
 EXMLGrid

Exontrols new eXMLGrid control provides an innovative grid view look and handles data in
XML fashion way. It provides swift and robust performance and a wide range of formatting
features never seen on other grids. The eXMLGrid component can be seen as a
generalized tree control that allows resizing the node's indentation at runtime.

Features include:

Skinnable Interface support (ability to apply a skin to any background part)
Easy way to define the control's visual appearance in design mode, using XP-Theme
elements or EBN objects
Print and Print Preview support
WYSWYG Template/Layout Editor support.
Built-in LoadXML and SaveXML methods
OLE Drag and Drop Support
Any node supports Built-in HTML format
Unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the node's background
Incremental Search support
Filter-Prompt support, allows you to filter the nodes as you type while the filter bar is
visible on the bottom part of the control area
Editors support: mask, drop down list, check box list, memo fields, spin, OLE Object
viewer, color, buttons, sliders, progress bars and more
ActiveX editors support
ExpandBar support.
Single or Multiple Selection support
Semi-Transparent Selection support
Muliple Lines HTML Tooltip support
Picture support
Mouse wheel support

Ž EXMLGrid is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the object's alignment.

Name Value Description
LeftAlignment 0 The object is left aligned.
CenterAlignment 1 The object is centered.
RightAlignment 2 The object is right aligned.

constants AppearanceEnum
Specifies the source's appearance.

Name Value Description
None2 0 The source has no borders.
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoSearchEnum
Specifies the type of incremental searching that control performs. Use the AutoSearch
property to specify whether the control support incremental searching. The AutoSearch
property specifies the kind of searching while user types characters within the control.

Name Value Description

exStartWith -1

Defines the 'starts with' incremental search within
the control. If the user type characters within the
control the control looks for nodes that start with
the typed characters.

exNoAutoSearch 0 The control doesn't support incremental searching.

exContains 1

Defines the 'contains' incremental search within the
control. If the user type characters within the
control it looks for nodes that contain the typed
characters.

exAnyStartWith 2 exAnyStartWith
exAnyContains 3 exAnyContains
exValueStartWith 4 exValueStartWith
exValueContains 5 exValueContains

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The BackgroundExt property specifies the EBN String
format to be displayed on the node's background. The BackgroundExtValue property
access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
BackgroundExt property specifies the EBN String
format to be displayed on the object's background.
The Exontrol's eXButton WYSWYG Builder helps
you to generate or view the EBN String Format, in
the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

Indicates the background color / EBN color to be

https://exontrol.com/exbutton.jsp

exBackColorExt 1

shown on the part of the object. Sample: 255
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates
the half of the parent object, and so when the
parent is resized the client is resized

exClientExt 2

accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

about:blank

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break

exTextExt 4

number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"

displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be

used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

exTextExtAlignment 6

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and
horizontally aligned on the left.

17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.
32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

exPatternExt 7

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants BackgroundExtStateEnum
The BackgroundExtStateEnum type specifies when the BackgroundExt /
BackgroundExtValue property can be applied. The BackgroundExt property specifies the
EBN String format to be displayed on the node's background. The BackgroundExtValue
property access the value of the giving property for specified part of the EBN. The
BackgroundExtStateEnum supports the following values.

Name Value Description

exExpandBackgroundExtState-1 Specifies the BackgroundExt/Value property for the
node while it is expanded.

exExpandClipBackgroundExtState1
Specifies the BackgroundExt/Value property for the
node while it is expanded, but clipped to the
control's client are.

exCollapseBackgroundExtState0 Specifies the BackgroundExt/Value property for the
node while it is collapsed.

exCollapseClipBackgroundExtState2 Specifies the BackgroundExt/Value property for the
node while it is collapsed, but clipped to the control.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Name Value Description

exExpandButtonUp 0 Specifies the visual appearance for the expand
button, when it is up.

exExpandButtonDown 1 Specifies the visual appearance for the expand
button, when it is down.

exExpandBarButtonUp 2 Specifies the visual appearance for the button in the
control's expand bar, when it is up.

exExpandBarButtonDown 3 Specifies the visual appearance for the button in the
control's expand bar, when it is down.

exDropDownButtonUp 4 Specifies the visual appearance for the drop down
button, when it is up.

exDropDownButtonDown 5 Specifies the visual appearance for the drop down
button, when it is down.

exButtonUp 6
Specifies the visual appearance for the button
inside the editor, when it is up. Use the AddButton
method to add new buttons to the editor.

exButtonDown 7 Specifies the visual appearance for the button
inside the editor, when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a
calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSliderRange 15 Specifies the visual appearance for the slider's bar.

exSliderThumb 16 Specifies the visual appearance for the thumb of the
slider.

exShowFocusRect 19 exShowFocusRect. Specifies the visual appearance
to display the node with the focus.

exSpinUpButtonUp 22 Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23 Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24 Specifies the visual appearance for the down spin
button when it is not pressed.

exSpinDownButtonDown 25 Specifies the visual appearance for the down spin
button when it is pressed.

exCollapseButtonUp 62
exCollapseButtonUp. Specifies the visual
appearance for the expand button, when it is up,
and the node is collapsed.

exFooterFilterBarButton 63 exFooterFilterBarButton. Specifies the background
color for the closing button in the filter bar.
Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property

exToolTipAppearance 64

specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTipWidth property to
specify the width of the tooltip window. The
ToolTipDelay property specifies the time in ms that
passes before the ToolTip appears. Use the
ShowToolTip method to display a custom tooltip.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.
exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273
The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

The upper part (exUpperBackPart) when it is

exHSUpperP 401 pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503 exVSThumbExt. The thumb-extension part in normal
state.

exVSThumbExtP 504 exVSThumbExtP. The thumb-extension part when it

is pressed.

exVSThumbExtD 505 exVSThumbExtD. The thumb-extension part when it
is disabled.

exVSThumbExtH 506 exVSThumbExtH. The thumb-extension when the
cursor hovers it.

exHSThumbExt 507 exHSThumbExt. The thumb-extension in normal
state.

exHSThumbExtP 508 exHSThumbExtP. The thumb-extension when it is
pressed.

exHSThumbExtD 509 exHSThumbExtD. The thumb-extension when it is
disabled.

exHSThumbExtH 510 exHSThumbExtH. The thumb-extension when the
cursor hovers it.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip, when both scroll bars are displayed.

constants BackModeEnum
The BackModeEnum type specifies the way the control displays the selected nodes. The
SelBackMode property specifies the way the control displays the selected nodes. The
SingleSel property specifies whether the control supports single or multiple nodes. The
BackModeEnum type supports the following values:

Name Value Description

exOpaque 0

The selected node overrides the node's
background, like color, pictures, and so on.

exTransparent 1

The background of selected node, is shown as
semi-transparent on the node's background.

constants CheckStateEnum
Specifies the node's state.

Name Value Description
Unchecked 0 The node is not checked.
Checked 1 The node is checked.
PartialChecked 2 The node is partially checked.

constants EditorOptionEnum
Specifies different options for a built-in editor. The Option property specifies the editor's
options.

Name Value Description

exMemoHScrollBar 1

Adds the horizontal scroll bar to a MemoType or
MemoDropDownType editor. By default, the
Editor.Option(exMemoHScrollBar) is False. (
boolean expression)

exMemoVScrollBar 2

Adds the vertical scroll bar to a MemoType or
MemoDropDownType editor. By default, the
Editor.Option(exMemoVScrollBar) is False. (
boolean expression)

exMemoAutoSize 3

Specifies whether the MemoType editor is resized
when user alters the text. By default, the
Editor.Option(exMemoAutoSize) is True. (boolean
expression)

exColorListShowName 4

Specifies whether a ColorListType editor displays
the name of the color. By default, the Editor.Option(
exColorListShowName) is False. (boolean
expression)

exColorShowPalette 5

Specifies whether the ColorList editor displays the
palette colors list. By default, the Editor.Option(
exColorShowPalette) is True. (boolean expression
)

exColorShowSystem 6

Specifies whether the ColorType editor shows the
system colors list. By default, the Editor.Option(
exColorShowSystem) is True. (boolean expression
)

exMemoDropDownWidth 7 Specifies the width for a MemoDropDownType
editor. (long expression)

exMemoDropDownHeight 8 Specifies the height for a MemoDropDownType
editor. (long expression)

exMemoDropDownAcceptReturn9
exMemoDropDownAcceptReturn. Specifies whether
the Return key is used to add new lines into a
MemoDropDownType editor.

exEditRight 10 Right-aligns text in a single-line or multiline edit
control. (boolean expression)

exProgressBarBackColor 11 Specifies the background color for a progress bar
editor. (color expression)

exProgressBarAlignment 12 Specifies the alignment of the caption inside of a
progress bar editor. (AlignmentEnum expression)

exProgressBarMarkTicker 13
Retrieves or sets a value that indicates whether the
ticker of a progress bar editor is visible or hidden.
(boolean expression)

exDateAllowNullDate 14 Allows you to specify an empty date to a DateType
editor. (boolean expression)

exEditPassword 18
Specifies a value that indicates whether an edit
control displays all characters as an asterisk (*) as
they are typed (passwords). (boolean expression)

exEditPasswordChar 19 Specifies a value that indicates the password
character. (character expression)

exLeftArrow 20

(VK_LEFT) Specifies whether the left arrow key is
handled by the control or by the current editor. By
default, the Option(exLeftArrow) property is True.
Use the exLeftArrow option to disable focusing a
new cell if the user presses the left arrow key while
editing. The option is valid for all editors. (boolean
expression)

exRightArrow 21

(VK_RIGHT) Specifies whether the right arrow key
is handled by the control or by the current editor. By
default, the Option(exRightArrow) property is True.
Use the exRightArrow option to disable focusing a
new cell if the user presses the right arrow key
while editing. The option is valid for all editors.
(boolean expression)

exUpArrow 22

(VK_UP) Specifies whether the up arrow key is
handled by the control or by the current editor. By
default, the Option(exUpArrow) property is True.
Use the exUpArrow option to disable focusing a
new cell if the user presses the up arrow key while
editing. The option is valid for all editors. (boolean
expression)

exDownArrow 23

(VK_DOWN) Specifies whether the down arrow key
is handled by the control or by the current editor. By
default, the Option(exDownArrow) property is True.
Use the exDownArrow option to disable focusing a
new cell if the user presses the down arrow key

while editing. The option is valid for all editors.

exHomeKey 24

(VK_HOME) Specifies whether the home key is
handled by the control or by the current editor. By
default, the Option(exHomeKey) property is True.
Use the exHomeKey option to disable focusing a
new cell if the user presses the home key while
editing. The option is valid for all editors. (boolean
expression)

exEndKey 25

(VK_END) Specifies whether the end key is handled
by the control or by the current editor. By default,
the Option(exEndKey) property is True. Use the
exEndKey option to disable focusing a new cell if
the user presses the end key while editing. The
option is valid for all editors. (boolean expression)

exPageUpKey 26

(VK_PRIOR) Specifies whether the page up key is
handled by the control or by the current editor. By
default, the Option(exPageUpKey) property is True.
Use the exPageUpKey option to disable focusing a
new cell if the user presses the page up key while
editing. The option is valid for all editors. (boolean
expression)

exPageDownKey 27

(VK_NEXT) Specifies whether the page down key
is handled by the control or by the current editor. By
default, the Option(exPageDownKey) property is
True. Use the exPageDownKey option to disable
focusing a new cell if the user presses the page
down key while editing. The option is valid for all
editors. (boolean expression)

exDropDownImage 28

Displays the predefined icon in the control's cell, if
the user selects an item from a drop down editor.
By default, the exDropDownImage property is True.
The option is valid for DropDownListType, PickEdit
and ColorListType editors. (boolean expression)

exDateTodayCaption 29

Specifies the caption for the 'Today' button in a
DateType editor. By default, the
Editor.Option(exDateTodayCaption) is
"Today". (string expression)
Specifies the name for months to be displayed in a
DateType editor. The list of months should be
delimitated by spaces. By default, the

exDateMonths 30 Editor.Option(exDateMonths) = "January February
March April May June July August September
October November December". (string expression)

exDateWeekDays 31

Specifies the shortcut for the weekdays to be
displayed in a DateType editor. The list of shortcut
for the weekdays should be separated by spaces.
By default, the Editor.Option(exDateWeekDays) =
"S M T W T F S". The first shortcut in the list
indicates the shortcut for the Sunday, the second
shortcut indicates the shortcut for Monday, and so
on. (string expression)

exDateFirstWeekDay 32

Specifies the first day of the week in a DateType
editor. By default, the
Editor.Option(exDateFirstWeekDay) = 0. The valid
values for the Editor.Option(exDateFirstWeekDay)
property are like follows: 0 - Sunday, 1 - Monday, 2
- Tuesday, 3 - Wednesday, 4 - Thursday, 5 - Friday
and 6 - Saturday. (long expression, valid values are
0 to 6)

exDateShowTodayButton 33

Specifies whether the 'Today' button is visible or
hidden in a DateType editor. By default, the
Editor.Option(exDateShowTodayButton) property is
True. (boolean expression)

exDateMarkToday 34

Gets or sets a value that indicates whether the
today date is marked in a DateType editor. By
default, Editor.Option(exDateMarkToday) property
is False. (boolean expression)

exDateShowScroll 35

Specifies whether the years scroll bar is visible or
hidden in a DateType editor. By default, the
Editor.Option(exDateShowScroll) property is
True. (boolean expression)

exEditLimitText 36

Limits the length of the text that the user may enter
into an edit control. By default, the
Editor.Option(exEditLimitText) is zero, and so no
limit is applied to the edit control. (long expression)
Specifies the proposed change when user clicks a
spin control. The exSpinStep should be a positive
number, else clicking the spin has no effect. By
default, the exSpinStep option is 1. Integer or
floating points allowed as well. For instance, if the

exSpinStep 40 exSpinStep is 0.01, the proposed change when
user clicks the spin is 0.01. If the exSpinStep
property is 0, the spin control is hidden (useful if
you have a slider control).

exSliderWidth 41

Specifies the width in pixels of the slider control.
The exSliderWidth value could be 0, when the slider
control is hidden, a positive value that indicates the
width in pixels of the slider in the control, a negative
number when its absolute value indicates the
percent of the cell's size being used by the slider.
For instance, Option(exSliderWidth) = 0, hides the
slider, Option(exSliderWidth) = 100, shows a slider
of 100 pixels width, Option(exSliderWidth) = -50,
uses half of the cell's client area to display a slider
control. By default the Option(exSliderWidth)
property is 64 pixels. Use the exSpinStep to hide
the spin control. (long expression)

exSliderStep 42

Specifies the proposed change when user clicks a
spin control. The exSpinStep should be a positive
number, else clicking the spin has no effect. By
default, the exSpinStep option is 1. Integer or
floating points allowed as well. For instance, if the
exSpinStep is 0.01, the proposed change when
user clicks the spin is 0.01. If the exSpinStep
property is 0, the spin control is hidden (useful if
you have a slider control).

exSliderMin 43 Specifies the slider's minimum value. (double
expression, by default it is 0)

exSliderMax 44 Specifies the slider's maximum value. (double
expression, by default it is 100)

exEditDecimalSymbol 46

Specifies the symbol that indicates the decimal
values while editing a floating point number. By
default, the exEditDecimalSymbol value is the
"Decimal symbol" settings as in the Regional
Options, in your control panel. Use the
exEditDecimaSymbol option to assign a different
symbol for floating point numbers, when Numeric
property is exFloat. (long expression, that indicates
the ASCII code for the character being used as
decimal symbol.)

exDateWeeksHeader 47

Sets or gets a value that indicates whether the
weeks header is visible or hidden in a DateType
editor. By default,
Editor.Option(exDateWeeksHeader) property is
False. (boolean expression).

exSliderTickFrequency 53

Gets or sets the interval between tick marks slider
types. By default, the exSliderTickFrequency
property is 0 which makes the slider to display no
ticks. The exSliderTickFrequency property specifies
the frequency to display ticks on a slider control.
The exSliderStep proposed change in the slider
control's position. The exSliderMin and exSliderMax
determines the range of values for the slider
control. The exSliderWidth option specifies the
width of the slider within the cell. (double
expression, by default it is 0)

exCalcExecuteKeys 100
Specifies whether the calculator editor executes the
keys while focused and the drop down portion is
hidden. (boolean expression, by default it is True).

exCalcCannotDivideByZero 101
Specifies the message whether a division by zero
occurs in a calendar editor. (string expression, by
default it is "Cannot divide by zero.").

exCalcButtonWidth 102
Specifies the width in pixels of the buttons in the
calculator editor. (long expression, by default it is
24).

exCalcButtonHeight 103
Specifies the height in pixels of the buttons in the
calculator editor. (long expression, by default it is
24).

exCalcButtons 104

Specifies buttons in a calendar editor. The property
specifies the buttons and the layout of the buttons in
the control. A string expression that indicates the list
of buttons being displayed. The rows are separated
by chr(13)+chr(10) (vbCrLf) sequence, and the
buttons inside the row are separated by ';'
character. (string expression)

exCalcPictureUp 105

Specifies the picture when the button is up in a drop
down calendar editor. A Picture object that
indicates the node's picture. (A Picture object
implements IPicture interface), a string expression
that indicates the base64 encoded string that holds

a picture object. Use the eximages tool to save your
picture as base64 encoded format.

exCalcPictureDown 106

Specifies the picture when the button is down in a
drop down calendar editor. A Picture object that
indicates the node's picture. (A Picture object
implements IPicture interface), a string expression
that indicates the base64 encoded string that holds
a picture object. Use the eximages tool to save your
picture as base64 encoded format.

exEditAllowOverType 200

Specifies whether the editor supports overtype
mode. The option is valid for EditType and
MemoType editors. (boolean expression, by
default it is False).

exEditOverType 201

Retrieves or sets a value that indicates whether the
editor is in insert or overtype mode. The option is
valid for EditType and MemoType editors. (boolean
expression, by default it is False).

https://exontrol.com/eximages.jsp
https://exontrol.com/eximages.jsp

constants EditTypeEnum
Specifies the type of editors being supported by the control. Use the Add method to add a
new editor of a specified type. Use the EditType property to change the editor's type. Use
the Editor property to assign an editor to a node. Use the Option property to assign
different options for a given editor. The Exontrol's EXMLGrid component supports the
following type of editors:

Name Value Description
ReadOnly 0 Read only editor.

