control. Use the HasLines property to specify whether
the control draws the link between child items to their corresponding parent item.

The following VB sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = GridLinesStyleEnum.exGridLinesHDash Or
GridLinesStyleEnum.exGridLinesVSolid

The following VB/NET sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash Or
exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid

The following C# sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash |
exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid;

The following Delphi sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle := Integer(EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash) Or
Integer(EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid);

The following VFP sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = 36

property Pivot.HasLines as HierarchyLineEnum
Enhances the graphic representation of a grid control's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

HierarchyLineEnum An HierarchyLinesEnum expression that indicates whether
the control displays the hierarchy lines.

Use the HasLines property to hide the hierarchy lines. Use the LinesAtRoot property to
allow control displays a line that links that root items of the control. Use the DrawGridLines
property to display grid lines. The GridLineStyle property to specify the style for horizontal
or/and vertical gridlines in the control.

property Pivot.HeaderAppearance as AppearanceEnum
Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum A AppearanceEnum expression that specifies the header's
appearance.

The HeaderAppearance property retrieves or sets a value that indicates the header's
appearance.

property Pivot.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A long expression that indicates the height of the control's
header bar.

By default, the HeaderHeight property is 18 pixels. Use the HeaderHeight property to
change the height of the control's header bar. Use the HeaderVisible property to hide the
control's header bar. The HeaderHeight property specifies the height of the control's
header, and so the height of the columns to be displayed on the control's pivot bar. Use the
DefaultColumnWidth property to specify the default for the width of the columns.

property Pivot.HeaderVisible as Boolean
Retrieves or sets a value that indicates whether the the control's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the columns
header bar is visible or hidden.

Use the HeaderVisible property to hide the columns header bar. Use the HeaderHeight
property to specify the height of the control's header bar. Use the BackColorHeader
property to specify the header's background color. The Background(exCursorHoverColumn)
property specifies the visual appearance of the column's header when the cursor hovers
it. Use the DefaultColumnWidth property to specify the default for the width of the columns.

property Pivot.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

https://exontrol.com/eximages.jsp

property Pivot.hWnd as Long

Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

method Pivot.Images (Handle as Variant)

Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder
(ShowImageList property). The ImageSize property defines the size (width/height) of the
icons within the control's Images collection. Use the ReplaceIcon method to add, remove or
clear icons in the control's images collection. Use the CheckImage or RadioImage property
to specify a different look for checkboxes or radio buttons in the cells. The FormatImage
property defines the expression to determine the images the column display.

property Pivot.ImageSize as Long
Retrieves or sets the size of control' icons/images/check-boxes/radio-buttons.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays
check-box or radio-buttons
expand/collapse glyphs
header's sorting or drop down-filter glyphs

method Pivot.Import ([Source as Variant], [Options as Variant])
Imports the control's data from a CSV format.

Type Description

Source as Variant

The Source parameter may be one of the following:

A String expression that indicates the path to a file to
be loaded or the content itself (If the expression
points to a file, the file's content is loaded)
a Safe Array one-dimension or two dimensional to be
loaded. If the Source parameter points to a one-
dimension safe array, it indicates the rows to be
loaded. If the Source parameter refers a two-
dimension safe array, the first dimension indicates the
rows, while the second indicates the column. If the
Options parameter includes the word "reverse", the
first dimension indicates the columns, while the
second indicates the rows of data.

Options as Variant
A String expression that specifies different options to be
used when loading data using the Import method as
explained bellow.

Return Description
Variant Reserved for future use only.

The Import method loads CSV files / CSV content or data from a safe-array as explained:

A String expression that indicates the path to a file to be loaded or the content itself. If
the expression points to a file, the file's content is loaded.The Import method loads
CSV files or CSV content. A comma-separated values (CSV) file stores tabular data
(numbers and text) in plain-text form. Plain text means that the file is a sequence of
characters, with no data that has to be interpreted instead, as binary numbers. A CSV
file consists of any number of records, separated by line breaks of some kind; each
record consists of fields, separated by some other character or string, most commonly
a literal comma or tab. Usually, all records have an identical sequence of fields. The
Source parameter indicates the path to the CSV file to be loaded, or the content itself.
For instance, the Import "C:\Program Files\Exontrol\ExPivot\Sample\data.txt" imports
the data.txt file.
A Safe array of one-dimensional or two-dimension type, which indicates the data to be
loaded. The safe array must be with 1 or 2 dimensions, else an error occurs. If the
Source parameter refers a one-dimensional array, the content of the array indicates

the values of the rows. If the Source parameter refers a two-dimensional array, the
first dimension indicates the columns, while the second indicates the rows (unless the
Options parameter indicates the "reverse" word, which reverses the columns with rows
. For instance, in VB6 you can load data from a safe array using the syntax Import
Array(1, 1, 2, 2, 3, 3, 4, 4). Where Array is a method of VB6 that creates a safe array
of different values. The same way you can have the declaration Dim data(1,99) as
String, and call the Import data, will load a two-dimensional array. The sample loads 2
columns, and 100 rows from the data array.

Here's a few samples of using Import method with arrays, using the /COM version:

VB,VBA: .Import (Array(1, 2, 3, 4, 5))
VB/NET: .GetOcx().Import(New Integer() {1, 2, 3, 4, 5})
C#: .Import(new int[] { 1, 2, 3, 4, 5 }, null);

Here's a few samples of using Import method with arrays, using the /NET version:

VB/NET: .Import(New Integer() {1, 2, 3, 4, 5})
C#: .Import(new int[] { 1, 2, 3, 4, 5 });;

The DataColumns property accesses the control's Columns collection, so you can rename
or specify the column's type once the control's data is loaded. The
PivotColumnsFloatBarVisible property specifies whether the Columns collection is displayed
to a floating bar, so user can drag and drop columns to the control's pivot bar so it gets
data summarized. The ClearData method clears the control's data. Use the
DisplayPivotData property to specify the number of rows to be displayed on the control's
list. The LoadHeadersOnly property loads the headers only, so no data is loaded.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control. Use the AllowDrop
property on False, to prevent loading the data-files (TXT, XML files), by drag and
drop, into the control.

The AppendData method appends data to the control (prevents clearing data already
loaded).

The following properties may be used to group and summarize the data, once it is loaded:

PivotRows property specifies the list of DATA columns that determines the first column
in the control's list. In other words, the Group-By columns

PivotColumns property specifies the list of DATA columns that determines the rest of
the columns to be displayed on the control's list
PivotTotals property specifies the list of total/sub-total functions to be displayed on the
control's list.

If the Source parameter points to a string, the Options parameter indicates a list of options
separated by space character (or \r, \n or \r\n newline delimiters) as listed option=value,
where the option and the value could be:

eor, (End Of Row), specifies the delimiter of the row data, \r\n (new-line separator) if
missing. You can use the ' or ` to specify the value as a string.
eof, (End of Field), indicates the delimiter of fields inside the row, \t (tab character) if
missing. You can use the ' or ` to specify the value as a string.
str, (STRing), specifies the characters to delimit the strings in the row data, nothing if
missing. You can use the ' or ` to specify the value as a string.
hdr, (HeaDR), specifies if the data reads the first line as a header to be imported.
Could be 1 or 0.

For instance, if the Options parameter is "hdr=0 eof=';'", it indicates that the data in the
Source contains no header information, and the fields inside the data are separated by a ;
character. If the Options parameter is "eof=';' str=`'`" it indicates that the separator of the
fields in the data is ; character while the ' character delimits the strings inside the data.

If the Source parameter points to a safe array (two-dimensional), the Options parameter
may include the following word:

reverse, the first dimension of the array indicates the columns, and the second
dimension specifies the rows of data. If the reverse word is missing, the first dimension
indicates the rows, while the second dimension specifies the columns.

The following samples show how to load data from specified text (item 1;item 2#item 3;item
4), using different options (eor='#' eof=';' hdr=0). The data looks as follows once the Import
method is called

VB6, VBA (MS Access, Excell...)

With Pivot1
 .Import "item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0"
End With

VB.NET

With Expivot1
 .Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")
End With

VB.NET for /COM

With AxPivot1
 .Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXPIVOTLib' for the library: 'ExPivot 1.0 Control Library'

 #import <ExPivot.dll>
 using namespace EXPIVOTLib;
*/
EXPIVOTLib::IPivotPtr spPivot1 = GetDlgItem(IDC_PIVOT1)->GetControlUnknown();
spPivot1->Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0");

C++ Builder

Pivot1->Import(TVariant("item 1;item 2#item 3;item 4"),TVariant("eor='#' eof=';'
hdr=0"));

C#

expivot1.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0");

JavaScript

<OBJECT classid="clsid:5C9DF3D3-81B1-42C4-BED6-658F17748686" id="Pivot1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Pivot1.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0");
</SCRIPT>

C# for /COM

axPivot1.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0");

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 expivot1.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0");
}

Delphi 8 (.NET only)

with AxPivot1 do
begin
 Import('item 1;item 2#item 3;item 4','eor=''#'' eof='';'' hdr=0');
end

Delphi (standard)

with Pivot1 do
begin
 Import('item 1;item 2#item 3;item 4','eor=''#'' eof='';'' hdr=0');
end

VFP

with thisform.Pivot1
 .Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")

endwith

dBASE Plus

local oPivot

oPivot = form.Activex1.nativeObject
oPivot.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")

XBasic (Alpha Five)

Dim oPivot as P

oPivot = topparent:CONTROL_ACTIVEX1.activex
oPivot.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")

Visual Objects

oDCOCX_Exontrol1:Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")

PowerBuilder

OleObject oPivot

oPivot = ole_1.Object
oPivot.Import("item 1;item 2#item 3;item 4","eor='#' eof=';' hdr=0")

property Pivot.IncludeExpandColumn as IncludeExpandColumnEnum
Specifies whether the column itself is displayed in the list (header/chart), while it expanded (
the column contains child columns).

