
 NAVHost Control-AddIn

The Exontrol's NAVHost/NET assembly is a Control-AddIn for Microsoft Dynamics NAV that
allows you to use any UI element of the /NET Framework on any page. For instance,
'Height=32; AssemblyQualifiedName = "System.Windows.Forms.TrackBar,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"; Host.Template = "Value = 5"' adds a track-bar to
your NAV form.

Features include:

Control-AddIn for Microsoft Dynamics NAV
X-Script / Template support, or ability to call properties or methods of the hosting
control using strings
Events support for hosting control through the OnControlAddIn trigger

Ž ExNAVHost is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants NAVHostType
The NAVHostType type specifies the type of the control that the control hosts. The
IsCreated / Create method returns a NAVHostType expression that can be one of the
following:

Name Value Description
NAVHostType_exNAVHostNothing0 The component hosts nothing.

NAVHostType_exNAVHostControl1 The component hosts an object of
System.Windows.Forms.Control type.

NAVHostType_exNAVHostObject2 The component hosts a general object.

constants NAVHostVarEnum
The NAVHostVarEnum type specifies the VARIANT types. The VtType property specifies
the VARIANT type of the object being hold by a NAVHostObject or NAVObjectTemplate
object. The NAVHostVarEnum type supports the following values:

Name Value Description
NAVHostVarEnum_VT_EMPTY0 Indicates that a value was not specified.
NAVHostVarEnum_VT_NULL 1 Indicates a null value, similar to a null value in SQL.
NAVHostVarEnum_VT_I2 2 Indicates a short integer.
NAVHostVarEnum_VT_I4 3 Indicates a long integer.
NAVHostVarEnum_VT_R4 4 Indicates a float value.
NAVHostVarEnum_VT_R8 5 Indicates a double value.
NAVHostVarEnum_VT_CY 6 Indicates a currency value.
NAVHostVarEnum_VT_DATE 7 Indicates a DATE value.
NAVHostVarEnum_VT_BSTR 8 Indicates a BSTR string.
NAVHostVarEnum_VT_DISPATCH9 Indicates an IDispatch pointer.
NAVHostVarEnum_VT_ERROR10 Indicates an SCODE.
NAVHostVarEnum_VT_BOOL 11 Indicates a Boolean value.
NAVHostVarEnum_VT_VARIANT12 Indicates a VARIANT far pointer.
NAVHostVarEnum_VT_UNKNOWN13 Indicates a IUnknown pointer.
NAVHostVarEnum_VT_DECIMAL14 Indicates a decimal value.
NAVHostVarEnum_VT_I1 16 Indicates a char value.
NAVHostVarEnum_VT_UI1 17 Indicates a byte.
NAVHostVarEnum_VT_UI2 18 Indicates an unsignedshort.
NAVHostVarEnum_VT_UI4 19 Indicates an unsignedlong.
NAVHostVarEnum_VT_I8 20 Indicates a 64-bit integer.
NAVHostVarEnum_VT_UI8 21 Indicates an 64-bit unsigned integer.
NAVHostVarEnum_VT_INT 22 Indicates an integer value.
NAVHostVarEnum_VT_UINT 23 Indicates an unsigned integer value.
NAVHostVarEnum_VT_VOID 24 Indicates a C style void.
NAVHostVarEnum_VT_HRESULT25 Indicates an HRESULT.
NAVHostVarEnum_VT_PTR 26 Indicates a pointer type.

NAVHostVarEnum_VT_SAFEARRAY27 Indicates a SAFEARRAY. Not valid in a VARIANT.
NAVHostVarEnum_VT_CARRAY28 Indicates a C style array.
NAVHostVarEnum_VT_USERDEFINED29 Indicates a user defined type.
NAVHostVarEnum_VT_LPSTR30 Indicates a null-terminated string.
NAVHostVarEnum_VT_LPWSTR31 Indicates a wide string terminated by null.
NAVHostVarEnum_VT_RECORD36 Indicates a user defined type.
NAVHostVarEnum_VT_FILETIME64 Indicates a FILETIME value.
NAVHostVarEnum_VT_BLOB 65 Indicates length prefixed bytes.
NAVHostVarEnum_VT_STREAM66 Indicates that the name of a stream follows.
NAVHostVarEnum_VT_STORAGE67 Indicates that the name of a storage follows.
NAVHostVarEnum_VT_STREAMED_OBJECT68 Indicates that a stream contains an object.
NAVHostVarEnum_VT_STORED_OBJECT69 Indicates that a storage contains an object.
NAVHostVarEnum_VT_BLOB_OBJECT70 Indicates that a blob contains an object.
NAVHostVarEnum_VT_CF 71 Indicates the clipboard format.
NAVHostVarEnum_VT_CLSID 72 Indicates a class ID.
NAVHostVarEnum_VT_VECTOR4096 Indicates a simple, counted array.
NAVHostVarEnum_VT_ARRAY8192 Indicates a SAFEARRAY pointer.
NAVHostVarEnum_VT_BYREF16384 Indicates that a value is a reference.

NAVHostCtrl object
The Exontrol's NAVHost/NET assembly is a Control-AddIn for Microsoft Dynamics NAV that
allows you to use any UI element of the /NET Framework on any page. For instance,
'Height=32; AssemblyQualifiedName = "System.Windows.Forms.TrackBar,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"; Host.Template = "Value = 5"' adds a track-bar to
your NAV form.

Name Description

AssemblyLocation Specifies the fully qualified path of the assembly/file to
load.

AssemblyName Specifies the assembly name of the type, to be created (
requires AssemblyLocation).

AssemblyQualifiedName Specifies the assembly-qualified name of the type, to be
created.

BackgroundColor Specifies the hosting's background color.

Create
Creates/Loads the assembly giving fully qualified path of
the assembly/file or/and the assembly/qualified name of
the type to be created.

Destroy Destroys the control and unloads the assembly.
Host Gets the object being hosted.

HostEvents
Specifies the list of events to be handled through the
control's Event event, else all events are handled (missing
or not set).

hWnd Indicates the handle to the window (HWND)that hosts the
assembly.

IsCreated Specifies if the assembly is loaded and the control
created.

Template Executes x-script code.
Version Indicates the version of the NAVHost control.

property NAVHostCtrl.AssemblyLocation as String
Specifies the fully qualified path of the assembly/file to load.

Type Description

String
A String expression that specifies the full path or UNC
location of the loaded file that contains the
manifest/component/assembly.

By default, the AssemblyLocation property is empty. The AssemblyLocation property
specifies the full path or UNC location of the loaded file that contains the
manifest/component/assembly. The assemblyLocation parameter of the Create method
indicates the same value as AssemblyLocation property. In /NET framework, the
AssemblyLocation property is similar with the Location property of
System.Reflection.Assembly class. The Destroy method unloads the hosting control.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the
specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

If succeeded, (the assembly is loaded and the object is created), the

IsCreated property returns the type of the object being created such as:
NAVHostType_exNAVHostControl, if an object of System.Windows.Forms.Control type
was created or NAVHostType_exNAVHostObject a generic object was created.
AssemblyLocation property returns the location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"
AssemblyName property returns the fully qualified name of the type, including its
namespace but not its assembly. Sample: "System.Windows.Forms.ScrollableControl"
AssemblyQualifiedName property gets the assembly-qualified name of the type, which
includes the name of the assembly from which this type object was loaded. Sample:
"System.Windows.Forms.ScrollableControl, System.Windows.Forms,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

The Host property returns the object being hosted by the NAVHost control.

If fails, the

IsCreated property returns NAVHostType_exNAVHostNothing, which indicates no object
has been created
AssemblyLocation, AssemblyName and AssemblyQualifiedName return empty string
Host property returns nothing.

property NAVHostCtrl.AssemblyName as String
Specifies the assembly name of the type, to be created (requires AssemblyLocation).

Type Description

String A string expression that specifies the fully qualified name
of the type, including its namespace but not its assembly.

