
 ExOrgChart

The ExOrgChart component permits the totally automatic generation of organigrams. The
ExOrgChart component lets the user changes its visual appearance using skins, each one
providing an additional visual experience that enhances viewing pleasure. Skins are
relatively easy to build and put on any part of the control.

Features include:

WYSWYG Template/Layout Editor support
Skinnable Interface support (ability to apply a skin to the any background part)
Print and Print Preview Support, Fit-To-Pages Wide By Tall, ...
Ability to save/load the control's data to/from XML files
Top to Bottom (TTB), Left to Right (LTR) layouts support
Ability to specify multiple parents or multiple roots
Ability to save the control's content to x-script template.
Ability to arrange the child nodes horizontally, vertically or as a tree
Ability to show frame(s) around any node or group of nodes
Ability to expand or collapse the nodes
Ability to copy the control's content to the clipboard
Ability to load the pictures, icons using the BASE64 encoded strings
Ability to put any HTML caption on any link (including pictures, icons, anchors and so
on)
Support for assistant nodes
Ability to zoom the chart
Multiple lines ToolTip support
Background picture support
Mouse wheel support
Ability to explore only a branch of the organigram
Ability to display single or multiple layers of the organigram
Ability to scroll the organigram using the mouse or keyboard
Unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the event's background.
Any node supports built-in HTML format
Ability to insert hyperlinks anywhere in the node's caption
The node supports multiple lines with different alignments
Ability to assign icons, images, pictures to the node aligned to any side of it.
Ability to link a node with any other nodes.
Ability to show directions of the links, HTML captions and so on
Ability to show smoothly the lines and curves in the control, using antialiasing rendering
BMP, EMF, EXIF, GIF, ICON, JPEG, PNG, TIFF or WMF formats for pictures, icons

or images.
AutoSize feature or fixed width, fixed height for any node supported
The links and borders for nodes are customizable
and more

The ANSI and UNICODE version are available.

Ž ExOrgChart is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
The AlignmentEnum type aligns the text inside the object.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.

constants AllowKeysEnum
The AllowKeysEnum type specifies the keys to be combined in order to start an UI
operation. For instance, the AllowEdit property of AllowKeysEnum type indicates the keys
combination to let user edit the node's caption at runtime. By default, this property is set on
exLeftClick + exDblLick, which means the user is able to edit the node's caption by double
clicking the left mouse button. If this property is set on exRightClick + exCRTLKey the user
should press the CTRL key while right clicking the control to start editing the node. If the
exDblClick flag is included, the user requires to do a double click instead single click to
perform the operation. The exDisallow flag indicates that the operation is not allowed.

The AllowKeysEnum type supports the following values:

Name Value Description
exDisallow 0 The operation is not allowed.

exLeftClick 1 The operation starts once the user clicks the left
mouse button.

exRightClick 2 The operation starts if the user clicks the right
mouse button.

exMiddleClick 3 The operation starts if the user clicks the middle
mouse button.

exSHIFTKey 8 The operation may start only if the user presses the
SHIFT key.

exCTRLKey 16 The operation may start only if the user presses the
CTRL key.

exALTKey 32 The operation may start only if the user presses the
ALT key.

exDblClick 64 The operation starts only if the user double clicks,
instead single click.

constants AppearanceEnum
Specifies the control's appearance. Use the Appearance property to specify the control's
appearance.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants ArrangeSiblingEnum
The ArrangeSiblingEnum expression specifies how the first child node and its sibling nodes
are arranged. Use the ArrangeSiblingNodesAs property to specify how the child nodes of
the node are arranged.

Name Value Description

exDefault 0 The first child node and its sibling nodes are
arranged vertically.

exHorizontally 1 The first child node and its sibling nodes are
arranged horizontally.

exTree 2 Aligns the child nodes as a tree, so each node is
indented relative to its parent.

For instance, let's say that we have a parent item named Item1, and three child nodes,
SubItem 1, SubItem 2 and SubItem 3.

The exDefault arrangement looks like follows:

The exHorizontally arrangement looks like follows:

The exTree arrangement looks like follows:

constants AspectRatioEnum
The AspectRatioEnum expression specifies the aspect ratio for the picture being displayed
in the node. The PictureAspectRatio property specifies the aspect ratio for the node's
picture. The Picture property assigns a picture to a node. The PictureWidth and
PictureHeight properties controls the size of displayed picture.

Name Value Description
exAspectRatioNone 0 No aspect ratio is applied to the node's picture.

exAspectRatioWidth 1
The picture's height is computed based on the
original size of the picture while specifying the
picture's width.

exAspectRatioHeight 2
The picture's width is computed based on the
original size of the picture while specifying the
picture's height.

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The BackgroundExt property specifies the EBN String
format to be displayed on the node's background. The BackgroundExtValue property
access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
BackgroundExt property specifies the EBN String
format to be displayed on the object's background.
The Exontrol's eXButton WYSWYG Builder helps
you to generate or view the EBN String Format, in
the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

https://exontrol.com/exbutton.jsp

exBackColorExt 1

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates

exClientExt 2

the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The

about:blank

FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray
when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,

exTextExt 4

the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the

Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the

rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>

<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

exTextExtAlignment 6

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and
horizontally aligned on the left.
17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.

32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

exPatternExt 7

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state

Name Value Description

exNodeFrame 0

Specifies the node's frame. The DrawRoundNode
property specifies a value that indicates whether
the node has borders with round corners. The
ShadowNode property determines whether the
control displays a shadow for nodes. The
DrawRoundNode property and ShadowNode
property has effect only if no skin is applied to a
node.

exEditNodeBackColor 1

Specifies the edit's background. The AllowEdit
property specifies the combination of keys that
allows the user to edit a node. The
LayoutStartChanging(exEditNode) event notifies
your application once the user starts editing the
node's caption.
Specifies the edit's foreground. The AllowEdit
property specifies the combination of keys that

exEditNodeForeColor 2
allows the user to edit a node. The
LayoutStartChanging(exEditNode) event notifies
your application once the user starts editing the
node's caption. The Caption property indicates the
caption of the node being edited.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTip property to specify
the cell's tooltip. Use the ToolTipWidth property to
specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the
ShowToolTip method to display a custom tooltip.

exToolTipBackColor 65 exToolTipBackColor. Specifies the tooltip's
background color.

exToolTipForeColor 66 exToolTipForeColor. Specifies the tooltip's
foreground color.

exContextMenuAppearance 99 exContextMenuAppearance. Specifies the visual
appearance of the control's context menu.

exContextMenuBackColor 100 exContextMenuBackColor. Specifies the solid
background color for the control's context menu.

exContextMenuForeColor 101 exContextMenuForeColor. Specifies the text
foreground color for the control's context menu.

exContextMenuSelBackColor 102
exContextMenuSelBackColor. Specifies the
solid/EBN selection's background color in the
control's context menu.

exContextMenuSelBorderColor103
exContextMenuSelBorderColor. Specifies the solid
color to show the selection in the control's context
menu.

exContextMenuSelForeColor 104
exContextMenuSelForeColor. Specifies the
selection's text foreground color in the control's
context menu.

exSizeGrip 3 Specifies the visual appearance for control's size
grip.

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.

exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279
The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406
The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

constants CaptionSingleLineEnum
The CaptionSingleLineEnum type defines whether the element's caption is displayed on a
single or multiple lines. The CaptionSingleLine property retrieves or sets a value indicating
whether the element's (extra/)caption is displayed using one line, or multiple lines. The
CaptionSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the element's caption is displayed on
a single line. In this case any \r\n or
 HTML
tags is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the element's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the element's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants ChartLayoutEnum
The ChartLayoutEnum type specifies the way the nodes are arranged in the chart. The
Layout property of the control specifies whether the nodes are arranged from the Top to
Bottom (TTB) or from Left to Right (LTR).

Name Value Description

exLayoutTTB 0 The chart displays the nodes from top to bottom
(TTB layout). (by default)

exLayoutLTR 1 The chart displays the nodes from left to right (LTR
layout).

constants ClientAreaEnum
The ClientAreaEnum type specifies the area inside the control. Use the Cursor property to
change the mouse pointer when cursor hovers the control

Name Value Description
exChartArea 0 The cursor is on the control's chart area.
exNodeArea 1 The cursor hovers a node in the chart.
exDragChart 2 The user drags the chart.
exExpandButtonArea 3 The cursor hovers an expanding/collapsing button.

constants EditableNodeEnum
The EditableNodeEnum type specifies whether the node is editable at runtime. Use the
Editable property to specify whether a specified node can be edited at runtime. The
AllowEdit property specifies the combination of keys that allows the user to edit a node.
The LayoutStartChanging(exEditNode) event notifies your application once the user starts
editing the node's caption. The LayoutEndChanging(exEditNode) event notifies your
application once of the edit operation ends.

Name Value Description
exNoEditable 0 The operation is not allowed.

exEditable 1 The inline editing is allowed and it ends once the
user double/clicks the node (AllowEdit property)

constants ExpandButtonEnum
Specifies the appearance for +/- buttons being displayed if the HasButtons property is not
null.

Name Value Description
exNoButtons 0 The control displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed nodes, and a
minus sign for expanded nodes.()

exArrow 1 The control uses icons to display the expand
buttons.()

exCircle 2 The control uses icons to display the expand
buttons. ()

exWPlus 3 The control uses icons to display the expand
buttons. ()

exCustom 4 The HasButtonsCustom property specifies the index
of icons being used for +/- signs on parent nodes.

constants LayoutChangingEnum
The LayoutStartChanging event notifies your application once the user starts any of these
operations. The LayoutEndChanging event notifies your application once of the following
operation ends. The LayoutChangingEnum type supports the following values:

Name Value Description

exEditNode 0

Notifies your application that a node is being inline
edited at runtime. The Caption property indicates
the caption of the node being edited. Use the
NodeFromPoint property to get the node from the
current position. The AllowEdit property indicates
the keys combination so the user start editing the
node's caption at runtime.

exResizeChart 1

Occurs once the chart is magnified or shrank, at
runtime. Use the ZoomWidthMode property to
specify whether the ZoomWidth property is updated
when the control is resized. Use the
ZoomHeightMode property to specify whether the
ZoomHeight property is updated when the control is
resized.

exMoveNode 2

Occurs once user moves a node at runtime. The
Parent property specifies the parent node. Use the
NodeFromPoint property to get the node from the
current position. The DragOutsideDef property
customizes the speed to scroll the control's content
while user moves nodes by drag and drop then
outside of the control's client area.

constants ImageAlignmentEnum
Specifies the alignment of the image.

Name Value Description
exImageLeft 0 The images is aligned to the left side of the object.

exImageRight 1 The images is aligned to the right side of the
object.

exImageTop 2 The images is aligned to the top side of the object.

exImageBottom 3 The images is aligned to the bottom side of the
object.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the BackgroundExtValue property indicates the index of the part of
the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder
helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BackgroundExt property:

After calling the BackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants PaddingEdgeEnum
The PaddingEdgeEnum type defines the margins of the object. The DefaultNodePadding
property defines the padding for all nodes. Use the Padding property of the Node to define
the padding for specified node. The PaddingEdgeEnum type supports the following values:

Name Value Description
exPaddingAll -1 Indicates all margins of the object.
exPaddingLeft 0 Indicates the left margin of the object.
exPaddingTop 1 Indicates the top margin of the object.
exPaddingRight 2 Indicates the right margin of the object.
exPaddingBottom 3 Indicates the bottom margin of the object.

constants PatternEnum
The PatternEnum type specifies the type of patterns that the element can fill with. The Type
property indicates the pattern to fill the element. The Color property indicates the color to fill
the element's pattern, while the FrameColor property indicates the color to show the
element's border/frame if the Type property includes the exPatternFrame flag.

The PatternEnum type supports the following values:

Name Value Description
exPatternEmpty 0 exPatternEmpty
exPatternSolid 1 exPatternSolid
exPatternDot 2 exPatternDot
exPatternShadow 3 exPatternShadow
exPatternNDot 4 exPatternNDot
exPatternFDiagonal 5 exPatternFDiagonal
exPatternBDiagonal 6 exPatternBDiagonal
exPatternDiagCross 7 exPatternDiagCross
exPatternVertical 8 exPatternVertical
exPatternHorizontal 9 exPatternHorizontal
exPatternCross 10 exPatternCross
exPatternBrick 11 exPatternBrick
exPatternYard 12 exPatternYard
exPatternFrame 256 exPatternFrame
exPatternFrameThick 768 exPatternFrameThick

constants PenTypeEnum
Specifies the type of the pen. Use the PenLink property to specify the type of the pen used
to paint the links between nodes. Use the PenWidthLink property to specify the width of the
pen.

Name Value Description
exPenSolid 0 The pen is solid.

exPenDash 1 The pen is dashed. This style is valid only when the
pen width is one or less in device units.

exPenDot 2 The pen is dotted. This style is valid only when the
pen width is one or less in device units.

exPenDashDot 3
The pen has alternating dashes and dots. This style
is valid only when the pen width is one or less in
device units.

exPenDashDotDot 4
The pen has alternating dashes and double dots.
This style is valid only when the pen width is one or
less in device units.

constants PictureDisplayEnum
Aligns the picture in the control. Use the Picture property to assign a picture on the control's
background. Use the PictureDisplay property to specify the way how the picture is arranged
on the control's backgroun.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants ZoomModeEnum
Specifies the way how the chart is zoomed. Use the ZoomWidthMode and
ZoomHeightMode properties to zoom the chart.

Name Value Description
exDefaultSize 0 The chart is not zoomed.

exCustomSize 1
The user specifies the factor zoom. Use the
ZoomWidth and ZoomHeight property specify the
factor zoom on x or y axis.

exControlSize 2 The control zooms the chart to fit the control's area.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates one of the following:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows.
the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.

The skin method may change the visual appearance for the following parts in the control:

selected node, SelColor property
borders of the nodes, Background property
the background for all nodes, BackColorNode property
node's background, BackColor property
control's border, using the Appearance property.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

For instance, the following VB sample changes the visual appearance for the selected
node. The SelColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelColor property to indicate the index of the skin that we want to use. The
sample applies the " " to the selected node(s):

With ChartView1
 .VisualAppearance.Add 1, "D:\Temp\ExOrgChart.Help\select.ebn"
 .SelColor = &H1000000
End With

The following C++ sample changes the visual appearance for the selected node:

#include "Appearance.h"
m_chartview.GetVisualAppearance().Add(1,
COleVariant("D:\\Temp\\ExOrgChart.Help\\select.ebn"));
m_chartview.SetSelColor(0x1000000);

The following VB.NET sample changes the visual appearance for the selected node:

With AxChartView1
 .VisualAppearance.Add(1, "D:\Temp\ExOrgChart.Help\select.ebn")
 .Template = "SelColor = 16777216"
End With

The following C# sample changes the visual appearance for the selected node:

axChartView1.VisualAppearance.Add(1, "D:\\Temp\\ExOrgChart.Help\\select.ebn");

axChartView1.Template = "SelColor = 16777216";

The following VFP sample changes the visual appearance for the selected node:

With thisform.ChartView1
 .VisualAppearance.Add(1, "D:\Temp\ExOrgChart.Help\select.ebn")
 .SelColor = 16777216
EndWith

The screen shot was generated using the following template:

BeginUpdate
VisualAppearance
{
 Add(1,
"gBFLBCJwBAEHhEJAEGg4BU4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7xMKlBSXGSLBJjASZComCZXU6AFgxHJYahLMqzYRGUYLJgOa5tVhXMTiJaUKxzD6oRhqeSZLi2VIhXbMcyzPgMByRB6pIRoCA5OhuRoTUYHNyiDT0BzBJyMLxqOCaVhuV4fVjCORQHTkB4pDqvcwpTKYbqaaIjW7sFqSHoGUwHUYALo0bJcFrWPZ7YzjFTjNAscyNK6Rdw3Wh8KiaKLBQpwYzZfBjEMA6JDSIAAnac4XFcG50nEQx7miT4ljSWxdiAYBvEUagGBuZZvCeAwBk0XByDCPoMCefYNiwDhjjcQhCGQJZcGoHwHiYBgChCEY4G8HIGlGBBsAuBghjQcBQgEBAMEIExDCgVQUA2EIQiECR2hodZYBgRQPkAPgFFMBYiCgcwAAYAJOCyC4iliPgygwYxIkINoMmMeJWDiDpjiidjLGOSQCD6C5ihiLRiAAJBQggbQSguUxMmeExknkOhQhSZQpFYUYVmUSRiFaFhlkkbhehaJgJHYYYXmUCQoEqERQDiNJIDcDpJi4bYbCaaZGHCHJmnmVhyh2JxJl4eoeGeSZiH6HpnnmdoAgyIpzEyZg8igagigeIhokoLoOiKKQKDaEYjmkKhWhSJZpDoZoWiaKYDHibw9kyY4Em+FAoEiNoeD2ah6iaH4qiqCoui6KxrAqMoyiuaw6kaNItmsapmjWLppnqBojhOKhQkyXw8A8ewOkWMQsGsJpIjKbB7DaSoziySw+lKNBtEsQpWjSbR7FaJ4vioSLeDgDwDmKYI4i4G4OmaORuguEpqjmbo7iabI7m6a5Gm2PJvAuUpyjaagrHYLoLk4E5EniPxvnuewAkCcAsBcAZBnATAjAaQhwkwLwOkKMQMDcEZDm+Cp8meMBOCuewZD4MY8HcGpHnGTIDB6SByEyD2VjKDIXCmSZyiyNwskUb4piQMw4k8I5jDSTYzFyXw6k4c5MmMPpOnOfJ3ECUJ0C0FxBlGdBNCMRpMCwCx6C0OQPDOZxQlSNQdE8VpVHWDRTFqVZ1j0ZxcledZtgcXZYnYDYTGKUwxH0OAzlkdpNgsbZZjcDY/HKW43E2B4aLixTihHmLwd4exrD5F+O8bgDh9jBHgBwE4BRhDxA4D8Coww4icCeBsYo7h9hRGYHoD4XBPqcDkNwZ4MRmjyH4O8Gozw5icH+EUaA9BOgHCaNEeg/QXgjD6MUU4OR1B9DqN0Q4X2XCdE+G1rBzQ5jbHuF0d4eW3B+AeH0cIeAOheDIHQDwxxriRHKHkHwXxOjmH09EUo5x9B+EeKkdY+hvDPFWO0fYHhzi1HGEUc4SR2B9H4F8E4xx5D9A+D8ao8w+ifCeNseo/RviPHCPkfo/xXjlH2H4T4BAtB1j0N8fA/xPjrH+IAKABgBBAAQA0AA4AeAFECBAFwBQgDYAmAMcAZAICBGeOgDIjhbj7AKIcbgGBBhQC8A4IImAdgGHAPQEIhAICOAeMILARQEihBICcQoUBTAKNyPAHw4Q6AwEKPAYwGghg4DaAwUIxAaiHBgN4DoQxsB5AeOEbgQRDjRAUCAIIQRtA+AOOQI4iQYgiBKEQbAmQJjiC4FERI0QlAoCKDgVoFQxDECoIsKIXgWjFEwCgHYhxkD8EYBERQMBjA4GaBkMYRAyCNCiJ4GoxhMDZA2OMOgcRGixGcDgI4SBygFAOHgfQHxIjmB6McVA+QPjjHoIER4sgHBACQElHIZAiCHEiFIDQRgkCZA2CIcAoB4AfCGPYJNbwTglDIMQS4kwpBaCcEkTIOwTDkHoKESgEhHBPGUFkIoKRSgkAoB4EY7A/DKFyFsFYJQ6CxEsBIZwVxlhZDKC0UopBbiXCkOYLwSxEh9BcOUfgvRKhSHsGAJgWaFDmAYMkTA0wVBkCYAgFAPBDjgH8JoCYSg0DNByK0GoZhiDUE2FMLwbRmiZFyDccw9BwibFmI4OFeRi1IExIgaYpg6jOFSNkHY5w6DxE6LMZweAnhJHKD0M4xB7ifCmNoPwTxMj7B9WmHAVAEB/CgEoBoQB0BFAKKEGgHpvjaAyEMdAXQIihGoEoRAUQdAtCKGAUA9QPjDH1TYZQNwjhpAKB8UgVA9CSrEEsJA6Qa2IAoK4SY0htBVCWKkMlixhj4D+NMHQawmgpFqDkU4FB3CbGmNoOoTxUjlB+KgKoBhRBUAUI0KA6gehFFSAgZIJBSCxHcD8Y4/QniqBqEIVIVQtZrHUJ0LIqhqhqFYFUXQvQrhrAKFzOofhYjWA0KQTIkwhUYCSAYWwJAdDcEgKsQobRXA1F8LkEgGhpOqAQQE="
)
 Add(2,
"gBFLBCJwBAEHhEJAEGg4BSoGg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYiXDCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5dAg1bAdPydDC8KjoGK6Wh+WIJZDAdZwHicOy9S6mMwjOxbHiObquWrIebaPAeQgAE6EdJuXBLDwmJtVMTqYZoFjmRpWSKHe6XPr1c6BF7hRqzWKMfwrAmUYADkXI4j0WBvlKRINm+Aw+g6SxpjuHRdCsMAwmcbxNgWRIMAcNRhkiQp4DCH5fm4EA5gwDA7AkeoAAaWYOHGGSJAkQhGGGPBjB0RwwjgYgbEcBQIBAQJECENAygSURAlkCQKB0dplF0BgREOcAPHsVJBGiCgckAAYADOChijiKgsguYpokYLYMmMCJSDKDRjgiXg6g2I5ImYPYOmKSIaCgWBAAkCAiBsRIgkyDwZmSKQyEuExlAkPhShOJRJEYVYUmUaRmFiFplHkdhaheJZJDYRwSiQJAOCoDRJBGLhohqJoZi4bobGcCYyHKG5nDmRh0h2ZxpmYdYemeCZyHqHxiniMA4CUBpqAwbgvE0M4egiIoohoLoOiMaQKDKEojmkOhGhSJZpGoZoViaaYKHKEYhigagGCoDpJGGSokByDZjjyd4qGqOoqiyK5qmqRotiyawKlKMotGuCpejqLYrkqZo9iyKh6h6IgMkOUjjDERxTHycA9myKwykuMxtAsPpSjOLRLEaVY0m0axmliNptHsdpajeLQ7CKSIwkQIhoHiORHgOAJwD4LorjKa47G8C4+nKO4vEuRp1jybxrmaeI+m8e52nqP4vDuIpo6UQh0HuQRHjOBJxD4MIsDMC5DHEDA/BKQ4xEwRwVkScRsGcGJGnEfB3BqR4xDwIwI6UYh8H6SRHzqcg+DKLIzCuSxzAyP2XjMTJHDWTJzGyZw4k6cx8ncOpPjMPIjCiMJEiKBIBlESATgz0B0i0MzmnUDQ/FKU41E0RxVlSdRtGcWJWnUfR3FqV41D0I2kkSQoMgSWRIEOEJzD4dotjMa5bHcDY/HKW43E2Rx1lydxtmcPEXo7h9juHqL8NwewjNxEUAUGIDxhCQHOC4a4xQPg8DOn4eQHA3gjGOPILgrwUjLHkHwZ4LRmhzA4N8Hoyg4gcK0CoCoBArhICKBwY4oR6jUHqH0K4WRrj1G6I8LY2R7AdFOGUbQ9wOi/DqNsO4nRnssDoP0HohgVCVCIHcRARwODnFSPUcg+Q/BXEyOcfI3hHibHSPoDwpxSjqH2B4X4tR1h7E8M8XY6Q8D+iqCwSohBHjICQJ0DwVxpB9D6H8N41R7j9E+Icbo+B/CfE+O0fIfwPivHmPsf4Xx3u1G+DoYYCxBC8CUEAGIKAdBHFgPsQIEAVAEGALgDoAwwCEAYIIKAPgEjBAwCkAo4BaAZEELANwDAgjIBGAEUAMpRjiGIEsYQMQXA6EOLgfYhQICqAoMIXAXQFhhEICwQwUBfAZGGBgNIDRwi0ByIYWA7gOBDGQGMBIoZnAMCEMwJoRAYg0B0OEJgSAPhxBUCYIgmBOgSb0E0RQEQnApIEKMCo4hSBYEUNEMwLgigoEaBESwGC5DCDsDEBI0RsA+AONwM4jQYiiBqEYbA2QNjjC4HERo0RlA4CODgdoHQxjEDoI8KI3gejHAQMsDIVgMBnAuAIQQQQFABG0D4I45BDiRBkCIIoSBsgZBGOQLgkRIjSCUEgJIOQWglDIMQSgkwpBeCaMkBICwQ1MDWBcIQkgogKCCN0EQJQcD8EqDIVwVAlDZCqCsUoZBXiWCkMYLQSwEhtBYOUXgtRLgSHcFgZQWQlCwGGHAXgFB5gECmI4eI9AfgmBoMgTA8wTBmCYLkToMhTCEGaJoGYPg0hNCyKkGo5hODZE0NMNQZxmBJERaISAvwKhTEIFUB4AR7A/DODQdAnB5imDsE4XI3QdCnEIO0TwMxfB5CeFkdIPRzicHyJ4aY6g7jOCSMi0QoBggVFoAQKwjwMjPCCIcdoCBQhUA9OUTQGwhDoDqBEUQFAnCHGiFoEoRRUClAuKMKgQpdFaA6MYDAsBSACGAHkB4wR9hJDSD0EwpQKCuEqFIbQUwljpDKDAUo1BjCaCmDoNoTBUjFBqKcGguqyg1ENgkFAsxUACGYHkR4wR+hRDUD0IwqS4ClCoNoSYUx1BlCgKkaoRhVBVB0K0KgqhihVFWDUHQoRqZKA+EYIAthWACGwHoB40R+hZDWD0MwrQKnWCsNoaYWx1hlDgK0aoxhdBXSkFwVYxQ6ivBqLoWI1slAgAMFAXIsABDkD0I8cI/QwhsiqLECwLhihYG2BMMY7AyiQ02Eaz4OwWhkFYMUSoswbA6GCNjToxgwC9FoAIegewHjhH+GkNoPRTC1AsK4aoWhthTDWO0MosBajWGMNoLYOw2hsFaMUWotwbC6GiNrJQIRDBwlmmIPYjx4j/DiG4HoxhcgXBcOULg2xJhzHcGUaAuRrhGHUF0HYrQ6CuGKNUXYN6AjcyUCIIwiBhi8AuIoeA3gdjNDyG8Io5BehXE8PVDQ2Q9jvDrAAW4zh8BfCWOUPoUXwhJAEDANIjA1yXFeO0f4wAsAHAEGABgDRADwB8AWXwLwChgG4BMQY8AzAQGCNcfoMRTWIESNEewGQkAYDaB8cPFhDiwHMB8I42AsCmEgBAgIA=="
)
}
Background(0) = 16777216
SelColor = 33554432
HideSelection = False

HasButtons = 3
ButtonsAlign = 0
PenWidthLink = 3
Root
{
 Caption = "RootSome information here.
Line 1:1
Line 2:2
Line 3:3"
 Image = 1
 Picture =
"gBHJJGHA5MIwAEIe4AAAFhwFBwOCERDYXC4bEAgEopFIwiwwjgwGQyHcRHcZHcjHcrHZEIhFixFjJFjhFlxFJpNKE5KBWKxbkZbnxbL5fMsWMsjMpoNBwjJwjhwlZwphwOJxPccPZ6PSFjKFlaFQaDSEcSEjSEuSE5SCMRiQSqVTcZTdFTdxTaeTyljKljilnylvSlU6nWEWWE+WGFWGNWC5XK7iy7jK7ny7q67xq7yC7YTCYsWYsuYufYrLZbQizQlbQnLQrjQ1DQajUbcjbc+bdFbdMbdXbdjbdxbd6beQbeobe1csRcsZcsjcsrctFctXctccuNcu1eEOeEWeEceEjeE5eFceFjeFueFxeF6eGFeGNeGffcOfcRfcWfaMn2jh9pGfaVn2lx9pyfafH2op9qYfargDCcKQrC0LwxDMNQ3DkOw9D8QRDEURxJEsTRPFEUxVFcWRYhgABCfICAChh/gAFkXoTHQgARGx/gSDgkFgUBgkGBAJhUEgcDAYwHg+Hw3CQXgAiiZAIBIJJJCgUJJAiZJIA8MZ2EQBI5GEYBhEKJBIFwJAEHCRxNhqGAxlcUJYgCQBmkmAo3kIRBoDKZAGgIGw1mgMJZmMBJMhsHhfCoLJ4mAEwAE4BYEiQXJ5mMBpMBMMZcDALIhmIQgAFOA4uhIEJwgEJIFFQBRPlELocBAz4HiEPhaHwIAAmCbRdjwBIdFqFIAGCSZQhkMJzCQUALBUBJAhSVB8AAZRYCSTgYECa4qBSeJ6jMbwHiGXQSHiAJSicDYYjYYROACUYyCaiIbBSOh4giQJCAUXY8ogGBhAMBxNBKKxECgAxFgmQBFhcRRClQRAml4XB4nGFxCDAZhkFicYIBCG4pDQRAgHAPAtACAoMC4EAYiGfJ5kOCY3nof4QAmE4YEYAhiCGfh8BAIAwgOZ5Il6aBaEYaZWiAAwqEIKAUB4KBgg6HBIlaAICAQXhukKIg6g4fIYCCMImmQaIjAmLI0DCAomCWDIoDALwVGYEAhj8G4WAgQYzjYFhYgKDRSDyeIBAWGwGCAL44gaKBogKC47FwaJjAkN5SECIoIgECRkC2AIIgYEAADWYoynicANDIYBYgIDYuiqYwviCBBIFgMAECSWg7kuAIRlYWAhASEAUESS4plUKozm6S4wEMFJzEwMgPAoIIjGcIJLmEA4JAoKATCGGYkCoaIijQGxLmkCAfmYIBhAKBgqDOIACgeCgDmAAUIQJBwiRAgA8cIEBPAPB+FgQg0QKBjGIMEAwUQiCMFgGQLwe08jdAICEXA8BhihDKMwIIlAmBAFAPccwPwACgCAEcDYkQqh4BSFQGYJB/hxCsEIDoxAMAfAay8XAkBNgDCiDEAgAwEBBDAMcDYARzBQGmIoHAIQwDfAKFQfg4BgiSAMDgCwIAIgiHYJUS4DwBD5EgMRQh8xihjDCLwCg0wyBaGMPYQYBQBh0ECMQJ4TwAjQGIBwNoPBgiGAyHAcAuBKADF0OIGogwFAfHIDcIYtwYjQHCMYCYYVECHAiFUTAmAgi+DyIUcAwwICKGaMAIYHQ3BkDiMQDYWRAABEMBcHQcAwBBAuDcBg8ASgFCSGgCwhQOhtF47MDAawaABGmIAPYMRQCuV0KQEAcg2AHDoKEYwsAxAwACAYZQVxyBoDaEECYdA4iBFMHkBIsACgcCMLIGIBxYhcDyMUeAPwVC4HwNABgrwVBkAAG0I4sBwiGAmFES4exJKqAgMAQABxeDiFoIMCQVQ+DxAKBAKQIxdiQAKLEPwkBhAMksJUVI3A1gJAaDAYYBwsifBUPgcAhALhuCgEAAAOyAg="

 AddAssistant("Assistant node")
}
Nodes
{
 Add("Item 1",,"Key1")
 {
 HasButton = False
 LinkTo = "Key2"
 }
 Add("SubItem 1","Key1")
 Add("SubItem 2","Key1")
 Add("Item 2",,"Key2")
 {
 Expanded = False
 ArrangeSiblingNodesAs = 1
 Picture =
"gBHJJGHA5MIwAEIe4AAAFhwbiAliQwig7ixFjBQjRbjhljxwkB7kSFkiQkyblCllSwli7lzFmDQmTbmjlmzwnD7nQBnk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1YhgAEL5AgBhj/AAssMJthABFof4JDhIWCgYKDBATFT8M6hUIFAQAEQCCDwYF/QoWDZCRBgOKgIYHCQXMisKBAEQAAgOBZaSgQhjERANKQiZhIWamYyIBQ6FzcNKxQLJT4ADA4RjwObAAidBYdHwABQgUxMQYZEI0cD4OgnYKaKyzIRFNQx2YCKoFHScYD0ADXQwUAgwLoLQDqaCWBJoNQ9NBxFJTVQORgiarqSABbamGwtDAwBUWhQmqYALnOFQvGYPA4m6AwKhkZxKj2PBWC0SZCgmVY6CwIJgieBAniubRKHgaYgiwQwGiCfxGDWbBRmGZYIi2VwGnAexxGUSwUFiaR+hQPbBgOCoLCIHh4DAARCmQG4AlgNxuhwWgpFAEQUhuOxOk0NrhAaQoBmgPYdFSIZPjYGYbn+HhgEoAA7HMBIOjUM51AoPojHkEwVlET5slgWZtAEUBdjeSoeF6X5/rQRRSi+QB6GychsEAfZshKYABGQZorlAOgMBqEgAjYHB2jqSoigmYBLk+QZnBqGhggAEwImgbojgoIwSE+MxUHiS4REQCQWluD48B+JJoL+YQikuaI9AALgLmsJQfnSdAvDkCJEhIIIBgOegLEiPBqCyCAAjcCwgAAIJBhQBQkHGL4gDaNBokkZQMiwUAuioJQiCAQYsHMcwwEIeoigAYIogsGIwFKIYICIWguEoPgQhsawBASGgwCuJwLH8K4LigAIaDwbxMAOKxbisPwfASQATFASoagIEYwgcSoKGiAA/mEdIuiGPxCmObIlhMIJNHONxFH8EpPCGeB+noEpBBSSRjCsPZEiyKhgjAH5whSdLEjwDxjC8TxVEMFRzFWJJZBUSI0gQEQLBOM4VHkIg1D0CAJDQNg/p4AAdoC"

 }
 Add("SubItem 1","Key2")
 Add("SubItem 2","Key2")
}
EndUpdate

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

selected node, SelColor property
borders of the nodes, Background property
the background for all nodes, BackColorNode property
node's background, BackColor property

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

selected node, SelColor property
borders of the nodes, Background property
the background for all nodes, BackColorNode property
node's background, BackColor property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

ChartView object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {F4DFE455-01FE-420E-A088-64346DCC3791}. The object's program identifier is: "Exontrol.ChartView".
The /COM object module is: "ExOrgChart.dll"

The ExOrgChart component handles and displays organigrams. Use the Nodes property to
access the control's Nodes collection. The component lets the user changes its visual
appearance using skins, each one providing an additional visual experience that enhances
viewing pleasure. Skins are relatively easy to build and put on any part of the control. Use
the VisualAppearance property to add new skins to the control. The control supports the
following properties and methods:

Name Description
AcceptFiles Specifies whether the control accepts drag-and-drop files.

AllowCopyTemplate
Specifies whether the Shift + Ctrl + Alt + Insert sequence
copies the control's content to the clipboard, in template
form.

AllowEdit Specifies the combination of keys that allows the user to
edit a node.

AllowMoveChart Indicates the combination of keys so the user moves or
scrolls the chart at runtime.

AllowMoveNode Specifies the combination of keys the user can move a
node at runtime.

AllowResizeChart Specifies the keys combination so the user can magnify or
shrink the chart at runtime (zooming).

AllowSelectNothing Specifies whether the user can select nothing if he clicks
out of any node.

AnchorFromPoint Retrieves the identifier of the anchor from point.

AntiAliasing Specifies whether smoothing (antialiasing) is applied to
lines or curves of the objects in the control.

Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.
BackColorNode Specifies the default node's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.
Maintains performance when items are added to the

BeginUpdate control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

ButtonsAlign Specifies the alignment of the +/- buttons.
ChartHeight Retrieves the height in pixels to display the entire chart.
ChartWidth Retrieves the width in pixels to display the entire chart.

Copy Copies the control's content to the clipboard in EMF
format.

CopyTo Exports the control's view to an EMF file.

Cursor Gets or sets the cursor that is displayed when the mouse
pointer hovers the control.

DefaultNodePadding Returns or sets a value that indicates the padding of the
nodes in the control.

DragOutsideDef
Indicates the options to scroll the control's content like
speed, step, and so on while user moves a node by drag
and drop outside of the control's content.

DrawRoundNode Specifies a value that indicates whether the node has
borders with round corners.

EditNode Edits the specified node.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EnsureVisibleNode Ensures the given node is in the visible client area.

EnsureVisibleOnSelect Retrieves or sets a value that indicates whether the
control ensures the selected node is visible.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExpandOnDblClk Expands or collapses a node when the user dbl clicks the
node.

ExploreFromNode Explores the organigram from the node.
Retrieves or sets a value that indicates whether the height

FixedHeightNode of the node's caption is fixed.

FixedWidthNode Retrieves or sets a value that indicates whether the width
of the node's caption is fixed.

Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
ForeColorNode Specifies the default node's foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FrameFromPoint Gets the frame from point.
Frames Gets the control's collection of frames.

HasButtons Specifies whether a parent node displays +/- buttons if it
contains child nodes.

HasButtonsCustom Specifies the index of icons for +/- signs when the
HasButtons property is exCustom.

hEBNList Retrieves the handle of the skins list.
hIconList Retrieves the handle of the icons list.

HideSelection Specifies whether the selection in the control is hidden
when the control loses the focus.

hPictureList Retrieves the handle of the pictures list.
HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Image List Control.

ImageSize Retrieves or sets the size of icons the control displays..

IndentChild Retrieves or sets the amount, in pixels, that child nodes
are indented relative to their parent nodes.

IndentSiblingX Specifies the horizontal distance, in pixels between two
siblings node.

IndentSiblingY Specifies the vertical distance, in pixels between two
siblings node.

Layout Specifies the way the chart displays the diagram.
LinkAssistantColor Specifies the color for assistant links.

LinkCaptionFromPoint Gets the node whose caption on the link hovers the
specified point.

LinkColor Specifies the color for links.
LinkToColor Specifies the color for 'LinkTo' links.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MaxZoomHeight Gets or sets a value indicating how large the chart will
appear on vertical axis (max value).

MaxZoomWidth Gets or sets a value indicating how large the chart will
appear on horizontal axis (max value).

MinZoomHeight Gets or sets a value indicating how large the chart will
appear on vertical axis (min value).

MinZoomWidth Gets or sets a value indicating how large the chart will
appear on horizontal axis (min value).

NodeFromPoint Gets the node from point.
Nodes Gets the control's collection of nodes.

PenBorderNode Specifies the type of pen used to draw the node's
borders.

PenLink Specifies the type of the pen used to paint the links
between nodes.

PenLinkAssistant Specifies the type of the pen used to paint the links
between assistant nodes.

PenLinkTo Specifies the type of the pen used to show the 'LinkTo'
links.

PenWidthLink Specifies the width of the links between nodes.
PenWidthLinkAssistant Specifies the width of the links between assistant nodes.
PenWidthLinkTo Specifies the width of the 'LinkTo' links.
Picture Retrieves or sets a graphic to be displayed in the control.
PictureAspectRatioNode Specifies the default aspect ratio for the node's picture.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PictureHeightNode Specifies the height of the node's picture.
PictureWidthNode Specifies the width of the node's picture.
Refresh Refreses the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

Root Gets the root node.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.

ScrollByClick Specifies a value that indicates whether the user scrolls
the control's content by clicking the client area.

ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOnCursor Scrolls the chart as the cursor indicates.

ScrollOnEnsure Specifies a value that indicates whether the control scrolls
the control's content when ensuring that a node is visible.

ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollPos Specifies the vertical/horizontal scroll position.
ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SelColor Retrieves or sets a value that indicates the color used to
mark the selected node.

SelectNode Specifies the selected node.
ShadowNode Specifies whether the node has shadow.

ShowAddNew Specifies whether the selected node shows or hides add
new buttons.

ShowAssistants Retrieves or sets a value that indicates whether the
assistant nodes are shown.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowLinksDir Specifies whether links show the direction.

ShowRoundLink Specifies whether the round links are shown between
parent and child nodes.

ShowToolTip Shows the specified tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

ToTemplate Generates the control's template.
Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.
WidthNode Specifies the maximum width of the nodes captions.

ZoomHeight Gets or sets a value indicating how large the chart will
appear on vertical axis.

ZoomHeightMode Specifies a value that indicates whether the ZoomHeight
property is updated when the control is resized.

ZoomWidth Gets or sets a value indicating how large the chart will
appear on horizontal axis.

ZoomWidthMode Specifies a value that indicates whether the ZoomWidth
property is updated when the control is resized.

property ChartView.AcceptFiles as Boolean
Specifies whether the control accepts drag-and-drop files.

Type Description

Boolean A Boolean expression that specifies whether the control
accepts files by drag and drop.

By default, the AcceptFiles property is False. If the AcceptFiles property is True, the control
fires the DropFile event once the user drags a file over a node.

property ChartView.AllowCopyTemplate as Boolean
Specifies whether the Shift + Ctrl + Alt + Insert sequence copies the control's content to the
clipboard, in template form.

Type Description

Boolean
A Boolean expression that indicates whether the Shift +
Ctrl + Alt + Insert sequence copies the control's content to
the clipboard, in template form.

By default, the AllowCopyTemplate property is True, only for trial-demo version, and False,
for the registered version. So, by default, the Shift + Ctrl + Alt + Insert sequence is working
in the trial version, and it doesn't work on the registered version. Use the Version property
to find out what version of the control you are running. Use the AllowCopyTemplate property
for debugging purpose. Use the AllowCopyTemplate property to easily copy the control's
content to the clipboard, as template form, and so you can send us a sample without being
necessary to send the entire sample to us. The AllowCopyTemplate property is not
serialized in the form's persistence, so you need to set it in the code for a particular value.
If the AllowCopyTemplate property is True, the user may use the Shift + Ctrl + Alt + Insert
sequence to copy the control's content to the clipboard, in template form. If the control
manages to copy the control's content to the clipboard, you should hear a beep. The
property uses the ToTemplate property to generate the control's template, at runtime. The
format of the clipboard being copied is plain text. Use the Template property to apply the
generated template to an empty control.

property ChartView.AllowEdit as AllowKeysEnum
Specifies the combination of keys that allows the user to edit a node.

Type Description

AllowKeysEnum An AllowKeyEnum expression that specifies the key
combination so the user can edit the node's caption.

By default, the AllowEdit is set on exLeftClick + exDblLick, which means the user is able to
edit the node's caption by double clicking the left mouse button. Use the AllowEdit property
to prevent editing the node's caption at runtime, or to specify a different keys combination
so the user can edit the node's caption. The LayoutStartChanging(exEditNode) event
notifies your application once the user starts editing the node's caption. Use the
NodeFromPoint(-1,-1) property to get the node from the current position. The
LayoutEndChanging(exEditNode) event notifies your application once of the edit operation
ends. The Caption property indicates the caption of the node being edited. Use the Editable
property to specify whether a specified node can be edited at runtime. The Background(
exEditNodeBackColor)/Background(exEditNodeForeColor) property specifies the
background/foreground color of the edit field being displayed on the node while editing. Use
the EditNode to programmatically edit the giving node.

property ChartView.AllowMoveChart as AllowKeysEnum
Indicates the combination of keys so the user moves or scrolls the chart at runtime.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can scroll the control's content
without using the control's scroll bars.

By default, the AllowMoveChart property is exLeftClick. This means that if you single click
the left mouse button and start dragging the control's context is scrolled to the dragging
direction. This property has effect only, if the control's scroll bars are visible, in other words,
there are nodes that are not visible in the control's client area. The AllowMoveNode
property specifies the combination of keys so the user can move a node from one parent to
another. The AllowResizeNode property specifies the combination of keys so the user can
resize the chart at runtime. The ScrollPos property specifies the control's scroll position.

property ChartView.AllowMoveNode as AllowKeysEnum
Specifies the combination of keys the user can move a node at runtime.

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can move a node from one parent
to another.

By default, the AllowMoveNode property is exLeftClick + exSHIFTKey. This means that if
you single click the left mouse button on the node while the SHIFT key is pressed, you can
drag the node to a new parent. You can use the NodeFromPoint property to get the node
from the current position. The Parent property specifies the parent node. The
LayoutStartChanging(exMoveNode) event notifies your application once the user starts
dragging a node. The LayoutEndChanging(exMoveNode) event notifies your application
once user drops the node to a new position. The DragOutsideDef property customizes the
speed to scroll the control's content while user moves nodes by drag and drop then outside
of the control's client area.

property ChartView.AllowResizeChart as AllowKeysEnum
Specifies the keys combination so the user can magnify or shrink the chart at runtime (
zooming).

Type Description

AllowKeysEnum
An AllowKeysEnum expression that specifies the keys
combination so the user can resize the control's content at
runtime.

By default, the AllowResizeChart property is exMiddleClick, which means that once the user
clicks the middle mouse button, the user can resize the chart by dragging. The ZoomWidth
property specifies a value that indicates how large the chart will appear on horizontal axis.
The LayoutStartChanging(exResizeChart) event notifies your application once the user
starts resizing the chart. The LayoutEndChanging(exResizeChart) event notifies your
application once the chart is resized. The ZoomHeight property specifies a value that
indicates how large the chart will appear on vertical axis. Use the
MinZoomWidth/MaxZoomWidth property to specify the limits on horizontal axis when the
user performs resizing/zooming/shrinking. Use the MinZoomHeight/MaxZoomWidth property
to specify the limits on horizontal axis when the user performs resizing/zooming/shrinking.
The AllowMoveNode property specifies the combination of keys so the user can move a
node from one parent to another.

property ChartView.AllowSelectNothing as Boolean
Specifies whether the user can select nothing if he clicks out of any node.

Type Description

Boolean A Boolean expression that specifies whether the user can
select nothing if the user clicks outside of the node.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
allows selecting nothing if the user clicks outside the node. Use the SelectNode property to
specify the selected node.

property ChartView.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ChartView1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxChartView1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXCHARTVIEWLib._IChartViewEvents_MouseMoveEvent) Handles
AxChartView1.MouseMoveEvent
 With AxChartView1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With

End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axChartView1_MouseMoveEvent(object sender,
AxEXCHARTVIEWLib._IChartViewEvents_MouseMoveEvent e)
{
 axChartView1.ShowToolTip(axChartView1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveChartView1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_chartView.ShowToolTip(m_chartView.GetAnchorFromPoint(-1, -1), vtEmpty,
vtEmpty, vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .ChartView1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property ChartView.AntiAliasing as Boolean
Specifies whether smoothing (antialiasing) is applied to lines or curves in the control.

Type Description

Boolean
A Boolean expression that specifies whether the control
uses the antialiasing rendering to show the lines or curves
in the control.

By default, the AntiAliasing property is False. In other words, the AntiAliasing property
determines the rendering quality for different objects in the control. For instance, you can
use the antialiasing feature to show the arrows or links between nodes more smoothly. The
ShowLinksDir property specifies whether the links show the directions. Use the LinkTo
property to link arbitrary a node with another. The LinkToCaption property specifies the
HTML caption being shown on a link.

The following figure illustrates the visual distortion that occurs when anti-aliasing is used.

The following figure illustrates the visual distortion that occurs when anti-aliasing is not used.

property ChartView.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The chart, scrollbars are
always shown in the control's client area. The skin
may contain transparent objects, and so you can
define round corners. The normal.ebn file contains
such of objects. Use the eXButton's Skin builder to
view or change this file

Use the Appearance property to remove the control's borders, or to define new type of
borders. By default, the Appearance property is Sunken. Use the BackColor property to
specify the control's background color. Use the Picture property to display a picture on the
control's background. Use the PenLink property to draw links between parent and child
nodes. Use the PenWidthLink property to specify the width of the link between nodes. Use
the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips.

https://exontrol.com/exbutton.jsp

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With ChartView1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\normal.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxChartView1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\normal.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axChartView1.BeginUpdate();
axChartView1.VisualAppearance.Add(0x16, "c:\\temp\\normal.ebn");
axChartView1.Appearance = (EXCHARTVIEWLib.AppearanceEnum)0x16000000;
axChartView1.BackColor = Color.FromArgb(250, 250, 250);
axChartView1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_chartView.BeginUpdate();
m_chartView.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\normal.ebn"));
m_chartView.SetAppearance(0x16000000);
m_chartView.SetBackColor(RGB(250,250,250));
m_chartView.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.ChartView1

 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\normal.ebn")
 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method ChartView.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ChartView1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ChartView.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to define the control's background color. Use the
BackColorNode property to define the default background color for nodes. Use the
BackColor property to define the background color for a specified node. Use the Picture
property to display a picture on the control's background. Use the SelColor property to
specify the color to mark the selected node. Use the SelectNode property to specify the
selected node. Use the BackColor property to specify the control's background color. Use
the LinkColor property to specify the color for the links between nodes. For instance, the
SelColor property has the same value as BackColor property, the control doesn't paint the
mark around the selected node.

property ChartView.BackColorNode as Color
Specifies the default node's background color.

Type Description

Color A color expression that indicates the node's background
color.

Use the BackColorNode property to define the default background color for nodes. Use the
BackColor property to define the background color for a specific node. Use the
ClearBackColor method to clear the node's background color. Use the BackColor property
to specify the control's background color. Use the Picture property to display a picture on
the control's background. Use the SelColor property to specify the color to mark the
selected node. Use the ForeColorNode property to specify the foreground color for all
nodes. The DefaultNodePadding property defines the padding for all nodes.

property ChartView.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the SelColor property to change the visual appearance for the selected node. Use the
BackColor property to change the visual appearance for a specified node.

The following VB sample changes the frame for all nodes. The sample applies the " "
frame to all nodes.

With ChartView1
 .VisualAppearance.Add 2, "D:\Temp\ExOrgChart.Help\node.ebn"
 .Background(exNodeFrame) = &H2000000

End Wit

The following C++ sample changes the frame for all nodes:

#include "Appearance.h"
m_chartview.GetVisualAppearance().Add(2,
COleVariant("D:\\Temp\\ExOrgChart.Help\\node.ebn"));
m_chartview.SetBackground(0, 0x2000000);

The following VB.NET sample changes the frame for all nodes:

With AxChartView1
 .VisualAppearance.Add(2, "D:\Temp\ExOrgChart.Help\node.ebn")
 .set_Background(EXORGCHARTLib.BackgroundPartEnum.exNodeFrame, &H2000000)
End With

The following C# sample changes the frame for all nodes:

axChartView1.VisualAppearance.Add(2, "D:\\Temp\\ExOrgChart.Help\\node.ebn");
axChartView1.set_Background(EXORGCHARTLib.BackgroundPartEnum.exNodeFrame,
0x2000000);

The following VFP sample changes the frame for all nodes:

With thisform.ChartView1
 .VisualAppearance.Add(2, "D:\Temp\ExOrgChart.Help\node.ebn")
 .Background(0) = 33554432
EndWith

where the 33554432 in hexa is 0x2000000

method ChartView.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use the Add method to add new child nodes. Use the Remove method to remove a
node from the control. Use the Root property to get the root node of the control.

The following VB sample adds four nodes to the control :

With ChartView1
 .BeginUpdate
 With .Nodes
 .Add "Item 1", "root", "Key1"
 .Add "Item 2", "root"
 .Add "Sub Item 1", "Key1"
 .Add "Sub Item 2", "Key1"
 End With
 .EndUpdate
End With

The following C++ sample adds four nodes to the control :

#include "nodes.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
m_chartview.BeginUpdate();
CNodes nodes = m_chartview.GetNodes();
nodes.Add("Item 1", COleVariant("root"), COleVariant("Key1"), vtMissing, vtMissing);
nodes.Add("Item 2", COleVariant("root"), vtMissing, vtMissing, vtMissing);
nodes.Add("Sub Item 1", COleVariant("Key1"), vtMissing, vtMissing, vtMissing);
nodes.Add("Sub Item 2", COleVariant("Key1"), vtMissing, vtMissing, vtMissing);
m_chartview.EndUpdate();

The following VB.NET sample adds four nodes to the control :

With AxChartView1
 .BeginUpdate()
 With .Nodes

 .Add("Item 1", "root", "Key1")
 .Add("Item 2", "root")
 .Add("Sub Item 1", "Key1")
 .Add("Sub Item 2", "Key1")
 End With
 .EndUpdate()
End With

The following C# sample adds four nodes to the control :

axChartView1.BeginUpdate();
EXORGCHARTLib.Nodes nodes = axChartView1.Nodes;
nodes.Add("Item 1", "root", "Key1", null, null);
nodes.Add("Item 2", "root", null, null, null);
nodes.Add("Sub Item 1", "Key1", null, null, null);
nodes.Add("Sub Item 2", "Key1", null, null, null);
axChartView1.EndUpdate();

The following VFP sample adds four nodes to the control :

With thisform.ChartView1
 .BeginUpdate
 With .Nodes
 .Add("Item 1", "root", "Key1")
 .Add("Item 2", "root")
 .Add("Sub Item 1", "Key1")
 .Add("Sub Item 2", "Key1")
 EndWith
 .EndUpdate
EndWith

property ChartView.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that defines the height of the top and
bottom control's border. in pixels.