Type Description

IncludeExpandColumnEnum

An IncludeExpandColumnEnum expression that specifies
whether the column itself is displayed in the list
(header/chart), while it expanded (the column contains
child columns).

By default, the IncludeExpandColumn property is exExcludeExpandColumn (0), which
indicates that the column's data is not shown on the chart when it contains child columns,
and it is shown as expanded. For instance, you can use the IncludeExpandColumn property
to show totals on rows.

The following screen shot shows the control, when IncludeExpandColumn property is
exIncludeExpandColumn:

The following screen shot shows the control, when IncludeExpandColumn property is
exExcludeExpandColumn (default):

property Pivot.Indent as Long

Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items.

If the Indent property is 0, the child items are not indented relative to their parent item. Use
HasLines and LinesAtRoot properties to show the hierarchy lines.

property Pivot.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

PivotRows property
PivotColumns property,
PivotTotals property,
columns size and position,
current selection,
scrolling position and size,
expanded/collapsed items, if any
sorting columns,
filtering options

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

https://www.youtube.com/watch?v=TbWWnDJlD9w

property Pivot.LinesAtRoot as LinesAtRootEnum
Link items at the root of the hierarchy.

Type Description

LinesAtRootEnum A LinesAtRootEnum expression that indicates whether the
control links the items at the root of the hierarchy.

Use the Indent property to increase or decrease the amount, in pixels, that child items are
indented relative to their parent items. Use the HasLines property to enhances the graphic
representation of a tree control's hierarchy by drawing lines that link child items to their
corresponding parent item.

property Pivot.LoadHeadersOnly as Boolean
Loads the headers only, so no data is loaded.

Type Description

Boolean A Boolean expression that specifies whether the control
loads the headers only.

By default, the LoadHeadersOnly property is False, which indicates that headers and data
is loaded by Import or DataSource property. If the LoadHeadersOnly property is True, the
Import or DataSource property loads just the headers of the columns. The
LoadHeadersOnly property loads the headers only, so no data is loaded. The new value for
the LoadHeadersOnly property has effect for the next calling of Import or DataSource
property.

method Pivot.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to load XML documents, previously saved using the SaveXML method. The control is
emptied when the LoadXML method is called, and so the columns and items collection are
emptied before loading the XML document. The DataColumns property accesses the
control's Columns collection, so you can rename or specify the column's type once the
control's data is loaded. The PivotColumnsFloatBarVisible property specifies whether the
Columns collection is displayed to a floating bar, so user can drag and drop columns to the
control's pivot bar so it gets data summarized. The ClearData method clears the control's
data. Use the DisplayPivotData property to specify the number of rows to be displayed on
the control's list.

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control.

The AppendData method appends data to the control (prevents clearing data already
loaded).

The following properties may be used to group and summarize the data, once it is loaded:

PivotRows property specifies the list of DATA columns that determines the first column
in the control's list. In other words, the Group-By columns
PivotColumns property specifies the list of DATA columns that determines the rest of
the columns to be displayed on the control's list
PivotTotals property specifies the list of total/sub-total functions to be displayed on the
control's list.

property Pivot.LockRowsColumn as Boolean
Retrieves or sets a value that indicates whether the rows column in the list is locked or
scrollable.

Type Description

Boolean A Boolean expression that specifies whether the first
column is locked or unlocked.

By default, LockRowsColumn property property is True. The LockRowsColumn property
specifies whether the first column is locked or unlocked. By lock a row or a column it means
that the position of it remains unchanged when the user scrolls the control's content. The
PivotRows property specifies the list of columns that builds the first column in the control's
list. The LockTotalRows property specifies whether the grand total rows are locked or
unlocked. The PivotTotals property specifies the total/aggregate rows. The
SelectableAggregateRows property specifies whether the inside total/aggregate rows are
selectable or unselectable.

property Pivot.LockTotalRows as Boolean
Retrieves or sets a value that indicates whether the total rows in the list are locked or
scrollable.

Type Description

Boolean A Boolean expression that specifies whether the grand
total rows are locked or unlocked.

By default, the LockTotalRows property is True. The LockTotalRows property specifies
whether the grand total rows are locked or unlocked. By lock a row or a column it means
that the position of it remains unchanged when the user scrolls the control's content. The
PivotTotals property specifies the total/aggregate rows. The LockRowsColumn property
specifies whether the first column is locked or unlocked. The SelectableAggregateRows
property specifies whether the inside total/aggregate rows are selectable or unselectable.

property Pivot.OnFilterChange as OnFilterChangeEnum
Specifies the action that the control performs once the user changes the filter at runtime.

Type Description

OnFilterChangeEnum An OnFilterChangeEnum expression that specifies what's
happen once the user applies a filter.

By default, the OnFilterChange property is exFilterUpdateTotals. In other words, the
total/subtotal fields are updated so it gets data only for visible rows, not for the entire data.
Use the OnFilterChange property to hide the total/sub-total fields when a filter is applied.

The OnFilterChange property can do one of the following:

updates the total/sub-total fields, so it gets the value for the visible rows only, not for
the entire data
hide the total/sub-total fields, once the user applies the filter

property Pivot.PaneHeight(Bottom as Boolean) as Long
Specifies the height for the top or bottom panel.

Type Description
Bottom as Boolean A Boolean expression that specifies part to be changed.
Long A Long expression that specifies the height of the panel.

Use the PaneHeight property to specify the height on the top or bottom. The top panel is
the control's pivot bar, while the bottom part is the control's list where the result goes. If the
exPivotBarSizable is present in the PivotBarVisible property, the user can resize the pivot
bar by dragging the bottom side of the control. The resize cursor is shown when the pivot
bar is resizable and cursor hovers the bottom side of the pivot bar. The PaneMinHeight
property specifies the minimum height of the top/bottom parts.

property Pivot.PaneMinHeight(Bottom as Boolean) as Long
Specifies the minimum height for the top or bottom panel.

Type Description
Bottom as Boolean A Boolean expression that specifies part to be changed.

Long A Long expression that specifies the minimum height of the
panel.

The PaneMinHeight property specifies the minimum height of the top/bottom parts. Use the
PaneHeight property to specify the height on the top or bottom. The top panel is the
control's pivot bar, while the bottom part is the control's list where the result goes. If the
exPivotBarSizable is present in the PivotBarVisible property, the user can resize the pivot
bar by dragging the bottom side of the control. The resize cursor is shown when the pivot
bar is resizable and cursor hovers the bottom side of the pivot bar.

property Pivot.Picture as IPictureDisp

Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
BackColor property to specify the control's background color.

property Pivot.PictureDisplay as PictureDisplayEnum

Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. The PictureDisplay property specifies how
the Picture is displayed on the control's background. If the control has no picture associated
the PictureDisplay property has no effect. Use the BackColor property to specify the
control's background color.

property Pivot.PivotBarVisible as PivotBarVisibleEnum
Specifies how the control displays its pivot bar.

Type Description

PivotBarVisibleEnum
A PivotBarVisibleEnum expression that specifies the
properties of the control's pivot bar. This is a bit-OR
combination on the listed values.

By default, the PivotBarVisible property is exPivotBarDefault, which is a BIT-OR
combination of the following values. exPivotBarVisible | exPivotBarSizable |
exPivotBarAutoFit | exPivotBarShowTotals | exPivotBarAllowValues |
exPivotBarAllowFormatConditionalAppearance | exPivotBarAllowFormatAppearance |
exPivotBarAllowFormatContent | exPivotBarAutoUpdate | exPivotBarAllowUndoRedo |
exPivotBarAllowResizeColumns. The PivotColumnsFloatBarVisible property indicates
whether the control shows a floating panel to display the pivot columns that can be dropped
to the control's pivot bar. The LayoutStartChanging/LayoutEndChanging events notify your
application once changes occurs in the control.

The following screen shot shows the control's pivot bar:

Use the PivotBarVisible property to specify one or more of the followings:

shows or hides the control's pivot bar
allow resizing the control's pivot bar
show the control's pivot bar to a floating panel
auto-resize the control's pivot bar so its content fits the client area
show or hides the total aggregate functions
enables or disables the Auto-Hide feature, so the pivot bar is shown only when the
cursor hovers the pivot bar
allows or prevents displaying value columns
prevent showing the appearances or format content to the control's context menu
shows or hides the Refresh button, in case the grouping of data is time consuming
enables or disables the control's Undo/Redo feature
allows or prevents resizing the columns in the pivot bar

property Pivot.PivotColumns as String
Specifies the list of columns to be displayed in the list.

Type Description

String

A String expression that indicates the list of data columns
that shows the summarized data. For instance, the
"sum(5),sum(5)/12" display the SUM for the column with
the index 5, and adds a new column for each value found
in the column with the index 12, by displaying the SUM of
column with the index 5.

The PivotColumns property specifies the list of columns that shows the summarized data.
The PivotColumns property has effect only if it is valid and the PivotRows property is set.
The DisplayPivotFields property specifies the number of maximum columns to be added
during the execution of the current layout. Use the Layout property to save or restore the
control's view once the user closes/runs the application. The Aggregates collection holds a
collection of Aggregate functions the user can display to summarize the data. Use the
FormatPivotAggregate / FormatPivotTotal property to display aggregate functions in a
different format. The FormatConditionalAppearances helps you to provide conditional-
format for your data, or in other words, ability to highlight values that matches a specified
expression.

For instance:

"sum(5)[bold,content=numeric]", adds a single column that displays the sum of data
column with the index 5, and its content will be displayed as numeric and in bold.
"sum(5)[content=numeric]/12", adds a column for each unique value found in the data
column with the index 12, and each column displays the sum of data column with the
index 5 as numeric, associated with the value of the data column.
"sum(5)[content=numeric]/12;6", groups by data columns with the index 12 and 6, and
adds a new column for each unique value found, by displaying the sum of data column
with the index 5 as numeric, for the associated values in the data columns.
"sum(5)[bold,content=numeric],sum(5)[content=numeric]/12;6", adds a single column
that displays the sum of data column with the index 5 in bold as numeric, and follows
the group-by data columns shown earlier.