By default, the AssemblyName property is empty. The AssemblyName property specifies
the fully qualified name of the type, including its namespace but not its assembly. The
assemblyName parameter of the Create method indicates the same value as
AssemblyName property. In /NET framework, the AssemblyName property is similar with
the FullName property of System.Type class. The Destroy method unloads the hosting
control.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the
specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

If succeeded, (the assembly is loaded and the object is created), the

IsCreated property returns the type of the object being created such as:
NAVHostType_exNAVHostControl, if an object of System.Windows.Forms.Control type
was created or NAVHostType_exNAVHostObject a generic object was created.
AssemblyLocation property returns the location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"
AssemblyName property returns the fully qualified name of the type, including its
namespace but not its assembly. Sample: "System.Windows.Forms.ScrollableControl"
AssemblyQualifiedName property gets the assembly-qualified name of the type, which
includes the name of the assembly from which this type object was loaded. Sample:
"System.Windows.Forms.ScrollableControl, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

The Host property returns the object being hosted by the NAVHost control.

If fails, the

IsCreated property returns NAVHostType_exNAVHostNothing, which indicates no object
has been created
AssemblyLocation, AssemblyName and AssemblyQualifiedName return empty string
Host property returns nothing.

property NAVHostCtrl.AssemblyQualifiedName as String
Specifies the assembly-qualified name of the type, to be created.

Type Description

String
A String expression that specifies the assembly-qualified
name of the type, which includes the name of the
assembly from which this type object should be created.

By default, the AssemblyQualifiedName property is empty. The AssemblyQualifiedName
property specifies the assembly-qualified name of the type, which includes the name of the
assembly from which this type object should be created. In /NET framework, the
AssemblyQualifiedName property is similar with the AssemblyQualifiedName property of
System.Type class. The Destroy method unloads the hosting control.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the
specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

If succeeded, (the assembly is loaded and the object is created), the

IsCreated property returns the type of the object being created such as:
NAVHostType_exNAVHostControl, if an object of System.Windows.Forms.Control type
was created or NAVHostType_exNAVHostObject a generic object was created.
AssemblyLocation property returns the location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"
AssemblyName property returns the fully qualified name of the type, including its
namespace but not its assembly. Sample: "System.Windows.Forms.ScrollableControl"
AssemblyQualifiedName property gets the assembly-qualified name of the type, which
includes the name of the assembly from which this type object was loaded. Sample:
"System.Windows.Forms.ScrollableControl, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

The Host property returns the object being hosted by the NAVHost control.

If fails, the

IsCreated property returns NAVHostType_exNAVHostNothing, which indicates no object
has been created
AssemblyLocation, AssemblyName and AssemblyQualifiedName return empty string
Host property returns nothing.

property NAVHostCtrl.BackgroundColor as Long
Specifies the hosting's background color.

Type Description

Long A Long expression that specifies the color (RGB color) to
be applied to the host's background.

By default, the BackgroundColor property indicates the NAVHost container's background
color. Use the BackgroundColor property to apply a different background color to the
NAVHost control. The BackgroundColor property does not change the background color of
the hosting control. To change the background color of the hosting control, you need to
consult the hosting control's documentation, and use it in a Template or Item property like
in the following samples. Most of the controls provide a BackColor property that change
the control's background color, and so that's the property it must be used to change the
hosting control's background color. The BackgroundColor property changes the
background color behind the hosting control.

method NAVHostCtrl.Create (AssemblyLocation as String,
AssemblyName as String)
Creates/Loads the assembly giving fully qualified path of the assembly/file or/and the
assembly/qualified name of the type to be created.

Type Description

AssemblyLocation as String

A String expression that specifies the full path or UNC
location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"

AssemblyName as String
A String expression that specifies the fully qualified name
of the type, including its namespace but not its assembly.
Sample: "System.Windows.Forms.TreeView"

Return Description

NAVHostType

A NAVHostType expression that specifies the type of the
object being created, the same as value being returned by
the IsCreated property. The return value can be one of the
following:

0/ NAVHostType_exNAVHostNothing, The NAVHost
control hosts nothing.
1/ NAVHostType_exNAVHostControl, The NAVHost
component hosts an object of
System.Windows.Forms.Control type.
2/ NAVHostType_exNAVHostObject, The NAVHost
component hosts a general object.

The Create method loads the specified file (AssemblyLocation), and creates the giving
type (AssemblyName). The assemblyLocation parameter of the Create method indicates
the same value as AssemblyLocation property. The assemblyName parameter of the
Create method indicates the same value as AssemblyName property. The Create method
returns the type of the object being created, the same as IsCreated property returns the
type of the object being created such as: NAVHostType_exNAVHostControl, if an object of
System.Windows.Forms.Control type was created or NAVHostType_exNAVHostObject a
generic object was created. The Host property returns the object being created and hosted
by the NAVHost control. The Destroy method unloads the hosting control.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the

specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

If succeeded, (the assembly is loaded and the object is created), the

IsCreated property returns the type of the object being created such as:
NAVHostType_exNAVHostControl, if an object of System.Windows.Forms.Control type
was created or NAVHostType_exNAVHostObject a generic object was created.
AssemblyLocation property returns the location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"
AssemblyName property returns the fully qualified name of the type, including its
namespace but not its assembly. Sample: "System.Windows.Forms.ScrollableControl"
AssemblyQualifiedName property gets the assembly-qualified name of the type, which
includes the name of the assembly from which this type object was loaded. Sample:
"System.Windows.Forms.ScrollableControl, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

If fails, the

IsCreated property returns NAVHostType_exNAVHostNothing, which indicates no object
has been created
AssemblyLocation, AssemblyName and AssemblyQualifiedName return empty string
Host property returns nothing.

method NAVHostCtrl.Destroy ()
Destroys the control and unloads the assembly.

Type Description

The Destroy method unloads the hosting control. The Create(assemblyLocation,
assemblyName) method loads the specified file, and creates the giving type.

If Destroy method is called, the

IsCreated property returns NAVHostType_exNAVHostNothing, which indicates no object
has been created
AssemblyLocation, AssemblyName and AssemblyQualifiedName return empty string
Host property returns nothing.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the
specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

property NAVHostCtrl.Host as NAVHostObject
Gets the object being hosted.

Type Description

NAVHostObject
A NAVHostObject object that holds a reference to the
hosting control. The Value property of the NAVHostObject
object specifies the original object being hosted.

By default, the Host property holds nothing. The Host property returns the object being
hosted by the NAVHost control. Use the AssemblyLocation, AssemblyQualifiedName or
Create method to create and host a specified type. The hosting control's properties or
methods must be called using the Item, SetTemplateDef or Template property. The
HostEvent event notifies your application once the hosting control fires an event. The
HostEvents property of the NAVHost control specifies the list of events that the control
should handle.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the
specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

If succeeded, (the assembly is loaded and the object is created), the

IsCreated property returns the type of the object being created such as:
NAVHostType_exNAVHostControl, if an object of System.Windows.Forms.Control type
was created or NAVHostType_exNAVHostObject a generic object was created.
AssemblyLocation property returns the location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"
AssemblyName property returns the fully qualified name of the type, including its
namespace but not its assembly. Sample: "System.Windows.Forms.ScrollableControl"
AssemblyQualifiedName property gets the assembly-qualified name of the type, which
includes the name of the assembly from which this type object was loaded. Sample:

"System.Windows.Forms.ScrollableControl, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

The following samples show how you can call hosting control's properties or methods:

The Host.Item("GetType().Name").Value gets the type of the hosting control.
The Host.Item("GetType().BaseType().Name").Value property gets the type of the
base of the hosting control.
The Host.Item("GetType().IsCOMObject()").Value, property indicates if the hosting
control is /COM object or a/NET assembly.
The Host.Item("GetType().GUID()").Value.AsString, returns the GUID of the hosting
control.

property NAVHostCtrl.HostEvents as String
Specifies the list of events to be handled through the control's Event event, else all events
are handled (missing or not set).

Type Description

String

A String expression that specifies the list of events to be
handled through the control's Event event, else all events
are handled (missing or not set). The list of events is
separated by any of the following characters: ' ', ',', '.', ':',
'\t'

By default, the HostEvents property is empty, which indicates that all events of the hosting
event are fired through the NAVHost's HostEvent event. The HostEvent event notifies your
application once the hosting control (Host) fires an event. The HostEvents property of the
NAVHost control specifies the list of events that the control should handle. The AsString
property of the NAVHostEvent object gives a brief description of the event that occurred
including the event's name, identifier and its list of arguments. Each control that the
NAVHost host provides its own events, so for what events the hosting control supports
consult its documentation.