EditType 1

A standard text edit field

The editor supports the options like:

exEditRight, Right-aligns text in a single-line or
multiline edit control.
exEditPassword, Specifies a value that
indicates whether an edit control displays all
characters as an asterisk (*) as they are typed
(passwords).
exEditPasswordChar, Specifies a value that
indicates the password character.

The following sample adds an editor of edit type:

With XMLGrid1
 With .Editors
 .Add "Edit",
EXMLGRIDLibCtl.EditTypeEnum.EditType
 End With
End With

It provides an intuitive interface for
your users to select values from pre-
defined lists presented in a drop-down
window, but it accepts new values at
runtime too. The DropDownType editor has
associated a standard text edit field too. Use
AddItem method to add predefined values to the
drop down list. Use the InsertItem method to insert
child items to the editor's predefined list. The

DropDownType 2

DropDownRows property specifies the maximum
number of visible rows into the drop=down list. The
node displays the node's Value or node's Name
property.

The following sample adds an editor of drop down
type:

With XMLGrid1
 With .Editors
 With .Add("DropDownType",
EXMLGRIDLibCtl.EditTypeEnum.DropDownType)
 .AddItem 0, "DHL"
 .AddItem 1, "Federal Express"
 .AddItem 2, "Speedy Express"
 End With
 End With
End With

DropDownListType 3

It provides an intuitive interface for your users to
select values from pre-defined lists presented in a
drop-down window. The DropDownListType editor
has no standard edit field associated. Use AddItem
method to add predefined values to the drop down
list. The DropDownRows property specifies the
maximum number of visible rows into the drop down
list. The item's icon is also displayed if it exists.

The following sample adds a drop down list editor:

With XMLGrid1
 With .Editors
 With .Add("DropDownListType",
EXMLGRIDLibCtl.EditTypeEnum.DropDownListType)

 .AddItem 0, "DHL"
 .AddItem 1, "Federal Express"
 .AddItem 2, "Speedy Express"
 End With

 End With
End With

The editor supports the following options:

exDropDownImage, Displays the predefined
icon in the control's cell, if the user selects an
item from a drop down editor.

SpinType 4

The SpinType allows your users to view
and change numeric values using a familiar up/down
button (spin control) combination. The AddItem
method has no effect, if the EditType is Spin. Use
the exSpinStep option to specify the proposed
change when user clicks the spin.

The following sample adds a spin type editor:

With XMLGrid1
 With .Editors
 With .Add("Spin",
EXMLGRIDLibCtl.EditTypeEnum.SpinType)
 .Option(exSpinStep) = 10
 End With
 End With
End With

MemoType 5

The MemoType is designed
to provide a unique and
intuitive interface, which you can implement within
your application to assist users in working with
textual information. If all information does not fit
within the edit box, the window of the editor is
enlarged. The AddItem method has no effect, if the
EditType is Memo.

The following sample adds a memo type editor:

With XMLGrid1
 With .Editors

 With .Add("Memo",
EXMLGRIDLibCtl.EditTypeEnum.MemoType)
 .Appearance = SingleApp
 End With
 End With
End With

CheckListType 6

It provides an intuitive interface for
your users to check values from pre-
defined lists presented in a drop-down
window. Each item has a check box
associated. The column displays the
list of item captions, separated by
comma, that is OR combination of the
node's value or name. The DropDownRows
property specifies the maximum number of visible
rows into the drop-down list.

The following sample adds a check list type editor:

With XMLGrid1
 With .Editors
 With .Add("CheckList",
EXMLGRIDLibCtl.EditTypeEnum.CheckListType)
 .AddItem &H10, "adFldFixed", 4
 .AddItem &H20, "adFldIsNullable", 7
 .AddItem &H80, "adFldLong", 9
 .AddItem &H40, "adFldMayBeNull", 10
 .AddItem &H2, "adFldMayDefer", 3
 .AddItem &H100, "adFldRowID", 5
 .AddItem &H200, "adFldRowVersion", 6
 .AddItem &H8,
"adFldUnknownUpdatable", 7
 .AddItem &H4, "adFldUpdatable", 8
 End With
 End With
End With

DateType 7

The DateType is a date/calendar
control (not the Microsoft one).
The dropdown calendar provides
an efficient and appealing way to
edit dates at runtime. The
DateType editor has a standard
edit control associated. The user
can easy select a date by
selecting a date from the drop
down calendar, or by typing
directly the date. The AddItem method has no
effect, if the EditType is DateType.

The following sample adds a date editor:

With XMLGrid1
 With .Editors
 With .Add("Date",
EXMLGRIDLibCtl.EditTypeEnum.DateType)
 .Option(exDateMarkToday) = True
 End With
 End With
End With

MaskType 8

You can use the MaskType to enter any
data that includes literals and requires a mask to
filter characters during data input. You can use this
control to control the entry of many types of
formatted information such as telephone numbers,
social security numbers, IP addresses, license keys
etc. The Mask property specifies the editor's mask.
The MaskChar property specifies the masking
character. The AddItem method has no effect, if
the EditType is MaskType. The Mask property can
use one or more literals: #,x,X,A,?<,>,*,\,
{nMin,nMax},[...].

The following sample adds a phone mask editor:

With XMLGrid1
 With .Editors
 With .Add("Phone",
EXMLGRIDLibCtl.EditTypeEnum.MaskType)
 .Mask = "(###) ### - ####"
 End With
 End With
End With

ColorType 9

You can include a color selection
control in your applications via the
ColorType editor. Check the
ColorListType also. The editor has a
standard edit control and a color
drop-down window. The color drop-
down window contains two tabs that
can be used to select colors, the "Pallette" tab
shows a grid of colors, while the "System" tab
shows the current windows color constants. The
AddItem method has no effect, if the EditType is
ColorType.

The following simple adds a color type editor:

With XMLGrid1
 With .Editors
 With .Add("Color",
EXMLGRIDLibCtl.EditTypeEnum.ColorType)
 .Option(exColorShowSystem) = True
 End With
 End With
End With

FontType 10

Provides an intuitive way for
selecting fonts. The FontType
editor contains a standard edit
control and a font drop-down
window. The font drop-down
window contains a list with all
system fonts. The AddItem method has no effect, if
the EditType is FontType. The DropDownRows
property specifies the maximum number of visible
rows into the drop=down list.

The following sample adds a Font type editor:

With XMLGrid1
 With .Editors
 .Add "Font",
EXMLGRIDLibCtl.EditTypeEnum.FontType
 End With
End With

PictureType 11

The PictureType provides an
elegant way for displaying
the fields of OLE Object
type and cells that have a
reference to an IPicture
interface. An OLE Object
field can contain a picture, a
Microsoft Clip Gallery, a
package, a chart,
PowerPoint slide, a word document, a WordPad
documen, a wave file, an so on. In MS Access you
can specify the field type to OLE Object. The
DropDownMinWidth property specifies the minimum
width for the drop=down window. The drop-down
window is scaled based on the picture size. The
AddItem method has no effect, if the EditType is
PictureType.

The following sample adds a picture type editor:

With XMLGrid1
 With .Editors
 .Add "Picture",
EXMLGRIDLibCtl.EditTypeEnum.PictureType
 End With
End With

ButtonType 12

The ButtonType editor consists into a
standard edit field and a "..." button. The
ButtonClick event is fired if the user has clicked the
button. The AddItem method has no effect, if the
EditType is ButtonType. Of course, you can apply
for multiple buttons using the AddButton method.
This is valid no matter for what type of the editor
is.

The following sample adds two button editors:

With XMLGrid1
 With .Editors
 .Add "Button",
EXMLGRIDLibCtl.EditTypeEnum.ButtonType
 With .Add("Button2",
EXMLGRIDLibCtl.EditTypeEnum.EditType)
 .AddButton "A", 1, 0
 .AddButton "B", 2, 2
 End With
 End With
End With

ProgressBarType 13 Displays the node's value using a progress bar
control.
It provides an intuitive interface for your users to
select values from pre-defined lists presented in a
drop-down window. The PickEditType editor has a
standard edit field associated, that useful for

PickEditType 14 searching items. The DropDownRows property
specifies the maximum number of visible rows into
the drop=down list. Use AddItem method to add
predefined values to the drop down list. The item's
icon is also displayed if it exists.

LinkEditType 15 The LinkEditType control allows your application to
edit and display hyperlink addresses.

UserEditorType 16

The control is able to use ActiveX controls as a
built-in editor. The control uses the UserEditor
property to define the user control. If it succeeded
the UserEditorObject property retrieves the newly
created object. Events like: UserEditOpen,
UserEditClose and UserEditorOleEvent are fired
when the control uses custom editors.

ColorListType 17

You can
include a
color
selection
control in
your
applications via the ColorListType editor, also. The
editor hosts a predefined list of colors. By default.
the following colors are added: Black, White, Dark
Red, Dark Green, Dark Yellow, Dark Blue, Dark
Magenta, Dark Cyan, Light Grey, Dark Grey, Red,
Green, Yellow, Blue, Magenta, Cyan. The AddItem
method adds a new color to your color list editor .

It provides a multiple lines
edit control that's displayed
into a drop down window.

The Editor.Option(exMemoDropDownWidth)
specifies the width (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(exMemoDropDownHeight)
specifies the height (in pixels) of the
MemoDropDownType editor when it is
dropped.

MemoDropDownType 18

The Editor.Option(
exMemoDropDownAcceptReturn) specifies
whether the user closes the
MemoDropDownType editor by pressing the
ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is True, the
user inserts new lines by pressing the ENTER
key. The user can close the editor by pressing
the CTRL + ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is False, the
user inserts new lines by pressing the CTRL +
ENTER key. The user can close the editor by
pressing the ENTER key.
The Editor.Option(exMemoHScrollBar) adds
the horizontal scroll bar to a MemoType or
MemoDropDownType editor.
The Editor.Option(exMemoVScrollBar) adds
the vertical scroll bar to a MemoType or
MemoDropDownType editor
Use the Items.CellSingleLine property to
specify whether the cell displays multiple lines

The AddItem method has no effect, if the EditType
is MemoDropDownType.

SliderType 19

Adds a slider control to a node.
Use the exSliderWidth, exSliderStep, exSliderMin,
exSliderMax options to control the slider properties.
Use the exSpinStep option to hide the spin control.

CalculatorType 20

Adds a drop down calculator to a
node. Use the
exCalcExecuteKeys,
exCalcCannotDivideByZero,
exCalcButtonWidth,
exCalcButtonHeight,
exCalcButtons, exCalcPictureUp,
exCalcPictureDown to specify different options for
calculator editor.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc

exCFBitmap 2 A bitmap compatible with Windows 2.X

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB)

exCFPalette 9 A color-palette handle
exCFEMetafile 14 A Windows enhanced metafile

exCFFiles 15 A collection of files. Use Files property to get the
collection of files

exCFRTF -16639A RTF document

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event.

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648Not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code

exOLEDropAutomatic -1

The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code. The control moves the node to a new
position when OLE Drag and Drop operation ends.

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants ExpandButtonEnum
Specifies the type of +/- (expanding/collapsing) buttons. Use the ExpandButtons property to
assign a new type of expanding/collapsing buttons.

Name Value Description
exNoButtons 0 No +/-buttons.
exArrow 1
exPlus 2

exCustom 3 Use the ExpandButtonsCustom property to assign
different icons for +/- buttons.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type specifies whether the control's filter prompt is shown or
hidden. The FilterBarPromptVisible property shows or hides the control's filter prompt. The
FilterBarVisibleEnum property supports the following values.

Name Value Description
exFilterBarHidden 0 (default)No filter-prompt is shown.

exFilterBarVisible -1

The filter-prompt is visible until the user clicks the
close button. The following screen shows shows the
control's filter-prompt, while the
FilterBarPromptVisible property is
exFilterBarVisible:

exFilterBarAlwaysVisible 1

The filter-prompt is always visible, so it displays no
close button. The following screen shows shows the
control's filter-prompt, while the
FilterBarPromptVisible property is
exFilterBarAlwaysVisible:

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
The FilterBarPromptPattern property may include
wild characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character
' ' space delimits the patterns inside the filter

exFilterPromptApplyOnName 32 The filter is applied to name of the node.
exFilterPromptApplyOnValue 64 The filter is applied to the value of the node.

exFilterPromptIncludeChild 128 The filter includes the child nodes for a node that
match the criteria.

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants GridLinesEnum
Specifies the type of grid lines. Use the GridLines property to specify whether the control
draws the grid lines.

Name Value Description
exDotLines -1 exDotLines. Renders dot grid lines.
exNoGridLines 0 exNoGridLines. No grid lines rendered.
exSolidLines 1 exSolidLines. Renders solid grid lines.

constants HideSelectionEnum
Specifies how the selection is displayed when the control loses the focus. Use the
HideSelection property to specify whether the control draws the selection when the control
loses the focus.

Name Value Description

exHideOnLoseFocus -1 Hides the selection when the control loses the
focus.

exShowAlways 0 exShowAlways. Shows always the selection.
exHideAlways 1 Hides the selection.

constants HitTestEnum
Specifies the hit test codes supported by the control. Call the HitTest method to determine
the location of the specified point relative to the client area of a xml grid view control.

Name Value Description
exHTUnknown 0 On the control's client area.
exHTExpandBar 4608 On the control's expand bar area.
exHTClient 4096 On the node's client area.
exHTExpand 4097 On the node's expand/collapse button.
exHTPicture 4098 On the node's picture.
exHTNode 4352 On the node's client area excluding the indent area.
exHTName 4368 On the node's name area.
exHTIcon 4369 On the node's icon area.
exHTText 4370 On the node's caption area.
exHTValue 4384 On the node's value area.
exHTLevelResize 61440 The level border.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the BackgroundExtValue property indicates the index of the part of
the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder
helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BackgroundExt property:

After calling the BackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants InplaceAppearanceEnum
Defines the editor's appearance. Use the Appearance property to change the editor's
appearance. Use the PopupAppearance property to define the appearance of the editor's
drop-down window, if it exists.

Name Value Description
NoApp 0 No border
FlatApp 1 Flat appearance
SunkenApp 2 Sunken appearance
RaisedApp 3 Raised appearance
EtchedApp 4 Etched appearance
BumpApp 5 Bump appearance
ShadowApp 6 Shadow appearance
InsetApp 7 Inset appearance
SingleApp 8 Single appearance

constants NumericEnum
Use the Numeric property to specify the format of numbers when editing a node.

Name Value Description

exInteger -1
Allows editing numbers of integer type. The format
of the integer number is: [+/-]digit, where digit is
any combination of digit characters.

exAllChars 0 Allows all characters. No filtering.

exFloat 1

Allows editing floating point numbers. The format of
the floating point number is: [+/-
]digit[.digit[[e/E/d/D][+/i]digit]], where digit is any
combination of digit characters. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values).

constants PictureDisplayEnum
Specifies how a picture object is displayed. Use the PictureDisplay property to align a
picture on the control's background.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a control. Use the ScrollBars property to define
which scroll bars are visible.

Name Value Description
exNoScroll 0 NoScroll. No scroll bars are shown
exHorizontal 1 Horizontal. Only horizontal scroll bars are shown.
exVertical 2 Vertical. Only vertical scroll bars are shown.

exBoth 3 Both. Both horizontal and vertical scroll bars are
shown.

constants ScrollEnum
The ScrollEnum expression indicates the type of scroll that control supports. Use the Scroll
method to scroll the control's content by code.

Name Value Description
exScrollUp 0 Scrolls up the control by a single node.
exScrollDown 1 Scrolls down the control by a single node.
exScrollVTo 2 Scrolls vertically the control to a specified position.
exScrollLeft 3 Scrolls the control to the left.
exScrollRight 4 Scrolls the control to the right.
exScrollHTo 5 Scrolls horizontaly the control to a specified position

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description
exExtentThumbPart 65536 exExtentThumbPart. The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants ShowPartialParentEnum
The ShowPartialParentEnum type specifies whether the control displays the parent node's
name on the top or focused node. The ShowPartialParent property specifies where a
partial-visible parent shows its content. The ShowPartialParentEnum type supports the
following values:

Name Value Description

exShowPartialParentHidden 0

No information is shown, like shown bellow:

exShowPartialParentTop -1

The parent's content node is shown on the top of
the control as you can see on the following picture:

exShowPartialParentFocus 1

The parent's content node is shown on the focused
node as you can see on the following picture:

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed.
the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins
the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the

high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

up or down expand buttons, Background property
drop down buttons, buttons in the editors, Background property
built-in calendar control, Background property
slider, Background property
selected nodes, SelBackColor property
child selected nodes, SelBackColorChild property

The following VB sample changes the visual appearance for the selected node. The
SelBackColor property indicates the selection background color. Shortly, we need to add a
skin to the Appearance object using the Add method, and we need to set the last 7 bits in
the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected node:

With XMLGrid1
 With .VisualAppearance
 .Add &H22, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = RGB(0,0,255) Or &H22000000
End With

The following C++ sample changes the visual appearance for the selected node:

#include "Appearance.h"
m_xmlgrid.GetVisualAppearance().Add(0x22,
COleVariant(_T("D:\\Temp\\EXMLGrid.Help\\selected.ebn")));
m_xmlgrid.SetSelBackColor(RGB(0,0,255) | 0x22000000);
m_xmlgrid.SetSelForeColor(0);

The following VB.NET sample changes the visual appearance for the selected node:

With AxXMLGrid1
 With .VisualAppearance
 .Add(&H22, "D:\Temp\EXMLGrid.Help\selected.ebn")
 End With

 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587137024"
End With

where the 587137024 value is the hexa representation of 0x22FF0000

The following C# sample changes the visual appearance for the selected node:

axXMLGrid1.VisualAppearance.Add(0x22, "d:\\temp\\EXMLGrid.Help\\selected.ebn");
axXMLGrid1.Template = "SelBackColor = 587137024";

where the 587137024 value is the hexa representation of 0x22FF0000.