The PivotColumns in BNF notation is:

PivotColumns ::= "<Aggregate>[,<Aggregate>]"
Aggregate ::= <AggregateKey>(<Index>)[<Options>] | <AggregateKey>(<Index>)
[<Options>]/<Index>[:<Order>][<Options>][;<Index>[:<Order>][<Options>]]
Index ::= <Digit>[<Digit>]

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Order ::= A | D
Options ::= \[<Option> | ,<Option>\]
Option ::= <CheckOption> | content=<RadioOption>

where

AggregateKey, is any Key in the Aggregates collection
Index, is the index of the Column, a value between 0 and DataColumns.Count - 1
CheckOption is any Key in the FormatAppearances collection
RadioOption is any Key in the FormatContents collection

The following screen shot shows how the columns in the control's list, may look like if the
PivotColumns property is "sum(5)[bold,content=numeric]":

The following screen shot shows how the columns in the control's list, may look like if the
PivotColumns property is "sum(5)[content=numeric]/12":

The following screen shot shows how the columns in the control's list, may look like if the
PivotColumns property is "sum(5)[content=numeric]/12;6":

The following screen shot shows how the columns in the control's list, may look like if the
PivotColumns property is "sum(5)[bold,content=numeric],sum(5)[content=numeric]/12;6":

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control.

Once the data is loaded to the control, the user can drag and drop columns to summarize
the data or set the following properties in the following order:

PivotRows property, specifies the list of columns that determines the first column in the
control's list
PivotColumns property, specifies the list of columns that determines the rest of the
columns in the control's list
PivotTotals property, specifies the list of aggregate functions to be displayed in the
control's list

property Pivot.PivotColumnsFloatBarVisible as Boolean
Retrieves or sets a value that indicates whether the pivot columns float bar is visible or
hidden.

Type Description

Boolean A Boolean expression that specifies whether the columns
floating bar is shown or hidden.

By default, the PivotColumnsFloatBarVisible property is False. Use the
PivotColumnsFloatBarVisible property to display a floating window that shows the data
columns to be summarized by drag and drop to the control's pivot bar. The PivotBarVisible
property indicates whether the control's pivot bar is visible or hidden. The user drag and
drop columns from this panel to summarize the data. Use the DataColumns property to
access the data columns collection once data was provided using the Import, DataSource
or LoadXML methods.

The following screen shot shows the control's Columns to a floating bar:

Use the following properties to customize the visual appearance of the control's Columns
Floating Panel:

Background(exColumnsFloatAppearance) property to change the visual appearance of
the frame to be shown on the Columns panel.

Background(exColumnsFloatBackColor) property specifies the color to be shown on
the Columns panel background.

Background(exColumnsFloatCaptionBackColor/exColumnsFloatCaptionForeColor)
property specifies the visual appearance of the Columns' caption and the foreground
color.

Background(exColumnsFloatCloseButton) property specifies the visual appearance of
the Close button to be shown on the Columns caption.

Background(exColumnsFloatScrollBackColor) property specifies the visual appearance
of the scroll bars to be visible in the Columns panel.

Background(exColumnsFloatScrollPressBackColor) property specifies the visual
appearance of the scroll bars to be visible in the Columns panel, when the scroll button
is pressed.

Background(exColumnsFloatScrollDown) property specifies the visual appearance
Down scroll bar.

Background(exColumnsFloatScrollUp) property specifies the visual appearance Up
scroll bar.

property Pivot.PivotColumnsSortOrder as PivotColumnsSortOrderEnum
Specifies the sorting order for the columns being shown in the control's columns floating
panel.

Type Description

PivotColumnsSortOrderEnum
A PivotColumnsSortOrderEnum expression that defines
the sorting order of the columns to be displayed on the
Columns Floating Panel.

By default, the PivotColumnsSortOrder property is exPivotColumnsUnsorted. The
PivotColumnsSortOrder property specifies the sorting order of the columns to be shown on
the Columns Floating Panel. The PivotColumnsFloatBarVisible property shows or hides the
control's Columns Floating Panel/Bar. The exPivotBarContextSortAscending,
exPivotBarContextSortReverse flags of PivotBarVisible property specifies the sorting order
of the columns to be shown on the pivot bar's context menu.

The following screen shot shows the control's Columns Floating Panel:

property Pivot.PivotRows as String
Specifies the list of group-by columns that determines the rows in the list.

Type Description

String

A String expression that indicates the list of columns that
builds the first column / group-by column in the control's
list. The column is identified by its index, and it can be
followed by A or D character, which indicates Ascending
or Descending sorting order. The , (comma character)
may divide multiple columns in the list. For instance, the
"0,1:D[bold]" indicates that the Group-By columns are 0
and 1, and the 1 is in descending order displayed in bold.
If A is missing, the default sorting order is ascending.

The PivotRows property specifies the list of columns that builds the first column in the
control's list. The LockRowsColumn property specifies whether the first column is locked or
unlocked. By lock a row or a column it means that the position of it remains unchanged
when the user scrolls the control's content. Use the Layout property to save or restore the
control's view once the user closes/runs the application. The DataColumns collection holds
the collection of Column objects that specifies the control's data. The
FormatConditionalAppearances helps you to provide conditional-format for your data, or in
other words, ability to highlight values that matches a specified expression.

The PivotRows in BNF notation is:

PivotRows ::= "<Column>[,<Column>]"
Column ::= <Index>[:<Order>][<Options>]
Index ::= <Digit>[<Digit>]
Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Order ::= A | D
Options ::= \[<Option> | ,<Option>\]
Option ::= <CheckOption> | content=<RadioOption>

where

Index, is the index of the Column, a value between 0 and DataColumns.Count - 1
CheckOption is any Key in the FormatAppearances collection
RadioOption is any Key in the FormatContents collection

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.

DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control.

Once the data is loaded to the control, the user can drag and drop columns to summarize
the data or set the following properties in the following order:

PivotRows property, specifies the list of columns that determines the first column in the
control's list
PivotColumns property, specifies the list of columns that determines the rest of the
columns in the control's list
PivotTotals property, specifies the list of aggregate functions to be displayed in the
control's list

The following screen shot shows the first column in the control's list, that's specified by the
PivotRows property:

property Pivot.PivotTotalDefaultFormatAppearances as String
Specifies the list of format-appearances (key of FormatAppearance object), separated by
comma, to be applied on the Total field when it is displayed in the pivot-table.

Type Description

String

A String expression that specifies the list of format-
appearances (key of FormatAppearance object),
separated by comma, to be applied on the Total field when
it is displayed in the pivot-table.

By default, the PivotTotalDefaultFormatAppearances property is empty. The
PivotTotalDefaultFormatAppearances property specifies the list of format-appearances (
Key of FormatAppearance object, in the FormatAppearances collection), separated by
comma, to be applied on the Total field when it is displayed in the pivot-table. The
PivotTotalDefaultFormatContent property specifies the default format (key of
FormatContent object) to be applied on the Total field when it is displayed in the pivot-table.

property Pivot.PivotTotalDefaultFormatContent as String
Specifies the default format (key of FormatContent object) to be applied on the Total field
when it is displayed in the pivot-table.

Type Description

String
A String expression that specifies the default format (key
of FormatContent object) to be applied on the Total field
when it is displayed in the pivot-table.

By default, the PivotTotalDefaultFormatContent property is empty. The
PivotTotalDefaultFormatContent property Specifies the default format (Key of
FormatContent object, in the FormatContents collection) to be applied on the Total field
when it is displayed in the pivot-table. The PivotTotalDefaultFormatAppearances property
specifies the list of format-appearances (Key of FormatAppearance object, in the
FormatAppearances collection), separated by comma, to be applied on the Total field when
it is displayed in the pivot-table.

property Pivot.PivotTotals as String
Indicates the list of totals/subtotals to be shown in the list.

Type Description

String

A String expression that shows the total/subtotals field to
be displayed. For instance the "sum(0)[bold]/sum[bold]"
displays the grand total in bold on the top of the control,
and the SUM for all values of the Column with the index 0

The PivotTotals property specifies the total/aggregate rows. The Aggregates collection
holds a collection of Aggregate functions the user can display to summarize the data. The
SelectableAggregateRows property specifies whether the inside total/aggregate rows are
selectable or unselectable. Use the FormatPivotAggregate / FormatPivotTotal property to
display aggregate functions in a different format.

The PivotTotals in BNF notation is:

PivotTotals ::= "<Part> | <Part>/<Part>"
Part ::= "<Aggregate>[,<Aggregate>]"
Aggregate ::= <AggregateKey>[<Options>] | <AggregateKey>(<Index>)
[<Options>]
Index ::= <Digit>[<Digit>]
Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Options ::= \[<Option>|,<Option>\]
Option ::= <CheckOption>|content=<RadioOption>

where

AggregateKey, is any Key in the Aggregates collection
Index, is the index of the Column, a value between 0 and DataColumns.Count - 1
CheckOption is any Key in the FormatAppearances collection
RadioOption is any Key in the FormatContents collection

The control can load data using one of the following methods:

Import method, loads data from a CSV file or from specified text.
DataSource property, assigns an ADO/DAO record set to be loaded.
LoadXML method, loads an XML file previously saved using the SaveXML method
The user can drag and drop any TXT or XML files to the control.

Once the data is loaded to the control, the user can drag and drop columns to summarize
the data or set the following properties in the following order:

PivotRows property, specifies the list of columns that determines the first column in the
control's list
PivotColumns property, specifies the list of columns that determines the rest of the
columns in the control's list
PivotTotals property, specifies the list of aggregate functions to be displayed in the
control's list

property Pivot.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio's state. True
means checked, and False means unchecked.