By default, the BorderHeight property is 4 pixels. The control's client area excludes the size
of the borders. Use the BorderWidth and BorderHeight properties to define the size of
control's borders. The BorderHeight property is specified in pixels. Use the
FixedHeightNode property to specify the size of nodes. Use the Font property to specify the
control's font.

property ChartView.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that specifies the width of the left and
right control's borders, in pixels.

The control's client area excludes the size of the borders. Use the BorderWidth and
BorderHeight properties to define the size of control's borders. The BorderWidth property is
specified in pixels. By default, the BorderWidth property is 10 pixels. Use the
FixedWidthNode property to specify the size of nodes. Use the Font property to specify the
control's font. The ChartHeight property gets the height in pixels required to display the
entire chart. The ChartWidth property gets the width in pixels required to display the entire
chart.

The following screen shot shows the chart when the BorderWidth property is 0. (Look on
the left side of the chart).

The following screen shot shows the chart when the BorderWidth property is 10. (Look on
the left side of the chart).

property ChartView.ButtonsAlign as PictureDisplayEnum
Specifies the alignment of the +/- buttons.

Type Description

PictureDisplayEnum
A PictureDisplayEnum expression that indicates the
position of +/- buttons inside nodes. The Tile, Stretch
values have no effect.

By default, the ButtonsAlign property is UpperLeft. Use the ButtonsAlign property to specify
the position where the +/- buttons are displayed on nodes. Use the HasButtons property to
display the +/- buttons for nodes that contain child nodes. Use the HasButton property to
hide the +/- button inside a particular node.

The following VB sample displays the +/- signs on the upper left corner:

With ChartView1
 .HasButtons = exCircle
 .ButtonsAlign = UpperLeft
End With

The following VB sample displays the +/- signs on the middle left border:

With ChartView1
 .HasButtons = exCircle
 .ButtonsAlign = MiddleLeft
End With

property ChartView.ChartHeight as Long
Retrieves the height in pixels to display the entire chart.

Type Description

Long A long expression that specifies the height in pixels
required to display the entire chart.

The ChartHeight property gets the height in pixels required to display the entire chart. The
ChartHeight property does not retrieve the size of the borders. The ChartWidth property
specifies the width in pixels required to display the entire chart. Use the Appearance
property to remove the control's appearance. Use the BorderWidth property to specify the
width in pixels of the control's empty border (in the left or right side). Use the BorderHeight
property to specify the height in pixels of the control's empty border (in the top or bottom
side). The ChartWidth and ChartHeight properties does NOT include the size of the
control's borders (if the Appearance property is not 0). Use the Appearance property on
0, or add 4 pixels, if you are using the Appearance property on not zero.

The following VB sample resizes the control so the entire chart is display (no scroll bars
are displayed):

Private Sub autoSize()
 With ChartView1
 Dim nMode As ZoomModeEnum
 nMode = .ZoomWidthMode
 .BeginUpdate
 .Width = (2 * .BorderWidth + .ChartWidth) * Screen.TwipsPerPixelX
 .Height = (2 * .BorderHeight + .ChartHeight) * Screen.TwipsPerPixelY
 .ZoomWidthMode = exControlSize
 .ZoomHeightMode = exControlSize
 .EndUpdate
 .ZoomWidthMode = nMode
 .ZoomHeightMode = nMode
 End With
End Sub

The following VB.NET sample resizes the control so the entire chart is display (no scroll
bars are displayed):

Private Sub ASize()
 With Chartview1

 Dim nMode As exontrol.EXORGCHARTLib.ZoomModeEnum = .ZoomWidthMode
 .BeginUpdate()
 .Width = 2 * Chartview1.BorderWidth + Chartview1.ChartWidth
 .Height = 2 * Chartview1.BorderHeight + Chartview1.ChartHeight
 .ZoomWidthMode = exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize
 .ZoomHeightMode = exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize
 .EndUpdate()
 .ZoomWidthMode = nMode
 .ZoomHeightMode = nMode
 End With
End Sub

The following C# sample resizes the control so the entire chart is display (no scroll bars
are displayed):

private void autoSize()
{
 exontrol.EXORGCHARTLib.ZoomModeEnum nMode = chartview1.ZoomWidthMode;
 chartview1.BeginUpdate();
 chartview1.Width = 2 * chartview1.BorderWidth + chartview1.ChartWidth;
 chartview1.Height = 2 * chartview1.BorderHeight + chartview1.ChartHeight;
 chartview1.ZoomWidthMode =
exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize;
 chartview1.ZoomHeightMode =
exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize;
 chartview1.EndUpdate();
 chartview1.ZoomWidthMode = nMode;
 chartview1.ZoomHeightMode = nMode;
}

property ChartView.ChartWidth as Long
Retrieves the width in pixels to display the entire chart.

Type Description

Long A long expression that specifies the width in pixels
required to display the entire chart.

The ChartWidth property gets the width in pixels required to display the entire chart. The
ChartWidth property does not retrieve the size of the borders. The ChartHeight property
retrieves the height in pixels to display the entire chart. Use the Appearance property to
remove the control's appearance. Use the BorderWidth property to specify the width in
pixels of the control's empty border (in the left or right side). Use the BorderHeight
property to specify the height in pixels of the control's empty border (in the top or bottom
side). The ChartWidth and ChartHeight properties does NOT include the size of the
control's borders (if the Appearance property is not 0). Use the Appearance property on
0, or add 4 pixels, if you are using the Appearance property on not zero.

The following VB sample resizes the control so the entire chart is display (no scroll bars
are displayed):

Private Sub autoSize()
 With ChartView1
 Dim nMode As ZoomModeEnum
 nMode = .ZoomWidthMode
 .BeginUpdate
 .Width = (2 * .BorderWidth + .ChartWidth) * Screen.TwipsPerPixelX
 .Height = (2 * .BorderHeight + .ChartHeight) * Screen.TwipsPerPixelY
 .ZoomWidthMode = exControlSize
 .ZoomHeightMode = exControlSize
 .EndUpdate
 .ZoomWidthMode = nMode
 .ZoomHeightMode = nMode
 End With
End Sub

The following VB.NET sample resizes the control so the entire chart is display (no scroll
bars are displayed):

Private Sub ASize()
 With Chartview1

 Dim nMode As exontrol.EXORGCHARTLib.ZoomModeEnum = .ZoomWidthMode
 .BeginUpdate()
 .Width = 2 * Chartview1.BorderWidth + Chartview1.ChartWidth
 .Height = 2 * Chartview1.BorderHeight + Chartview1.ChartHeight
 .ZoomWidthMode = exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize
 .ZoomHeightMode = exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize
 .EndUpdate()
 .ZoomWidthMode = nMode
 .ZoomHeightMode = nMode
 End With
End Sub

The following C# sample resizes the control so the entire chart is display (no scroll bars
are displayed):

private void autoSize()
{
 exontrol.EXORGCHARTLib.ZoomModeEnum nMode = chartview1.ZoomWidthMode;
 chartview1.BeginUpdate();
 chartview1.Width = 2 * chartview1.BorderWidth + chartview1.ChartWidth;
 chartview1.Height = 2 * chartview1.BorderHeight + chartview1.ChartHeight;
 chartview1.ZoomWidthMode =
exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize;
 chartview1.ZoomHeightMode =
exontrol.EXORGCHARTLib.ZoomModeEnum.exControlSize;
 chartview1.EndUpdate();
 chartview1.ZoomWidthMode = nMode;
 chartview1.ZoomHeightMode = nMode;

method ChartView.Copy ()
Copies the control's content to the clipboard in EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard. You can paste this to
Microsoft Word, Excel, and so on. By default, the control copies its content to the clipboard
when user presses the CTRL + C combination. Use the CopyTo method to export the
control's content to an PDF,JPG,PNG,GIF,TIF,BMP,EMF file.

The following VB sample saves the control's content to a file:

Clipboard.Clear
ChartView.Copy
SavePicture Clipboard.GetData(), App.Path & "\test.emf"

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc;, IID_IPicture, FALSE,
(LPVOID*)&spPicture;)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream;)))
 {

 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize;)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b;, 10240, &dwRead;);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten;, NULL);
 dwWritten += dwBWritten;
 }
 CloseHandle(hFile);
 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxChartView1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axChartView1.Copy();

property ChartView.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a file:

If (ChartView1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In ChartView1.CopyTo("")
 Debug.Print i
Next

property ChartView.Cursor(Area as ClientAreaEnum) as Variant
Gets or sets the cursor that is displayed when the mouse pointer hovers the control.

Type Description

Area as ClientAreaEnum A ClientAreaEnum expression that indicates the control's
zone where the mouse pointer is changed.

Variant

A string expression that indicates a predefined value listed
bellow, a string expression that indicates the path to a
cursor file, a long expression that indicates the handle of
the cursor.

Use the Cursor property to specify the cursor that control displays when mouse pointer
hovers the parts of the control.

Here's the list of predefined values (string expressions):

"exDefault" - (Default) Shape determined by the object.
"exArrow" - Arrow.
"exCross" - Cross (cross-hair pointer).
"exIBeam" - I Beam.
"exIcon" - Icon (small square within a square).
"exSize" - Size (four-pointed arrow pointing north, south, east, and west).
"exSizeNESW" - Size NE SW (double arrow pointing northeast and southwest).
"exSizeNS" - Size N S (double arrow pointing north and south).
"exSizeNWSE" - Size NW, SE.
"exSizeWE" - Size W E (double arrow pointing west and east).
"exUpArrow" - Up Arrow.
"exHourglass" - Hourglass (wait).
"exNoDrop" - No Drop.
"exArrowHourglass" - Arrow and hourglass.
"exHelp" - Arrow and question mark.
"exSizeAll" - Size all
"exHand" - Hand cursor.

If the cursor value is a string expression, the control looks first if it is not a predefined value
like listed above, and if not, it tries to load the cursor from a file. If the Cursor property is a
long expression it always indicates a handle to a cursor. The API functions like: LoadCursor
or LoadCursorFromFile retrieves a handle to a cursor. In .NET framework, the Handle
parameter of the Cursor object specifies the handle to the cursor. Use the Cursors object to
access to the list of predefined cursors in the .NET framework.

The following VB sample changes the cursor while the mouse pointer hovers the control's

line number bar:

With ChartView1
 .Cursor(exChartArea) = "exCross"
End With

Here's the VB.NET alternative:

AxChartView1.Ctlset_Cursor(EXCHARTVIEWLib.ClientAreaEnum.exChartArea,
"exCross")

The following sample loads a cursor from a file:

With ChartView1
 .Cursor(exChartArea) = "C:\WINNT\Cursors\metronom.ani"
End With

And here's the VB.NET alternative:

AxChartView1.Ctlset_Cursor(EXCHARTVIEWLib.ClientAreaEnum.exChartArea,
"C:\WINNT\Cursors\metronom.ani")

The following VB.NET sample changes the cursor with one that Cursors object defines (
PanEast cursor):

AxChartView1.Ctlset_Cursor(EXCHARTVIEWLib.ClientAreaEnum.exChartArea,
Cursors.PanEast.Handle)

The following C++ sample changes the cursor for the control's client area:

m_chartview.SetCursor(0 /*exChartArea*/, COleVariant("exHelp"));

The following C# sample changes the cursor for the control's client area:

axChartView1.Ctlset_Cursor(EXORGCHARTLib.ClientAreaEnum.exChartArea, "exHelp");

The following VFP sample changes the cursor for the control's client area:

with thisform.ChartView1
 .Cursor(0) = "exHelp"
endwith

property ChartView.DefaultNodePadding(Edge as PaddingEdgeEnum)
as Long
Returns or sets a value that indicates the padding of the nodes in the control.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be updated / requested

Long A long expression that defines the node's default padding

By default, the DefaultNodePadding property is 0, which indicates no padding for any node.
The DefaultNodePadding property defines the padding for all nodes. Use the Padding
property of the Node to define the padding for specified node. The BackColorNode property
defines the node's default background color / EBN object. Use the ForeColorNode property
to specify the foreground color for all nodes. Use the FixedHeightNode / FixedWidthNode
properties to specify fixed size for all nodes in the chart.

The following screen shot defines a node with no padding (by default):

The following screen shot defines a node with padding:

The following samples show how you can define padding for all nodes:

VBA (MS Access, Excell...)

With ChartView1
 .BeginUpdate
 .DefaultNodePadding(-1) = 8
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add "L1 A1",,"LA"
 .Add "L1 B1",,"LB"

 .Add "L2 A1","LA","LA2"
 .Add "L2 B2","LB","LB2"
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
End With

VB6

With ChartView1
 .BeginUpdate
 .DefaultNodePadding(exPaddingAll) = 8
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add "L1 A1",,"LA"
 .Add "L1 B1",,"LB"
 .Add "L2 A1","LA","LA2"
 .Add "L2 B2","LB","LB2"
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
End With

VB.NET

With Exchartview1
 .BeginUpdate()

.set_DefaultNodePadding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,8

 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)

 .AntiAliasing = True
 With .Nodes
 .Add("L1 A1",,"LA")
 .Add("L1 B1",,"LB")
 .Add("L2 A1","LA","LA2")
 .Add("L2 B2","LB","LB2")
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate()
End With

VB.NET for /COM

With AxChartView1
 .BeginUpdate()
 .set_DefaultNodePadding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,8)
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1 A1",,"LA")
 .Add("L1 B1",,"LB")
 .Add("L2 A1","LA","LA2")
 .Add("L2 B2","LB","LB2")
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->BeginUpdate();
spChartView1->PutDefaultNodePadding(EXORGCHARTLib::exPaddingAll,8);
spChartView1->PutIndentSiblingY(30);
spChartView1->PutShowLinksDir(VARIANT_TRUE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(RGB(0,0,0));
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1 A1",vtMissing,"LA",vtMissing,vtMissing);
 var_Nodes->Add(L"L1 B1",vtMissing,"LB",vtMissing,vtMissing);
 var_Nodes->Add(L"L2 A1","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2 B2","LB","LB2",vtMissing,vtMissing);
spChartView1->GetNodes()->GetItem("root")->PutCaption(L"Ls As");
spChartView1->EndUpdate();

C++ Builder

ChartView1->BeginUpdate();
ChartView1-
>DefaultNodePadding[Exorgchartlib_tlb::PaddingEdgeEnum::exPaddingAll] = 8;
ChartView1->IndentSiblingY = 30;
ChartView1->ShowLinksDir = true;
ChartView1->PenWidthLink = 2;
ChartView1->LinkColor = RGB(0,0,0);
ChartView1->AntiAliasing = true;
Exorgchartlib_tlb::INodesPtr var_Nodes = ChartView1->Nodes;
 var_Nodes->Add(L"L1 A1",TNoParam(),TVariant("LA"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L1 B1",TNoParam(),TVariant("LB"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L2 A1",TVariant("LA"),TVariant("LA2"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L2 B2",TVariant("LB"),TVariant("LB2"),TNoParam(),TNoParam());
ChartView1->Nodes->get_Item(TVariant("root"))->Caption = L"Ls As";

ChartView1->EndUpdate();

C#

exchartview1.BeginUpdate();
exchartview1.set_DefaultNodePadding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,

exchartview1.IndentSiblingY = 30;
exchartview1.ShowLinksDir = true;
exchartview1.PenWidthLink = 2;
exchartview1.LinkColor = Color.FromArgb(0,0,0);
exchartview1.AntiAliasing = true;
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("L1 A1",null,"LA",null,null);
 var_Nodes.Add("L1 B1",null,"LB",null,null);
 var_Nodes.Add("L2 A1","LA","LA2",null,null);
 var_Nodes.Add("L2 B2","LB","LB2",null,null);
exchartview1.Nodes["root"].Caption = "Ls As";
exchartview1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ChartView1.BeginUpdate();
 ChartView1.DefaultNodePadding(-1) = 8;
 ChartView1.IndentSiblingY = 30;
 ChartView1.ShowLinksDir = true;
 ChartView1.PenWidthLink = 2;
 ChartView1.LinkColor = 0;
 ChartView1.AntiAliasing = true;

 var var_Nodes = ChartView1.Nodes;
 var_Nodes.Add("L1 A1",null,"LA",null,null);
 var_Nodes.Add("L1 B1",null,"LB",null,null);
 var_Nodes.Add("L2 A1","LA","LA2",null,null);
 var_Nodes.Add("L2 B2","LB","LB2",null,null);
 ChartView1.Nodes.Item("root").Caption = "Ls As";
 ChartView1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ChartView1
 .BeginUpdate
 .DefaultNodePadding(-1) = 8
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add "L1 A1",,"LA"
 .Add "L1 B1",,"LB"
 .Add "L2 A1","LA","LA2"
 .Add "L2 B2","LB","LB2"
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
 End With

End Function
</SCRIPT>
</BODY>

C# for /COM

axChartView1.BeginUpdate();
axChartView1.set_DefaultNodePadding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,

axChartView1.IndentSiblingY = 30;
axChartView1.ShowLinksDir = true;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1 A1",null,"LA",null,null);
 var_Nodes.Add("L1 B1",null,"LB",null,null);
 var_Nodes.Add("L2 A1","LA","LA2",null,null);
 var_Nodes.Add("L2 B2","LB","LB2",null,null);
axChartView1.Nodes["root"].Caption = "Ls As";
axChartView1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Node,com_Nodes;
 anytype var_Node,var_Nodes;
 ;

 super();

 exchartview1.BeginUpdate();
 exchartview1.DefaultNodePadding(-1/*exPaddingAll*/,8);
 exchartview1.IndentSiblingY(30);
 exchartview1.ShowLinksDir(true);

 exchartview1.PenWidthLink(2);
 exchartview1.LinkColor(WinApi::RGB2int(0,0,0));
 exchartview1.AntiAliasing(true);
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 com_Nodes.Add("L1 A1",,"LA");
 com_Nodes.Add("L1 B1",,"LB");
 com_Nodes.Add("L2 A1","LA","LA2");
 com_Nodes.Add("L2 B2","LB","LB2");
 var_Node = COM::createFromObject(exchartview1.Nodes()).Item("root");
com_Node = var_Node;
 com_Node.Caption("Ls As");
 exchartview1.EndUpdate();
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 BeginUpdate();
 set_DefaultNodePadding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,8);
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1 A1',Nil,'LA',Nil,Nil);
 Add('L1 B1',Nil,'LB',Nil,Nil);
 Add('L2 A1','LA','LA2',Nil,Nil);
 Add('L2 B2','LB','LB2',Nil,Nil);
 end;
 Nodes.Item['root'].Caption := 'Ls As';
 EndUpdate();
end

Delphi (standard)

with ChartView1 do
begin
 BeginUpdate();
 DefaultNodePadding[EXORGCHARTLib_TLB.exPaddingAll] := 8;
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := RGB(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1 A1',Null,'LA',Null,Null);
 Add('L1 B1',Null,'LB',Null,Null);
 Add('L2 A1','LA','LA2',Null,Null);
 Add('L2 B2','LB','LB2',Null,Null);
 end;
 Nodes.Item['root'].Caption := 'Ls As';
 EndUpdate();
end

VFP

with thisform.ChartView1
 .BeginUpdate
 .Object.DefaultNodePadding(-1) = 8
 .IndentSiblingY = 30
 .ShowLinksDir = .T.
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = .T.
 with .Nodes
 .Add("L1 A1",Null,"LA")
 .Add("L1 B1",Null,"LB")
 .Add("L2 A1","LA","LA2")
 .Add("L2 B2","LB","LB2")
 endwith
 .Nodes.Item("root").Caption = "Ls As"

 .EndUpdate
endwith

dBASE Plus

local oChartView,var_Nodes

oChartView = form.EXORGCHARTACTIVEXCONTROL1.nativeObject
oChartView.BeginUpdate()
oChartView.Template = [DefaultNodePadding(-1) = 8] //
oChartView.DefaultNodePadding(-1) = 8
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = true
oChartView.PenWidthLink = 2
oChartView.LinkColor = 0x0
oChartView.AntiAliasing = true
var_Nodes = oChartView.Nodes
 var_Nodes.Add("L1 A1",null,"LA")
 var_Nodes.Add("L1 B1",null,"LB")
 var_Nodes.Add("L2 A1","LA","LA2")
 var_Nodes.Add("L2 B2","LB","LB2")
oChartView.Nodes.Item("root").Caption = "Ls As"
oChartView.EndUpdate()

XBasic (Alpha Five)

Dim oChartView as P
Dim var_Nodes as P

oChartView = topparent:CONTROL_ACTIVEX1.activex
oChartView.BeginUpdate()
oChartView.Template = "DefaultNodePadding(-1) = 8" //
oChartView.DefaultNodePadding(-1) = 8
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = .t.
oChartView.PenWidthLink = 2
oChartView.LinkColor = 0

oChartView.AntiAliasing = .t.
var_Nodes = oChartView.Nodes
 var_Nodes.Add("L1 A1",,"LA")
 var_Nodes.Add("L1 B1",,"LB")
 var_Nodes.Add("L2 A1","LA","LA2")
 var_Nodes.Add("L2 B2","LB","LB2")
oChartView.Nodes.Item("root").Caption = "Ls As"
oChartView.EndUpdate()

Visual Objects

local var_Nodes as INodes

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[DefaultNodePadding,exPaddingAll] := 8
oDCOCX_Exontrol1:IndentSiblingY := 30
oDCOCX_Exontrol1:ShowLinksDir := true
oDCOCX_Exontrol1:PenWidthLink := 2
oDCOCX_Exontrol1:LinkColor := RGB(0,0,0)
oDCOCX_Exontrol1:AntiAliasing := true
var_Nodes := oDCOCX_Exontrol1:Nodes
 var_Nodes:Add("L1 A1",nil,"LA",nil,nil)
 var_Nodes:Add("L1 B1",nil,"LB",nil,nil)
 var_Nodes:Add("L2 A1","LA","LA2",nil,nil)
 var_Nodes:Add("L2 B2","LB","LB2",nil,nil)
oDCOCX_Exontrol1:Nodes:[Item,"root"]:Caption := "Ls As"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oChartView,var_Nodes

oChartView = ole_1.Object
oChartView.BeginUpdate()
oChartView.DefaultNodePadding(-1,8)
oChartView.IndentSiblingY = 30

oChartView.ShowLinksDir = true
oChartView.PenWidthLink = 2
oChartView.LinkColor = RGB(0,0,0)
oChartView.AntiAliasing = true
var_Nodes = oChartView.Nodes
 var_Nodes.Add("L1 A1",,"LA")
 var_Nodes.Add("L1 B1",,"LB")
 var_Nodes.Add("L2 A1","LA","LA2")
 var_Nodes.Add("L2 B2","LB","LB2")
oChartView.Nodes.Item("root").Caption = "Ls As"
oChartView.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComDefaultNodePadding OLEexPaddingAll to 8
 Set ComIndentSiblingY to 30
 Set ComShowLinksDir to True
 Set ComPenWidthLink to 2
 Set ComLinkColor to (RGB(0,0,0))
 Set ComAntiAliasing to True
 Variant voNodes
 Get ComNodes to voNodes
 Handle hoNodes
 Get Create (RefClass(cComNodes)) to hoNodes
 Set pvComObject of hoNodes to voNodes
 Get ComAdd of hoNodes "L1 A1" "LA" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L1 B1" "LB" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L2 A1" "LA" "LA2" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L2 B2" "LB" "LB2" Nothing Nothing to Nothing
 Send Destroy to hoNodes
 Variant voNodes1
 Get ComNodes to voNodes1
 Handle hoNodes1

 Get Create (RefClass(cComNodes)) to hoNodes1
 Set pvComObject of hoNodes1 to voNodes1
 Variant voNode
 Get ComItem of hoNodes1 "root" to voNode
 Handle hoNode
 Get Create (RefClass(cComNode)) to hoNode
 Set pvComObject of hoNode to voNode
 Set ComCaption of hoNode to "Ls As"
 Send Destroy to hoNode
 Send Destroy to hoNodes1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oChartView
 LOCAL oNodes

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oChartView := XbpActiveXControl():new(oForm:drawingArea)
 oChartView:CLSID := "Exontrol.ChartView.1" /*{F4DFE455-01FE-420E-A088-
64346DCC3791}*/
 oChartView:create(,, {10,60},{610,370})

 oChartView:BeginUpdate()
 oChartView:SetProperty("DefaultNodePadding",-1/*exPaddingAll*/,8)
 oChartView:IndentSiblingY := 30

 oChartView:ShowLinksDir := .T.
 oChartView:PenWidthLink := 2
 oChartView:SetProperty("LinkColor",AutomationTranslateColor(
GraMakeRGBColor ({ 0,0,0 }) , .F.))
 oChartView:AntiAliasing := .T.
 oNodes := oChartView:Nodes()
 oNodes:Add("L1 A1",,"LA")
 oNodes:Add("L1 B1",,"LB")
 oNodes:Add("L2 A1","LA","LA2")
 oNodes:Add("L2 B2","LB","LB2")
 oChartView:Nodes:Item("root"):Caption := "Ls As"
 oChartView:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property ChartView.DragOutsideDef as String
Indicates the options to scroll the control's content like speed, step, and so on while user
moves a node by drag and drop outside of the control's content.

Type Description

String

A String expression that specifies the parameters to
specify options to scroll the control's content while the
user moves a node by drag and drop outside of the
control's client area. The string indicates the following
parameters, separated by comma: the step (the number
of pixels to scroll at once), 16 pixels, by default), the
number of speeds to scroll (5 speeds, by default), the
distance to increase or decrease the speed to scroll the
control's content (16 pixels, by default), the number of
mili-seconds to wait until next scroll is performed (64 ms,
by default).

By default, the DragOutsideDef property is "16,5,16,64". The DragOutsideDef property has
effect while the AllowMoveNode property is not zero (exDisallow). Use the
DragOutsideDef property to customize the speed to scroll the control's content while the
user moves a node by drag and drop outside of the control's chart area. The user can scroll
the control's content during drag and drop (moving a node), while the cursor hovers
outside area of the control. While the cursor is outside of the control and close to the
control's margin the speed to scroll is slow. As far as the cursor moves outside far away of
control margins the speed is faster.

property ChartView.DrawRoundNode as Boolean
Specifies a value that indicates whether the node has borders with round corners.

Type Description

Boolean A boolean expression that indicates whether the nodes
have borders with round corners.

Use the DrawRoundNode property to specify whether the nodes have borders with round
corners. Use the DrawRoundNode property to specify whether a specified node has
borders with round corners. The ShadowNode property determines whether the control
displays a shadow for nodes. Use the ShadowNode property to hide the shadow for a
specific node. The DrawRoundNode property and ShadowNode property has effect only if
no skin is applied to a node. Use the Background property to specify a background color or
a visual appearance for specific parts in the control.

method ChartView.EditNode (Node as Variant)
Edits the specified node.

Type Description
Node as Variant A Node object to be edited.

Use the EditNode to programmatically edit the giving node. The EditNode method focuses
the control's window, ensures that the giving node fits the control's edit node, and edit the
node's caption. The EditNode method starts editing the giving node, if the control is enabled
and visible, and the node is editable (Editable property). The
LayoutStartChanging(exEditNode) event notifies your application once a node is being
edited. The LayoutEndChanging(exEditNode) event notifies your application once a node is
edited. The Caption property indicates the caption of the node being edited.

property ChartView.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to enable or disable the control. Use the Enabled property to
disables a specified node. Use the BackColor property to specify the control's background
color. Use the BackColorNode property to define the default background color for nodes.
Use the ForeColor property to specify the control's foreground color. Use the
ForeColorNode property to define the default foreground color for nodes.

method ChartView.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods maintains performance when items are added to
the control one at a time. Use the Add method to add new child nodes. Use the Remove
method to remove a node from the control. Use the Root property to get the root node of
the control.

The following VB sample adds four nodes to the control :

With ChartView1
 .BeginUpdate
 With .Nodes
 .Add "Item 1", "root", "Key1"
 .Add "Item 2", "root"
 .Add "Sub Item 1", "Key1"
 .Add "Sub Item 2", "Key1"
 End With
 .EndUpdate
End With

The following C++ sample adds four nodes to the control :

#include "nodes.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
m_chartview.BeginUpdate();
CNodes nodes = m_chartview.GetNodes();
nodes.Add("Item 1", COleVariant("root"), COleVariant("Key1"), vtMissing, vtMissing);
nodes.Add("Item 2", COleVariant("root"), vtMissing, vtMissing, vtMissing);
nodes.Add("Sub Item 1", COleVariant("Key1"), vtMissing, vtMissing, vtMissing);
nodes.Add("Sub Item 2", COleVariant("Key1"), vtMissing, vtMissing, vtMissing);
m_chartview.EndUpdate();

The following VB.NET sample adds four nodes to the control :

With AxChartView1
 .BeginUpdate()

 With .Nodes
 .Add("Item 1", "root", "Key1")
 .Add("Item 2", "root")
 .Add("Sub Item 1", "Key1")
 .Add("Sub Item 2", "Key1")
 End With
 .EndUpdate()
End With

The following C# sample adds four nodes to the control :

axChartView1.BeginUpdate();
EXORGCHARTLib.Nodes nodes = axChartView1.Nodes;
nodes.Add("Item 1", "root", "Key1", null, null);
nodes.Add("Item 2", "root", null, null, null);
nodes.Add("Sub Item 1", "Key1", null, null, null);
nodes.Add("Sub Item 2", "Key1", null, null, null);
axChartView1.EndUpdate();

The following VFP sample adds four nodes to the control :

With thisform.ChartView1
 .BeginUpdate
 With .Nodes
 .Add("Item 1", "root", "Key1")
 .Add("Item 2", "root")
 .Add("Sub Item 1", "Key1")
 .Add("Sub Item 2", "Key1")
 EndWith
 .EndUpdate
EndWith

method ChartView.EnsureVisibleNode (Node as Variant)
Ensures the given node is in the visible client area.

Type Description
Node as Variant A Node object to ensure that it fits the control's client area.

Use the EnsureVisibleNode method to ensure that a node fits the control's client area. Use
the SelectNode property to select a node. The ScrollOnEnsure property specifies a value
that indicates whether the control scrolls the control's content when ensuring that a node is
visible. The control automatically scrolls the control's content to ensure that the node being
clicked fits the control's client area, if the EnsureVisibleOnSelect property is True.

The following VB ensures that the node is in the client are when the cursor hovers the node:

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 .EnsureVisibleNode n
 End If
 End With
End Sub

The following C++ ensures that the node is in the client are when the cursor hovers the
node:

void OnMouseMoveChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 m_chartview.EnsureVisibleNode(COleVariant(node.GetKey()));
}

The following VB.NET ensures that the node is in the client are when the cursor hovers the
node:

Private Sub AxChartView1_MouseMoveEvent(ByVal sender As Object, ByVal e As

AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent) Handles
AxChartView1.MouseMoveEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 .EnsureVisibleNode(n)
 End If
 End With
End Sub

The following C# ensures that the node is in the client are when the cursor hovers the node:

private void axChartView1_MouseMoveEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 axChartView1.EnsureVisibleNode(node);
}

The following VFP ensures that the node is in the client are when the cursor hovers the
node:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)
 If !isnull(n) then
 .EnsureVisibleNode(n)
 EndIf
EndWith

property ChartView.EnsureVisibleOnSelect as Boolean
Retrieves or sets a value that indicates whether the control ensures the selected node is
visible.

Type Description

Boolean
A boolean expression that indicates whether the control
ensures the selected node is visible, when user clicks a
node.

Use the EnsureVisibleOnSelect property to let control ensures that selected node is visible,
when user clicks the node. Use the EnsureVisibleNode method to programmatically ensure
that a specified node is visible. Use the SelectNode property to select a node. The control
fires the Select event when a node is selected. The SelColor property retrieves or sets a
value that indicates the color used to mark the selected node. The ScrollOnEnsure property
specifies a value that indicates whether the control scrolls the control's content when
ensuring that a node is visible.

property ChartView.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method ChartView.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

Debug.Print ChartView1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ChartView.ExpandOnDblClk as Boolean
Expands or collapses a node when the user dbl clicks the node.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user dbl clicks the
node.

By default, the ExpandOnDblClk property is True. Use the HasButtons property to display
the +/- buttons for nodes that contain child nodes. Use the HasButton property to hide the
+/- button inside a particular node. Use the Expanded property to expand or collapse a
node by code. The control fires the Expand event when user expands or collapse a node.
Use the ButtonsAlign property to specify the position of +/- buttons inside nodes. The
control fires the DblClick event when the user double clicks. Use the NodeFromPoint
property to determine the node from the point.

property ChartView.ExploreFromNode as Variant
Explores the organigram from the node.

Type Description

Variant

A long expression that indicates the index's of the node
being explored, a string expression that indicates the key
of the node, or a Node object that indicates the reference
to the node being explored.

Use the ExploreFromNode property to define the root node being displayed. By default, the
ExploreFromHere property points to the Root node of the organigram. Use the Key
property to specify the key of the node. Use the Caption property to specify the caption of
the node. Use the ExpandOnDblClick property to disable expanding a node when the user
double clicks the node. Use the SelectNode property to specify the selected node.

The following VB sample explores the node being double clicked:

Private Sub ChartView1_DblClick(Shift As Integer, x As Single, Y As Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(x / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 .ExploreFromNode = n
 End If
 End With
End Sub

The following C++ sample explores the node being double clicked:

#include "node.h"
void OnDblClickChartview1(short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 m_chartview.SetExploreFromNode(COleVariant(node.GetKey()));
}

The following VB.NET sample explores the node being double clicked:

Private Sub AxChartView1_DblClick(ByVal sender As Object, ByVal e As

AxEXORGCHARTLib._IChartViewEvents_DblClickEvent) Handles AxChartView1.DblClick
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 .ExploreFromNode = n
 End If
 End With
End Sub

The following C# sample explores the node being double clicked:

private void axChartView1_DblClick(object sender,
AxEXORGCHARTLib._IChartViewEvents_DblClickEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 axChartView1.ExploreFromNode = node;
}

The following VFP sample explores the node being double clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)
 If !isnull(n) then
 .ExploreFromNode = n
 EndIf
EndWith

property ChartView.FixedHeightNode as Long
Retrieves or sets a value that indicates whether the height of the node's caption is fixed.

Type Description

Long A long expression that indicates the maximum height for
the node's caption.

By default, the FixedHeightNode property is -1. Use the FixedHeightNode and
FixedWidthNode properties to specify fixed size for all nodes in the organigram. Use the
FixedHeight and FixedWidth properties to define the size of a specified node. If the
FixedHeighNode is negative the height of the node's caption is automatically computed. Use
the Font property to specify the control's font. The DefaultNodePadding property defines
the padding for all nodes.

property ChartView.FixedWidthNode as Long
Retrieves or sets a value that indicates whether the width of the node's caption is fixed.

Type Description

Long A long expression that defines the width for all node
captions in the organigram.

Use the FixedHeightNode and FixedWidthNode properties to specify fixed size for all nodes
in the organigram. Use the FixedHeight and FixedWidth properties to define the size of a
specified node. By default, the FixedWidthNode property is -1. If the FixedWidthNode is
negative the width of the node's caption is automatically computed. Use the Caption
property to specify the node's caption. The DefaultNodePadding property defines the
padding for all nodes.

property ChartView.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that specifies the control's font.

Use the Font property to define the font for all nodes. Use the , <i>, <s>, or <u> HTML
tags in the Caption property to define the font attributes being used for a specific node. Use
the BeginUpdate and EndUpdate method to maintain performance while adding new
columns or items. Use the Refresh method to refresh the control.

The following VB sample assigns by code a new font to the control:

With ChartView1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_chartview.GetFont();
font.SetName("Tahoma");
m_chartview.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxChartView1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);

axChartView1.Font = font;
axChartView1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.ChartView1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property ChartView.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to define the control's foreground color. Use the ForeColorNode
property to define the default foreground color for nodes. Use the ForeColor property to
define the foreground color for a specified node. Use the Picture property to display a
picture on the control's foreground. Use the Font property to specify the control's font.

property ChartView.ForeColorNode as Color
Specifies the default node's foreground color.

Type Description

Color A color expression that indicates the node's foreground
color.

Use the ForeColorNode property to define the default foreground color for nodes. Use the
ForeColor property to define the foreground color for a specific node. Use the
ClearForeColor method to clear the node's foreground color. Use the BackColor property to
specify the control's background color. The DefaultNodePadding property defines the
padding for all nodes.

method ChartView.FormatABC (Expression as String, [A as Variant], [B
as Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the ChartView.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property ChartView.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

property ChartView.FrameFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Frame
Gets the frame from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates

Frame A Frame object where the point is.

Use the FrameFromPoint property to determine the frame from specified position. If the X
parameter is -1 and Y parameter is -1 the NodeFromPoint property determines the
frame from the cursor.

A Frame is defined by an union of nodes, and can:

specify whether the frame is shown on the back or on the front using the
ShowOnBackground property
define the padding of the frame using the Padding property
define a solid or EBN background color to be displayed on the frame's background,
using the BackColor property of the Frame object
The BackgroundExt property of the Frame object, defines unlimited options to show
any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's
background.
define a different border or pattern to be shown, using the Pattern property

The following screen show shows an EBN frame around child nodes of the root node:

property ChartView.Frames as Frames
Gets the control's collection of frames.

Type Description
Frames A Frames collection that holds Frame objects.

The control supports frames, that provide unlimited options to show any HTML text, images,
colors, EBNs, patterns, borders, anywhere on the frame's background, that's defined by
union of any node on the chart. Use the Add method of the Frames collection to add new
frames to the chart. The Padding property defines frame's padding. The Nodes property
defines the nodes to be included in the frame.

The following screen shot shows a frame around Sub 1 and Sub 2 nodes.

Is it possible to show some text/caption on the frame's background?

VBA (MS Access, Excell...)

With ChartView1
 .BeginUpdate
 .IndentSiblingY = 32
 .VisualAppearance.Add
1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 & _
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 & _
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 & _
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 & _
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"

 & _
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 & _
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 & _
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 & _
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 & _
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 & _
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 & _
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 & _
"AwAggAIAYFQQ4WgEggDIAQgI="
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2")
 .Padding(-1) = 8
 .Padding(3) = 22
 .BackColor = &H1000000
 .Pattern.Type = 0
 .BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 End With
 .EndUpdate
End With

VB6

With ChartView1
 .BeginUpdate
 .IndentSiblingY = 32
 .VisualAppearance.Add
1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 & _
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 & _
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 & _
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 & _
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 & _
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 & _
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 & _
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 & _
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 & _
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 & _
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 & _
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 & _
"AwAggAIAYFQQ4WgEggDIAQgI="
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2")

 .Padding(exPaddingAll) = 8
 .Padding(exPaddingBottom) = 22
 .BackColor = &H1000000
 .Pattern.Type = exPatternEmpty
 .BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 End With
 .EndUpdate
End With

VB.NET

With Exchartview1
 .BeginUpdate()
 .IndentSiblingY = 32

.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 & _
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 & _
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 & _
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 & _
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 & _
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 & _
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 & _
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 & _
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 & _
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 & _

"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 & _
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 & _
"AwAggAIAYFQQ4WgEggDIAQgI=")
 With .Nodes
 .Add("Child 1",,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 End With
 With .Frames.Add("AK1,AK2")
 .set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,8)
 .set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingBottom,22)
 .BackColor32 = &H1000000
 .Pattern.Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternEmpty
 .BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxChartView1
 .BeginUpdate()
 .IndentSiblingY = 32

.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 & _
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 & _
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 & _
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"

 & _
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 & _
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 & _
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 & _
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 & _
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 & _
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 & _
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 & _
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 & _
"AwAggAIAYFQQ4WgEggDIAQgI=")
 With .Nodes
 .Add("Child 1",,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 End With
 With .Frames.Add("AK1,AK2")
 .Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll) = 8
 .Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingBottom) = 22
 .BackColor = &H1000000
 .Pattern.Type = EXORGCHARTLib.PatternEnum.exPatternEmpty
 .BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->BeginUpdate();
spChartView1->PutIndentSiblingY(32);
spChartView1->GetVisualAppearance()-
>Add(1,_bstr_t("gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 +
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 +
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 +
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 +
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 +
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 +
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 +
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 +
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 +
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 +
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 +

"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 +
"AwAggAIAYFQQ4WgEggDIAQgI=");
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"Child 1",vtMissing,"1234",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 1","1234","AK1",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 2","1234","AK2",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 3","1234",vtMissing,vtMissing,vtMissing);
 var_Nodes->Add(L"Child 2.1",vtMissing,vtMissing,vtMissing,vtMissing)-
>AddGroup(L"Child 2.2",vtMissing,vtMissing);
EXORGCHARTLib::IFramePtr var_Frame = spChartView1->GetFrames()-
>Add("AK1,AK2");
 var_Frame->PutPadding(EXORGCHARTLib::exPaddingAll,8);
 var_Frame->PutPadding(EXORGCHARTLib::exPaddingBottom,22);
 var_Frame->PutBackColor(0x1000000);
 var_Frame->GetPattern()->PutType(EXORGCHARTLib::exPatternEmpty);
 var_Frame-
>PutBackgroundExt(L"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
 ;;0>attention`,align=0x11]");
spChartView1->EndUpdate();

C++ Builder

ChartView1->BeginUpdate();
ChartView1->IndentSiblingY = 32;
ChartView1->VisualAppearance-
>Add(1,TVariant(String("gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 +
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 +
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 +
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 +
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 +

"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 +
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 +
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 +
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 +
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 +
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 +
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 +
"AwAggAIAYFQQ4WgEggDIAQgI="));
Exorgchartlib_tlb::INodesPtr var_Nodes = ChartView1->Nodes;
 var_Nodes->Add(L"Child
1",TNoParam(),TVariant("1234"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub
1",TVariant("1234"),TVariant("AK1"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub
2",TVariant("1234"),TVariant("AK2"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub 3",TVariant("1234"),TNoParam(),TNoParam(),TNoParam());
 var_Nodes->Add(L"Child
2.1",TNoParam(),TNoParam(),TNoParam(),TNoParam())->AddGroup(L"Child
2.2",TNoParam(),TNoParam());
Exorgchartlib_tlb::IFramePtr var_Frame = ChartView1->Frames-
>Add(TVariant("AK1,AK2"));
 var_Frame->set_Padding(Exorgchartlib_tlb::PaddingEdgeEnum::exPaddingAll,8);
 var_Frame-
>set_Padding(Exorgchartlib_tlb::PaddingEdgeEnum::exPaddingBottom,22);
 var_Frame->BackColor = 0x1000000;
 var_Frame->Pattern->Type = Exorgchartlib_tlb::PatternEnum::exPatternEmpty;
 var_Frame->BackgroundExt =
L"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]";
ChartView1->EndUpdate();

C#

exchartview1.BeginUpdate();
exchartview1.IndentSiblingY = 32;
exchartview1.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 +
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 +
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 +
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 +
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 +
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 +
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 +
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 +
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 +
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 +
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 +
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 +
"AwAggAIAYFQQ4WgEggDIAQgI=");
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child

2.2",null,null);
exontrol.EXORGCHARTLib.Frame var_Frame = exchartview1.Frames.Add("AK1,AK2");

var_Frame.set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,8);

var_Frame.set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingBottom,22

 var_Frame.BackColor32 = 0x1000000;
 var_Frame.Pattern.Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternEmpty;
 var_Frame.BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]";
exchartview1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ChartView1.BeginUpdate();
 ChartView1.IndentSiblingY = 32;

ChartView1.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 +

"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 +

"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 +

"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"

 +

"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 +

"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 +

"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 +

"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 +

"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 +

"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 +

"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 +

"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 +
 "AwAggAIAYFQQ4WgEggDIAQgI=");
 var var_Nodes = ChartView1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
 var var_Frame = ChartView1.Frames.Add("AK1,AK2");
 var_Frame.Padding(-1) = 8;
 var_Frame.Padding(3) = 22;
 var_Frame.BackColor = 16777216;

 var_Frame.Pattern.Type = 0;
 var_Frame.BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]";
 ChartView1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ChartView1
 .BeginUpdate
 .IndentSiblingY = 32
 .VisualAppearance.Add
1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 & _

"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 & _

"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 & _

"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 & _

"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 & _

"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 & _

"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 & _

"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 & _

"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 & _

"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 & _

"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 & _

"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 & _
 "AwAggAIAYFQQ4WgEggDIAQgI="
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2")
 .Padding(-1) = 8
 .Padding(3) = 22
 .BackColor = &H1000000
 .Pattern.Type = 0
 .BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 End With

 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axChartView1.BeginUpdate();
axChartView1.IndentSiblingY = 32;
axChartView1.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxf"
 +
"IMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5m"
 +
"XpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+Hh"
 +
"RjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 +
"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRj"
 +
"mkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 +
"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0g"
 +
"YOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 +
"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISks"
 +
"SQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBG"
 +
"O/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwOR"
 +
"fjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 +
"AwAggAIAYFQQ4WgEggDIAQgI=");
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;

 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
EXORGCHARTLib.Frame var_Frame = axChartView1.Frames.Add("AK1,AK2");
 var_Frame.set_Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,8);
 var_Frame.set_Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingBottom,22);
 var_Frame.BackColor = 0x1000000;
 var_Frame.Pattern.Type = EXORGCHARTLib.PatternEnum.exPatternEmpty;
 var_Frame.BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]";
axChartView1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Frame,com_Node,com_Nodes,com_Pattern;
 anytype var_Frame,var_Node,var_Nodes,var_Pattern;
 str var_s;
 ;

 super();

 exchartview1.BeginUpdate();
 exchartview1.IndentSiblingY(32);
 var_s =
"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfI"

 var_s = var_s +
"MIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mX"

 var_s = var_s +

"pCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhR"

 var_s = var_s +
"jqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYV"

 var_s = var_s +
"IKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjm"

 var_s = var_s +
"kUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5"

 var_s = var_s +
"oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gY"

 var_s = var_s +
"OxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJB"

 var_s = var_s +
"DiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksS"

 var_s = var_s +
"QsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO"

 var_s = var_s +
"/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORf"

 var_s = var_s +
"jjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAA"

 var_s = var_s + "wAggAIAYFQQ4WgEggDIAQgI=";
 exchartview1.VisualAppearance().Add(1,COMVariant::createFromStr(var_s));
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 com_Nodes.Add("Child 1",,"1234");
 com_Nodes.Add("Sub 1","1234","AK1");
 com_Nodes.Add("Sub 2","1234","AK2");
 com_Nodes.Add("Sub 3","1234");
 var_Node = COM::createFromObject(com_Nodes.Add("Child 2.1"));

com_Node = var_Node;
 com_Node.AddGroup("Child 2.2");
 var_Frame = COM::createFromObject(exchartview1.Frames()).Add("AK1,AK2");
com_Frame = var_Frame;
 com_Frame.Padding(-1/*exPaddingAll*/,8);
 com_Frame.Padding(3/*exPaddingBottom*/,22);
 com_Frame.BackColor(0x1000000);
 var_Pattern = COM::createFromObject(com_Frame.Pattern()); com_Pattern =
var_Pattern;
 com_Pattern.Type(0/*exPatternEmpty*/);

com_Frame.BackgroundExt("top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
 ;;0>attention`,align=0x11]");
 exchartview1.EndUpdate();
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 BeginUpdate();
 IndentSiblingY := 32;

VisualAppearance.Add(1,'gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfI'
 +

'MIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mX'
 +

'pCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhR'
 +

'jqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYV'
 +

'IKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjm'
 +

'kUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5'
 +

'oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gY'
 +

'OxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJB'
 +

'DiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksS'
 +

'QsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO'
 +

'/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORf'
 +

'jjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAA'
 +
 'wAggAIAYFQQ4WgEggDIAQgI=');
 with Nodes do
 begin
 Add('Child 1',Nil,'1234',Nil,Nil);
 Add('Sub 1','1234','AK1',Nil,Nil);
 Add('Sub 2','1234','AK2',Nil,Nil);
 Add('Sub 3','1234',Nil,Nil,Nil);
 Add('Child 2.1',Nil,Nil,Nil,Nil).AddGroup('Child 2.2',Nil,Nil);
 end;
 with Frames.Add('AK1,AK2') do
 begin
 Padding[EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll] := 8;
 Padding[EXORGCHARTLib.PaddingEdgeEnum.exPaddingBottom] := 22;
 BackColor := $1000000;
 Pattern.Type := EXORGCHARTLib.PatternEnum.exPatternEmpty;
 BackgroundExt :=

'top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]';
 end;
 EndUpdate();
end

Delphi (standard)

with ChartView1 do
begin
 BeginUpdate();
 IndentSiblingY := 32;

VisualAppearance.Add(1,'gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfI'
 +

'MIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mX'
 +

'pCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhR'
 +

'jqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYV'
 +

'IKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjm'
 +

'kUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5'
 +

'oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gY'
 +

'OxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJB'
 +

'DiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksS'
 +

'QsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO'
 +

'/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORf'
 +

'jjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAA'
 +
 'wAggAIAYFQQ4WgEggDIAQgI=');
 with Nodes do
 begin
 Add('Child 1',Null,'1234',Null,Null);
 Add('Sub 1','1234','AK1',Null,Null);
 Add('Sub 2','1234','AK2',Null,Null);
 Add('Sub 3','1234',Null,Null,Null);
 Add('Child 2.1',Null,Null,Null,Null).AddGroup('Child
2.2',Null,Null);
 end;
 with Frames.Add('AK1,AK2') do
 begin
 Padding[EXORGCHARTLib_TLB.exPaddingAll] := 8;
 Padding[EXORGCHARTLib_TLB.exPaddingBottom] := 22;
 BackColor := $1000000;
 Pattern.Type := EXORGCHARTLib_TLB.exPatternEmpty;
 BackgroundExt :=
'top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]';
 end;
 EndUpdate();
end

VFP

with thisform.ChartView1

 .BeginUpdate
 .IndentSiblingY = 32
 var_s =
"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfI"

 var_s = var_s +
"MIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mX"

 var_s = var_s +
"pCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhR"

 var_s = var_s +
"jqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYV"

 var_s = var_s +
"IKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjm"

 var_s = var_s +
"kUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5"

 var_s = var_s +
"oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gY"

 var_s = var_s +
"OxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJB"

 var_s = var_s +
"DiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksS"

 var_s = var_s +
"QsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO"

 var_s = var_s +
"/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORf"

 var_s = var_s +
"jjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAA"

 var_s = var_s + "wAggAIAYFQQ4WgEggDIAQgI="
 .VisualAppearance.Add(1,var_s)
 with .Nodes
 .Add("Child 1",Null,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 endwith
 with .Frames.Add("AK1,AK2")
 .Padding(-1) = 8
 .Padding(3) = 22
 .BackColor = 0x1000000
 .Pattern.Type = 0
 .BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 endwith
 .EndUpdate
endwith

dBASE Plus

local oChartView,var_Frame,var_Nodes

oChartView = form.EXORGCHARTACTIVEXCONTROL1.nativeObject
oChartView.BeginUpdate()
oChartView.IndentSiblingY = 32
oChartView.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfIMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mXpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhRjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYVIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjmkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI"
 ;