The following VFP sample changes the visual appearance for the selected node:

With thisform.XMLGrid1
 With .VisualAppearance
 .Add(34, "D:\Temp\EXMLGrid.Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = RGB(0,0,255) + 570425344
EndWith

The screen shot was generated using the following template:

BeginUpdate

 ExpandBarVisible = True
 Font
 {
 Name = "Trebuchet MS"
 }

 Editors
 {
 Add("Edit", 1)
 Add("Slider",19)
 {
 Option(41) = 100

 }
 Add("Progress",13)
 Add("Calendar",7)
 }

Images("gBJJgBAIFAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLojApwApzAplTqlVq1Mh9Qp6ArlXr1fsFhlVRrVSiYAriAib/tdtiFurNvt9iul1u0ZslnslpuFsvl/ruAtVzu+Fw1KvNZxN+rtyrNqjOQtEayWSwmHzGZoOKp96reNuOhtmO0eitua1Gpmtkuecs2PwOxwem0mU22q3G5lmttms02CtGy4Nq4G643Hl+13emxdljOu5HR6U/5VZs/T7HZzem7Xd73f8Hh8Xj8nl83n9HGrvB6N8vNI9ca5WZy9232lxmYt/up9k96fuE3i+rC2r5pW6yhvXAroL2ySqtq/ipQa4iuv+mq+QE5sBPqw8EKM+7nP8/rPtm/KiwWxkKRU5z9wrEazJY4SzwE4EUNO6kPOe3rOo3HLqvxC7IRtEUJRJAcWp1G0IrbEEJxDHiVL5GboSk38ZNo7ibvrDkcxrLC2JpJsXyeqUMS/JkxphJUXKkt8xTbKkZJXM0wO42EVwhNkdJzA09silE1yFICYQVM8iOdOk0SLRbnOXIEWrVED1vXN8jxzHrrStFcpxS4c9w5LUsx1TsNzPRKYUrQ8nRtN00uTTUWTiyLIUPGyYztQc709DLO0umdbMpQtLTrR9dJo2tVSNZEoT5XVk0ZSbIULYswJxXDT1hKtqyTM7cTzEsByXQ8wzHZ9EWlQVB2Cn1S2JbF1KFVkz1Ar1v2HRSc3NQ9opdfl41zeCp3lbcO11PqNwsnl9M/WeGvZh74qHAS64O1U+1bGEP2ZQl0PTj17s1iOP5G8SLB8leTo8kCRJIACSpRl9rNClVLnnggAHBm5wJXjKNZ7P8op2QABpUZgD5po9AGfmmbopmx/D+SZ/nmd+cn4D5AH+eBnnAH58AOQAfnAB5gAeeAAkAB5wACYAB52AABmBtCoIztm5sgAZAZijOwJLvwAaPtCS6IB+XbluGykAD54KgBJ4A/rp/ABxmrnwH62H4HJ/h/qB/mCf49oof5xoegI")

 VisualAppearance
 {

Add(1,"gBFLBCJwBAEHhEJAEGg4BWwCg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBqAiPZhjEYocheMoWSLIcijDD0eQSGqPILmeLofiGA5GTZAcjwG78EybDKdJJnWTqBouMYeBBGQZQSBkEw9KynQAsGJZLDUJZlWbPYwWTAYazXEaPY6mCKaZoeXo3R7UIw1NJMVhlFqfaQvCL5UgPBZJYLOMIzXScfyDIiNMggMC4JoidaIWBTUZXVhtWyrIaEcrySAwegkF53UpmVKZXCNTTREa3LYADYbQxGCZzABoYABDoOUYHMjFZKlDALNpYNg2ZJFXI7RRGdaTPC9L44TYfBgbRWjibxgHuAItHMfY/gGa51jsLYlisZQVisR4AlCHxUAwHQJl0d55FuYBUCSUBlDCGQMicIRxgiWhwEeAxlkwQgTGAFBkDYQhCgQJZcECWR0CAGBGFuBx8n+BJMGMTJeCGCYiioGIGiGGBuB6BxiAgcgigeYg4gYJIFE2aBNE2CghjMKJYDeC5TFiW4MGMOJKDSDZjGiZg1g6Y4InIOoLiEeBmCgAAhjOKJvDyDZzjCbw0A4I4aEyE4klkPhShQZRJEIVoUmUeRWE+EAhjkEgZD6T5DnSdw+E+I4gnIPQkhOPhphqZIpjIaobGcCY+HKG4mhkPg0hcYY4ioYA/E8aYQm0PJPFmGJ0iCKBJh6BYgmgagmgiIpoCmVhNh2YYZHiKoeiYE5UnkPpnlOaJwD0TxqG6HYnCmaoGiCKJpnqFoeiNXJaDKHghhoUJ9iWKYJhKIopioSpOjaKQqgkLoPiqaQZmYE4emsChmjeLQsEsDonhmaJjhqEAq4sOpBiyKxbEaRY0iweeIC6TY6jKE4vmkWhekKNQuAsToli4aorGaPYrG2So+l6NAuCsGphjkLYLGqTo6k+KhmnaGQvHuVp4j6b4rnaGY8CyKpykyL4PnsAoXiwMIMB8Cg+nCHAzAuQxrAmDJ6jIbI6EoRg8iePBmGGRoPlwcwekacgMHcIZBg+OYmFyJBikgZwXgqMpMjcLpLnMn57kXrIOCqShiFyZgkk6YhsncOoQiEaNCkAQCAg=")

Add(2,"gBFLBCJwBAEHhEJAEGg4BT4Cg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBqAiPZhjEYocheMoWSLIcijDD0eQSGqPILmeLofiGA5GTZGL7wTRcMx1EqeZaoGR5Sh4EIaBpCIKQTQlGS9JyIRpEWS7CiMNQwWLPdoSHD8PRhDKraLrSZ4fo8MZUABKMpjFJsfyROiPZogPAqJwCOYJTrUM70DTsM4aAAFYRpC4cFhWTQAZbFNzYVAdAQjPC2YRyTIYDB6CQXXLSVbzRYNU4HMq1NaACx9SyGcoDaQAARaFpOAY1RCTJQvXLbYDYNqPRTjdrgBRGc6RG67L16dwUG2IINFWMhQhCLAkBuPZfECbIbCGFpDDsa5YlsIQ3gicAaBObYBgOIQ7h8BBaD0HgFEITgHFOGYgkoZALgYIY0HAR4DGWPBCBMYBUGQNhCEKBxtjwRyJGEGRyl4A5+BYM4LmKVI9B0RAoG4HYHCGaIGCCCJhniFgigmIhIh4GAtGEZQuCuB4OnOHJnD+T44jYNoNmOCJmDqDpPniRJngeIowAIQIGEyY4MmcO5PHgWg1g0JIpDYTITmSORGE6FIlAkNg+geJAoHCHAwkxJ5TDeJBThyd4YmSCJ2EmGRmgmHhqhmJpJiYbYSGTRZYgeJY5HYX4YE2Y4uEiGJnkmdh+h+aAKAYZYcE+eZOFqFwlmmAhGh4Tp6DSd4jikCQihGI5pCoVoUiWZ5KA4S4ciGSRkEKHRohmYh6iSahKFqJYlmiahmHCJpoFodh0iIJx6C6I4pisSoijWJJqikOocBCKZqgKMQ5miSoekKLZpGqZoEiGKZ6kKCowCsOpak6MJsmsGosjIK5rC6QYxCyexiimGQqjiWpUjKKgjj6DI4meK4SmKORuguHpqiMJB5m4SY0mqageHaMpmBuVhGj2Dh7mKeo9m+S5mjKO4kksIgriIcBJH8BQ3jAfAnAaQpwgwMwHhgZR6HYL4HCKOZXBaFwxHMGwZkacYMHcrInFwTBChAYpcgoJ5JmKHImCiSpygyDgZgsQAEAQgIA=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BV4Fg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSlMwyE63JqmeKqODGU4pSqMUqyRINZxlGiBcAuK7qFgST4JT5DNAUHDWGQGDyacCoei8Uo3CKHQRUmY4fpWCaQQKLMI3BDtN4rLy6IhsKxJDqvLZoSLnOjYfBIRwSEKtL6nDJ7Wiie4NVKNQzYdC3CAPOIFdx3K4ZbrfPwADLwIzZZg2BMVoBlSawQDANwrhYAJWGqLYamsNpCDUU5JnYNBwhEBx7iuJYBgKIQmmMeZIloYQ2AuDBGlOBQACEAwQgSUJJn4RYDGQJAoEIXYgAGOBpEGBBYnwA5elUeJ/D+SpSGgewckOUACBiBohhgbgegcYgIHIIoHmIOIGCSCZiGiJglgqYoIjIKoGmEUZuBMUojBKFB9BSC5SiiLYOGOOJqDyD5jmkBg9hCZAJBIQoRGSCQeEqEYkkkJhNhKY5IlgUoMGIIwEi4LBlGkYhXhYZZJG4XoWiYCR2GGF5mCmFhkhmZg5iYZoaiaCYuN0IwzBSMgtGcKZSHOHRngmXh6h2J5JmYfYemeagGgCIJnnoFoCiGKBJlYM4bmGOJMkkLYLhoPoRiQKQqFaFIlmkOhmhaJopgoboeicagKHKIonmoOoGhKIphhmQgTDMC4inKLIriqWo+jKLBrEqQo2iyax6laOIumuKp2jmL5rksAo+iuaoEA6DYEk0Ap4kCMhsjsKpMjObJrEaTY0m0CxSlKNRtgsXpajWLZLGaXY2mySwWioP5NEMCJEjkbh7hqaI6m6K42mmO5ukuQpujwbxLk6do8i+C5WnmPZuguCpHD+TYDBiSJAHAPALASQZwGwJwFkKcIMDMCpDHEDA/BKQ4xEwRwVkScBLnoGYMk2QwskyRxxnwewgkicgshcIZJnITIjCaShykyLwukqMwMjcMZLnIDBqBIP5OAMPJQk4c48msPJPnObQHD2UJ0A0ExClEdINB8SpRjSTQnE2UpzkyWgzDkDQzFMVJVjUXRfFqVh1k0YxeladZ9HcYJYnYLYXGGWZ2E2IxmlWdQoEyaA1k2DY/HGLgNwWxXDpF2O4PYzh2i9DeBsbw/RfDwA2OcAovx4B8AcOUWzvwsi2DaPELgZwLjGHkBwP6lA5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB3E2OYf4SRph0F6D8Ko1B6idCOF0ao9R+hvDCNkewXRXhjG2PYTox2sjxAOJkYwcR7jeAOH8cA+BPAfEaOEPIHgXiTHGPkLwbxMjnHyH4R4nR0h6A8A8CAe3dA/FiO0PYPhvi9HcPwDw5xijvH4H8B4yR5j8G+E8ZcSgPhnGqO2LAwV3D+PCOcfQ/wPi/HqPsP4nxnj6H8N8egARAAQAaP8YAWACgBFACMeofgRioDqA8RAGQBigDYA8QQUAjAKCCAgFoBBwC8AqIMCAbgGhBGwDMA44ByAgEGNAGIxAHiRGwDsEINAUCEHgKYCwQhcBdAUKEQgLRDAwF8BkIYWA0gNHCJwHIhhoDqA4EITASgdhHDQPkRAEQFAgGIDgRoEQxBECIIkrAJRiCYEyBMcQdAoiJFiE4FARQkClAgBwIA+gOjjF8C0IoyBbgXDGAQL4jAoh6BkEYDAywMDjBoGmhIrgZjGGwNUDYowyBdEWCMYgeBHioHSB0UYrA7iPCiOYHwRxED9A8OMfgfRIASAcEEJAWQBghHICQRAkBojRm0LEcgPBSB0EgJEeQRglBJByC0EgpBiCVEmDILwTQkjZByCccg3EZDSEUFAJIGQNA9AOKAfYlQJCqCoMoXIXQVhlEIKwSwUhfBZGWBkNILRyi0FyJYWQ7guBLGSHUFVIJCCjGsGEJgSRDgxDMEQY4mQpvZCYJkTYMhzB0GiJoCYTgzjNCyKUGophSDFEwCMbgexHjJFyDcUw7BvicCmIYOQTgEjNBwOcHg5ROgTFcHUJw2Rpg7HOGQeAnRphxm0NEeQPgzi0jEPMcwfgni5H6D4VABB+igBmP4QIUAtAJCCOgDoCRQDUBUIQJ4mR1A+EONAfoogKBKEQNEHVJg0DFAoKMKgXhG3BByEcdA9QQijFoI4SAUglBFCJSAfwHxBjyEqFIZSHA0iFBeKYKguhNW5DWEwdItQcinAoO4TY0xtB1CeKkcoLRSgjHpHIdVDhVAtCOKkKoJsgCKE6FIdQfQmiqAqE7LwWhRhVHUKULAqhqgRDiCMKgbhGDrAKGEVgVRHCyCsFq4w6wihpFaFUSoKQShEDNS4NocQij1GaBcK4WhyhdFWKUO4RRUDFAyIAAQAiAg")

Add(4,"gBFLBCJwBAEHhEJAEGg4BbQFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSlMwyE63JqmeKqODGU4pSqMUqyRINZxlGiBcAuK7qFgST4JT5DNAUHDWGQGDyacCoei8Uo3CKHQRUmY4fpWCaQQKLMI3BDtN4rLy6IhsKxJDqvLZoSLnOjYfBIRwSEKtL6nDJ7Wiie4NVKNQzYdC3CAPOIFdx3K4ZbrfPwADLwIzZZg2BMVoBlSawQDANwrhYAJWGqLYamsNpCDUU4PAWdhgA0IAAEGXplF8QAWjEaJTmOc5EkKJZXDicA+BIDhCEEVAkBEdxcjQeQeASEIRAwbwcAeEIAG8GYCAGOBvByBpRgQbALgY1hwFAAQEAwQgTEMKDTA2EIQiECR2gABphiUBgRGOcZ9HuT54kSLQmgeMZMD0AAjGiYg3g4Y5Im4PoOiQCJ2EGD5kCkFhEhGZA5CYRoSiSCJmDMHpjBUKhPCkR5REiPQqgqWReFmFglikdhcheZY5gYXoYiYCYOGaGRmgmEhqhmZo5iYWoVAUKQ+EAMBKmKRh0h2JxZl4eoeGeSZiH6HpnnmdoAiCaAqBaAYhmgSgigaIhjhkAhRDESwilaEIkikGhOhaJRpgoUoaiWaY6GaHInmmaoGh2KJqAqEoiiSZQaDYOYUEyEpYjmKxqnqOowiyawqlaMYtmtYA2i4a5Km6PouiwCp2kGL5rAqJg3iOIwTDCOgvCyKwykuMxtAsPpSjOLRLEaVY0m0axmliNptHsdpajeLZLDaRhAmqOJElAL4MAuHt5C6K42myO5ujuRpujyLwLk6do9G+C5SnqPZvjuZulmyA58lQMIMExCpBDAbAnAiQpwHwNwKkOMJMD8EpEHETBDBaRJxHwVwGkALhTnyWAxgyDB/CGSAyCyFwkkmcg8icJpKjKDIvC6SxzAyM2XnMPJHCKRwjHkRJcDKTJMm8PZPDObQHECUJzn0FxClGNBNB8SpSHSTQjE6Up0n0Nw+k4FZokSYAzk0DRfFmVg1i1GpXnWPYHF6WI2A2DxmlkdoNhMapZnaPYnFqVQlBOEJTDUNwtlMc5dHeBsXw9RdhvE2M4fYvR3jcAeAEYI7x+AvAKMMOAmxXDhAwJ0AwuRYjGHiPwO4IRkjyC4K8EYyx5CcGOC0Zg8xODfB6M0OgHB3hDGePIDgWR/B1E2GYb4URqh1B6F8Lo1h7AdDOGUa49g+iPDSNsew3RnhrG6PcDo5w6jVHoMcPIvg3j4C8CcQ44h8geB+JUcYeRPBPE2OUfI3hHihHSPkfwrxSjrD0J4F4TA8icDOB8XI7w9i+H+MUeA/BPgHGbB0f4Lxoj1H6F8N40x7j9E+Icbo74si5GcHMfw3xjwOH+J8b4/B/CgAGP0QALx+j8FGJgAoARwAkASIAOALgCBAGOP4dIhxgDpA6DAIwCRggoBSAUcAtAMiCFgG4BgQRkA0EkOAdgIRBhQEUA8IQWAkgJBAIAdQHQhjiAqEIZAVwFhhEIC9LAugNBDAwGoHQkgtBCEMPAdwGwhjYDOA8UI5AfgdCcJgPgjhgjZAiGIHgRhEgRBcCUIg2BJgTHEGQKAiRohGBUEUHArQKCiGIFURYMQvAkCIEEbQOwjjMC+IwGIggYhGCwMkDI4wOBpEYNEVQNAjC4G6BsMYhA2COCiL4HIxwMC+l2NAd4HR4jmB6McVA+QPjjHoIER4sgHBACQEkAoIQyBEEOJEKQGgjBIEyBsEQ4xyB4A8CMYgfQkg5BWCUEgtBMiTAkG4JYyRsg1BOKQcgnxKBSEMFIJQCQmgoHKDwUokg3CYiWCEcoKwyh8FcJYCQzgshLCyGMFo5RSC4EsNIcwXgli5D6C4UwBBeiYBkP4LAShgjoB6AcbgxxMgzBEGUJg2bcjmC4NETI0wlBoCaDkVoNQzDEGoJsKYXg2jNEyI6XY4B6geFmIYOIzgUjJByOcGg6ROCzFcHQJwyRqg7DOIQd4ngpi6D0E8DI6weDnBIOADw4xuB+CeLkfYPwTj1ACKACgDg/jQC0AUIIqASgHFCFRK81gOhCHQH0Bon7Hh+EeJEeYRQ0C9AsKMCgbhGhRG0DMI46ByggFGNQQwkgpA6CaEgVIRQSilBoJ4RgUQgj0B8IcdoLxTA0GEJkKYWg0hNHSJ0HIphqDqE5e8PoTw1AFB4KgKg/hQjUA0F6XchQPiVBMKUagqsjDqDqFEVItQnCoCqEoUoVQ1DFCuKsKoWhXBVE0LsKw6gyhIA+KMegfwrA6GWFkFYNQ0itAqK4WY1htINFWGUN+eRjC6CuAodoXB1i9DqKwNgAQUilCoKML47ACiBFgFYBwwgsBbAaGEdgRREiwESMEHIJQKCfAcFINokQkiWCcMizYJQyhsGED8JI6QiAAAgBAgI")