Use the following properties to identify/filter the event:

Name, Indicates the name of the event.
ID, Indicates the identifier of the event. The ID property may give different values for
different versions of hosting control, so you must check for compatibility, so it is not
guaranteed that the ID will be unique for any version of the hosting control.
HostEvents property specifies the list of events to be handled through the control's
Event event, else all events are handled (missing or not set).

property NAVHostCtrl.hWnd as Long
Indicates the handle to the window (HWND) that hosts the assembly.

Type Description

Long A Long expression that indicates the handle to the window
(HWND) that hosts the assembly.

The hWnd property returns the handle of the window that displays the NAVHost control. The
hWnd property does not return the handle of the hosting control. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.
The Host property returns the object being created and hosted by the NAVHost control. The
hosting control's properties or methods must be called using the Item,
SetTemplateDef or Template property.

property NAVHostCtrl.IsCreated as NAVHostType
Specifies if the assembly is loaded and the control created.

Type Description

NAVHostType

A NAVHostType expression that specifies the type of
object being hosted which can be one of the following:

0/NAVHostType_exNAVHostNothing, The NAVHost
control hosts nothing.
1/NAVHostType_exNAVHostControl, The NAVHost
component hosts an object of
System.Windows.Forms.Control type.
2/NAVHostType_exNAVHostObject, The NAVHost
component hosts a general object.

By default, the IsCreated property is NAVHostType_exNAVHostNothing, which indicates that
the NAVHost control hosts nothing. The IsCreated property specifies the type of the object
the NAVHost control hosts. The Create(assemblyLocation, assemblyName) method loads
the specified file, and creates the giving type. The Create method returns the same value
as IsCreated property. The Destroy method unloads the hosting control.

The Host.Item("GetType().Name").Value gets the type of the hosting control.
The Host.Item("GetType().BaseType().Name").Value property gets the type of the
base of the hosting control.
The Host.Item("GetType().IsCOMObject()").Value, property indicates if the hosting
control is /COM object or a/NET assembly.
The Host.Item("GetType().GUID()").Value.AsString, returns the GUID of the hosting
control.

There are three ways of loading/creating a manifest/component/assembly as listed:

AssemblyLocation property, loads the first public, browseable control found in the
specified location. If there are more public, browseable controls in the assembly, you
can use the AssemblyName or AssemblyQualifiedName property to specify the fully
qualified name of the type to be hosted.
AssemblyQualifiedName property, loads and creates the object based on the
assembly-qualified name of the type, which includes the name of the assembly from
which this type object was loaded. Sample: "System.Windows.Forms.ListView,
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
Create(assemblyLocation, assemblyName) method loads the specified file, and
creates the giving type.

If succeeded, (the assembly is loaded and the object is created), the

IsCreated property returns the type of the object being created such as:
NAVHostType_exNAVHostControl, if an object of System.Windows.Forms.Control type
was created or NAVHostType_exNAVHostObject a generic object was created.
AssemblyLocation property returns the location of the loaded file that contains the
manifest/component/assembly. Sample:
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll"
AssemblyName property returns the fully qualified name of the type, including its
namespace but not its assembly. Sample: "System.Windows.Forms.ScrollableControl"
AssemblyQualifiedName property gets the assembly-qualified name of the type, which
includes the name of the assembly from which this type object was loaded. Sample:
"System.Windows.Forms.ScrollableControl, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

The Host property returns the object being hosted by the NAVHost control.

If fails, the

IsCreated property returns NAVHostType_exNAVHostNothing, which indicates no object
has been created
AssemblyLocation, AssemblyName and AssemblyQualifiedName return empty string
Host property returns nothing.

property NAVHostCtrl.Template as String
Executes x-script code.

Type Description

String A String expression that specifies the x-script code to be
executed.

The Caption property of any field (whose ControlAddIn property value is
'Exontrol.NAVHost;PublicKeyToken=aaab53cf43a9de9d'), supports x-script or template
script. The Template/ x-script code is a simple way of calling control/object's properties,
methods/ events using strings. Exontrol owns the x-script implementation in its easiest way
and it does not require any VB engine to get executed. Our simple rule is using the
component alone without any other dependency than the Windows system.

For instance Caption property on: 'Height=64;AssemblyQualifiedName =
"System.Windows.Forms.TreeView, System.Windows.Forms, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089";Host.Item("Nodes.Add(`Root
1`)").Template = "Nodes{ Add(`Child 1`); Add(`Child 2`) }; Expand() }"' generates a result
such as:

or in other words inserts a TreeView control with a root and two-child elements.

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>

<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as the assembly-qualified
name of the type to create.
<text> any string of characters

The Template / x-script is composed by lines of instructions. Instructions are separated by
"\r\n" (new line characters) or ";" character. The TemplateThrowError property specifies
whether the control fires an exception/error when the Template call fails. The TemplateError
/ TemplateException gets the error if the Template calls fails. The TemplateResult property
returns the result of the last instruction into a Template call, as a NAVObjectTemplate
object.

An x-script instruction/line can be one of the following:

Dim variable[, variable, ...] declares the variables in the context. Multiple variables
are separated by commas. The SetTemplateDef method can declare new variables to

be available for the main context. (Sample: Dim h, h1, h2)
variable = [object.][property/method(arguments).]property/method(arguments)
assigns the result of the property/method call to the variable. (Sample: h =
Nodes.Add(`Node`))
[object.][property/method(arguments).]property(arguments) = value assigns the
value to the property. (Sample: Nodes.Add(`Node`).BackColor = RGB(255,0,0))
[object.][property/method(arguments).]property/method(arguments) invokes the
property/method. (Sample: Nodes.Add(`Node`))
{context } delimits the object's context. The properties/fields or methods called
between { and } are related to the last object returned by the property/method prior to
{ declaration. (Sample: Nodes{Add(`Child 1`);Add(`Child 2`)})
. delimits the object than its property or method. (Sample: Nodes.Add(`Element`), or
Nodes.Add(`Element`) and Nodes{Add(`Element`)} are equivalents)

where

variable is the name of a variable declared with Dim command or previously defined
using the SetTemplateDef method.
property is the name of a property/field of the current object in the current context.
method is the name of a method of the current object in the current context.
arguments include constants and/or variables and/or property/method calls
separated by comma character.
object can be a variable of an Object type, Me or CreateObject call.

The x-script uses constant expressions as follows:

boolean expression with possible values as True or False. The True value is
equivalent with -1, while False with 0. (Sample: Visible = False)
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45. (
Sample: BackColor = 0xFF0000)
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
For instance, #31/12/1971# indicates the December 31, 1971 (Sample:
Chart.FirstVisibleDate = #1/1/2001#)
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample:
"text" or `text` indicates the string text, while the ' text , specifies the comment text. (
Sample: Text = "caption")

Also , the template or x-script code supports general functions as follows:

Me property indicates the original object, and it is defined as a predefined variable. (

Sample: Me.Nodes.Add(`Root 1`))
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the Red Green Blue bytes for the color being specified. (Sample:
Nodes.Add(`Root 1`).BackColor = RGB(255,0,0))
LoadPicture(file) property loads a picture from a file and returns a Picture object
required by the picture properties. (Sample: BackgroundImage =
LoadPicture(`C:\exontrol\images\auction.gif`)
CreateObject(assemblyQualifiedName) property creates an instance of the specified
type using that type's default constructor. The assemblyQualifiedName indicates the
assembly-qualified name of the type to get. See AssemblyQualifiedName. If the type
is in the currently executing assembly or in Mscorlib.dll, it is sufficient to supply the
type name qualified by its namespace. (Sample:
"CreateObject(`System.Windows.Forms.TabPage, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089`){Text =
`Page`;UseVisualStyleBackColor = True}")

property NAVHostCtrl.Version as String
Indicates the version of the NAVHost control.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the NAVHost control's version. If the Version property
includes the DEMO, it indicates that you are running a trial version of the NAVHost control.
The Version property does not get the hosting control's Version, for that you have to use the
AssemblyVersion property of the Host object.

NAVHostCtrlEvents object
The NAVHostEvent object holds information about the event that the Host control fires. The
HostEvent event notifies your application once the hosting control (Host) fires an event.
The HostEvents property of the NAVHost control specifies the list of events that the control
should handle.

Name Description
HostEvent The hosting control fires an event.

method NAVHostCtrlEvents.HostEvent (Ev as NAVHostEvent)
The hosting control fires an event.