+"5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gYOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJBDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksSQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORfjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 &
 +"AwAggAIAYFQQ4WgEggDIAQgI=")
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",null,"1234")

 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Frame = oChartView.Frames.Add("AK1,AK2")
 // var_Frame.Padding(-1) = 8
 with (oChartView)
 TemplateDef = [dim var_Frame]
 TemplateDef = var_Frame
 Template = [var_Frame.Padding(-1) = 8]
 endwith
 // var_Frame.Padding(3) = 22
 with (oChartView)
 TemplateDef = [dim var_Frame]
 TemplateDef = var_Frame
 Template = [var_Frame.Padding(3) = 22]
 endwith
 var_Frame.BackColor = 0x1000000
 var_Frame.Pattern.Type = 0
 var_Frame.BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
oChartView.EndUpdate()

XBasic (Alpha Five)

Dim oChartView as P
Dim var_Frame as P
Dim var_Nodes as P

oChartView = topparent:CONTROL_ACTIVEX1.activex
oChartView.BeginUpdate()
oChartView.IndentSiblingY = 32
oChartView.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfIMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mXpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhRjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYVIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjmkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gYOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJBDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksSQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORfjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAAwAggAIAYFQQ4WgEggDIAQgI="

var_Nodes = oChartView.Nodes

 var_Nodes.Add("Child 1",,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Frame = oChartView.Frames.Add("AK1,AK2")
 ' var_Frame.Padding(-1) = 8
 oChartView.TemplateDef = "dim var_Frame"
 oChartView.TemplateDef = var_Frame
 oChartView.Template = "var_Frame.Padding(-1) = 8"

 ' var_Frame.Padding(3) = 22
 oChartView.TemplateDef = "dim var_Frame"
 oChartView.TemplateDef = var_Frame
 oChartView.Template = "var_Frame.Padding(3) = 22"

 var_Frame.BackColor = 16777216
 var_Frame.Pattern.Type = 0
 var_Frame.BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
oChartView.EndUpdate()

Visual Objects

local var_Frame as IFrame
local var_Nodes as INodes

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:IndentSiblingY := 32
oDCOCX_Exontrol1:VisualAppearance:Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfIMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mXpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhRjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYVIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjmkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gYOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJBDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksSQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORfjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAAwAggAIAYFQQ4WgEggDIAQgI="

var_Nodes := oDCOCX_Exontrol1:Nodes
 var_Nodes:Add("Child 1",nil,"1234",nil,nil)
 var_Nodes:Add("Sub 1","1234","AK1",nil,nil)
 var_Nodes:Add("Sub 2","1234","AK2",nil,nil)

 var_Nodes:Add("Sub 3","1234",nil,nil,nil)
 var_Nodes:Add("Child 2.1",nil,nil,nil,nil):AddGroup("Child
2.2",nil,nil)
var_Frame := oDCOCX_Exontrol1:Frames:Add("AK1,AK2")
 var_Frame:[Padding,exPaddingAll] := 8
 var_Frame:[Padding,exPaddingBottom] := 22
 var_Frame:BackColor := 0x1000000
 var_Frame:Pattern:Type := exPatternEmpty
 var_Frame:BackgroundExt :=
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oChartView,var_Frame,var_Nodes

oChartView = ole_1.Object
oChartView.BeginUpdate()
oChartView.IndentSiblingY = 32
oChartView.VisualAppearance.Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfIMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mXpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhRjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYVIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjmkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gYOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 &

+"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksSQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORfjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAAwAggAIAYFQQ4WgEggDIAQgI="

var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Frame = oChartView.Frames.Add("AK1,AK2")
 var_Frame.Padding(-1,8)
 var_Frame.Padding(3,22)
 var_Frame.BackColor = 16777216 /*0x1000000*/
 var_Frame.Pattern.Type = 0

 var_Frame.BackgroundExt =
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
oChartView.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComIndentSiblingY to 32
 Variant voAppearance
 Get ComVisualAppearance to voAppearance
 Handle hoAppearance
 Get Create (RefClass(cComAppearance)) to hoAppearance
 Set pvComObject of hoAppearance to voAppearance
 Get ComAdd of hoAppearance 1
"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfIMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mXpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhRjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBYVIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjmkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gYOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJBDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksSQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORfjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFAAwAggAIAYFQQ4WgEggDIAQgI="
 to Nothing
 Send Destroy to hoAppearance
 Variant voNodes
 Get ComNodes to voNodes
 Handle hoNodes
 Get Create (RefClass(cComNodes)) to hoNodes
 Set pvComObject of hoNodes to voNodes
 Get ComAdd of hoNodes "Child 1" "1234" Nothing Nothing to
Nothing
 Get ComAdd of hoNodes "Sub 1" "1234" "AK1" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "Sub 2" "1234" "AK2" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "Sub 3" "1234" Nothing Nothing Nothing to Nothing
 Variant voNode
 Get ComAdd of hoNodes "Child 2.1" Nothing Nothing Nothing
Nothing to voNode
 Handle hoNode
 Get Create (RefClass(cComNode)) to hoNode
 Set pvComObject of hoNode to voNode

 Get ComAddGroup of hoNode "Child 2.2" Nothing Nothing to
Nothing
 Send Destroy to hoNode
 Send Destroy to hoNodes
 Variant voFrames
 Get ComFrames to voFrames
 Handle hoFrames
 Get Create (RefClass(cComFrames)) to hoFrames
 Set pvComObject of hoFrames to voFrames
 Variant voFrame
 Get ComAdd of hoFrames "AK1,AK2" to voFrame
 Handle hoFrame
 Get Create (RefClass(cComFrame)) to hoFrame
 Set pvComObject of hoFrame to voFrame
 Set ComPadding of hoFrame OLEexPaddingAll to 8
 Set ComPadding of hoFrame OLEexPaddingBottom to 22
 Set ComBackColor of hoFrame to |CI$1000000
 Variant voPattern
 Get ComPattern of hoFrame to voPattern
 Handle hoPattern
 Get Create (RefClass(cComPattern)) to hoPattern
 Set pvComObject of hoPattern to voPattern
 Set ComType of hoPattern to OLEexPatternEmpty
 Send Destroy to hoPattern
 Set ComBackgroundExt of hoFrame to
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 Send Destroy to hoFrame
 Send Destroy to hoFrames
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oChartView
 LOCAL oFrame
 LOCAL oNodes

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oChartView := XbpActiveXControl():new(oForm:drawingArea)
 oChartView:CLSID := "Exontrol.ChartView.1" /*{F4DFE455-01FE-420E-A088-
64346DCC3791}*/
 oChartView:create(,, {10,60},{610,370})

 oChartView:BeginUpdate()
 oChartView:IndentSiblingY := 32

oChartView:VisualAppearance():Add(1,"gBFLBCJwBAEHhEJAADhABWMMACAADACAxRDAMgBQKAAzQFAYawdBgABoGUZ4JhUAIIRZGMIjFDcEwxC6NIpAWCYQDENAxAJCI4DBCAZBwGKPRiASQZUhmHIDTbIEBxfIMIRLE6PZgjOYZchqRYZSjAdIzUAFFr1J4AKbfKJpfoKBJERrScgxeBUNAZBKlY7paoKSpSGw1CTLNoRAKoYTTBK2bbmWwoap2So1XhAdS0XJcWxfGKRbxmWaZZh+R5mXpCMjVMAGGQPIa8MLCSwIJBaHqUQLZNixLStAyxHCtKKhG+vJwHL6BcqnPKKRqSUKcWbcQADFZdYTdNjbch1TWvSZVQSecSke7BQjGJQ2YxWcZUXReeaBDK9ZS4WK+HhRjqAZpCkeoNC8P4DDiWp3nYVwdkaSgrGGVhSnSHJum6CgGAiBIUA0JgziGVJkGWRgTiGBAiG+ZgyDYQhCgQJZbG+UIAGEFgGBEBw9FILJNAMXgMgOIJYD4EoEGESBCBY"
 +;

"VIKGMIJTCiDpDliNQ+A+eB+CGCAiCiFgkgmT54HCdoGE0MhgkAM4LhOWJ/CQThIk4NQik4I5+DgP5IDOBJ/B2TgDnwaQ3k+cR0l4P5jBOfguDOCIimCSgwCMKJuDsIRjmkUJ/B8JBBkIRAYmQcRglwP5lAOfhNDKCAikSRgxE8WJyEQIJkEGdhHhuD5xlSXYQicMR0lsP5FBmXhoD+ZhTBgfQrgwMwUnQP5HikfoFhwZxxlYdwbW0CJaWKag8EuI5oTufwwkeIoskIMYPDOfB0iOaZznwbw2GoKoQGaKQFjqEBQikBBjGCf4nCgShoLyTCZnIP5GlqOo5YgAxejyL4GAqeBWi+BI6ngQYvisY5+jMMBHHKHJAjIRoDFqPI0gYOxSlIFptCERpSBGbQgn6SItmyUwAHaM4MgqXBljSLl7GANRuiuMBajsBQLEgRY0gOSxKmUP5uDuCpODIaxxgqbI/g+cR8lSQBwDEYpsBObpBBabAPG6S5yniM4HHKIJ"
 +;

"BDiT4TnyKQ6nEbBjBeRhPnKGwYCkMYCgcGAnnGDBSD+RIHhKKJDDmMRSkSbg/nKY58jAOxzCyUIuk0CpMlCKfXAyUwsdIEwMHxZ5TiieoSA6fQjEoLh0hKWxJC0NISksSQsDSHQaFeUQIAKRJIDuT5DnyQ4tnWfR7GCLZMBqXI+i2S5KlyOvukOfxZDICAylSSg8jWUwyGmXYPnMNhpl6/sLg0gxjNBmNkRIQR3CRHMOQIYlwjBxHQH4T45hSBBGO/sVgQRkv7EyO4P4mgeC5E+MsTIvBfgWD+PFBIFgvgaTaPwP4mxdA/CmNQOoWgci5FGJsLAqRYiKE0PgV4TQOh0EIHkQ4xw6DnBMLsb4Hx/AHEAHEdYpwIj2D+JwDwORfjjE+B0H4dA1ASKcK8UYnxzhXAyOsPQvhfgYDoPEQ4RwMBziqDYXY6g9AmFyCwMomwThxHkH0fA5x/jbHuJ8f4dxxj4D8Ecf41A+j8HMMoUgTBMjGG+Pgf4nx1j/EAFA"
 +;
 "AwAggAIAYFQQ4WgEggDIAQgI=")
 oNodes := oChartView:Nodes()
 oNodes:Add("Child 1",,"1234")
 oNodes:Add("Sub 1","1234","AK1")
 oNodes:Add("Sub 2","1234","AK2")
 oNodes:Add("Sub 3","1234")
 oNodes:Add("Child 2.1"):AddGroup("Child 2.2")
 oFrame := oChartView:Frames():Add("AK1,AK2")
 oFrame:SetProperty("Padding",-1/*exPaddingAll*/,8)

 oFrame:SetProperty("Padding",3/*exPaddingBottom*/,22)
 oFrame:SetProperty("BackColor",0x1000000)
 oFrame:Pattern():Type := 0/*exPatternEmpty*/
 oFrame:BackgroundExt :=
"top[4],left[4],right[4],client,bottom[4],bottom[16,back=0x01000000,text=`<sha
;;0>attention`,align=0x11]"
 oChartView:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property ChartView.HasButtons as ExpandButtonEnum
Specifies whether a parent node displays +/- buttons if it contains child nodes.

Type Description

ExpandButtonEnum
An ExpandButtonEnum expression that indicates whether
the control display +/- buttons for nodes that contain child
nodes.

By default, the HasButtons property is exNoButtons. The control displays no +/- buttons if
the HasButtons property is exNoButtons. Use the HasButton property to hide a +/- button
for a particular node. The node displays the +/- button only if the node contains child nodes,
and the HasButton property is True. Use the Expanded property to expand or collapse a
node by code. The control fires the Expand event when user expands or collapse a node.
Use the ButtonsAlign property to specify the position of +/- buttons inside nodes. Use the
HasButtonsCustom property to assign an icon for +/- buttons, when the HasButtons
property is exCustom. Use the Images, ReplaceIcon methods to load new icons to the
control's icons collection. Use the BeginUpdate and EndUpdate properties to maintain
performance while do multiple changes to the control.

The following VB sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

With ChartView1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1

 .HasButtonsCustom(True) = 2
 .EndUpdate
End With

The following C++ sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

m_chartview.BeginUpdate();
m_chartview.Images(COleVariant("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="));

m_chartview.SetHasButtons(4 /*exCustom*/);
m_chartview.SetHasButtonsCustom(FALSE, 1);
m_chartview.SetHasButtonsCustom(TRUE, 2);
m_chartview.EndUpdate();

The following VB.NET sample assigns different +/- buttons when expanding or collapsing
the parent nodes:

With AxChartView1

.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=")

 .HasButtons = EXORGCHARTLib.ExpandButtonEnum.exCustom
 .set_HasButtonsCustom(False, 1)
 .set_HasButtonsCustom(True, 2)
End With

The following C# sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

axChartView1.BeginUpdate();
axChartView1.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=");

axChartView1.HasButtons = EXORGCHARTLib.ExpandButtonEnum.exCustom;
axChartView1.set_HasButtonsCustom(false, 1);
axChartView1.set_HasButtonsCustom(true, 2);
axChartView1.EndUpdate();

The following VFP sample assigns different +/- buttons when expanding or collapsing the

parent nodes:

local s
s =
"gBJJgBAICAAEg4ACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjMLjABAAgjUYkUnlUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v0/io+leCjs"

s = s +
"fkMZkkkjSAncPiUOjUTyOOjOSjLnZ+YjTvzjvjTuzuf0MZdAv0uizmoz0ZzurjGYzWVykYy202YAgIA="

with thisform.ChartView1
 .BeginUpdate()
 .Images(s)
 .HasButtons = 4 && exCustom
 local t
 t = "HasButtonsCustom(false) = 1" + chr(13) + chr(10)
 t = t + "HasButtonsCustom(true) = 2"
 .Template = t
 .EndUpdate
endwith

property ChartView.HasButtonsCustom(Expanded as Boolean) as Long
Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

Type Description

Expanded as Boolean
A boolean expression that indicates the expanding state
being changed. True value for- button, or False value for +
button.

Long A long expression that indicates the index of icon being
displayed.

Use the HasButtonsCustom property to assign new appearance for +/- buttons, when
HasButtons property is exCustom. Use the Images, ReplaceIcon methods to load new
icons to the control's icons collection. Use the Expanded property to expand or collapse a
node by code. The control fires the Expand event when user expands or collapse a node.
Use the ButtonsAlign property to specify the position of +/- buttons inside nodes. Use the
Image property to assign an icon to a node. Use the Picture property to load a picture to a
node.

The following VB sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

With ChartView1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1
 .HasButtonsCustom(True) = 2

 .EndUpdate
End With

The following C++ sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

m_chartview.BeginUpdate();
m_chartview.Images(COleVariant("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="));

m_chartview.SetHasButtons(4 /*exCustom*/);
m_chartview.SetHasButtonsCustom(FALSE, 1);
m_chartview.SetHasButtonsCustom(TRUE, 2);
m_chartview.EndUpdate();

The following VB.NET sample assigns different +/- buttons when expanding or collapsing
the parent nodes:

With AxChartView1

.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=")

 .HasButtons = EXORGCHARTLib.ExpandButtonEnum.exCustom
 .set_HasButtonsCustom(False, 1)
 .set_HasButtonsCustom(True, 2)
End With

The following C# sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

axChartView1.BeginUpdate();
axChartView1.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=");

axChartView1.HasButtons = EXORGCHARTLib.ExpandButtonEnum.exCustom;
axChartView1.set_HasButtonsCustom(false, 1);
axChartView1.set_HasButtonsCustom(true, 2);
axChartView1.EndUpdate();

The following VFP sample assigns different +/- buttons when expanding or collapsing the
parent nodes:

local s
s =
"gBJJgBAICAAEg4ACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjMLjABAAgjUYkUnlUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v0/io+leCjs"

s = s +
"fkMZkkkjSAncPiUOjUTyOOjOSjLnZ+YjTvzjvjTuzuf0MZdAv0uizmoz0ZzurjGYzWVykYy202YAgIA="

with thisform.ChartView1
 .BeginUpdate()
 .Images(s)
 .HasButtons = 4 && exCustom
 local t
 t = "HasButtonsCustom(false) = 1" + chr(13) + chr(10)
 t = t + "HasButtonsCustom(true) = 2"
 .Template = t
 .EndUpdate
endwith

property ChartView.hEBNList as Variant
Retrieves the handle of the skins list.

Type Description

Variant A long expression that specifies the handle of the skins
list.

Reserved for internal use only.

property ChartView.hIconList as Variant
Retrieves the handle of the icons list.

Type Description
Variant A long expression that defines the handle of the icons list.

Reserved for internal use only.

property ChartView.HideSelection as Boolean
Specifies whether the selection in the control is hidden when the control loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selection
in the control is hidden when the control loses the focus.

By default, the HideSelection property is True. Use the SelectNode property to specify the
selected node. The control fires the Select event when a node is selected. The SelColor
property retrieves or sets a value that indicates the color used to mark the selected node.
Use the DrawRoundNode property to draw round corners for the nodes. The ShadowNode
property determines whether the control displays a shadow for nodes. Use the
ShadowNode property to hide the shadow for a specific node.

property ChartView.hPictureList as Variant
Retrieves the handle of the pictures list.

Type Description

Variant A long expression that specifies the handle of the pictures
list.

Reserved for internal use only.

property ChartView.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). The HTMLPicture property supports: BMP, EMF,
EXIF, GIF, ICON, JPEG, PNG, TIFF or WMF formats. A picture being shown in the HTML
captions can be displayed using a different size, by specifying the size in the second
parameter of the tag as pic1:18</pic> means that the pic1 is displayed using
a different size. Use the Picture property to assign a custom- sized picture to a node.

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

https://exontrol.com/eximages.jsp

<NODE1>.Caption = "A pic1"
<NODE2>.Caption = "B pic2"
<NODE3>.Caption = "A pic1 + B pic2"

property ChartView.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method ChartView.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Image List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, remove or clear icons in the
control's images collection. Use the Image property to assign an icon to a node. Use the
Picture property to load a picture to a node.

The following VB sample uses the Microsoft Image List control:

ChartView1.Images ImageList1.hImageList

The following VB sample loads icons and pictures using the BASE64 encoded strings:

Dim s As String
With ChartView1
 .BackColor = vbWhite

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 With .Root
 .Image = 1
 End With

 With .Nodes.Add("Item 1")
 s =
"gBCJr+BAAg0HGwEgwog4jg4ig4BAEFg4AZEKisZjUbAAzg5mg6Zg7Mg7/g0ek8oGcgjsijskjsmAEsmcoM0sM0uM0wM0ylwATMoTMsTMuTMwTMymAAZkoZksZkuZkwZkymQAf8of8sf8uf8wf8mlEdskekEekUekkesUqGcet9nGdpGdrGdilkruE3js5vtrnstk9BltnosttdJl8npsvs9Rl9rqsxk9ZmNnrsxtdhmcfskg0FAzskkEmM02t810Fzmuku8znGn2Ggv030mBv0zwk50GHnOkxU7g07s1PmeQnekyeBmeWnugzM90mcn9p0UgkXZpmik2EoGpoPY1lBklB7tE2VD7F+oflwOHoGEovYw9F8uKo8Go9o41H7KpqAybFKAyykuwzKkvKzilrW7aQPK7aSJIkzGqY1Kmwe1imwk17jKY2SnwevynwkwLIKYwiowew6owkxUAKYxqpweyCpwkybJqYyyqwezKqwkzirrErDOu7IkJyIyysNSrLStYrMJteraDK2ti+K2kStwmwLMqwwiutKw6uwmxSvyoxqvtKyCvwmybOKwyywtKzKwwnN6OTxPM9T3Pk+z9P9AUDP5V0JQtDUPRFE0SAFFUbR1FAAa9JUnSlJlnSZo0xStJGtStI03UFJUvUdQmuVtKU/TdT1RSpoGvS5WVKa9U1lWdRVrTtWVBS9c1nWlI0vSlY09WVg18a9MgAEla0nWliUkABHjXYCDUzSVY2daFSoNaBHWnWZH1/blN1TY1"

 s = s +
"XgBadlDXdYSXRb9wWBclK2taF1gAI5HiPaN8oPdlNWbaF23KAwyWkNYyXxg9p3WNYjU/c1bWgABZoMiQS4YR984YNdpEeMgA2bgVtVHil0DVdY1CPhON44IGOI1XVPCPjl14RlmZ3XmZH3aWdYW1VF3DWMuWXXlw15PhlI3pgGJEfpGiZZgw1kTe1s0+g2Dalhmh6Pjgg5zrVx5/iV74bjGN41k9pCNl6D1dilKWDrGZ6ftmcZyNYAhKAGl7HemgoNs415XjI1XLmNm3sEho2jwdw4zmd+2+aFjFZVJWYpndf3xSPG2/koSWXW+I7JURZmtzO+XPe1K9RZ+S9HS1PllWfB9FiHEWZVBZWzeXdU32Fa973/SW34lr0nV1meH4/heb5/mWL4no+fUAAICA"

 .Picture = s
 End With

 With .Nodes.Add("Item 2", , "ketA")
 s =
"gBCJoqBAAg0HGwEgwog4qg4Xg4BAEFg4AegDisZjUbgwzg5mg6Zg7Mg7/jsHGceAAzkErkUrkkrkwAls0lRmlpml5mmJmmcvACZlSZlqZl6ZmKZmcxADMlTMlrMl7MmLMmczAD/lT/lr/l7/mL/k0qldlj0gj0ij0kj1jlUpj0ptAztQztgzsctllxnErnV+tk+l0doUutFGl1spUwjtOmFoqUwtlWmUdrUytFemVssU0j9lkGhoOekkgkxmm8pm2huk20t4mk51Gx0N/nGlwV/mmFnWhxE60uLnkGnlnqE0yM80uUwU0y8+0Oan2lztAtWjkEi7VN0cmwtB1VC7OtoUkoXeouzonZv9E82CxFBwtG7OIo3mxdIg1ItPHpDtKooLKMWoLLqU7LNKU8zOqYtjuJA8zuJIkiTMcprVKdCDWqdCbYOOprZqhCC/qhCbBMiprCqlCDEKlCbFwCprHKpCDIqpCbKMoprLqtCDNKtCbOqwsass870iwpIrLqy1StNM1qtQo2CuIMri2r6riRK5CjBM0rLCq80zEK9CjFrBKrHLA0zIrBCjKM6rLLrE0zNLFCk4I5PM9T3Pk+z9P9AUDQVAGua5Z0KVlCmuVho0VQxrmhQpZUOWZo0ia5o0SVtHU4a6DUPTlG0XQxZlmQNEmuVpWC6GVUUhQtDllTtFINRFRmua1UFmVhECsLpWFMQ5EAOGQZCuRFUFYVgZCtRlbUdWtXWBWFCi6A4AAOKwrEQLtsWILtTlaFYVgDZl"

 s = s +
"XU5WtD2VbVlFZUwDAAGQD3La4yjIAADAOQQrAOFYc2IGRA1nTwAVgAASXGKwVi7fgADIR5EAAAIDhyR41CACt6ACVpHo9gNT3bWmC0gAJAhleADpUR5HjGR41kfhw15lh6JkQR+aWLZl2UvWpr0mA5EZkB18iOIwjjWIwgZkCoHgcI4jgrlYyAqI+MWxiYVgAPVUIMa1cYiNQy6eDgRg3p4gacI4DgcHIgagAwyamA4jDXsQ1iBYYSitngAa9WRZgAHWZaeBG6APuY1gQHIyaEA+mgeAGqbcI5HhkANm5Ea1G15ig1iCIAggOMt/gOCw12IB4ybQCvD9Xp+qjXeJS2hgprGhkwAgDxgg9j04vAcCoycUHIy9Pz+jh1pwOafa4ZV/kVCkDb2H5l0IEAcMvgez4g1cSDm3buBHXjWB1icxQqDFleIDlmRJHiOIIjg51o1gqCu0Ad/OoaL+O1bI0oMi8wVqnfQABUoKwGgAYq0p5YB2qP1acBUMr9n5NPaMEdtIa3GMwXNAVRahwvAGACBUNbT2qPLA4BwETjAdNPBEEBzr/ADgGAcIhbgKwYiBU2p9QoiBWizgCAFs7RYUOUEeAcMjywAgOAC0FyhK3DuHBWsxrxBlRKKfaAZtr9QDt3buxNiQaw1AHBYKwFgOXTgyEQIkWawwABWVArVUUV2gBrByACJjjF7glFYACDijIzAOAAolUqpFXM9UwooVgJQurdhsthmAKxTDXIcA4K0V5BqLFa39dDI1FDQUaDJr"

 s = s +
"K7lDLYABKAaArVsisUuoWK6m1UKyYIpSVihRrPSlILKQi51OK6USqJUDIlSzBU4LNSKjVDytllIVSIiJiSKgKQE="

 .Picture = s
 End With

 With .Nodes.Add("Child", "ketA")
 End With

End With

Run the sample and you get:

The following C++ sample loads a collection of icons from a BASE64 encoded string:

m_chartview.Images(COleVariant("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")
);
m_chartview.GetRoot().SetImage(1);

The following C++ sample loads the system's image list (used by Windows Explorer):

SHFILEINFO sfi; ZeroMemory(&sfi, sizeof(sfi));
m_chartView.Images(COleVariant((long)SHGetFileInfo(_T("C:\\"), 0, &sfi, sizeof

(SHFILEINFO), SHGFI_SMALLICON | SHGFI_SYSICONINDEX)));

If you are using the CImageList class, you should use the HIMAGELIST operator of the
CImageList class, to pass to the Images method like described:

m_chartView.Images(COleVariant(long(pImageList->operator HIMAGELIST())));

The following VB.NET sample loads a collection of icons from a BASE64 encoded string:

With AxChartView1

.Images("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDoMOolHpFJpVLpNGp0NiL/ltQplVq1XrFZqlZrldr1co0mqDAskprcXp9SiNRr9tt1vmVhjFyudqjCAvAAvCAtlpuF/wFuv1iu18jN+o17tFSumBx2PpWDutSxVhqGIqGVs+QzmdneYu0XxVr0GLvuZvOe1Wrmul1mv2GP0uzzex223n+00O43m9oeS33B4XD4nF43H5FKig+lXMjkekEYkcjjOGnFPlLzd8peDPlLgB/f6kZYHjjHllKA82i9cilXtQAf74/lL4+kmfx/s27AEBA==")

 .Root.Image = 1
End With

The following C# sample loads a collection of icons from a BASE64 encoded string:

axChartView1.Images("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDoMOolHpFJpVLpNGp0NiL/ltQplVq1XrFZqlZrldr1co0mqDAskprcXp9SiNRr9tt1vmVhjFyudqjCAvAAvCAtlpuF/wFuv1iu18jN+o17tFSumBx2PpWDutSxVhqGIqGVs+QzmdneYu0XxVr0GLvuZvOe1Wrmul1mv2GP0uzzex223n+00O43m9oeS33B4XD4nF43H5FKig+lXMjkekEYkcjjOGnFPlLzd8peDPlLgB/f6kZYHjjHllKA82i9cilXtQAf74/lL4+kmfx/s27AEBA==");

axChartView1.Root.Image = 1;

The following VFP sample loads a collection of icons from a BASE64 encoded string:

With thisform.ChartView1
 local s
 s =
"gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDoMOolHpFJpVLpNGp0NiL/ltQplVq1XrFZqlZrldr1co0mqDAskprcXp9SiNRr9tt1vmVhjFyudqjCAvAAvCAtlpuF/wFuv1iu1"

 s = s +
"8jN+o17tFSumBx2PpWDutSxVhqGIqGVs+QzmdneYu0XxVr0GLvuZvOe1Wrmul1mv2GP0uzzex223n+00O43m9oeS33B4XD4nF43H5FKig+lXMjkekEYkcjjOGnFPlLzd8peDPlLgB/f6kZYHjjHllKA82i9cilXtQAf74/lL4+kmfx/s27AEBA=="

 .Images(s)
 .Root.Image = 1
EndWith

property ChartView.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a node displays
expand/collapse glyphs

property ChartView.IndentChild as Long
Retrieves or sets the amount, in pixels, that child nodes are indented relative to their parent
nodes.

Type Description

Long A long expression that indicates the amount, in pixels, that
child nodes are indented relative to their parent nodes.

By default, the IndentChild property is 15 pixels. The IndentChild property has effect only
for nodes whose ArrangeSiblingNodesAs property is exTree. The PenLink property defines
the width of the pen used to paint the links between nodes. If the PenLink property is larger
than 1, its value counts when the control indents the child nodes relative to their parent
node. Use the IndentSiblingY property to indent vertically the sibling nodes. Use the
IndentSiblingX property to indent horizontally the sibling nodes.

property ChartView.IndentSiblingX as Long
Specifies the horizontal distance, in pixels between two siblings node.

Type Description

Long A long expression that specifies the horizontal distance, in
pixels between two siblings node.

By default, the IndentSiblingX property is 15 pixels. The PenLink property defines the width
of the pen used to paint the links between nodes. If the PenLink property is larger than 1,
its value counts when the control indents horizontally the sibling nodes. Use the
IndentSiblingY property to indent vertically the sibling nodes. The IndentChild property
retrieves or sets the amount, in pixels, that child nodes are indented relative to their parent
nodes, which has effect if the ArrangeSiglingNodesAs property is exTree. The Layout
property indicates whether the nodes are arranged from Top to Bottom (TTB) or Left to
Right (LTR).

The indent properties work differently based on the Layout property as follows:

exLayoutTTB (by default) - the nodes are arranged from top to the bottom:
IndentSiblingX property indicates the horizontal distance between two sibling
nodes.
IndentSiblingY property indicates the vertical distance between a node and it's
child nodes.
InflateGroupY property indicates the vertical distance to increase the group of
nodes (AddGroup).

exLayoutLTR - the nodes are arranged from left to the right:
IndentSiblingX property indicates the horizontal distance between a node and it's
child nodes.
IndentSiblingY property indicates the vertical distance between two sibling nodes.
InflateGroupX property indicates the horizontal distance to increase the group of
nodes (AddGroup).

property ChartView.IndentSiblingY as Long
Specifies the vertical distance, in pixels between two siblings node.

Type Description

Long A long expression that specifies the vertical distance, in
pixels between two siblings node.

By default, the IndentSiblingY property is 15 pixels. The PenLink property defines the width
of the pen used to paint the links between nodes. If the PenLink property is larger than 1,
its value counts when the control indents vertically the sibling nodes. Use the IndentSiblingX
property to indent horizontally the sibling nodes. The IndentChild property retrieves or sets
the amount, in pixels, that child nodes are indented relative to their parent nodes, which has
effect if the ArrangeSiglingNodesAs property is exTree.

The indent properties work differently based on the Layout property as follows:

exLayoutTTB (by default) - the nodes are arranged from top to the bottom:
IndentSiblingX property indicates the horizontal distance between two sibling
nodes.
IndentSiblingY property indicates the vertical distance between a node and it's
child nodes.
InflateGroupY property indicates the vertical distance to increase the group of
nodes (AddGroup).

exLayoutLTR - the nodes are arranged from left to the right:
IndentSiblingX property indicates the horizontal distance between a node and it's
child nodes.
IndentSiblingY property indicates the vertical distance between two sibling nodes.
InflateGroupX property indicates the horizontal distance to increase the group of
nodes (AddGroup).

property ChartView.Layout as ChartLayoutEnum
Specifies the way the chart displays the diagram.

Type Description

ChartLayoutEnum
A ChartLayoutEnum expression that indicates whether the
nodes are arranged from Top to Bottom (TTB) or Left to
Right (LTR).

By default, the Layout property is exLayoutTTB. Use the Layout property to arrange the
nodes from left to right. If the Layout property is exLayoutTTB (by default), the parent
nodes go from the top to bottom, the child nodes go from left to right. If Layout property is
exLayoutLTR, the parent nodes go from the left to right, the child nodes go from top to
bottom.

The indent properties work differently based on the Layout property as follows:

exLayoutTTB (by default) - the nodes are arranged from top to the bottom:
IndentSiblingX property indicates the horizontal distance between two sibling
nodes.
IndentSiblingY property indicates the vertical distance between a node and it's
child nodes.
InflateGroupY property indicates the vertical distance to increase the group of
nodes (AddGroup).

exLayoutLTR - the nodes are arranged from left to the right:
IndentSiblingX property indicates the horizontal distance between a node and it's
child nodes.
IndentSiblingY property indicates the vertical distance between two sibling nodes.
InflateGroupX property indicates the horizontal distance to increase the group of
nodes (AddGroup).

The following screen shot shows the nodes arrangement when the Layout property is
exLayoutLTR:

The following screen shot shows the nodes arrangement when the Layout property is
exLayoutTTB (by default):

property ChartView.LinkAssistantColor as Color
Specifies the color for assistant links.

Type Description

Color A color expression that indicates the color for links
between assistant nodes.

If the LinkAssistantColor property is equal with BackColor property no links are painted.
Use the PenLink property to define the pen used to paint the links between nodes. Use the
PenLinkAssistant property to define the type of the pen used to paint the links between
assistant nodes. For instance, if the LinkAssistantColor property has the same value as
BackColor property, the control doesn't paint the links between the nodes. Use the
PenWidthLinkAssistant property to specify the thickness of the links between assistant
nodes. Use the LinkColor property to specify the color for links between nodes.

property ChartView.LinkCaptionFromPoint (X as OLE_XPOS_PIXELS, Y
as OLE_YPOS_PIXELS) as Node
Gets the node whose caption on the link hovers the specified point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates

Node A Node object whose LinkCaption property hovers the
specified point.

Use the LinkCaptionFromPoint property to determine the node whose caption on the link is
at specified point. If the X parameter is -1 and Y parameter is -1 the
LinkCaptionFromPoint property determines the caption from the cursor. Use the
LinkCaption property to assign a HTML caption on the node's link.

The following VB sample prints the caption on the link from the cursor:

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .LinkCaptionFromPoint(-1,-1)
 If Not (n Is Nothing) Then
 Debug.Print n.LinkCaption
 End If
 End With
End Sub

The following C++ sample prints the caption on the link from the cursor:

void OnMouseMoveChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetLinkCaptionFromPoint(-1, -1);
 if (node.m_lpDispatch != NULL)
 OutputDebugString(node.GetLinkCaption());

}

The following VB.NET sample prints the caption on the link from the cursor:

Private Sub AxChartView1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent) Handles
AxChartView1.MouseMoveEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_LinkCaptionFromPoint(-1, -1)
 If Not (n Is Nothing) Then
 Debug.WriteLine(n.LinkCaption)
 End If
 End With
End Sub

The following C# sample prints the caption on the link from the cursor:

private void axChartView1_MouseMoveEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_LinkCaptionFromPoint(-1, -1);
 if (node != null)
 System.Diagnostics.Debug.WriteLine(node.LinkCaption);
}

The following VFP sample prints the caption on the link from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .LinkCaptionFromPoint(-1 , -1)
 If !isnull(n) Then
 wait window nowait n.LinkCaption
 EndIf
EndWith

property ChartView.LinkColor as Color
Specifies the color for links.

Type Description

Color A color expression that indicates the color for links
between nodes.

If the LinkColor property is equal with BackColor property no links are painted. Use the
LinkAssistantColor property to specify the color of the links between assistant nodes. Use
the PenLink property to define the pen used to paint the links between nodes. For instance,
the LinkColor property has the same value as BackColor property, the control doesn't paint
the links between the nodes. Use the PenWidthLink property to specify the thickness of the
links between nodes.

property ChartView.LinkToColor as Color
Specifies the color for 'LinkTo' links.

Type Description

Color
A Color expression that specifies the color to show the
links between nodes, being added using the LinkTo
property.

The LinkToColor property specifies the color of the links between nodes, being added using
the LinkTo property. The LinkToColor property specifies a different color to be used for an
arbitrary link. The following properties specify the style, width and the color for links
between nodes, being added using the LinkTo property:

PenLinkTo property specifies the style of the link to be shown between nodes.
PenWidthLinkTo property specifies the size / width of the links between nodes.
LinkToColor property specifies the color to show the links between nodes.

The AntiAliasing property specifies whether smoothing (antialiasing) is applied to lines or
curves in the control. The ShowLinksDir property specifies whether the links shows the
direction between the nodes.

method ChartView.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument.

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to fetch the control's data from XML documents, previously saved using the
SaveXML method. The control is emptied when the LoadXML method is called, and so the
nodes collection is emptied before loading a new XML document. The <root> element
holds information about the root node of the control, including its child nodes stored in
<node> elements. Properties like Caption, Key, Image, ImageAlignment, Expanded or Left
for assistant nodes, are saved for each node. The <assistants> element contains a
collection of <assistant> elements that holds information about an assistant node.

The XML format looks like follows:

- <Content Author Component Version>
 - <Root Key Caption Image ImageAlignment Expanded>
 - <Node Key Caption Image ImageAlignment Expanded>
 - <Node Key Caption Image ImageAlignment Expanded/>
 - <Node Key Caption Image ImageAlignment Expanded>
 - <Node Key Caption Image ImageAlignment Expanded/>
 - <Node Key Caption Image ImageAlignment Expanded>
 </Node>

 - <Assistants>
 <Assistant Caption Left Image ImageAlignment />
 </Assistants>
 </Node>

 - <Assistants>

 <Assistant Caption Left Image ImageAlignment />
 </Assistants>
 </Node>
 - <Assistants>
 <Assistant Caption Left Image ImageAlignment />
 </Assistants>
 </Root>
</Content>

property ChartView.MaxZoomHeight as Double
Gets or sets a value indicating how large the chart will appear on vertical axis (max value).

Type Description

Double A Double expression that specifies the upper limit on
vertical axis to resize the chart.

 The LayoutStartChanging(exResizeChart) event notifies your application once the user
starts resizing the chart. The LayoutEndChanging(exResizeChart) event notifies your
application once the chart is resized. The ZoomHeight property specifies a value that
indicates how large the chart will appear on vertical axis. Use the
MinZoomWidth/MaxZoomWidth property to specify the limits on horizontal axis when the
user performs resizing/zooming/shrinking. Use the MinZoomHeight/MaxZoomHeight
property to specify the limits on horizontal axis when the user performs
resizing/zooming/shrinking. The AllowResizeChart property specifies the combination of
keys so the user can resize the chart at runtime,

property ChartView.MaxZoomWidth as Double
Gets or sets a value indicating how large the chart will appear on horizontal axis (max
value).

Type Description

Double A Double expression that specifies the upper limit on
horizontal axis to resize the chart.

 The LayoutStartChanging(exResizeChart) event notifies your application once the user
starts resizing the chart. The LayoutEndChanging(exResizeChart) event notifies your
application once the chart is resized. The ZoomHeight property specifies a value that
indicates how large the chart will appear on vertical axis. Use the
MinZoomWidth/MaxZoomWidth property to specify the limits on horizontal axis when the
user performs resizing/zooming/shrinking. Use the MinZoomHeight/MaxZoomWidth property
to specify the limits on horizontal axis when the user performs resizing/zooming/shrinking.
The AllowResizeChart property specifies the combination of keys so the user can resize the
chart at runtime,

property ChartView.MinZoomHeight as Double
Gets or sets a value indicating how large the chart will appear on vertical axis (min value).

Type Description

Double A Double expression that specifies the lower limit on
vertical axis to resize the chart.

 The LayoutStartChanging(exResizeChart) event notifies your application once the user
starts resizing the chart. The LayoutEndChanging(exResizeChart) event notifies your
application once the chart is resized. The ZoomHeight property specifies a value that
indicates how large the chart will appear on vertical axis. Use the
MinZoomWidth/MaxZoomWidth property to specify the limits on horizontal axis when the
user performs resizing/zooming/shrinking. Use the MinZoomHeight/MaxZoomHeight
property to specify the limits on horizontal axis when the user performs
resizing/zooming/shrinking. The AllowResizeChart property specifies the combination of
keys so the user can resize the chart at runtime,

property ChartView.MinZoomWidth as Double
Gets or sets a value indicating how large the chart will appear on horizontal axis (min
value).

Type Description

Double A Double expression that specifies the lower limit on
horizontal axis to resize the chart.

 The LayoutStartChanging(exResizeChart) event notifies your application once the user
starts resizing the chart. The LayoutEndChanging(exResizeChart) event notifies your
application once the chart is resized. The ZoomHeight property specifies a value that
indicates how large the chart will appear on vertical axis. Use the
MinZoomWidth/MaxZoomWidth property to specify the limits on horizontal axis when the
user performs resizing/zooming/shrinking. Use the MinZoomHeight/MaxZoomWidth property
to specify the limits on horizontal axis when the user performs resizing/zooming/shrinking.
The AllowResizeChart property specifies the combination of keys so the user can resize the
chart at runtime,

property ChartView.NodeFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Node
Gets the node from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates

Node A Node object where the point is.

Use the NodeFromPoint property to determine the node from specified position. If the X
parameter is -1 and Y parameter is -1 the NodeFromPoint property determines the
node from the cursor. Use the Caption property to specify the caption of the node. The
control fires the Select event when the user clicks a node.

The following VB sample prints the caption of the node from the cursor:

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(-1,-1)
 If Not (n Is Nothing) Then
 Debug.Print n.Caption
 End If
 End With
End Sub

The following C++ sample prints the caption of the node from the cursor:

void OnMouseMoveChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(-1, -1);
 if (node.m_lpDispatch != NULL)
 OutputDebugString(node.GetCaption());
}

The following VB.NET sample prints the caption of the node from the cursor:

Private Sub AxChartView1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent) Handles
AxChartView1.MouseMoveEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(-1, -1)
 If Not (n Is Nothing) Then
 Debug.WriteLine(n.Caption)
 End If
 End With
End Sub

The following C# sample prints the caption of the node from the cursor:

private void axChartView1_MouseMoveEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(-1, -1);
 if (node != null)
 System.Diagnostics.Debug.WriteLine(node.Caption);
}

The following VFP sample prints the caption of the node from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(-1 , -1)
 If !isnull(n) Then
 wait window nowait n.Caption
 EndIf
EndWith

property ChartView.Nodes as Nodes
Gets the control's collection of nodes.

Type Description
Nodes A Nodes object that holds the control's nodes collection.

Use the Nodes property to access the control's nodes collection. Use the Add method to
add new nodes to organigram. Use the Remove method to remove a specific node. Use the
Item property to retrieve a node in the Nodes collection. Use the BeginUpdate and
EndUpdate methods to maintain performance while adding new nodes. Use the Images
method to assign a collection of icons to the control. Use the Root property to retrieve the
root node. The Frames property of the control gives access to the Frames collection.

property ChartView.PenBorderNode as PenTypeEnum
Specifies the type of pen used to draw the node's borders.

Type Description

PenTypeEnum A PenTypeEnum expression that indicates the type of pen
used to paint the borders for nodes.

Use the PenBorderNode property to define the type of the pen being used to paint the
borders of the nodes. Use the PenBorderNode property to define the type of the pen used
to paint the borders for a specified node. Use the ShadowNode property to hide the node's
shadow. Use the DrawRoundNode property to specify define round corners for all nodes in
the organigram.

property ChartView.PenLink as PenTypeEnum
Specifies the type of the pen used to paint the links between nodes.

Type Description

PenTypeEnum A PenTypeEnum expression that indicates the type of the
pen used to paint the links between nodes.

By default, the PenLink property is exPenDot. Use the PenLink property to define the type
of the pen used to paint the links between nodes. Use the PenLinkAssistant property to
define the type of the pen used to paint the links between assistant nodes. Use the
LinkColor property to hide the links between nodes. Use the PenWidthLink property to
specify the thickness of the links between nodes. For instance, the LinkColor property has
the same value as BackColor property, the control doesn't paint the links between the
nodes. Use the PenBorderNode property to specify the pent used to paint the borders of
the node.

property ChartView.PenLinkAssistant as PenTypeEnum
Specifies the type of the pen used to paint the links between assistant nodes.

Type Description

PenTypeEnum A PenTypeEnum expression that indicates the type of the
pen used to paint the links between assistant nodes.

By default, the PenLinkAssistant property is exPenDot. Use the PenLinkAssistant property
to define the type of the pen used to paint the links between assistant nodes. Use the
AddAssistant property to add an assistant node. The LinkAssistantColor property specifies
the color of the links between assistant nodes. Use the PenWidthLinkAssistant property to
specify the thickness of the links between assistant nodes. For instance, the
LinkAssistantColor property has the same value as BackColor property, the control doesn't
paint the links between assistant nodes. Use the PenLink property to define the type of the
pen used to paint the links between nodes.

property ChartView.PenLinkTo as PenTypeEnum
Specifies the type of the pen used to show the 'LinkTo' links.

Type Description

PenTypeEnum
A PenTypeEnum expression that specifies the link to be
shown between nodes, being added using the LinkTo
property

By default, the PenLinkTo property is exPenDot. Use the PenLinkTo property to specify the
style of the links between nodes, being added using the LinkTo property. The LinkToPen
property specifies the pen to show an linkto line. The following properties specify the style,
width and the color for links between nodes, being added using the LinkTo property:

PenLinkTo property specifies the style of the link to be shown between nodes.
PenWidthLinkTo property specifies the size / width of the links between nodes.
LinkToColor property specifies the color to show the links between nodes.

The AntiAliasing property specifies whether smoothing (antialiasing) is applied to lines or
curves in the control. The ShowLinksDir property specifies whether the links shows the
direction between the nodes.

property ChartView.PenWidthLink as Long
Specifies the width of the links between nodes.

Type Description

Long A long expression that specifies the width (in pixels) of the
links between nodes.

By default, the PenWidthLink property is 1. Use the PenWidthLink property to specify the
thickness of the lines between nodes. Use the PenLink property to specify the type of the
pen used to paint the lines between nodes. By default, the PenWidthLinks property is 1.
The LinkColor property specifies the color of the links between nodes.

property ChartView.PenWidthLinkAssistant as Long
Specifies the width of the links between assistant nodes.

Type Description

Long A long expression that specifies the width (in pixels) of the
links between assistant nodes.

By default, the PenWidthLinkAssistant property is 1. Use the PenWidthLinkAssistant
property to specify the thickness of the lines between nodes. Use the PenLinkAssistant
property to specify the type of the pen used to paint the lines between assistant nodes. The
LinkAssistantColor property specifies the color of the links between assistant nodes. Use
the PenWidthLink property to specify the width of the link between nodes.

property ChartView.PenWidthLinkTo as Long
Specifies the width of the 'LinkTo' links.

Type Description

Long A long expression that specifies the size of the link
between nodes, being added using the LinkTo property.

By default, the PenWidthLinkTo property is 1. Use the PenWidthLinkTo property to specify
the width of the links between nodes, being added using the LinkTo property. The
LinkToWidth property specifies the width for an linkto line. The following properties specify
the style, width and the color for links between nodes, being added using the LinkTo
property:

PenLinkTo property specifies the style of the link to be shown between nodes.
PenWidthLinkTo property specifies the size / width of the links between nodes.
LinkToColor property specifies the color to show the links between nodes.

The AntiAliasing property specifies whether smoothing (antialiasing) is applied to lines or
curves in the control. The ShowLinksDir property specifies whether the links shows the
direction between the nodes.

property ChartView.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object being displayed on the control's
background.

Use the Picture property to display a picture on the control's background. Use the
PictureDisplay property to align the picture on the control's background. Use the BackColor
property to define the control's background color. Use the BackColorNode property to
define the default background color for nodes. Use the BackColor property to define the
background color for a specified node. Use the SelColor property to specify the color to
mark the selected node. Use the SelectNode property to specify the selected node.

property ChartView.PictureAspectRatioNode as AspectRatioEnum
Specifies the default aspect ratio for the node's picture.

Type Description

AspectRatioEnum An ApsectRatioEnum expression that specifies the aspect
ratio for each picture in the nodes collection.

By default, the PictureAspectRatioNode property is exAspectRatioNone. If the
PictureAspectRatioNode property is set, it is applied to all nodes, excepts where the node's
PictureAspectRatio is being set. In other words, you can use the PictureAspectRatioNode
property to apply the same aspect ratio for all pictures in the chart. If using the
PictureAspectRatio property you can use the PictureWidthNode or PictureHeightNode
property to specify the fixed width or height for the picture. Use the Picture property to
specify the node's picture.

The aspect ratio for the node's picture works as follows:

exAspectRatioWidth, the PictureWidth or PictureWidthNode property must specify
the fixed width, so the height of the displaying picture is calculated based on the
original size, so it keeps its aspect ratio.
exAspectRatioHeight, the PictureHeight or PictureHeightNode property must specify
the fixed height, so the width of the displaying picture is calculated based on the
original size, so it keeps its aspect ratio.

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.
If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

property ChartView.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that specifes the
alignment of the picture on the control's background.

The PictureDisplay property aligns the Picture on the control's background. The
PictureDisplay property has no effect if the Picture property is empty. Use the BackColor
property to define the control's background color. Use the SelColor property to specify the
color to mark the selected node. Use the SelectNode property to specify the selected node.

property ChartView.PictureHeightNode as Long
Specifies the height of the node's picture.

Type Description

Long
A long expression that specifies the height to display the
pictures in nodes. If not specified, the picture's height is
used instead.

By default, the PictureHeightNode property is -1. Use the PictureHeightNode property to
specify a different height to display all pictures in all nodes. Use the Picture property to
specify the node's picture. The PictureWidthNode and PictureHeightNode properties of the
ChartView object handles the size of the displayed pictures for all the nodes. The
PictureAspectRatioNode property specifies the aspect ratio for the node's picture based on
the original width or height. The PictureWidth and PictureHeight properties handles the size
of displayed picture for specified node.

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.
If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

The following screen shot shows the root's picture resized, while the other nodes display
the pictures using their original size.

property ChartView.PictureWidthNode as Long
Specifies the width of the node's picture.

Type Description

Long
A long expression that specifies the width to display the
pictures in nodes. If not specified, the picture's width is
used instead.

By default, the PictureWidthNode property is -1. Use the PictureWidthNode property to
specify a different width to display all pictures in all nodes. Use the Picture property to
specify the node's picture. The PictureWidthNode and PictureHeightNode properties of the
ChartView object handles the size of the displayed pictures for all the nodes. The
PictureAspectRatioNode property specifies the aspect ratio for the node's picture based on
the original width or height. The PictureWidth and PictureHeight properties handles the size
of displayed picture for specified node.

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.
If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

The following screen shot shows the root's picture resized, while the other nodes display
the pictures using their original size.

method ChartView.Refresh ()
Refreshes the control.

Type Description

The Refresh method refreshes the control. The BeginUpdate method prevents the control
from painting until the EndUpdate method is called. Use the Font property to specify the
control's font. Use the hWnd property to get the handle of the control's window.

The following VB sample calls the Refresh method:

ChartView1.Refresh

The following C++ sample calls the Refresh method:

m_chartview.Refresh();

The following VB.NET sample calls the Refresh method:

AxChartView1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axChartView1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.ChartView1.Object.Refresh()

method ChartView.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = ExChartView1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following sample shows how to replace an icon into control's images list::

 i = ExChartView1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following sample shows how to remove an icon from control's images list:

 ExChartView1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following sample shows how to clear the control's icons collection:

 ExChartView1.ReplaceIcon 0, -1

property ChartView.Root as Node
Gets the root node.

Type Description

Node A Node object that indicates the root node of the
organigram.