Add(5,"gBFLBCJwBAEHhEJAEGg4BfgFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSkEgNDQRaxjWZ6EgmO5TSjKYxSbJEQzpGSaIDwGZrfACRYEU7dVQxDQcNYbAYPJpwOh6LxWTZ2YjBGJ4FScPyrBLIYDFWCRHpqA5cZZOEQ2FYkRzXVy0JDzaCZQxCCQlQiIOjYLaUSRNFC+IZqMZhWw+FrGAbvIJbXakPZbVYSZ52AQuHcHY7lqAABhoDZllcEAxjwcCOD4GJbisGZPmmYQ1ggHIPg0dJnmCNYWG2D5OlkFYpkeAo7l0LpbjkcxAleYABGsCxDEgBgDE+EA3BUKBzFCEA5AkA8gFECQEhyRpxB4R4hEQDBDBuRwBmQIAbkYYIAHAHRHDGIBlBkAphggbQcBQABBAMEIElCSguEWAxkCQKB6huFRoBgRYPkgQZ+D+ZACjSGgekcMJ0ACERkHkGhIhKZIpDYSYTmSSRCE6FBlEkThWhSJYJFYWYVmSCQIHuEAUikeIlB8RQjHiTwxg8c4cmeGhmjmKhshuZppkYbYcmcCZSHKHRngmXh6h2J5JmYfYciYYwaGNTppD6AQ9E4U4WgiIoohoLoOiMaQKDKEojmkOhG2oahmhWJppgocoaiKaAZCIT4YA8M4MmOKRqHqGooiqaoqjaKYrmqSpCi6LBrEqTo2iyK4KlaOYtmqCYCiKEgmAORJhDgbArBKQ4xGyCwekqMYsksJpNjKbJrEaUI0myexWlKNYtEsFo+hGKg5ACbw3k2ex+mGOAuCuFpkjmbg7iaZo6i6C4um6OxvAuMpyjubw7kaYo2lAOwCEAOxNlMdp8j+L5bn8ApAHATADAaQJwHwFwIkKcIsDcCZDnCTBDA6P5vgsdJ/DqTYzG8GJGjGHBvUIcgMHMIpHnIPIHCSSZyGyJwlkqcoMjMKslFuaJ/DoTYTGcNPFlyXw6k4c5MmMPpOnOfJ3ECUJ0C0FxBlGdBNCMRpNnMGQaGAOgNHMYxQlSNQdE8VpVHWDRTFqVZ1j0ZxcledZtgcXZYnYDYTGKVJ0lUehADn7JbGyW42l2PxylwdxNkMdpcncPsVw8RejvC2O4eYvx3icAMP0W47QZgBGQGkTQnAfgTGIHELgb1+DxD4I8DoyQ5AcE+C0ZQ8wOCnBqMseYfBngVGEMgA4ERRBpDoF0E65x6gdB+FUaYdROhPYuPUbojwwjZHqP0V4ZRth2E6C8IAf4FB5FCN4e4/R7iBHCPgLwLxBjjHwJ4I4jRyD5E8F8To5Q9AeDeKMc4+AOjZF4GYTI3hfizHYHsLw7xcjvH2H8B4vYOAfA+M0eQ/QPgnGqPMfofwni1G6/sLImR8D+D+JcdI+x/DfGeOsfo/wPjnHoJID47AAh/CgAkf4QAsAJACN8aYuwNhDBAGUIAuDZAgDoBEQQEAnAHGCFgEoBRQBiC0IIeAbgFBBGQDEA44B6AhECI4dgbAGBhEiAkMIPATCFAgK4CoQhsBTAWOEMgLwlhJCMBgYYWAugNFCIQG4h0fAeB2LEVgMQDA0B+IgGIAgQhECwIkCI4gOBJEQNEFQJAiC4E6BMMQhAmCKCiD4FIxQMCEHcMYUAwgMCRDMC0YoqBcgXHEPQMIixYiOBgEYJAxQMhjCIGcRoURNA2CMJgbYGhxDjF2BoIYAAwhHBwOsDoIxaB5EeBFAIxxsD1A+KMcgfxIBSAMEIJACQGggHIDwQojhnDsDROMQIIwyB8EcJICQTgkhJCyCMEo5BSCYEkNIM1ahcg9BMKUAgnRKAyD8EieonAXgFHoKcSoMhRBVCUNkLIKxyhcFiJUaQygsBLByG0FoZRiC0EuFIbwXRliZCpRkMAugLiTAMGEZgKREgxHMDQZImBZguDIEwZIlQZhmEIM8TQUwdBqCaBkVYNBzAjF2BkMQ4AujNFyLsG4Jh6DhE4BMRwbxnBZGKDkU4JBzidCmKYOwThEjdB0OcPg7RN1fDIIsMIcwehnF4PYT4Ex3B9CeNkeYPxzjlAAJ8agBhBBQB0A0IAqAigFFCDQDwfJ6iOBaAUXoDxRA0CEIkKIWgUhFHQJ0DIohqBqEYFEXQPQjhpAKBwUgVA/CRGkBoElGQUCyAsLQU1khVBZCWOkOoMRSi0GcJgKYSgyhNDSMUG4pwqDaE8FMTQewnDpDGLsDAYhgBZGoDoRYUQVA1CSKkCoLhRjUG0JUKYqgyhPFUFUI2aQFCtCoOoXoVRUVfDAIocIYwrhqH6F4VgFRHCxCsFoYYWR1glDQKwaophbBWF0N0LQqxChtFcDUXwsAbCVAEJgAo+M+j1HML0a4qh8hfHWPVGAtgHDAsqAUMIbAiiH0ABoYwWBNgbDAJMAQoQtiJESDIK4dBghlHYMUTIswrBuuuNu947cEBIAUAUIIqAqDAEuKETQXBahJDcNYLQmwthqHaHUWISRkh5BgAAAQAiAg")

 }

 SelBackColor = 67108863
 SelForeColor = RGB(0,0,0)
 BackGround(0) = 16777216
 BackGround(1) = 33554432
 BackGround(2) = 16777216
 BackGround(3) = 33554432

 BackGround(4) = 67108864
 BackGround(5) = 83886080
 BackGround(8) = 67108863
 BackGround(9) = 67108863
 BackGround(10) = 67108863
 BackGround(11) = 67108863
 BackGround(12) = 67108863
 BackGround(13) = 67108863
 BackGround(14) = 67108863
 BackGround(15) = RGB(208,207,224)
 BackGround(16) = 67108864

 ShowFocusRect = False
 SelBackColorChild = RGB(255,255,255)
 SelForeColorChild = RGB(0,0,0)
 BackColor = RGB(255,255,255)

 OLEDropMode = -1
 LevelWidth(0) = 96
 LevelWidth(1) = 54
 LevelWidth(2) = 72
 ExpandButtons = 2
 Nodes
 {
 Add("Collapsed 1 (hover the cursor here...)")
 {
 Image = 1
 Picture=
"gBHJJGHA5MJAAEIe4AAAFh0OCERiQbigwEobAsXCAljkcHYwDYQkAli0iGAwHYlCA7HZQIpFKExLcxMpbLc1LZ7MplQpwIpbOBwPdBnpwSFDPdJo57TZ7XbwQskQpQEqFLdVOCFrSbrSlQqQr1PQrFfaQiKQq9oGCQMolSFgSCbWFxXdgYqQWDQSC7bd7eCQYrlwFlaD7TcRTcxxJbTdtxowTZwEqbuKbuVyaCbvibYrwTeFTbbfalyWkGClyylUqw1S71euXbFUq7cqlaG1aDwUuiUrlfawiiwyXCOHCPdzMqwWC75TF5fOwKwbbwWG+XccXcsXZ7Eq7XbQ2Pg2/feFPfbFhzFk7Fl7FmLFnbF7jFQucSAwYqbUrF7zFYpoP+cpim3ARywEeB9mghxoIiaCTmgmxoD2QpoEKDcKwo+69EgzIYGgUooPAz5oG3Ehym2jhtpObaWG2l5tpibabm2nZtqCbatL6Eq+hgbZNx6WAtm2XZCm2/JtwI0R9nKHYinKmxyp2cqgnKrTBEgcpNg3LJNnLE0DQMeB4IieCOHgk54JeeCYqgQrqB26hYPKLbyqe+B4G2UsxT2fZ9ocfaKH2jh9pOfaWH2l59pifabH2nZ9qCfakn2rSykgwxNtGUp9u886yGgMsEsKvp9yRJbfPKfcxT6Xc+rJPoA1jWVZ1pWtbVvXFc11XdeV7X1f2BYNdoYAAQnyAgAoYf4ABZYiE2eIAEWWf4Eg4JBYFAYJBgQCYVC4LAIGYDZDlOGRmm0IpYjEUogW2JJtCwVBpFIJQKhWYQdAKUwSAwCYGAqSw+DmBRrFYS4YH+AhNiSGYMBaTAcDOJJVByeYrGcLJXG8aBQECGRyl+SpTisFIumUWg0mmHwyDULwxFIYgjkSCQZDMZAUFCYhlk8GhHCcToJCUEZAiiUgxGmVQuhWexmiYGoYD8AAwnkYomlGXYZm6Ph8mkZBGm+XZAA2dowDAOhQASSZVAkFYvFYHA1BgFQXD8LhclkMhkkqXo7AGG5xBySZlgKABCguGwYBiWgaEaEw4ikQ4sm6Qg0EOBQKBcNgMBiMQBkKBIIggAgAGAIBAAAERFnYQh9CIZIoQ4ZBJhWXg4gMK5Xi8XQjAia45EGUO9BYaY3C0RQVHaTZDmuRYVH+I58LAUwtFAaRTnuSZFlmPZPF4ahTlOSoEmYKB4jOJZPCUepVF+P5/loagaGX9w6kkQoXk4NphCsLR7nKMcKQJgIBGBQOEQgEQdBmGUB4GAyAACEDKHsOo+AChlEqF0WwlwKhTGoGAIQARCiZCIOERQEwHDCCGAkEIfgIhjC6HYAooxMhmCoFgGA3gfilECOEA4KwgAGBSOQFYtRqBiEMAgGIiBEDZEaDUSoshAgKCkEwWA4xKDjByIEBALhfhABOB0EoZQqBHHKJcFIfQ4BGBEDgUgURCAEFCF0U45hNAlGiAAcwWRwBlHOAoFAvhqBpHOJ0PAzhZDKCwCYXI+RzBRHKJ0YQygWiEAkGoBYIBJi8GOFkFwtgKB6EWC0TSWBzh4CQMEIQyxSiYAMOILwfBMDSDEAt/DXB0ilFYJAQoXwlBIFqBIZYqhWDGHkAgM4tRaD/BUKsDgnBsiyHUCsVYdBrjWCgGYUIChogqFaAQFY7BYDEAsMsZIgROCVCkEkEgkRWCSASFsew0RACiDqBAUoYh2i1GwGYPYrQTBiGgIQBIIwrDJCqNkCQTHEjZFyEtnABgNBwExB4AYvhBCxHALwbwIQsQLBIPwYAYQzB3D6MEQgXwPDSgoBUGwgBLASAaPoaIOxXgqEsKgKIwhDCXHiBsRgXh+DeDwBcC4aALCGBgBgVAdB2DxGOCAYYcQDgmCKMgIALgJhAC4FEWIxQaABFsMIAYygQhMAGBwJwNRigJCaDsWgkB5CHBEK4XgGQnhcCgCAYAlxSCVGsAQE4xQJBLEMAYFgWAoiXGKHcDoQRggOC2IgYAiAKA7CIHEJAGQ/j+EmMANApBcgrFsLsBoJAACAGCAwGoBxGCWGINESIQxrhwAOIEA4lg2BTFFWsOFJAhBzGeOkf4khDgQCGOQTo9xshoBGMcUwmhBCnFyOYO4jAZjOHMKQRICxyCQCSNkUIQhyAuDwNYPICwWiuB4AsLwmxEhPH8J0UAtx4BiH0OkVApxHB6BaAoeweR1CUFEJ8UQyQWi5GoF4XYJw/hUEEKAPYvhEACEVPka4khkhDCGH0DIO7RAkE+DwFA7AUi6HSKMZQgxRBJFoK8U4uIAi0AoKkfoIxQC8DuPodwnBuiiD6JEWInApCaDkCYdoNwVAtECHQZ4kxUDrGeAIHwTRaiMB0AsJIxQVguDeCoWQ9B3i/BYJALA1B/gGBwIgeADQoAWFcDAL4/gODUAkFgHA8BAiwEQMQfYIJThOGoAEKwqryhaCYJUD4eRUjCAqCABgoQEBlEiJ4LAiAoCEGOJob4TA7ChFgGgGIcAKhCEUKEBgYx0CHBiIAZ4FBShgEIA4a4wADA+BgGIB4oAECEAMP8Y4wgVhfFiIQGISAmCiBUKAIQkwOB6ECAQDQAqdAqGGIQEoAIeBdCgMMDgiB8AuBGJ4AQZAwAMBGBwOwMdmByCBccHQ1wyA2DIK4XoTBDALCgHAa4tALCCAsIUWI5QGjuDGEQCoShQCvEQGWf4ahGDYAuLoWAgwJgdBYGEOw3BwBMAxs8GgPgWgwDcLgJgIwYDjAuLsXAoQFg6BQJwJQIBJDIFqOQUQFA1AgACMQDwSRJglCCK0CIRhECAHqLIaYyRaAIHEEUCAsxGAlCaHkZQRg2DhwoHsIYGA7iJAUDgHgYQFNyEuBsPYthMhaBsIIBRIguYsGKMwKgYAwgmCIIgIIGgjj5AuCYeIpAIgaBwEAOQNgDAHBKC4QwEBFjcACAwaARQmDNFwEcAoDxoCkGMIYIQsxNAtCKBYGYuRCAIC8LAAgNxpASBgDwYIBADBCHAKQAAKgKjtBoEgJY2lsAQEEB4fA0Qzg/HGIMAwNAYCFAaOgBATB/g8CaBwHQcQhARAUAIAgGAwBBAkB4PIlwbAYACAMCYgBgAOBcBAAQNQ2BBAeIcFAjgLC+EoAAO4mRzA+DGIsVIAgMBwBABNAJAwAAB1BGBBAOgkAIgOhxAMADg3BCAFhVAdAMhRBCgVgyhUhThKBQBBhLgRAbgPBchogGhUgygkAAgpg7g6ABgdgcBTg3A7hNh1A8BMA5hqhPBpAggEAtAOhnhvBOBRgEAOAIAggCgwhuhIgDnYBAgGgiQCA0g+gpiEAAAdiAg=="

 Nodes
 {
 Add("Child 1", "Value 1")
 {
 Image = 2
 }
 Add("Child 2", "Value 2")

 {
 Image = 3
 }
 Add("Child 3", "Value 3")
 {
 Image = 4
 }
 Add("Child 4", "Value 4")
 {
 Image = 5
 }
 }
 }
 Add("Expanded 2")
 {
 ForeColor = RGB(0,0,80)
 Image = 2
 Picture =
"gBHJJGHA5MJFABAAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAGmcFRcCgMAQAyGQJCUTgkFicRiBcGYsBgWhkFicYgisRAFFkXQhCMAwVkCaACFkCRyFiEoijWa4sDqdI5HkDRaCyVgzDwIJgFUcxaiyLoBHyOgkjocBhDQQKgjIaoFCiS4Vi6ZByFwCQECiJ4gkCTwLG6LQoEgBgOi8TxnHoIRzCXLwwlCEQhDIEoICuVwalaOh4gEew2EyXY0AmEohEWdBwm2W4YCyPpegWEgkAyF47gmdYmhIYZ2i+XA5l+SgCjEawXEyIhEA8EItGwEpyjGR4mAKBRlACUhGHCIgynMcxMEWFAolWLIFjKBwOH0DIwmsIBAgISIaEabBlgYDIWCwVhIGiMo5mGLJcEmG5WD6WAqguFYcl4choDiDAXiIbhV3+WQ5HKcghCyZwHgSf51CWSh7CgeYrjIZggCWExkAuZgWCYIwNhQRYKguUJZi8Z4lGIRRGAqRpmBCYgLAoQZwlKQYkgGLJpggFY2n6WgPhEGQGHOTAlgYLQwhCNoBjyUxpAUGZOFqIYkkcZIxCgEArmASwEDkGQEAECYj0kWoOkMDAvBGAYtDKdBCmAPgDiKMZPhAWYeHkJAoGWJpiCUOQRCyaJJkiAha2GIJiEqKINBEFhWFwKIaCsMhbCyLAYg0GgSDcPQQDkSYlCqGQcEoGpkgSIpIAqMgsmuBQghwRQLEQEZEh4SQkCsNpFCISAwDKNYYgoAoCsHQEEKYSghiGGIMoBQphEDYEUGALwmAihGDUD0CIJBRBDECMQJIxgNBLCyPQQgUA+htHOCIT4Ww5DREsCAVgQBhiWCUIEVgth0BlgoBQSYSBAhcBsMsDQhh0j/BgFUJAswEgUDICAFYCBKicCqKUeg5A1hPFMBwYQigah7HEAQSoIBqjpEKMgUINBEi0EsJwMgRAFgEAg1EUgpQogxFqPUNYrwrD9H0GsJgYgFBkCKIQYQzRoDaBGLEdogRviQCCEkLQxgRg5AQBcT4FQiiGDUBMOQuAQhSCULcbw9hqRcEOJ4Wg5Qki4FkGAMIlRNi9HsBMEQVxkA1E8JwNYlAggpAEHoHg1BwBsFwGkXYJRTg9HiOsFYsRWBEAGNMX4Oh5CJA2IMGQGBchcBoLIcgJxzgjDUCQWQRg0gyC4GFvILgzAaEoMkIY9h9gtDwCMA4dgZCYDkHka4Iw2ByGECkOYaQuggHwJEQovQTDXFWM8bwzgJANCcDoLw8x3iaBUA0Qg2w5gxGCIYSYXgIBLjeHECQVRkCpCqPoQQ1AXi4GI6cMQllBh4HkCwCwrhCi0DMNEAQ/xzgkF6NcVQlBZCuFYEwJotRgAnDKH0RoNQrhLDyM0OwVRci1COAweIpR2AFFKDkAAJxOAMCA1IG4mA3CHG8HMY4egiC4GEIUPQsgUg3EqCcfICREBJCGFoWIQg4gOE4E4F4NBiClB4FEYoQgMj+HWHYFY2A3BhEIBcbY5hLCmAmD4JwUhFC2HUGge4RxQB3G4C8eQBQgiDH4FAWQNBHD3E0I0bwSQOCAAIJkUQIRjC6FsMUV47xnj/FI5a3Qsg6iGCsO8XICgrBfGMKQbwAQEguAuKQeQgAoClFiK8boQhuhEAIGEQoVQESCBOCEKwmRVCEFiFwLIRAtirHgBUW4fhjjAEuLwdAJwri7CSMgOA0hJjtG4KkPYFAcgdFQEAcoMw0C0DKHwCQaQiiDFAJEXoVR8jqCgFYPAQgojGHqIQfYiB3BXCQGIKIDgsghAXhMUQPhDgoC6PAf4tgpChC4FEJoVQOhZECMAYQBhWDgACOIOYOhyCYFeDwdAEQVgcEEGUVogAjCoCwHEBAKxYBED6JAeIXRRioGxlQCgKgqDgHiJUCoHh6gXBUHkBgXBcSUAUAsOQHwWBSFgE4Lg6QRCnGAJUVolgMBpEWD0VIDwAhpGKJUKoNAmCKEQLMYQHBdhmAgNYOI0AtjbCiNcKwWA4AyC+LkGAJglD6A4G3OouAhsmEeBwBY2AJCJGqJkfoHQCAmEQPwDoKxaADBwJcLgKAchxC2KIawAg4hFC2CUUgFRVjgEoBYHYyAXBAB4KcSoLQMhUHgCgc4lhWgBAYCYawAxwhHCMOcWYKwCBvAKFAOAYAoiqDEIoKoXA0BVGwJQLY4bYgwDeHUZYmgjBKAcBQOo2AUDaC4G0MAdwJAnGqLQEYgx9AxHOIILQWxugHBqGUW4VBHBOCmAQGI5QrDIDmP91wrgEAnF2PQTNbwLADEEDgRwiAYjRGGCwdQxwajGFDmIRAowNDPCYFEaAaxwAIEeOUGIkwmgwEoL0QohhFCDHAPIawvhDAkAQGEYIkxGhEEYOMcYuhQCHFCMwU4o+iig6kGYW4YA+jyBeC8HQmAKi6EoJILIHB5hfEOIMcgwQnAHByOYKgSAxhFH6NICQewJBQC+AkEQlxnhpDSOwMg5wJiMAkAVWA9QKArFYHYJgXwejSCuBETgagmhkDCIoDgBhkAggeMMbghA5AoEgP0dQqQqBZCSBUYweQrCBHQGECoOgxDQAUKoCA1wUjKCcIQXIVKCAlEEDcQI6QqB2BoNEVYFQecqF8AAOYsADXsGiPwUgpwVgkAqgtgBhYhtgagQhNhRhUhNB6gNAuguAEhJBcArBiAehoB6hWBYglgvAmBQBwBkhngfBnBFBTgOgWBGA2BrhnBgAIA4gLAQhTA2BkBqh/BNAeA+gzB5gYgAkhgdiAg"