Type Description

Ev as NAVHostEvent A NAVHostEvent object that holds information about the
firing event.

The OnControlAddIn(Index : Integer;Data : Text) trigger notifies your application once the
hosting control fires any event. The events being fired depends on the hosting control which
usually is specified by the AssemblyQualifiedName call in the Caption property.

In order to handle the OnControlAddin trigger of the Control-AddIn in the NAV's page you
have to:

Open the NAV's page that hosts the Control-AddIn, in design mode
Go to the field that hosts the Control-AddIn
Right-Click the field, and choose "C/AL Code"
Locate the "OnControlAddIn(Index : Integer;Data : Text)" for the field
Add the Message(Data) as in the following sample:

Name - OnControlAddIn(Index : Integer;Data : Text)
 MESSAGE(Data);

Save and Close the page
Run the Page, and click the Control-AddIn, and so the message box "Click" is
displayed.

The HostEvent event notifies your application once the hosting control (Host) fires an
event. The HostEvents property of the NAVHost control specifies the list of events that the
control should handle. The AsString property of the NAVHostEvent object gives a brief
description of the event that occurred including the event's name, identifier and its list of
arguments. Each control that the NAVHost host provides its own events, so for what events
the hosting control supports consult its documentation. The Version property specifies the
NAVHost control's version, which includes the DEMO if you are running the trial version of
the control.

Use the following properties to identify/filter the event:

Name, Indicates the name of the event.
ID, Indicates the identifier of the event. The ID property may give different values for
different versions of hosting control, so you must check for compatibility, so it is not
guaranteed that the ID will be unique for any version of the hosting control.

HostEvents property specifies the list of events to be handled through the control's
Event event, else all events are handled (missing or not set).

Use the following properties to access the arguments of the event:

AsString, Gives a brief description of the event including its arguments.
Arguments, gives a NAVObjectTemplate object, whose Item or Template properties can
be used to access the event's argument using the x-script language.

NAVHostEvent object
The NAVHostEvent object holds information about the event that the Host control fires. The
HostEvent event notifies your application once the hosting control (Host) fires an event.
The HostEvents property of the NAVHost control specifies the list of events that the control
should handle. The NAVHostEvent object supports the following properties and methods:

Name Description
Arguments Gets the arguments of the event.

AsString Gives a brief description of the event including its
arguments.

ID Indicates the identifier of the event.
Name Indicates the name of the event.

property NAVHostEvent.Arguments as NAVObjectTemplate
Gets the arguments of the event.

Type Description

NAVObjectTemplate A NAVObjectTemplate object that holds arguments of the
hosting event.

The Arguments property, gives a NAVObjectTemplate object, whose Item or Template
properties can be used to access the event's argument using the x-script language. The
AsString property gives a brief description including name, identifier and arguments of the
event.

property NAVHostEvent.AsString as String
Gives a brief description of the event including its arguments.

Type Description

String
A String expression that describes the event being fired
including the event's name [event's identifier] { event's
arguments }

The AsString property gives a general idea of what data the event contains. The Name
property indicates the name of the event. The ID property indicates the identifier of the
event. The Arguments property, gives a NAVObjectTemplate object, whose Item or
Template properties can be used to access the event's argument using the x-script
language. The AsString property may returns: "The trial/evaluation version of the control
limits firing this event. In other words, using the trial/evaluation version won't fire the event
every time it should.", only for not-registered version. The Version property specifies the
NAVHost control's version, which includes the DEMO if you are running the trial version of
the control.

property NAVHostEvent.ID as Long
Indicates the identifier of the event.

Type Description
Long A Long expression

The ID property indicates the identifier of the event. The ID property may give different
values for different versions of hosting control, so you must check for compatibility, so it is
not guaranteed that the ID will be unique for any version of the hosting control. The Name
property indicates the name of the event. You can use the Name or ID property to identify a
specified event you need to handle in the hosting control. The AsString property gives a
brief description including name, identifier and arguments of the event.

The Arguments property, gives a NAVObjectTemplate object, whose Item or Template
properties can be used to access the event's argument using the x-script language. The
AsString property may returns: "The trial/evaluation version of the control limits firing this
event. In other words, using the trial/evaluation version won't fire the event every time it
should.", only for not-registered version.

property NAVHostEvent.Name as String
Indicates the name of the event.

Type Description

String A String expression that specifies the name of the event
being fired.

The Name property indicates the name of the event. The ID property indicates the identifier
of the event. You can use the Name or ID property to identify a specified event you need to
handle in the hosting control. The AsString property gives a brief description including name,
identifier and arguments of the event.

The Arguments property, gives a NAVObjectTemplate object, whose Item or Template
properties can be used to access the event's argument using the x-script language. The
AsString property may returns: "The trial/evaluation version of the control limits firing this
event. In other words, using the trial/evaluation version won't fire the event every time it
should.", only for not-registered version.

NAVHostObject object
The NAVHostObject object holds a .NET Framework object. The NAVHostObject type
supports the following properties and method:

Name Description

AsBoolean Returns a boolean value that represents the current
object's value.

AsDate Returns a date value that represents the current object's
value.

AsDouble Returns a numeric value that represents the current
object's value.

AsInt Returns an integer value that represents the current
object's value.

AssemblyVersion Indicates the version of the assembly being loaded.
AsString Returns a string that represents the current object's value.
Item Executes the template and returns the result.

SetTemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

SetValue Specifies the value of the object.
Template Executes the x-script code.
TemplateError Indicates the error code of the last Template call.

TemplateException Indicates the detailed information about the exception that
occurs.

TemplateResult Indicates the result of the last Template call.

TemplateThrowError Specifies whether the execution of the template stops
once an error occurs.

Type Indicates the type of the object's value.
Value Specifies the value of the object.
VtType Indicates the type/vartype of the object's value.

property NAVHostObject.AsBoolean as Boolean
Returns a boolean value that represents the current object's value.

Type Description

Boolean A Boolean expression that specifies the Value converted
as boolean.

The AsBoolean property converts the Value to a Boolean expression. If the conversion is
not possible, the AsBoolean property returns False. The Value property holds the original
object. The VtType property indicates the VARIANT type of the object that the current
NAVHostObject object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVHostObject holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVHostObject properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.AsDate as Date
Returns a date value that represents the current object's value.

Type Description

Date A Date/Double expression that specifies the Value
converted as date-time.

The AsDate property converts the Value to a DATE-TIME expression. If the conversion is
not possible, the AsDate property returns 0. The Value property holds the original object.
The VtType property indicates the VARIANT type of the object that the current
NAVHostObject object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVHostObject holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVHostObject properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.AsDouble as Double
Returns a numeric value that represents the current object's value.

Type Description

Double A Double expression that specifies the Value converted as
double.

The AsDouble property converts the Value to a double expression. If the conversion is not
possible, the AsDouble property returns 0. The Value property holds the original object. The
VtType property indicates the VARIANT type of the object that the current NAVHostObject
object holds. The Type property returns a string that specifies the fully assembly-qualified
name of the type, which includes the name of the assembly from which this Type object is
loaded. If the NAVHostObject holds a class or an object/IDispatch/IUnknown that supports
properties, fields, members, any of these can be called through the NAVHostObject
properties like: Item, SetTemplateDef or Template property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.AsInt as Long
Returns an integer value that represents the current object's value.

Type Description

Long A Long expression that specifies the Value converted as
long (32-bit integer).

The AsInt property converts the Value to a long expression. If the conversion is not
possible, the AsInt property returns 0. The Value property holds the original object. The
VtType property indicates the VARIANT type of the object that the current NAVHostObject
object holds. The Type property returns a string that specifies the fully assembly-qualified
name of the type, which includes the name of the assembly from which this Type object is
loaded. If the NAVHostObject holds a class or an object/IDispatch/IUnknown that supports
properties, fields, members, any of these can be called through the NAVHostObject
properties like: Item, SetTemplateDef or Template property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.AssemblyVersion as String
Indicates the version of the assembly being loaded.

Type Description

String A string expression that indicates the hosting control's
version.

The AssemblyVersion property indicates the version of the assembly being loaded. The
Version property specifies the NAVHost control's version.

property NAVHostObject.AsString as String
Returns a string that represents the current object's value.

Type Description

String A String expression that specifies the Value converted as
string.