Use the Root property to access the root node of the organigram. Use the Nodes property
to access the nodes of the organigram. The root node cannot be removed. By default, the
root's caption is "Root". Use the Caption property to change the node's caption. The Root's
Key property is "root". Use the Item property to access an item by its key. Use the Image
property to assign an icon to a node. Use the Picture property to assign a custom size
picture to a node. Use the BeginUpdate

The following VB sample assigns a caption and a picture to the root node:

With ChartView1
 .BeginUpdate
 With .Root
 .Caption = "<r><dotline>Root
Second line of the root"
 .Picture = "c:\winnt\system32\n2k.bmp"
 End With
 .EndUpdate
End With

The following C++ sample assigns a caption and a picture to the root node:

m_chartview.BeginUpdate();
CNode node = m_chartview.GetRoot();
node.SetCaption("<r><dotline>Root
Second line of the root");
node.SetPicture(COleVariant("c:\\winnt\\system32\\n2k.bmp"));
m_chartview.EndUpdate();

The following VB.NET sample assigns a caption and a picture to the root node:

With AxChartView1
 .BeginUpdate()
 With .Root
 .Caption = "<r><dotline>Root
Second line of the root"

 .Picture = "c:\winnt\system32\n2k.bmp"
 End With
 .EndUpdate()
End With

The following C# sample assigns a caption and a picture to the root node:

axChartView1.BeginUpdate();
EXORGCHARTLib.Node node = axChartView1.Root;
node.Caption = "<r><dotline>Root
Second line of the root";
node.Picture = "c:\\winnt\\system32\\n2k.bmp";
axChartView1.EndUpdate();

The following VFP sample assigns a caption and a picture to the root node:

With thisform.ChartView1
 .BeginUpdate
 With .Root
 .Caption = "<r><dotline>Root
Second line of the root"
 .Picture = "c:\winnt\system32\n2k.bmp"
 EndWith
 .EndUpdate
EndWith

method ChartView.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, reference to a
string member, an XML document object, or a custom
object that supports persistence as follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

ChartView1.SaveXML("sample.xml")

Reference to a String member - Saves the control's
content to the string member. Note that the string
member must be empty, before calling the SaveXML
method. For example:

Dim s As String
ChartView1.SaveXML s

In VB.NET for /NET assembly, you should call such as
:

Dim s As String = String.Empty
Exchartview1.SaveXML(s)

In C# for /NET assembly, you should call such as :

string s = string.Empty;
exchartview1.SaveXML(ref s);

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
ChartView1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write

method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data to XML documents. Use the LoadXML method to load
XML documents, previously saved with the SaveXML method. The control is emptied when
the LoadXML method is called, and so the nodes collection is emptied before loading a new
XML document. The <root> element holds information about the root node of the control,
including its child nodes stored in <node> elements. Properties like Caption, Key, Image,
ImageAlignment, Expanded or Left for assistant nodes, are saved for each node. The
<assistants> element contains a collection of <assistant> elements that holds information
about an assistant node.

The XML format looks like follows:

- <Content Author Component Version>
 - <Root Key Caption Image ImageAlignment Expanded>
 - <Node Key Caption Image ImageAlignment Expanded>
 - <Node Key Caption Image ImageAlignment Expanded/>
 - <Node Key Caption Image ImageAlignment Expanded>
 - <Node Key Caption Image ImageAlignment Expanded/>
 - <Node Key Caption Image ImageAlignment Expanded>
 </Node>

 - <Assistants>
 <Assistant Caption Left Image ImageAlignment />
 </Assistants>
 </Node>

 - <Assistants>
 <Assistant Caption Left Image ImageAlignment />
 </Assistants>
 </Node>
 - <Assistants>

 <Assistant Caption Left Image ImageAlignment />
 </Assistants>
 </Root>
</Content>

property ChartView.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property ChartView.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property ChartView.ScrollByClick as Boolean
Specifies a value that indicates whether the user scrolls the control's content by clicking the
client area.

Type Description

Boolean A boolean expression that indicates whether the user
scrolls the control's content by clicking the client area.

By default, the ScrollByClick property is True. If the ScrollByClick property is True, the user
can scroll the control's content (if the control's scrollbars are visible), if the user clicks the
control's client area and drag the cursor to a new position. Use The ScrollPos property to
programmatically scroll the chart. Use the EnsureVisibleNode property to ensure that a
node fits the control's client area. Use the SelectNode property to select a node.

property ChartView.ScrollFont (ScrollBar as ScrollBarEnum) as
IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property ChartView.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

method ChartView.ScrollOnCursor (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Scrolls the chart as the cursor indicates.

Type Description

X as OLE_XPOS_PIXELS A long expression that specifies the screen x-coordinate of
the cursor, -1 for the current cursor position

Y as OLE_YPOS_PIXELS A long expression that specifies the screen y-coordinate of
the cursor, -1 for the current cursor position

ScrollOnCursor method scrolls the chart based on the position of the cursor. So, if the
cursor is on the top of the chart, the control get scrolled up, else if the cursor is on the
bottom side of the chart, the chart gets scrolled down, and so on. The BorderWidth and
BorderHeight properties specifies the width and height of the borders of the chart. For
instance, you can use the ScrollOnCursor method to scroll during ole drag and drop
operation, as you can see in the next sample. The ScrollOnCursor method scrolls the chart
pixel by pixel, so you can call several times, so multiple pixels are scrolled once. Use the
BeginUpdate/EndUpdate methods to maintain performance while calling the ScrollOnCursor
several times. Use the ScrollPos property to programmatically scroll the chart.

The following C# sample scrolls the chart if the cursor is on the borders of the chart, while
drag and drop:

private void chartview1_DragOver(object sender, DragEventArgs e)
{
 chartview1.BeginUpdate();
 for (int i = 0; i < 4; i++)
 chartview1.ScrollOnCursor();
 chartview1.EndUpdate();
 e.Effect = DragDropEffects.None;
 exontrol.EXORGCHARTLib.Node spNode = chartview1.get_NodeFromPoint(-1, -1);
 if (spNode != null)
 if (spNode.Key != e.Data.GetData(DataFormats.Text).ToString())
 e.Effect = e.AllowedEffect;
}

The following VB.NET sample scrolls the chart if the cursor is on the borders of the chart,
while drag and drop:

Private Sub Chartview1_DragOver(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.DragEventArgs) Handles Chartview1.DragOver
 With Chartview1
 .BeginUpdate()
 For i As Integer = 1 To 4
 .ScrollOnCursor()
 Next
 .EndUpdate()
 End With
 e.Effect = DragDropEffects.None
 Dim spNode As exontrol.EXORGCHARTLib.Node = Chartview1.get_NodeFromPoint(-1,
-1)
 If Not spNode Is Nothing Then
 If spNode.Key <> e.Data.GetData(DataFormats.Text).ToString() Then
 e.Effect = e.AllowedEffect
 End If
 End If
End Sub

property ChartView.ScrollOnEnsure as Boolean
Specifies a value that indicates whether the control scrolls the control's content when
ensuring that a node is visible.

Type Description

Boolean
A boolean expression that indicates whether the control
scrolls the control's content when ensuring that a node is
visible.

By default, the ScrollOnEnsure property is True. Use the EnsureVisibleNode property to
ensure that a node fits the control's client area. Use the SelectNode property to select a
node. The control automatically scrolls the control's content to ensure that the node being
clicked fits the control's client area, if the EnsureVisibleOnSelect property is True. Use the
ScrollByClick property to specify whether the control's content is scrolled to a new position
when the user clicks and drags the cursor inside the control's client area.

property ChartView.ScrollOrderParts(ScrollBar as ScrollBarEnum) as
String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property ChartView.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the ScrollFont property to specify the font in the
control's scroll bar. Use the ScrollOrderParts property to customize the order of the buttons
in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With ChartView1
 .BeginUpdate

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxChartView1
 .BeginUpdate()
 .set_ScrollPartVisible(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part Or
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axChartView1.BeginUpdate();
axChartView1.set_ScrollPartVisible(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part |
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, true);
axChartView1.set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part , "1");
axChartView1.set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, "2");
axChartView1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_chartView.BeginUpdate();
m_chartView.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_chartView.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_chartView.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_chartView.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.ChartView1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property ChartView.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

The following VB sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

With ChartView1
 .ScrollPartCaption(exHScroll,exLowerBackPart) = "left"
 .ScrollPartCaptionAlignment(exHScroll,exLowerBackPart) = LeftAlignment
 .ScrollPartCaption(exHScroll,exUpperBackPart) = "right"
 .ScrollPartCaptionAlignment(exHScroll,exUpperBackPart) = RightAlignment
 .FixedWidthNode = 320
End With

The following VB.NET sample displays "left" aligned to the left on the lower part of the
control's horizontal scroll bar, and "right" aligned to the right on the upper part of the
control's horizontal scroll bar:

With AxChartView1

.set_ScrollPartCaption(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exLowerBackPart,"left")

.set_ScrollPartCaptionAlignment(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exLowerBackPart,EXORGCHARTLib.AlignmentEnum.LeftAlignment)

.set_ScrollPartCaption(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exUpperBackPart,"right")

.set_ScrollPartCaptionAlignment(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exUpperBackPart,EXORGCHARTLib.AlignmentEnum.RightAlignment)

 .FixedWidthNode = 320
End With

The following C# sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

axChartView1.set_ScrollPartCaption(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exLowerBackPart,"left");

axChartView1.set_ScrollPartCaptionAlignment(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exLowerBackPart,EXORGCHARTLib.AlignmentEnum.LeftAlignment);

axChartView1.set_ScrollPartCaption(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exUpperBackPart,"right");

axChartView1.set_ScrollPartCaptionAlignment(EXORGCHARTLib.ScrollBarEnum.exHScroll,EXORGCHARTLib.ScrollPartEnum.exUpperBackPart,EXORGCHARTLib.AlignmentEnum.RightAlignment);

axChartView1.FixedWidthNode = 320;

The following C++ sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0 Control
Library'

 #import "C:\\WinNT\\System32\\ExOrgChart.dll"
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1-

>PutScrollPartCaption(EXORGCHARTLib::exHScroll,EXORGCHARTLib::exLowerBackPart,L"left");

spChartView1-
>PutScrollPartCaptionAlignment(EXORGCHARTLib::exHScroll,EXORGCHARTLib::exLowerBackPart,EXORGCHARTLib::LeftAlignment);

spChartView1-
>PutScrollPartCaption(EXORGCHARTLib::exHScroll,EXORGCHARTLib::exUpperBackPart,L"right");

spChartView1-
>PutScrollPartCaptionAlignment(EXORGCHARTLib::exHScroll,EXORGCHARTLib::exUpperBackPart,EXORGCHARTLib::RightAlignment);

spChartView1->PutFixedWidthNode(320);

The following VFP sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

with thisform.ChartView1
 .ScrollPartCaption(1,512) = "left"
 .ScrollPartCaptionAlignment(1,512) = 0
 .ScrollPartCaption(1,128) = "right"
 .ScrollPartCaptionAlignment(1,128) = 2
 .FixedWidthNode = 320
endwith

property ChartView.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

property ChartView.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the Background property to change the visual appearance for
any part in the control's scroll bar. Use the ScrollOrderParts property to customize the
order of the buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With ChartView1
 .BeginUpdate

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxChartView1
 .BeginUpdate()
 .set_ScrollPartVisible(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part Or
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axChartView1.BeginUpdate();
axChartView1.set_ScrollPartVisible(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part |
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, true);
axChartView1.set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part , "1");
axChartView1.set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, "2");
axChartView1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_chartView.BeginUpdate();
m_chartView.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_chartView.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_chartView.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_chartView.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.ChartView1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property ChartView.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean
A boolean expression that specifies the scrollbar being
requested. True indicates the Vertical scroll bar, False
indicates the Horizontal scroll bar.

Long A long expression that specifies the scroll bar position.

Use the ScrollPos property to programmatically scroll the chart. Use the ScrollPos property
to set or get the horizontal or vertical scroll position. Use the ScrollOrderParts property to
specify the order of the buttons in the chart's scrollbar. Use the ScrollPartCaption property
to assign a caption to a button in the scroll bar. Use the ScrollPartVisible property to add or
remove buttons/parts in the control's scrollbar. The ScrollOnCursor method scrolls the
control's chart based on the position of the cursor.

property ChartView.ScrollThumbSize(ScrollBar as ScrollBarEnum) as
Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property ChartView.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub ChartView1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As
Long)
 If (Not Horizontal) Then
 ChartView1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxChartView1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXCHARTVIEWLib._IChartViewEvents_OffsetChangedEvent) Handles
AxChartView1.OffsetChanged
 If (Not e.horizontal) Then
 AxChartView1.set_ScrollToolTip(EXCHARTVIEWLib.ScrollBarEnum.exVScroll, "Record "
& e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedChartView1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_chartView.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axChartView1_OffsetChanged(object sender,
AxEXCHARTVIEWLib._IChartViewEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axChartView1.set_ScrollToolTip(EXCHARTVIEWLib.ScrollBarEnum.exVScroll, "Record "
+ e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.ChartView1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property ChartView.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonWidth property to specify the
width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify the
height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the height
of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify the
visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a fixed
size for the scrollbar's thumb.

property ChartView.SelColor as Color
Retrieves or sets a value that indicates the color used to mark the selected node.

Type Description

Color

A color expression that indicates the color used to mark
the selected node. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

A disabled node is painted as non selected. Use the SelectNode property to determine the
selected node. For instance, if the SelColor property has the same value as BackColor
property, the control doesn't paint the mark around the selected node. The control fires the
Select event when a node is selected.

The following VB sample changes the visual appearance for the selected node. The
SelColor property indicates the selection background color. Shortly, we need to add a skin
to the Appearance object using the Add method, and we need to set the last 7 bits in the
SelColor property to indicate the index of the skin that we want to use. The sample applies
the " " to the selected node(s):

With ChartView1
 .VisualAppearance.Add 1, "D:\Temp\ExOrgChart.Help\select.ebn"
 .SelColor = &H1000000
End With

The following C++ sample changes the visual appearance for the selected node:

#include "Appearance.h"
m_chartview.GetVisualAppearance().Add(1,
COleVariant("D:\\Temp\\ExOrgChart.Help\\select.ebn"));
m_chartview.SetSelColor(0x1000000);

The following VB.NET sample changes the visual appearance for the selected node:

With AxChartView1
 .VisualAppearance.Add(1, "D:\Temp\ExOrgChart.Help\select.ebn")
 .Template = "SelColor = 16777216"
End With

The following C# sample changes the visual appearance for the selected node:

axChartView1.VisualAppearance.Add(1, "D:\\Temp\\ExOrgChart.Help\\select.ebn");
axChartView1.Template = "SelColor = 16777216";

The following VFP sample changes the visual appearance for the selected node:

With thisform.ChartView1
 .VisualAppearance.Add(1, "D:\Temp\ExOrgChart.Help\select.ebn")
 .SelColor = 16777216
EndWith

The following VB sample changes the background and foreground color for the selected
node:

Private Sub ChartView1_Select(ByVal OldNode As EXORGCHARTLibCtl.INode, ByVal
NewNode As EXORGCHARTLibCtl.INode)
 If Not (OldNode Is Nothing) Then
 With OldNode
 .ClearBackColor
 .ClearForeColor
 End With
 End If
 With NewNode
 .ForeColor = vbWhite
 .BackColor = vbBlue

 End With
End Sub

The following C++ sample changes the background and foreground color for the selected
node:

void OnSelectChartview1(LPDISPATCH OldNode, LPDISPATCH NewNode)
{
 CNode oldNode(OldNode); oldNode.m_bAutoRelease = FALSE;
 CNode newNode(NewNode); newNode.m_bAutoRelease = FALSE;

 if (oldNode.m_lpDispatch != NULL)
 {
 oldNode.ClearBackColor();
 oldNode.ClearForeColor();
 }
 newNode.SetBackColor(RGB(0,0,128));
 newNode.SetForeColor(RGB(255,255,255));
}

The following VB.NET sample changes the background and foreground color for the
selected node:

Private Sub AxChartView1_SelectEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles AxChartView1.SelectEvent
 If Not (e.oldNode Is Nothing) Then
 With e.oldNode
 .ClearBackColor()
 .ClearForeColor()
 End With
 End If
 With e.newNode
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End Sub

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background and foreground color for the selected
node:

private void axChartView1_SelectEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)
{
 if (e.oldNode != null)
 {
 e.oldNode.ClearBackColor();
 e.oldNode.ClearForeColor();
 }
 e.newNode.BackColor = ToUInt32(Color.Blue);
 e.newNode.ForeColor = ToUInt32(Color.White);
}

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background and foreground color for the selected
node:

*** ActiveX Control Event ***
LPARAMETERS oldnode, newnode

If !isnull(oldnode)
 With oldnode
 .ClearBackColor
 .ClearForeColor
 EndWith
EndIf
With newnode
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,128)
EndWith

property ChartView.SelectNode as Variant
Specifies the selected node.

Type Description

Variant
A Node object that indicates the selected node or a string
expression that indicates the key of the node being
selected.

Use the SelectNode property to retrieve or sets the selected node. The control fires the
Select event when a node is selected. The SelColor property retrieves or sets a value that
indicates the color used to mark the selected node. Use the DrawRoundNode property to
draw round corners for the nodes. The ShadowNode property determines whether the
control displays a shadow for nodes. Use the ShadowNode property to hide the shadow for
a specific node. Use the Key property to determine the key of the node. Use the Caption
property to specify the caption of the node.

The following VB sample selects the node with the key "key":

ChartView1.SelectNode = "key"

The following VB sample prints the caption of the selected node:

With ChartView1
 Debug.Print .SelectNode.Caption
End With

The following C++ sample selects the node with the key "key":

m_chartview.SetSelectNode(COleVariant("key"));

The following C++ sample prints the caption of the selected node:

CNode node(V_DISPATCH(&m_chartview.GetSelectNode()));
OutputDebugString(node.GetCaption());

The following VB.NET sample selects the node with the key "key":

With AxChartView1
 .SelectNode = "key"
End With

The following VB.NET sample prints the caption of the selected node:

With AxChartView1
 Debug.WriteLine(.SelectNode.Caption())
End With

The following C# sample selects the node with the key "key":

axChartView1.SelectNode = "key";

The following C# sample prints the caption of the selected node:

EXORGCHARTLib.Node node = axChartView1.SelectNode as EXORGCHARTLib.Node;
System.Diagnostics.Debug.WriteLine(node.Caption);

The following VFP sample selects the node with the key "key":

With thisform.ChartView1
 .SelectNode = "key"
EndWith

The following VFP sample prints the caption of the selected node:

With thisform.ChartView1
 wait window nowait .SelectNode.Caption
EndWith

property ChartView.ShadowNode as Boolean
Specifies whether the node has shadow.

Type Description

Boolean A boolean expression that indicates whether the nodes
displays its shadow.

The ShadowNode property determines whether the control displays a shadow for nodes.
Use the ShadowNode property to hide the shadow for a specific node. Use the
DrawRoundNode property to specify whether the node has borders with round corners. Use
the DrawRoundNode property to specify define round corners for all nodes in the
organigram. The DrawRoundNode property and ShadowNode property has effect only if no
skin is applied to a node. Use the Background property to specify a background color or a
visual appearance for specific parts in the control.

property ChartView.ShowAddNew as Boolean
Specifies whether the selected node shows or hides add new buttons.

Type Description

Boolean A boolean expression that specifies whether the selected
node shows or hides add new buttons.

By default, the ShowAddNew property is False. The ShowAddNew property shows or hides
the add new button for selected nodes.

property ChartView.ShowAssistants as Boolean
Retrieves or sets a value that indicates whether the assistant nodes are shown.

Type Description

Boolean A boolean expression that indicates whether the assistant
nodes are visible or hidden.

Use the ShowAssistants property to hide the assistant nodes. Use the AddAssistant
method to add assistant nodes. By default, the ShowAssistants property is True. The
control displays the assistant nodes only if the ShowAssistants property is True. Use the
Assistant property to access the assistant nodes collection. Use the RemoveAssistant
method to remove an assistant node.

property ChartView.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the tree control. Use the
ReplaceIcon method to add, remove or clear icons in the control's images collection. Use
the Image property to assign an icon to a node. Use the Picture property to load a picture
to a node.

property ChartView.ShowLinksDir as Boolean
Specifies whether links show the direction.

Type Description

Boolean A Boolean expression that specifies whether the links
between nodes show the direction.

By default, the ShowLinksDir property is False. Use the ShowLinksDir property to show the
direction of the links. The LinkTo property adds arbitrary a link between any two nodes. The
LinkToCaption property specifies the HTML caption being shown on the links between
nodes. The LinkColor property specifies the color of the links between nodes. The
ShowLinks property doesn't affect the links added with the LinkTo property. The AntiAliasing
property specifies whether the control uses the antialiasing rendering to show the arrows of
the links. The ShowRoundLink property specifies whether the round links are shown
between parent and child nodes. Currently, the direction of the link is shown only for
rectangular links, not for the round links. The PenWidthLink property specifies the thickness
of the lines between nodes. Use the PenLink property to specify the type of the pen used to
paint the lines between nodes. In case, the arrows of the link are not shown use the
IndentSiblingY, IndentSiblingX or IndentChild property to increase the distance between
sibling or child nodes. The LinkToShowDir property specifies the whether the links shows its
direction . If the ShowLinksDir property is True, you can use the ShowLinkDir property to
specify whether the node should show or hide its direction.

The following screen shot shows the links between nodes with no direction:

The following screen shot shows the links between nodes with their direction:

The following screen shot shows the links between nodes with their direction, and
ShowRoundLink property on True:

The following screen shot shows the links between nodes with their direction including
HTML captions on links:

property ChartView.ShowRoundLink as Boolean
Specifies whether the round links are shown between parent and child nodes.

Type Description

Boolean A Boolean expression that specifies whether links are
shown rounded or rectangular.

By default, the ShowRoundLink property is False. Use the ShowRoundLink property to
specify round links for all nodes. Use the ShowRoundLink property to specify round links for
a specified node and its child nodes. Use the PenLink property indicates the type of the pen
used to paint the links between nodes. Use the PenWidthLink property to specify the
thickness of the links between nodes. Use the LinkColor property to specify the color for
the links between nodes. The LinkToRound property specifies the whether the link is shown
liner or round .

The following screen shot shows the chart using round links (ShowRoundLink property is
True) :

The following screen shot shows the chart using round links (ShowRoundLink property is
False) :

method ChartView.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property ChartView.Template as String
Specifies the control's template.

Type Description
String A String expression that indicates the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
The ExecuteTemplate property gets the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ChartView.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ChartView.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ChartView.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

By default, the ToolTipDelay property is 500 ms. If the ToolTipDelay property is 0, the
control displays no tooltips for any keyword. Use the ToolTipDelay and ToolTipPopDelay
properties to define the time before showing a tooltip and the period of the time that tooltip
remains visible if the mouse pointer is stationary within a control. The ToolTipWidth property
specifies a value that indicates the width of the tooltip window, in pixels. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTipFont property to assign a font for the control's tooltip. Use
the ToolTip property to assign a tooltip to a node.

property ChartView.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. Use the ToolTipDelay
and ToolTipPopDelay properties to define the time before showing a tooltip and the period
of the time that tooltip remains visible if the mouse pointer is stationary within a control. The
ToolTipWidth property specifies a value that indicates the width of the tooltip window, in
pixels. Use the ToolTip property to assign a tooltip to a node. Use the ToolTipFont property
to assign a font for the control's tooltip. You can use the HTML element, in the
tooltip's description to assign a different font for portions of text.

property ChartView.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that defines the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary
within a control.

By default, the ToolTipPopDelay property is 5000 ms. If the ToolTipPopDelay property is 0,
the control displays no tooltips for any keyword. Use the ToolTipDelay and ToolTipPopDelay
properties to define the time before showing a tooltip and the period of the time that tooltip
remains visible if the mouse pointer is stationary within a control. The ToolTipWidth property
specifies a value that indicates the width of the tooltip window, in pixels. Use the
ToolTipFont property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip. Use the ToolTip
property to assign a tooltip to a node.

property ChartView.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window, in pixels.

Use the ToolTipWidth property to specify the width of the tooltip window. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the Background(exToolTipAppearance)
property indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip. Use the ToolTipFont property to assign a
font for the control's tooltip. Use the ToolTip property to assign a tooltip to a node.

property ChartView.ToTemplate ([DefaultTemplate as Variant]) as String
Generates the control's template.

Type Description

DefaultTemplate as Variant

A String expression that indicates the default format used
to define the control's template at runtime, or a string
expression that indicates the path to the file being used to
define the default template (like c:\temp\teml.bin). If it is
missing (by default), the control's uses the default
implementation (listed bellow) to define the control's
template, at runtime. Each line in the DefaultTemplate
parameter, defines a property or an instruction to
generate the template.

String A String expression that indicates the control's template.

Use the ToTemplate property to save the control's content to a template string. The
ToTemplate property saves the control's properties based on the default template. Use the
ToTemplate property to copy the control's content to another instance. The ToTemplate
property can save pictures, icons, binary arrays, objects, collections, and so on based on
the DefaultTemplate parameter.

The DefaultTemplate parameter indicates the format of the template being used to generate
the control's template at runtime. If the DefaultTemplate parameter is missing, the control's
uses its default template listed bellow. The DefaultTemplate parameter defines the list of
properties and instructions that generates the control's template. Remove the properties
and objects, in the default template, that you don't need in the generated template script.
Use the Template property to apply the template to the control. Use the Template property
to execute code by passing instructions as a string (template string). The Template script
is composed by lines of instructions. Instructions are separated by "\n\r" (newline)
characters. The Template format contains a list of instructions that loads data and change
properties for the objects in the control. Use the AllowCopyTemplate property to copy the
control's content to the clipboard, in template format, using the the Shift + Ctrl + Alt + Insert
sequence.

The time to generate the control's template depends on:

the content of the DefaultTemplate parameter.
number of columns and items in the control including internal objects such as editors.
encoding the visual appearance as well as encoding the pictures and icons of the
control

property ChartView.Version as String
Retrieves the control's version.

Type Description

String A string expression that indicates the version of the
control.

The Version property to indicates the version of the control that's running.

property ChartView.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

selected node, SelColor property

borders of the nodes, Background property
the background for all nodes, BackColorNode property
node's background, BackColor property

property ChartView.WidthNode as Long
Specifies the maximum width of the nodes captions.

Type Description

Long A Long expression that specifies a maximum width for all
nodes, when their captions are wrapped.

Use the NodeWidth property to specify the maximum width for all nodes, when their
captions are wrapped. Use the Width property to specify the maximum width a specified
node when it's caption is wrapped.

property ChartView.ZoomHeight as Double
Gets or sets a value indicating how large the chart will appear on vertical axis.

Type Description

Double A double expression that indicates how large the chart will
appear on vertical axis.

Use the ZoomHeight property to change how large the chart will appear on vertical axis, if
the ZoomHeightMode property is exCustomSize. Use the ZoomWidth property to specify
how large the chart will appear on horizontal axis. Use the MinZoomHeight/MaxZoomWidth
property to specify the limits on horizontal axis when the user performs
resizing/zooming/shrinking.

The following VB sample enlarges the chart to 200%:

With ChartView1
 .BeginUpdate
 .ZoomWidthMode = exCustomSize
 .ZoomWidth = 2
 .ZoomHeightMode = exCustomSize
 .ZoomHeight = 2
 .EndUpdate
End With

The following C++ sample enlarges the chart to 200%:

m_chartview.BeginUpdate();
m_chartview.SetZoomWidthMode(1 /*exCustomSize*/);
m_chartview.SetZoomWidth(2);
m_chartview.SetZoomHeightMode(1 /*exCustomSize*/);
m_chartview.SetZoomHeight(2);
m_chartview.EndUpdate();

The following VB.NET sample enlarges the chart to 200%:

With AxChartView1
 .BeginUpdate()
 .ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize
 .ZoomWidth = 2

 .ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize
 .ZoomHeight = 2
 .EndUpdate()
End With

The following C# sample enlarges the chart to 200%:

axChartView1.BeginUpdate();
axChartView1.ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize;
axChartView1.ZoomWidth = 2;
axChartView1.ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize;
axChartView1.ZoomHeight = 2;
axChartView1.EndUpdate();

The following VFP sample enlarges the chart to 200%:

With thisform.ChartView1
 .BeginUpdate
 .ZoomWidthMode = 1 && exCustomSize
 .ZoomWidth = 2
 .ZoomHeightMode = 1 && exCustomSize
 .ZoomHeight = 2
 .EndUpdate
EndWith

property ChartView.ZoomHeightMode as ZoomModeEnum
Specifies a value that indicates whether the ZoomHeight property is updated when the
control is resized.

Type Description

ZoomModeEnum
A ZoomModeEnum expression that indicates whether the
ZoomHeight property is updated when the control is
resized.

By default, the ZoomHeightMode property is exDefaultSize. If the ZoomHeightMode
property is exCustomSize the ZoomHeight property specifies how large the chart will
appear on the vertical axis. If the ZoomHeightMode property is exControlSize the control
updates the ZoomHeight property such that the chart will fit the control's client are on
vertical axis. Use the ZoomWidthMode property to specify whether the ZoomWidth property
is updated when the control is resized.

The following VB sample fits the chart to the control's client area:

With ChartView1
 .BeginUpdate
 .ZoomWidthMode = exControlSize
 .ZoomHeightMode = exControlSize
 .EndUpdate
End With

The following C++ sample fits the chart to the control's client area:

m_chartview.BeginUpdate();
m_chartview.SetZoomWidthMode(2 /*exControlSize*/);
m_chartview.SetZoomHeightMode(2 /*exControlSize*/);
m_chartview.EndUpdate();

The following VB.NET sample fits the chart to the control's client area:

With AxChartView1
 .BeginUpdate()
 .ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exControlSize
 .ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exControlSize
 .EndUpdate()
End With

The following C# sample fits the chart to the control's client area:

axChartView1.BeginUpdate();
axChartView1.ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exControlSize;
axChartView1.ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exControlSize;
axChartView1.EndUpdate();

The following VFP sample fits the chart to the control's client area:

With thisform.ChartView1
 .BeginUpdate
 .ZoomWidthMode = 2 && exControlSize
 .ZoomHeightMode = 2 && exControlSize
 .EndUpdate
EndWith

property ChartView.ZoomWidth as Double
Gets or sets a value indicating how large the chart will appear on horizontal axis.

Type Description

Double A double expression that indicates how large the chart will
appear on horizontal axis.

Use the ZoomWidth property to change how large the chart will appear on horizontal axis, if
the ZoomWidthMode property is exCustomSize. Use the ZoomHeight property to specify
how large the chart will appear on vertical axis. Use the MinZoomWidth/MaxZoomWidth
property to specify the limits on horizontal axis when the user performs
resizing/zooming/shrinking.

The following VB sample enlarges the chart to 200%:

With ChartView1
 .BeginUpdate
 .ZoomWidthMode = exCustomSize
 .ZoomWidth = 2
 .ZoomHeightMode = exCustomSize
 .ZoomHeight = 2
 .EndUpdate
End With

The following C++ sample enlarges the chart to 200%:

m_chartview.BeginUpdate();
m_chartview.SetZoomWidthMode(1 /*exCustomSize*/);
m_chartview.SetZoomWidth(2);
m_chartview.SetZoomHeightMode(1 /*exCustomSize*/);
m_chartview.SetZoomHeight(2);
m_chartview.EndUpdate();

The following VB.NET sample enlarges the chart to 200%:

With AxChartView1
 .BeginUpdate()
 .ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize
 .ZoomWidth = 2

 .ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize
 .ZoomHeight = 2
 .EndUpdate()
End With

The following C# sample enlarges the chart to 200%:

axChartView1.BeginUpdate();
axChartView1.ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize;
axChartView1.ZoomWidth = 2;
axChartView1.ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exCustomSize;
axChartView1.ZoomHeight = 2;
axChartView1.EndUpdate();

The following VFP sample enlarges the chart to 200%:

With thisform.ChartView1
 .BeginUpdate
 .ZoomWidthMode = 1 && exCustomSize
 .ZoomWidth = 2
 .ZoomHeightMode = 1 && exCustomSize
 .ZoomHeight = 2
 .EndUpdate
EndWith

property ChartView.ZoomWidthMode as ZoomModeEnum
Specifies a value that indicates whether the ZoomWidth property is updated when the
control is resized.

Type Description

ZoomModeEnum
A ZoomModeEnum expression that indicates whether the
ZoomWidth property is updated when the control is
resized.

By default, the ZoomWidthMode property is exDefaultSize. If the ZoomWidthMode property
is exCustomSize the ZoomWidth property specifies how large the chart will appear on the
horizontal axis. If the ZoomWidthMode property is exControlSize the control updates the
ZoomWidth property such that the chart will fit the control's client are on horizontal axis. Use
the ZoomHeightMode property to specify whether the ZoomHeight property is updated
when the control is resized.

The following VB sample fits the chart to the control's client area:

With ChartView1
 .BeginUpdate
 .ZoomWidthMode = exControlSize
 .ZoomHeightMode = exControlSize
 .EndUpdate
End With

The following C++ sample fits the chart to the control's client area:

m_chartview.BeginUpdate();
m_chartview.SetZoomWidthMode(2 /*exControlSize*/);
m_chartview.SetZoomHeightMode(2 /*exControlSize*/);
m_chartview.EndUpdate();

The following VB.NET sample fits the chart to the control's client area:

With AxChartView1
 .BeginUpdate()
 .ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exControlSize
 .ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exControlSize
 .EndUpdate()
End With

The following C# sample fits the chart to the control's client area:

axChartView1.BeginUpdate();
axChartView1.ZoomWidthMode = EXORGCHARTLib.ZoomModeEnum.exControlSize;
axChartView1.ZoomHeightMode = EXORGCHARTLib.ZoomModeEnum.exControlSize;
axChartView1.EndUpdate();

The following VFP sample fits the chart to the control's client area:

With thisform.ChartView1
 .BeginUpdate
 .ZoomWidthMode = 2 && exControlSize
 .ZoomHeightMode = 2 && exControlSize
 .EndUpdate
EndWith

Frame object
The Frame objects holds information about what a frame to display. The Add method
returns the newly added frame. The Item property gets a frame object based on its index.

A Frame is defined by an union of nodes, and can:

specify whether the frame is shown on the back or on the front using the
ShowOnBackground property
define the padding of the frame using the Padding property
define a solid or EBN background color to be displayed on the frame's background,
using the BackColor property of the Frame object
The BackgroundExt property of the Frame object, defines unlimited options to show
any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's
background.
define a different border or pattern to be shown, using the Pattern property

The following screen show shows an EBN frame around child nodes of the root node:

The Frame object supports the following properties and methods:

Name Description

BackColor Gets or sets a value that indicates the frame's background
color.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the frame's background using the EBN string
format.

BackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

Index Indicates the index of the current Frame object within the
Frames collection.

Nodes

Specifies the list of keys for the nodes to show the frame,
separated by comma character. The node's key may ends
with (all) to include all child, assistant nodes, with (child) to

include the direct children of the node only, with (assistant)
to include the as?ł?K

Padding Returns or sets a value that indicates the padding of the
frame.

Pattern Specifies the pattern of the frame.
ShowOnBackground Shows the frame on the control's background.
Visible Shows or hides the frame.

property Frame.BackColor as Color
Gets or sets a value that indicates the frame's background color.

Type Description

Color

A color expression that defines the frame's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

By default, the BackColor property is -1, which indicates that no background color is
applied. The BackColor property defines the frame's background color. The BackgroundExt
property of the Frame object, defines unlimited options to show any HTML text, images,
colors, EBNs, patterns, borders anywhere on the frame's background. The Pattern property
defines a different border or pattern to be shown. The Padding property returns or sets a
value that indicates the padding of the frame.

The following screen shot shows the frame with a solid background color:

The following screen shot shows the frame with an EBN background color:

The following screen shot shows how you can define a solid background color for the frame
(with no border).

VBA (MS Access, Excell...)

With ChartView1

 .BeginUpdate
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2")
 .BackColor = RGB(255,0,0)
 .Pattern.Type = 0
 End With
 .EndUpdate
End With

VB6

With ChartView1
 .BeginUpdate
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2")
 .BackColor = RGB(255,0,0)
 .Pattern.Type = exPatternEmpty
 End With
 .EndUpdate
End With

VB.NET

With Exchartview1
 .BeginUpdate()
 With .Nodes

 .Add("Child 1",,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 End With
 With .Frames.Add("AK1,AK2")
 .BackColor = Color.FromArgb(255,0,0)
 .Pattern.Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternEmpty
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxChartView1
 .BeginUpdate()
 With .Nodes
 .Add("Child 1",,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 End With
 With .Frames.Add("AK1,AK2")
 .BackColor = RGB(255,0,0)
 .Pattern.Type = EXORGCHARTLib.PatternEnum.exPatternEmpty
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->BeginUpdate();
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"Child 1",vtMissing,"1234",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 1","1234","AK1",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 2","1234","AK2",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 3","1234",vtMissing,vtMissing,vtMissing);
 var_Nodes->Add(L"Child 2.1",vtMissing,vtMissing,vtMissing,vtMissing)-
>AddGroup(L"Child 2.2",vtMissing,vtMissing);
EXORGCHARTLib::IFramePtr var_Frame = spChartView1->GetFrames()-
>Add("AK1,AK2");
 var_Frame->PutBackColor(RGB(255,0,0));
 var_Frame->GetPattern()->PutType(EXORGCHARTLib::exPatternEmpty);
spChartView1->EndUpdate();

C++ Builder

ChartView1->BeginUpdate();
Exorgchartlib_tlb::INodesPtr var_Nodes = ChartView1->Nodes;
 var_Nodes->Add(L"Child
1",TNoParam(),TVariant("1234"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub
1",TVariant("1234"),TVariant("AK1"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub
2",TVariant("1234"),TVariant("AK2"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub 3",TVariant("1234"),TNoParam(),TNoParam(),TNoParam());
 var_Nodes->Add(L"Child
2.1",TNoParam(),TNoParam(),TNoParam(),TNoParam())->AddGroup(L"Child
2.2",TNoParam(),TNoParam());
Exorgchartlib_tlb::IFramePtr var_Frame = ChartView1->Frames-
>Add(TVariant("AK1,AK2"));
 var_Frame->BackColor = RGB(255,0,0);

 var_Frame->Pattern->Type = Exorgchartlib_tlb::PatternEnum::exPatternEmpty;
ChartView1->EndUpdate();

C#

exchartview1.BeginUpdate();
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
exontrol.EXORGCHARTLib.Frame var_Frame = exchartview1.Frames.Add("AK1,AK2");
 var_Frame.BackColor = Color.FromArgb(255,0,0);
 var_Frame.Pattern.Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternEmpty;
exchartview1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ChartView1.BeginUpdate();
 var var_Nodes = ChartView1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
 var var_Frame = ChartView1.Frames.Add("AK1,AK2");

 var_Frame.BackColor = 255;
 var_Frame.Pattern.Type = 0;
 ChartView1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ChartView1
 .BeginUpdate
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2")
 .BackColor = RGB(255,0,0)
 .Pattern.Type = 0
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axChartView1.BeginUpdate();
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
EXORGCHARTLib.Frame var_Frame = axChartView1.Frames.Add("AK1,AK2");
 var_Frame.BackColor = (uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0));
 var_Frame.Pattern.Type = EXORGCHARTLib.PatternEnum.exPatternEmpty;
axChartView1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Frame,com_Node,com_Nodes,com_Pattern;
 anytype var_Frame,var_Node,var_Nodes,var_Pattern;
 ;

 super();

 exchartview1.BeginUpdate();
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 com_Nodes.Add("Child 1",,"1234");
 com_Nodes.Add("Sub 1","1234","AK1");
 com_Nodes.Add("Sub 2","1234","AK2");
 com_Nodes.Add("Sub 3","1234");
 var_Node = COM::createFromObject(com_Nodes.Add("Child 2.1"));
com_Node = var_Node;
 com_Node.AddGroup("Child 2.2");
 var_Frame = COM::createFromObject(exchartview1.Frames()).Add("AK1,AK2");
com_Frame = var_Frame;
 com_Frame.BackColor(WinApi::RGB2int(255,0,0));
 var_Pattern = COM::createFromObject(com_Frame.Pattern()); com_Pattern =

var_Pattern;
 com_Pattern.Type(0/*exPatternEmpty*/);
 exchartview1.EndUpdate();
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 BeginUpdate();
 with Nodes do
 begin
 Add('Child 1',Nil,'1234',Nil,Nil);
 Add('Sub 1','1234','AK1',Nil,Nil);
 Add('Sub 2','1234','AK2',Nil,Nil);
 Add('Sub 3','1234',Nil,Nil,Nil);
 Add('Child 2.1',Nil,Nil,Nil,Nil).AddGroup('Child 2.2',Nil,Nil);
 end;
 with Frames.Add('AK1,AK2') do
 begin
 BackColor := $ff;
 Pattern.Type := EXORGCHARTLib.PatternEnum.exPatternEmpty;
 end;
 EndUpdate();
end

Delphi (standard)

with ChartView1 do
begin
 BeginUpdate();
 with Nodes do
 begin
 Add('Child 1',Null,'1234',Null,Null);
 Add('Sub 1','1234','AK1',Null,Null);
 Add('Sub 2','1234','AK2',Null,Null);
 Add('Sub 3','1234',Null,Null,Null);
 Add('Child 2.1',Null,Null,Null,Null).AddGroup('Child

2.2',Null,Null);
 end;
 with Frames.Add('AK1,AK2') do
 begin
 BackColor := $ff;
 Pattern.Type := EXORGCHARTLib_TLB.exPatternEmpty;
 end;
 EndUpdate();
end

VFP

with thisform.ChartView1
 .BeginUpdate
 with .Nodes
 .Add("Child 1",Null,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 endwith
 with .Frames.Add("AK1,AK2")
 .BackColor = RGB(255,0,0)
 .Pattern.Type = 0
 endwith
 .EndUpdate
endwith

dBASE Plus

local oChartView,var_Frame,var_Nodes

oChartView = form.EXORGCHARTACTIVEXCONTROL1.nativeObject
oChartView.BeginUpdate()
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",null,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")

 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Frame = oChartView.Frames.Add("AK1,AK2")
 var_Frame.BackColor = 0xff
 var_Frame.Pattern.Type = 0
oChartView.EndUpdate()

XBasic (Alpha Five)

Dim oChartView as P
Dim var_Frame as P
Dim var_Nodes as P

oChartView = topparent:CONTROL_ACTIVEX1.activex
oChartView.BeginUpdate()
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Frame = oChartView.Frames.Add("AK1,AK2")
 var_Frame.BackColor = 255
 var_Frame.Pattern.Type = 0
oChartView.EndUpdate()

Visual Objects

local var_Frame as IFrame
local var_Nodes as INodes

oDCOCX_Exontrol1:BeginUpdate()
var_Nodes := oDCOCX_Exontrol1:Nodes
 var_Nodes:Add("Child 1",nil,"1234",nil,nil)
 var_Nodes:Add("Sub 1","1234","AK1",nil,nil)
 var_Nodes:Add("Sub 2","1234","AK2",nil,nil)

 var_Nodes:Add("Sub 3","1234",nil,nil,nil)
 var_Nodes:Add("Child 2.1",nil,nil,nil,nil):AddGroup("Child
2.2",nil,nil)
var_Frame := oDCOCX_Exontrol1:Frames:Add("AK1,AK2")
 var_Frame:BackColor := RGB(255,0,0)
 var_Frame:Pattern:Type := exPatternEmpty
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oChartView,var_Frame,var_Nodes

oChartView = ole_1.Object
oChartView.BeginUpdate()
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Frame = oChartView.Frames.Add("AK1,AK2")
 var_Frame.BackColor = RGB(255,0,0)
 var_Frame.Pattern.Type = 0
oChartView.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Variant voNodes
 Get ComNodes to voNodes
 Handle hoNodes
 Get Create (RefClass(cComNodes)) to hoNodes
 Set pvComObject of hoNodes to voNodes
 Get ComAdd of hoNodes "Child 1" "1234" Nothing Nothing to

Nothing
 Get ComAdd of hoNodes "Sub 1" "1234" "AK1" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "Sub 2" "1234" "AK2" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "Sub 3" "1234" Nothing Nothing Nothing to Nothing
 Variant voNode
 Get ComAdd of hoNodes "Child 2.1" Nothing Nothing Nothing
Nothing to voNode
 Handle hoNode
 Get Create (RefClass(cComNode)) to hoNode
 Set pvComObject of hoNode to voNode
 Get ComAddGroup of hoNode "Child 2.2" Nothing Nothing to
Nothing
 Send Destroy to hoNode
 Send Destroy to hoNodes
 Variant voFrames
 Get ComFrames to voFrames
 Handle hoFrames
 Get Create (RefClass(cComFrames)) to hoFrames
 Set pvComObject of hoFrames to voFrames
 Variant voFrame
 Get ComAdd of hoFrames "AK1,AK2" to voFrame
 Handle hoFrame
 Get Create (RefClass(cComFrame)) to hoFrame
 Set pvComObject of hoFrame to voFrame
 Set ComBackColor of hoFrame to (RGB(255,0,0))
 Variant voPattern
 Get ComPattern of hoFrame to voPattern
 Handle hoPattern
 Get Create (RefClass(cComPattern)) to hoPattern
 Set pvComObject of hoPattern to voPattern
 Set ComType of hoPattern to OLEexPatternEmpty
 Send Destroy to hoPattern
 Send Destroy to hoFrame
 Send Destroy to hoFrames
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oChartView
 LOCAL oFrame
 LOCAL oNodes

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oChartView := XbpActiveXControl():new(oForm:drawingArea)
 oChartView:CLSID := "Exontrol.ChartView.1" /*{F4DFE455-01FE-420E-A088-
64346DCC3791}*/
 oChartView:create(,, {10,60},{610,370})

 oChartView:BeginUpdate()
 oNodes := oChartView:Nodes()
 oNodes:Add("Child 1",,"1234")
 oNodes:Add("Sub 1","1234","AK1")
 oNodes:Add("Sub 2","1234","AK2")
 oNodes:Add("Sub 3","1234")
 oNodes:Add("Child 2.1"):AddGroup("Child 2.2")
 oFrame := oChartView:Frames():Add("AK1,AK2")
 oFrame:SetProperty("BackColor",AutomationTranslateColor(
GraMakeRGBColor ({ 255,0,0 }) , .F.))
 oFrame:Pattern():Type := 0/*exPatternEmpty*/
 oChartView:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit

 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Frame.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the frame's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is "", which indicates that no background-extension
is applied. The BackgroundExt property of the Frame object, defines unlimited options to
show any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's
background. Using the BackgroundExt property you have unlimited options to show any
HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's background.
For instance, let's say you need to display more colors on the frame's background, or just
want to display an additional caption or image to a specified location on the object's
background. The EBN String Format defines the parts of the EBN to be applied on the
object's background. The EBN is a set of UI elements that are built as a tree where each
element is anchored to its parent element. Use the BackgroundExtValue property to change
at runtime any UI property for any part that composes the EBN String Format. The
BackgroundExt property is applied right after setting the object's backcolor, and before
drawing the default object's captions, icons or pictures. The BackColor property defines the
frame's background color. The Pattern property defines a different border or pattern to be
shown. The Padding property returns or sets a value that indicates the padding of the
frame.

The following screen shot shows the frame with a caption on an EBN object:

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

https://exontrol.com/exbutton.jsp

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BackgroundExt property such as "left[10%]

(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Frame.BackgroundExtValue(Index as IndexExtEnum, Property
as BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part
that composes the EBN String Format. The BackgroundExtValue property has no effect if
the BackgroundExt property is empty (by default). The idea is as follows: first you need
to decide the layout of the UI to put on the object's background, using the

BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant

expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Frame.Index as Long
Indicates the index of the current Frame object within the Frames collection.

Type Description
Long A Long expression that specifies the index of the frame.

The Index property indicates the index of the current Frame object within the Frames
collection. The Count property returns the number of Frame objects in the collection. The
Clear method removes all Frame objects. The Remove method removes a specified frame.
The Visible property shows or hides a specified frame. You can use the Item and Count
properties to enumerate the frames in the control, as well as for each statement.

property Frame.Nodes as String
Specifies the list of keys for the nodes to show the frame, separated by comma character.
The node's key may ends with (all) to include all child, assistant nodes, with (child) to
include the direct children of the node only, with (assistant) to include the assistant nodes of
the node, with (group) to include all nodes in the same group, or it refers to the node itself.

Type Description

String

A String expression that defines a collection of nodes that
defines the frame. The list contains key of the nodes,
separated by comma character as explained bellow. For
instance "AK1,AK2" or "AK1(child)"

The Nodes property (equivalent with the Nodes parameter of the Add method) defines the
list of nodes to be included in the frame, separated by comma character (,) as follows:

key, indicates the node itself, not including the child, group or assistant nodes. The Key
property of the Node defines the node's key.
key(all), indicates all recursively child, group and assistant nodes of the node with the
giving key.
key(child), indicates all child nodes of the node with the giving key, not including any
sub-child.
key(assistant), indicates all assistant nodes of the node with the giving key. The
AddAssistant property adds an assistant node.
key(group), indicates all group nodes of the node with the giving key. The AddGroup
property adds a new node to the same group.

For instance:

"root(all)" defines all child, assistant, group of the root node, not including the root node
itself.
"root,root(all)" defines all child, assistant, group of the root node, including the root
node too.

Once a new frame is added you can:

specify whether the frame is shown on the back or on the front using the
ShowOnBackground property
define the padding of the frame using the Padding property
define a solid or EBN background color to be displayed on the frame's background,
using the BackColor property of the Frame object
The BackgroundExt property of the Frame object, defines unlimited options to show
any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's

background.
define a different border or pattern to be shown, using the Pattern property

The following screen shot shows a thick black-border around child nodes of the root node (
"root(child)"):

property Frame.Padding(Edge as PaddingEdgeEnum) as Long
Returns or sets a value that indicates the padding of the frame.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be updated / requested

Long A long expression that defines the frame's padding

By default, the Padding(exPaddingAll) property is 4. Use the Padding property of the Frame
to define the padding for specified frame. The Visible property specifies whether the frame
is visible or shown. The ShowOnBackground property indicates whether the frame is
displayed on the back or front of the chart.

Once a new frame is added you can:

specify whether the frame is shown on the back or on the front using the
ShowOnBackground property
define a solid or EBN background color to be displayed on the frame's background,
using the BackColor property of the Frame object
The BackgroundExt property of the Frame object, defines unlimited options to show
any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's
background.
define a different border or pattern to be shown, using the Pattern property

The following screen shot shows the frame with default padding (4):

The following screen shot shows the frame with changed padding (22):

property Frame.Pattern as Pattern
Specifies the pattern of the frame.

Type Description

Pattern A Pattern object that defines the pattern/borders to be
shown on the frame.

By default, the frame shows a thick-black border around the nodes, so the Pattern.Type
property is exPatternFrameThick. The ShowOnBackground property specifies whether the
frame is shown on the back or front of the chart. The Visible property shows or hides a
specified frame.

The following screen shot shows a pattern on the node:

The following screen shot shows a pattern on the frame:

property Frame.ShowOnBackground as Boolean
Shows the frame on the control's background.

Type Description

Boolean A Boolean expression that specifies whether the frame is
shown on the back or front of the chart.

By default, the ShowOnBackground property is True, which indicates that the frame is
shown on the back of the chart. The ShowOnBackground property specifies whether the
frame is shown on the back or front of the chart. The Visible property shows or hides a
specified frame. The Remove method removes a specified frame. The Clear method
removes all Frame objects.

The following sample shows how you can can draw a pattern on a node:

VBA (MS Access, Excell...)

With ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",,"LA").ShowLinkDir = False
 .Add "L1_B",,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
 With .Frames.Add("LB")
 .Padding(-1) = -2
 With .Pattern

 .Type = 6
 .Color = RGB(128,128,128)
 End With
 .ShowOnBackground = False
 End With
End With

VB6

With ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",,"LA").ShowLinkDir = False
 .Add "L1_B",,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
 With .Frames.Add("LB")
 .Padding(exPaddingAll) = -2
 With .Pattern
 .Type = exPatternBDiagonal
 .Color = RGB(128,128,128)
 End With
 .ShowOnBackground = False
 End With
End With

VB.NET

With Exchartview1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)

 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",,"LA").ShowLinkDir = False
 .Add("L1_B",,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 End With
 With .Frames.Add("LB")
 .set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,-2)
 With .Pattern
 .Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternBDiagonal
 .Color = Color.FromArgb(128,128,128)
 End With
 .ShowOnBackground = False
 End With
End With

VB.NET for /COM

With AxChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",,"LA").ShowLinkDir = False
 .Add("L1_B",,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 End With
 With .Frames.Add("LB")
 .Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll) = -2
 With .Pattern
 .Type = EXORGCHARTLib.PatternEnum.exPatternBDiagonal
 .Color = RGB(128,128,128)
 End With

 .ShowOnBackground = False
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutIndentSiblingY(30);
spChartView1->PutShowLinksDir(VARIANT_TRUE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(RGB(0,0,0));
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",vtMissing,"LA",vtMissing,vtMissing)-
>PutShowLinkDir(VARIANT_FALSE);
 var_Nodes->Add(L"L1_B",vtMissing,"LB",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B","LB","LB2",vtMissing,vtMissing);
EXORGCHARTLib::IFramePtr var_Frame = spChartView1->GetFrames()->Add("LB");
 var_Frame->PutPadding(EXORGCHARTLib::exPaddingAll,-2);
 EXORGCHARTLib::IPatternPtr var_Pattern = var_Frame->GetPattern();
 var_Pattern->PutType(EXORGCHARTLib::exPatternBDiagonal);
 var_Pattern->PutColor(RGB(128,128,128));
 var_Frame->PutShowOnBackground(VARIANT_FALSE);

C++ Builder

ChartView1->IndentSiblingY = 30;

ChartView1->ShowLinksDir = true;
ChartView1->PenWidthLink = 2;
ChartView1->LinkColor = RGB(0,0,0);
ChartView1->AntiAliasing = true;
Exorgchartlib_tlb::INodesPtr var_Nodes = ChartView1->Nodes;
 var_Nodes->Add(L"L1_A",TNoParam(),TVariant("LA"),TNoParam(),TNoParam())-
>ShowLinkDir = false;
 var_Nodes->Add(L"L1_B",TNoParam(),TVariant("LB"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L2_A",TVariant("LA"),TVariant("LA2"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L2_B",TVariant("LB"),TVariant("LB2"),TNoParam(),TNoParam());
Exorgchartlib_tlb::IFramePtr var_Frame = ChartView1->Frames->Add(TVariant("LB"));
 var_Frame->set_Padding(Exorgchartlib_tlb::PaddingEdgeEnum::exPaddingAll,-2);
 Exorgchartlib_tlb::IPatternPtr var_Pattern = var_Frame->Pattern;
 var_Pattern->Type = Exorgchartlib_tlb::PatternEnum::exPatternBDiagonal;
 var_Pattern->Color = RGB(128,128,128);
 var_Frame->ShowOnBackground = false;

C#

exchartview1.IndentSiblingY = 30;
exchartview1.ShowLinksDir = true;
exchartview1.PenWidthLink = 2;
exchartview1.LinkColor = Color.FromArgb(0,0,0);
exchartview1.AntiAliasing = true;
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("L1_A",null,"LA",null,null).ShowLinkDir = false;
 var_Nodes.Add("L1_B",null,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);
exontrol.EXORGCHARTLib.Frame var_Frame = exchartview1.Frames.Add("LB");

var_Frame.set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,-2);

 exontrol.EXORGCHARTLib.Pattern var_Pattern = var_Frame.Pattern;
 var_Pattern.Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternBDiagonal;
 var_Pattern.Color = Color.FromArgb(128,128,128);

 var_Frame.ShowOnBackground = false;

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ChartView1.IndentSiblingY = 30;
 ChartView1.ShowLinksDir = true;
 ChartView1.PenWidthLink = 2;
 ChartView1.LinkColor = 0;
 ChartView1.AntiAliasing = true;
 var var_Nodes = ChartView1.Nodes;
 var_Nodes.Add("L1_A",null,"LA",null,null).ShowLinkDir = false;
 var_Nodes.Add("L1_B",null,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);
 var var_Frame = ChartView1.Frames.Add("LB");
 var_Frame.Padding(-1) = -2;
 var var_Pattern = var_Frame.Pattern;
 var_Pattern.Type = 6;
 var_Pattern.Color = 8421504;
 var_Frame.ShowOnBackground = false;
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",,"LA").ShowLinkDir = False
 .Add "L1_B",,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
 With .Frames.Add("LB")
 .Padding(-1) = -2
 With .Pattern
 .Type = 6
 .Color = RGB(128,128,128)
 End With
 .ShowOnBackground = False
 End With
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axChartView1.IndentSiblingY = 30;
axChartView1.ShowLinksDir = true;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;

 var_Nodes.Add("L1_A",null,"LA",null,null).ShowLinkDir = false;
 var_Nodes.Add("L1_B",null,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);
EXORGCHARTLib.Frame var_Frame = axChartView1.Frames.Add("LB");
 var_Frame.set_Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,-2);
 EXORGCHARTLib.Pattern var_Pattern = var_Frame.Pattern;
 var_Pattern.Type = EXORGCHARTLib.PatternEnum.exPatternBDiagonal;
 var_Pattern.Color =
(uint)ColorTranslator.ToWin32(Color.FromArgb(128,128,128));
 var_Frame.ShowOnBackground = false;

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Frame,com_Node,com_Nodes,com_Pattern;
 anytype var_Frame,var_Node,var_Nodes,var_Pattern;
 ;

 super();

 exchartview1.IndentSiblingY(30);
 exchartview1.ShowLinksDir(true);
 exchartview1.PenWidthLink(2);
 exchartview1.LinkColor(WinApi::RGB2int(0,0,0));
 exchartview1.AntiAliasing(true);
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 var_Node = COM::createFromObject(com_Nodes.Add("L1_A",,"LA")); com_Node
= var_Node;
 com_Node.ShowLinkDir(false);
 com_Nodes.Add("L1_B",,"LB");
 com_Nodes.Add("L2_A","LA","LA2");
 com_Nodes.Add("L2_B","LB","LB2");
 var_Frame = COM::createFromObject(exchartview1.Frames()).Add("LB");
com_Frame = var_Frame;

 com_Frame.Padding(-1/*exPaddingAll*/,-2);
 var_Pattern = com_Frame.Pattern(); com_Pattern = var_Pattern;
 com_Pattern.Type(6/*exPatternBDiagonal*/);
 com_Pattern.Color(WinApi::RGB2int(128,128,128));
 com_Frame.ShowOnBackground(false);
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1_A',Nil,'LA',Nil,Nil).ShowLinkDir := False;
 Add('L1_B',Nil,'LB',Nil,Nil);
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B','LB','LB2',Nil,Nil);
 end;
 with Frames.Add('LB') do
 begin
 Padding[EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll] := -2;
 with Pattern do
 begin
 Type := EXORGCHARTLib.PatternEnum.exPatternBDiagonal;
 Color := $808080;
 end;
 ShowOnBackground := False;
 end;
end

Delphi (standard)

with ChartView1 do

begin
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := RGB(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1_A',Null,'LA',Null,Null).ShowLinkDir := False;
 Add('L1_B',Null,'LB',Null,Null);
 Add('L2_A','LA','LA2',Null,Null);
 Add('L2_B','LB','LB2',Null,Null);
 end;
 with Frames.Add('LB') do
 begin
 Padding[EXORGCHARTLib_TLB.exPaddingAll] := -2;
 with Pattern do
 begin
 Type := EXORGCHARTLib_TLB.exPatternBDiagonal;
 Color := $808080;
 end;
 ShowOnBackground := False;
 end;
end

VFP

with thisform.ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = .T.
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = .T.
 with .Nodes
 .Add("L1_A",Null,"LA").ShowLinkDir = .F.
 .Add("L1_B",Null,"LB")
 .Add("L2_A","LA","LA2")

 .Add("L2_B","LB","LB2")
 endwith
 with .Frames.Add("LB")
 .Padding(-1) = -2
 with .Pattern
 .Type = 6
 .Color = RGB(128,128,128)
 endwith
 .ShowOnBackground = .F.
 endwith
endwith

dBASE Plus

local oChartView,var_Frame,var_Node,var_Nodes,var_Pattern

oChartView = form.EXORGCHARTACTIVEXCONTROL1.nativeObject
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = true
oChartView.PenWidthLink = 2
oChartView.LinkColor = 0x0
oChartView.AntiAliasing = true
var_Nodes = oChartView.Nodes
 // var_Nodes.Add("L1_A",null,"LA").ShowLinkDir = false
 var_Node = var_Nodes.Add("L1_A",null,"LA")
 with (oChartView)
 TemplateDef = [dim var_Node]
 TemplateDef = var_Node
 Template = [var_Node.ShowLinkDir = False]
 endwith
 var_Nodes.Add("L1_B",null,"LB")
 var_Nodes.Add("L2_A","LA","LA2")
 var_Nodes.Add("L2_B","LB","LB2")
var_Frame = oChartView.Frames.Add("LB")
 // var_Frame.Padding(-1) = -2
 with (oChartView)
 TemplateDef = [dim var_Frame]

 TemplateDef = var_Frame
 Template = [var_Frame.Padding(-1) = -2]
 endwith
 var_Pattern = var_Frame.Pattern
 var_Pattern.Type = 6
 var_Pattern.Color = 0x808080
 var_Frame.ShowOnBackground = false

XBasic (Alpha Five)

Dim oChartView as P
Dim var_Frame as P
Dim var_Node as local
Dim var_Nodes as P
Dim var_Pattern as P

oChartView = topparent:CONTROL_ACTIVEX1.activex
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = .t.
oChartView.PenWidthLink = 2
oChartView.LinkColor = 0
oChartView.AntiAliasing = .t.
var_Nodes = oChartView.Nodes
 ' var_Nodes.Add("L1_A",,"LA").ShowLinkDir = .f.
 var_Node = var_Nodes.Add("L1_A",,"LA")
 oChartView.TemplateDef = "dim var_Node"
 oChartView.TemplateDef = var_Node
 oChartView.Template = "var_Node.ShowLinkDir = False"

 var_Nodes.Add("L1_B",,"LB")
 var_Nodes.Add("L2_A","LA","LA2")
 var_Nodes.Add("L2_B","LB","LB2")
var_Frame = oChartView.Frames.Add("LB")
 ' var_Frame.Padding(-1) = -2
 oChartView.TemplateDef = "dim var_Frame"
 oChartView.TemplateDef = var_Frame

 oChartView.Template = "var_Frame.Padding(-1) = -2"

 var_Pattern = var_Frame.Pattern
 var_Pattern.Type = 6
 var_Pattern.Color = 8421504
 var_Frame.ShowOnBackground = .f.

Visual Objects

local var_Frame as IFrame
local var_Nodes as INodes
local var_Pattern as IPattern

oDCOCX_Exontrol1:IndentSiblingY := 30
oDCOCX_Exontrol1:ShowLinksDir := true
oDCOCX_Exontrol1:PenWidthLink := 2
oDCOCX_Exontrol1:LinkColor := RGB(0,0,0)
oDCOCX_Exontrol1:AntiAliasing := true
var_Nodes := oDCOCX_Exontrol1:Nodes
 var_Nodes:Add("L1_A",nil,"LA",nil,nil):ShowLinkDir := false
 var_Nodes:Add("L1_B",nil,"LB",nil,nil)
 var_Nodes:Add("L2_A","LA","LA2",nil,nil)
 var_Nodes:Add("L2_B","LB","LB2",nil,nil)
var_Frame := oDCOCX_Exontrol1:Frames:Add("LB")
 var_Frame:[Padding,exPaddingAll] := -2
 var_Pattern := var_Frame:Pattern
 var_Pattern:Type := exPatternBDiagonal
 var_Pattern:Color := RGB(128,128,128)
 var_Frame:ShowOnBackground := false

PowerBuilder

OleObject oChartView,var_Frame,var_Nodes,var_Pattern

oChartView = ole_1.Object
oChartView.IndentSiblingY = 30

oChartView.ShowLinksDir = true
oChartView.PenWidthLink = 2
oChartView.LinkColor = RGB(0,0,0)
oChartView.AntiAliasing = true
var_Nodes = oChartView.Nodes
 var_Nodes.Add("L1_A",,"LA").ShowLinkDir = false
 var_Nodes.Add("L1_B",,"LB")
 var_Nodes.Add("L2_A","LA","LA2")
 var_Nodes.Add("L2_B","LB","LB2")
var_Frame = oChartView.Frames.Add("LB")
 var_Frame.Padding(-1,-2)
 var_Pattern = var_Frame.Pattern
 var_Pattern.Type = 6
 var_Pattern.Color = RGB(128,128,128)
 var_Frame.ShowOnBackground = false

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComIndentSiblingY to 30
 Set ComShowLinksDir to True
 Set ComPenWidthLink to 2
 Set ComLinkColor to (RGB(0,0,0))
 Set ComAntiAliasing to True
 Variant voNodes
 Get ComNodes to voNodes
 Handle hoNodes
 Get Create (RefClass(cComNodes)) to hoNodes
 Set pvComObject of hoNodes to voNodes
 Variant voNode
 Get ComAdd of hoNodes "L1_A" "LA" Nothing Nothing to voNode
 Handle hoNode
 Get Create (RefClass(cComNode)) to hoNode
 Set pvComObject of hoNode to voNode
 Set ComShowLinkDir of hoNode to False

 Send Destroy to hoNode
 Get ComAdd of hoNodes "L1_B" "LB" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L2_A" "LA" "LA2" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L2_B" "LB" "LB2" Nothing Nothing to Nothing
 Send Destroy to hoNodes
 Variant voFrames
 Get ComFrames to voFrames
 Handle hoFrames
 Get Create (RefClass(cComFrames)) to hoFrames
 Set pvComObject of hoFrames to voFrames
 Variant voFrame
 Get ComAdd of hoFrames "LB" to voFrame
 Handle hoFrame
 Get Create (RefClass(cComFrame)) to hoFrame
 Set pvComObject of hoFrame to voFrame
 Set ComPadding of hoFrame OLEexPaddingAll to -2
 Variant voPattern
 Get ComPattern of hoFrame to voPattern
 Handle hoPattern
 Get Create (RefClass(cComPattern)) to hoPattern
 Set pvComObject of hoPattern to voPattern
 Set ComType of hoPattern to OLEexPatternBDiagonal
 Set ComColor of hoPattern to (RGB(128,128,128))
 Send Destroy to hoPattern
 Set ComShowOnBackground of hoFrame to False
 Send Destroy to hoFrame
 Send Destroy to hoFrames
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL

 LOCAL oChartView
 LOCAL oFrame
 LOCAL oNodes
 LOCAL oPattern

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oChartView := XbpActiveXControl():new(oForm:drawingArea)
 oChartView:CLSID := "Exontrol.ChartView.1" /*{F4DFE455-01FE-420E-A088-
64346DCC3791}*/
 oChartView:create(,, {10,60},{610,370})

 oChartView:IndentSiblingY := 30
 oChartView:ShowLinksDir := .T.
 oChartView:PenWidthLink := 2
 oChartView:SetProperty("LinkColor",AutomationTranslateColor(
GraMakeRGBColor ({ 0,0,0 }) , .F.))
 oChartView:AntiAliasing := .T.
 oNodes := oChartView:Nodes()
 oNodes:Add("L1_A",,"LA"):ShowLinkDir := .F.
 oNodes:Add("L1_B",,"LB")
 oNodes:Add("L2_A","LA","LA2")
 oNodes:Add("L2_B","LB","LB2")
 oFrame := oChartView:Frames():Add("LB")
 oFrame:SetProperty("Padding",-1/*exPaddingAll*/,-2)
 oPattern := oFrame:Pattern()
 oPattern:Type := 6/*exPatternBDiagonal*/
 oPattern:SetProperty("Color",AutomationTranslateColor(GraMakeRGBColor
({ 128,128,128 }) , .F.))
 oFrame:ShowOnBackground := .F.

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)

 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Frame.Visible as Boolean
Shows or hides the frame.

Type Description

Boolean A Boolean expression that specifies whether the frame is
shown or hidden.

By default, the Visible property is True, which indicates that the frame is shown / visible by
default. The Visible property shows or hides a specified frame. The ShowOnBackground
property specifies whether the frame is shown on the back or front of the chart. The
Remove method removes a specified frame. The Clear method removes all Frame objects.

Frames object
The Frames object holds a collection of Frame objects. The Frames property of the control
gives access to the Frames collection.

The following screen shot shows different frames on nodes:

A Frame is defined by an union of nodes, and can:

specify whether the frame is shown on the back or on the front using the
ShowOnBackground property
define the padding of the frame using the Padding property
define a solid or EBN background color to be displayed on the frame's background,
using the BackColor property of the Frame object
The BackgroundExt property of the Frame object, defines unlimited options to show
any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's
background.
define a different border or pattern to be shown, using the Pattern property

The Frames collection supports the following properties and methods:

Name Description

Add Adds an Frame object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of elements in the collection.

Item Returns a specific Frame of the Frames collection, giving
its index.

Remove Removes a specific member from the Frames collection,
giving its index or reference.

method Frames.Add ([Nodes as Variant])
Adds an Frame object to the collection and returns a reference to the newly created object.

Type Description

Nodes as Variant

A String expression that defines a collection of nodes that
defines the frame. The list contains key of the nodes,
separated by comma character as explained bellow. For
instance "AK1,AK2" or "AK1(child)"

Return Description

Frame A Frame object that holds information about frame's
drawing options.

The Add method adds a new frame to the chart. A frame is defined by a union of nodes.
The Nodes property gives access to the chart's nodes collection. By default, the frame
shows a thick black-border around giving nodes. The Visible property specifies whether the
frame is visible or shown. The ShowOnBackground property indicates whether the frame is
displayed on the back or front of the chart.

The Nodes parameter (equivalent with the Nodes property of the Frame object) of the Add
method defines the list of nodes to be included in the frame, separated by comma
character (,) as follows:

key, indicates the node itself, not including the child, group or assistant nodes. The Key
property of the Node defines the node's key.
key(all), indicates all recursively child, group and assistant nodes of the node with the
giving key.
key(child), indicates all child nodes of the node with the giving key, not including any
sub-child.
key(assistant), indicates all assistant nodes of the node with the giving key. The
AddAssistant property adds an assistant node.
key(group), indicates all group nodes of the node with the giving key. The AddGroup
property adds a new node to the same group.

For instance:

"root(all)" defines all child, assistant, group of the root node, not including the root node
itself.
"root,root(all)" defines all child, assistant, group of the root node, including the root
node too.

Once a new frame is added you can:

specify whether the frame is shown on the back or on the front using the
ShowOnBackground property
define the padding of the frame using the Padding property
define a solid or EBN background color to be displayed on the frame's background,
using the BackColor property of the Frame object
The BackgroundExt property of the Frame object, defines unlimited options to show
any HTML text, images, colors, EBNs, patterns, borders anywhere on the frame's
background.
define a different border or pattern to be shown, using the Pattern property

The following screen shot shows a thick black-border around child nodes of the root node (
"root(child)"):

The following screen shot shows an EBN object around child nodes of the root node (
"root(child)"):

The following screen shot shows a pattern + border around child nodes of the root node (
"root(child)"):

The following screen shot shows a a text around child nodes of the root node ("root(child)"
):

The following sample shows how you can visually group nodes that have the same parent
but also have other siblings:

VBA (MS Access, Excell...)

With ChartView1
 .BeginUpdate
 With .Root
 .AddAssistant "Assistant 1"
 .AddAssistant "Assistant 2"
 End With
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2").Pattern
 .Type = 261 ' PatternEnum.exPatternFrame Or PatternEnum.exPatternFDiagonal

 .Color = RGB(190,190,190)
 .FrameColor = RGB(128,128,128)
 End With
 .EndUpdate
End With

VB6

With ChartView1
 .BeginUpdate
 With .Root
 .AddAssistant "Assistant 1"
 .AddAssistant "Assistant 2"
 End With
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2").Pattern
 .Type = PatternEnum.exPatternFrame Or PatternEnum.exPatternFDiagonal
 .Color = RGB(190,190,190)
 .FrameColor = RGB(128,128,128)
 End With
 .EndUpdate
End With

VB.NET

With Exchartview1
 .BeginUpdate()
 With .Root
 .AddAssistant("Assistant 1")
 .AddAssistant("Assistant 2")
 End With
 With .Nodes

 .Add("Child 1",,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 End With
 With .Frames.Add("AK1,AK2").Pattern
 .Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternFrame Or
exontrol.EXORGCHARTLib.PatternEnum.exPatternFDiagonal
 .Color = Color.FromArgb(190,190,190)
 .FrameColor = Color.FromArgb(128,128,128)
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxChartView1
 .BeginUpdate()
 With .Root
 .AddAssistant("Assistant 1")
 .AddAssistant("Assistant 2")
 End With
 With .Nodes
 .Add("Child 1",,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 End With
 With .Frames.Add("AK1,AK2").Pattern
 .Type = EXORGCHARTLib.PatternEnum.exPatternFrame Or
EXORGCHARTLib.PatternEnum.exPatternFDiagonal
 .Color = RGB(190,190,190)
 .FrameColor = RGB(128,128,128)
 End With
 .EndUpdate()

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->BeginUpdate();
EXORGCHARTLib::INodePtr var_Node = spChartView1->GetRoot();
 var_Node->AddAssistant(L"Assistant 1",vtMissing,vtMissing);
 var_Node->AddAssistant(L"Assistant 2",vtMissing,vtMissing);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"Child 1",vtMissing,"1234",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 1","1234","AK1",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 2","1234","AK2",vtMissing,vtMissing);
 var_Nodes->Add(L"Sub 3","1234",vtMissing,vtMissing,vtMissing);
 var_Nodes->Add(L"Child 2.1",vtMissing,vtMissing,vtMissing,vtMissing)-
>AddGroup(L"Child 2.2",vtMissing,vtMissing);
EXORGCHARTLib::IPatternPtr var_Pattern = spChartView1->GetFrames()-
>Add("AK1,AK2")->GetPattern();
 var_Pattern-
>PutType(EXORGCHARTLib::PatternEnum(EXORGCHARTLib::exPatternFrame |
EXORGCHARTLib::exPatternFDiagonal));
 var_Pattern->PutColor(RGB(190,190,190));
 var_Pattern->PutFrameColor(RGB(128,128,128));
spChartView1->EndUpdate();

C++ Builder

ChartView1->BeginUpdate();

Exorgchartlib_tlb::INodePtr var_Node = ChartView1->Root;
 var_Node->AddAssistant(L"Assistant 1",TNoParam(),TNoParam());
 var_Node->AddAssistant(L"Assistant 2",TNoParam(),TNoParam());
Exorgchartlib_tlb::INodesPtr var_Nodes = ChartView1->Nodes;
 var_Nodes->Add(L"Child
1",TNoParam(),TVariant("1234"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub
1",TVariant("1234"),TVariant("AK1"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub
2",TVariant("1234"),TVariant("AK2"),TNoParam(),TNoParam());
 var_Nodes->Add(L"Sub 3",TVariant("1234"),TNoParam(),TNoParam(),TNoParam());
 var_Nodes->Add(L"Child
2.1",TNoParam(),TNoParam(),TNoParam(),TNoParam())->AddGroup(L"Child
2.2",TNoParam(),TNoParam());
Exorgchartlib_tlb::IPatternPtr var_Pattern = ChartView1->Frames-
>Add(TVariant("AK1,AK2"))->Pattern;
 var_Pattern->Type = Exorgchartlib_tlb::PatternEnum::exPatternFrame |
Exorgchartlib_tlb::PatternEnum::exPatternFDiagonal;
 var_Pattern->Color = RGB(190,190,190);
 var_Pattern->FrameColor = RGB(128,128,128);
ChartView1->EndUpdate();

C#

exchartview1.BeginUpdate();
exontrol.EXORGCHARTLib.Node var_Node = exchartview1.Root;
 var_Node.AddAssistant("Assistant 1",null,null);
 var_Node.AddAssistant("Assistant 2",null,null);
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
exontrol.EXORGCHARTLib.Pattern var_Pattern =

exchartview1.Frames.Add("AK1,AK2").Pattern;
 var_Pattern.Type = exontrol.EXORGCHARTLib.PatternEnum.exPatternFrame |
exontrol.EXORGCHARTLib.PatternEnum.exPatternFDiagonal;
 var_Pattern.Color = Color.FromArgb(190,190,190);
 var_Pattern.FrameColor = Color.FromArgb(128,128,128);
exchartview1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ChartView1.BeginUpdate();
 var var_Node = ChartView1.Root;
 var_Node.AddAssistant("Assistant 1",null,null);
 var_Node.AddAssistant("Assistant 2",null,null);
 var var_Nodes = ChartView1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
 var var_Pattern = ChartView1.Frames.Add("AK1,AK2").Pattern;
 var_Pattern.Type = 261;
 var_Pattern.Color = 12500670;
 var_Pattern.FrameColor = 8421504;
 ChartView1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ChartView1
 .BeginUpdate
 With .Root
 .AddAssistant "Assistant 1"
 .AddAssistant "Assistant 2"
 End With
 With .Nodes
 .Add "Child 1",,"1234"
 .Add "Sub 1","1234","AK1"
 .Add "Sub 2","1234","AK2"
 .Add "Sub 3","1234"
 .Add("Child 2.1").AddGroup "Child 2.2"
 End With
 With .Frames.Add("AK1,AK2").Pattern
 .Type = 261 ' PatternEnum.exPatternFrame Or
PatternEnum.exPatternFDiagonal
 .Color = RGB(190,190,190)
 .FrameColor = RGB(128,128,128)
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axChartView1.BeginUpdate();
EXORGCHARTLib.Node var_Node = axChartView1.Root;

 var_Node.AddAssistant("Assistant 1",null,null);
 var_Node.AddAssistant("Assistant 2",null,null);
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("Child 1",null,"1234",null,null);
 var_Nodes.Add("Sub 1","1234","AK1",null,null);
 var_Nodes.Add("Sub 2","1234","AK2",null,null);
 var_Nodes.Add("Sub 3","1234",null,null,null);
 var_Nodes.Add("Child 2.1",null,null,null,null).AddGroup("Child
2.2",null,null);
EXORGCHARTLib.Pattern var_Pattern =
axChartView1.Frames.Add("AK1,AK2").Pattern;
 var_Pattern.Type = EXORGCHARTLib.PatternEnum.exPatternFrame |
EXORGCHARTLib.PatternEnum.exPatternFDiagonal;
 var_Pattern.Color = (uint)ColorTranslator.ToWin32(Color.FromArgb(190,190,190));
 var_Pattern.FrameColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(128,128,128));
axChartView1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Frame,com_Node,com_Node1,com_Nodes,com_Pattern;
 anytype var_Frame,var_Node,var_Node1,var_Nodes,var_Pattern;
 ;

 super();

 exchartview1.BeginUpdate();
 var_Node = exchartview1.Root(); com_Node = var_Node;
 com_Node.AddAssistant("Assistant 1");
 com_Node.AddAssistant("Assistant 2");
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 com_Nodes.Add("Child 1",,"1234");
 com_Nodes.Add("Sub 1","1234","AK1");
 com_Nodes.Add("Sub 2","1234","AK2");

 com_Nodes.Add("Sub 3","1234");
 var_Node1 = COM::createFromObject(com_Nodes.Add("Child 2.1"));
com_Node1 = var_Node1;
 com_Node1.AddGroup("Child 2.2");
 var_Frame = COM::createFromObject(exchartview1.Frames()).Add("AK1,AK2");
com_Frame = var_Frame;
 var_Pattern = com_Frame.Pattern(); com_Pattern = var_Pattern;
 com_Pattern.Type(261/*exPatternFrame | exPatternFDiagonal*/);
 com_Pattern.Color(WinApi::RGB2int(190,190,190));
 com_Pattern.FrameColor(WinApi::RGB2int(128,128,128));
 exchartview1.EndUpdate();
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 BeginUpdate();
 with Root do
 begin
 AddAssistant('Assistant 1',Nil,Nil);
 AddAssistant('Assistant 2',Nil,Nil);
 end;
 with Nodes do
 begin
 Add('Child 1',Nil,'1234',Nil,Nil);
 Add('Sub 1','1234','AK1',Nil,Nil);
 Add('Sub 2','1234','AK2',Nil,Nil);
 Add('Sub 3','1234',Nil,Nil,Nil);
 Add('Child 2.1',Nil,Nil,Nil,Nil).AddGroup('Child 2.2',Nil,Nil);
 end;
 with Frames.Add('AK1,AK2').Pattern do
 begin
 Type := Integer(EXORGCHARTLib.PatternEnum.exPatternFrame) Or
Integer(EXORGCHARTLib.PatternEnum.exPatternFDiagonal);
 Color := $bebebe;
 FrameColor := $808080;

 end;
 EndUpdate();
end

Delphi (standard)

with ChartView1 do
begin
 BeginUpdate();
 with Root do
 begin
 AddAssistant('Assistant 1',Null,Null);
 AddAssistant('Assistant 2',Null,Null);
 end;
 with Nodes do
 begin
 Add('Child 1',Null,'1234',Null,Null);
 Add('Sub 1','1234','AK1',Null,Null);
 Add('Sub 2','1234','AK2',Null,Null);
 Add('Sub 3','1234',Null,Null,Null);
 Add('Child 2.1',Null,Null,Null,Null).AddGroup('Child
2.2',Null,Null);
 end;
 with Frames.Add('AK1,AK2').Pattern do
 begin
 Type := Integer(EXORGCHARTLib_TLB.exPatternFrame) Or
Integer(EXORGCHARTLib_TLB.exPatternFDiagonal);
 Color := $bebebe;
 FrameColor := $808080;
 end;
 EndUpdate();
end

VFP

with thisform.ChartView1
 .BeginUpdate
 with .Root

 .AddAssistant("Assistant 1")
 .AddAssistant("Assistant 2")
 endwith
 with .Nodes
 .Add("Child 1",Null,"1234")
 .Add("Sub 1","1234","AK1")
 .Add("Sub 2","1234","AK2")
 .Add("Sub 3","1234")
 .Add("Child 2.1").AddGroup("Child 2.2")
 endwith
 with .Frames.Add("AK1,AK2").Pattern
 .Type = 261 && PatternEnum.exPatternFrame Or
PatternEnum.exPatternFDiagonal
 .Color = RGB(190,190,190)
 .FrameColor = RGB(128,128,128)
 endwith
 .EndUpdate
endwith

dBASE Plus

local oChartView,var_Node,var_Nodes,var_Pattern

oChartView = form.EXORGCHARTACTIVEXCONTROL1.nativeObject
oChartView.BeginUpdate()
var_Node = oChartView.Root
 var_Node.AddAssistant("Assistant 1")
 var_Node.AddAssistant("Assistant 2")
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",null,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Pattern = oChartView.Frames.Add("AK1,AK2").Pattern
 var_Pattern.Type = 261 /*exPatternFrame | exPatternFDiagonal*/
 var_Pattern.Color = 0xbebebe

 var_Pattern.FrameColor = 0x808080
oChartView.EndUpdate()

XBasic (Alpha Five)

Dim oChartView as P
Dim var_Node as P
Dim var_Nodes as P
Dim var_Pattern as P

oChartView = topparent:CONTROL_ACTIVEX1.activex
oChartView.BeginUpdate()
var_Node = oChartView.Root
 var_Node.AddAssistant("Assistant 1")
 var_Node.AddAssistant("Assistant 2")
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Pattern = oChartView.Frames.Add("AK1,AK2").Pattern
 var_Pattern.Type = 261 'exPatternFrame + exPatternFDiagonal
 var_Pattern.Color = 12500670
 var_Pattern.FrameColor = 8421504
oChartView.EndUpdate()

Visual Objects

local var_Node as INode
local var_Nodes as INodes
local var_Pattern as IPattern

oDCOCX_Exontrol1:BeginUpdate()
var_Node := oDCOCX_Exontrol1:Root
 var_Node:AddAssistant("Assistant 1",nil,nil)

 var_Node:AddAssistant("Assistant 2",nil,nil)
var_Nodes := oDCOCX_Exontrol1:Nodes
 var_Nodes:Add("Child 1",nil,"1234",nil,nil)
 var_Nodes:Add("Sub 1","1234","AK1",nil,nil)
 var_Nodes:Add("Sub 2","1234","AK2",nil,nil)
 var_Nodes:Add("Sub 3","1234",nil,nil,nil)
 var_Nodes:Add("Child 2.1",nil,nil,nil,nil):AddGroup("Child
2.2",nil,nil)
var_Pattern := oDCOCX_Exontrol1:Frames:Add("AK1,AK2"):Pattern
 var_Pattern:Type := exPatternFrame | exPatternFDiagonal
 var_Pattern:Color := RGB(190,190,190)
 var_Pattern:FrameColor := RGB(128,128,128)
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oChartView,var_Node,var_Nodes,var_Pattern

oChartView = ole_1.Object
oChartView.BeginUpdate()
var_Node = oChartView.Root
 var_Node.AddAssistant("Assistant 1")
 var_Node.AddAssistant("Assistant 2")
var_Nodes = oChartView.Nodes
 var_Nodes.Add("Child 1",,"1234")
 var_Nodes.Add("Sub 1","1234","AK1")
 var_Nodes.Add("Sub 2","1234","AK2")
 var_Nodes.Add("Sub 3","1234")
 var_Nodes.Add("Child 2.1").AddGroup("Child 2.2")
var_Pattern = oChartView.Frames.Add("AK1,AK2").Pattern
 var_Pattern.Type = 261 /*exPatternFrame | exPatternFDiagonal*/
 var_Pattern.Color = RGB(190,190,190)
 var_Pattern.FrameColor = RGB(128,128,128)
oChartView.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Variant voNode
 Get ComRoot to voNode
 Handle hoNode
 Get Create (RefClass(cComNode)) to hoNode
 Set pvComObject of hoNode to voNode
 Get ComAddAssistant of hoNode "Assistant 1" Nothing Nothing to Nothing
 Get ComAddAssistant of hoNode "Assistant 2" Nothing Nothing to Nothing
 Send Destroy to hoNode
 Variant voNodes
 Get ComNodes to voNodes
 Handle hoNodes
 Get Create (RefClass(cComNodes)) to hoNodes
 Set pvComObject of hoNodes to voNodes
 Get ComAdd of hoNodes "Child 1" "1234" Nothing Nothing to
Nothing
 Get ComAdd of hoNodes "Sub 1" "1234" "AK1" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "Sub 2" "1234" "AK2" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "Sub 3" "1234" Nothing Nothing Nothing to Nothing
 Variant voNode1
 Get ComAdd of hoNodes "Child 2.1" Nothing Nothing Nothing
Nothing to voNode1
 Handle hoNode1
 Get Create (RefClass(cComNode)) to hoNode1
 Set pvComObject of hoNode1 to voNode1
 Get ComAddGroup of hoNode1 "Child 2.2" Nothing Nothing to
Nothing
 Send Destroy to hoNode1
 Send Destroy to hoNodes
 Variant voFrames
 Get ComFrames to voFrames
 Handle hoFrames
 Get Create (RefClass(cComFrames)) to hoFrames
 Set pvComObject of hoFrames to voFrames
 Variant voFrame

 Get ComAdd of hoFrames "AK1,AK2" to voFrame
 Handle hoFrame
 Get Create (RefClass(cComFrame)) to hoFrame
 Set pvComObject of hoFrame to voFrame
 Variant voPattern
 Get ComPattern of hoFrame to voPattern
 Handle hoPattern
 Get Create (RefClass(cComPattern)) to hoPattern
 Set pvComObject of hoPattern to voPattern
 Set ComType of hoPattern to (OLEexPatternFrame +
OLEexPatternFDiagonal)
 Set ComColor of hoPattern to (RGB(190,190,190))
 Set ComFrameColor of hoPattern to (RGB(128,128,128))
 Send Destroy to hoPattern
 Send Destroy to hoFrame
 Send Destroy to hoFrames
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oChartView
 LOCAL oNode
 LOCAL oNodes
 LOCAL oPattern

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oChartView := XbpActiveXControl():new(oForm:drawingArea)
 oChartView:CLSID := "Exontrol.ChartView.1" /*{F4DFE455-01FE-420E-A088-
64346DCC3791}*/
 oChartView:create(,, {10,60},{610,370})

 oChartView:BeginUpdate()
 oNode := oChartView:Root()
 oNode:AddAssistant("Assistant 1")
 oNode:AddAssistant("Assistant 2")
 oNodes := oChartView:Nodes()
 oNodes:Add("Child 1",,"1234")
 oNodes:Add("Sub 1","1234","AK1")
 oNodes:Add("Sub 2","1234","AK2")
 oNodes:Add("Sub 3","1234")
 oNodes:Add("Child 2.1"):AddGroup("Child 2.2")
 oPattern := oChartView:Frames():Add("AK1,AK2"):Pattern()
 oPattern:Type := 261/*exPatternFrame+exPatternFDiagonal*/
 oPattern:SetProperty("Color",AutomationTranslateColor(GraMakeRGBColor (
{ 190,190,190 }) , .F.))
 oPattern:SetProperty("FrameColor",AutomationTranslateColor(
GraMakeRGBColor ({ 128,128,128 }) , .F.))
 oChartView:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Frames.Clear ()
Removes all objects in a collection.

Type Description

The Clear method removes all Frame objects. The Remove method removes a specified
frame. The Visible property shows or hides a specified frame.

property Frames.Count as Long
Returns the number of elements in the collection.

Type Description

Long A Long expression that indicates the number of Frame
objects within the chart.

The Count property returns the number of Frame objects in the collection. The Clear
method removes all Frame objects. The Remove method removes a specified frame. The
Visible property shows or hides a specified frame. You can use the Item and Count
properties to enumerate the frames in the control, as well as for each statement.

property Frames.Item (Index as Variant) as Frame
Returns a specific Frame of the Frames collection, giving its index.

Type Description

Index as Variant A Long expression that defines the index of the frame to
be requested.

Frame A Frame object to be requested.

The Item property retrieves a specified frame object. You can use the Item and Count
properties to enumerate the frames in the control, as well as for each statement. The
Count property returns the number of Frame objects in the collection. The Clear method
removes all Frame objects. The Remove method removes a specified frame. The Visible
property shows or hides a specified frame.

method Frames.Remove (Index as Variant)
Removes a specific member from the Frames collection, giving its index or reference.

Type Description

Index as Variant A Long expression that defines the index of the frame to
be deleted.

The Remove method removes a specified frame. The Clear method removes all Frame
objects. The Visible property shows or hides a specified frame.

Node object
The Node object holds information about a node into the chart. Use the Nodes property to
access the nodes collection. The Node object supports the following properties:

Name Description
AddAssistant Adds an assistant node.
AddGroup Adds a node in the same group.
Alignment Specifies the alignment of the caption within the node.

ArrangeSiblingNodesAs Specifies whether the first child node and its siblings
nodes are arranged vertically or horizontally.

Assistant Retrieves an assistant node by its index.

BackColor Retrieves or sets a value that indicates the node's
background color.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the node's background using the EBN string
format.

BackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

BorderColor Specifies the border's color.
BorderWidth Specifies the width of the border.
Caption Specifies the node's caption.

CaptionSingleLine Specifies if the element's caption is displayed on single or
multiple lines.

ClearAssistants Clears the assistant nodes.
ClearBackColor Clears the node's background color.
ClearForeColor Clears the node's foreground color.
ClearGroup Clears the nodes in the same group.
CountAssistants Specifies the number of assistant nodes.
CountGroup Specifies the number of nodes in the same group.

DrawRoundNode Specifies a value that indicates whether the node has
borders with round corners.

Editable Specifies whether the node's caption is editable.
Enabled Enables or disables the node.

Expanded Sets or returns whether a node in the hierarchy is

expanded.
FirstNode Gets the first child node in the node collection.

FixedHeight Retrieves or sets a value that indicates whether the height
of the node's caption is fixed.

FixedWidth Retrieves or sets a value that indicates whether the width
of the node's caption is fixed.

ForeColor Retrieves or sets a value that indicates the node's
foreground color.

Group Retrieves an node in the group by its index.
HasButton Specifies whether the node displays the +/- buttons.

Image Specifies a value that indicates the index of image being
used.

ImageAlignment Specifies the alignment of the image within the node.

Index Gets the index of the node within the control Nodes
collection.

InflateGroupX Increases the width of the group.
InflateGroupY Increases the height of the group.

IsAssistant Retrieves a value that specifies whether the node is an
assistant.

IsGroup Retrieves a value that specifies whether the node belongs
to a group.

Key Specifies the node's key.
LastNode Gets the last child node.

Left Retrieves or sets a value that indicates whether the
assistant node is on the left side.

LinkCaption Specifies the caption on the node's link.

LinkTo Retrieves or sets a value that indicates the list of nodes
that the source node links to.

LinkToCaption Specifies the HTML caption being shown on a LinkTo line.
LinkToColor Specifies the color to show the LinkTo line.
LinkToPen Specifies the style of the link for linkto line.
LinkToRound Specifies whether the LinkTo line is shown linear or round.
LinkToShowDir Specifies whether the LinkTo line shows the direction.
LinkToWidth Specifies the width to display the LinkTo line.

NextNode Gets the next sibling node.
NodeCount Retrieves the number of child nodes.
Nodes Gets the collection of nodes.

Padding Returns or sets a value that indicates the padding of the
node.

Parent Retrieves or sets the parent node
PenBorderNode Specifies the type of pen used to paint the node's borders.
Picture Retrieves or sets a graphic to be displayed in the node.
PictureAlignment Specifies the alignment of the picture within the node.
PictureAspectRatio Specifies the aspect ratio of the node's picture.
PictureHeight Specifies the height of the node's picture.
PictureWidth Specifies the width of the node's picture.
Position Specifies the position of the node.
PrevNode Gets the previous sibling node.

Remove
Removes recursively the child nodes, the assistant nodes
and all the nodes in the same group, and if possible
remove the node itself.

RemoveAssistant Removes an assistant node.
RemoveGroup Removes a node from the group.
ShadowNode Specifies whether the node has shadow.

ShowLinkDir Shows or hides the direction between the node and its
parent.

ShowLinks Shows or hides the links between node and its child nodes
or its parent, if is it an assistant node.

ShowRoundLink Specifies whether the round links are shown between
parent and child nodes.

ToolTip Specifies the description for the node's tooltip.
ToolTipTitle Specifies the title of the node's tooltip.
UserData Assigns an user extra data to the node.
Width Specifies the maximum width of the node's caption.

method Node.AddAssistant (Caption as String, [Image as Variant],
[Picture as Variant])
Adds an assistant node.

Type Description

Caption as String A string expression that identifies the node's caption. The
Caption supports built-in HTML tags.

Image as Variant A long expression that indicates the index of the icon being
assigned to the node.

Picture as Variant
A string expression that indicates the path to the picture
file being loaded by the node, a IPictureDisp object that
specifies the picture of the node

Return Description
Node A Node object being created.

Use the AddAssistant method to add assistant nodes. An assistant node is displayed
between a child node and its parent. The Node being returned by the AddAssistant method
has the IsAssistant property on True. The control displays the assistant nodes only if the
ShowAssistants property is True. An assistant node is displayed only if the parent node
contains child nodes. By default, the control aligns the assistant nodes like follows: first
assistant node is aligned to the left, the second assistant node is aligned to the right, the
third assistant node to the left and so on. The Left property aligns the node to the left or
right side of the link between child nodes and their parent. Use the Caption property to
change the node's caption at runtime. Use the Assistant property to access the assistant
nodes collection. Use the RemoveAssistant method to remove an assistant node. Use the
PenLinkAssistant property to define the type of the pen used to paint the links between
assistant nodes. Please not that an assistant node is shown between parent and child
node, so if the node is not expanded, or has no childs, the assistant nodes are not shown.

The Caption parameter supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor

about:blank

element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,

width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

In the following image, the red node represents an assistant node:

The following VB sample adds an assistant node to the root object:

Private Sub Form_Load()
 With ChartView1
 .BeginUpdate
 With .Root
 .Caption = "<r><dotline>CObject
CObject is the principal base

class for the Microsoft Foundation Class Library.
<upline><dotline>Methods:<r>4"
 With .AddAssistant("Jhon Frederick
<r>HR Secretary
<fgcolor=0000FF>
<u>hr@exontrol.com</u></fgcolor>
Tel:<r>+40-744-845288", 1)
 Left = False
 End With
 End With
 With .Nodes
 .Add "Child 1"
 .Add "Child 2"
 End With
 .EndUpdate
 End With
End Sub

The following C++ sample adds an assistant node to the root object:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CNode node = m_chartview.GetRoot();
CNode assistant = node.AddAssistant("New Assistant", vtMissing, vtMissing);
assistant.SetBackColor(RGB(0,0,255));
assistant.SetForeColor(RGB(255,255,255));

The following VB.NET sample adds an assistant node to the root object:

With AxChartView1.Root
 With .AddAssistant("New Assistant")
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)

End Function

The following C# sample adds an assistant node to the root object:

EXORGCHARTLib.Node node = axChartView1.Root.AddAssistant("New Assistant", null,
null);
node.ForeColor = ToUInt32(Color.White);
node.BackColor = ToUInt32(Color.Blue);

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample adds an assistant node to the root object:

with thisform.ChartView1.Root
 with .AddAssistant("New Assistant")
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,255)
 endwith
endwith

method Node.AddGroup (Caption as String, [Image as Variant], [Picture
as Variant])
Adds a node in the same group.

Type Description

Caption as String A String expression that indicates the caption of the node
being added. The Caption supports built-in HTML tags.

Image as Variant long expression that indicates the index of the icon being
assigned to the node.

Picture as Variant
A string expression that indicates the path to the picture
file being loaded by the node, a IPictureDisp object that
specifies the picture of the node

Return Description
Node A Node object being created.

Use the AddGroup method to add new nodes in the same group in other words it allows
you to add multiple parents. For instance, you can add new root objects by using the
Root.AddGroup method. The Root2 and Root3 nodes in the following screen shot were
added using the Root.AddGroup. Use the CountGroup property to count the number of
nodes in the same group that belongs to a node. Use the InflateGroupY property to specify
the indentation of the group on vertical axis. Use the IsGroup property to specify whether a
node was added using the AddGroup method.

The Caption parameter supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

about:blank

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Node.Alignment as AlignmentEnum
Specifies the alignment of the caption within the node.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the node.

By default, the Alignment property is LeftAlignment. Use the FixedWidth property to specify
the width of the node. Use the Alignment property to align the caption on the node.

property Node.ArrangeSiblingNodesAs as ArrangeSiblingEnum
Specifies whether the first child node and its siblings nodes are arranged vertically or
horizontally.

Type Description

ArrangeSiblingEnum
An ArrangeSiblingEnum expression that indicates whether
the first child node and its siblings nodes are arranged
vertically or horizontally.

By default, the ArrangeSiblingNodesAs property is exDefault Use the
ArrangeSiblingNodesAs property to align horizontally or as tree the child nodes. Use the
IndentSiblingX property to indent horizontally the sibling nodes. Use the IndentSiblingY
property to indent vertically the sibling nodes. The IndentChild property retrieves or sets the
amount, in pixels, that child nodes are indented relative to their parent nodes, which has
effect if the ArrangeSiglingNodesAs property is exTree. Please notice that the assistant
node is always aligned to the right, no matter of the Left property, if is a child of a node
that has the ArrangeSiblingNodesAs property on exTree.

For instance, in the above screen shot, the Item 1 has its child nodes as a tree, so the
ArrangeSiblingNodesAs for this node is exTree. The Child 7, displays horizontally, its child
nodes from left to right, so its ArrangeSiblingNodesAs property is exHorizontally, and the
Child 16 arranges its child nodes vertically from top to bottom, so its
ArrangeSiblingNodesAs property is exDefault.

The following screen shot shows how the child nodes are arranged when the
ArrangeSiblingNodesAs property is exDefault (see the child nodes for the "Item 1" node) :

The following screen shot shows how the child nodes are arranged when the
ArrangeSiblingNodesAs property is exHorizontally (see the child nodes for the "Item 1"
node) :

property Node.Assistant (Index as Variant) as Node
Retrieves an assistant node by its index.

Type Description

Index as Variant A long expression that indicates the index of assistant
node being accessed

Node An assistant Node being accessed.

Use the Assistant property to access to the assistant nodes collection. Use the
CountAssistants property to get the number of the assistant nodes assigned to the node.
Use the AddAssistant property to add an assistant node. Use the RemoveAssistant method
to remove an assistant node. Use the IsAssistant property to specify whether the node is
an assistant node or a child node.

The following VB sample enumerates the assistant nodes, for the root node:

With ChartView1.Root
 For i = 0 To .CountAssistants - 1
 Debug.Print .Assistant(i).Caption
 Next
End With

The following C++ sample enumerates the assistant nodes, for the root node:

CNode root = m_chartview.GetRoot();
for (long i = 0; i < root.GetCountAssistants(); i++)
{
 CNode assistant = root.GetAssistant(COleVariant(i));
 OutputDebugString(assistant.GetCaption());
}

The following VB.NET sample enumerates the assistant nodes, for the root node:

With AxChartView1.Root
 Dim i As Integer
 For i = 0 To .CountAssistants - 1
 Debug.WriteLine(.Assistant(i).Caption())
 Next
End With

The following C# sample enumerates the assistant nodes, for the root node:

EXORGCHARTLib.Node root = axChartView1.Root;
for (int i = 0; i < root.CountAssistants; i++)
{
 EXORGCHARTLib.Node node = root.get_Assistant(i);
 System.Diagnostics.Debug.WriteLine(node.Caption);
}

The following VFP sample enumerates the assistant nodes, for the root node:

with thisform.ChartView1.Root
 For i = 0 To .CountAssistants - 1
 wait window nowait .Assistant(i).Caption
 Next
endwith

property Node.BackColor as Color
Retrieves or sets a value that indicates the node's background color.

Type Description

Color

A color expression that defines the node's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the BackColor property to specify the node's background color. Use the
BackColorNode property to define the default background color for nodes. Use the
ClearBackColor method to clear the node's background color. Use the BackColor property
to specify the control's background. Use the SelColor property to change the visual
appearance for the selected node. The Background property specifies a background color
or a visual appearance for specific parts in the control. Use the BorderColor property to
assign a different color for the node's border. The BackgroundExt property provides
unlimited options to add more colors, patterns, text, icons, pictures, frames to any node.
Use the Padding property of the Node to define the padding for specified node.

The following VB sample changes the visual appearance for the root node. The sample
uses the " " skin.

With ChartView1
 .VisualAppearance.Add 3, "D:\Temp\ExOrgChart.Help\button.ebn"
 With .Root
 .ForeColor = RGB(255, 255, 255)

 .BackColor = &H3000000
 End With
End With

The following C++ sample changes the visual appearance for the root node:

#include "Appearance.h"
#include "Node.h"
m_chartview.GetVisualAppearance().Add(3,
COleVariant("D:\\Temp\\ExOrgChart.Help\\button.ebn"));
CNode node = m_chartview.GetRoot();
node.SetForeColor(RGB(255,255,255));
node.SetBackColor(0x3000000);

The following VB.NET sample changes the visual appearance for the root node:

With AxChartView1
 .VisualAppearance.Add(3, "D:\Temp\ExOrgChart.Help\button.ebn")
 With .Root
 .ForeColor = RGB(255, 255, 255)
 .BackColor = &H3000000
 End With
End With

The following C# sample changes the visual appearance for the root node:

axChartView1.VisualAppearance.Add(3, "D:\\Temp\\ExOrgChart.Help\\button.ebn");
EXORGCHARTLib.Node node = axChartView1.Root;
node.ForeColor = ToUInt32(Color.FromArgb(255, 255, 255));
node.BackColor = 0x3000000;

where the ToUInt32 function converts a Color expression to an OLE_COLOR expression:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

The following VFP sample changes the visual appearance for the root node:

With thisform.ChartView1
 .VisualAppearance.Add(3, "D:\Temp\ExOrgChart.Help\button.ebn")
 with .Root
 .ForeColor = RGB(255,255,255)
 .BackColor = 50331648
 endwith
EndWith

where the 33554432 in hexa is 0x2000000.