 Nodes
 {
 Add("Child 1, (this one has tooltip...)")
 {
 ToolTip = "Exontrol's new eXMLGrid component displays your hierarchical
data using an enhanced grid view, that allows you to provide a new UI to your user.
Exontrol eXMLGrid."
 Image = 2
 Nodes
 {
 Add("Sub Child 1", "just data")
 {
 Editor = "Edit"
 BackColor = RGB(0,0,255)
 ForeColor = RGB(255,255,255)
 }
 Add("Sub Child 2", "just data")

 {
 Editor = "Edit"
 }
 }
 }
 Add("Child 2", 2)
 {
' BackColor = RGB(235,235,245)
' BackColorChild = RGB(220,220,220)
 ForeColor = RGB(0,0,90)
 Image = 3
 Nodes
 {
 Add(" Date picker", "6/13/2005")
 {
 Editor = "Calendar"
 Selected = True
 }
 Add(" Sub Child 2", 12)
 {
 Editor = "Slider"
 }
 }
 Expanded = True
 }
 Add("Child 3", 2)
 {
' BackColor = RGB(240,240,240)
' ForeColor = RGB(0,0,100)
 Image = 4
 Nodes
 {
 Add("Sub Child 1", "just data")
 Add("Sub Child 2", "just data")
 }
 }
 }

 Expanded = True
 }

 Add("You can change the node's position by clicking the node and dragging it to a
new position.")
 {
 HasChilds = True
 ToolTip = "Exontrol eXMLGrid"
 }
 }
EndUpdate

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

up or down expand buttons, Background property
drop down buttons, buttons in the editors, Background property
built-in calendar control, Background property
slider, Background property
selected nodes, SelBackColor property
child selected nodes, SelBackColorChild property

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

up or down expand buttons, Background property
drop down buttons, buttons in the editors, Background property
built-in calendar control, Background property
slider, Background property
selected nodes, SelBackColor property
child selected nodes, SelBackColorChild property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that specifies the way EBN object are
being applied on the component.

By default, the RenderType property is 0, which indicates that the colors are being applied
to EBN object. Imagine that an EBN is just a Color. As you would paint an object using a
solid color, the same you can use using the EBN objects. Shortly, all properties or
parameters that support EBN objects is indicated in the help file with the description "The
last 7 bits in the high significant byte of the color indicates the identifier of the skin being
used to paint the" A color expression is generally a combination of RRGGBB values,
even it is stored in a DWORD value, which means 4 bytes, so actually the color uses only 3
bytes for RR, GG and BB value, (red, green, blue). This way we get one byte that can be
used to specify the identifier of the EBN being used. For instance, 0x1000000, indicates the
EBN with the identifier 1, since 0x000001, means actually the RGB(0,0,1) which is different.
If you need to paint the EBN with a different color, you need to specify the RRGGBB
values, as 0x1FF0000 means the EBN object being shown in red as the 0xFF0000 is
RGB(255,0,0) which means red, and the 0x1 indicates the EBN with the identifier 1. All
controls the support EBN objects provide a VisualAppearance collection. Use the Add
method of the VisualAppearance collection to add new EBN objects to the component.

For instance the Color = 0x1000000 indicates that the EBN with the identifier 1, is being
displayed on the object's client area. We can use the same EBN object with a different
color, by changing the RGB values when setting the Color property such as: Color =
0x1FF0000 applies the EBN with the ID 1, using a Blue as a background color.

The way EBN objects are shown on the objects can be changed using the RenderType
property such as follow:

if -3 (0xFFFFFFFD), no color is applied. In this case a Color = 0x1000000 or Color =
0x1FF0000 displays the same EBN object with no color being applied. In other words,
the RGB value in the Color property is ignored or not applied
if -2 (0xFFFFFFFD), an OR-color scheme is used to apply the color on an EBN object.
In this case a Color = 0x1000000 or Color = 0x1FF0000 displays the same EBN
object, no color applied for 0x1000000, and 0xFF0000 color being applied on the
second. The look or the visual appearance of the second EBN uses the OR-color
scheme to show the EBN object with a different color.
if -1 (0xFFFFFFFE), an AND-color scheme is used to apply the color on an EBN
object. In this case a Color = 0x1000000 or Color = 0x1FF0000 displays the same
EBN object, no color applied for 0x1000000, and 0xFF0000 color being applied on the

second. The look or the visual appearance of the second EBN uses the AND-color
scheme to show the EBN object with a different color.
(default), 0xTTRRGGBB, any other value indicates a pair (transparency, color) to be
applied to ALL EBN objects. The first significant byte indicates the transparency (a
value from 0 to 100), while the other bytes indicates the RGB value. For instance,
0x32FF0000, indicates a transparency of 50% with a blue color, so a 50% blue is
begin applied on the EBN to be displayed. This option can be used to apply a color to
the entire component, or to show the component with more blue for instance. In other
words, the format for RenderType property is AABBGGRR, where the AA could be a
value between 0 and 0x64 (100 %) and it indicates the transparency to be applied,
and the BBGGRR indicates a RGB color. The RGB color is being applied ONLY if it is
not 0x000000 or 0xFFFFFF, In this case the original Color property may indicates the
new color to be applied on the EBN object.

The following screen shots shows an EBN object with different type of rendering (
RenderType property):

RenderType = -3,

RenderType = -2,

RenderType = -1,

RenderType = 0x00000000,

RenderType = 0x32000000, , 50% Transparent (0x32 = 50),
Black (0x000000 is 0 or RGB(0,0,0))

RenderType = 0x64000000, , 100% Transparent (0x64 = 100),
Black (0x000000 is 0 or RGB(0,0,0))

RenderType = 0x320000FF, , 50% Transparent (0x32 = 50),
Red (0x0000FF is 0 or RGB(255,0,0))

RenderType = 0x640000FF, , 100% Transparent (0x64 = 100),
Red (0x0000FF is 0 or RGB(255,0,0))

Editor object
The Editor object holds information about an editor. Use the Editors property to access the
control's editors collection. Use the Add method to add new editors to the Editors
collection. Use the Editor property to assign a new editor to the node. The Editor object
supports the following properties and methods:

Name Description

AddButton Adds a new button to the editor with specified key and
aligns it to the left or right side of the editor.

AddItem Adds a new item to the editor's list.
Appearance Retrieves or sets the editor's appearance
ButtonWidth Specifies the width of the buttons in the editor.
ClearButtons Clears the buttons collection.
ClearItems Clears the nodes collection.
DropDown Displays the drop down list.

DropDownAlignment Retrieves or sets a value that indicates the item's
alignment in the editor's drop-down list.

DropDownAutoWidth
Retrieves or sets a value that indicates whether the
editor's drop-down window list is automatically computed
to fit the entire list.

DropDownMinWidth Specifies the minimum drop-down list width if the
DropDownAutoWidth is False.

DropDownRows Retrieves or sets a value that indicates the maximum
number of visible rows in the editor's drop- down list.

DropDownVisible Retrieves or sets a value that indicates whether the
editor's drop down window is visible or hidden.

EditType Retrieves or sets a value that indicates the type of the
contained editor.

ExpandAll Expands all nodes in the editor's list.
ExpandItem Expands or collapses an item in the editor's list.
FindItem Finds an item given its value or caption.
Index Gets the editor's index in the editors collection.
InsertItem Inserts a child item to the editor's list.

ItemToolTip Gets or sets the text displayed when the mouse pointer
hovers over a predefined item.

Key Specifies the editor's key.
Locked Determines whether the editor is locked or unlocked.

Mask Retrieves or sets a value that indicates the mask used by
the editor.

MaskChar Retrieves or sets a value that indicates the character used
for masking.

Numeric Specifies whether the editor enables numeric values only.
Option Specifies an option for the editor.

PartialCheck Retrieves or sets a value that indicates whether the
associated check box has two or three states.

PopupAppearance Retrieves or sets a value that indicates the drop-down
window's appearance.

RemoveButton Removes a button given its key.
RemoveItem Removes an item from the editor's predefined values list.
SortItems Sorts the list of nodes in the editor.

UserEditor Specifies the control's identifier and the control's runtime
license key when EditType is UserEditor.

UserEditorObject Gets the user editor object when EditType is UserEditor.

method Editor.AddButton (Key as Variant, [Image as Variant], [Align as
Variant], [ToolTip as Variant], [ToolTipTitle as Variant], [ShortcutKey as
Variant])
Adds a new button to the editor with specified key and aligns it to the left or right side of the
editor.

Type Description

Key as Variant A Variant expression that indicates the key of the button
being added.

Image as Variant A long expression that indicates the index of icon being
displayed in the button.

Align as Variant An AlignmentEnum expression that indicates the button's
alignment inside the node.

ToolTip as Variant

A string expression that indicates the button's tooltip. The
button's tooltip shows up when user hovers the cursor
over the button. The ToolTip value accepts built-in HTML
format like described in the Remarks paragraf.

ToolTipTitle as Variant A string expression that indicates the title of the button's
tooltip.

ShortcutKey as Variant

A short expression that indicates the shortcut key being
used to simulate clicking the button. The lower byte
indicates the code of the virtual key, and the higher byte
indicates the states for SHIFT, CTRL and ALT keys (last
insignificant bits in the higher byte). The ShortcutKey
expression could be 256 *((shift ? 1 : 0) + (ctrl ? 2 : 0)
+ (alt ? 4 : 0)) + vbKeyCode, For instance, a combination
like CTRL + F3 is 256 * 2 + vbKeyF3, SHIFT + CTRL + F2
is 256 *(1 + 2) + vbKeyF2, and SHIFT + CTRL + ALT + F5
is 256 * (1 + 2 + 4) + vbKeyF5.

Use the AddButton method to add new buttons to an editor. Use the ButtonClick event to
notify your application that the user clicks a button inside a node. Use the Editors property
to access the control's Editors collection. Use the Add method to add new type of editors to
the control. Use the Editor property to assign an editor to a node. Use the ButtonWidth
property to specify the width of the buttons inside the editor.

The following sample displays a message box when user clicks the 'A' button:

Private Sub Form_Load()
 With XMLGrid1

 .BeginUpdate
 With .Editors
 With .Add("Spin")
 .ButtonWidth = 18
 .EditType = SpinType
 .AddButton "A", 1
 End With
 End With
 With .Nodes
 With .Add("Spin", 1)
 .Editor = "Spin"
 End With
 End With
 .EndUpdate
 End With
End Sub

Private Sub XMLGrid1_ButtonClick(ByVal Node As EXMLGRIDLibCtl.INode, ByVal Key As
Variant)
 If Key = "A" Then
 MsgBox "You have clicked the 'A' button."
 End If
End Sub

The control uses built-in HTML tags to display the caption using HTML format. The control
supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using

about:blank

the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the

offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

method Editor.AddItem (Value as Long, Caption as String, [Image as
Variant])
Adds a new item to the editor's list.

Type Description
Value as Long A long expression that defines a predefined value.

Caption as String A string expression that indicates the caption for the Value.
The Caption supports HTML format.

Image as Variant A long expression that indicates the index of the item's
icon.

Use the AddItem method to add new items to the editor's predefined list. If the AddItem
method uses a Value already defined, the old item is replaced. The AddItem method has
effect for the following type of editors: DropDownType, DropDownListType,
PickEditType, and CheckListType. Check each EditType value for what Value argument
should contain. Use the RemoveItem method to remove a particular item from the
predefined list. Use the ClearItems method to clear the entire list of predefined values. Use
the SortItems to sort the items. Use the ItemToolTip property to assign a tooltip to a
predefined item into a drop down list. The Caption parameter supports built-in HTML format
like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of

about:blank

the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a

value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Editor.Appearance as InplaceAppearanceEnum
Retrieves or sets the editor's appearance

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
editor's appearance.

Use the Appearance property to change the editor's border style. Use the
PopupAppearance property to define the appearance for editor's drop-down window, if it
exists. By default, the editor's Appearance is NoApp.

property Editor.ButtonWidth as Long
Specifies the width of the buttons in the editor.

Type Description

Long A long expression that defines the width of the buttons in
the editor, added using the AddButton method.

Use the ButtonWidth property to increase or decrease the width of buttons in the editor.
The button's height is the same with the NodeHeight property. If the ButtonWidth property
is zero (0), the control hides the buttons. Use the AddButton method to add new buttons
to the editor. Use the Editor property to assign an editor to a node.

method Editor.ClearButtons ()
Clears the buttons collection.

Type Description

Use the ClearButtons method to clear the entire list of buttons added using AddButton
method. Use the RemoveButton method to remove a particular button, given its key. Use
the ButtonWidth property to hide the buttons.

method Editor.ClearItems ()
Clears the items collection.

Type Description

The ClearItems method clears the predefined values added using AddItem, InsertItem
methods. Use the RemoveItem method to remove a particular item. Use the
DropDownVisible property to hide the drop-down window.

method Editor.DropDown ()
Displays the drop down list.

Type Description

The DropDown method shows the drop down portion of the editor.

property Editor.DropDownAlignment as AlignmentEnum
Retrieves or sets a value that indicates the item's alignment in the editor's drop-down list.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the item's
alignment into the editor's drop-down list.

Use the DropDownAlignment property to align the items in the editor's drop-down list.

property Editor.DropDownAutoWidth as Boolean
Retrieves or sets a value that indicates whether the editor's drop-down window list is
automatically computed to fit the entire list.

Type Description

Boolean
A boolean expression that indicates whether the editor's
drop- down list width is automatically computed to fit the
entire list.

Use the DropDownAutoWidth property to specify when you let the control computes the
drop-down list width, or whenever the width is specified by the DropDownMinWidth
property

property Editor.DropDownMinWidth as Long
Specifies the minimum drop-down list width if the DropDownAutoWidth is False.

Type Description

Long A long expression that specifies the minimum drop- down
list width if the DropDownAutoWidth is False.

The DropDownMinWidth property has no effect if the DropDownAutoWidth property is True.

property Editor.DropDownRows as Long
Retrieves or sets a value that indicates the maximum number of visible rows in the editor's
drop- down list.

Type Description

Long A long expression that indicates the maximum number of
visible rows in the editor's drop- down list.

Use the DropDownRows property to specify the maximum number of visible rows in the
editor's drop-down list. By default, the DropDownRows property is set to 7. The
DropDownRows property has effect for the following types: DropDownType,
DropDownListType, PickEditType, CheckListType and FontType.

property Editor.DropDownVisible as Boolean
Retrieves or sets a value that indicates whether the editor's drop down window is visible or
hidden.

Type Description

Boolean A boolean value that indicates whether the editor's drop
down window is visible or hidden.

Use the DropDownVisible property to hide the editor's drop-down window. Use the
ButtonWidth property to hide the editor buttons.

property Editor.EditType as EditTypeEnum
Retrieves or sets a value that indicates the type of the contained editor.

Type Description

EditTypeEnum An EditTypeEnum expression that specifies the type of the
editor.

Use the EditType property to specify the type of the editor. Use the Add method to insert
new type of editors to the control. You can specify the type of editor at the adding time.
Use the AddItem method to insert predefined items to a drop down list editor. Use the
Option property to define options for a specific type of editor.

The following sample adds an integer editor and a float point editor:

With XMLGrid1
 .BeginUpdate
 .AutoEdit = True
 With .Editors.Add("Float", EditType)
 .Numeric = exFloat
 End With
 With .Editors.Add("Integer", EditType)
 .Numeric = exInteger
 End With
 With .Nodes
 With .Add("Float Number")
 .Editor = "Float"
 End With
 With .Add("Integer Number")
 .Editor = "Integer"
 End With
 End With
 .EndUpdate
End With

The following sample adds check list editor:

With XMLGrid1
 .BeginUpdate
 .AutoEdit = True

 With .Editors.Add("CL", CheckListType)
 .AddItem 1, "One"
 .AddItem 2, "Two"
 .AddItem 4, "Four"
 End With
 With .Nodes
 With .Add("Check", 3)
 .Editor = "CL"
 End With
 End With
 .EndUpdate
End With

The following sample adds a progress bar editor:

With XMLGrid1
 .BeginUpdate
 .AutoEdit = True
 With .Editors.Add("PRO", ProgressBarType)
 .Option(exProgressBarBackColor) = vbGreen
 End With
 With .Nodes
 With .Add("Progress", 34)
 .Editor = "PRO"
 End With
 End With
 .EndUpdate
End With

method Editor.ExpandAll ()
Expands all items in the editor's list.