Long

A long expression that indicates the index of image used to
paint the radio button. The last 7 bits in the high significant
byte of the long expression indicates the identifier of the
skin being used to paint the object. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the part.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells. The RadioImage property defines the index of the icon being used by radio
buttons. Use the Images method to insert icons at runtime. The ImageSize property defines
the size (width/height) of the radio-buttons.

method Pivot.Refresh ()
Refreses the control.

Type Description

method Pivot.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control.

The following VB sample adds a new icon to control's images list:

 i = ExPivot1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExPivot1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the first
icon is replaced.

The following VB sample removes an icon from control's images list:

 ExPivot1.ReplaceIcon 0, i, where i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExPivot1.ReplaceIcon 0, -1

method Pivot.Reset ([IncludeMask as Variant], [ExcludeMask as Variant])
Resets the control's layouts, so no filtering, sorting, ... is applied to the view.

Type Description

IncludeMask as Variant

A String expression that specifies the mask of properties
to be reset.

The mask can include the following special characters:

*, indicates any combination of characters
?, specifies any single character
#, any digit character
space, specifies the separators of multiple patterns.

ExcludeMask as Variant

A String expression that specifies the mask of properties
to be keep.

The mask can include the following special characters:

*, indicates any combination of characters
?, specifies any single character
#, any digit character
space, specifies the separators of multiple patterns.

The Reset method resets the control's layout. The Layout property of the control includes
information about sorting, filtering, sizing or positions of the columns (data columns). The
pivot columns are displayed in the control's pivot bar, while the data columns are displayed
on the control's data view. The LayoutStartChanging / LayoutEndChanging events notify
your application when user performs operations in the control's pivot bar, for instance, sorts
a pivot column.

For instance, the following VB sample resets the position properties when user changes the
filter of a pivot column:

Private Sub Pivot1_LayoutEndChanging(ByVal Operation As
EXPIVOTLibCtl.LayoutChangingEnum)
 If Operation = exPivotDataColumnFilterChange Then
 Pivot1.Reset "c*.position*"
 End If
End Sub

When user changes the pivot columns, like adding new pivot columns, the control keeps the
layout of the data view, so the position, size of data columns is keep. The same thing is
happen for sorting, filtering and so on.

method Pivot.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, an XML document
object, or a custom object that supports persistence as
follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

Pivot1.SaveXML("sample.xml")

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
Pivot1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write
method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data in XML documents. The LoadXML method loads XML
documents being created with SaveXML method. The SaveXML method saves each column
in <column> elements under the <columns> collection. The <items> xml element saves a
collection of <item> objects. Each <item> object holds information about an item in the
control, including its cells or child items. Each item saves a collection of <cell> objects that
defines the cell for each column.

The control saves the control's data in XML format like follows:

- <Content Author Component Version ...>
 - <Columns>
 <Column Caption Position Width ... />
 <Column Caption Position Width ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />
 <Cell Value ValueFormat Images Image ... />
 ...
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

property Pivot.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the selection background
color. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the SelBackColor property applies the background color only to list area. Use
the SelBackColor and SelForeColor properties to define the colors used for selected items.
The control highlights the selected items only if the SelBackColor and BackColor properties
have different values, and the SelForeColor and ForeColor properties have different
values.

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With Pivot1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_pivot.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExPivot_Help\\selected.ebn")));
m_pivot.SetSelBackColor(0x23000000);

m_pivot.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxPivot1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExPivot_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axPivot1.VisualAppearance.Add(0x23, "D:\\Temp\\ExPivot_Help\\selected.ebn");
axPivot1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.Pivot1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExPivot_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

How do I assign a new look for the selected item?

The component supports skinning parts of the control, including the selected item. Shortly,
the idea is that identifier of the skin being added to the Appearance collection is stored in
the first significant byte of property of the color type. In our case, we know that the
SelBackColor property changes the background color for the selected item. This is what we
need to change. In other words, we need to change the visual appearance for the selected
item, and that means changing the background color of the selected item. So, the following

code (blue code) changes the appearance for the selected item:

With Pivot1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34000000
End With

Please notice that the 34 hexa value is arbitrary chosen, it is not a predefined value. Shortly,
we have added a skin with the identifier 34, and we specified that the SelBackColor
property should use that skin, in order to change the visual appearance for the selected
item. Also, please notice that the 34 value is stored in the first significant byte, not in other
position. For instance, the following sample doesn't use any skin when displaying the
selected item:

With Pivot1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34
End With

This code (red code) DOESN'T use any skin, because the 34 value is not stored in the
higher byte of the color value. The sample just changes the background color for the
selected item to some black color (RGB(0,0,34)). So, please pay attention when you
want to use a skin and when to use a color. Simple, if you are calling &H34000000, you
have 34 followed by 6 (six) zeros, and that means the first significant byte of the color
expression. Now, back to the problem. The next step is how we are creating skins? or EBN
files? The Exontrol's exbutton component includes a builder tool that saves skins to EBN
files. So, if you want to create new skin files, you need to download and install the exbutton
component from our web site. Once that the exbutton component is installed, please follow
the steps.

Let's say that we have a BMP file, that we want to stretch on the selected item's
background.

1. Open the VB\Builder or VC\Builder sample
2. Click the New File button (on the left side in the toolbar), an empty skin is created.
3. Locate the Background tool window and select the Picture\Add New item in the

menu, the Open file dialog is opened.
4. Select the picture file (GIF, BMP, JPG, JPEG). You will notice that the visual

appearance of the focused object in the skin is changed, actually the picture you have
selected is tiled on the object's background.

5. Select the None item, in the Background tool window, so the focused object in the skin
is not displaying anymore the picture being added.

https://exontrol.com/exbutton.jsp

6. Select the Root item in the skin builder window (in the left side you can find the
hierarchy of the objects that composes the skin), so the Root item is selected, and so
focused.

7. Select the picture file you have added at the step 4, so the Root object is filled with the
picture you have chosen.

8. Resize the picture in the Background tool window, until you reach the view you want to
have, no black area, or change the CX and CY fields in the Background tool window,
so no black area is displayed.

9. Select Stretch button in the Background tool window, so the Root object stretches the
picture you have selected.

10. Click the Save a file button, and select a name for the new skin, click the Save button
after you typed the name of the skin file. Add the .ebn extension.

11. Close the builder

You can always open the skin with the builder and change it later, in case you want to
change it.

Now, create a new project, and insert the component where you want to use the skin, and
add the skin file to the Appearance collection of the object, using blue code, by changing
the name of the file or the path where you have selected the skin. Once that you have
added the skin file to the Appearance collection, you can change the visual appearance for
parts of the controls that supports skinning. Usually the properties that changes the
background color for a part of the control supports skinning as well.

property Pivot.SelBackMode as BackModeEnum

Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates whether the
selection is transparent or opaque.

Use the SelBackMode property to specify how the selection appears. Use the
SelBackMode property to specify how the control displays the selection when the control
has a picture on its background. Use the SelBackColor property to specify the selection
background color. Use the SelForeColor property to specify the selection foreground color.

property Pivot.SelectableAggregateRows as Boolean
Specifies whether the aggregate rows are selectable or un-selectable.

Type Description

Boolean A Boolean expression that specifies whether the
total/aggregate rows are selectable or non-selectable/

By default, the SelectableAggregateRows property is True, which means that the user can
select the total/aggregate rows. The PivotTotals property specifies the total/aggregate
rows. The LockTotalRows property specifies whether the grand total rows are locked or
unlocked. The LockRowsColumn property specifies whether the first column is locked or
unlocked. By lock a row or a column it means that the position of it remains unchanged
when the user scrolls the control's content.

method Pivot.SelectAll ()
Selects all rows.

Type Description

property Pivot.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button.

property Pivot.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

By default, the SelForeColor property is applied ONLY to selected items being displayed in
the list area. Use the SelForeColor and SelBackColor properties to change the colors used
for selected items. The control highlights the selected items only if the SelBackColor and
BackColor properties have different values, and the SelForeColor and ForeColor properties
have different values.

property Pivot.ShowBranchRows as ShowBranchRowsEnum
Indicates how the branch rows displays the information (divider items).

Type Description

ShowBranchRowsEnum A ShowBranchRowsEnum expression that specifies the
way the rows are being shown in the control's list.

By default, the ShowBranchRows property is exBranchTree. Use the ShowBranchRows
property to let the control displays the rows in a compact way as follows. The HasLines
property enhances the graphic representation of a grid control's hierarchy by drawing lines
that link child items to their corresponding parent item. The LinesAtRoot property link items
at the root of the hierarchy. The DrawGridLines property specifies whether the control
displays the grid lines. Use the ShowViewCompact property on exViewCompact to
summarize multiple aggregate functions on the same cell.

The following screen shot shows the data using the ShowBranchRows property on
exBranchCompact:

The following screen shot shows the data using the ShowBranchRows property on
exBranchTree (default):

The following screen shot shows the data using the ShowBranchRows property on
exBranchTree + exBranchRowDivider:

The following screen shot shows the data using the ShowBranchRows property on
exBranchTree + exBranchIncludeAggregate:

property Pivot.ShowDataOnDblClick as Boolean
Specifies whether the user shows the original data that generated the result when user
double clicks a cell.

Type Description

Boolean
A boolean expression that specifies whether the data that
generated the result is shown once the user double click
the cell.

By default, the ShowDataOnDblClick property is False. Use the ShowDataOnDblClick
property on True, to let the user to display the data that generated the result when a cell is
double clicked. For instance, you double click a cell and the list will be filled with the data
that generated the result being double clicked. Use the ExpandOnDblClick property to
expand an item once the user double clicks the item. The same property allows you to
display more data if the user double clicks a ... row, while the DisplayPivotData property is
positive.