The following VB sample changes the background and foreground color for the selected
node:

Private Sub ChartView1_Select(ByVal OldNode As EXORGCHARTLibCtl.INode, ByVal
NewNode As EXORGCHARTLibCtl.INode)
 If Not (OldNode Is Nothing) Then
 With OldNode
 .ClearBackColor
 .ClearForeColor
 End With
 End If
 With NewNode
 .ForeColor = vbWhite
 .BackColor = vbBlue
 End With
End Sub

The following C++ sample changes the background and foreground color for the selected
node:

void OnSelectChartview1(LPDISPATCH OldNode, LPDISPATCH NewNode)
{
 CNode oldNode(OldNode); oldNode.m_bAutoRelease = FALSE;
 CNode newNode(NewNode); newNode.m_bAutoRelease = FALSE;

 if (oldNode.m_lpDispatch != NULL)
 {
 oldNode.ClearBackColor();
 oldNode.ClearForeColor();
 }
 newNode.SetBackColor(RGB(0,0,128));
 newNode.SetForeColor(RGB(255,255,255));
}

The following VB.NET sample changes the background and foreground color for the
selected node:

Private Sub AxChartView1_SelectEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles AxChartView1.SelectEvent
 If Not (e.oldNode Is Nothing) Then
 With e.oldNode
 .ClearBackColor()
 .ClearForeColor()
 End With
 End If
 With e.newNode
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End Sub

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background and foreground color for the selected
node:

private void axChartView1_SelectEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)
{
 if (e.oldNode != null)
 {
 e.oldNode.ClearBackColor();
 e.oldNode.ClearForeColor();
 }
 e.newNode.BackColor = ToUInt32(Color.Blue);
 e.newNode.ForeColor = ToUInt32(Color.White);
}

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background and foreground color for the selected
node:

*** ActiveX Control Event ***
LPARAMETERS oldnode, newnode

If !isnull(oldnode)
 With oldnode
 .ClearBackColor
 .ClearForeColor
 EndWith
EndIf
With newnode
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,128)

EndWith

property Node.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is empty. Using the BackgroundExt property you
have unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the object's background. For instance, let's say you need to display more
colors on the object's background, or just want to display an additional caption or image
to a specified location on the object's background. The EBN String Format defines the
parts of the EBN to be applied on the object's background. The EBN is a set of UI elements
that are built as a tree where each element is anchored to its parent element. Use the
BackgroundExtValue property to change at runtime any UI property for any part that
composes the EBN String Format. The BackgroundExt property is applied right after setting
the object's backcolor, and before drawing the default object's captions, icons or
pictures. Use the Padding property of the Node to define the padding for specified node.

The following screen shot shows how you can extend the node as follows:

displays the picture to a different place
assign more HTML captions to the node
different type of borders/frames
and so on.

https://exontrol.com/ebn.jsp

Complex samples:

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

https://exontrol.com/exbutton.jsp

The To String field of the EBN Builder defines the EBN String Format that can be used on
BackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"

<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BackgroundExt property such as "left[10%]
(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Node.BackgroundExtValue(Index as IndexExtEnum, Property as
BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part
that composes the EBN String Format. The BackgroundExtValue property has no effect if
the BackgroundExt property is empty (by default). The idea is as follows: first you need
to decide the layout of the UI to put on the object's background, using the

BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant

expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

property Node.BorderColor as Color
Specifies the border's color.

Type Description

Color A Color expression that specifies the color to show the
node's border.

By default, the BorderColor property is 0. Use the BorderColor property to assign a
different color for the node's border. The BackColor property specifies the node's
background color. The BorderWidth property indicates the width of the node's border. The
ShadowNode property property shows or hides the shadow for a specific node. The
ShadowNode property determines whether the control displays a shadow for nodes. Use
the PenBorderNode property to define the type of the pen used to paint the borders for a
specified node. Use the DrawRoundNode property to specify whether the node has a round
border.

property Node.BorderWidth as Long
Specifies the width of the border.

Type Description

Long A Long expression that specifies the width of the node's
border, in pixels.

By default, the BorderWidth property is 1. Use the BorderWidth property to assign a
different size for the node's border. The BackColor property specifies the node's
background color. The BorderWidth property indicates the width of the node's border. The
ShadowNode property property shows or hides the shadow for a specific node. The
ShadowNode property determines whether the control displays a shadow for nodes. Use
the PenBorderNode property to define the type of the pen used to paint the borders for a
specified node. Use the DrawRoundNode property to specify whether the node has a round
border.

property Node.Caption as String
Specifies the node's caption.

Type Description
String A string expression that indicates the caption of the node.

Use the Caption property to specify the node's caption. Use the Image property to assign
an icon to a node. Use the Picture property to assign a custom size picture to a node. Use
the Root property to get the root node. Use the Add method to add a new child node. Use
the BeginUpdate and EndUpdate methods to maintain performance while adding new nodes
to the control. Use the HTML tag to insert icons inside the node's caption. Use the
LinkCaption property to specify a caption on the line that links the parent with the current
node. Use the EditNode to programmatically edit the giving node.

The Caption property supports built-in HTML format. The supported tags are:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

You can define the node's caption when calling the Add method.

With ChartView1.Root
 .Caption = "<r><dotline><fgcolor=0000FF>Andrew Fuller</fgcolor>

<solidline>Title:<r><fgcolor=FF0000>Vice President Sales</fgcolor>

USA, Tacoma, WA, 98401, 908 W. Capital Way
<dotline><upline>Phone:
<r>(206) 555-9482"
End With

The above sample looks like following:

The following C++ sample changes the caption for the root node:

CNode root = m_chartview.GetRoot();
root.SetCaption("new caption");

The following VB.NET sample changes the caption for the root node:

With AxChartView1.Root
 .Caption = "new caption"
End With

The following C# sample changes the caption for the root node:

EXORGCHARTLib.Node root = axChartView1.Root;
root.Caption = "new caption";

The following VFP sample changes the caption for the root node:

with thisform.ChartView1.Root
 .Caption = "new caption"
endwith

property Node.CaptionSingleLine as CaptionSingleLineEnum
Specifies if the element's caption is displayed on single or multiple lines.

Type Description

CaptionSingleLineEnum
A CaptionSingleLineEnum expression that specifies
whether the node's caption is displayed on single or
multiple lines.

By default, the CaptionSingleLine property is exCaptionWordWrap. The CaptionSingleLine
property specifies whether the node's caption is displayed on single or multiple lines. Use
the Caption property to define the label or caption to be displayed on the element's
background. The Images method loads icons to be displayed on the control's surface. The
HTMLPicture property loads and assigns a picture to a key to be used on control's surface.

method Node.ClearAssistants ()
Clears the assistant nodes.

Type Description

The ClearAssistants method clears the assistant nodes collection. Use the AddAssistant
method to add an assistant node. Use the RemoveAssistant method to remove a specific
assistant node. The IsAssistant property determines whether a node is an assistant node or
a child node. Use the Clear method to clear the child nodes. Use the ShowAssistants
property to hide all assistant nodes.

method Node.ClearBackColor ()
Clears the node's background color.

Type Description

Use the ClearBackColor property to clear the node's background color previously defined
by the BackColor property. If the node's background color is cleared using the
ClearBackColor method the node's background color is defined by the BackColorNode
property. Use the BackColor property to specify the control's background.

The following VB sample changes the background and foreground color for the selected
node:

Private Sub ChartView1_Select(ByVal OldNode As EXORGCHARTLibCtl.INode, ByVal
NewNode As EXORGCHARTLibCtl.INode)
 If Not (OldNode Is Nothing) Then
 With OldNode
 .ClearBackColor
 .ClearForeColor
 End With
 End If
 With NewNode
 .ForeColor = vbWhite
 .BackColor = vbBlue
 End With
End Sub

The following C++ sample changes the background and foreground color for the selected
node:

void OnSelectChartview1(LPDISPATCH OldNode, LPDISPATCH NewNode)
{
 CNode oldNode(OldNode); oldNode.m_bAutoRelease = FALSE;
 CNode newNode(NewNode); newNode.m_bAutoRelease = FALSE;

 if (oldNode.m_lpDispatch != NULL)
 {
 oldNode.ClearBackColor();
 oldNode.ClearForeColor();

 }
 newNode.SetBackColor(RGB(0,0,128));
 newNode.SetForeColor(RGB(255,255,255));
}

The following VB.NET sample changes the background and foreground color for the
selected node:

Private Sub AxChartView1_SelectEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles AxChartView1.SelectEvent
 If Not (e.oldNode Is Nothing) Then
 With e.oldNode
 .ClearBackColor()
 .ClearForeColor()
 End With
 End If
 With e.newNode
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End Sub

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background and foreground color for the selected
node:

private void axChartView1_SelectEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)
{
 if (e.oldNode != null)

 {
 e.oldNode.ClearBackColor();
 e.oldNode.ClearForeColor();
 }
 e.newNode.BackColor = ToUInt32(Color.Blue);
 e.newNode.ForeColor = ToUInt32(Color.White);
}

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background and foreground color for the selected
node:

*** ActiveX Control Event ***
LPARAMETERS oldnode, newnode

If !isnull(oldnode)
 With oldnode
 .ClearBackColor
 .ClearForeColor
 EndWith
EndIf
With newnode
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,128)
EndWith

method Node.ClearForeColor ()
Clears the node's foreground color.

Type Description

Use the ClearForeColor property to clear the node's foreground color previously defined by
the ForeColor property. If the node's foreground color is cleared using the ClearForeColor
method the node's foreground color is defined by the ForeColorNode property. Use the
ForeColor property to specify the control's foreground.

The following VB sample changes the background and foreground color for the selected
node:

Private Sub ChartView1_Select(ByVal OldNode As EXORGCHARTLibCtl.INode, ByVal
NewNode As EXORGCHARTLibCtl.INode)
 If Not (OldNode Is Nothing) Then
 With OldNode
 .ClearBackColor
 .ClearForeColor
 End With
 End If
 With NewNode
 .ForeColor = vbWhite
 .BackColor = vbBlue
 End With
End Sub

The following C++ sample changes the background and foreground color for the selected
node:

void OnSelectChartview1(LPDISPATCH OldNode, LPDISPATCH NewNode)
{
 CNode oldNode(OldNode); oldNode.m_bAutoRelease = FALSE;
 CNode newNode(NewNode); newNode.m_bAutoRelease = FALSE;

 if (oldNode.m_lpDispatch != NULL)
 {
 oldNode.ClearBackColor();
 oldNode.ClearForeColor();

 }
 newNode.SetBackColor(RGB(0,0,128));
 newNode.SetForeColor(RGB(255,255,255));
}

The following VB.NET sample changes the background and foreground color for the
selected node:

Private Sub AxChartView1_SelectEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles AxChartView1.SelectEvent
 If Not (e.oldNode Is Nothing) Then
 With e.oldNode
 .ClearBackColor()
 .ClearForeColor()
 End With
 End If
 With e.newNode
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End Sub

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background and foreground color for the selected
node:

private void axChartView1_SelectEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)
{
 if (e.oldNode != null)

 {
 e.oldNode.ClearBackColor();
 e.oldNode.ClearForeColor();
 }
 e.newNode.BackColor = ToUInt32(Color.Blue);
 e.newNode.ForeColor = ToUInt32(Color.White);
}

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background and foreground color for the selected
node:

*** ActiveX Control Event ***
LPARAMETERS oldnode, newnode

If !isnull(oldnode)
 With oldnode
 .ClearBackColor
 .ClearForeColor
 EndWith
EndIf
With newnode
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,128)
EndWith

method Node.ClearGroup ()
Clears the nodes in the same group.

Type Description

property Node.CountAssistants as Long
Specifies the number of assistant nodes.

Type Description

Long A long expression that indicates the number of assistant
nodes.

The CountAssistants property counts the assistant nodes assigned to the node. Use the
AddAssistant method to add an assistant node. Use the RemoveAssistant node to remove
an assistant node. Use the Assistant property to get an assistant node based on its index.
Use the IsAssistant property to specify whether the node is an assistant node or a child
node. Use the ShowAssistants property to hide all assistant nodes.

The following VB sample enumerates the assistant nodes, for the root node:

With ChartView1.Root
 For i = 0 To .CountAssistants - 1
 Debug.Print .Assistant(i).Caption
 Next
End With

The following C++ sample enumerates the assistant nodes, for the root node:

CNode root = m_chartview.GetRoot();
for (long i = 0; i < root.GetCountAssistants(); i++)
{
 CNode assistant = root.GetAssistant(COleVariant(i));
 OutputDebugString(assistant.GetCaption());
}

The following VB.NET sample enumerates the assistant nodes, for the root node:

With AxChartView1.Root
 Dim i As Integer
 For i = 0 To .CountAssistants - 1
 Debug.WriteLine(.Assistant(i).Caption())
 Next
End With

The following C# sample enumerates the assistant nodes, for the root node:

EXORGCHARTLib.Node root = axChartView1.Root;
for (int i = 0; i < root.CountAssistants; i++)
{
 EXORGCHARTLib.Node node = root.get_Assistant(i);
 System.Diagnostics.Debug.WriteLine(node.Caption);
}

The following VFP sample enumerates the assistant nodes, for the root node:

with thisform.ChartView1.Root
 For i = 0 To .CountAssistants - 1
 wait window nowait .Assistant(i).Caption
 Next
endwith

property Node.CountGroup as Long
Specifies the number of nodes in the same group.

Type Description

Long A long expression that specifies the number of nodes in
the same group.

Use the CountGroup and Group properties to access or enumerate the group nodes
collection. Use the AddGroup method to add new nodes in the same group (multiple
parents). Use the InflateGroupY property to specify the indentation of the group on vertical
axis. Use the IsGroup property to specify whether a node was added using the AddGroup
method.

property Node.DrawRoundNode as Boolean
Specifies a value that indicates whether the node has borders with round corners.

Type Description

Boolean A boolean expression that indicates whether the node has
borders with round corners.

Use the DrawRoundNode property to specify whether the node has borders with round
corners. Use the DrawRoundNode property to specify define round corners for all nodes in
the organigram. The ShadowNode property determines whether the control displays a
shadow for nodes. Use the ShadowNode property to hide the shadow for a specific node.
Use the SelColor property to specify the color to mark the selected node. Use the
SelectNode property to specify the selected node. Use the BackColor property to specify
the control's background color. Use the PenBorderNode property to define the type of the
pen used to paint the borders for a specified node. Use the BorderColor property to assign
a different color for the node's border.

property Node.Editable as EditableNodeEnum
Specifies whether the node's caption is editable.

Type Description

EditableNodeEnum An EditableNodeEnum expression that specifies if the
node is editable at runtime.

By default, the Editable property is exEditable. Use the Editable property to specify
whether a specified node can be edited at runtime. The Caption property indicates the
caption of the node being edited. The AllowEdit property specifies the combination of keys
that allows the user to edit a node. The LayoutStartChanging(exEditNode) event notifies
your application once the user starts editing the node's caption. The
LayoutEndChanging(exEditNode) event notifies your application once of the edit operation
ends. The Background(exEditNodeBackColor)/Background(exEditNodeForeColor) property
specifies the background/foreground color of the edit field being displayed on the node
while editing. Use the EditNode to programmatically edit the giving node.

property Node.Enabled as Boolean
Enables or disables the node.

Type Description

Boolean A boolean expression that indicates whether the node is
enabled or disabled.

By default, the node is enabled. Use the Enabled property to disable the node. If a node is
disabled, it is not selectable. A disabled node shows grayed the node's caption and the
node's icon. Use the Caption property to specify the caption of the node. Use the Image
property to assign an icon to a node. Use the Picture property to assign a custom size
picture to a node. Use the Enabled property to disable the control. Use the BackColor
property to specify the node's background color.

property Node.Expanded as Boolean
Sets or returns whether a node in the hierarchy is expanded.

Type Description

Boolean A boolean expression that indicates whether a node is
expanded or collapsed.

By default, all nodes are expanded. The control fires the Expand event when the user
expands or collapses a node. Use the Expanded property to expand nodes by code. Use
the HasButtons property to display the +/- buttons for parent nodes. Use the
ExpandOnDblClick property to specify whether a node is expanded or collapsed when the
user double clicks it. Use the EnsureVisibleNode method to ensure that a node fits the
control's visible client area. Use the SelectNode property to select a node.

property Node.FirstNode as Node
Gets the first child node in the node collection.

Type Description
Node A Node object that identifies the first child node.

Use the FirstNode property to get the first child node. The FirstNode property gets nothing,
if the node has no child nodes. Use the NextNode property to determine the next sibling
node. Use the NodeCount property to get the number of child nodes. Use the Position
property to change the node's position. Use the LastNode property to determine the last
child node. Use the Nodes property to access the nodes collection. Use the Add method to
add a child node.

The following VB sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLibCtl.Node)
 Dim c As EXORGCHARTLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Caption
 enumRec c
 Set c = c.NextNode
 Wend
End Sub

The following C++ sample enumerates recursively all the child nodes:

void enumRec(CNode* pNode)
{
 if (pNode != NULL)
 {
 CNode child = pNode->GetFirstNode();
 while (child.m_lpDispatch != NULL)
 {
 OutputDebugString(child.GetCaption());
 OutputDebugString("\r\n");
 enumRec(&child);
 child = child.GetNextNode();
 }

 }
}

The following VB.NET sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLib.Node)
 Dim c As EXORGCHARTLib.Node = n.FirstNode
 While Not c Is Nothing
 Debug.Print(c.Caption)
 enumRec(c)
 c = c.NextNode
 End While
End Sub

The following C# sample enumerates recursively all the child nodes:

private void enumRec(EXORGCHARTLib.Node node)
{
 EXORGCHARTLib.Node child = node.FirstNode;
 while (child != null)
 {
 System.Diagnostics.Debug.WriteLine(child.Caption);
 enumRec(child);
 child = child.NextNode;
 }
}

The following VFP sample enumerates recursively all the child nodes:

LPARAMETERS node

local child
child = node.FirstNode
do while (!isnull(child))
 wait window nowait child.Caption
 thisform.enumrec(child)
 child = child.NextNode
enddo

property Node.FixedHeight as Long
Retrieves or sets a value that indicates whether the height of the node's caption is fixed.

Type Description

Long A long expression that defines the fixed width for the
node's caption.

By default, the FixedHeight property is -1. Use the FixedWidth and FixedHeight property to
define the fixed size for the caption of the node. If the FixedHeight property is negative, the
control gets automatically the height of the node, to let the entire caption being visible. Use
the Font property to specify the control's font. Use the FixedWidthHeight and
FixedHeightHeight properties to specify fixed size for all nodes in the organigram. Use the
Padding property of the Node to define the padding for specified node.

property Node.FixedWidth as Long
Retrieves or sets a value that indicates whether the width of the node's caption is fixed.

Type Description

Long A long expression that defines the fixed width of the
caption of the node.

Use the FixedWidth and FixedHeight property to define the fixed size for the caption of the
node. The FixedWidth property is -1. If the FixedWidth property is negative, the control gets
automatically the width of the node, to let the entire caption being visible. In this case, the
Width property defines the maximum width for the node's caption. Use the Font property to
specify the control's font. Use the FixedWidthHeight and FixedHeightHeight properties to
specify fixed size for all nodes in the organigram. Use the Caption property to specify the
node's caption. Use the Padding property of the Node to define the padding for specified
node.

property Node.ForeColor as Color
Retrieves or sets a value that indicates the node's foreground color.

Type Description

Color A color expression that defines the node's foreground
color.

Use the ForeColor property to specify the node's foreground color. Use the ForeColorNode
property to define the default foreground color for nodes. Use the ClearForeColor method
to clear the node's foreground color. Use the ForeColor property to specify the control's
foreground.

The following VB sample changes the background and foreground color for the selected
node:

Private Sub ChartView1_Select(ByVal OldNode As EXORGCHARTLibCtl.INode, ByVal
NewNode As EXORGCHARTLibCtl.INode)
 If Not (OldNode Is Nothing) Then
 With OldNode
 .ClearBackColor
 .ClearForeColor
 End With
 End If
 With NewNode
 .ForeColor = vbWhite
 .BackColor = vbBlue
 End With
End Sub

The following C++ sample changes the background and foreground color for the selected
node:

void OnSelectChartview1(LPDISPATCH OldNode, LPDISPATCH NewNode)
{
 CNode oldNode(OldNode); oldNode.m_bAutoRelease = FALSE;
 CNode newNode(NewNode); newNode.m_bAutoRelease = FALSE;

 if (oldNode.m_lpDispatch != NULL)
 {

 oldNode.ClearBackColor();
 oldNode.ClearForeColor();
 }
 newNode.SetBackColor(RGB(0,0,128));
 newNode.SetForeColor(RGB(255,255,255));
}

The following VB.NET sample changes the background and foreground color for the
selected node:

Private Sub AxChartView1_SelectEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles AxChartView1.SelectEvent
 If Not (e.oldNode Is Nothing) Then
 With e.oldNode
 .ClearBackColor()
 .ClearForeColor()
 End With
 End If
 With e.newNode
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End Sub

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background and foreground color for the selected
node:

private void axChartView1_SelectEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)

{
 if (e.oldNode != null)
 {
 e.oldNode.ClearBackColor();
 e.oldNode.ClearForeColor();
 }
 e.newNode.BackColor = ToUInt32(Color.Blue);
 e.newNode.ForeColor = ToUInt32(Color.White);
}

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background and foreground color for the selected
node:

*** ActiveX Control Event ***
LPARAMETERS oldnode, newnode

If !isnull(oldnode)
 With oldnode
 .ClearBackColor
 .ClearForeColor
 EndWith
EndIf
With newnode
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,128)
EndWith

property Node.Group (Index as Variant) as Node
Retrieves an node in the group by its index.

Type Description

Index as Variant A long expression that specifies the index of the node in
the group being requested.

Node A Node object being requested.

Use the CountGroup and Group properties to access or enumerate the group nodes
collection. Use the AddGroup method to add new nodes in the same group (multiple
parents). Use the InflateGroupY property to specify the indentation of the group on vertical
axis. Use the IsGroup property to specify whether a node was added using the AddGroup
method.

property Node.HasButton as Boolean
Specifies whether the node displays the +/- buttons.

Type Description

Boolean A boolean expression that indicates whether the node
displays the +/- button.

By default, the HasButton property is True. Use the HasButton property to hide the +/-
buttons for a particular node. Use the HasButtons property to display +/- buttons for parent
nodes. The node displays the +/- button only if the node contains child nodes, and the
HasButton property is True. Use the ExpandOnDblClick property to specify whether a node
is expanded or collapsed when the user double clicks it. Use the EnsureVisibleNode method
to ensure that a node fits the control's visible client area. Use the SelectNode property to
select a node. The Expanded property sets or returns whether a node in the hierarchy is
expanded. Use the Parent property to get the parent node. Use the ButtonsAlign property
to align the +/- expand buttons in the node.

property Node.Image as Long
Specifies a value that indicates the index of image being used.

Type Description

Long A long expression that identifies the index of image in the
Images collection that's displayed in the node.

Use the Image property to assign an 16x16 icon to the node. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection. Use the
Picture property to associate a picture to a node. Use the Images property to access the
control's Images collection. You can assign the Image property when the Add method is
called. Use the ImageAlignment property to align the node's icon. Use the Images method
to assign a list of icons at runtime. Use the ReplaceIcon property to add new icons to the
control's images list. Use the HTML tag to insert icons inside the node's caption.

The following VB sample assigns an icon to the root node:

With ChartView1.Root
 .Caption = "<r><dotline><fgcolor=0000FF>Andrew Fuller</fgcolor>

<solidline>Title:<r><fgcolor=FF0000>Vice President Sales</fgcolor>

USA, Tacoma, WA, 98401, 908 W. Capital Way
<dotline><upline>Phone:
<r>(206) 555-9482"
 .Image = 1
 .ImageAlignment = exImageTop
End With

The following C++ sample assigns an icon to the root node:

m_chartview.GetRoot().SetImage(1);

The following VB.NET sample assigns an icon to the root node:

With AxChartView1.Root
 .Image = 1
End With

The following C# sample assigns an icon to the root node:

axChartView1.Root.Image = 1;

The following VFP sample assigns an icon to the root node:

With thisform.ChartView1.Root
 .Image = 1
EndWith

property Node.ImageAlignment as ImageAlignmentEnum
Specifies the alignment of the image within the node.

Type Description

ImageAlignmentEnum An ImageAlignmentEnum expression that indicates the
alignment of the icon in the node.

Use the Image property to assign an 16x16 icon to the node. Use the Images property to
access the control's Images collection. You can assign the Image property when the Add
method is called. The ImageAlignment has no effect if the node has no icon associated. Use
the Picture property to associate a picture to a node. Use the Images method to assign a
list of icons at runtime. Use the ReplaceIcon property to add new icons to the control's
images list.

property Node.Index as Long
Gets the index of the node within the control Nodes collection.

Type Description
Long A long expression that indicates the index of the node.

The Index property retrieves the node's index. The index of the node is allocated by the
control when adding to the Nodes collection using the Add method. A node can be identified
by its index or by its key. Use the Count property to indicate the number of nodes in the
collection. Use the Item property to access a node by its index or by its key. Use the Root
property to access the root node. Use the Key property to access the node's key. The
Position property specifies the position of the node. Use the FirstNode property to get the
first child node. Use the NextNode property to determine the next sibling node. Use the
NodeCount property to get the number of child nodes.

property Node.InflateGroupX as Long
Increases the width of the group.

Type Description

Long A long expression that specifies the number of pixels to
increase the width of the group.

Use the InflateGroupX property to increase the width of the group. Use the AddGroup
method to add new nodes in the same group (multiple parents). Use the CountGroup and
Group properties to access or enumerate the group nodes collection. This property has
effect if the control's Layout property is exLayoutLTR.

property Node.InflateGroupY as Long
Increases the height of the group.

Type Description

Long A long expression that specifies the number of pixels to
increase the height of the group.

Use the InflateGroupY property to increase the height of the group. Use the AddGroup
method to add new nodes in the same group (multiple parents). Use the CountGroup and
Group properties to access or enumerate the group nodes collection. This property has
effect if the control's Layout property is exLayoutTTB.

property Node.IsAssistant as Boolean
Retrieves a value that specifies whether the node is an assistant.

Type Description

Boolean A boolean expression that indicates whether the node is
an assistant node or a child node.

The IsAssistant property gets True, if the node was added using the AddAssistant method,
else it gets False. Use the IsAssistant property to determine whether the node is an
assistant node or a child node. Use the RemoveAssistant method to remove an assistant
node. Use the NodeFromPoint property to retrieve the node from the cursor.

The following VB sample prints the caption of the assistant node from the cursor:

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 If (n.IsAssistant) Then
 Debug.Print n.Caption
 End If
 End If
 End With
End Sub

The following C++ sample prints the caption of the assistant node from the cursor:

void OnMouseMoveChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 if (node.GetIsAssistant())
 OutputDebugString(node.GetCaption());
}

The following VB.NET sample prints the caption of the assistant node from the cursor:

Private Sub AxChartView1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent) Handles
AxChartView1.MouseMoveEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 If (n.IsAssistant) Then
 Debug.WriteLine(n.Caption)
 End If
 End If
 End With
End Sub

The following C# sample prints the caption of the assistant node from the cursor:

private void axChartView1_MouseMoveEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 if (node.IsAssistant)
 System.Diagnostics.Debug.WriteLine(node.Caption);
}

The following VFP sample prints the caption of the assistant node from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)
 If !isnull(n) then
 if (n.IsAssistant)
 wait window nowait n.Caption
 Endif
 EndIf
EndWith

property Node.IsGroup as Boolean
Retrieves a value that specifies whether the node belongs to a group.

Type Description

Boolean A Boolean expression that specifies whether the node is
added using the AddGroup method or not.

Use the IsGroup property to specify whether a node was added using the AddGroup
method. Use the CountGroup and Group properties to access or enumerate the group
nodes collection. Use the AddGroup method to add new nodes in the same group (multiple
parents). Use the InflateGroupY property to specify the indentation of the group on vertical
axis.

property Node.Key as String
Specifies the node's key.

Type Description
String A string expression that identifies the key of the node.

A node can be identified by its index or by its key. Use the Add method to assign a key to a
node. Adding two nodes with the same key fails. Use the Item property to access an item
by its key. Use the Root property to get the root node. Use the Key property to assign a
new key to your root node like in the following VB sample:

With ChartView1.Root
 .Key = "newKeyForRoot"
End With

Assigning a new key for a node fails if the new key is already assigned to another node, or
if it is empty.

The following C++ sample assigns a new key for the root node:

m_chartview.GetRoot().SetKey("newrootkey");

The following VB.NET sample assigns a new key for the root node:

With AxChartView1
 .Root.Key = "newrootkey"
End With

The following C# sample assigns a new key for the root node:

axChartView1.Root.Key = "newrootkey";

The following VFP sample assigns a new key for the root node:

With thisform.ChartView1
 .Root.Key = "newrootkey"
EndWith

property Node.LastNode as Node
Gets the last child node.

Type Description
Node A Node position that specifies the last child node.

The LastNode property determines the last child node. If the node has no child nodes, the
LastNode property gets nothing. Use the FirstNode property to determine the first child
node. Use the NodeCount property to get the number of child nodes. Use the Position
property to change the node's position. Use the Nodes property to access the nodes
collection. Use the Add method to add a child node.

The following VB sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLibCtl.Node)
 Dim c As EXORGCHARTLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Caption
 enumRec c
 Set c = c.NextNode
 Wend
End Sub

The following C++ sample enumerates recursively all the child nodes:

void enumRec(CNode* pNode)
{
 if (pNode != NULL)
 {
 CNode child = pNode->GetFirstNode();
 while (child.m_lpDispatch != NULL)
 {
 OutputDebugString(child.GetCaption());
 OutputDebugString("\r\n");
 enumRec(&child);
 child = child.GetNextNode();
 }
 }

}

The following VB.NET sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLib.Node)
 Dim c As EXORGCHARTLib.Node = n.FirstNode
 While Not c Is Nothing
 Debug.Print(c.Caption)
 enumRec(c)
 c = c.NextNode
 End While
End Sub

The following C# sample enumerates recursively all the child nodes:

private void enumRec(EXORGCHARTLib.Node node)
{
 EXORGCHARTLib.Node child = node.FirstNode;
 while (child != null)
 {
 System.Diagnostics.Debug.WriteLine(child.Caption);
 enumRec(child);
 child = child.NextNode;
 }
}

The following VFP sample enumerates recursively all the child nodes:

LPARAMETERS node

local child
child = node.FirstNode
do while (!isnull(child))
 wait window nowait child.Caption
 thisform.enumrec(child)
 child = child.NextNode
enddo

property Node.Left as Boolean
Retrieves or sets a value that indicates whether the assistant node is on the left side.

Type Description

Boolean A boolean expression that indicates whether the assistant
node is aligned to the left side.

The Left property has effect only for assistant nodes. Use the AddAssistant method to add
assistant nodes. Use the IsAssistant property to determine whether a node is an assistant
node or a child node. Use the Assistant property to access the assistant nodes collection.
Use the RemoveAssistant method to remove an assistant node. Use the Caption property
to change the node's caption at runtime. Please notice that the assistant node is always
aligned to the right, no matter of the Left property, if is a child of a node that has the
ArrangeSiblingNodesAs property on exTree.

property Node.LinkCaption as String
Specifies the caption on the node's link.

Type Description

String A string expression that indicates the caption on the link
between the parent and the current node.

Use the LinkCaption to specify a HTML caption, icon, pictures or anchors on the regular
links. The regular link is shown between the parent and the current node. Use the Caption
property to specify the node's caption. Use the Image property to assign an icon to a node.
Use the Picture property to assign a custom size picture to a node. You can use the
LinkCaptionFrompoint property to get the node whose caption on the link is at specified
position.

The LinkCaption property supports built-in HTML format. The supported tags are:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following samples shows how you can assign a HTML caption to a link:

VBA (MS Access, Excell...)

With ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkCaption = "<fgcolor=FF0000>caption

<c><bgcolor=FFFFFF><a>link"
 .Add "L1_B",0,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
End With

VB6

With ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes

 .Add("L1_A",0,"LA").LinkCaption = "<fgcolor=FF0000>caption

<c><bgcolor=FFFFFF><a>link"
 .Add "L1_B",0,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
End With

VB.NET

With Exchartview1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkCaption = "<fgcolor=FF0000>caption

<c><bgcolor=FFFFFF><a>link"
 .Add("L1_B",0,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 End With
End With

VB.NET for /COM

With AxChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkCaption = "<fgcolor=FF0000>caption

<c><bgcolor=FFFFFF><a>link"
 .Add("L1_B",0,"LB")
 .Add("L2_A","LA","LA2")

 .Add("L2_B","LB","LB2")
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutIndentSiblingY(30);
spChartView1->PutShowLinksDir(VARIANT_TRUE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(RGB(0,0,0));
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",long(0),"LA",vtMissing,vtMissing)->PutLinkCaption(L"
<fgcolor=FF0000>caption
<c><bgcolor=FFFFFF><a>link");
 var_Nodes->Add(L"L1_B",long(0),"LB",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B","LB","LB2",vtMissing,vtMissing);

C#

exchartview1.IndentSiblingY = 30;
exchartview1.ShowLinksDir = true;
exchartview1.PenWidthLink = 2;
exchartview1.LinkColor = Color.FromArgb(0,0,0);
exchartview1.AntiAliasing = true;
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).LinkCaption = "<fgcolor=FF0000><font

;6>caption
<c><bgcolor=FFFFFF><a>link";
 var_Nodes.Add("L1_B",0,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);

C# for /COM

axChartView1.IndentSiblingY = 30;
axChartView1.ShowLinksDir = true;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).LinkCaption = "<fgcolor=FF0000><font
;6>caption
<c><bgcolor=FFFFFF><a>link";
 var_Nodes.Add("L1_B",0,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Node,com_Nodes;
 anytype var_Node,var_Nodes;
 ;

 super();

 exchartview1.IndentSiblingY(30);
 exchartview1.ShowLinksDir(true);
 exchartview1.PenWidthLink(2);
 exchartview1.LinkColor(WinApi::RGB2int(0,0,0));
 exchartview1.AntiAliasing(true);
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 var_Node =

COM::createFromObject(com_Nodes.Add("L1_A",COMVariant::createFromInt(0),"LA"));
 com_Node = var_Node;
 com_Node.LinkCaption("<fgcolor=FF0000>caption
<c>
<bgcolor=FFFFFF><a>link");
 com_Nodes.Add("L1_B",COMVariant::createFromInt(0),"LB");
 com_Nodes.Add("L2_A","LA","LA2");
 com_Nodes.Add("L2_B","LB","LB2");
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1_A',TObject(0),'LA',Nil,Nil).LinkCaption := '<fgcolor=FF0000><font
;6>caption
<c><bgcolor=FFFFFF><a>link';
 Add('L1_B',TObject(0),'LB',Nil,Nil);
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B','LB','LB2',Nil,Nil);
 end;
end

Delphi (standard)

with ChartView1 do
begin
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := RGB(0,0,0);
 AntiAliasing := True;
 with Nodes do

 begin
 Add('L1_A',OleVariant(0),'LA',Null,Null).LinkCaption := '<fgcolor=FF0000><font
;6>caption
<c><bgcolor=FFFFFF><a>link';
 Add('L1_B',OleVariant(0),'LB',Null,Null);
 Add('L2_A','LA','LA2',Null,Null);
 Add('L2_B','LB','LB2',Null,Null);
 end;
end

VFP

with thisform.ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = .T.
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = .T.
 with .Nodes
 .Add("L1_A",0,"LA").LinkCaption = "<fgcolor=FF0000>caption

<c><bgcolor=FFFFFF><a>link"
 .Add("L1_B",0,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 endwith
endwith

property Node.LinkTo as Variant
Retrieves or sets a value that indicates the list of nodes that the source node links to.

Type Description

Variant
A string expression that indicates the list of nodes that the
current node links to. The list of nodes (keys) is
separated by ',' character

Use the LinkTo property to connect a node with multiple nodes. By default, the LinkTo
property is empty. The LinkTo property indicates a list of keys separated by comma, that
links to the current node. For instance, if the LinkTo property is "Key1,Key2", the current
node draws a link to the nodes with the following keys: Key1 and Key2. Use the Key
property to assign a key to a node. The PenWidthLinkTo property specifies the thickness of
the lines between nodes. Use the PenLinkTo property to specify the type of the pen used to
paint the lines between nodes. The LinkToColor property specifies the color of the links
between nodes. The ShowLinks property doesn't affect the links added with the LinkTo
property. The LinkToCaption property specifies the HTML caption being shown on the links
between nodes. The ShowLinksDir property specifies whether the links between nodes
show their directions.

The following screen shot shows a bi-directional linkto as L1_B node links to L2_A and
back:

In the following screen shot you can notice that the "Item 1" node is linked directly to the
"Item 2" node.

In the following screen shot you can notice that the "Subitem 1" node is linked to the "Item
2" node.

property Node.LinkToCaption(Key as String) as String
Specifies the HTML caption being shown on a LinkTo line.

Type Description

Key as String A String expression that specifies the key of the node to
link to

String A String expression that indicates the HTML caption being
shown on the link.

Use the LinkToCaption property to specify the caption being shown on the LinkTo property.
The LinkTo property adds an arbitrary link between two nodes. The LinkColor property
specifies the color of the links between nodes. The ShowLinks property doesn't affect the
links added with the LinkTo property. The ShowLinksDir property specifies whether the links
between nodes show their directions. The PenWidthLink property specifies the thickness of
the lines between nodes. Use the PenLink property to specify the type of the pen used to
paint the lines between nodes.

The following screen shot shows the links between nodes with their direction including
HTML captions on links:

property Node.LinkToColor(Key as String) as Color
Specifies the color to show the LinkTo line.

Type Description

Key as String A String expression that specifies the key of the node to
link to.

Color A Color expression that specifies the color to show the link

The LinkToColor property specifies the color for an linkto line. Use the LinkTo property to
arbitrary link the current nodes with others. The LinkToColor property specifies the color of
the links between nodes. The LinkToWidth, LinkToPen, LinkToRound, LinkToShowDir
property specifies the width, pen, roundness, direction to show an arbitrary link.

The following VB sample changes the color to show an arbitrary line::

With ChartView1
 .PenWidthLink = 2
 .LinkColor = 0
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following VB.NET sample changes the color to show an arbitrary line::

With AxChartView1
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = 255
 .LinkToWidth("LA2") = 2
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following C++ sample changes the color to show an arbitrary line::

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0 Control
Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(0);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",0,"LA",vtMissing,vtMissing)->PutLinkTo("LB");
 EXORGCHARTLib::INodePtr var_Node = var_Nodes->Add(L"L1_B

Cust",0,"LB",vtMissing,vtMissing);
 var_Node->PutLinkTo("LA2");
 var_Node->PutLinkToColor(L"LA2",RGB(255,0,0));

 var_Node->PutLinkToWidth(L"LA2",2);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B1","LB","LB21",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B2","LB","LB22",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B3","LB","LB23",vtMissing,vtMissing);

The following C# sample changes the color to show an arbitrary line::

axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).LinkTo = "LB";
 EXORGCHARTLib.Node var_Node = var_Nodes.Add("L1_B

Cust",0,"LB",null,null);
 var_Node.LinkTo = "LA2";
 var_Node.set_LinkToColor("LA2",255);
 var_Node.set_LinkToWidth("LA2",2);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B1","LB","LB21",null,null);
 var_Nodes.Add("L2_B2","LB","LB22",null,null);
 var_Nodes.Add("L2_B3","LB","LB23",null,null);

The following VFP sample changes the color to show an arbitrary line::

with thisform.ChartView1
 .PenWidthLink = 2
 .LinkColor = 0
 with .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 with .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 endwith
 .Add("L2_A","LA","LA2")
 .Add("L2_B1","LB","LB21")
 .Add("L2_B2","LB","LB22")
 .Add("L2_B3","LB","LB23")

 endwith
endwith

The following Delphi sample changes the color to show an arbitrary line::

with AxChartView1 do
begin
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 with Nodes do
 begin
 Add('L1_A',TObject(0),'LA',Nil,Nil).LinkTo := 'LB';
 with Add('L1_B

Cust',TObject(0),'LB',Nil,Nil) do
 begin
 LinkTo := 'LA2';
 LinkToColor['LA2'] := 255;
 LinkToWidth['LA2'] := 2;
 end;
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B1','LB','LB21',Nil,Nil);
 Add('L2_B2','LB','LB22',Nil,Nil);
 Add('L2_B3','LB','LB23',Nil,Nil);
 end;
end

property Node.LinkToPen(Key as String) as PenTypeEnum
Specifies the style of the link for linkto line.

Type Description

Key as String A String expression that specifies the key of the node to
link to.

PenTypeEnum A PenTypeEnum expression that specifies the pen/style to
show the link

The LinkToPen property specifies the pen to show an linkto line. Use the LinkTo property to
arbitrary link the current nodes with others. The PenLinkTo property specifies the pen of
the links between nodes. The LinkToWidth, LinkToColor, LinkToRound, LinkToShowDir
property specifies the width, color, roundness, direction to show an arbitrary link.

The following VB sample changes the style for an arbitrary link::

With ChartView1
 .ShowLinksDir = False
 .PenWidthLink = 2
 .LinkColor = 0
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 .LinkToPen("LA2") = exPenDashDot
 .LinkToShowDir("LA2") = True
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"

 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following VB.NET sample changes the style for an arbitrary link::

With AxChartView1
 .ShowLinksDir = False
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = 255
 .LinkToWidth("LA2") = 2
 .LinkToPen("LA2") = EXORGCHARTLib.PenTypeEnum.exPenDashDot
 .LinkToShowDir("LA2") = True
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following C++ sample changes the style for an arbitrary link::

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0 Control
Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/

EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutShowLinksDir(VARIANT_FALSE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(0);
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",0,"LA",vtMissing,vtMissing)->PutLinkTo("LB");
 EXORGCHARTLib::INodePtr var_Node = var_Nodes->Add(L"L1_B

Cust",0,"LB",vtMissing,vtMissing);
 var_Node->PutLinkTo("LA2");
 var_Node->PutLinkToColor(L"LA2",RGB(255,0,0));
 var_Node->PutLinkToWidth(L"LA2",2);
 var_Node->PutLinkToPen(L"LA2",EXORGCHARTLib::exPenDashDot);
 var_Node->PutLinkToShowDir(L"LA2",VARIANT_TRUE);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B1","LB","LB21",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B2","LB","LB22",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B3","LB","LB23",vtMissing,vtMissing);

The following C# sample changes the style for an arbitrary link::

axChartView1.ShowLinksDir = false;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).LinkTo = "LB";
 EXORGCHARTLib.Node var_Node = var_Nodes.Add("L1_B

Cust",0,"LB",null,null);
 var_Node.LinkTo = "LA2";
 var_Node.set_LinkToColor("LA2",255);
 var_Node.set_LinkToWidth("LA2",2);
 var_Node.set_LinkToPen("LA2",EXORGCHARTLib.PenTypeEnum.exPenDashDot);
 var_Node.set_LinkToShowDir("LA2",true);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B1","LB","LB21",null,null);

 var_Nodes.Add("L2_B2","LB","LB22",null,null);
 var_Nodes.Add("L2_B3","LB","LB23",null,null);

The following VFP sample changes the style for an arbitrary link::

with thisform.ChartView1
 .ShowLinksDir = .F.
 .PenWidthLink = 2
 .LinkColor = 0
 .AntiAliasing = .T.
 with .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 with .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 .LinkToPen("LA2") = 3
 .LinkToShowDir("LA2") = .T.
 endwith
 .Add("L2_A","LA","LA2")
 .Add("L2_B1","LB","LB21")
 .Add("L2_B2","LB","LB22")
 .Add("L2_B3","LB","LB23")
 endwith
endwith

The following Delphi sample changes the style for an arbitrary link::

with AxChartView1 do
begin
 ShowLinksDir := False;
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1_A',TObject(0),'LA',Nil,Nil).LinkTo := 'LB';
 with Add('L1_B

Cust',TObject(0),'LB',Nil,Nil) do

 begin
 LinkTo := 'LA2';
 LinkToColor['LA2'] := 255;
 LinkToWidth['LA2'] := 2;
 LinkToPen['LA2'] := EXORGCHARTLib.PenTypeEnum.exPenDashDot;
 LinkToShowDir['LA2'] := True;
 end;
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B1','LB','LB21',Nil,Nil);
 Add('L2_B2','LB','LB22',Nil,Nil);
 Add('L2_B3','LB','LB23',Nil,Nil);
 end;
end

property Node.LinkToRound(Key as String) as Boolean
Specifies whether the LinkTo line is shown linear or round.

Type Description

Key as String A String expression that specifies the key of the node to
link to.

Boolean A boolean expression that specifies whether the link is
shown linear or round (true).

The LinkToRound property specifies the whether the link is shown liner or round. Use the
LinkTo property to arbitrary link the current nodes with others. The ShowRoundLink
property specifies whether the links between nodes are shows linear or round. The
LinkToWidth, LinkToColor, LinkToShowDir, LinkToPen property specifies the width, color,
direction, pen to show an arbitrary link.

property Node.LinkToShowDir(Key as String) as Boolean
Specifies whether the LinkTo line shows the direction.

Type Description

Key as String A String expression that specifies the key of the node to
link to.

Boolean A boolean expression that specifies whether the link
shows its direction.

The LinkToShowDir property specifies the whether the link shows its direction . Use the
LinkTo property to arbitrary link the current nodes with others. The ShowLinksDir property
specifies whether the links between nodes shows the direction. The LinkToWidth,
LinkToColor, LinkToRound, LinkToPen property specifies the width, color, roundness, pen to
show an arbitrary link.

The following VB sample shows the direction for an arbitrary link only:

With ChartView1
 .ShowLinksDir = False
 .PenWidthLink = 2
 .LinkColor = 0
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 .LinkToPen("LA2") = exPenDashDot
 .LinkToShowDir("LA2") = True
 End With
 .Add "L2_A","LA","LA2"

 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following VB.NET sample shows the direction for an arbitrary link only:

With AxChartView1
 .ShowLinksDir = False
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = 255
 .LinkToWidth("LA2") = 2
 .LinkToPen("LA2") = EXORGCHARTLib.PenTypeEnum.exPenDashDot
 .LinkToShowDir("LA2") = True
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following C++ sample shows the direction for an arbitrary link only:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0 Control
Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;

*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutShowLinksDir(VARIANT_FALSE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(0);
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",0,"LA",vtMissing,vtMissing)->PutLinkTo("LB");
 EXORGCHARTLib::INodePtr var_Node = var_Nodes->Add(L"L1_B

Cust",0,"LB",vtMissing,vtMissing);
 var_Node->PutLinkTo("LA2");
 var_Node->PutLinkToColor(L"LA2",RGB(255,0,0));
 var_Node->PutLinkToWidth(L"LA2",2);
 var_Node->PutLinkToPen(L"LA2",EXORGCHARTLib::exPenDashDot);
 var_Node->PutLinkToShowDir(L"LA2",VARIANT_TRUE);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B1","LB","LB21",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B2","LB","LB22",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B3","LB","LB23",vtMissing,vtMissing);

The following C# sample shows the direction for an arbitrary link only:

axChartView1.ShowLinksDir = false;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).LinkTo = "LB";
 EXORGCHARTLib.Node var_Node = var_Nodes.Add("L1_B

Cust",0,"LB",null,null);
 var_Node.LinkTo = "LA2";
 var_Node.set_LinkToColor("LA2",255);
 var_Node.set_LinkToWidth("LA2",2);
 var_Node.set_LinkToPen("LA2",EXORGCHARTLib.PenTypeEnum.exPenDashDot);
 var_Node.set_LinkToShowDir("LA2",true);
 var_Nodes.Add("L2_A","LA","LA2",null,null);

 var_Nodes.Add("L2_B1","LB","LB21",null,null);
 var_Nodes.Add("L2_B2","LB","LB22",null,null);
 var_Nodes.Add("L2_B3","LB","LB23",null,null);

The following VFP sample shows the direction for an arbitrary link only:

with thisform.ChartView1
 .ShowLinksDir = .F.
 .PenWidthLink = 2
 .LinkColor = 0
 .AntiAliasing = .T.
 with .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 with .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 .LinkToPen("LA2") = 3
 .LinkToShowDir("LA2") = .T.
 endwith
 .Add("L2_A","LA","LA2")
 .Add("L2_B1","LB","LB21")
 .Add("L2_B2","LB","LB22")
 .Add("L2_B3","LB","LB23")
 endwith
endwith

The following Delphi sample shows the direction for an arbitrary link only:

with AxChartView1 do
begin
 ShowLinksDir := False;
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1_A',TObject(0),'LA',Nil,Nil).LinkTo := 'LB';

 with Add('L1_B

Cust',TObject(0),'LB',Nil,Nil) do
 begin
 LinkTo := 'LA2';
 LinkToColor['LA2'] := 255;
 LinkToWidth['LA2'] := 2;
 LinkToPen['LA2'] := EXORGCHARTLib.PenTypeEnum.exPenDashDot;
 LinkToShowDir['LA2'] := True;
 end;
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B1','LB','LB21',Nil,Nil);
 Add('L2_B2','LB','LB22',Nil,Nil);
 Add('L2_B3','LB','LB23',Nil,Nil);
 end;
end

property Node.LinkToWidth(Key as String) as Long
Specifies the width to display the LinkTo line.

Type Description

Key as String A String expression that specifies the key of the node to
link to.

Long A long expression that specifies the width to show the link.

The LinkToWidth property specifies the width for an linkto line. Use the LinkTo property to
arbitrary link the current nodes with others. The PenWidthLinkTo property specifies the
width of the links between nodes. The LinkToColor, LinkToPen, LinkToRound,
LinkToShowDir property specifies the color, pen, roundness, direction to show an arbitrary
link.

The following VB sample changes the width for an arbitrary link:

With ChartView1
 .PenWidthLink = 2
 .LinkColor = 0
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following VB.NET sample changes the width for an arbitrary link:

With AxChartView1
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)
 With .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 With .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = 255
 .LinkToWidth("LA2") = 2
 End With
 .Add "L2_A","LA","LA2"
 .Add "L2_B1","LB","LB21"
 .Add "L2_B2","LB","LB22"
 .Add "L2_B3","LB","LB23"
 End With
End With

The following C++ sample changes the width for an arbitrary link:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0 Control
Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(0);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",0,"LA",vtMissing,vtMissing)->PutLinkTo("LB");
 EXORGCHARTLib::INodePtr var_Node = var_Nodes->Add(L"L1_B

Cust",0,"LB",vtMissing,vtMissing);
 var_Node->PutLinkTo("LA2");

 var_Node->PutLinkToColor(L"LA2",RGB(255,0,0));
 var_Node->PutLinkToWidth(L"LA2",2);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B1","LB","LB21",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B2","LB","LB22",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B3","LB","LB23",vtMissing,vtMissing);

The following C# sample changes the width for an arbitrary link:

axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).LinkTo = "LB";
 EXORGCHARTLib.Node var_Node = var_Nodes.Add("L1_B

Cust",0,"LB",null,null);
 var_Node.LinkTo = "LA2";
 var_Node.set_LinkToColor("LA2",255);
 var_Node.set_LinkToWidth("LA2",2);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B1","LB","LB21",null,null);
 var_Nodes.Add("L2_B2","LB","LB22",null,null);
 var_Nodes.Add("L2_B3","LB","LB23",null,null);

The following VFP sample changes the width for an arbitrary link:

with thisform.ChartView1
 .PenWidthLink = 2
 .LinkColor = 0
 with .Nodes
 .Add("L1_A",0,"LA").LinkTo = "LB"
 with .Add("L1_B

Cust",0,"LB")
 .LinkTo = "LA2"
 .LinkToColor("LA2") = RGB(255,0,0)
 .LinkToWidth("LA2") = 2
 endwith
 .Add("L2_A","LA","LA2")
 .Add("L2_B1","LB","LB21")
 .Add("L2_B2","LB","LB22")

 .Add("L2_B3","LB","LB23")
 endwith
endwith

The following Delphi sample changes the width for an arbitrary link:

with AxChartView1 do
begin
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 with Nodes do
 begin
 Add('L1_A',TObject(0),'LA',Nil,Nil).LinkTo := 'LB';
 with Add('L1_B

Cust',TObject(0),'LB',Nil,Nil) do
 begin
 LinkTo := 'LA2';
 LinkToColor['LA2'] := 255;
 LinkToWidth['LA2'] := 2;
 end;
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B1','LB','LB21',Nil,Nil);
 Add('L2_B2','LB','LB22',Nil,Nil);
 Add('L2_B3','LB','LB23',Nil,Nil);
 end;
end

property Node.NextNode as Node
Gets the next sibling node.