The AsString property converts the Value to a string expression. If the conversion is not
possible, the AsString property returns "" (empty). The Value property holds the original
object. The VtType property indicates the VARIANT type of the object that the current
NAVHostObject object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVHostObject holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVHostObject properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.Item (Template as String) as
NAVObjectTemplate
Executes the template and returns the result.

Type Description

Template as String A String expression that specifies the x-script/template
code to be executed.

NAVObjectTemplate A NAVObjectTemplate property that holds the result of the
last instruction within the Template.

Use the Template/Item property to get/set properties / fields / parameters, invoke methods
of the hosting /NET framework Value, using the x-script code. The Item property does
exactly the same thing as Template call, excepts that it returns the TemplateResult
property. For instance, using the Template/Item property you can change the hosting
control's background color, add nodes, and so on. Prior to Template/Item call, you can
invoke the SetTemplateDef to define values from your code to Template's code (
TemplateDef variables).

The Template / x-script is composed by lines of instructions. Instructions are separated by
"\r\n" (new line characters) or ";" character. The TemplateThrowError property specifies
whether the control fires an exception/error when the Template call fails. The TemplateError
/ TemplateException gets the error if the Template calls fails. The TemplateResult property
returns the result of the last instruction into a Template call, as a NAVObjectTemplate
object.

An x-script instruction/line can be one of the following:

Dim variable[, variable, ...] declares the variables in the context. Multiple variables
are separated by commas. The SetTemplateDef method can declare new variables to
be available for the main context. (Sample: Dim h, h1, h2)
variable = [object.][property/method(arguments).]property/method(arguments)
assigns the result of the property/method call to the variable. (Sample: h =
Nodes.Add(`Node`))
[object.][property/method(arguments).]property(arguments) = value assigns the
value to the property. (Sample: Nodes.Add(`Node`).BackColor = RGB(255,0,0))
[object.][property/method(arguments).]property/method(arguments) invokes the
property/method. (Sample: Nodes.Add(`Node`))
{context } delimits the object's context. The properties/fields or methods called
between { and } are related to the last object returned by the property/method prior to
{ declaration. (Sample: Nodes{Add(`Child 1`);Add(`Child 2`)})
. delimits the object than its property or method. (Sample: Nodes.Add(`Element`), or
Nodes.Add(`Element`) and Nodes{Add(`Element`)} are equivalents)

where

variable is the name of a variable declared with Dim command or previously defined
using the SetTemplateDef method.
property is the name of a property/field of the current object in the current context.
method is the name of a method of the current object in the current context.
arguments include constants and/or variables and/or property/method calls
separated by comma character.
object can be a variable of an Object type, Me or CreateObject call.

The x-script uses constant expressions as follows:

boolean expression with possible values as True or False. The True value is
equivalent with -1, while False with 0. (Sample: Visible = False)
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45. (
Sample: BackColor = 0xFF0000)
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971 (Sample: FirstVisibleDate =
#1/1/2001#)
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample:
"text" or `text` indicates the string text, while the ' text , specifies the comment text. (
Sample: Text = "caption")

Also , the template or x-script code supports general functions as follows:

Me property indicates the original object, and it is defined as a predefined variable. (
Sample: Me.Nodes.Add(`Root 1`))
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the Red Green Blue bytes for the color being specified. (Sample:
Nodes.Add(`Root 1`).BackColor = RGB(255,0,0))
LoadPicture(file) property loads a picture from a file and returns a Picture object
required by the picture properties. (Sample: BackgroundImage =
LoadPicture(`C:\exontrol\images\auction.gif`)
CreateObject(assemblyQualifiedName) property creates an instance of the specified
type using that type's default constructor. The assemblyQualifiedName indicates the
assembly-qualified name of the type to get. See AssemblyQualifiedName. If the type
is in the currently executing assembly or in Mscorlib.dll, it is sufficient to supply the
type name qualified by its namespace. (Sample:
"CreateObject(`System.Windows.Forms.TabPage, System.Windows.Forms,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089`){Text =
`Page`;UseVisualStyleBackColor = True}")

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as the assembly-qualified

name of the type to create.
<text> any string of characters

method NAVHostObject.SetTemplateDef (Value as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Value as Variant

If calling the first time, A String expression that indicates
the DIM command to define the variables that follows, or a
VARIANT expression that defines the value of the variable
in the order as they were defined.

The SetTemplateDef method was provided to let you use values/objects inside the next
Template/Item call. For instance, let's say you have a date field in your form, and once the
user fills it, you want a /NET Frameworks MonthCalendar object to select it. In order to do
that you have to call a code like:

With NAVHost1
 .BackgroundColor = 16777215
 .Create
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll","System.Windows.Forms.MonthCalendar"

 With .Host
 .SetTemplateDef "Dim x"
 .SetTemplateDef #1/1/2001#
 .Template = "MaxSelectionCount = 1;SelectionStart = x"
 End With
End With

This sample defines the variable x to be 1/1/2001 for the Template call, so the
SelectionStart will be set on 1/1/2001.

The call of SetTemplateDef method consists in:

First call of SetTemplateDef method should be on a form of SetTemplateDef("Dim
variable[,variable,...]"). This defines the name of the variable that follow to be defined.
Next calls, must be exactly the same as with the number of variables you defined,
which will define the variable one by one. For instance, if your first call was
SetTemplateDef("Dim h1,h2,h3"), it means that the next-three calls of SetTemplateDef
defines the variable h1, h2 and h3

Once you defined the variables, they will be available for the next calls of Template/Item
properties.

method NAVHostObject.SetValue (Value as Variant)
Specifies the value of the object.

Type Description

Value as Variant A VARIANT expression that specifies the new value to be
assigned to the NAVHostObject object.

Use the SetValue property to change the object being hosted by the current NAVHostObject
object. The Value property holds the original object. The VtType property indicates the
VARIANT type of the object that the current NAVHostObject object holds. The Type
property returns a string that specifies the fully assembly-qualified name of the type, which
includes the name of the assembly from which this Type object is loaded. If the
NAVHostObject holds a class or an object/IDispatch/IUnknown that supports properties,
fields, members, any of these can be called through the NAVHostObject properties like:
Item, SetTemplateDef or Template property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.Template as String
Executes the x-script code.

Type Description

String A String expression that specifies the x-script/template
code to be executed.

Use the Template/Item property to get/set properties / fields / parameters, invoke methods
of the hosting /NET framework Value, using the x-script code. The Item property does
exactly the same thing as Template call, excepts that it returns the TemplateResult
property. For instance, using the Template/Item property you can change the hosting
control's background color, add nodes, and so on. Prior to Template/Item call, you can
invoke the SetTemplateDef to define values from your code to Template's code (
TemplateDef variables).

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]

<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as the assembly-qualified
name of the type to create.
<text> any string of characters

The Template / x-script is composed by lines of instructions. Instructions are separated by
"\r\n" (new line characters) or ";" character. The TemplateThrowError property specifies
whether the control fires an exception/error when the Template call fails. The TemplateError
/ TemplateException gets the error if the Template calls fails. The TemplateResult property
returns the result of the last instruction into a Template call, as a NAVObjectTemplate
object.

An x-script instruction/line can be one of the following:

Dim variable[, variable, ...] declares the variables in the context. Multiple variables
are separated by commas. The SetTemplateDef method can declare new variables to
be available for the main context. (Sample: Dim h, h1, h2)
variable = [object.][property/method(arguments).]property/method(arguments)
assigns the result of the property/method call to the variable. (Sample: h =
Nodes.Add(`Node`))
[object.][property/method(arguments).]property(arguments) = value assigns the
value to the property. (Sample: Nodes.Add(`Node`).BackColor = RGB(255,0,0))
[object.][property/method(arguments).]property/method(arguments) invokes the
property/method. (Sample: Nodes.Add(`Node`))
{context } delimits the object's context. The properties/fields or methods called
between { and } are related to the last object returned by the property/method prior to
{ declaration. (Sample: Nodes{Add(`Child 1`);Add(`Child 2`)})
. delimits the object than its property or method. (Sample: Nodes.Add(`Element`), or
Nodes.Add(`Element`) and Nodes{Add(`Element`)} are equivalents)

where

variable is the name of a variable declared with Dim command or previously defined
using the SetTemplateDef method.
property is the name of a property/field of the current object in the current context.
method is the name of a method of the current object in the current context.
arguments include constants and/or variables and/or property/method calls
separated by comma character.
object can be a variable of an Object type, Me or CreateObject call.