The following screen shot shows the data before double clicking the red cell (Speedy
Express/Salzburg/Austria):

The following screen shot shows the data that generated the result (6) after double
clicking the red cell (Speedy Express/Salzburg/Austria):

As you can see, the list displays only the data of Speedy Express/Salzburg/Austria, so a 6
rows.

property Pivot.ShowImageList as Boolean

Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the control. Use the
ReplaceIcon method to add, remove or clear icons in the control's images collection. Use
the CheckImage or RadioImage property to specify a different look for checkboxes or radio
buttons in the cells.

method Pivot.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Pivot.ShowViewCompact as ShowViewCompactEnum
Indicates whether the view compacts the data being displayed.

Type Description

ShowViewCompactEnum A ShowViewCompactEnum expression that specifies the
way the view compacts the displaying data.

By default, the ShowViewCompact property is exViewNotCompact, which means that the
property has no effect. Use the ShowViewCompact property on exViewCompact to
summarize multiple aggregate functions on the same cell. For instance, if you need to
display the price and the quantity sold in the same cell. At runtime, if the
ShowViewCompact property is not exViewNotCompact, the control may include less
columns than when the ShowViewCompact property is exViewNotCompact. The
ShowBranchRows property indicates how the branch rows displays the information (divider
items). The DrawGridLines property specifies whether the control displays the grid lines.

The following movies show how Compacting works:

 The movie shows how you can add several aggregate functions to the
same cell, or how you can compact the view to display several aggregate
functions to the same cell.

The following screen shot displays data compacted, ShowViewCompact property is
exViewCompact:

The following screen shot displays the same data un-compacted, ShowViewCompact
property is exViewNotCompact:

https://www.youtube.com/watch?v=S5FN3DIdpkc

property Pivot.SingleSel as Boolean
Retrieves or sets a value that indicates whether the control supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the control
support single or multiple selection.

The SingleSel property specifies whether the control support single or multiple selection. By
default, the SingleSel property is True, and so only a single item can be selected. Use the
SelBackColor and SelForeColor properties to specify the background and foreground
colors for selected items.

property Pivot.Statistics as String
Gives statistics data of objects being hold by the control.

Type Description

String A String expression that indicates a few statistics
information about the current data.

The Statistics property gives statistics data of objects being hold by the control.

property Pivot.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier. For instance, the following
code creates an ADOR.Recordset and pass it to the control using the DataSource
property:

The following sample loads the Orders table:

Dim rs
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExPivot\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs

property Pivot.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Pivot.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Pivot.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip. Use the ToolTipFont property or
HTML element to assign a new font for tooltips.

property Pivot.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. You can use the HTML element, in the tooltip's description to assign a
different font for portions of text.

property Pivot.ToolTipMargin as String
Defines the size of the control's tooltip margins.

Type Description

String

A string expression that defines the tooltip's margins
(distance between the tooltip and its borders). The value
can be any of the following:

"size", both width and height are identical
"width,height", specifies different values for width and
height

By default, the ToolTipMargin property is "4". The ToolTipMargin property specifies the size
of the control's tooltip margins. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

property Pivot.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip.

property Pivot.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window, in pixels.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ShowToolTip method to display a custom tooltip.

method Pivot.UnselectAll ()
Unselects all rows.

Type Description

property Pivot.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property Pivot.ValueFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the value from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Variant A NULL expression (VT_NULL) if no value at the point, or
the value from the point.

The ValueFromPoint property gets the value from the cursor, while it hovers the control's list
part. The ValueFromPoint(-1,-1) gets the value from the current cursor position, while it
hovers the control's list part. The ColumnFromPoint property gets the column from the
cursor. The DataColumnFromPoint property retrieves the index of the data column from the
point, or -1 if not data column is found.

property Pivot.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property Pivot.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
selected item or cell, SelBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, and so on,
Background property

property Pivot.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With Pivot1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg7oB0HBSQAwABsIfj/jEJAcKhYEjgCAscA8ThQBA8cAgIjgDh8KBAPjgJCUcAIhmgij6AhKAf4CBMIhgACIgg7+jYAgRCJ1BjkHoIBctHnTACAxRDAMgBQKAAzQFAYaByHKGAAGEYRXgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDCAkRRdDSOYDmGQYDiCIoRShOMpTXJ8bRfGigIqMVI2PACQ5FRZOUByTRcUAFH6QAijOopViWGpHUZRETxCKQahLLivIhGUYKfgmY5lTzPdSUDL8RSUACmLglORLNi+M4zSBPUZTRLlZT7OK3IzECKxBpaF5YVhSN72eKFHzTAa1cDyCCcFpWV5aYjCNgLEAAo7hyM5YiyEQcAwawkACNZlG6OhLnUNwXFCDZegAGhtFQawZgyRxLioOBsg6UhvByMJvnOegrDcDg1jiWJuiAew9m4GhAAiBIUA0JgziGVJkGUGJIA2QB4BkCIblqDQNiEIoIE6IhKBiC4ODsfJGHoTJLmydx7H2fwvg+U5hnaeZ9n6P4PHwDQ8mYP5fmgAZ/gAYBIA4BoAiCCAWAmAZgigBQDCaThTn4EIEiEGD8AUYYIFIGoFmGOBmByBJQDIYJkD+YgohII4JGKCIeCqCYikiJgtgqYpohUAwlE4M5+DSDYjFiXg6g4Y5ImIPoOmOeJ2ECDdM16P5kGkIhHhIZJJC4ToSiUCQ2FGE5lCkJQDCOTgTn4WIWiWG"
 & _

"RuF6FxmAkchiheZg5gYZIW0yMhZhqD55jIboamcCY2HGG5nCmVh0h2ZYUAyCQ4Xqbh9h8J5qT0IJnnoFoCiGKBKB4fhAkgYx8n+IxonoOoQiSaQqFaEYlmkShihaJhpAQDICDeD56H7ioqCqFokimag6iaJoqiqCouiIQJHnMdJ/iwaw6kqNItmsapmjWLprgqco6i8axEAwfA3A+ewOkWMWliaSIymwew2kqM4sksPpGaMGwSlUP5tHsZpWjabYLHKWo3G4Cx+mKMQQDGWJbD+bhriKZ46G6S4um7rILjacY7m8K9tByTYjn6eI+i+G5un6PxwAucwCj+cA8AcBI+lAMZAlkP5wiwMwLkMcQMD8EpDjETBHBWRJxGwNQDBsTYDn8HJHjGXB/CKSByEzQhInIfIXCiR/YiiVw/nKbJDC+TBzEyTw2kyM4MlcOZNnOLJFAMGZyn0AJ/lCNBNAcRpQnQPoFwkRSjpC0G4LwgRKDnCCP8VA6g9CWFSKsdQ2hnCrFaOsDQ5haiuHUIgDIWg6gfH2B4ZYsg2DbCcNEWo7B9huGqLcNomw/DMECJYI4YR/i6HcPsWw8RejvC2O4eYvx3icAMP0YA72YBwDuB8fgPwJjEDiFwN4GVgh8EeB0ZIcgOCfAoIES4pxAj/GYPMPg1wcjPHmN0B4O2QAdBOEUaQ84PCGDyB8foX2oB1G6I8MI2R6j9FeGUbYdhOi/C4IETIBxQj/G8Pcfo9xAjhHwF4F4gxxj4E8EcR"
 & _

"o5B8MwE4HsD4/g/ijHQHoLwrxUjrH0H4Z4rR2h7A8N8UggRNBnGCP8eA/A/gXGSPMfg3wnjLkCB8M41R7D8g8LIPoHx/iflYH4b4zx4j9H8P8d49JnjjH+H4YgDA3gPlyAEMAPADCBAgC4AoQBsJ/HAGQCAgRoBGAIVUZAPxDj8AuIMGAYgGhBGwDkA44BuAhEGNARQEAhA4BoEAZ42R9CFCOOYCwQhMBaD6EgDIAQBEIKGQcLtHSkBYKUUwppTwiUiKmVUq5WStldK+MgNwMyyFmBiMQtRbC3FwLkXQuxeC9F8L8YAwRhDDCOGGGQWAOQCCKBGCgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcTwAASgwCSEABQXwQiBEEGMMAqROhCBeEYUQ0QRDRNybs3pvzgnDOKJ4aoYhqgpFKD4boSRSjSFKdMOgvgxAAF2NAMo8w8hVHsJkPwlwnigDCEoVAVhqgJDoC8Y4YAGBOBcC0OAlRphpHkAsMAAwEgDFUEAeA1hsVXAyIoRY2AWgXEWA0TQyQxDTHIOoXIcADBXBuHUSIZAThUE6Iwf4VxYDAHAC4GYuQag6GmFEVQ5g5DbESLQOYSwGjjEACwfQjQOBbD6FYXoawwg6GcCYHwqgECEEoA0EwMxQjUHIGUbwQBtDbHEkoY6TUngQE8BYXwEAMCLFQDkfYgRtD9GiPVNIvwPi/GuPceQ/xQBvGCMwPwHx4AcAWAIIA0AmARAKJ8d4xABD7A2OcaI/wE"
 & _