Type Description
Node A Node object that identifies the next sibling node.

Use the NextNode property to determine the next sibling node. The NextNode property gets
nothing, if not next node is found. Use the PrevNode property to determine the previous
sibling node. Use the LastNode property to determine the last child node. Use the FirstNode
property to get the first child node. Use the NodeCount property to get the number of child
nodes. Use the Position property to change the node's position. Use the Nodes property to
access the nodes collection. Use the Add method to add a child node.

The following VB sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLibCtl.Node)
 Dim c As EXORGCHARTLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Caption
 enumRec c
 Set c = c.NextNode
 Wend
End Sub

The following C++ sample enumerates recursively all the child nodes:

void enumRec(CNode* pNode)
{
 if (pNode != NULL)
 {
 CNode child = pNode->GetFirstNode();
 while (child.m_lpDispatch != NULL)
 {
 OutputDebugString(child.GetCaption());
 OutputDebugString("\r\n");
 enumRec(&child);
 child = child.GetNextNode();
 }

 }
}

The following VB.NET sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLib.Node)
 Dim c As EXORGCHARTLib.Node = n.FirstNode
 While Not c Is Nothing
 Debug.Print(c.Caption)
 enumRec(c)
 c = c.NextNode
 End While
End Sub

The following C# sample enumerates recursively all the child nodes:

private void enumRec(EXORGCHARTLib.Node node)
{
 EXORGCHARTLib.Node child = node.FirstNode;
 while (child != null)
 {
 System.Diagnostics.Debug.WriteLine(child.Caption);
 enumRec(child);
 child = child.NextNode;
 }
}

The following VFP sample enumerates recursively all the child nodes:

LPARAMETERS node

local child
child = node.FirstNode
do while (!isnull(child))
 wait window nowait child.Caption
 thisform.enumrec(child)
 child = child.NextNode
enddo

property Node.NodeCount as Long
Retrieves the number of child nodes.

Type Description
Long A long expression that indicates the number of child nodes.

Use the NodeCount property to determine the number of child nodes. Use the FirstNode
property to determine the first child node. Use the NextNode property to determine the next
sibling node. Use the Position property to change the node's position. Use the LastNode
property to determine the last child node. Use the Nodes property to access the nodes
collection. Use the Add method to add a child node. Use the Item property to retrieve a
node by its key.

The following VB sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLibCtl.Node)
 Dim c As EXORGCHARTLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Caption
 enumRec c
 Set c = c.NextNode
 Wend
End Sub

The following C++ sample enumerates recursively all the child nodes:

void enumRec(CNode* pNode)
{
 if (pNode != NULL)
 {
 CNode child = pNode->GetFirstNode();
 while (child.m_lpDispatch != NULL)
 {
 OutputDebugString(child.GetCaption());
 OutputDebugString("\r\n");
 enumRec(&child);
 child = child.GetNextNode();
 }

 }
}

The following VB.NET sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLib.Node)
 Dim c As EXORGCHARTLib.Node = n.FirstNode
 While Not c Is Nothing
 Debug.Print(c.Caption)
 enumRec(c)
 c = c.NextNode
 End While
End Sub

The following C# sample enumerates recursively all the child nodes:

private void enumRec(EXORGCHARTLib.Node node)
{
 EXORGCHARTLib.Node child = node.FirstNode;
 while (child != null)
 {
 System.Diagnostics.Debug.WriteLine(child.Caption);
 enumRec(child);
 child = child.NextNode;
 }
}

The following VFP sample enumerates recursively all the child nodes:

LPARAMETERS node

local child
child = node.FirstNode
do while (!isnull(child))
 wait window nowait child.Caption
 thisform.enumrec(child)
 child = child.NextNode
enddo

property Node.Nodes as IUnknown FAR*
Gets the collection of nodes.

Type Description
IUnknown FAR* An Object that implements the IEnumVARIANT interface.

Only for internal use.

property Node.Padding(Edge as PaddingEdgeEnum) as Long
Returns or sets a value that indicates the padding of the node.

Type Description

Edge as PaddingEdgeEnum A PaddingEdgeEnum expression that specifies the edge to
be updated / requested

Long A long expression that defines the node's padding

Use the Padding property of the Node to define the padding for specified node. The
DefaultNodePadding property defines the padding for all nodes. The BackColor property
defines the node's background color / EBN object. Use the FixedHeight and FixedWidth
properties to define the size of a specified node. The BackgroundExt property provides
unlimited options to add more colors, patterns, text, icons, pictures, frames to any node.

The following screen shot defines a node with no padding (by default):

The following screen shot defines a node with padding:

The following samples show how you can define the node's padding:

VBA (MS Access, Excell...)

With ChartView1
 .BeginUpdate
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 With .Add("L1 A1",,"LA")
 .BackColor = RGB(255,0,0)
 .Padding(-1) = 16
 End With

 .Add "L1 B1",,"LB"
 .Add "L2 A1","LA","LA2"
 .Add "L2 B2","LB","LB2"
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
End With

VB6

With ChartView1
 .BeginUpdate
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 With .Add("L1 A1",,"LA")
 .BackColor = RGB(255,0,0)
 .Padding(exPaddingAll) = 16
 End With
 .Add "L1 B1",,"LB"
 .Add "L2 A1","LA","LA2"
 .Add "L2 B2","LB","LB2"
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
End With

VB.NET

With Exchartview1
 .BeginUpdate()
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)

 .AntiAliasing = True
 With .Nodes
 With .Add("L1 A1",,"LA")
 .BackColor = Color.FromArgb(255,0,0)
 .set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,16)
 End With
 .Add("L1 B1",,"LB")
 .Add("L2 A1","LA","LA2")
 .Add("L2 B2","LB","LB2")
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate()
End With

VB.NET for /COM

With AxChartView1
 .BeginUpdate()
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 With .Add("L1 A1",,"LA")
 .BackColor = RGB(255,0,0)
 .Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll) = 16
 End With
 .Add("L1 B1",,"LB")
 .Add("L2 A1","LA","LA2")
 .Add("L2 B2","LB","LB2")
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->BeginUpdate();
spChartView1->PutIndentSiblingY(30);
spChartView1->PutShowLinksDir(VARIANT_TRUE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(RGB(0,0,0));
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 EXORGCHARTLib::INodePtr var_Node = var_Nodes->Add(L"L1
A1",vtMissing,"LA",vtMissing,vtMissing);
 var_Node->PutBackColor(RGB(255,0,0));
 var_Node->PutPadding(EXORGCHARTLib::exPaddingAll,16);
 var_Nodes->Add(L"L1 B1",vtMissing,"LB",vtMissing,vtMissing);
 var_Nodes->Add(L"L2 A1","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2 B2","LB","LB2",vtMissing,vtMissing);
spChartView1->GetNodes()->GetItem("root")->PutCaption(L"Ls As");
spChartView1->EndUpdate();

C++ Builder

ChartView1->BeginUpdate();
ChartView1->IndentSiblingY = 30;
ChartView1->ShowLinksDir = true;
ChartView1->PenWidthLink = 2;
ChartView1->LinkColor = RGB(0,0,0);
ChartView1->AntiAliasing = true;
Exorgchartlib_tlb::INodesPtr var_Nodes = ChartView1->Nodes;

 Exorgchartlib_tlb::INodePtr var_Node = var_Nodes->Add(L"L1
A1",TNoParam(),TVariant("LA"),TNoParam(),TNoParam());
 var_Node->BackColor = RGB(255,0,0);
 var_Node-
>set_Padding(Exorgchartlib_tlb::PaddingEdgeEnum::exPaddingAll,16);
 var_Nodes->Add(L"L1 B1",TNoParam(),TVariant("LB"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L2 A1",TVariant("LA"),TVariant("LA2"),TNoParam(),TNoParam());
 var_Nodes->Add(L"L2 B2",TVariant("LB"),TVariant("LB2"),TNoParam(),TNoParam());
ChartView1->Nodes->get_Item(TVariant("root"))->Caption = L"Ls As";
ChartView1->EndUpdate();

C#

exchartview1.BeginUpdate();
exchartview1.IndentSiblingY = 30;
exchartview1.ShowLinksDir = true;
exchartview1.PenWidthLink = 2;
exchartview1.LinkColor = Color.FromArgb(0,0,0);
exchartview1.AntiAliasing = true;
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 exontrol.EXORGCHARTLib.Node var_Node = var_Nodes.Add("L1
A1",null,"LA",null,null);
 var_Node.BackColor = Color.FromArgb(255,0,0);

var_Node.set_Padding(exontrol.EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,16);

 var_Nodes.Add("L1 B1",null,"LB",null,null);
 var_Nodes.Add("L2 A1","LA","LA2",null,null);
 var_Nodes.Add("L2 B2","LB","LB2",null,null);
exchartview1.Nodes["root"].Caption = "Ls As";
exchartview1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"

id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 ChartView1.BeginUpdate();
 ChartView1.IndentSiblingY = 30;
 ChartView1.ShowLinksDir = true;
 ChartView1.PenWidthLink = 2;
 ChartView1.LinkColor = 0;
 ChartView1.AntiAliasing = true;
 var var_Nodes = ChartView1.Nodes;
 var var_Node = var_Nodes.Add("L1 A1",null,"LA",null,null);
 var_Node.BackColor = 255;
 var_Node.Padding(-1) = 16;
 var_Nodes.Add("L1 B1",null,"LB",null,null);
 var_Nodes.Add("L2 A1","LA","LA2",null,null);
 var_Nodes.Add("L2 B2","LB","LB2",null,null);
 ChartView1.Nodes.Item("root").Caption = "Ls As";
 ChartView1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:F4DFE455-01FE-420E-A088-64346DCC3791"
id="ChartView1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With ChartView1
 .BeginUpdate
 .IndentSiblingY = 30
 .ShowLinksDir = True

 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 With .Add("L1 A1",,"LA")
 .BackColor = RGB(255,0,0)
 .Padding(-1) = 16
 End With
 .Add "L1 B1",,"LB"
 .Add "L2 A1","LA","LA2"
 .Add "L2 B2","LB","LB2"
 End With
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axChartView1.BeginUpdate();
axChartView1.IndentSiblingY = 30;
axChartView1.ShowLinksDir = true;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 EXORGCHARTLib.Node var_Node = var_Nodes.Add("L1 A1",null,"LA",null,null);
 var_Node.BackColor = (uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0));
 var_Node.set_Padding(EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll,16);
 var_Nodes.Add("L1 B1",null,"LB",null,null);
 var_Nodes.Add("L2 A1","LA","LA2",null,null);
 var_Nodes.Add("L2 B2","LB","LB2",null,null);
axChartView1.Nodes["root"].Caption = "Ls As";
axChartView1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Node,com_Node1,com_Nodes;
 anytype var_Node,var_Node1,var_Nodes;
 ;

 super();

 exchartview1.BeginUpdate();
 exchartview1.IndentSiblingY(30);
 exchartview1.ShowLinksDir(true);
 exchartview1.PenWidthLink(2);
 exchartview1.LinkColor(WinApi::RGB2int(0,0,0));
 exchartview1.AntiAliasing(true);
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;
 var_Node = com_Nodes.Add("L1 A1",,"LA"); com_Node = var_Node;
 com_Node.BackColor(WinApi::RGB2int(255,0,0));
 com_Node.Padding(-1/*exPaddingAll*/,16);
 com_Nodes.Add("L1 B1",,"LB");
 com_Nodes.Add("L2 A1","LA","LA2");
 com_Nodes.Add("L2 B2","LB","LB2");
 var_Node1 = COM::createFromObject(exchartview1.Nodes()).Item("root");
com_Node1 = var_Node1;
 com_Node1.Caption("Ls As");
 exchartview1.EndUpdate();
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 BeginUpdate();
 IndentSiblingY := 30;
 ShowLinksDir := True;

 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 with Add('L1 A1',Nil,'LA',Nil,Nil) do
 begin
 BackColor := $ff;
 Padding[EXORGCHARTLib.PaddingEdgeEnum.exPaddingAll] := 16;
 end;
 Add('L1 B1',Nil,'LB',Nil,Nil);
 Add('L2 A1','LA','LA2',Nil,Nil);
 Add('L2 B2','LB','LB2',Nil,Nil);
 end;
 Nodes.Item['root'].Caption := 'Ls As';
 EndUpdate();
end

Delphi (standard)

with ChartView1 do
begin
 BeginUpdate();
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := RGB(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 with Add('L1 A1',Null,'LA',Null,Null) do
 begin
 BackColor := $ff;
 Padding[EXORGCHARTLib_TLB.exPaddingAll] := 16;
 end;
 Add('L1 B1',Null,'LB',Null,Null);
 Add('L2 A1','LA','LA2',Null,Null);

 Add('L2 B2','LB','LB2',Null,Null);
 end;
 Nodes.Item['root'].Caption := 'Ls As';
 EndUpdate();
end

VFP

with thisform.ChartView1
 .BeginUpdate
 .IndentSiblingY = 30
 .ShowLinksDir = .T.
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = .T.
 with .Nodes
 with .Add("L1 A1",Null,"LA")
 .BackColor = RGB(255,0,0)
 .Padding(-1) = 16
 endwith
 .Add("L1 B1",Null,"LB")
 .Add("L2 A1","LA","LA2")
 .Add("L2 B2","LB","LB2")
 endwith
 .Nodes.Item("root").Caption = "Ls As"
 .EndUpdate
endwith

dBASE Plus

local oChartView,var_Node,var_Nodes

oChartView = form.EXORGCHARTACTIVEXCONTROL1.nativeObject
oChartView.BeginUpdate()
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = true
oChartView.PenWidthLink = 2
oChartView.LinkColor = 0x0

oChartView.AntiAliasing = true
var_Nodes = oChartView.Nodes
 var_Node = var_Nodes.Add("L1 A1",null,"LA")
 var_Node.BackColor = 0xff
 // var_Node.Padding(-1) = 16
 with (oChartView)
 TemplateDef = [dim var_Node]
 TemplateDef = var_Node
 Template = [var_Node.Padding(-1) = 16]
 endwith
 var_Nodes.Add("L1 B1",null,"LB")
 var_Nodes.Add("L2 A1","LA","LA2")
 var_Nodes.Add("L2 B2","LB","LB2")
oChartView.Nodes.Item("root").Caption = "Ls As"
oChartView.EndUpdate()

XBasic (Alpha Five)

Dim oChartView as P
Dim var_Node as P
Dim var_Nodes as P

oChartView = topparent:CONTROL_ACTIVEX1.activex
oChartView.BeginUpdate()
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = .t.
oChartView.PenWidthLink = 2
oChartView.LinkColor = 0
oChartView.AntiAliasing = .t.
var_Nodes = oChartView.Nodes
 var_Node = var_Nodes.Add("L1 A1",,"LA")
 var_Node.BackColor = 255
 ' var_Node.Padding(-1) = 16
 oChartView.TemplateDef = "dim var_Node"
 oChartView.TemplateDef = var_Node
 oChartView.Template = "var_Node.Padding(-1) = 16"

 var_Nodes.Add("L1 B1",,"LB")
 var_Nodes.Add("L2 A1","LA","LA2")
 var_Nodes.Add("L2 B2","LB","LB2")
oChartView.Nodes.Item("root").Caption = "Ls As"
oChartView.EndUpdate()

Visual Objects

local var_Node as INode
local var_Nodes as INodes

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:IndentSiblingY := 30
oDCOCX_Exontrol1:ShowLinksDir := true
oDCOCX_Exontrol1:PenWidthLink := 2
oDCOCX_Exontrol1:LinkColor := RGB(0,0,0)
oDCOCX_Exontrol1:AntiAliasing := true
var_Nodes := oDCOCX_Exontrol1:Nodes
 var_Node := var_Nodes:Add("L1 A1",nil,"LA",nil,nil)
 var_Node:BackColor := RGB(255,0,0)
 var_Node:[Padding,exPaddingAll] := 16
 var_Nodes:Add("L1 B1",nil,"LB",nil,nil)
 var_Nodes:Add("L2 A1","LA","LA2",nil,nil)
 var_Nodes:Add("L2 B2","LB","LB2",nil,nil)
oDCOCX_Exontrol1:Nodes:[Item,"root"]:Caption := "Ls As"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oChartView,var_Node,var_Nodes

oChartView = ole_1.Object
oChartView.BeginUpdate()
oChartView.IndentSiblingY = 30
oChartView.ShowLinksDir = true

oChartView.PenWidthLink = 2
oChartView.LinkColor = RGB(0,0,0)
oChartView.AntiAliasing = true
var_Nodes = oChartView.Nodes
 var_Node = var_Nodes.Add("L1 A1",,"LA")
 var_Node.BackColor = RGB(255,0,0)
 var_Node.Padding(-1,16)
 var_Nodes.Add("L1 B1",,"LB")
 var_Nodes.Add("L2 A1","LA","LA2")
 var_Nodes.Add("L2 B2","LB","LB2")
oChartView.Nodes.Item("root").Caption = "Ls As"
oChartView.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComIndentSiblingY to 30
 Set ComShowLinksDir to True
 Set ComPenWidthLink to 2
 Set ComLinkColor to (RGB(0,0,0))
 Set ComAntiAliasing to True
 Variant voNodes
 Get ComNodes to voNodes
 Handle hoNodes
 Get Create (RefClass(cComNodes)) to hoNodes
 Set pvComObject of hoNodes to voNodes
 Variant voNode
 Get ComAdd of hoNodes "L1 A1" "LA" Nothing Nothing to voNode
 Handle hoNode
 Get Create (RefClass(cComNode)) to hoNode
 Set pvComObject of hoNode to voNode
 Set ComBackColor of hoNode to (RGB(255,0,0))
 Set ComPadding of hoNode OLEexPaddingAll to 16
 Send Destroy to hoNode

 Get ComAdd of hoNodes "L1 B1" "LB" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L2 A1" "LA" "LA2" Nothing Nothing to Nothing
 Get ComAdd of hoNodes "L2 B2" "LB" "LB2" Nothing Nothing to Nothing
 Send Destroy to hoNodes
 Variant voNodes1
 Get ComNodes to voNodes1
 Handle hoNodes1
 Get Create (RefClass(cComNodes)) to hoNodes1
 Set pvComObject of hoNodes1 to voNodes1
 Variant voNode1
 Get ComItem of hoNodes1 "root" to voNode1
 Handle hoNode1
 Get Create (RefClass(cComNode)) to hoNode1
 Set pvComObject of hoNode1 to voNode1
 Set ComCaption of hoNode1 to "Ls As"
 Send Destroy to hoNode1
 Send Destroy to hoNodes1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oChartView
 LOCAL oNode
 LOCAL oNodes

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oChartView := XbpActiveXControl():new(oForm:drawingArea)
 oChartView:CLSID := "Exontrol.ChartView.1" /*{F4DFE455-01FE-420E-A088-
64346DCC3791}*/
 oChartView:create(,, {10,60},{610,370})

 oChartView:BeginUpdate()
 oChartView:IndentSiblingY := 30
 oChartView:ShowLinksDir := .T.
 oChartView:PenWidthLink := 2
 oChartView:SetProperty("LinkColor",AutomationTranslateColor(
GraMakeRGBColor ({ 0,0,0 }) , .F.))
 oChartView:AntiAliasing := .T.
 oNodes := oChartView:Nodes()
 oNode := oNodes:Add("L1 A1",,"LA")
 oNode:SetProperty("BackColor",AutomationTranslateColor(
GraMakeRGBColor ({ 255,0,0 }) , .F.))
 oNode:SetProperty("Padding",-1/*exPaddingAll*/,16)
 oNodes:Add("L1 B1",,"LB")
 oNodes:Add("L2 A1","LA","LA2")
 oNodes:Add("L2 B2","LB","LB2")
 oChartView:Nodes:Item("root"):Caption := "Ls As"
 oChartView:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Node.Parent as Node
Retrieves or sets the parent of the node.

Type Description
Node A Node object that identifies the parent of the node.

Use the Parent property to get the parent of the node. Use the Parent property to move a
node from a parent to another. The Parent property gets nothing if the node has no parent.
The root node has no parent. Use the Root property to access the root node of the
organigram. Use the Item property to access an item/node by its key. Use the FirstNode
property to retrieve the first child node. Use the NextNode property to determine the next
sibling node. Use the Position property to change the node's position. Use the LastNode
property to determine the last child node. Use the Nodes property to access the nodes
collection. Use the Add method to add a child node.

The following VB sample changes the node's parent by dragging:

Dim n As Node

Private Sub ChartView1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Set n = ChartView1.NodeFromPoint(-1, -1)
 If Not (n Is Nothing) Then
 If n.IsAssistant Or n.IsGroup Then
 Set n = Nothing
 End If
 End If
End Sub

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 If (Button = 1) Then
 If Not (n Is Nothing) Then
 Dim nNew As Node
 Set nNew = ChartView1.NodeFromPoint(-1, -1)
 If Not (nNew Is Nothing) Then
 If Not nNew.IsAssistant And Not nNew.IsGroup Then
 n.Parent = nNew

 End If
 End If
 End If
 End If
End Sub

The following VB sample moves the "wnd" node to "gdi" node:

With ChartView1.Nodes
 .Item("wnd").Parent = .Item("gdi")
End With

When moving a node from a parent to another you need to be sure:

the new parent node is not child of the current node. For instance, if A is parent of B,
and B is parent of C, you can't move the B as being child of C.
the current node and the new parent node are not assistant nodes. The AddAssistant
node adds assistant nodes. An assistant node can't have child nodes. The Add method
adds normal nodes, that can move from a parent to another.

property Node.PenBorderNode as PenTypeEnum
Specifies the type of pen used to paint the node's borders.

Type Description

PenTypeEnum A PenTypeEnum expression that indicates the type of the
pen used to pain the borders of the node.

Use the PenBorderNode property to define the type of the pen used to paint the borders for
a specified node. Use the PenBorderNode property to define the type of the pen used to
paint the borders for all nodes. Use the ShadowNode property to hide the node's shadow.
Use the BackColor property to specify the node's background color. Use the
DrawRoundNode property to specify whether the node has a round border. Use the
BorderColor property to assign a different color for the node's border.

property Node.Picture as Variant
Retrieves or sets a graphic to be displayed in the node.

Type Description

Variant

A VARIANT value that indicates the picture in the following
formats:

A picture object being displayed in the node (IPicture
interface)
A safe array of bytes that indicates the OLE Object
field. Use for OLE objects (such as Microsoft Word
documents, Microsoft Excel spreadsheets, pictures,
sounds, or other binary data) that were created in
other programs using the OLE protocol.
A string expression that specifies the key of the
picture being inserted using the HTMLPicture property
A string expression that indicates the picture's file
path
A string expression that indicates the base64 encoded
string that holds the picture. Use the eximages tool to
save your icons as base64 encoded format.

Use the Picture property to load an user defined picture to a node. Use the Image property
to display a 16x16 icon in the node. Use the PictureAlignment property to align the picture in
the node. Also, you can assign a picture to a node when calling Add method. Use the
BackColor property to specify the node's background color. Use the Picture property to
display a picture on the control's background. Use the Caption property to assign a caption
to a node. You can insert custom sized pictures inside HTML captions using the built-
in HTML format. The Picture property supports: BMP, EMF, EXIF, GIF, ICON, JPEG,
PNG, TIFF or WMF formats. The PictureWidth and PictureHeight properties controls the
size of displayed picture. The PictureWidthNode and PictureHeightNode properties of the
ChartView object handles the size of the displayed pictures for all the nodes.

If using the /NET assembly version, you can pass an System.Drawing.Image object to the
Picture property like: .Nodes.Add("Child2", .Root, "21").Picture = PictureBox1.Image

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.

https://exontrol.com/eximages.jsp

If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

The following VB sample loads icons and pictures using the BASE64 encoded strings:

Dim s As String
With ChartView1
 .BackColor = vbWhite

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 With .Root
 .Image = 1
 End With

 With .Nodes.Add("Item 1")
 s =
"gBCJr+BAAg0HGwEgwog4jg4ig4BAEFg4AZEKisZjUbAAzg5mg6Zg7Mg7/g0ek8oGcgjsijskjsmAEsmcoM0sM0uM0wM0ylwATMoTMsTMuTMwTMymAAZkoZksZkuZkwZkymQAf8of8sf8uf8wf8mlEdskekEekUekkesUqGcet9nGdpGdrGdilkruE3js5vtrnstk9BltnosttdJl8npsvs9Rl9rqsxk9ZmNnrsxtdhmcfskg0FAzskkEmM02t810Fzmuku8znGn2Ggv030mBv0zwk50GHnOkxU7g07s1PmeQnekyeBmeWnugzM90mcn9p0UgkXZpmik2EoGpoPY1lBklB7tE2VD7F+oflwOHoGEovYw9F8uKo8Go9o41H7KpqAybFKAyykuwzKkvKzilrW7aQPK7aSJIkzGqY1Kmwe1imwk17jKY2SnwevynwkwLIKYwiowew6owkxUAKYxqpweyCpwkybJqYyyqwezKqwkzirrErDOu7IkJyIyysNSrLStYrMJteraDK2ti+K2kStwmwLMqwwiutKw6uwmxSvyoxqvtKyCvwmybOKwyywtKzKwwnN6OTxPM9T3Pk+z9P9AUDP5V0JQtDUPRFE0SAFFUbR1FAAa9JUnSlJlnSZo0xStJGtStI03UFJUvUdQmuVtKU/TdT1RSpoGvS5WVKa9U1lWdRVrTtWVBS9c1nWlI0vSlY09WVg18a9MgAEla0nWliUkABHjXYCDUzSVY2daFSoNaBHWnWZH1/blN1TY1"

 s = s +
"XgBadlDXdYSXRb9wWBclK2taF1gAI5HiPaN8oPdlNWbaF23KAwyWkNYyXxg9p3WNYjU/c1bWgABZoMiQS4YR984YNdpEeMgA2bgVtVHil0DVdY1CPhON44IGOI1XVPCPjl14RlmZ3XmZH3aWdYW1VF3DWMuWXXlw15PhlI3pgGJEfpGiZZgw1kTe1s0+g2Dalhmh6Pjgg5zrVx5/iV74bjGN41k9pCNl6D1dilKWDrGZ6ftmcZyNYAhKAGl7HemgoNs415XjI1XLmNm3sEho2jwdw4zmd+2+aFjFZVJWYpndf3xSPG2/koSWXW+I7JURZmtzO+XPe1K9RZ+S9HS1PllWfB9FiHEWZVBZWzeXdU32Fa973/SW34lr0nV1meH4/heb5/mWL4no+fUAAICA"

 .Picture = s
 End With

 With .Nodes.Add("Item 2", , "ketA")
 s =
"gBCJoqBAAg0HGwEgwog4qg4Xg4BAEFg4AegDisZjUbgwzg5mg6Zg7Mg7/jsHGceAAzkErkUrkkrkwAls0lRmlpml5mmJmmcvACZlSZlqZl6ZmKZmcxADMlTMlrMl7MmLMmczAD/lT/lr/l7/mL/k0qldlj0gj0ij0kj1jlUpj0ptAztQztgzsctllxnErnV+tk+l0doUutFGl1spUwjtOmFoqUwtlWmUdrUytFemVssU0j9lkGhoOekkgkxmm8pm2huk20t4mk51Gx0N/nGlwV/mmFnWhxE60uLnkGnlnqE0yM80uUwU0y8+0Oan2lztAtWjkEi7VN0cmwtB1VC7OtoUkoXeouzonZv9E82CxFBwtG7OIo3mxdIg1ItPHpDtKooLKMWoLLqU7LNKU8zOqYtjuJA8zuJIkiTMcprVKdCDWqdCbYOOprZqhCC/qhCbBMiprCqlCDEKlCbFwCprHKpCDIqpCbKMoprLqtCDNKtCbOqwsass870iwpIrLqy1StNM1qtQo2CuIMri2r6riRK5CjBM0rLCq80zEK9CjFrBKrHLA0zIrBCjKM6rLLrE0zNLFCk4I5PM9T3Pk+z9P9AUDQVAGua5Z0KVlCmuVho0VQxrmhQpZUOWZo0ia5o0SVtHU4a6DUPTlG0XQxZlmQNEmuVpWC6GVUUhQtDllTtFINRFRmua1UFmVhECsLpWFMQ5EAOGQZCuRFUFYVgZCtRlbUdWtXWBWFCi6A4AAOKwrEQLtsWILtTlaFYVgDZl"

 s = s +
"XU5WtD2VbVlFZUwDAAGQD3La4yjIAADAOQQrAOFYc2IGRA1nTwAVgAASXGKwVi7fgADIR5EAAAIDhyR41CACt6ACVpHo9gNT3bWmC0gAJAhleADpUR5HjGR41kfhw15lh6JkQR+aWLZl2UvWpr0mA5EZkB18iOIwjjWIwgZkCoHgcI4jgrlYyAqI+MWxiYVgAPVUIMa1cYiNQy6eDgRg3p4gacI4DgcHIgagAwyamA4jDXsQ1iBYYSitngAa9WRZgAHWZaeBG6APuY1gQHIyaEA+mgeAGqbcI5HhkANm5Ea1G15ig1iCIAggOMt/gOCw12IB4ybQCvD9Xp+qjXeJS2hgprGhkwAgDxgg9j04vAcCoycUHIy9Pz+jh1pwOafa4ZV/kVCkDb2H5l0IEAcMvgez4g1cSDm3buBHXjWB1icxQqDFleIDlmRJHiOIIjg51o1gqCu0Ad/OoaL+O1bI0oMi8wVqnfQABUoKwGgAYq0p5YB2qP1acBUMr9n5NPaMEdtIa3GMwXNAVRahwvAGACBUNbT2qPLA4BwETjAdNPBEEBzr/ADgGAcIhbgKwYiBU2p9QoiBWizgCAFs7RYUOUEeAcMjywAgOAC0FyhK3DuHBWsxrxBlRKKfaAZtr9QDt3buxNiQaw1AHBYKwFgOXTgyEQIkWawwABWVArVUUV2gBrByACJjjF7glFYACDijIzAOAAolUqpFXM9UwooVgJQurdhsthmAKxTDXIcA4K0V5BqLFa39dDI1FDQUaDJr"

 s = s +
"K7lDLYABKAaArVsisUuoWK6m1UKyYIpSVihRrPSlILKQi51OK6USqJUDIlSzBU4LNSKjVDytllIVSIiJiSKgKQE="

 .Picture = s
 End With

 With .Nodes.Add("Child", "ketA")
 End With

End With

Run the sample and you get:

The following two VB samples are equivalents:

With ChartView1
 With .Nodes
 With .Add("<r><dotline><fgcolor=0000FF>Andrew Fuller</fgcolor>

<solidline>Title:<r><fgcolor=FF0000>Vice President Sales</fgcolor>

USA, Tacoma, WA, 98401, 908 W. Capital Way
<dotline><upline>Phone:
<r>(206) 555-9482", , , 1, "c:\temp\sample\andrew.gif")
 .BackColor = vbWhite
 End With
 End With
End With

With ChartView1
 With .Nodes
 With .Add("<r><dotline><fgcolor=0000FF>Andrew Fuller</fgcolor>

<solidline>Title:<r><fgcolor=FF0000>Vice President Sales</fgcolor>

USA, Tacoma, WA, 98401, 908 W. Capital Way
<dotline><upline>Phone:
<r>(206) 555-9482", , , 1)
 .BackColor = vbWhite
 .Picture = "c:\temp\sample\andrew.gif"
 End With
 End With
 End With

I am wondering how to add a bitmap to a node without using an image list? Actually from a
CBitmap that I already have. The idea is to get an IPicture object that displays that
HBITMAP handle, so we have to use the OleCreatePictureIndirect API function that does
the job. We can use the CPictureHolder class, already defined in the afxctl.h file, or we can
use a direct function IPictureFromCBitmap as defined bellow.

1. Using the CPictureHolder class

#include <afxctl.h>
CPictureHolder pict;
if (pict.CreateFromBitmap((HBITMAP)bitmap.Detach()))
{
 COleVariant vtPicture;
 V_VT(&vtPicture) = VT_DISPATCH;
 (V_DISPATCH(&vtPicture) = pict.GetPictureDispatch())->AddRef();
 node.SetPicture(vtPicture);
}

2. Using the IPictureFromCBitmap function

#include <atlbase.h>
CComVariant IPictureFromCBitmap(CBitmap* p)
{
 if (NULL != p)
 {
 PICTDESC pDesc = {0};
 pDesc.cbSizeofstruct = sizeof(PICTDESC);
 pDesc.picType = PICTYPE_BITMAP;
 pDesc.bmp.hbitmap = (HBITMAP)p->Detach();
 CComPtr<IPicture> spPicture;
 if (SUCCEEDED(OleCreatePictureIndirect(&pDesc, IID_IPicture, FALSE,
(LPVOID*)&spPicture)))
 return CComVariant(CComQIPtr<IDispatch>(spPicture));
 }
 return NULL;
}

and you call something like node.SetPicture(IPictureFromCBitmap(&bitmap));

where the node member is the node in the control to put the picture, and the bitmap is an
object of CBitmap type.

property Node.PictureAlignment as ImageAlignmentEnum
Specifies the alignment of the picture within the node.

Type Description

ImageAlignmentEnum An ImageAlignmentEnum expression that indicates the
alignment of the picture.

Use the PictureAlignment property to align the picture in the node. Use the Picture property
to load an user defined picture to a node. The PictureAlignment property has no effect if the
node has no picture loaded. Use the BackColor property to specify the node's background
color. Use the Picture property to display a picture on the control's background.

property Node.PictureAspectRatio as AspectRatioEnum
Specifies the aspect ratio of the node's picture.

Type Description

AspectRatioEnum An AspectRatioEnum expression that specifies the aspect
ratio for the node's picture.

By default, the PictureAspectRatio property is exAspectRatioNone. Even if the
PictureAspectRatio property is not set, the control's PictureAspectRatioNode property may
control's the aspect ratio for all pictures. Use the Picture property to specify the node's
picture.

The aspect ratio for the node's picture works as follows:

exAspectRatioWidth, the PictureWidth or PictureWidthNode property must specify
the fixed width, so the height of the displaying picture is calculated based on the
original size, so it keeps its aspect ratio.
exAspectRatioHeight, the PictureHeight or PictureHeightNode property must specify
the fixed height, so the width of the displaying picture is calculated based on the
original size, so it keeps its aspect ratio.

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.
If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

property Node.PictureHeight as Long
Specifies the height of the node's picture.

Type Description

Long
A long expression that specifies the height to display the
node's picture. If not specified, the picture's height is used
instead.

By default, the PictureHeight property is -1. Use the PictureHeight property to specify a
different height to display the node's picture. Use the Picture property to specify the node's
picture. The PictureWidthNode and PictureHeightNode properties of the ChartView object
handles the size of the displayed pictures for all the nodes. The PictureWidth and
PictureHeight properties handles the size of displayed picture for specified node. The
PictureAspectRatio property specifies the aspect ratio for the node's picture based on the
original width or height.

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.
If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

The following screen shot shows the root's picture resized, while the other nodes display
the pictures using their original size.

property Node.PictureWidth as Long
Specifies the width of the node's picture.

Type Description

Long
A long expression that specifies the width to display the
node's picture. If not specified, the picture's width is used
instead.

By default, the PictureWidth property is -1. Use the PictureWidth property to specify a
different width to display the node's picture. Use the Picture property to specify the node's
picture. The PictureWidthNode and PictureHeightNode properties of the ChartView object
handles the size of the displayed pictures for all the nodes. The PictureWidth and
PictureHeight properties handles the size of displayed picture for specified node. The
PictureAspectRatio property specifies the aspect ratio for the node's picture based on the
original width or height.

The size of the picture being shown in the node is computed as follow:

if the PictureWidth and/or PictureHeight property is specified, it indicates the width or
the height of the picture being shown in the node.
if the PictureWidthNode and/or PictureHeightNode properties of the ChartView object is
specified, it indicates the width or the height of the picture being shown in the node.
If none of these is specified, the node displays the picture using its size.

In any case, the size of the picture is also influenced by the the aspect ratio for the node's
picture as it is specified by PictureAspectRatio or PictureAspectRatioNode property while
any of these is not exAspectRatioNone.

The following screen shot shows the root's picture resized, while the other nodes display
the pictures using their original size.

property Node.Position as Long
Specifies the position of the node.

Type Description
Long A long expression that specifies the position of the node.

Use the Position property to determine the position of the node in the child nodes collection
of the parent node. Use the Index or Key property to identify a node. Use the FirstNode
property to get the first child node. Use the NextNode property to determine the next sibling
node. Use the NodeCount property to get the number of child nodes. Use the LastNode
property to determine the last child node. Use the Nodes property to access the nodes
collection. Use the Add method to add a child node. Use the Root property to get the root
node. Use the Caption property to specify the caption of the node.

The following VB sample displays the position for each child node that belongs to the root
node:

With ChartView1
 With .Root
 Dim c As EXORGCHARTLibCtl.Node
 Set c = .FirstNode
 While Not c Is Nothing
 Debug.Print c.Position
 Set c = c.NextNode
 Wend
 End With
End With

The following VB sample changes the position of the last visible child node that belongs to
the root node:

With ChartView1.Root
 .LastNode.Position = 0
End With

The following C++ sample changes the position of the last visible child node that belongs to
the root node:

m_chartview.GetRoot().GetLastNode().SetPosition(0);

The following VB.NET sample changes the position of the last visible child node that
belongs to the root node:

With AxChartView1.Root
 .LastNode.Position = 0
End With

The following C# sample changes the position of the last visible child node that belongs to
the root node:

axChartView1.Root.LastNode.Position = 0;

The following VFP sample changes the position of the last visible child node that belongs to
the root node:

With thisform.ChartView1
 .Root.LastNode.Position = 0
EndWith

property Node.PrevNode as Node
Gets the previous sibling node.

Type Description
Node A Node object that identifies the previous sibling node.

Use the PrevNode property to determine the previous sibling node. Use the NextNode
property to determine the next sibling node Use the LastNode property to determine the last
child node. Use the FirstNode property to get the first child node. Use the NodeCount
property to get the number of child nodes. Use the Position property to change the node's
position.

The following VB sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLibCtl.Node)
 Dim c As EXORGCHARTLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Caption
 enumRec c
 Set c = c.NextNode
 Wend
End Sub

The following C++ sample enumerates recursively all the child nodes:

void enumRec(CNode* pNode)
{
 if (pNode != NULL)
 {
 CNode child = pNode->GetFirstNode();
 while (child.m_lpDispatch != NULL)
 {
 OutputDebugString(child.GetCaption());
 OutputDebugString("\r\n");
 enumRec(&child);
 child = child.GetNextNode();
 }
 }

}

The following VB.NET sample enumerates recursively all the child nodes:

Private Sub enumRec(ByVal n As EXORGCHARTLib.Node)
 Dim c As EXORGCHARTLib.Node = n.FirstNode
 While Not c Is Nothing
 Debug.Print(c.Caption)
 enumRec(c)
 c = c.NextNode
 End While
End Sub

The following C# sample enumerates recursively all the child nodes:

private void enumRec(EXORGCHARTLib.Node node)
{
 EXORGCHARTLib.Node child = node.FirstNode;
 while (child != null)
 {
 System.Diagnostics.Debug.WriteLine(child.Caption);
 enumRec(child);
 child = child.NextNode;
 }
}

The following VFP sample enumerates recursively all the child nodes:

LPARAMETERS node

local child
child = node.FirstNode
do while (!isnull(child))
 wait window nowait child.Caption
 thisform.enumrec(child)
 child = child.NextNode
enddo

method Node.Remove ()
Removes recursively the child nodes, the assistant nodes and all the nodes in the same
group, and if possible remove the node itself.

Type Description

method Node.RemoveAssistant (Index as Variant)
Removes an assistant node.

Type Description

Index as Variant A long expression that indicates the index of the assistant
node being removed.

Use the RemoveAssistant method to remove an assistant node. The RemoveAssistant
method removes only the nodes being added using the AddAssistant method. The
IsAssistant property determines whether a node is an assistant node or a child node. Use
the ClearAssistants method to clear the assistant nodes collection. Use the ShowAssistants
property to hide all assistant nodes. Use the Remove method to remove a child node.

method Node.RemoveGroup (Index as Variant)
Removes a node from the group.

Type Description

Index as Variant A long expression that specifies the index of the group
node being removed.

Use the RemoveGroup method to remove a group node. Use the AddGroup method to add
new nodes in the same group (multiple parents). Use the IsGroup property to specify
whether a node was added using the AddGroup method. Use the CountGroup and Group
properties to access or enumerate the group nodes collection. Use the InflateGroupY
property to specify the indentation of the group on vertical axis.

property Node.ShadowNode as Boolean
Specifies whether the node has shadow.

Type Description

Boolean A boolean expression that indicates whether the node has
shadow.

Use the ShadowNode property to hide the shadow for a specific node. The ShadowNode
property determines whether the control displays a shadow for nodes. Use the
PenBorderNode property to define the type of the pen used to paint the borders for a
specified node. Use the SelColor property to hide the mark around the selected node. Use
the SelectNode property to specify the selected node.

property Node.ShowLinkDir as Boolean
Shows or hides the direction between the node and its parent.

Type Description

Boolean
A Boolean expression that indicates whether the direction
of the link between the parent and the current node is
shown or hidden.

By default, the ShowLinkDir property is True. This property has effect only if the
ShowLinksDir property of the ChartView is True. You can use the ShowLinkDir property to
hide specific arrows in the chart.

The following samples shows how to hide directions for specific links:

VBA (MS Access, Excell...)

With ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").ShowLinkDir = False
 .Add "L1_B",0,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
End With

VB6

With ChartView1

 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").ShowLinkDir = False
 .Add "L1_B",0,"LB"
 .Add "L2_A","LA","LA2"
 .Add "L2_B","LB","LB2"
 End With
End With

VB.NET

With Exchartview1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = Color.FromArgb(0,0,0)
 .AntiAliasing = True
 With .Nodes
 .Add("L1_A",0,"LA").ShowLinkDir = False
 .Add("L1_B",0,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 End With
End With

VB.NET for /COM

With AxChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = True
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = True
 With .Nodes

 .Add("L1_A",0,"LA").ShowLinkDir = False
 .Add("L1_B",0,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXORGCHARTLib' for the library: 'ExOrgChart 1.0
Control Library'

 #import <ExOrgChart.dll>
 using namespace EXORGCHARTLib;
*/
EXORGCHARTLib::IChartViewPtr spChartView1 = GetDlgItem(IDC_CHARTVIEW1)-
>GetControlUnknown();
spChartView1->PutIndentSiblingY(30);
spChartView1->PutShowLinksDir(VARIANT_TRUE);
spChartView1->PutPenWidthLink(2);
spChartView1->PutLinkColor(RGB(0,0,0));
spChartView1->PutAntiAliasing(VARIANT_TRUE);
EXORGCHARTLib::INodesPtr var_Nodes = spChartView1->GetNodes();
 var_Nodes->Add(L"L1_A",long(0),"LA",vtMissing,vtMissing)-
>PutShowLinkDir(VARIANT_FALSE);
 var_Nodes->Add(L"L1_B",long(0),"LB",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_A","LA","LA2",vtMissing,vtMissing);
 var_Nodes->Add(L"L2_B","LB","LB2",vtMissing,vtMissing);

C#

exchartview1.IndentSiblingY = 30;
exchartview1.ShowLinksDir = true;
exchartview1.PenWidthLink = 2;
exchartview1.LinkColor = Color.FromArgb(0,0,0);

exchartview1.AntiAliasing = true;
exontrol.EXORGCHARTLib.Nodes var_Nodes = exchartview1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).ShowLinkDir = false;
 var_Nodes.Add("L1_B",0,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);

C# for /COM

axChartView1.IndentSiblingY = 30;
axChartView1.ShowLinksDir = true;
axChartView1.PenWidthLink = 2;
axChartView1.LinkColor = Color.FromArgb(0,0,0);
axChartView1.AntiAliasing = true;
EXORGCHARTLib.Nodes var_Nodes = axChartView1.Nodes;
 var_Nodes.Add("L1_A",0,"LA",null,null).ShowLinkDir = false;
 var_Nodes.Add("L1_B",0,"LB",null,null);
 var_Nodes.Add("L2_A","LA","LA2",null,null);
 var_Nodes.Add("L2_B","LB","LB2",null,null);

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Node,com_Nodes;
 anytype var_Node,var_Nodes;
 ;

 super();

 exchartview1.IndentSiblingY(30);
 exchartview1.ShowLinksDir(true);
 exchartview1.PenWidthLink(2);
 exchartview1.LinkColor(WinApi::RGB2int(0,0,0));
 exchartview1.AntiAliasing(true);
 var_Nodes = exchartview1.Nodes(); com_Nodes = var_Nodes;

 var_Node =
COM::createFromObject(com_Nodes.Add("L1_A",COMVariant::createFromInt(0),"LA"));
 com_Node = var_Node;
 com_Node.ShowLinkDir(false);
 com_Nodes.Add("L1_B",COMVariant::createFromInt(0),"LB");
 com_Nodes.Add("L2_A","LA","LA2");
 com_Nodes.Add("L2_B","LB","LB2");
}

Delphi 8 (.NET only)

with AxChartView1 do
begin
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := Color.FromArgb(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin
 Add('L1_A',TObject(0),'LA',Nil,Nil).ShowLinkDir := False;
 Add('L1_B',TObject(0),'LB',Nil,Nil);
 Add('L2_A','LA','LA2',Nil,Nil);
 Add('L2_B','LB','LB2',Nil,Nil);
 end;
end

Delphi (standard)

with ChartView1 do
begin
 IndentSiblingY := 30;
 ShowLinksDir := True;
 PenWidthLink := 2;
 LinkColor := RGB(0,0,0);
 AntiAliasing := True;
 with Nodes do
 begin

 Add('L1_A',OleVariant(0),'LA',Null,Null).ShowLinkDir := False;
 Add('L1_B',OleVariant(0),'LB',Null,Null);
 Add('L2_A','LA','LA2',Null,Null);
 Add('L2_B','LB','LB2',Null,Null);
 end;
end

VFP

with thisform.ChartView1
 .IndentSiblingY = 30
 .ShowLinksDir = .T.
 .PenWidthLink = 2
 .LinkColor = RGB(0,0,0)
 .AntiAliasing = .T.
 with .Nodes
 .Add("L1_A",0,"LA").ShowLinkDir = .F.
 .Add("L1_B",0,"LB")
 .Add("L2_A","LA","LA2")
 .Add("L2_B","LB","LB2")
 endwith
endwith

property Node.ShowLinks as Boolean
Shows or hides the links between node and its child nodes or its parent, if is it an assistant
node.

Type Description

Boolean
A Boolean expression that indicates whether the child
nodes, or assistant nodes are connected to their parent
node.

By default, the ShowLinks property is True. Use the ShowLinks property to hide the
connection between a child node or an assistant node to its parent. Use the LinkTo property
to connect manually a node with other. The ShowLinks property doesn't affect the links
added manually using the LinkTo property. Use the FixedWidth property to fix the node's
width. For instance, use the ShowLinks property to hide the connection between an
assistant node and its parent, so it can simulate that an assistant node can have a child
assistant node, like shown in the following screen shot. The ShowLinkDir property indicates
whether the direction of the link is hidden, while the ShowLinksDir property is True.

 The red circle marks the area where the link between the assistant node and its parent is
hidden.

The following template shows how to simulate a child assistant node:

BeginUpdate
PenWidthLink = 3
Root
{
 AddAssistant("Assistant")
 {
 Key = "A"

 FixedWidth = 80
 }
 AddAssistant("Child Assistant")
 {
 Left = True
 ShowLinks = False
 FixedWidth = 80
 LinkTo = "A"
 }
}
Nodes
{
 Add("Item 1")
}
EndUpdate

and it generates a screen like follows:

property Node.ShowRoundLink as Boolean
Specifies whether the round links are shown between parent and child nodes.

Type Description

Boolean
A Boolean expression that specifies whether links between
the node and its child nodes are shown rounded or
rectangular.

By default, the ShowRoundLink property is False. Use the ShowRoundLink property to
specify round links for a specified node and its child nodes. Use the ShowRoundLink
property to specify round links for all nodes. Use the PenLink property indicates the type of
the pen used to paint the links between nodes. Use the PenWidthLink property to specify
the thickness of the links between nodes. Use the LinkColor property to specify the color
for the links between nodes.

The following screen shot shows the chart using round links ONLY for root node (
Root.ShowRoundLink property is True) :

property Node.ToolTip as String
Specifies the description for the node's tooltip.

Type Description

String A string expression that identifies the description of the
node's tooltip.

Use the ToolTip property to assign a tooltip to a node. Use the ToolTipTitle property to
specify the title of the tooltip window. The tooltip shows up when the cursor hovers the
node. The ToolTip property supports built-in HTML tags like the Caption property does. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. The ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the Root property to get the root node. Use the
 HTML tag to insert icons inside the node's caption. Use the ToolTipFont property to
assign a font for the control's tooltip. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

The ToolTip property supports built-in HTML format like listed:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor

about:blank

element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,

width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample adds a node with a tooltip:

With ChartView1
 .BackColor = vbWhite
 With .Nodes
 With .Add("Andrew FullerTitle:Vice President Sales
USA, Tacoma, WA, 98401, 908 W. Capital Way
Phone:(206) 555-9482", "nancy", , 1, "c:\temp\sample\andrew.gif")
 .Position = 0
 .BackColor = vbWhite
 .ToolTip = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager."
 .ToolTipTitle = "Information"
 End With
 End With
End With

The following C++ sample assigns a tooltip to the root node:

CNode node = m_chartview.GetRoot();
node.SetToolTip("Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager.");
node.SetToolTipTitle("Information");

The following VB.NET sample assigns a tooltip to the root node:

With AxChartView1.Root
 .ToolTip = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager."
 .ToolTipTitle = "Information"
End With

The following C# sample assigns a tooltip to the root node:

EXORGCHARTLib.Node node = axChartView1.Root;
node.ToolTip = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager.";
node.ToolTipTitle = "Information";

The following VFP sample assigns a tooltip to the root node:

With thisform.ChartView1.Root
 local s
 s = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketi"
 s = s + "ng from the University of Dallas in 1981. He is fluent in French and Italian and
reads German. He joined the company as a sales representati"
 .ToolTip = s + "ve, was promoted to sales manager."
 .ToolTipTitle = "Information"
EndWith

property Node.ToolTipTitle as String
Specifies the title of the node's tooltip.

Type Description

String A string expression that specifies the title of the node's
tooltip.

Use the ToolTipTitle property to define the title of the tooltip of the node. Use the ToolTip
property to assign a tooltip to a node. The ToolTipPopDelay property specifies the period in
ms of time the ToolTip remains visible if the mouse pointer is stationary within a control. Use
the ToolTipWidth property to specify the width of the tooltip window. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears.