The x-script uses constant expressions as follows:

boolean expression with possible values as True or False. The True value is
equivalent with -1, while False with 0. (Sample: Visible = False)
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45. (
Sample: BackColor = 0xFF0000)
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971 (Sample: FirstVisibleDate =
#1/1/2001#)
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample:
"text" or `text` indicates the string text, while the ' text , specifies the comment text. (
Sample: Text = "caption")

Also , the template or x-script code supports general functions as follows:

Me property indicates the original object, and it is defined as a predefined variable. (
Sample: Me.Nodes.Add(`Root 1`))
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the Red Green Blue bytes for the color being specified. (Sample:
Nodes.Add(`Root 1`).BackColor = RGB(255,0,0))
LoadPicture(file) property loads a picture from a file and returns a Picture object
required by the picture properties. (Sample: BackgroundImage =
LoadPicture(`C:\exontrol\images\auction.gif`)
CreateObject(assemblyQualifiedName) property creates an instance of the specified
type using that type's default constructor. The assemblyQualifiedName indicates the
assembly-qualified name of the type to get. See AssemblyQualifiedName. If the type
is in the currently executing assembly or in Mscorlib.dll, it is sufficient to supply the
type name qualified by its namespace. (Sample:
"CreateObject(`System.Windows.Forms.TabPage, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089`){Text =
`Page`;UseVisualStyleBackColor = True}")

property NAVHostObject.TemplateError as Long
Indicates the error code of the last Template call.

Type Description

Long A long expression that describes the error/exception in the
Item/Template call.

By default, the TemplateError property returns 0. The TemplateError / TemplateException
property indicates the error/exception that occurred in the Item/Template call. The
TemplateThrowError property specifies whether the control fires an exception/error when
the Template call fails. The TemplateError / TemplateException gets the error if the
Template calls fails.

By default, the control fires an exception/error when the Item/Template call fails like shown
in the following screen shot:

property NAVHostObject.TemplateException as String
Indicates the detailed information about the exception that occurs.

Type Description

String A String expression that describes the error/exception in
the Item/Template call.

By default, the TemplateException property is empty. The TemplateError /
TemplateException property indicates the error/exception that occurred in the Item/Template
call. The TemplateThrowError property specifies whether the control fires an
exception/error when the Template call fails. The TemplateError / TemplateException gets
the error if the Template calls fails.

By default, the control fires an exception/error when the Item/Template call fails like shown
in the following screen shot:

property NAVHostObject.TemplateResult as NAVObjectTemplate
Indicates the result of the last Template call.

Type Description

NAVObjectTemplate A NAVObjectTemplate object that holds the result of the
last Template call.

The TemplateResult property returns the result of the last instruction into a Template call, as
a NAVObjectTemplate object. Use the Template/Item property to get/set properties / fields /
parameters, invoke methods of the hosting /NET framework Value, using the x-script code.
The Item property does exactly the same thing as Template call, excepts that it returns the
TemplateResult property. For instance, using the Template/Item property you can change
the hosting control's background color, add nodes, and so on. The TemplateThrowError
property specifies whether the control fires an exception/error when the Template call fails.
The TemplateError / TemplateException gets the error if the Template calls fails.

property NAVHostObject.TemplateThrowError as Boolean
Specifies whether the execution of the template stops once an error occurs.

Type Description

Boolean
A Boolean expression that specifies whether the NAVHost
control fires an error/exception when an error occurs in the
Item/Template call.

By default, the TemplateThrowError property is False. The TemplateThrowError property
specifies whether the control fires an exception/error when the Template call fails. The
TemplateError / TemplateException property indicates the error/exception that occurred in
the Item/Template call. The TemplateError / TemplateException gets the error if the
Template calls fails.

By default, the control fires an exception/error when the Item/Template call fails like shown
in the following screen shot:

property NAVHostObject.Type as String
Indicates the type of the object's value.

Type Description

String

A string that specifies the fully assembly-qualified name of
the type, which includes the name of the assembly from
which this Type object is loaded. For instance:
"System.Windows.Forms.TreeView,
System.Windows.Forms, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"

The Type property returns a string that specifies the fully assembly-qualified name of the
type, which includes the name of the assembly from which this Type object is loaded. The
VtType property indicates the VARIANT type of the object that the current NAVHostObject
object holds. If the NAVHostObject holds a class or an object/IDispatch/IUnknown that
supports properties, fields, members, any of these can be called through the
NAVHostObject properties like: Item, SetTemplateDef or Template property. The Value
property holds the original object.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.Value as Variant
Specifies the value of the object.

Type Description

Variant
A VARIANT expression that specifies the original object
(.NET Framework object) hold by the current
NAVHostObject object.

The Value property holds the original object. Use the SetValue property to change the
object being hosted by the current NAVHostObject object. The VtType property indicates
the VARIANT type of the object that the current NAVHostObject object holds. The Type
property returns a string that specifies the fully assembly-qualified name of the type, which
includes the name of the assembly from which this Type object is loaded. If the
NAVHostObject holds a class or an object/IDispatch/IUnknown that supports properties,
fields, members, any of these can be called through the NAVHostObject properties like:
Item, SetTemplateDef or Template property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVHostObject.VtType as NAVHostVarEnum
Indicates the type/vartype of the object's value.

Type Description

NAVHostVarEnum A NAVHostVarEnum expression that specifies the
VARIANT-type of the Value.

The VtType property indicates the VARIANT type of the object that the current
NAVHostObject object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVHostObject holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVHostObject properties like: Item, SetTemplateDef or Template
property. The Value property holds the original object.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

NAVObjectTemplate object
The NAVObjectTemplate object holds a .NET Framework object. The NAVObjectTemplate
type supports the following properties and method:

Name Description

AsBoolean Returns a boolean value that represents the current
object's value.

AsDate Returns a date value that represents the current object's
value.

AsDouble Returns a numeric value that represents the current
object's value.

AsInt Returns an integer value that represents the current
object's value.

AsString Returns a string that represents the current object's value.
Item Executes the template and returns the result.

SetTemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

SetValue Specifies the value of the object.
Template Executes the x-script code.
TemplateError Indicates the error code of the last Template call.

TemplateException Indicates the detailed information about the exception that
occurs.

TemplateResult Indicates the result of the last Template call.

TemplateThrowError Specifies whether the execution of the template stops
once an error occurs.

Type Indicates the type of the object's value.
Value Specifies the value of the object.
VtType Indicates the type/vartype of the object's value.

property NAVObjectTemplate.AsBoolean as Boolean
Returns a boolean value that represents the current object's value.

Type Description

Boolean A Boolean expression that specifies the Value converted
as boolean.

The AsBoolean property converts the Value to a Boolean expression. If the conversion is
not possible, the AsBoolean property returns False. The Value property holds the original
object. The VtType property indicates the VARIANT type of the object that the current
NAVObjectTemplate object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVObjectTemplate holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVObjectTemplate properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.AsDate as Date
Returns a date value that represents the current object's value.

Type Description

Date A Date/Double expression that specifies the Value
converted as date-time.

The AsDate property converts the Value to a DATE-TIME expression. If the conversion is
not possible, the AsDate property returns 0. The Value property holds the original object.
The VtType property indicates the VARIANT type of the object that the current
NAVObjectTemplate object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVObjectTemplate holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVObjectTemplate properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.AsDouble as Double
Returns a numeric value that represents the current object's value.

Type Description

Double A Double expression that specifies the Value converted as
double.

The AsDouble property converts the Value to a double expression. If the conversion is not
possible, the AsDouble property returns 0. The Value property holds the original object. The
VtType property indicates the VARIANT type of the object that the current
NAVObjectTemplate object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVObjectTemplate holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVObjectTemplate properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.AsInt as Long
Returns an integer value that represents the current object's value.

Type Description

Long A Long expression that specifies the Value converted as
long (32-bit integer).

The AsInt property converts the Value to a long expression. If the conversion is not
possible, the AsInt property returns 0. The Value property holds the original object. The
VtType property indicates the VARIANT type of the object that the current
NAVObjectTemplate object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVObjectTemplate holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVObjectTemplate properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.AsString as String
Returns a string that represents the current object's value.

Type Description

String A String expression that specifies the Value converted as
string.