"DCDgJQFICxhDQGYBofYQYFCwD4J+XYQwIBECiCwJIExhhnCIDoNAnhzj8CyBcIosQ+BlAwMZVIOgygeUOHEDoRwYjcD6B4ZAERYAAH4BgM8jQRDIHkDQSIJRkhSDYISfQpxIj/BQMoOQlBUgrGUNIZgnh9gWGPGMFwyx5D0GCDEZgUwWC2DoBUc4eR/g0GaHMKg2QbjNGmIwZwVAOqHYEE4WYvB6g8GeJMHIQg7L1H6AMIAUAqAtASEMZg5BojUD+NEKgZQLhGGkBQPoJQZiSEPAsJQ0h6C1BiE0aYVB2DOCMJwc4/QghRCoDUDoTQpDVAmDkBgchPj1C6FsKwVRqiNDCFkZg4x8jGD+1EYobwuDXEqN0PoMxHgHAiP8MA2A7AVESGO3ITBnA5A4Acfr6gsi2D6KUNA2hJg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQFHKEUQAAwiGFJKWU0hJTxUkMpWVYrBWiuFeAwNwNgMKagjCCISnJbS3lxLmXUu7LxEDIDUCUSQyRxAjCiIQUQEwWCXCMIAKQKBuB2AODYSAwByASBSAACwXwWgWEaOcaAORCgGDOAQDQ0RxBDCyKQPwmgAAHGEGoGYqAmgpuqAAKo3x4h5AIjlHaPUfpBSGJAAIoRCAiDaKoGgNhCCKBUFcHQoAxAuGgKUKY4hqiqGkMYfgexgAUBgEQbgJgLgNEIMH3wBxdjyY4I8Qg1hID5B4D4K4LRLjDBCHMLA+huANC2"
 & _

"J8YQlwaBMCaCMd6hRnBpE+HoIwIQ9hdEKM8VYawoCcC8BUSYtxqBuDuFsOwTgLgLhZhAhxA4BdBWhqg0hDhjgog5A6gdA2AXAThAgshxB1ANAegZBrmTBrgxB7A5hMgvA/gjB8Bth4A0BFhOg/gQgsBihzg6h9GqBlBiAHhsg+A5h+AmBPgfgJAVh2hyh1wcgtBXg+AThvBWgGhIAEBwgAhOAYAVBaAqhggHhgD1gghDBOAOEshHA8BTgEhYBThmAWBWgJgIBkh3gGhbgiheAegCgMhYgGAbA9hchxh2AmBhBMg4glheBugMAYg0BYgLheBxgJhpA6hch4AggrBhBGAIhlg8gKhYhzh2A+BvAdBRBoB+gQhagmBFBXAghkgGBiBKBhhiBhh0hwgThLBpBEBbgUi5BWBGBfAbARhaBagShZBpBoB2BsBVgjBmBiNNBJBeA8gZhcBTgWBqBCOcCPCDqPgAAyufqSOguhCnCgAmOjE7KWOkqXumOnOoCyupOqC1urKeOsqfuuOvOwOxOyOzO0O1O2O3O4O5O6O7O8O9O+O/PAPBPCPDPEPFPGPHPIPJPKArvLPMPNPOEeEfEgEhEiPRvSvTvUvVvWvXvYvZvavbvcvdvevfvgvhvivjvkvlvmvnvovpvqgyBoB8PtPuPvPwPxPyPzP0P1ATBEBcv3v4v5v6v7v8v9v+v/wAwBwChrgLgPhVBhBxA8AKhPAbgbhNhKhyh5hdAthXBCgxADhqh0h5hdsHBjg"
 & _

"zhGhtoEB+AsArhnhLhehUB5BfA4BfARBPgWB9h3hhBZB/AvA+BzhkhLhCh7hPg8g1BfhzAKBgB/hbhHgdg8B/hGAGAVh8AqhdAVBcgDgChZgIA2AOgChIF+ARBjhbRZgWgDgZBoBYRdBbgoBNh0gHhXhEAlCQKPOeAXqROgKTCaCgALKVRsOkKXOlivhqAzAbuogwqcRxKdusKfOtgEOuuvuwuxuyuzu0u1gohYASATARAGBCBBBxh5hcgKAHAgAChLhlgihRhFACPVAcBMhggDBqBMBIBtA9geBPBCAQgagVL4gXgQACAhFtBJgMhoB1A5AZBGJ4BcAMgEBNgyBFhpvYBFBOhbA+AAAGK6Aag0Alh3B2B5BeAdBXgnBNhyh7E1BgAwA3owgqhwhyg7A+hwhNBMBah/Aag8hHhkAyA5AsgeBTAfgNBfhihagYBsAiBXA6r9ghBQB6AtAegTBLgmhThogzhoBchqBXAJB9hVAxhYBsAWACh1B0hABeBtg3AbB9hOhzB3g+hdBtB2AsAdBWADBGhEBhAvhWhrBFgPApBlhNhngtA5hdAegHBLgkgxhjgvh0B4AEAWgJgOhEBhgshWAKhvAPgPhFhkB/h6A9A+BPBfgbhFheBhh3AQB9g9ATApgOhFBWgqgVAfgPhXhnh3tsBfg4AFh9B+BfBTAVhxB2hdhDAwhKAyAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATAnBhACB6ANAoBggjAggCB3VrgI"
 & _

"hQH1hSgAgcAmghgIg2AugLBigiBqAnAzBiVdglA1ANAjBEgbAmAJMwA+gLgjgyBWA4A0BjBYgUhaA2BNBiBogXAlAjhCBOBLAkBJHqARgLBlAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWAnAJgCBaBmgLBmBpgiBqgaBkhZgIhdgYE+gCB0A5gOBTgQgTAkAIhpAsgSgTWSg2gAAlBkhiBQgSgehIhphghkgdAXhWASB0A7tXgwgNAiHphAgNAihJAaBegZgmApgqB2gcI5BiAugTAhhpADgyB0BhAYBmgOglgqhpAao/grgrAKg2gyA7AaA2AZgIApArgCANgfBqArhKh1gkBnhrgCgRgIBACuTWiDgYzYRozZCSigAMTbCqTcOlKYAMTeTfRvzgOqzhqeutBxRzzkx1TmR2znzozpzqzrzsztzuzvzwzxzyzzz0z1z2z3z4z5z6z7z8gDT9z+z/0AgIUB0C0D0EgxUF0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z000102030405060708090+0/1A1B1C1D1E1F1G1Hhkhzh51KBfBfB5gHhcBBh2h0BMgmA7AVBagqBUB9g/AfJnhzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGLBCgEgeAogJhyB2AQAnAhA4BUgfgFFFg0w1vfAchIAggdh"
 & _

"IAUgCA0AMhjA0ggWUgjh+GhBihI1yAKhiByBqAkV1gCAKAiV3141516g+Jmhj19V+V/AI2A2B2C2D2E2F2GhOBQgUglAZBOBQFpgZA2BKAlAkBzBaBFBfhIAZgEhhA3gNoTA7AlgJvigWgZhmhJgqBntSNTBNgYhNhZgEgBBgAnBjgYtEAJAyBAgOuwApA2gCAlBJA6AOgFghAoAJh0gOgegOBJhZB9BhZXA4htA7AIhSAkgHWghSAsgRgmBpg6Bqgcgnhp22AYI5BSAegSP+hmARgGNjh6g2gTgrgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQhaBGB+g6ApAYgEAECTiDiVCDiWgAGKgdAZAQaH6HgW6JAZaEgAaLaF6GgagQAWgaaOaPaQCf6ECEaMgoAdAbaP6U6QCAg"

End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

ExPivot events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {5C9DF3D3-81B1-42C4-BED6-658F17748686}. The object's program identifier is: "Exontrol.Pivot". The
/COM object module is: "ExPivot.dll"

The ExPivot component supports the following events:

Name Description
AnchorClick Occurs when an anchor element is clicked.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutEndChanging Notifies your application once the control's layout has been
changed.

LayoutStartChanging Occurs when the control's layout is about to be changed.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
RClick Occurs once the user right clicks the control.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXPIVOTLib._IPivotEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor.

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oPivot,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the Pivot
control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The AnchorClick event notifies your application that the user clicks an
<a> anchor element.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oPivot)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

Syntax for Click event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

C++
Builder

private void DblClick(object sender, AxEXPIVOTLib._IPivotEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user double-clicks the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the ExpandOnDblClk
property to specify whether an item is expanded or collapsed when user double clicks it.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oPivot,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Pivot.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Pivot.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. This is useful for X++,
which does not support event with parameters passed by reference. Also, this could be
useful for C++ Builder or Delphi, which does not handle properly the events with
parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

If you are not familiar with what a type library means just handle the Event of the control as
follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print expivot1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void Event(object sender, AxEXPIVOTLib._IPivotEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_EventEvent);
begin
end;

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oPivot,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXPIVOTLib._IPivotEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oPivot,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXPIVOTLib._IPivotEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oPivot,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender, AxEXPIVOTLib._IPivotEvents_KeyUpEvent
e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oPivot,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutEndChanging(object
sender,exontrol.EXPIVOTLib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutEndChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXPIVOTLib.LayoutChangingEnum) Handles LayoutEndChanging
End Sub

C#

C++

private void LayoutEndChanging(object sender,
AxEXPIVOTLib._IPivotEvents_LayoutEndChangingEvent e)
{
}

void OnLayoutEndChanging(long Operation)

event LayoutEndChanging (Operation as LayoutChangingEnum)
Notifies your application once the control's layout has been changed.

Type Description
Operation as
LayoutChangingEnum

A LayoutChangingEnum expression that indicates the
operation that ends.

The LayoutEndChanging event notifies your application once the current operation ends.
The LayoutStartChanging event notifies your application once the user/control is about to
being an operation. Use the PivotBarVisible property to enable or disable different
properties of the control's pivot bar like: AutoHide, Undo/Redo support, and so on.