The following VB sample adds a node with a tooltip:

With ChartView1
 .BackColor = vbWhite
 With .Nodes
 With .Add("Andrew FullerTitle:Vice President Sales
USA, Tacoma, WA, 98401, 908 W. Capital Way
Phone:(206) 555-9482", "nancy", , 1, "c:\temp\sample\andrew.gif")
 .Position = 0
 .BackColor = vbWhite
 .ToolTip = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager."
 .ToolTipTitle = "Information"
 End With

 End With
End With

The following C++ sample assigns a tooltip to the root node:

CNode node = m_chartview.GetRoot();
node.SetToolTip("Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager.");
node.SetToolTipTitle("Information");

The following VB.NET sample assigns a tooltip to the root node:

With AxChartView1.Root
 .ToolTip = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager."
 .ToolTipTitle = "Information"
End With

The following C# sample assigns a tooltip to the root node:

EXORGCHARTLib.Node node = axChartView1.Root;
node.ToolTip = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketing from
the University of Dallas in 1981. He is fluent in French and Italian and reads German. He
joined the company as a sales representative, was promoted to sales manager.";
node.ToolTipTitle = "Information";

The following VFP sample assigns a tooltip to the root node:

With thisform.ChartView1.Root
 local s
 s = "Andrew Fuller
Andrew received his BTS commercial in 1974 and a Ph.D. in international marketi"
 s = s + "ng from the University of Dallas in 1981. He is fluent in French and Italian and
reads German. He joined the company as a sales representati"

 .ToolTip = s + "ve, was promoted to sales manager."
 .ToolTipTitle = "Information"
EndWith

property Node.UserData as Variant
Assigns an user extra data to the node.

Type Description

Variant A Variant expression that identifies an extra data
associated to a node.

The UserData property assigns an extra data to a node. Use the UserData property to
associate a number, a string, or something else to a node. The UserData property is not
used by the control. Use the Caption property to specify the caption of the node.

property Node.Width as Long
Specifies the maximum width of the node's caption.

Type Description

Long A long expression that defines the maximum width of the
caption of the node.

Use the Width property to specify the maximum of the width of the node's caption. Use the
Caption property to specify the node's caption. Use the FixedWidth and FixedHeight
property to specify a fixed size for a node. Use the FixedWidthHeight and FixedHeightHeight
properties to specify fixed size for all nodes in the organigram. Use the Font property to
specify the control's font.

Nodes object
The Nodes collection holds the collection of nodes of the organigram. Use the Nodes
property to access the Nodes collection.

Name Description

Add Adds a child node and returns a reference to the newly
created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific node of the Nodes collection.
Remove Removes a specific member from the Nodes collection.

method Nodes.Add (Caption as String, [Parent as Variant], [Key as
Variant], [Image as Variant], [Picture as Variant])
Adds a child node and returns a reference to the newly created object.

Type Description

Caption as String A string expression that identifies the node's caption. The
Caption supports built-in HTML tags.

Parent as Variant
A string expression that specifies the key of the parent
node, a long expression that indicates the index of the
parent node, a Node object that specifies the parent node

Key as Variant A string expression that defines the key of the node.

Image as Variant A long expression that indicates the index of the icon being
assigned to the node.

Picture as Variant
A string expression that indicates the path to the picture
file being loaded by the node, a IPictureDisp object that
specifies the picture of the node

Return Description
Node A Node object being created.

Use the Add method to add new nodes to the chart. Use the Remove method to remove a
specific node. Use the Item property to find a node in the Nodes collection. By default, the
Nodes collection includes the Root object. Use the BeginUpdate and EndUpdate methods to
maintain performance while adding new nodes. Use the AddAssistant method to add an
assistant node. An assistant node is displayed between child node and its parent. The Node
being returned by the Add method has the IsAssistant property on False. Use the Image
property to assign an icon to a node. Use the Picture property to assign a custom size
picture to a node. Use the UserData property to associate an extra data to a node. Use the
LoadXML/SaveXML methods to load/save the control's data from/to XML documents. Use
the LinkCaption property to specify a caption on the line that links the parent with the
current node.

The Caption parameter supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of

about:blank

the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a

value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Using ADO, you can load a hierarchical table, if you have a table that contains a field that
identifies the key of the record ("EmployeeID"), and a field that holds the key to the parent
record ("ReportsTo"), like in the following VB sample:

Option Explicit

Private Sub Form_Load()
On Error GoTo error
 Dim i As Long
 Dim rs As Object, t As IPictureDisp
 Set rs = CreateObject("ADODB.Recordset")

 rs.Open "Select * From Employees", "Provider=Microsoft.Jet.OLEDB.4.0;Data Source= "
& App.Path & "\sample.mdb", 3

 With ChartView1
 .BeginUpdate
 While Not rs.EOF()
 With .Nodes
 With .Add(getInfo(rs), rs("ReportsTo").Value, rs("EmployeeID").Value)
 .ToolTip = rs("Notes") + "
<upline><dotline><r>" + rs("FirstName")
+ " " + rs("LastName") + ""
 End With
 End With
 rs.MoveNext
 Wend
 .EndUpdate
 End With
 Exit Sub
error:
 Label1 = "The ""ADODB.Recordset"" object is missing. Please make sure that you have
installed properly the ADO files."
End Sub

Private Function getInfo(ByVal r As Object) As String
 getInfo = r("TitleOfCourtesy") + " <fgcolor=000080>" + r("FirstName") + " " +
r("LastName") + "</fgcolor>
" + _
 r("Title") + "
<upline><dotline>" + _
 r("City") + "
 " + r("Address")

End Function

Private Sub Form_Resize()
 On Error Resume Next
 With ChartView1
 .Width = Me.ScaleWidth - 2 * .Left
 .Height = Me.ScaleHeight - (Label1.Height + 3 * Label1.Top)
 End With
End Sub

The following VB sample adds two nodes to the Nodes collection:

With ChartView1
 .BeginUpdate
 .BackColor = vbWhite
 With .Nodes
 With .Add("<r><dotline><fgcolor=0000FF>Andrew Fuller</fgcolor>

<solidline>Title:<r><fgcolor=FF0000>Vice President Sales</fgcolor>

USA, Tacoma, WA, 98401, 908 W. Capital Way
<dotline><upline>Phone:
<r>(206) 555-9482", , "andrewKey", 1, "c:\temp\sample\andrew.gif")
 .Position = 0
 .BackColor = vbWhite
 .ToolTip = "<dotline><r><fgcolor=0000FF>Andrew Fuller</fgcolor>

Andrew received his BTS commercial in 1974 and a Ph.D. in international
marketing from the University of Dallas in 1981. He is fluent in French and Italian and
reads German. He joined the company as a sales representative, was promoted to sales
manager."
 .ToolTipTitle = "Information"
 End With
 With .Add("<r><dotline><fgcolor=0000FF>Steven Buchanan</fgcolor>

<solidline>Title:<r>Sales Manager
UK, London, SW1 8JR, 14
Garrett Hill
<dotline><upline>Phone:<r>(71) 555-4848
<dotline>
<upline>Hire Date:<r>17-Oct-1993", "andrewKey", "stevenKey", ,
"c:\temp\sample\steven.gif")
 End With
 End With
 .EndUpdate
End With

The following VB sample adds few nodes to the control like shown above:

With ChartView1
 .BeginUpdate
 With .Nodes
 .Add "Item 1", "root", "Key1"
 .Add "Item 2", "root"
 .Add "Sub Item 1", "Key1"
 .Add "Sub Item 2", "Key1"

 End With
 .EndUpdate
End With

The following C++ sample adds few nodes to the control like shown above:

#include "nodes.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
m_chartview.BeginUpdate();
CNodes nodes = m_chartview.GetNodes();
nodes.Add("Item 1", COleVariant("root"), COleVariant("Key1"), vtMissing, vtMissing);
nodes.Add("Item 2", COleVariant("root"), vtMissing, vtMissing, vtMissing);
nodes.Add("Sub Item 1", COleVariant("Key1"), vtMissing, vtMissing, vtMissing);
nodes.Add("Sub Item 2", COleVariant("Key1"), vtMissing, vtMissing, vtMissing);
m_chartview.EndUpdate();

The following VB.NET sample adds few nodes to the control like shown above:

With AxChartView1
 .BeginUpdate()
 With .Nodes
 .Add("Item 1", "root", "Key1")
 .Add("Item 2", "root")
 .Add("Sub Item 1", "Key1")
 .Add("Sub Item 2", "Key1")
 End With
 .EndUpdate()
End With

The following C# sample adds few nodes to the control like shown above:

axChartView1.BeginUpdate();
EXORGCHARTLib.Nodes nodes = axChartView1.Nodes;
nodes.Add("Item 1", "root", "Key1", null, null);
nodes.Add("Item 2", "root", null, null, null);
nodes.Add("Sub Item 1", "Key1", null, null, null);
nodes.Add("Sub Item 2", "Key1", null, null, null);
axChartView1.EndUpdate();

The following VFP sample adds few nodes to the control like shown above:

With thisform.ChartView1
 .BeginUpdate
 With .Nodes
 .Add("Item 1", "root", "Key1")
 .Add("Item 2", "root")
 .Add("Sub Item 1", "Key1")
 .Add("Sub Item 2", "Key1")
 EndWith
 .EndUpdate
EndWith

method Nodes.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to clear the entire nodes collection. Use the Remove method to
remove a specific node in the collection. The ClearAssistants method clears the assistant
nodes collection. Use the ShowAssistants property to hide all assistant nodes. Use the
Expanded property to expand or collapse a node. Use the Count property to count the
nodes in the collection. Use the Item property to access a node giving its index or its key.
Use the Index property to get the index of the node. Use the Key property to specify the
key of the node.

property Nodes.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that specifies the number of nodes in
the organigram

Use the Count property to get the number of nodes in the Nodes collection. Use the Item
property to access the node by key or by its index. Use the Index property to get the index
of the node. Use the Key property to specify the key of the node. Use the FirstNode
property to retrieve the first child node. Use the NextNode property to determine the next
sibling node. Use the NodeCount property to get the number of child nodes. Use the
Position property to change the node's position.

The following VB sample enumerates the nodes in the control:

Dim i As Long
With ChartView1.Nodes
 For i = 0 To .Count - 1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .Item(i)
 Debug.Print n.Caption
 Next
End With

The following VB sample enumerates the nodes in the control:

Dim n As EXORGCHARTLibCtl.Node
For Each n In ChartView1.Nodes
 Debug.Print n.Caption
Next

The following C++ sample enumerates the nodes in the control:

#include "nodes.h"
CNodes nodes = m_chartview.GetNodes();
for (long i = 0; i < nodes.GetCount(); i++)
{
 CNode node = nodes.GetItem(COleVariant(i));

 OutputDebugString(node.GetCaption());
}

The following VB.NET sample enumerates the nodes in the control:

Dim i As Integer
With AxChartView1.Nodes
 For i = 0 To .Count - 1
 Dim n As EXORGCHARTLib.Node = .Item(i)
 Debug.WriteLine(n.Caption)
 Next
End With

The following VB.NET sample enumerates the nodes in the control:

Dim n As EXORGCHARTLib.Node
For Each n In AxChartView1.Nodes
 Debug.WriteLine(n.Caption)
Next

The following C# sample enumerates the nodes in the control:

for (int i = 0; i < axChartView1.Nodes.Count; i++)
 System.Diagnostics.Debug.WriteLine(axChartView1.Nodes[i].Caption);

The following VFP sample enumerates the nodes in the control:

local i
With thisform.ChartView1.Nodes
 For i = 0 To .Count - 1
 local n
 n = .Item(i)
 wait window nowait n.Caption
 Next
EndWith

property Nodes.Item (Index as Variant) as Node
Returns a specific node of the Nodes collection.

Type Description

Index as Variant
A string expression that specifies the key of the node, a
long expression that indicates the index of the node, a
Node object that specifies the node being accessed.

Node A Node object being accessed.

Use the Item property to access the node by key or by its index. Use the Count property to
count the nodes in the collection. Use the Index property to get the index of the node. Use
the Key property to specify the key of the node. Use the FirstNode property to retrieve the
first child node. Use the NextNode property to determine the next sibling node. Use the
NodeCount property to get the number of child nodes. Use the Position property to change
the node's position.

The following VB sample enumerates the nodes in the control:

Dim i As Long
With ChartView1.Nodes
 For i = 0 To .Count - 1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .Item(i)
 Debug.Print n.Caption
 Next
End With

The following VB sample enumerates the nodes in the control:

Dim n As EXORGCHARTLibCtl.Node
For Each n In ChartView1.Nodes
 Debug.Print n.Caption
Next

The following C++ sample enumerates the nodes in the control:

#include "nodes.h"
CNodes nodes = m_chartview.GetNodes();
for (long i = 0; i < nodes.GetCount(); i++)

{
 CNode node = nodes.GetItem(COleVariant(i));
 OutputDebugString(node.GetCaption());
}

The following VB.NET sample enumerates the nodes in the control:

Dim i As Integer
With AxChartView1.Nodes
 For i = 0 To .Count - 1
 Dim n As EXORGCHARTLib.Node = .Item(i)
 Debug.WriteLine(n.Caption)
 Next
End With

The following VB.NET sample enumerates the nodes in the control:

Dim n As EXORGCHARTLib.Node
For Each n In AxChartView1.Nodes
 Debug.WriteLine(n.Caption)
Next

The following C# sample enumerates the nodes in the control:

for (int i = 0; i < axChartView1.Nodes.Count; i++)
 System.Diagnostics.Debug.WriteLine(axChartView1.Nodes[i].Caption);

The following VFP sample enumerates the nodes in the control:

local i
With thisform.ChartView1.Nodes
 For i = 0 To .Count - 1
 local n
 n = .Item(i)
 wait window nowait n.Caption
 Next
EndWith

method Nodes.Remove (Index as Variant)
Removes a specific member from the Nodes collection.

Type Description

Index as Variant
A string expression that specifies the key of the node, a
long expression that indicates the index of the node, a
Node object that specifies the node being removed.

Use the Remove method to remove a child node. Use the Clear method to clear all nodes in
the collection. The Root node (Index = 0) can't be removed. Use the RemoveAssistant
method to remove an assistant node. The IsAssistant property specifies whether a node is
a child node or an assistant node. Use the ShowAssistants property to hide all assistant
nodes. Use the Expanded property to collapse a node. The Remove method does not
remove recursively the child nodes. Use the Remove method of the Node object to remove
recursively the child nodes, the assistant nodes and all the nodes in the same group, and
if possible remove the node itself.

The following VB sample removes recursively the node all all its child nodes:

Private Sub removeRec(ByVal chart As EXORGCHARTLibCtl.ChartView, ByVal n As
EXORGCHARTLibCtl.Node)
 Dim c As EXORGCHARTLibCtl.Node
 Set c = n.FirstNode
 While Not (c Is Nothing)
 Dim x As EXORGCHARTLibCtl.Node
 Set x = c.NextNode
 removeRec chart, c
 Set c = x
 Wend
 If Not (n.Parent Is Nothing) Then
 chart.Nodes.Remove n
 End If
End Sub

The following C++ sample removes recursively the node all all its child nodes:

void removeRec(CChartView* pChart, CNode* pNode)
{
 if (pNode != NULL)

 {
 CNode child = pNode->GetFirstNode();
 while (child.m_lpDispatch != NULL)
 {
 CNode next = child.GetNextNode();
 removeRec(pChart, &child);
 child = next;
 }
 if (pNode->GetParent().m_lpDispatch != NULL)
 pChart->GetNodes().Remove(COleVariant(pNode->GetKey()));
 }
}

and you can call the removeRec function like follows:

CNode node(V_DISPATCH(&m_chartview.GetSelectNode()));
removeRec(&m_chartview, &node);

The following VB.NET sample removes recursively the node all all its child nodes:

Private Sub removeRec(ByVal chart As AxEXORGCHARTLib.AxChartView, ByVal n As
EXORGCHARTLib.Node)
 Dim c As EXORGCHARTLib.Node = n.FirstNode
 While Not (c Is Nothing)
 Dim x As EXORGCHARTLib.Node = c.NextNode
 removeRec(chart, c)
 c = x
 End While
 If Not (n.Parent Is Nothing) Then
 chart.Nodes.Remove(n)
 End If
End Sub

The following C# sample removes recursively the node all all its child nodes:

private void removeRec(AxEXORGCHARTLib.AxChartView chart, EXORGCHARTLib.Node n)
{
 EXORGCHARTLib.Node c = n.FirstNode;
 while (c != null)

 {
 EXORGCHARTLib.Node x = c.NextNode;
 removeRec(chart,c);
 c = x;
 }
 if (n.Parent != null)
 chart.Nodes.Remove(n);
}

and you can call the removeRec function like follows:

removeRec(axChartView1, axChartView1.SelectNode as EXORGCHARTLib.Node);

The following VFP sample removes recursively the node all all its child nodes (add
removerec method):

lparameters chart, n

local c
c = n.FirstNode
do While !(isnull(c))
 local x
 with c
 x = .NextNode
 endwith
 thisform.removerec(chart, c)
 c = x
enddo
If !(isnull(n.Parent))
 chart.Nodes.Remove(n)
EndIf

Pattern object
The Pattern object can be used to apply a pattern and a frame with different colors on an
UI element. For instance, the Pattern property indicates the pattern to be applied on the
frame. The Pattern object supports the following properties:

Name Description
Color Specifies the pattern color.
FrameColor Specifies the pattern's frame color.

Type Retrieves or sets a value that indicates the pattern to fill
the element.

property Pattern.Color as Color
Specifies the pattern color.

Type Description

Color A Color expression that specifies the color to show the
pattern.

By default, the Color property is 0 (black). The Color property indicates the color to
display the pattern. The Type property indicates the type of the pattern to be shown. The
FrameColor property indicates the color to show the frame, if the exPatternFrame flag is
included in the Type property.

property Pattern.FrameColor as Color
Specifies the pattern's frame color.

Type Description

Color A Color expression that specifies the color to show the
frame.

By default, the FrameColor property is 0 (black). The FrameColor property indicates the
color to show the frame, if the exPatternFrame flag is included in the Type property. The
Type property indicates the type of the pattern to be shown. The Color property indicates
the color to display the pattern.

property Pattern.Type as PatternEnum
Retrieves or sets a value that indicates the pattern to fill the element.

Type Description

PatternEnum A PatternEnum expression that specifies the type of the
pattern to fill the element.

By default, the Type property is exPatternFrameThick which indicates that a thick-border is
shown. The Type property indicates the pattern to display on the element. The Color
property indicates the color to display the pattern. The FrameColor property indicates the
color to show the frame, if the exPatternFrame flag is included in the Type property.

ExOrgChart events
The ExOrgChart component supports the following events:

Name Description
AddNew Occurs when the user clicks any of the add new buttons.
AnchorClick Occurs when an anchor element is clicked.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

DropFile Notifies whether the user drags a file over a node.
Event Notifies the application once the control fires an event.
Expand Occurs when the user expands or collapses a node.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutEndChanging Notifies your application once the control's layout has been
changed.

LayoutStartChanging Occurs when the control's layout is about to be changed.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
Select Occurs when the user selects a node.
ToolTip Fired when the control prepares the object's tooltip.

C#

VB

private void AddNew(object sender,int AddNewType)
{
}

Private Sub AddNew(ByVal sender As System.Object,ByVal AddNewType As
Integer) Handles AddNew
End Sub

C#

C++

C++
Builder

Delphi

private void AddNew(object sender,
AxEXORGCHARTLib._IChartViewEvents_AddNewEvent e)
{
}

void OnAddNew(long AddNewType)
{
}

void __fastcall AddNew(TObject *Sender,long AddNewType)
{
}

procedure AddNew(ASender: TObject; AddNewType : Integer);
begin
end;

event AddNew (AddNewType as Long)
Occurs when the user clicks any of the add new buttons.

Type Description

AddNewType as Long A long expression that indicates the type of the button
being clicked.

The AddNew event notifies your application once the user clicks an add new button. Use the
AddNew event to add new parent, child or assistant node once the user clicks an add new
button.

Syntax for AddNew event, /NET version, on:

Syntax for AddNew event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddNew(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_AddNewEvent);
begin
end;

begin event AddNew(long AddNewType)
end event AddNew

Private Sub AddNew(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_AddNewEvent) Handles AddNew
End Sub

Private Sub AddNew(ByVal AddNewType As Long)
End Sub

Private Sub AddNew(ByVal AddNewType As Long)
End Sub

LPARAMETERS AddNewType

PROCEDURE OnAddNew(oChartView,AddNewType)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddNew(AddNewType)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddNew(AddNewType)
End Function
</SCRIPT>

Procedure OnComAddNew Integer llAddNewType
 Forward Send OnComAddNew llAddNewType
End_Procedure

Syntax for AddNew event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_AddNew(AddNewType) CLASS MainDialog
RETURN NIL

void onEvent_AddNew(int _AddNewType)
{
}

function AddNew as v (AddNewType as N)
end function

function nativeObject_AddNew(AddNewType)
return

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C#

C++

private void AnchorClick(object sender,
AxEXORGCHARTLib._IChartViewEvents_AnchorClickEvent e)
{
}

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata".

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oChartView,AnchorID,Options)
RETURN

Syntax for AnchorClick event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The control fires the Select event when the user clicks a node (selects
a node). Use the SelectNode property to specify the selected node. The ScrollByClick
property specifies a value that indicates whether the user scrolls the control's content by
clicking the client area.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oChartView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXORGCHARTLib._IChartViewEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use the DblClick event to notify your application that user double clicks a node. Use the
NodeFromPoint property to determine the node from the point. Use the ExpandOnDblClick
property to specify whether a node is expanded or collapsed when the user double clicks it.
Use the Expanded property to expand or collapse a node. Use the Caption property to
specify the node of the caption.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oChartView,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.ChartView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ChartView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample determines the node that user double clicks:

Private Sub ChartView1_DblClick(Shift As Integer, X As Single, Y As Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 MsgBox n.Caption
 End If
 End With
End Sub

The following C++ sample determines the node being double clicked:

#include "node.h"
void OnDblClickChartview1(short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 MessageBox(node.GetCaption());
}

The following VB.NET sample determines the node being double clicked:

Private Sub AxChartView1_DblClick(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_DblClickEvent) Handles AxChartView1.DblClick
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 MsgBox(n.Caption)
 End If
 End With
End Sub

The following C# sample determines the node being double clicked:

private void axChartView1_DblClick(object sender,
AxEXORGCHARTLib._IChartViewEvents_DblClickEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 MessageBox.Show(node.Caption);
}

The following VFP sample determines the node being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)

 If !isnull(n) Then
 wait window nowait n.Caption
 EndIf
EndWith

C#

VB

private void DropFile(object sender,string File,exontrol.EXORGCHARTLib.Node
Node)
{
}

Private Sub DropFile(ByVal sender As System.Object,ByVal File As String,ByVal
Node As exontrol.EXORGCHARTLib.Node) Handles DropFile
End Sub

C#

C++

C++
Builder

private void DropFile(object sender,
AxEXORGCHARTLib._IChartViewEvents_DropFileEvent e)
{
}

void OnDropFile(LPCTSTR File,LPDISPATCH Node)
{
}

void __fastcall DropFile(TObject *Sender,BSTR File,Exorgchartlib_tlb::INode *Node)
{
}

event DropFile (File as String, Node as Node)
Notifies whether the user drags a file over a node.

Type Description

File as String A String expression that specifies the name of the file
being dragged.

Node as Node A Node object that indicates the node where the user
drags the file.

Use the DropFile event to notifiy your application when the user drags a file over a node.
Use the AcceptFiles property to specify whether the control supports files by drag and
drop. The DropFile event is not filed if the AcceptFiles property is False.

Syntax for DropFile event, /NET version, on:

Syntax for DropFile event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure DropFile(ASender: TObject; File : WideString;Node : INode);
begin
end;

procedure DropFile(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_DropFileEvent);
begin
end;

begin event DropFile(string File,oleobject Node)
end event DropFile

Private Sub DropFile(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_DropFileEvent) Handles DropFile
End Sub

Private Sub DropFile(ByVal File As String,ByVal Node As
EXORGCHARTLibCtl.INode)
End Sub

Private Sub DropFile(ByVal File As String,ByVal Node As Object)
End Sub

LPARAMETERS File,Node

PROCEDURE OnDropFile(oChartView,File,Node)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DropFile(File,Node)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DropFile(File,Node)
End Function

Syntax for DropFile event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComDropFile String llFile Variant llNode
 Forward Send OnComDropFile llFile llNode
End_Procedure

METHOD OCX_DropFile(File,Node) CLASS MainDialog
RETURN NIL

void onEvent_DropFile(str _File,COM _Node)
{
}

function DropFile as v (File as C,Node as OLE::Exontrol.ChartView.1::INode)
end function

function nativeObject_DropFile(File,Node)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. This is useful for X++,
which does not support event with parameters passed by reference. Also, this could be
useful for C++ Builder or Delphi, which does not handle properly the events with
parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

If you are not familiar with what a type library means just handle the Event of the control as
follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exChartView1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void Event(object sender,
AxEXORGCHARTLib._IChartViewEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_EventEvent);
begin

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oChartView,EventID)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

Syntax for Event event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void Expand(object sender,exontrol.EXORGCHARTLib.Node NewNode)
{
}

Private Sub Expand(ByVal sender As System.Object,ByVal NewNode As
exontrol.EXORGCHARTLib.Node) Handles Expand
End Sub

C#

C++

C++
Builder

Delphi

private void Expand(object sender,
AxEXORGCHARTLib._IChartViewEvents_ExpandEvent e)
{
}

void OnExpand(LPDISPATCH NewNode)
{
}

void __fastcall Expand(TObject *Sender,Exorgchartlib_tlb::INode *NewNode)
{
}

procedure Expand(ASender: TObject; NewNode : INode);

event Expand (NewNode as Node)
Occurs when the user expands or collapses a node.

Type Description
NewNode as Node A Node object being expanded or collapsed.

Use the Expand event to notify your application that user expands or collapses a node. Use
the HasButtons property to display +/- buttons for nodes that contain child nodes. Use the
HasButton property to hide the +/- button for a particular node. Use the Expanded property
to programmatically expand a node. Use the SelectNode property to select a node. Use the
EnsureVisibleNode method to ensure that a node fits the control's visible client area. Use
the ExpandOnDblClick property to specify whether a node is expanded or collapsed when
the user double clicks it.

Syntax for Expand event, /NET version, on:

Syntax for Expand event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure Expand(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_ExpandEvent);
begin
end;

begin event Expand(oleobject NewNode)
end event Expand

Private Sub Expand(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_ExpandEvent) Handles Expand
End Sub

Private Sub Expand(ByVal NewNode As EXORGCHARTLibCtl.INode)
End Sub

Private Sub Expand(ByVal NewNode As Object)
End Sub

LPARAMETERS NewNode

PROCEDURE OnExpand(oChartView,NewNode)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Expand(NewNode)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Expand(NewNode)
End Function
</SCRIPT>

Syntax for Expand event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComExpand Variant llNewNode
 Forward Send OnComExpand llNewNode
End_Procedure

METHOD OCX_Expand(NewNode) CLASS MainDialog
RETURN NIL

void onEvent_Expand(COM _NewNode)
{
}

function Expand as v (NewNode as OLE::Exontrol.ChartView.1::INode)
end function

function nativeObject_Expand(NewNode)
return

The following VB sample selects and ensures that the node being expanded is visible:

Private Sub ChartView1_Expand(ByVal NewNode As EXORGCHARTLibCtl.INode)
 With ChartView1
 .EnsureVisibleNode NewNode
 .SelectNode = NewNode
 End With
End Sub

The following C++ sample displays the caption of the node being expanded or collapsed:

void OnExpandChartview1(LPDISPATCH NewNode)
{
 CNode node(NewNode); node.m_bAutoRelease = FALSE;
 OutputDebugString(node.GetCaption());
}

The following VB.NET sample displays the caption of the node being expanded or
collapsed:

Private Sub AxChartView1_Expand(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_ExpandEvent) Handles AxChartView1.Expand
 Debug.WriteLine(e.newNode.Caption)
End Sub

The following C# sample displays the caption of the node being expanded or collapsed:

private void axChartView1_Expand(object sender,
AxEXORGCHARTLib._IChartViewEvents_ExpandEvent e)
{
 System.Diagnostics.Debug.WriteLine(e.newNode.Caption);
}

The following VFP sample displays the caption of the node being expanded or collapsed:

*** ActiveX Control Event ***
LPARAMETERS newnode

with newnode
 wait window nowait .Caption
endwith

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_KeyDownEvent e)

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the SelectNode property to
determine the selected node. Use the And operator with the shift argument to test whether
the condition is greater than 0, indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oChartView,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters. Use the SelectNode
property to determine the selected node.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oChartView,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

private void KeyUpEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key. Use the SelectNode
property to determine the selected node.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oChartView,KeyCode,Shift)
RETURN

Java… <SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Syntax for KeyUp event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutEndChanging(object
sender,exontrol.EXORGCHARTLib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutEndChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXORGCHARTLib.LayoutChangingEnum) Handles LayoutEndChanging
End Sub

C#

C++

C++
Builder

private void LayoutEndChanging(object sender,
AxEXORGCHARTLib._IChartViewEvents_LayoutEndChangingEvent e)
{
}

void OnLayoutEndChanging(long Operation)
{
}

void __fastcall LayoutEndChanging(TObject

event LayoutEndChanging (Operation as LayoutChangingEnum)
Notifies your application once the control's layout has been changed.

Type Description
Operation as
LayoutChangingEnum

An LayoutChangingEnum expression that specifies
whether an UI operation ends.

The LayoutEndChanging event notifies your application once of the following operation
ends:

the user edits a node
the user resizes the chart at runtime, using the middle mouse button
the user moves a node from one parent to another.

The LayoutStartChanging event notifies once the user starts any of these operations. You
can use the NodeFromPoint property to get the node from the current position.

Syntax for LayoutEndChanging event, /NET version, on:

Syntax for LayoutEndChanging event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

*Sender,Exorgchartlib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutEndChanging(ASender: TObject; Operation :
LayoutChangingEnum);
begin
end;

procedure LayoutEndChanging(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_LayoutEndChangingEvent);
begin
end;

begin event LayoutEndChanging(long Operation)
end event LayoutEndChanging

Private Sub LayoutEndChanging(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_LayoutEndChangingEvent) Handles
LayoutEndChanging
End Sub

Private Sub LayoutEndChanging(ByVal Operation As
EXORGCHARTLibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutEndChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutEndChanging(oChartView,Operation)
RETURN

Java… <SCRIPT EVENT="LayoutEndChanging(Operation)" LANGUAGE="JScript">
Syntax for LayoutEndChanging event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutEndChanging(Operation)
End Function
</SCRIPT>

Procedure OnComLayoutEndChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutEndChanging llOperation
End_Procedure

METHOD OCX_LayoutEndChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutEndChanging(int _Operation)
{
}

function LayoutEndChanging as v (Operation as
OLE::Exontrol.ChartView.1::LayoutChangingEnum)
end function

function nativeObject_LayoutEndChanging(Operation)
return

C#

VB

private void LayoutStartChanging(object
sender,exontrol.EXORGCHARTLib.LayoutChangingEnum Operation)
{
}

Private Sub LayoutStartChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXORGCHARTLib.LayoutChangingEnum) Handles
LayoutStartChanging
End Sub

C#

C++

private void LayoutStartChanging(object sender,
AxEXORGCHARTLib._IChartViewEvents_LayoutStartChangingEvent e)
{
}

void OnLayoutStartChanging(long Operation)
{
}

event LayoutStartChanging (Operation as LayoutChangingEnum)
Occurs when the control's layout is about to be changed.

Type Description
Operation as
LayoutChangingEnum

An LayoutChangingEnum expression that specifies
whether an UI operation is started.

The LayoutStartChanging event notifies your application once of the following operation
starts:

the user edits a node
the user resizes the chart at runtime, using the middle mouse button
the user moves a node from one parent to another.

The LayoutEndChanging event notifies once the user done any of these operations. You can
use the NodeFromPoint property to get the node from the current position. The
Background(exEditNodeBackColor)/Background(exEditNodeForeColor) property specifies
the background/foreground color of the edit field being displayed on the node while editing.

Syntax for LayoutStartChanging event, /NET version, on:

Syntax for LayoutStartChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall LayoutStartChanging(TObject
*Sender,Exorgchartlib_tlb::LayoutChangingEnum Operation)
{
}

procedure LayoutStartChanging(ASender: TObject; Operation :
LayoutChangingEnum);
begin
end;

procedure LayoutStartChanging(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_LayoutStartChangingEvent);
begin
end;

begin event LayoutStartChanging(long Operation)
end event LayoutStartChanging

Private Sub LayoutStartChanging(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_LayoutStartChangingEvent) Handles
LayoutStartChanging
End Sub

Private Sub LayoutStartChanging(ByVal Operation As
EXORGCHARTLibCtl.LayoutChangingEnum)
End Sub

Private Sub LayoutStartChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnLayoutStartChanging(oChartView,Operation)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="LayoutStartChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutStartChanging(Operation)
End Function
</SCRIPT>

Procedure OnComLayoutStartChanging OLELayoutChangingEnum llOperation
 Forward Send OnComLayoutStartChanging llOperation
End_Procedure

METHOD OCX_LayoutStartChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_LayoutStartChanging(int _Operation)
{
}

function LayoutStartChanging as v (Operation as
OLE::Exontrol.ChartView.1::LayoutChangingEnum)
end function

function nativeObject_LayoutStartChanging(Operation)
return

Syntax for LayoutStartChanging event, /COM version (others), on:

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the NodeFromPoint property to determine the node from the
cursor. The control fires the Select event when the user clicks a node (selects a node).
Use the AnchorFromPoint property to retrieve the identifier of the anchor element from the
cursor. The AnchorClick event notifies your application that the user clicks an anchor
element.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseDownEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oChartView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.ChartView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ChartView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample determines the node being clicked:

Private Sub ChartView1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 MsgBox n.Caption
 End If
 End With
End Sub

The following C++ sample determines the node being clicked:

void OnMouseDownChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 MessageBox(node.GetCaption());
}

The following VB.NET sample determines the node being clicked:

Private Sub AxChartView1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseDownEvent) Handles
AxChartView1.MouseDownEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 MsgBox(n.Caption)
 End If
 End With
End Sub

The following C# sample determines the node being clicked:

private void axChartView1_MouseDownEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseDownEvent e)
{

 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 MessageBox.Show(node.Caption);
}

The following VFP sample determines the node being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)
 If !isnull(n) Then
 wait window nowait n.Caption
 EndIf
EndWith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent e)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the NodeFromPoint property to
determine the node from the cursor. Use the Caption property to specify the caption of the
node. Use the AnchorFromPoint property to retrieve the identifier of the anchor element
from the cursor. The control fires the Select event when the user clicks a node. You can use
the LinkCaptionFrompoint property to get the node whose caption on the link is at specified
position.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseMove(oChartView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.ChartView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ChartView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the caption of the node from the cursor:

Private Sub ChartView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)

 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 Debug.Print n.Caption
 End If
 End With
End Sub

The following C++ sample prints the caption of the node from the cursor:

void OnMouseMoveChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 OutputDebugString(node.GetCaption());
}

The following VB.NET sample prints the caption of the node from the cursor:

Private Sub AxChartView1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent) Handles
AxChartView1.MouseMoveEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 Debug.WriteLine(n.Caption)
 End If
 End With
End Sub

The following C# sample prints the caption of the node from the cursor:

private void axChartView1_MouseMoveEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseMoveEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 System.Diagnostics.Debug.WriteLine(node.Caption);

}

The following VFP sample prints the caption of the node from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)
 If !isnull(n) Then
 wait window nowait n.Caption
 EndIf
EndWith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseUpEvent e)

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the AnchorFromPoint property to retrieve the identifier of the
anchor element from the cursor. The AnchorClick event notifies your application that the
user clicks an anchor element.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseUp(oChartView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.ChartView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ChartView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample displays the caption of the node form the cursor:

Private Sub ChartView1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 With ChartView1
 Dim n As EXORGCHARTLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not (n Is Nothing) Then
 Debug.Print n.Caption
 End If
 End With
End Sub

The following C++ sample displays the caption of the node form the cursor:

void OnMouseUpChartview1(short Button, short Shift, long X, long Y)
{
 CNode node = m_chartview.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 OutputDebugString(node.GetCaption());
}

The following VB.NET sample displays the caption of the node form the cursor:

Private Sub AxChartView1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_MouseUpEvent) Handles
AxChartView1.MouseUpEvent
 With AxChartView1
 Dim n As EXORGCHARTLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not (n Is Nothing) Then
 Debug.WriteLine(n.Caption)
 End If
 End With
End Sub

The following C# sample displays the caption of the node form the cursor:

private void axChartView1_MouseUpEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_MouseUpEvent e)
{
 EXORGCHARTLib.Node node = axChartView1.get_NodeFromPoint(e.x, e.y);
 if (node != null)

 System.Diagnostics.Debug.WriteLine(node.Caption);
}

The following VFP sample displays the caption of the node form the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.ChartView1
 local n
 n = .NodeFromPoint(x , y)
 If !isnull(n) Then
 wait window nowait n.Caption
 EndIf
EndWith

C#

VB

private void ScrollButtonClick(object
sender,exontrol.EXORGCHARTLib.ScrollBarEnum
ScrollBar,exontrol.EXORGCHARTLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXORGCHARTLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXORGCHARTLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C#

C++

private void ScrollButtonClick(object sender,
AxEXORGCHARTLib._IChartViewEvents_ScrollButtonClickEvent e)
{
}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scrollbar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollPartVisible property to add
or remove buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to
specify enable or disable parts in the control's scrollbar. Use the ScrolPartCaption property
to specify the caption of the scroll's part. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall ScrollButtonClick(TObject *Sender,Exorgchartlib_tlb::ScrollBarEnum
ScrollBar,Exorgchartlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXORGCHARTLibCtl.ScrollBarEnum,ByVal ScrollPart As
EXORGCHARTLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oChartView,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.ChartView.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.ChartView.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With ChartView1
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
End With

Private Sub ChartView1_ScrollButtonClick(ByVal ScrollPart As
EXChartViewLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxChartView1
 .set_ScrollPartVisible(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part Or
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, "2")
End With

Private Sub AxChartView1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXCHARTVIEWLib._IChartViewEvents_ScrollButtonClickEvent) Handles
AxChartView1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axChartView1.set_ScrollPartVisible(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part |
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, true);
axChartView1.set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exLeftB1Part , "1");
axChartView1.set_ScrollPartCaption(EXCHARTVIEWLib.ScrollBarEnum.exVScroll,
EXCHARTVIEWLib.ScrollPartEnum.exRightB1Part, "2");

private void axChartView1_ScrollButtonClick(object sender,
AxEXCHARTVIEWLib._IChartViewEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_chartView.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_chartView.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("1"));
m_chartView.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2"));

void OnScrollButtonClickChartView1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.ChartView1
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
EndWith

C#

VB

private void Select(object sender,exontrol.EXORGCHARTLib.Node
OldNode,exontrol.EXORGCHARTLib.Node NewNode)
{
}

Private Sub Select(ByVal sender As System.Object,ByVal OldNode As
exontrol.EXORGCHARTLib.Node,ByVal NewNode As
exontrol.EXORGCHARTLib.Node) Handles Select
End Sub

C#

C++

C++
Builder

private void Select(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)
{
}

void OnSelect(LPDISPATCH OldNode,LPDISPATCH NewNode)
{
}

void __fastcall Select(TObject *Sender,Exorgchartlib_tlb::INode
*OldNode,Exorgchartlib_tlb::INode *NewNode)

event Select (OldNode as Node, NewNode as Node)
Occurs when the user selects a node.

Type Description
OldNode as Node A Node object that indicates the previous selected node.
NewNode as Node A Node object that indicates the currently selected node.

Use the Select event to notify your application that user changes the selected node. Use the
SelectNode property to determine the selected node. Use the Caption property to specify
the caption of the node. Use the BackColor property to specify the node's background
color. Use the ForeColor property to specify the node's background color. The control
automatically scrolls the control's content to ensure that the node being clicked fits the
control's client area, if the EnsureVisibleOnSelect property is True.

Syntax for Select event, /NET version, on:

Syntax for Select event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure Select(ASender: TObject; OldNode : INode;NewNode : INode);
begin
end;

procedure Select(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_SelectEvent);
begin
end;

begin event Select(oleobject OldNode,oleobject NewNode)
end event Select

Private Sub Select(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles Select
End Sub

Private Sub Select(ByVal OldNode As EXORGCHARTLibCtl.INode,ByVal NewNode
As EXORGCHARTLibCtl.INode)
End Sub

Private Sub Select(ByVal OldNode As Object,ByVal NewNode As Object)
End Sub

LPARAMETERS OldNode,NewNode

PROCEDURE OnSelect(oChartView,OldNode,NewNode)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Select(OldNode,NewNode)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for Select event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function Select(OldNode,NewNode)
End Function
</SCRIPT>

Procedure OnComSelect Variant llOldNode Variant llNewNode
 Forward Send OnComSelect llOldNode llNewNode
End_Procedure

METHOD OCX_Select(OldNode,NewNode) CLASS MainDialog
RETURN NIL

void onEvent_Select(COM _OldNode,COM _NewNode)
{
}

function Select as v (OldNode as OLE::Exontrol.ChartView.1::INode,NewNode as
OLE::Exontrol.ChartView.1::INode)
end function

function nativeObject_Select(OldNode,NewNode)
return

The following VB sample changes the background and foreground color for the selected
node:

Private Sub ChartView1_Select(ByVal OldNode As EXORGCHARTLibCtl.INode, ByVal
NewNode As EXORGCHARTLibCtl.INode)
 If Not (OldNode Is Nothing) Then
 With OldNode
 .ClearBackColor
 .ClearForeColor
 End With
 End If
 With NewNode
 .ForeColor = vbWhite
 .BackColor = vbBlue
 End With

End Sub

The following C++ sample changes the background and foreground color for the selected
node:

void OnSelectChartview1(LPDISPATCH OldNode, LPDISPATCH NewNode)
{
 CNode oldNode(OldNode); oldNode.m_bAutoRelease = FALSE;
 CNode newNode(NewNode); newNode.m_bAutoRelease = FALSE;

 if (oldNode.m_lpDispatch != NULL)
 {
 oldNode.ClearBackColor();
 oldNode.ClearForeColor();
 }
 newNode.SetBackColor(RGB(0,0,128));
 newNode.SetForeColor(RGB(255,255,255));
}

The following VB.NET sample changes the background and foreground color for the
selected node:

Private Sub AxChartView1_SelectEvent(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_SelectEvent) Handles AxChartView1.SelectEvent
 If Not (e.oldNode Is Nothing) Then
 With e.oldNode
 .ClearBackColor()
 .ClearForeColor()
 End With
 End If
 With e.newNode
 .ForeColor = ToUInt32(Color.White)
 .BackColor = ToUInt32(Color.Blue)
 End With
End Sub

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32

 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background and foreground color for the selected
node:

private void axChartView1_SelectEvent(object sender,
AxEXORGCHARTLib._IChartViewEvents_SelectEvent e)
{
 if (e.oldNode != null)
 {
 e.oldNode.ClearBackColor();
 e.oldNode.ClearForeColor();
 }
 e.newNode.BackColor = ToUInt32(Color.Blue);
 e.newNode.ForeColor = ToUInt32(Color.White);
}

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background and foreground color for the selected
node:

*** ActiveX Control Event ***
LPARAMETERS oldnode, newnode

If !isnull(oldnode)
 With oldnode
 .ClearBackColor
 .ClearForeColor
 EndWith
EndIf
With newnode
 .ForeColor = RGB(255,255,255)
 .BackColor = RGB(0,0,128)
EndWith

event ToolTip (OverNode as Node, Visible as Boolean, X as Long, Y as
Long, CX as Long, CY as Long)
Fired when the control prepares the object's tooltip.

Type Description

OverNode as Node A Node object that indicates whose tooltip is shown or
hidden.

Visible as Boolean A boolean expression that indicates whether the tooltip is
shown or hidden.

X as Long
A long expression that indicates the left location of the
tooltip window. The x values is always expressed in
screen coordinates.

Y as Long
A long expression that indicates the top location of the
tooltip window. The y values is always expressed in
screen coordinates.

CX as Long A long expression that indicates the width of the tooltip
window.

CY as Long A long expression that indicates the height of the tooltip
window.

The ToolTip event notifies your application that the control prepares the tooltip for a node to
be shown or hidden. Use the ToolTip event to change the default position of the tooltip
window. Use the ToolTip property to specify the node's tooltip. Use the ToolTip property to
specify the node's tooltip. The ToolTipPopDelay property specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipWidth property to specify the width of the tooltip window. The ToolTipDelay property
specifies the time in ms that passes before the ToolTip appears. Use the NodeFromPoint
property to get the node from point.

Syntax for ToolTip event, /NET version, on:

C#

VB

private void ToolTip(object sender,exontrol.EXORGCHARTLib.Node OverNode,ref
bool Visible,ref int X,ref int Y,int CX,int CY)
{
}

Private Sub ToolTip(ByVal sender As System.Object,ByVal OverNode As
exontrol.EXORGCHARTLib.Node,ByRef Visible As Boolean,ByRef X As Integer,ByRef
Y As Integer,ByVal CX As Integer,ByVal CY As Integer) Handles ToolTip
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void ToolTip(object sender,
AxEXORGCHARTLib._IChartViewEvents_ToolTipEvent e)
{
}

void OnToolTip(LPDISPATCH OverNode,BOOL FAR* Visible,long FAR* X,long FAR*
Y,long CX,long CY)
{
}

void __fastcall ToolTip(TObject *Sender,Exorgchartlib_tlb::INode
*OverNode,VARIANT_BOOL * Visible,long * X,long * Y,long CX,long CY)
{
}

procedure ToolTip(ASender: TObject; OverNode : INode;var Visible : WordBool;var
X : Integer;var Y : Integer;CX : Integer;CY : Integer);
begin
end;

procedure ToolTip(sender: System.Object; e:
AxEXORGCHARTLib._IChartViewEvents_ToolTipEvent);
begin
end;

Syntax for ToolTip event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event ToolTip(oleobject OverNode,boolean Visible,long X,long Y,long CX,long CY)
end event ToolTip

Private Sub ToolTip(ByVal sender As System.Object, ByVal e As
AxEXORGCHARTLib._IChartViewEvents_ToolTipEvent) Handles ToolTip
End Sub

Private Sub ToolTip(ByVal OverNode As EXORGCHARTLibCtl.INode,Visible As
Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

Private Sub ToolTip(ByVal OverNode As Object,Visible As Boolean,X As Long,Y As
Long,ByVal CX As Long,ByVal CY As Long)
End Sub

LPARAMETERS OverNode,Visible,X,Y,CX,CY

PROCEDURE OnToolTip(oChartView,OverNode,Visible,X,Y,CX,CY)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ToolTip(OverNode,Visible,X,Y,CX,CY)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolTip(OverNode,Visible,X,Y,CX,CY)
End Function
</SCRIPT>

Procedure OnComToolTip Variant llOverNode Boolean llVisible Integer llX Integer
llY Integer llCX Integer llCY
 Forward Send OnComToolTip llOverNode llVisible llX llY llCX llCY
End_Procedure

Syntax for ToolTip event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_ToolTip(OverNode,Visible,X,Y,CX,CY) CLASS MainDialog
RETURN NIL

void onEvent_ToolTip(COM _OverNode,COMVariant /*bool*/ _Visible,COMVariant
/*long*/ _X,COMVariant /*long*/ _Y,int _CX,int _CY)
{
}

function ToolTip as v (OverNode as OLE::Exontrol.ChartView.1::INode,Visible as L,X
as N,Y as N,CX as N,CY as N)
end function

function nativeObject_ToolTip(OverNode,Visible,X,Y,CX,CY)
return

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and
programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,

https://exontrol.com/expression.jsp

0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For

instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or

statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.
a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by

2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of

the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (

0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"

timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	ChartView
	AcceptFiles property
	AllowCopyTemplate property
	AllowEdit property
	AllowMoveChart property
	AllowMoveNode property
	AllowResizeChart property
	AllowSelectNothing property
	AnchorFromPoint property (readonly)
	AntiAliasing property
	Appearance property
	AttachTemplate method
	BackColor property
	BackColorNode property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	ButtonsAlign property
	ChartHeight property (readonly)
	ChartWidth property (readonly)
	Copy method
	CopyTo property (readonly)
	Cursor property
	DefaultNodePadding property
	DragOutsideDef property
	DrawRoundNode property
	EditNode method
	Enabled property
	EndUpdate method
	EnsureVisibleNode method
	EnsureVisibleOnSelect property
	EventParam property
	ExecuteTemplate method
	ExpandOnDblClk property
	ExploreFromNode property
	FixedHeightNode property
	FixedWidthNode property
	Font property
	ForeColor property
	ForeColorNode property
	FormatABC method
	FormatAnchor property
	FrameFromPoint property (readonly)
	Frames property (readonly)
	HasButtons property
	HasButtonsCustom property
	hEBNList property
	hIconList property
	HideSelection property
	hPictureList property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	IndentChild property
	IndentSiblingX property
	IndentSiblingY property
	Layout property
	LinkAssistantColor property
	LinkCaptionFromPoint property (readonly)
	LinkColor property
	LinkToColor property
	LoadXML method
	MaxZoomHeight property
	MaxZoomWidth property
	MinZoomHeight property
	MinZoomWidth property
	NodeFromPoint property (readonly)
	Nodes property (readonly)
	PenBorderNode property
	PenLink property
	PenLinkAssistant property
	PenLinkTo property
	PenWidthLink property
	PenWidthLinkAssistant property
	PenWidthLinkTo property
	Picture property
	PictureAspectRatioNode property
	PictureDisplay property
	PictureHeightNode property
	PictureWidthNode property
	Refresh method
	ReplaceIcon method
	Root property (readonly)
	SaveXML method
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollByClick property
	ScrollFont property
	ScrollHeight property
	ScrollOnCursor method
	ScrollOnEnsure property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollPos property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SelColor property
	SelectNode property
	ShadowNode property
	ShowAddNew property
	ShowAssistants property
	ShowImageList property
	ShowLinksDir property
	ShowRoundLink property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	ToTemplate property (readonly)
	Version property
	VisualAppearance property (readonly)
	WidthNode property
	ZoomHeight property
	ZoomHeightMode property
	ZoomWidth property
	ZoomWidthMode property

	Frame
	BackColor property
	BackgroundExt property
	BackgroundExtValue property
	Index property (readonly)
	Nodes property
	Padding property
	Pattern property (readonly)
	ShowOnBackground property
	Visible property

	Frames
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Node
	AddAssistant method
	AddGroup method
	Alignment property
	ArrangeSiblingNodesAs property
	Assistant property (readonly)
	BackColor property
	BackgroundExt property
	BackgroundExtValue property
	BorderColor property
	BorderWidth property
	Caption property
	CaptionSingleLine property
	ClearAssistants method
	ClearBackColor method
	ClearForeColor method
	ClearGroup method
	CountAssistants property (readonly)
	CountGroup property (readonly)
	DrawRoundNode property
	Editable property
	Enabled property
	Expanded property
	FirstNode property (readonly)
	FixedHeight property
	FixedWidth property
	ForeColor property
	Group property (readonly)
	HasButton property
	Image property
	ImageAlignment property
	Index property (readonly)
	InflateGroupX property
	InflateGroupY property
	IsAssistant property (readonly)
	IsGroup property (readonly)
	Key property
	LastNode property (readonly)
	Left property
	LinkCaption property
	LinkTo property
	LinkToCaption property
	LinkToColor property
	LinkToPen property
	LinkToRound property
	LinkToShowDir property
	LinkToWidth property
	NextNode property (readonly)
	NodeCount property (readonly)
	Nodes property (readonly)
	Padding property
	Parent property
	PenBorderNode property
	Picture property
	PictureAlignment property
	PictureAspectRatio property
	PictureHeight property
	PictureWidth property
	Position property
	PrevNode property (readonly)
	Remove method
	RemoveAssistant method
	RemoveGroup method
	ShadowNode property
	ShowLinkDir property
	ShowLinks property
	ShowRoundLink property
	ToolTip property
	ToolTipTitle property
	UserData property
	Width property

	Nodes
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Pattern
	Color property
	FrameColor property
	Type property

	ExOrgChart events
	AddNew event
	AnchorClick event
	Click event
	DblClick event
	DropFile event
	Event event
	Expand event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutEndChanging event
	LayoutStartChanging event
	MouseDown event
	MouseMove event
	MouseUp event
	ScrollButtonClick event
	Select event
	ToolTip event