The AsString property converts the Value to a string expression. If the conversion is not
possible, the AsString property returns "" (empty). The Value property holds the original
object. The VtType property indicates the VARIANT type of the object that the current
NAVObjectTemplate object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVObjectTemplate holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVObjectTemplate properties like: Item, SetTemplateDef or Template
property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.Item (Template as String) as
NAVObjectTemplate
Executes the template and returns the result.

Type Description

Template as String A String expression that specifies the x-script/template
code to be executed.

NAVObjectTemplate A NAVObjectTemplate property that holds the result of the
last instruction within the Template.

Use the Template/Item property to get/set properties / fields / parameters, invoke methods
of the hosting /NET framework Value, using the x-script code. The Item property does
exactly the same thing as Template call, excepts that it returns the TemplateResult
property. For instance, using the Template/Item property you can change the hosting
control's background color, add nodes, and so on. Prior to Template/Item call, you can
invoke the SetTemplateDef to define values from your code to Template's code (
TemplateDef variables).

The Template/ x-script code is a simple way of calling hosting control/object's properties,
methods/ events using strings. Exontrol owns the x-script implementation in its easiest way
and it does not require any VB engine to get executed. Our simple rule is using the
component alone without any other dependency than the Windows system.

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]

<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as the assembly-qualified
name of the type to create.
<text> any string of characters

The Template / x-script is composed by lines of instructions. Instructions are separated by
"\r\n" (new line characters) or ";" character. The TemplateThrowError property specifies
whether the control fires an exception/error when the Template call fails. The TemplateError
/ TemplateException gets the error if the Template calls fails. The TemplateResult property
returns the result of the last instruction into a Template call, as a NAVObjectTemplate
object.

An x-script instruction/line can be one of the following:

Dim variable[, variable, ...] declares the variables in the context. Multiple variables
are separated by commas. The SetTemplateDef method can declare new variables to
be available for the main context. (Sample: Dim h, h1, h2)
variable = [object.][property/method(arguments).]property/method(arguments)
assigns the result of the property/method call to the variable. (Sample: h =
Nodes.Add(`Node`))
[object.][property/method(arguments).]property(arguments) = value assigns the
value to the property. (Sample: Nodes.Add(`Node`).BackColor = RGB(255,0,0))
[object.][property/method(arguments).]property/method(arguments) invokes the
property/method. (Sample: Nodes.Add(`Node`))

{context } delimits the object's context. The properties/fields or methods called
between { and } are related to the last object returned by the property/method prior to
{ declaration. (Sample: Nodes{Add(`Child 1`);Add(`Child 2`)})
. delimits the object than its property or method. (Sample: Nodes.Add(`Element`), or
Nodes.Add(`Element`) and Nodes{Add(`Element`)} are equivalents)

where

variable is the name of a variable declared with Dim command or previously defined
using the SetTemplateDef method.
property is the name of a property/field of the current object in the current context.
method is the name of a method of the current object in the current context.
arguments include constants and/or variables and/or property/method calls
separated by comma character.
object can be a variable of an Object type, Me or CreateObject call.

The x-script uses constant expressions as follows:

boolean expression with possible values as True or False. The True value is
equivalent with -1, while False with 0. (Sample: Visible = False)
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45. (
Sample: BackColor = 0xFF0000)
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971 (Sample: FirstVisibleDate =
#1/1/2001#)
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample:
"text" or `text` indicates the string text, while the ' text , specifies the comment text. (
Sample: Text = "caption")

Also , the template or x-script code supports general functions as follows:

Me property indicates the original object, and it is defined as a predefined variable. (
Sample: Me.Nodes.Add(`Root 1`))
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the Red Green Blue bytes for the color being specified. (Sample:
Nodes.Add(`Root 1`).BackColor = RGB(255,0,0))
LoadPicture(file) property loads a picture from a file and returns a Picture object
required by the picture properties. (Sample: BackgroundImage =
LoadPicture(`C:\exontrol\images\auction.gif`)
CreateObject(assemblyQualifiedName) property creates an instance of the specified

type using that type's default constructor. The assemblyQualifiedName indicates the
assembly-qualified name of the type to get. See AssemblyQualifiedName. If the type
is in the currently executing assembly or in Mscorlib.dll, it is sufficient to supply the
type name qualified by its namespace. (Sample:
"CreateObject(`System.Windows.Forms.TabPage, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089`){Text =
`Page`;UseVisualStyleBackColor = True}")

method NAVObjectTemplate.SetTemplateDef (Value as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Value as Variant

If calling the first time, A String expression that indicates
the DIM command to define the variables that follows, or a
VARIANT expression that defines the value of the variable
in the order as they were defined.

The SetTemplateDef method was provided to let you use values/objects inside the next
Template/Item call. For instance, let's say you have a date field in your form, and once the
user fills it, you want a /NET Frameworks MonthCalendar object to select it. In order to do
that you have to call a code like:

With NAVHost1
 .BackgroundColor = 16777215
 .Create
"C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll","System.Windows.Forms.MonthCalendar"

 With .Host
 .SetTemplateDef "Dim x"
 .SetTemplateDef #1/1/2001#
 .Template = "MaxSelectionCount = 1;SelectionStart = x"
 End With
End With

This sample defines the variable x to be 1/1/2001 for the Template call, so the
SelectionStart will be set on 1/1/2001.

The call of SetTemplateDef method consists in:

First call of SetTemplateDef method should be on a form of SetTemplateDef("Dim
variable[,variable,...]"). This defines the name of the variable that follow to be defined.
Next calls, must be exactly the same as with the number of variables you defined,
which will define the variable one by one. For instance, if your first call was
SetTemplateDef("Dim h1,h2,h3"), it means that the next-three calls of SetTemplateDef
defines the variable h1, h2 and h3

Once you defined the variables, they will be available for the next calls of Template/Item
properties.

method NAVObjectTemplate.SetValue (Value as Variant)
Specifies the value of the object.

Type Description

Value as Variant A VARIANT expression that specifies the new value to be
assigned to the NAVObjectTemplate object.

Use the SetValue property to change the object being hosted by the current
NAVObjectTemplate object. The Value property holds the original object. The VtType
property indicates the VARIANT type of the object that the current NAVObjectTemplate
object holds. The Type property returns a string that specifies the fully assembly-qualified
name of the type, which includes the name of the assembly from which this Type object is
loaded. If the NAVObjectTemplate holds a class or an object/IDispatch/IUnknown that
supports properties, fields, members, any of these can be called through the
NAVObjectTemplate properties like: Item, SetTemplateDef or Template property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.Template as String
Executes the x-script code.

Type Description

String A String expression that specifies the x-script/template
code to be executed.

Use the Template/Item property to get/set properties / fields / parameters, invoke methods
of the hosting /NET framework Value, using the x-script code. The Item property does
exactly the same thing as Template call, excepts that it returns the TemplateResult
property. For instance, using the Template/Item property you can change the hosting
control's background color, add nodes, and so on. Prior to Template/Item call, you can
invoke the SetTemplateDef to define values from your code to Template's code (
TemplateDef variables).

The Template/ x-script code is a simple way of calling hosting control/object's properties,
methods/ events using strings. Exontrol owns the x-script implementation in its easiest way
and it does not require any VB engine to get executed. Our simple rule is using the
component alone without any other dependency than the Windows system.

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"

<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as the assembly-qualified
name of the type to create.
<text> any string of characters

The Template / x-script is composed by lines of instructions. Instructions are separated by
"\r\n" (new line characters) or ";" character. The TemplateThrowError property specifies
whether the control fires an exception/error when the Template call fails. The TemplateError
/ TemplateException gets the error if the Template calls fails. The TemplateResult property
returns the result of the last instruction into a Template call, as a NAVObjectTemplate
object.