Type Description

[not supported yet] By default, in your editor items that contain child items are collapsed.
Use the ExpandAll method to expand all items in the editor. Use the InsertItem method to
insert child items.

property Editor.ExpandItem(Value as Variant) as Boolean
Expandes or collapses an item in the editor's list.

Type Description

Value as Variant
A long expression that indicates the value of the item being
expanded, a string expression that indicates the caption of
the item being expanded.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

[not supported yet] By default, the items are collapsed. Use the ExpandItem to expand a
specified item. Use the ExpandAll method to expand all items in the editor. Use the
InsertItem method to insert a child item to your built-in editor

property Editor.FindItem (Value as Variant) as Variant
Finds an item given its value or caption.

Type Description

Value as Variant
A long expression that indicates the value of the item being
searched, a string expression that indicates the caption of
the item being searched.

Variant
A string expression that indicates the caption of the item, if
the Value is a long expression, a long expression that
indicates the item's value if Value is a string expression.

The FindItem property retrieves an empty (VT_EMPTY) value if no item was found.

property Editor.Index as Long
Gets the editor's index in the editors collection.

Type Description

Long A long expression that indicates the index of the editor in
the Editors collection.

The Index property specifies the index of the editor in the control's editors collection. The
Key property specifies the editor's key.

method Editor.InsertItem (Value as Long, Caption as String, [Image as
Variant], [Parent as Variant])
Inserts a child item to the editor's list.

Type Description
Value as Long A long expression that defines a predefined value.

Caption as String A string expression that indicates the caption for the Value.
The Caption supports HTML format.

Image as Variant A long expression that indicates the index of the item's
icon.

Parent as Variant A long expression that defines the value of the parent item.

Use the InsertItem to insert child items to the editor's predefined list. Use the AddItem
method to add new items to the editor's list. Use the ExpandItem property to expand an
item. Use the ExpandAll items to expand all items. Use the ItemTooltip property to assign a
tooltip to a predefined item into a drop down editor.

property Editor.ItemToolTip(Value as Variant) as String
Gets or sets the text displayed when the mouse pointer hovers over a predefined item.

Type Description

Value as Variant

A long expression that indicates the value of the item
whose tooltip is accessed, a string expression that
indicates the caption of the item whose tooltip is
accessed.

String
A string expression that may include HTML tags, that
indicates the text being displayed when the mouse hovers
the item.

Use the ItemToolTip property to assign a tooltip for a drop down list value. Use the AddItem
or InsertItem methods to insert new items to the drop down predefined list. The ItemToolTip
property may include built-in HTML format.

property Editor.Key as Variant
Specifies the editor's key.

Type Description

Variant A string or long expression that indicates the key of the
editor.

The Key property specifies the editor's key. The Index property specifies the index of the
editor in the control's editors collection. The Key property is read only. Use the Add method
to add new type of editors with specified keys. Use the Editor property to assign an editor
to a node.

property Editor.Locked as Boolean
Determines whether the editor is locked or unlocked.

Type Description

Boolean A boolean expression that indicates whether the editor is
locked or unlocked.

Use the Locked property to lock the editor. If the editor is locked, the user is not able to
change the control's content using the editor.

property Editor.Mask as String
Retrieves or sets a value that indicates the mask used by the editor.

Type Description
String A string expression that defines the editor's mask.

Use the Mask property to filter characters during data input. Use the Numeric property to
filter for numbers.

Use the Mask property to control the entry of many types of formatted information such as
telephone numbers, social security numbers, IP addresses, license keys etc. The Mask
property has effect for the following edit types: DropDownType, SpinType, DateType,
MaskType, FontType, PickEditType. Use KeyDown and KeyUp event procedures if you
need to respond to both the pressing and releasing of a key. Use the Editing property to
check whether the control is running in the edit mode.

Use the MaskChar property to change the masking character. If the Mask property is
empty no filter is applied. The Mask property is composed by a combination of regular
characters, literal escape characters, and masking characters. The Mask property can
contain also alternative characters, or range rules. A literal escape character is preceded
by a \ character, and it is used to display a character that is used in masking rules. Here's
the list of all rules and masking characters:

Rule Name Description
Digit Masks a digit character. [0-9]
x Hexa Lower Masks a lower hexa character. [0-9],[a-f]
X Hexa Upper Masks a upper hexa character. [0-9],[A-F]
A AlphaNumeric Masks a letter or a digit. [0-9], [a-z], [A-Z]
? Alphabetic Masks a letter. [a-z],[A-Z]

< Alphabetic
Lower Masks a lower letter. [a-z]

> Alphabetic
Upper Masks an upper letter. [A-Z]

* Any Mask any combination of characters.

\ Literal
Escape

Displays any masking characters. The following combinations
are valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[

{nMin,nMax} Range
Masks a number in a range. The nMin and nMax values should
be numbers. For instance the mask {0,255} will mask any
number between 0 and 255.
Masks any characters that are contaied by brackets []. For

[...] Alternative instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following sample adds an editor for masking phone numbers:

With XMLGrid1
 .BeginUpdate
 With .Editors.Add("Phone", MaskType)
 .Mask = "(###) - ### ####"
 End With
 With .Nodes
 With .Add("Phone", "")
 .Editor = "Phone"
 End With
 End With
 .EndUpdate
End With

property Editor.MaskChar as Long
Retrieves or sets a value that indicates the character used for masking.

Type Description

Long A long expression that indicates the ASCII code for the
masking character.

Use the MaskChar property to change the default masking character, which is '_'. The
MaskChar property has effect only if the Mask property is not empty, and the mask is
applicable to the editor's type.

property Editor.Numeric as NumericEnum
Specifies whether the editor enables numeric values only.

Type Description

NumericEnum A NumericEnum expression that indicates whether integer
or floating point numbers are allowed.

The Numeric property has effect only if the editor contains an edit box. Use the Numeric
property to add intelligent input filtering for integer, or floating points numbers. Use the
exSpinStep option to specify the proposed change when user clicks a spin control, if the
cell's editor is of SpinType type. Use the exEditDecimaSymbol option to specify the symbol
being used by decimal value while editing a floating point number.

property Editor.Option(Name as EditorOptionEnum) as Variant
Specifies an option for the editor.

Type Description

Name as EditorOptionEnum An EditorOptionEnum expression that indicates the editor's
option being changed.

Variant A Variant expression that indicates the value for editor's
option

Use the Option property to define options for a certain type of editor.

The following sample adds a password editor:

With XMLGrid1
 .BeginUpdate
 With .Editors.Add("Password", EditType)
 .Option(exEditPassword) = True
 End With
 With .Nodes
 With .Add("Password", "")
 .Editor = "Password"
 End With
 End With
 .EndUpdate
End With

The following sample specifies that the editor "A" requires all arrow keys. By default, the
control uses the arrow key to navigate through the nodes.

With XMLGrid1
 .BeginUpdate
 With .Editors.Add("A", EditType)
 .Option(exLeftArrow) = False
 .Option(exRightArrow) = False
 .Option(exUpArrow) = False
 .Option(exDownArrow) = False
 .Option(exHomeKey) = False
 .Option(exEndKey) = False
 End With

 With .Nodes
 With .Add("Use Arrow Keys", "swssw")
 .Editor = "A"
 End With
 End With
 .EndUpdate
End With

property Editor.PartialCheck as Boolean
Retrieves or sets a value that indicates whether the associated check box has two or three
states.

Type Description

Boolean A boolean expression that indicates whether the
associated check box has two or three states.

[not supported yet]

property Editor.PopupAppearance as InplaceAppearanceEnum
Retrieves or sets a value that indicates the drop-down window's appearance.

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
drop-down window's border style.

Use the PopupAppearance property to change the drop-down window's border style. Use
the Appearance property to define the editor's appearance.

method Editor.RemoveButton (Key as Variant)
Removes a button given its key.

Type Description

Key as Variant
A Variant value that determines the button's key being
deleted. The Key should be the same as used in the
AddButton method.

Use the RemoveButton method to remove a button, given its key. Use the ButtonWidth
property to hide the editor buttons. Use the ClearButtons method.

method Editor.RemoveItem (Value as Long)
Removes an item from the editor's predefined values list.

Type Description

Value as Long
A long expression that indicates the index of the item being
removed, or a string expression that indicates the caption
of the item being removed.

Use the RemoveItem method to remove an item from the editor's predefined values list.
Use the ClearItems method to clear the entire list of editor items. Use the DropDownVisible
property to hide the editor's drop-down window.

method Editor.SortItems ([Ascending as Variant], [Reserved as Variant])
Sorts the list of items in the editor.

Type Description

Ascending as Variant A boolean expression that indicates the sort order of the
items.

Reserved as Variant For future use only.

Use the SortItems method to sort the items in a drop down editor.

method Editor.UserEditor (ControlID as String, License as String)
Specifies the control's identifier and the control's runtime license key when EditType is
UserEditor.

Type Description

ControlID as String

A string expression that indicates the control's program
identifier. For instance, if you want to use a multiple
column combobox as an user editor, the control's identifier
could be: "Exontrol.ComboBox".

License as String
Optional. A string expression that indicates the runtime
license key in case is it required. It depends on what
control are you using.

The UserEditor property creates a new type of editor based on the ControlID parameter.
Use the UserEditorObject property to access the newly created object. The
UserEditorObject property points to nothing if the control wasn't able to create the user
editor based on the ControlID. Also, if the user control requires a runtime license key, and
the License parameter is empty or doesn't match, the UserEditorObject property points to
nothing. The control fires the UserEditorOpen event when a ActiveX editor is about to be
opened. The control fires the UserEditorClose event when the user editor needs to be
closed. The control fires the UserEditorOleEvent event each time when an user editor fires
an event.

The following VB sample adds an ActiveX editor, (Exontrol's ExComboBox):

With XMLGrid1.Editors
 With .Add("excombobox", UserEditorType)
 .UserEditor "Exontrol.ComboBox", ""
 With .UserEditorObject
 .BeginUpdate
 .LabelHeight = XMLGrid1.NodeHeight - 3
 .LinesAtRoot = True
 .HeightList = 256
 .WidthList = 256
 .IntegralHeight = True
 .Columns.Add ("Name")
 .Columns.Add ("Value")
 .ColumnAutoResize = True
 With .Items
 Dim h As Long, h1 As Long

https://exontrol.com/excombobox.jsp

 h = .AddItem("Item 1")
 .CellCaption(h, 1) = "Item 1.2"
 h1 = .InsertItem(h, , "SubItem 1")
 .CellCaption(h1, 1) = "SubItem 1.2"
 h1 = .InsertItem(h, , "SubItem 2")
 .CellCaption(h1, 1) = "SubItem 2.2"
 .ExpandItem(h) = True
 End With
 .EndUpdate
 End With
 End With
End With

The following C++ sample adds an ActiveX editor, (Exontrol's ExComboBox):

#include "Editor.h"
#include "Editors.h"
COleVariant vtMissing; V_VT(&vtMissing;) = VT_ERROR;
CEditors editors = m_xmlgrid.GetEditors();
CEditor editor = editors.Add(COleVariant("excombobox"), 16 /*UserEditorType*/);
editor.UserEditor("Exontrol.ComboBox", "");
EXCOMBOBOXLib::IComboBoxPtr spComboBox = editor.GetUserEditorObject();
if (spComboBox != NULL)
{
 spComboBox->BeginUpdate();
 spComboBox->LabelHeight = m_xmlgrid.GetNodeHeight() - 3;
 spComboBox->LinesAtRoot = EXCOMBOBOXLib::exLinesAtRoot;
 spComboBox->put_HeightList(vtMissing, 256);
 spComboBox->put_WidthList(vtMissing, 256);
 spComboBox->IntegralHeight = true;
 spComboBox->Columns->Add("Name");
 spComboBox->Columns->Add("Value");
 spComboBox->ColumnAutoResize = true;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 long h = spItems->AddItem(COleVariant("Item 1"));
 spItems->put_CellCaption(COleVariant(h),COleVariant((long)1), COleVariant("Item 1.2")
);

 long h1 = spItems->InsertItem(h, vtMissing, COleVariant("SubItem 1"));
 spItems->put_CellCaption(COleVariant(h1),COleVariant((long)1), COleVariant("SubItem
1.2"));
 h1 = spItems->InsertItem(h, vtMissing, COleVariant("SubItem 2"));
 spItems->put_CellCaption(COleVariant(h1),COleVariant((long)1), COleVariant("SubItem
2.2"));
 spItems->put_ExpandItem(h, true);
 spComboBox->EndUpdate();
}

The sample requires the #import <excombobox.dll> to include the ExComboBox's type
library. The #import <excombobox.dll> creates EXCOMBOBOXLib namespace that
includes all definitions for objects and types that the ExComboBox control exports.

The following VB.NET sample adds an ActiveX editor, (Exontrol's ExComboBox):

With AxXMLGrid1.Editors
 With .Add("excombobox", EXMLGRIDLib.EditTypeEnum.UserEditorType)
 .UserEditor("Exontrol.ComboBox", "")
 With .UserEditorObject
 .BeginUpdate()
 .LabelHeight = AxXMLGrid1.NodeHeight - 3
 .LinesAtRoot = True
 .HeightList = 256
 .WidthList = 256
 .IntegralHeight = True
 .Columns.Add("Name")
 .Columns.Add("Value")
 .ColumnAutoResize = True
 With .Items
 Dim h, h1 As Integer
 h = .AddItem("Item 1")
 .CellCaption(h, 1) = "Item 1.2"
 h1 = .InsertItem(h, , "SubItem 1")
 .CellCaption(h1, 1) = "SubItem 1.2"
 h1 = .InsertItem(h, , "SubItem 2")
 .CellCaption(h1, 1) = "SubItem 2.2"
 .ExpandItem(h) = True

 End With
 .EndUpdate()
 End With
 End With
End With

The following C# sample adds an ActiveX editor, (Exontrol's ExComboBox):

EXMLGRIDLib.Editor editor = axXMLGrid1.Editors.Add("excombobox",
EXMLGRIDLib.EditTypeEnum.UserEditorType);
editor.UserEditor("Exontrol.ComboBox", "");
EXCOMBOBOXLib.ComboBox comboBox = editor.UserEditorObject as
EXCOMBOBOXLib.ComboBox;
if (comboBox != null)
{
 comboBox.BeginUpdate();
 comboBox.LabelHeight = axXMLGrid1.NodeHeight - 3;
 comboBox.LinesAtRoot = EXCOMBOBOXLib.LinesAtRootEnum.exLinesAtRoot ;
 comboBox.set_HeightList(null, 256);
 comboBox.set_WidthList(null, 256);
 comboBox.IntegralHeight = true;
 comboBox.Columns.Add("Name");
 comboBox.Columns.Add("Value");
 comboBox.ColumnAutoResize = true;
 EXCOMBOBOXLib.Items items = comboBox.Items;
 int h = items.AddItem("Item 1");
 items.set_CellCaption(h, 1, "Item 1.2");
 int h1 = items.InsertItem(h, null, "SubItem 1");
 items.set_CellCaption(h1, 1,"SubItem 1.2");
 h1 = items.InsertItem(h, null, "SubItem 2");
 items.set_CellCaption(h1, 1,"SubItem 2.2");
 items.set_ExpandItem(h, true);
 comboBox.EndUpdate();
}

In C# your project needs a new reference to the Exontrol's ExComboBox control library.
Use the Project\Add Reference\COM item to add new reference to a COM object. Once
that you added a reference to the Exontrol's ExComboBox the EXCOMBOBOXLib

namespace is created. The EXCOMBOBOXLib namespace contains definitions for all
objects that ExComboBox control exports.

The following VFP sample adds an ActiveX editor, (Exontrol's ExComboBox):

With thisform.XMLGrid1.Editors
 With .Add("excombobox", 16) && UserEditorType
 .UserEditor("Exontrol.ComboBox", "")
 With .UserEditorObject
 .BeginUpdate
 .LabelHeight = thisform.XMLGrid1.NodeHeight - 3
 .LinesAtRoot = -1
 .HeightList(0) = 256
 .WidthList(0) =256
 .IntegralHeight = .t.
 .Columns.Add ("Name")
 .Columns.Add ("Value")
 .ColumnAutoResize = .t.
 With .Items
 .DefaultItem = .AddItem("Item 1")
 h = .DefaultItem
 .CellCaption(0, 1) = "Item 1.2"
 .DefaultItem = .InsertItem(h, , "SubItem 1")
 .CellCaption(0, 1) = "SubItem 1.2"
 .DefaultItem = .InsertItem(h, , "SubItem 2")
 .CellCaption(0, 1) = "SubItem 2.2"
 .DefaultItem = h
 .ExpandItem(0) = .t.
 EndWith
 .EndUpdate
 EndWith
 EndWith
EndWith

property Editor.UserEditorObject as Object
Gets the user editor object when EditType is UserEditor.

Type Description
Object An ActiveX object being used as an user editor.

Use the UserEditorOpen property to access the ActiveX user editor. Use the UserEditor
property to initialize the ActiveX user editor. The UserEditorObject property retrieves the
ActiveX control created when UserEditor method was invoked. The type of object returned
by the UserEditorObject depends on the ControlID parameter of the UserEditor method.
For instance, the type of the created object when UserEditor("Exontrol.ComboBox") is
used, is EXCOMBOBOXLibCtl.ComboBox. The UserEditorObject property gets nothing if
the UserEditor method fails. The control fires the UserEditorOpen event when an user
editor is about to be opened. The control fires the UserEditorClose event when the control
closes an user editor. The control fires the UserEditorOleEvent event each time when an
user editor fires an event.