These events notify your application if any of the following operations occur:

The user resizes one of the control's panels
The pivot bar header is shown or hidden if the AutoHide option is On.
The user drags any column to the pivot bar
The user removes by dragging a column from the pivot bar
The control organizes the current layout (sort and group the column, executes the
aggregate functions, and so on)
The user presses CTRL + Z or CTRL + Y to do an Undo/Redo operation

Syntax for LayoutEndChanging event, /NET version, on:

Syntax for LayoutEndChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall LayoutEndChanging(TObject
*Sender,Expivotlib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutEndChanging(ASender: TObject; Operation :
LayoutChangingEnum);
begin
end;

procedure LayoutEndChanging(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_LayoutEndChangingEvent);
begin
end;

begin event LayoutEndChanging(long Operation)
end event LayoutEndChanging

Private Sub LayoutEndChanging(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_LayoutEndChangingEvent) Handles
LayoutEndChanging
End Sub

Private Sub LayoutEndChanging(ByVal Operation As
EXPIVOTLibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutEndChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutEndChanging(oPivot,Operation)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="LayoutEndChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutEndChanging(Operation)
End Function
</SCRIPT>

Procedure OnComLayoutEndChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutEndChanging llOperation
End_Procedure

METHOD OCX_LayoutEndChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutEndChanging(int _Operation)
{
}

function LayoutEndChanging as v (Operation as
OLE::Exontrol.Pivot.1::LayoutChangingEnum)
end function

function nativeObject_LayoutEndChanging(Operation)
return

Syntax for LayoutEndChanging event, /COM version (others), on:

For instance, you can use the LayoutStartChaging/LayoutEndChaging event to notify your
application once the user drag and drop columns/aggregate functions to the control's pivot
bar. By default, the control is keeping the layout (size, position, sorting order, ...) of the
generated columns when the user makes changes in the control's pivot bar. In other words,
if you include a new value in the column's filter, the new generated columns will be
appended at the end of the header list. In order to prevent this, you need to handle the
LayoutEndChanging event when exPivotDataColumnSort and
exPivotDataColumnFilterChange notifications occur, and call the control's Reset method as
in the following sample:

Private Sub Pivot1_LayoutEndChanging(ByVal Operation As
EXPIVOTLibCtl.LayoutChangingEnum)
 If (Operation = exPivotDataColumnSort) Or (Operation =
exPivotDataColumnFilterChange) Then
 Pivot1.Reset "c*.position*"
 End If
End Sub

 The sample resets the position of the generated columns when exPivotDataColumnSort
and exPivotDataColumnFilterChange notifications occur.

C#

VB

private void LayoutStartChanging(object
sender,exontrol.EXPIVOTLib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutStartChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXPIVOTLib.LayoutChangingEnum) Handles LayoutStartChanging
End Sub

C#

C++

private void LayoutStartChanging(object sender,
AxEXPIVOTLib._IPivotEvents_LayoutStartChangingEvent e)
{
}

void OnLayoutStartChanging(long Operation)

event LayoutStartChanging (Operation as LayoutChangingEnum)
Occurs when the control's layout is about to be changed.

Type Description
Operation as
LayoutChangingEnum

A LayoutChangingEnum expression that indicates the
operation to be started.

The LayoutStartChanging event notifies your application once the user/control is about to
being an operation. The LayoutEndChanging event notifies your application once the current
operation ends. Use the PivotBarVisible property to enable or disable different properties of
the control's pivot bar like: AutoHide, Undo/Redo support, and so on.

These events notify your application if any of the following operations occur:

The user resizes one of the control's panels
The pivot bar header is shown or hidden if the AutoHide option is On.
The user drags any column to the pivot bar
The user removes by dragging a column from the pivot bar
The control organizes the current layout (sort and group the column, executes the
aggregate functions, and so on)
The user presses CTRL + Z or CTRL + Y to do an Undo/Redo operation

Syntax for LayoutStartChanging event, /NET version, on:

Syntax for LayoutStartChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall LayoutStartChanging(TObject
*Sender,Expivotlib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutStartChanging(ASender: TObject; Operation :
LayoutChangingEnum);
begin
end;

procedure LayoutStartChanging(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_LayoutStartChangingEvent);
begin
end;

begin event LayoutStartChanging(long Operation)
end event LayoutStartChanging

Private Sub LayoutStartChanging(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_LayoutStartChangingEvent) Handles
LayoutStartChanging
End Sub

Private Sub LayoutStartChanging(ByVal Operation As
EXPIVOTLibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutStartChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutStartChanging(oPivot,Operation)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="LayoutStartChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutStartChanging(Operation)
End Function
</SCRIPT>

Procedure OnComLayoutStartChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutStartChanging llOperation
End_Procedure

METHOD OCX_LayoutStartChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutStartChanging(int _Operation)
{
}

function LayoutStartChanging as v (Operation as
OLE::Exontrol.Pivot.1::LayoutChangingEnum)
end function

function nativeObject_LayoutStartChanging(Operation)
return

Syntax for LayoutStartChanging event, /COM version (others), on:

For instance, you can use the LayoutStartChaging/LayoutEndChaging event to notify your
application once the user drag and drop columns/aggregate functions to the control's pivot
bar.

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXPIVOTLib._IPivotEvents_MouseDownEvent e)
{

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The AnchorClick event notifies your application that the user clicks an
<a> anchor element.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oPivot,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Pivot.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Pivot.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXPIVOTLib._IPivotEvents_MouseMoveEvent e)
{

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The Background(exCursorHoverColumn)
property specifies the visual appearance of the column's header when the cursor hovers
it. Use the AnchorFromPoint property to retrieve the identifier of the anchor element from
the point.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oPivot,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Pivot.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Pivot.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXPIVOTLib._IPivotEvents_MouseUpEvent e)

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the AnchorFromPoint property to retrieve the identifier of the
anchor element from the point. The AnchorClick event notifies your application that the user
clicks an <a> anchor element.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXPIVOTLib._IPivotEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXPIVOTLib._IPivotEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseUp(oPivot,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Pivot.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Pivot.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C# private void RClick(object sender, EventArgs e)

event RClick ()
Fired when right mouse button is clicked

Type Description

The RClick event notifies your application when the user right clicks the control. Use the
Click event to notify your application that the user clicks the control (using the left mouse
button). Use the MouseDown or MouseUp event if you require the cursor position during
the RClick event. By default, the control's context menu is shown when user right-clicks the
control. The context menu displays the attributes or format to be changed for the element
from the cursor as shown in the following screen shot:

You can use the PivotBarVisible property to disable the default context menu
(exPivotBarAllowFormatAppearance, exPivotBarAllowFormatContent). Use the
FormatAppearance.Add method to add more appearance functions to the control's context
menu, or FormatContents.Add method to add format functions to the control's context
menu.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oPivot)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

Syntax for RClick event, /COM version (others), on:

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds two numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
date(value) format `MMM d, yyyy` , returns the date such as Sep 2, 2023, for English
format
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and

https://exontrol.com/expression.jsp

programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,
0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the

in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.

a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by
2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats a numeric value with specified flags. The
format method formats numeric or date expressions (depends on the type of the value,
explained at operators for dates). If flags is empty, the number is displayed as shown
in the field "Number" in the "Regional and Language Options" from the Control Panel.
For instance the "1000 format ''" displays 1,000.00 for English format, while 1.000,00
is displayed for German format. "1000 format '2|.|3|,'" will always displays 1,000.00 no
matter of the settings in your control panel. If formatting the number fails for some
invalid parameter, the value is displayed with no formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with
the following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the

field "No. of digits after decimal" from "Regional and Language Options" is
using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left
of the decimal separator. Values in the range 0 through 9 and 32 are valid.
The most significant grouping digit indicates the number of digits in the least
significant group immediately to the left of the decimal separator. Each
subsequent grouping digit indicates the next significant group of digits to the
left of the previous group. If the last value supplied is not 0, the remaining
groups repeat the last group. Typical examples of settings for this member
are: 0 to group digits as in 123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as in 12,34,56,789.00. If the flag is
missing, the field "Digit grouping" from "Regional and Language Options"
indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the
field "Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing,
the field "Negative number format" from "Regional and Language Options" is
using. The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If
the flag is missing, the field "Display leading zeros" from "Regional and
Language Options" is using. The valid values are 0, 1

 The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"

trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (
0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15
value format 'flags' (binary operator) formats a date expression with specified flags.
The format method formats numeric (depends on the type of the value, explained at
operators for numbers) or date expressions. If not supported, the value is formatted as
a number (the date format is supported by newer version only). The flags specifies the
format picture string that is used to form the date. Possible values for the format
picture string are defined below. For instance, the date(value) format `MMM d, yyyy`

returns "Sep 2, 2023"

The following table defines the format types used to represent days:

d, day of the month as digits without leading zeros for single-digit days (8)
dd, day of the month as digits with leading zeros for single-digit days (08)
ddd, abbreviated day of the week as specified by the current locale ("Mon" in
English)
dddd, day of the week as specified by the current locale ("Monday" in
English)

The following table defines the format types used to represent months:

M, month as digits without leading zeros for single-digit months (4)
MM, month as digits with leading zeros for single-digit months (04)
MMM, abbreviated month as specified by the current locale ("Nov" in English)
MMMM, month as specified by the current locale ("November" for English)

The following table defines the format types used to represent years:

y, year represented only by the last digit (3)
yy, year represented only by the last two digits. A leading zero is added for
single-digit years (03)
yyy, year represented by a full four or five digits, depending on the calendar
used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other
supported calendars. Calendars that have single-digit or two-digit years, such
as for the Japanese Emperor era, are represented differently. A single-digit
year is represented with a leading zero, for example, "03". A two-digit year is
represented with two digits, for example, "13". No additional leading zeros are
displayed.
yyyy, behaves identically to "yyyy"

The following table defines the format types used to represent era:

g, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)
gg, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)

The following table defines the format types used to represent hours:

h, hours with no leading zero for single-digit hours; 12-hour clock
hh, hours with leading zero for single-digit hours; 12-hour clock
H, hours with no leading zero for single-digit hours; 24-hour clock

HH, hours with leading zero for single-digit hours; 24-hour clock

The following table defines the format types used to represent minutes:

m, minutes with no leading zero for single-digit minutes
mm, minutes with leading zero for single-digit minutes

The following table defines the format types used to represent seconds:

s, seconds with no leading zero for single-digit seconds
ss, seconds with leading zero for single-digit seconds

The following table defines the format types used to represent time markers:

t, one character time marker string, such as A or P
tt, multi-character time marker string, such as AM or PM