An x-script instruction/line can be one of the following:

Dim variable[, variable, ...] declares the variables in the context. Multiple variables
are separated by commas. The SetTemplateDef method can declare new variables to
be available for the main context. (Sample: Dim h, h1, h2)
variable = [object.][property/method(arguments).]property/method(arguments)
assigns the result of the property/method call to the variable. (Sample: h =
Nodes.Add(`Node`))
[object.][property/method(arguments).]property(arguments) = value assigns the
value to the property. (Sample: Nodes.Add(`Node`).BackColor = RGB(255,0,0))
[object.][property/method(arguments).]property/method(arguments) invokes the
property/method. (Sample: Nodes.Add(`Node`))
{context } delimits the object's context. The properties/fields or methods called
between { and } are related to the last object returned by the property/method prior to
{ declaration. (Sample: Nodes{Add(`Child 1`);Add(`Child 2`)})

. delimits the object than its property or method. (Sample: Nodes.Add(`Element`), or
Nodes.Add(`Element`) and Nodes{Add(`Element`)} are equivalents)

where

variable is the name of a variable declared with Dim command or previously defined
using the SetTemplateDef method.
property is the name of a property/field of the current object in the current context.
method is the name of a method of the current object in the current context.
arguments include constants and/or variables and/or property/method calls
separated by comma character.
object can be a variable of an Object type, Me or CreateObject call.

The x-script uses constant expressions as follows:

boolean expression with possible values as True or False. The True value is
equivalent with -1, while False with 0. (Sample: Visible = False)
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45. (
Sample: BackColor = 0xFF0000)
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
For instance, #31/12/1971# indicates the December 31, 1971 (Sample:
Chart.FirstVisibleDate = #1/1/2001#)
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample:
"text" or `text` indicates the string text, while the ' text , specifies the comment text. (
Sample: Text = "caption")

Also , the template or x-script code supports general functions as follows:

Me property indicates the original object, and it is defined as a predefined variable. (
Sample: Me.Nodes.Add(`Root 1`))
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the Red Green Blue bytes for the color being specified. (Sample:
Nodes.Add(`Root 1`).BackColor = RGB(255,0,0))
LoadPicture(file) property loads a picture from a file and returns a Picture object
required by the picture properties. (Sample: BackgroundImage =
LoadPicture(`C:\exontrol\images\auction.gif`)
CreateObject(assemblyQualifiedName) property creates an instance of the specified
type using that type's default constructor. The assemblyQualifiedName indicates the
assembly-qualified name of the type to get. See AssemblyQualifiedName. If the type
is in the currently executing assembly or in Mscorlib.dll, it is sufficient to supply the

type name qualified by its namespace. (Sample:
"CreateObject(`System.Windows.Forms.TabPage, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089`){Text =
`Page`;UseVisualStyleBackColor = True}")

property NAVObjectTemplate.TemplateError as Long
Indicates the error code of the last Template call.

Type Description

Long A long expression that describes the error/exception in the
Item/Template call.

By default, the TemplateError property returns 0. The TemplateError / TemplateException
property indicates the error/exception that occurred in the Item/Template call. The
TemplateThrowError property specifies whether the control fires an exception/error when
the Template call fails. The TemplateError / TemplateException gets the error if the
Template calls fails.

By default, the control fires an exception/error when the Item/Template call fails like shown
in the following screen shot:

property NAVObjectTemplate.TemplateException as String
Indicates the detailed information about the exception that occurs.

Type Description

String A String expression that describes the error/exception in
the Item/Template call.

By default, the TemplateException property is empty. The TemplateError /
TemplateException property indicates the error/exception that occurred in the Item/Template
call. The TemplateThrowError property specifies whether the control fires an
exception/error when the Template call fails. The TemplateError / TemplateException gets
the error if the Template calls fails.

By default, the control fires an exception/error when the Item/Template call fails like shown
in the following screen shot:

property NAVObjectTemplate.TemplateResult as NAVObjectTemplate
Indicates the result of the last Template call.

Type Description

NAVObjectTemplate A NAVObjectTemplate object that holds the result of the
last Template call.

The TemplateResult property returns the result of the last instruction into a Template call, as
a NAVObjectTemplate object. Use the Template/Item property to get/set properties / fields /
parameters, invoke methods of the hosting /NET framework Value, using the x-script code.
The Item property does exactly the same thing as Template call, excepts that it returns the
TemplateResult property. For instance, using the Template/Item property you can change
the hosting control's background color, add nodes, and so on. The TemplateThrowError
property specifies whether the control fires an exception/error when the Template call fails.
The TemplateError / TemplateException gets the error if the Template calls fails.

property NAVObjectTemplate.TemplateThrowError as Boolean
Specifies whether the execution of the template stops once an error occurs.

Type Description

Boolean
A Boolean expression that specifies whether the NAVHost
control fires an error/exception when an error occurs in the
Item/Template call.

By default, the TemplateThrowError property is True. The TemplateThrowError property
specifies whether the control fires an exception/error when the Template call fails. The
TemplateError / TemplateException property indicates the error/exception that occurred in
the Item/Template call. The TemplateError / TemplateException gets the error if the
Template calls fails.

By default, the control fires an exception/error when the Item/Template call fails like shown
in the following screen shot:

property NAVObjectTemplate.Type as String
Indicates the type of the object's value.

Type Description

String

A string that specifies the fully assembly-qualified name of
the type, which includes the name of the assembly from
which this Type object is loaded. For instance:
"System.Windows.Forms.TreeView,
System.Windows.Forms, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"

property indicates the VARIANT type of the object that the current NAVObjectTemplate
object holds. If the NAVObjectTemplate holds a class or an object/IDispatch/IUnknown that
supports properties, fields, members, any of these can be called through the
NAVObjectTemplate properties like: Item, SetTemplateDef or Template property. The Value
property holds the original object.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.Value as Variant
Specifies the value of the object.

Type Description

Variant
A VARIANT expression that specifies the original object
(.NET Framework object) hold by the current
NAVObjectTemplate object.

The Value property holds the original object. Use the SetValue property to change the
object being hosted by the current NAVHostObject object. The VtType property indicates
the VARIANT type of the object that the current NAVObjectTemplate object holds. The Type
property returns a string that specifies the fully assembly-qualified name of the type, which
includes the name of the assembly from which this Type object is loaded. If the
NAVObjectTemplate holds a class or an object/IDispatch/IUnknown that supports
properties, fields, members, any of these can be called through the NAVObjectTemplate
properties like: Item, SetTemplateDef or Template property.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

property NAVObjectTemplate.VtType as NAVHostVarEnum
Indicates the type/vartype of the object's value.

Type Description

NAVHostVarEnum A NAVHostVarEnum expression that specifies the
VARIANT-type of the Value.

The VtType property indicates the VARIANT type of the object that the current
NAVObjectTemplate object holds. The Type property returns a string that specifies the fully
assembly-qualified name of the type, which includes the name of the assembly from which
this Type object is loaded. If the NAVObjectTemplate holds a class or an
object/IDispatch/IUnknown that supports properties, fields, members, any of these can be
called through the NAVObjectTemplate properties like: Item, SetTemplateDef or Template
property. The Value property holds the original object.

You can use the following properties to convert the current Value to indicated standard
types:

AsBoolean, converts the value to a boolean expression.
AsDate, converts the value to a DATE-TIME/double expression.
AsDouble, converts the value to a double expression.
AsInt, converts the value to an integer-32 expression.
AsString, gets the value converted to a string expression.

	Information
	How to get support?
	NAVHostCtrl
	AssemblyLocation property
	AssemblyName property
	AssemblyQualifiedName property
	BackgroundColor property
	Create method
	Destroy method
	Host property (readonly)
	HostEvents property
	hWnd property (readonly)
	IsCreated property (readonly)
	Template property
	Version property (readonly)

	NAVHostCtrlEvents
	HostEvent method

	NAVHostEvent
	Arguments property (readonly)
	AsString property (readonly)
	ID property (readonly)
	Name property (readonly)

	NAVHostObject
	AsBoolean property (readonly)
	AsDate property (readonly)
	AsDouble property (readonly)
	AsInt property (readonly)
	AssemblyVersion property (readonly)
	AsString property (readonly)
	Item property (readonly)
	SetTemplateDef method
	SetValue method
	Template property
	TemplateError property (readonly)
	TemplateException property (readonly)
	TemplateResult property (readonly)
	TemplateThrowError property
	Type property (readonly)
	Value property (readonly)
	VtType property (readonly)

	NAVObjectTemplate
	AsBoolean property (readonly)
	AsDate property (readonly)
	AsDouble property (readonly)
	AsInt property (readonly)
	AsString property (readonly)
	Item property (readonly)
	SetTemplateDef method
	SetValue method
	Template property
	TemplateError property (readonly)
	TemplateException property (readonly)
	TemplateResult property (readonly)
	TemplateThrowError property
	Type property (readonly)
	Value property (readonly)
	VtType property (readonly)