The following VB sample adds an ActiveX editor, (Exontrol's ExComboBox):

With XMLGrid1.Editors
 With .Add("excombobox", UserEditorType)
 .UserEditor "Exontrol.ComboBox", ""
 With .UserEditorObject
 .BeginUpdate
 .LabelHeight = XMLGrid1.NodeHeight - 3
 .LinesAtRoot = True
 .HeightList = 256
 .WidthList = 256
 .IntegralHeight = True
 .Columns.Add ("Name")
 .Columns.Add ("Value")
 .ColumnAutoResize = True
 With .Items
 Dim h As Long, h1 As Long
 h = .AddItem("Item 1")
 .CellCaption(h, 1) = "Item 1.2"
 h1 = .InsertItem(h, , "SubItem 1")
 .CellCaption(h1, 1) = "SubItem 1.2"
 h1 = .InsertItem(h, , "SubItem 2")

https://exontrol.com/excombobox.jsp

 .CellCaption(h1, 1) = "SubItem 2.2"
 .ExpandItem(h) = True
 End With
 .EndUpdate
 End With
 End With
End With

The following C++ sample adds an ActiveX editor, (Exontrol's ExComboBox):

#include "Editor.h"
#include "Editors.h"
COleVariant vtMissing; V_VT(&vtMissing;) = VT_ERROR;
CEditors editors = m_xmlgrid.GetEditors();
CEditor editor = editors.Add(COleVariant("excombobox"), 16 /*UserEditorType*/);
editor.UserEditor("Exontrol.ComboBox", "");
EXCOMBOBOXLib::IComboBoxPtr spComboBox = editor.GetUserEditorObject();
if (spComboBox != NULL)
{
 spComboBox->BeginUpdate();
 spComboBox->LabelHeight = m_xmlgrid.GetNodeHeight() - 3;
 spComboBox->LinesAtRoot = EXCOMBOBOXLib::exLinesAtRoot;
 spComboBox->put_HeightList(vtMissing, 256);
 spComboBox->put_WidthList(vtMissing, 256);
 spComboBox->IntegralHeight = true;
 spComboBox->Columns->Add("Name");
 spComboBox->Columns->Add("Value");
 spComboBox->ColumnAutoResize = true;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 long h = spItems->AddItem(COleVariant("Item 1"));
 spItems->put_CellCaption(COleVariant(h),COleVariant((long)1), COleVariant("Item 1.2")
);
 long h1 = spItems->InsertItem(h, vtMissing, COleVariant("SubItem 1"));
 spItems->put_CellCaption(COleVariant(h1),COleVariant((long)1), COleVariant("SubItem
1.2"));
 h1 = spItems->InsertItem(h, vtMissing, COleVariant("SubItem 2"));
 spItems->put_CellCaption(COleVariant(h1),COleVariant((long)1), COleVariant("SubItem

2.2"));
 spItems->put_ExpandItem(h, true);
 spComboBox->EndUpdate();
}

The sample requires the #import <excombobox.dll> to include the ExComboBox's type
library. The #import <excombobox.dll> creates EXCOMBOBOXLib namespace that
includes all definitions for objects and types that the ExComboBox control exports.

The following VB.NET sample adds an ActiveX editor, (Exontrol's ExComboBox):

With AxXMLGrid1.Editors
 With .Add("excombobox", EXMLGRIDLib.EditTypeEnum.UserEditorType)
 .UserEditor("Exontrol.ComboBox", "")
 With .UserEditorObject
 .BeginUpdate()
 .LabelHeight = AxXMLGrid1.NodeHeight - 3
 .LinesAtRoot = True
 .HeightList = 256
 .WidthList = 256
 .IntegralHeight = True
 .Columns.Add("Name")
 .Columns.Add("Value")
 .ColumnAutoResize = True
 With .Items
 Dim h, h1 As Integer
 h = .AddItem("Item 1")
 .CellCaption(h, 1) = "Item 1.2"
 h1 = .InsertItem(h, , "SubItem 1")
 .CellCaption(h1, 1) = "SubItem 1.2"
 h1 = .InsertItem(h, , "SubItem 2")
 .CellCaption(h1, 1) = "SubItem 2.2"
 .ExpandItem(h) = True
 End With
 .EndUpdate()
 End With
 End With
End With

The following C# sample adds an ActiveX editor, (Exontrol's ExComboBox):

EXMLGRIDLib.Editor editor = axXMLGrid1.Editors.Add("excombobox",
EXMLGRIDLib.EditTypeEnum.UserEditorType);
editor.UserEditor("Exontrol.ComboBox", "");
EXCOMBOBOXLib.ComboBox comboBox = editor.UserEditorObject as
EXCOMBOBOXLib.ComboBox;
if (comboBox != null)
{
 comboBox.BeginUpdate();
 comboBox.LabelHeight = axXMLGrid1.NodeHeight - 3;
 comboBox.LinesAtRoot = EXCOMBOBOXLib.LinesAtRootEnum.exLinesAtRoot ;
 comboBox.set_HeightList(null, 256);
 comboBox.set_WidthList(null, 256);
 comboBox.IntegralHeight = true;
 comboBox.Columns.Add("Name");
 comboBox.Columns.Add("Value");
 comboBox.ColumnAutoResize = true;
 EXCOMBOBOXLib.Items items = comboBox.Items;
 int h = items.AddItem("Item 1");
 items.set_CellCaption(h, 1, "Item 1.2");
 int h1 = items.InsertItem(h, null, "SubItem 1");
 items.set_CellCaption(h1, 1,"SubItem 1.2");
 h1 = items.InsertItem(h, null, "SubItem 2");
 items.set_CellCaption(h1, 1,"SubItem 2.2");
 items.set_ExpandItem(h, true);
 comboBox.EndUpdate();
}

In C# your project needs a new reference to the Exontrol's ExComboBox control library.
Use the Project\Add Reference\COM item to add new reference to a COM object. Once
that you added a reference to the Exontrol's ExComboBox the EXCOMBOBOXLib
namespace is created. The EXCOMBOBOXLib namespace contains definitions for all
objects that ExComboBox control exports.

The following VFP sample adds an ActiveX editor, (Exontrol's ExComboBox):

With thisform.XMLGrid1.Editors
 With .Add("excombobox", 16) && UserEditorType

 .UserEditor("Exontrol.ComboBox", "")
 With .UserEditorObject
 .BeginUpdate
 .LabelHeight = thisform.XMLGrid1.NodeHeight - 3
 .LinesAtRoot = -1
 .HeightList(0) = 256
 .WidthList(0) =256
 .IntegralHeight = .t.
 .Columns.Add ("Name")
 .Columns.Add ("Value")
 .ColumnAutoResize = .t.
 With .Items
 .DefaultItem = .AddItem("Item 1")
 h = .DefaultItem
 .CellCaption(0, 1) = "Item 1.2"
 .DefaultItem = .InsertItem(h, , "SubItem 1")
 .CellCaption(0, 1) = "SubItem 1.2"
 .DefaultItem = .InsertItem(h, , "SubItem 2")
 .CellCaption(0, 1) = "SubItem 2.2"
 .DefaultItem = h
 .ExpandItem(0) = .t.
 EndWith
 .EndUpdate
 EndWith
 EndWith
EndWith

Editors object
The Editors collection holds a collection of Editor objects. Use the Editors property to
access the control's editors collection. Use the Editor property to assign an editor to a
node. The Editors collection supports the following properties and methods:

Name Description

Add Adds a child editor and returns a reference to the newly
created object.

Clear Removes all objects in the collection.
Count Returns the number of objects in a collection.
Item Returns a specific editor of the Editors collection.
ItemByKey Returns an editor giving its key.
Remove Removes a specific member from the Editors collection.
RemoveByKey Removes an editor giving its key.

method Editors.Add (Key as Variant, Type as EditTypeEnum)
Adds a child editor and returns a reference to the newly created object.

Type Description

Key as Variant A string or long expression that indicates the key of the
editor being added.

Type as EditTypeEnum An EditTypeEnum expression that indicates the type of the
editor being added.

Return Description
Editor An Editor object being created.

Use the Add method to add new type of editors to the control. Use the Editor property to
assign an editor to a node. Use the EditType property to change the type of editor. Use the
Option property to define options for a specific type of editor. Use the AddItem method to
add new items to a drop down editor. Use the AddButton method to insert buttons to the
editor. The control fires the ButtonClick event when user presses a button inside an editor.
Use the Change event to notify your application that user alters the node's value or caption.

Use the AutoEdit property to specify whether the control starts editing the focused node as
soon as user moves the focused node. Use the Edit method to programmatically edit a
node, if the AutoEdit property is False.

If a node has an editor assigned the node's editor is applied to the:

Name property, if the node contains child node.
Value property, if the node contains no child node.

The following sample adds a drop down editor and a float edit box:

With XMLGrid1
 .BeginUpdate
 .AutoEdit = True
 With .Editors.Add("Float", EditType)
 .Numeric = exFloat
 End With
 With .Editors.Add("DropDown", DropDownListType)
 .AddItem 1, "Yes"
 .AddItem 2, "No"
 End With
 With .Nodes

 With .Add("Root").Nodes
 With .Add("Child 1", "1.2")
 .Editor = "Float"
 End With
 With .Add("Child 2", "1")
 .Editor = "DropDown"
 End With
 End With
 End With
 .EndUpdate
End With

Use the AddNode event to apply a specific editor to all nodes in the control at adding time.

method Editors.Clear ()
Removes all objects in the collection.

Type Description

Use the Clear method to remove the editors collection. Use the Remove method to remove
a specific editor. Use the Editor property to assign am editor to a node.

property Editors.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that indicates the number of elements in
the collection.

The Count property specifies the number of editors in the collection. Use the Item,
ItemByKey properties to access an editor by its index or key.

The following sample displays the list of control's editors collection:

Dim e As EXMLGRIDLibCtl.Editor
For Each e In XMLGrid1.Editors
 Debug.Print e.Key
Next

property Editors.Item (Index as Variant) as Editor
Returns a specific editor of the Editors collection.

Type Description

Index as Variant A long expression that indicates the index of the editor
being accessed.

Editor An Editor object being requested.

Use the Item, ItemByKey properties to access an editor by its index or key. The Count
property specifies the number of editors in the collection.

The following sample displays the list of control's editors collection:

Dim e As EXMLGRIDLibCtl.Editor
For Each e In XMLGrid1.Editors
 Debug.Print e.Key

property Editors.ItemByKey (Key as Variant) as Editor
Returns an editor giving its key.

Type Description

Key as Variant A long or string expression that indicates the key of the
editor being accessed.

Editor An Editor object being requested.

Use the Item, ItemByKey properties to access an editor by its index or key. The Count
property specifies the number of editors in the collection.

The following sample displays the list of control's editors collection:

Dim e As EXMLGRIDLibCtl.Editor
For Each e In XMLGrid1.Editors
 Debug.Print e.Key

method Editors.Remove (Index as Variant)
Removes a specific member from the Editors collection.

Type Description

Index as Variant A long expression that indicates the index of the editor
being removed.

Use the Remove method to remove a specific editor giving its index. Use the RemoveByKey
method to remove an editor giving its key. Use the Clear method to remove the editors
collection. Use the Editor property to assign am editor to a node.

method Editors.RemoveByKey (Key as Variant)
Removes an editor giving its key.

Type Description

Key as Variant A string or long expression that indicates the key of the
editor.

Use the RemoveByKey method to remove an editor giving its key. Use the Remove method
to remove a specific editor giving its index. Use the Clear method to remove the editors
collection. Use the Editor property to assign am editor to a node.

ExDataObject object
Defines the object that contains OLE drag and drop information.

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations

The Files property is valid only if the format of the clipboard data is exCFFiles.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of the specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data.

ExDataObjectFiles object

The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property.

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index
String A string value that indicates the filename

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames.

Node object
The Node object holds information about control's node. Use the Nodes property to access
the control's Nodes collection. Use the Add method to add a new node to the control. Use
the Editors property to access the control's editors. The Node object supports the following
properties and methods:

Name Description
BackColor Specifies the node's background color.
BackColorChild Specifies the default background color for child nodes.
BackColorValue Specifies the background color for the node's value.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the node's background using the EBN string
format.

BackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

ClearBackColor Clears the node's background color.
ClearBackColorChild Clears the default background color for child nodes.
ClearBackColorValue Clears the background of the node's value.
ClearForeColor Clears the node's foreground color.
ClearForeColorChild Clears the default foreground color for the child nodes.
ClearForeColorValue Clears the foreground color for the node's value.
CollapseAll Collapses all the child nodes.

Editor Specifies a value that indicates the key of the node's
editor.

Enabled Specifies whether the node is enabled or disabled.
ExpandAll Expands all the child nodes.
Expanded Specifies whether a node is expanded or collapsed.
FirstNode Gets the first child tree node in the tree node collection.
ForeColor Specifies the node's background color.
ForeColorChild Specifies the default foreground color for child nodes.
ForeColorValue Specifies the foreground color for the node's value.
HasChilds Specifies whether the node contains child nodes.
ID Retrieves the node's unique identifier.

Retrieves or sets a value that indicates the index of icon to

Image display in the node.

Index Retrieves the index of the node within the collection.
IsChildOf Specifies whether a node is child of another node.
Key Retrieves the node's key.
LastNode Gets the last child tree node.
Level Specifies the node's level.
Name Specifies the caption of the node.
NextNode Gets the next sibling tree node.
NextVisibleNode Gets the next visible tree node.

Nodes Gets the collection of Node objects assigned to the
current node.

Parent Retrieves the parent node.
Picture Assign a picture to a node.

Position Specifies the position of the node within the nodes
collection.

PrevNode Gets the previous sibling tree node.
PrevVisibleNode Gets the previous visible tree node.
Selected Specifies whether the node is selected.
ToolTip Specifies the node's tooltip.
ToolTipTitle Specifies the node's title for its tooltip.
UserData Associates an extra data to the node.
Value Specifies the value of the node.
Visible Specifies whether a node is visible or hidden.

property Node.BackColor as Color
Specifies the node's background color.

Type Description

Color A color expression that indicates the node's background
color.

Use the BackColor property to specify the node's background color. While the node's
BackColor property is not specified the control uses the BackColor property to paint the
node's background. Use the BackColorChild property to specify the background color for
child nodes. Use the ClearBackColor method to clear the node's background color. The
property has effect while its value is not -1. In other words, use the -1 to prevent apply the
color on the node's background/foreground. Use the BackColorValue property to specify the
background color of the node's value. Use the SelBackColor, SelForeColor,
SelBackColorChild and SelForeColorChild properties to customize the colors for selected
nodes. Use the <bgcolor> built-in HTML format to specify a background color for parts of
the node's value or name. Use the ForeColor property to specify the node's foreground
color. Use the BackColorValue property to specify the node's value background color.

The following sample changes the node's background color:

Dim s As String
s =
"gBHJJGHA5MIwAEIe4AAAFhwFBwOCERDYXC4bEAgEopFIwiwwjgwGQyHcRHcZHcjHcrHZEIhFixFjJFjhFlxFJpNKE5KBWKxbkZbnxbL5fMsWMsjMpoNBwjJwjhwlZwphwOJxPccPZ6PSFjKFlaFQaDSEcSEjSEuSE5SCMRiQSqVTcZTdFTdxTaeTyljKljilnylvSlU6nWEWWE+WGFWGNWC5XK7iy7jK7ny7q67xq7yC7YTCYsWYsuYufYrLZbQizQlbQnLQrjQ1DQajUbcjbc+bdFbdMbdXbdjbdxbd6beQbeobe1csRcsZcsjcsrctFctXctccuNcu1eEOeEWeEceEjeE5eFceFjeFueFxeF6eGFeGNeGffcOfcRfcWfaMn2jh9pGfaVn2lx9pyfafH2op9qYfargDCcKQrC0LwxDMNQ3DkOw9D8QRDEURxJEsTRPFEUxVFcWRYhgABCfICAChh/gAFkXoTHQgARGx/gSDgkFgUBgkGBAJhUEgcDAYwHg+Hw3CQXgAiiZAIBIJJJCgUJJAiZJIA8MZ2EQBI5GEYBhEKJBIFwJAEHCRxNhqGAxlcUJYgCQBmkmAo3kIRBoDKZAGgIGw1mgMJZmMBJMhsHhfCoLJ4mAEwAE4BYEiQXJ5mMBpMBMMZcDALIhmIQgAFOA4uhIEJwgEJIFFQBRPlELocBAz4HiEPhaHwIAAmCbRdjwBIdFqFIAGCSZQhkMJzCQUALBUBJAhSVB8AAZRYCSTgYECa4qBSeJ"

s = s +
"6jMbwHiGXQSHiAJSicDYYjYYROACUYyCaiIbBSOh4giQJCAUXY8ogGBhAMBxNBKKxECgAxFgmQBFhcRRClQRAml4XB4nGFxCDAZhkFicYIBCG4pDQRAgHAPAtACAoMC4EAYiGfJ5kOCY3nof4QAmE4YEYAhiCGfh8BAIAwgOZ5Il6aBaEYaZWiAAwqEIKAUB4KBgg6HBIlaAICAQXhukKIg6g4fIYCCMImmQaIjAmLI0DCAomCWDIoDALwVGYEAhj8G4WAgQYzjYFhYgKDRSDyeIBAWGwGCAL44gaKBogKC47FwaJjAkN5SECIoIgECRkC2AIIgYEAADWYoynicANDIYBYgIDYuiqYwviCBBIFgMAECSWg7kuAIRlYWAhASEAUESS4plUKozm6S4wEMFJzEwMgPAoIIjGcIJLmEA4JAoKATCGGYkCoaIijQGxLmkCAfmYIBhAKBgqDOIACgeCgDmAAUIQJBwiRAgA8cIEBPAPB+FgQg0QKBjGIMEAwUQiCMFgGQLwe08jdAICEXA8BhihDKMwIIlAmBAFAPccwPwACgCAEcDYkQqh4BSFQGYJB/hxCsEIDoxAMAfAay8XAkBNgDCiDEAgAwEBBDAMcDYARzBQGmIoHAIQwDfAKFQfg4BgiSAMDgCwIAIgiHYJUS4DwBD5EgMRQh8xihjDCLwCg0wyBaGMPYQYBQBh0ECMQJ4TwAjQGIBwNoPBgiGAyHAcAuBKADF0OIGogwFAfHIDcIYtwYjQHCMYCY"

s = s +
"YVECHAiFUTAmAgi+DyIUcAwwICKGaMAIYHQ3BkDiMQDYWRAABEMBcHQcAwBBAuDcBg8ASgFCSGgCwhQOhtF47MDAawaABGmIAPYMRQCuV0KQEAcg2AHDoKEYwsAxAwACAYZQVxyBoDaEECYdA4iBFMHkBIsACgcCMLIGIBxYhcDyMUeAPwVC4HwNABgrwVBkAAG0I4sBwiGAmFES4exJKqAgMAQABxeDiFoIMCQVQ+DxAKBAKQIxdiQAKLEPwkBhAMksJUVI3A1gJAaDAYYBwsifBUPgcAhALhuCgEAAAOyAg="

With XMLGrid1
 .BeginUpdate
 .LevelWidth(1) = 148
 .LevelWidth(2) = 128

 With .Nodes
 With .Add("BackColor (green)")
 .Picture = s
 .Image = 1
 .BackColor = vbGreen
 .ForeColor = vbRed
 .BackColorChild = RGB(0, 128, 0)
 .ForeColorChild = RGB(128, 0, 0)

 With .Nodes
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 1)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 2)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 3)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 End With

 .Expanded = True
 End With
 End With
 .EndUpdate
End With

property Node.BackColorChild as Color
Specifies the default background color for child nodes.