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

Sum of Freight
ShipCountry ShipCitySum of Freight Federal Shipping Speedy Express United Package
Total $202,953.00 $63,330.00 $52,168.00 $87,455.00
Argentina 1,777.00 111.00 253.00 1,413.00

Buenos Aires 1,777.00 111.00 253.00 1,413.00
Austria 27,730.00 6,565.00 9,065.00 12,100.00

Graz 24,540.00 5,616.00 8,405.00 10,519.00
Salzburg 3,190.00 949.00 660.00 1,581.00

Belgium 4,274.00 1,099.00 765.00 2,410.00
Bruxelles 1,087.00 76.00 558.00 453.00
Charleroi 3,187.00 1,023.00 207.00 1,957.00

Brazil 14,586.00 2,227.00 4,823.00 7,536.00
Campinas 883.00 687.00 72.00 124.00
Resende 547.00 144.00 359.00 44.00
Rio de Janeiro 4,313.00 383.00 2,166.00 1,764.00
Săo Paulo 8,843.00 1,013.00 2,226.00 5,604.00

Canada 6,324.00 2,151.00 725.00 3,448.00
Montréal 4,124.00 673.00 465.00 2,986.00
Tsawassen 2,171.00 1,449.00 260.00 462.00
Vancouver 29.00 29.00

Denmark 4,283.00 1,373.00 883.00 2,027.00
Křbenhavn 1,498.00 418.00 34.00 1,046.00
Ĺrhus 2,785.00 955.00 849.00 981.00

Finland 2,873.00 549.00 657.00 1,667.00
Helsinki 263.00 139.00 124.00
Oulu 2,610.00 410.00 533.00 1,667.00

France 12,435.00 6,066.00 2,908.00 3,461.00
Lille 2,498.00 2,059.00 33.00 406.00
Lyon 1,566.00 1,114.00 270.00 182.00
Marseille 3,954.00 1,711.00 1,041.00 1,202.00
Nantes 409.00 88.00 193.00 128.00
Paris 282.00 9.00 3.00 270.00
Reims 147.00 118.00 12.00 17.00
Strasbourg 1,980.00 718.00 463.00 799.00
Toulouse 1,335.00 249.00 674.00 412.00
Versailles 264.00 219.00 45.00

Germany 34,461.00 11,829.00 12,673.00 9,959.00
Aachen 595.00 396.00 158.00 41.00
Berlin 418.00 140.00 217.00 61.00

Brandenburg 3,037.00 1,212.00 87.00 1,738.00
Cunewalde 17,244.00 7,302.00 6,571.00 3,371.00
Frankfurt a.M. 2,846.00 32.00 1,444.00 1,370.00
Köln 2,671.00 712.00 1,132.00 827.00
Leipzig 897.00 253.00 528.00 116.00
Mannheim 353.00 108.00 0.00 245.00
München 4,928.00 1,674.00 2,004.00 1,250.00
Münster 262.00 84.00 178.00
Stuttgart 1,210.00 448.00 762.00

Ireland 7,214.00 1,841.00 793.00 4,580.00
Cork 7,214.00 1,841.00 793.00 4,580.00

Italy 2,106.00 501.00 1,195.00 410.00
Bergamo 1,205.00 483.00 522.00 200.00
Reggio Emilia 755.00 18.00 549.00 188.00
Torino 146.00 124.00 22.00

Mexico 3,119.00 1,114.00 497.00 1,508.00
México D.F. 3,119.00 1,114.00 497.00 1,508.00

Norway 898.00 39.00 26.00 833.00
Stavern 898.00 39.00 26.00 833.00

Poland 462.00 130.00 9.00 323.00
Warszawa 462.00 130.00 9.00 323.00

Portugal 1,721.00 596.00 134.00 991.00
Lisboa 1,721.00 596.00 134.00 991.00

Spain 2,416.00 287.00 517.00 1,612.00
Barcelona 68.00 8.00 40.00 20.00
Madrid 651.00 24.00 183.00 444.00
Sevilla 1,697.00 255.00 294.00 1,148.00

Sweden 10,141.00 1,599.00 3,159.00 5,383.00
Bräcke 5,304.00 863.00 2,615.00 1,826.00
Luleĺ 4,837.00 736.00 544.00 3,557.00

Switzerland 3,911.00 2,100.00 766.00 1,045.00
Bern 939.00 400.00 371.00 168.00
Genčve 2,972.00 1,700.00 395.00 877.00

UK 8,486.00 2,551.00 2,434.00 3,501.00
Colchester 1,448.00 189.00 84.00 1,175.00
Cowes 1,144.00 140.00 624.00 380.00
London 5,894.00 2,222.00 1,726.00 1,946.00

USA 45,861.00 18,372.00 7,742.00 19,747.00
Albuquerque 6,493.00 4,421.00 692.00 1,380.00

Anchorage 2,554.00 1,586.00 885.00 83.00
Boise 26,534.00 8,344.00 5,371.00 12,819.00

Butte 370.00 45.00 40.00 285.00
Elgin 301.00 60.00 201.00 40.00
Eugene 2,456.00 261.00 171.00 2,024.00
Kirkland 241.00 14.00 227.00
Lander 1,654.00 13.00 83.00 1,558.00
Portland 677.00 479.00 39.00 159.00
San Francisco 546.00 546.00
Seattle 4,016.00 3,142.00 260.00 614.00
Walla Walla 19.00 7.00 12.00

Venezuela 7,875.00 2,230.00 2,144.00 3,501.00
Barquisimeto 2,217.00 901.00 138.00 1,178.00
Caracas 136.00 136.00
I. de Margarita 2,104.00 624.00 898.00 582.00
San Cristóbal 3,418.00 569.00 1,108.00 1,741.00

	Information
	How to get support?
	Aggregate
	Base property
	Caption property
	FormatResult property
	FormatValue property
	Key property (readonly)
	Name property
	ToolTip property

	Aggregates
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Column
	Alignment property
	AllowGroupBy property
	Caption property
	DefaultFormatAppearances property
	DefaultFormatContent property
	FormatImage property
	HeaderAlignment property
	HTML property
	Index property (readonly)
	PivotCaption property
	SortOrder property
	SortType property

	Columns
	Count property (readonly)
	Item property (readonly)

	FormatAppearance
	BackColor property
	Bold property
	Font property
	FontSize property
	ForeColor property
	Gradient property
	GradientMode property
	Italic property
	Key property (readonly)
	Name property
	Outline property
	OutlineSize property
	Shadow property
	ShadowOffset property
	ShadowSize property
	StrikeOut property
	ToolTip property
	Underline property

	FormatAppearances
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	FormatConditionalAppearance
	BackColor property
	Bold property
	ContextEditExpression property
	Expression property
	Font property
	FontSize property
	ForeColor property
	Gradient property
	GradientMode property
	Italic property
	Key property (readonly)
	Name property
	Outline property
	OutlineSize property
	Shadow property
	ShadowOffset property
	ShadowSize property
	StrikeOut property
	ToolTip property
	Underline property

	FormatConditionalAppearances
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	FormatContent
	Expression property
	Key property (readonly)
	Name property
	ToolTip property
	Visible property

	FormatContents
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Pivot
	Aggregates property (readonly)
	AllowDrop property
	AllowSelectNothing property
	AnchorFromPoint property (readonly)
	Appearance property
	AppendData method
	AttachTemplate method
	AutoDrag property
	BackColor property
	BackColorAlternate property
	BackColorHeader property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	CheckImage property
	ClearData method
	ClearFilter method
	CollapseAll method
	ColumnAutoResize property
	ColumnFromPoint property (readonly)
	Copy method
	CopyTo property (readonly)
	DataColumnFromPoint property (readonly)
	DataColumns property (readonly)
	DataSource property
	DefaultColumnWidth property
	DefaultItemHeight property
	Description property
	DisplayFilterList property
	DisplayPivotData property
	DisplayPivotFields property
	DisplayPivotRows property
	DrawGridLines property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	ExpandAll method
	ExpandOnDblClick property
	Export method
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	FilterInclude property
	Font property
	ForeColor property
	ForeColorHeader property
	FormatABC method
	FormatAnchor property
	FormatAppearances property (readonly)
	FormatConditionalAppearances property (readonly)
	FormatContents property (readonly)
	FormatPivotAggregate property
	FormatPivotHeader property
	FormatPivotTotal property
	FreezeEvents method
	GetHeaders method
	GetItems method
	GridLineColor property
	GridLineStyle property
	HasLines property
	HeaderAppearance property
	HeaderHeight property
	HeaderVisible property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Import method
	IncludeExpandColumn property
	Indent property
	Layout property
	LinesAtRoot property
	LoadHeadersOnly property
	LoadXML method
	LockRowsColumn property
	LockTotalRows property
	OnFilterChange property
	PaneHeight property
	PaneMinHeight property
	Picture property
	PictureDisplay property
	PivotBarVisible property
	PivotColumns property
	PivotColumnsFloatBarVisible property
	PivotColumnsSortOrder property
	PivotRows property
	PivotTotalDefaultFormatAppearances property
	PivotTotalDefaultFormatContent property
	PivotTotals property
	RadioImage property
	Refresh method
	ReplaceIcon method
	Reset method
	SaveXML method
	SelBackColor property
	SelBackMode property
	SelectableAggregateRows property
	SelectAll method
	SelectOnRelease property
	SelForeColor property
	ShowBranchRows property
	ShowDataOnDblClick property
	ShowImageList property
	ShowToolTip method
	ShowViewCompact property
	SingleSel property
	Statistics property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipWidth property
	UnselectAll method
	UseVisualTheme property
	ValueFromPoint property (readonly)
	Version property
	VisualAppearance property (readonly)
	VisualDesign property

	ExPivot events
	AnchorClick event
	Click event
	DblClick event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutEndChanging event
	LayoutStartChanging event
	MouseDown event
	MouseMove event
	MouseUp event
	RClick event