Type Description

Color A color expression that indicates the child node's
background color.

Use the BackColorChild property to specify the background color for child nodes. Use the
BackColor property to specify the node's background color. While the node's
BackColorChild property is not specified the control uses the BackColor property to paint
the node's background. Use the ClearBackColorChild method to clear the child node's
background color. The property has effect while its value is not -1. In other words, use the
-1 to prevent apply the color on the node's background/foreground. Use the BackColorValue
property to specify the background color of the node's value. Use the SelBackColor,
SelForeColor, SelBackColorChild and SelForeColorChild properties to customize the colors
for selected nodes. Use the <bgcolor> built-in HTML format to specify a background color
for parts of the node's value or name. Use the ForeColorChild property to specify the child
node's foreground color.

The following sample changes the node's background color:

Dim s As String
s =
"gBHJJGHA5MIwAEIe4AAAFhwFBwOCERDYXC4bEAgEopFIwiwwjgwGQyHcRHcZHcjHcrHZEIhFixFjJFjhFlxFJpNKE5KBWKxbkZbnxbL5fMsWMsjMpoNBwjJwjhwlZwphwOJxPccPZ6PSFjKFlaFQaDSEcSEjSEuSE5SCMRiQSqVTcZTdFTdxTaeTyljKljilnylvSlU6nWEWWE+WGFWGNWC5XK7iy7jK7ny7q67xq7yC7YTCYsWYsuYufYrLZbQizQlbQnLQrjQ1DQajUbcjbc+bdFbdMbdXbdjbdxbd6beQbeobe1csRcsZcsjcsrctFctXctccuNcu1eEOeEWeEceEjeE5eFceFjeFueFxeF6eGFeGNeGffcOfcRfcWfaMn2jh9pGfaVn2lx9pyfafH2op9qYfargDCcKQrC0LwxDMNQ3DkOw9D8QRDEURxJEsTRPFEUxVFcWRYhgABCfICAChh/gAFkXoTHQgARGx/gSDgkFgUBgkGBAJhUEgcDAYwHg+Hw3CQXgAiiZAIBIJJJCgUJJAiZJIA8MZ2EQBI5GEYBhEKJBIFwJAEHCRxNhqGAxlcUJYgCQBmkmAo3kIRBoDKZAGgIGw1mgMJZmMBJMhsHhfCoLJ4mAEwAE4BYEiQXJ5mMBpMBMMZcDALIhmIQgAFOA4uhIEJwgEJIFFQBRPlELocBAz4HiEPhaHwIAAmCbRdjwBIdFqFIAGCSZQhkMJzCQUALBUBJAhSVB8AAZRYCSTgYECa4qBSeJ"

s = s +
"6jMbwHiGXQSHiAJSicDYYjYYROACUYyCaiIbBSOh4giQJCAUXY8ogGBhAMBxNBKKxECgAxFgmQBFhcRRClQRAml4XB4nGFxCDAZhkFicYIBCG4pDQRAgHAPAtACAoMC4EAYiGfJ5kOCY3nof4QAmE4YEYAhiCGfh8BAIAwgOZ5Il6aBaEYaZWiAAwqEIKAUB4KBgg6HBIlaAICAQXhukKIg6g4fIYCCMImmQaIjAmLI0DCAomCWDIoDALwVGYEAhj8G4WAgQYzjYFhYgKDRSDyeIBAWGwGCAL44gaKBogKC47FwaJjAkN5SECIoIgECRkC2AIIgYEAADWYoynicANDIYBYgIDYuiqYwviCBBIFgMAECSWg7kuAIRlYWAhASEAUESS4plUKozm6S4wEMFJzEwMgPAoIIjGcIJLmEA4JAoKATCGGYkCoaIijQGxLmkCAfmYIBhAKBgqDOIACgeCgDmAAUIQJBwiRAgA8cIEBPAPB+FgQg0QKBjGIMEAwUQiCMFgGQLwe08jdAICEXA8BhihDKMwIIlAmBAFAPccwPwACgCAEcDYkQqh4BSFQGYJB/hxCsEIDoxAMAfAay8XAkBNgDCiDEAgAwEBBDAMcDYARzBQGmIoHAIQwDfAKFQfg4BgiSAMDgCwIAIgiHYJUS4DwBD5EgMRQh8xihjDCLwCg0wyBaGMPYQYBQBh0ECMQJ4TwAjQGIBwNoPBgiGAyHAcAuBKADF0OIGogwFAfHIDcIYtwYjQHCMYCY"

s = s +
"YVECHAiFUTAmAgi+DyIUcAwwICKGaMAIYHQ3BkDiMQDYWRAABEMBcHQcAwBBAuDcBg8ASgFCSGgCwhQOhtF47MDAawaABGmIAPYMRQCuV0KQEAcg2AHDoKEYwsAxAwACAYZQVxyBoDaEECYdA4iBFMHkBIsACgcCMLIGIBxYhcDyMUeAPwVC4HwNABgrwVBkAAG0I4sBwiGAmFES4exJKqAgMAQABxeDiFoIMCQVQ+DxAKBAKQIxdiQAKLEPwkBhAMksJUVI3A1gJAaDAYYBwsifBUPgcAhALhuCgEAAAOyAg="

With XMLGrid1
 .BeginUpdate
 .LevelWidth(1) = 148
 .LevelWidth(2) = 128

 With .Nodes
 With .Add("BackColor (green)")
 .Picture = s
 .Image = 1
 .BackColor = vbGreen
 .ForeColor = vbRed
 .BackColorChild = RGB(0, 128, 0)
 .ForeColorChild = RGB(128, 0, 0)

 With .Nodes
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 1)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 2)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 3)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 End With

 .Expanded = True
 End With
 End With
 .EndUpdate
End With

property Node.BackColorValue as Color
Specifies the background color for the node's value.

Type Description

Color A color expression that indicates the background color for
the node's value.

Use the BackColorValue property to specify the node's value background color. The
property has effect while its value is not -1. In other words, use the -1 to prevent apply the
color on the node's background/foreground. Use the Value property to change the node's
value. Use the Name property to assign a new name to a node. Use the BackColor
property to specify the node's background color. Use the BackColorChild property to
specify the background color for child nodes. Use the ForeColorValue property to specify
the node's value foreground color. Use the ClearBackColorValue method to clear the node's
value background color.

property Node.BackgroundExt(State as BackgroundExtStateEnum) as
String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description
State as
BackgroundExtStateEnum

A BackgroundExtStateEnum expression that indicates
where the background extension is applied.

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is empty. Using the BackgroundExt property you
have unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the object's background. For instance, let's say you need to display more
colors on the object's background, or just want to display an additional caption or image
to a specified location on the object's background. The EBN String Format defines the
parts of the EBN to be applied on the object's background. The EBN is a set of UI elements
that are built as a tree where each element is anchored to its parent element. Use the
BackgroundExtValue property to change at runtime any UI property for any part that
composes the EBN String Format. The BackgroundExt property is applied right after setting
the object's backcolor, and before drawing the default object's captions, icons or pictures.

The following screen shot shows how you can extend the node as follows:

displays the picture to a different place
assign more HTML captions to the node
different type of borders/frames
and so on.

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

https://exontrol.com/exbutton.jsp

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BackgroundExt property such as "left[10%]

(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Node.BackgroundExtValue(State as BackgroundExtStateEnum,
Index as IndexExtEnum, Property as BackgroundExtPropertyEnum) as
Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

State as
BackgroundExtStateEnum

A BackgroundExtStateEnum expression indicates the state
of the node where the value is applied to node's
background extenstion.

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part
that composes the EBN String Format. The BackgroundExtValue property has no effect if
the BackgroundExt property is empty (by default). The idea is as follows: first you need
to decide the layout of the UI to put on the object's background, using the
BodyBackgroundExt property, and next (if required), you can change any property of any
part of the background extension to a new value. In other words, let's say you have the
same layout to be applied to some of your objects, so you specify the BodyBackgroundExt
to be the same for them, and next use the BackgroundExtValue property to change
particular properties (like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This

property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant
expression)

For instance, having the BodyBackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BodyBackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

method Node.ClearBackColor ()
Clears the node's background color.

Type Description

Use the ClearBackColor method to clear the node's background color. Use the BackColor
property to specify the node's background color. Use the ClearBackColorChild method to
clear the background color of the child nodes.

The following sample changes the node's background color while cursor hovers the control:

Dim nOld As EXMLGRIDLibCtl.Node
Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not nOld Is n Then
 If Not nOld Is Nothing Then
 nOld.ClearBackColor
 nOld.ClearForeColor
 End If
 If Not h = 0 Then
 n.BackColor = vbGreen
 n.ForeColor = vbBlue
 End If
 End If
 Set nOld = n
 End With
End Sub

method Node.ClearBackColorChild ()
Clears the default background color for child nodes.

Type Description

Use the ClearBackColorChild method to clear the background color of the child nodes. Use
the BackColorChild property to specify the child node's background color. Use the
ClearBackColor method to clear the node's background color.

The following sample changes the node's background color while cursor hovers the control:

Dim nOld As EXMLGRIDLibCtl.Node
Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not nOld Is n Then
 If Not nOld Is Nothing Then
 nOld.ClearBackColor
 nOld.ClearForeColor
 End If
 If Not h = 0 Then
 n.BackColor = vbGreen
 n.ForeColor = vbBlue
 End If
 End If
 Set nOld = n
 End With
End Sub

method Node.ClearBackColorValue ()
Clears the background of the node's value.

Type Description

Use the ClearBackColorValue method to clear the node's value background color. Use the
BackColorValue property to specify the node's value background color. Use the BackColor
property to specify the node's background color. Use the ForeColor property to specify the
node's foreground color. Use the ForeColorValue property to specify the node's value
foreground color.

The following sample changes the node's value background color while cursor hovers the
control:

Dim nOld As EXMLGRIDLibCtl.Node
Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not nOld Is n Then
 If Not nOld Is Nothing Then
 nOld.ClearBackColorValue
 nOld.ClearForeColorValue
 End If
 If Not h = 0 Then
 n.BackColorValue = vbGreen
 n.ForeColorValue = vbBlue
 End If
 End If
 Set nOld = n
 End With
End Sub

method Node.ClearForeColor ()
Clears the node's foreground color.

Type Description

Use the ClearForeColor method to clear the node's foreground color. Use the ForeColor
property to specify the node's foreground color. Use the ClearForeColorChild method to
clear the foreground color of the child nodes.

The following sample changes the node's background color while cursor hovers the control:

Dim nOld As EXMLGRIDLibCtl.Node
Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not nOld Is n Then
 If Not nOld Is Nothing Then
 nOld.ClearBackColor
 nOld.ClearForeColor
 End If
 If Not h = 0 Then
 n.BackColor = vbGreen
 n.ForeColor = vbBlue
 End If
 End If
 Set nOld = n
 End With
End Sub

method Node.ClearForeColorChild ()
Clears the default foreground color for the child nodes.

Type Description

Use the ClearForeColorChild method to clear the foreground color of the child nodes. Use
the ForeColorChild property to specify the child node's foreground color. Use the
ClearForeColor method to clear the node's foreground color.

The following sample changes the node's Foreground color while cursor hovers the control:

Dim nOld As EXMLGRIDLibCtl.Node
Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not nOld Is n Then
 If Not nOld Is Nothing Then
 nOld.ClearBackColor
 nOld.ClearForeColor
 End If
 If Not h = 0 Then
 n.BackColor = vbGreen
 n.ForeColor = vbBlue
 End If
 End If
 Set nOld = n
 End With
End Sub

method Node.ClearForeColorValue ()
Clears the foreground color for the node's value.

Type Description

Use the ClearForeColorValue method to clear the node's value foreground color. Use the
ForeColorValue property to specify the node's value foreground color. Use the BackColor
property to specify the node's background color. Use the ForeColor property to specify the
node's foreground color. Use the ForeColorValue property to specify the node's value
foreground color.

The following sample changes the node's value Foreground color while cursor hovers the
control:

Dim nOld As EXMLGRIDLibCtl.Node
Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not nOld Is n Then
 If Not nOld Is Nothing Then
 nOld.ClearForeColorValue
 nOld.ClearForeColorValue
 End If
 If Not h = 0 Then
 n.ForeColorValue = vbGreen
 n.ForeColorValue = vbBlue
 End If
 End If
 Set nOld = n
 End With
End Sub

method Node.CollapseAll ()
Collapses all the child nodes.

Type Description

Use the CollapseAll method to collapse all child nodes. Use the ExpandAll method to
expand all child nodes. Use the CollapseAll method to collapse all nodes in the control. Use
the ExpandAll method to expand all nodes in the control. Use the Expanded property to
expand or collapse a node.

property Node.Editor as Variant
Specifies a value that indicates the key of the node's editor.

Type Description

Variant

A EditTypeEnum, string, numeric expression that indicates
the key of the editor being assigned to a node. The control
automatically adds a new editor of EditTypeEnum type, if
no editor with specified key is found. Ability to specify the
node's editor without calling the Editors.Add before, by
specify the Node.Editor property to a EditTypeEnum
value. For instance, Nodes.Add("Date", Date).Editor =
EXMLGRIDLibCtl.EditTypeEnum.DateType, adds a node
with a DateType editor.

The Editor property indicates the key of the editor being assigned to the node. If the Editor
property indicates a key of an editor that doesn't exist in the Editors collection, it has no
effect. Use the Editors property to access the control's Editors collection. Use the AutoEdit
property to specify whether the control starts editing the focused node as soon as user
moves the focused node.

Use the Add method to add new type of editors to the control's editors collection. A node
displays only the node's name if the node contains child nodes, else it displays the node's
name and the node's value. Use the Value property to assign a value to a node. If a node
has an editor assigned, it changes the node's name if the node contains child nodes, else it
changes the node's value if the node has no child nodes. Use the Add method to add new
nodes to the control.

The control fires the Change event when the user changes the node's value if the node has
no child nodes, or the node's name if the node has child nodes.

If a node has an editor assigned the node's editor is applied to the:

Name property, if the node contains child node.
Value property, if the node contains no child node.

The following sample adds a node that has a check list editor associated:

With XMLGrid1
 .BeginUpdate
 With .Editors
 With .Add("Check")
 .EditType = CheckListType

 .AddItem 1, "1 One"
 .AddItem 2, "2 Two"
 .AddItem 4, "4 Four"
 End With
 End With
 With .Nodes
 With .Add("CheckList type", 3)
 .Editor = "Check"
 End With
 End With
 .EndUpdate
End With

property Node.Enabled as Boolean
Specifies whether the node is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether a node is
enabled or disabled.

Use the Enabled property to disable a node. Use the Enabled property to disable the
control. Use the Visible property to hide a node. A disabled node cann't be edited. Use the
Editor property to remove the node's editor.

method Node.ExpandAll ()
Expands all the child nodes.

Type Description

Use the ExpandAll method to expand all child nodes. Use the CollapseAll method to
collapse all child nodes. Use the CollapseAll method to collapse all nodes in the control. Use
the ExpandAll method to expand all nodes in the control. Use the Expanded property to
expand or collapse a node.

property Node.Expanded as Boolean
Specifies whether a node is expanded or collapsed.

Type Description

Boolean A boolean expression that indicates whether a node is
expanded or collapsed.

Use the Expanded property to expand or collapse a node. The control fires the
BeforeExpandNode event before expanding or collapsing a node. The control fires the
AfterExpandNode event to notify your application that a node is expanded or collapsed. Use
the ExpandAll method to expand all child nodes. Use the CollapseAll method to collapse all
child nodes. Use the ExpandAll method to expand all nodes in the control. Use the
CollapseAll method to collapse all nodes in the control. Use the HasChilds property to
specify whether the node displays the +/- sign to build your virtual tree. Use the
ExpandOnDblClk property to let users expand or collapse nodes when double clicking a
node. Use the ExpandOnKeys property to allow users expand or collapse the nodes using
the keyboard. Use the ExpandButtons property to assign a different appearance for
expanding/collapsing buttons. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus.

property Node.FirstNode as Node
Gets the first child tree node in the tree node collection.

Type Description
Node A Node object that indicates the first child node.

Use the FirstNode property to get the first child node. Use the NextNode property to get the
next sibling node. Use the PrevNode property to get the previous sibling node. Use the
Visible property to hide a node. Use the LastNode property to get the last child node. Use
the NextVisibleNode property to get the next visible node. Use the PrevVisibleNode property
to get the previous visible node. Use the FirstVisibleNode property to get the first visible
node in the control's client area.

The following sample displays recursively all child nodes:

Private Sub scanRec(ByVal x As EXMLGRIDLibCtl.XMLGrid, ByVal n As
EXMLGRIDLibCtl.Node)
 Dim c As EXMLGRIDLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Name
 scanRec x, c
 Set c = c.NextNode
 Wend
End Sub

property Node.ForeColor as Color
Specifies the node's Foreground color.

Type Description

Color A color expression that indicates the node's foreground
color.

Use the ForeColor property to specify the node's foreground color. While the node's
ForeColor property is not specified the control uses the ForeColor property to paint the
node's foreground. Use the ForeColorChild property to specify the foreground color for
child nodes. Use the ClearForeColor method to clear the node's foreground color. Use the
ForeColorValue property to specify the Foreground color of the node's value. Use the
SelForeColor, SelForeColor, SelForeColorChild and SelForeColorChild properties to
customize the colors for selected nodes. Use the <fgcolor> built-in HTML format to specify
a foreground color for parts of the node's value or name. Use the BackColor property to
specify the node's background color.

The following sample changes the node's Foreground color:

Dim s As String
s =
"gBHJJGHA5MIwAEIe4AAAFhwFBwOCERDYXC4bEAgEopFIwiwwjgwGQyHcRHcZHcjHcrHZEIhFixFjJFjhFlxFJpNKE5KBWKxbkZbnxbL5fMsWMsjMpoNBwjJwjhwlZwphwOJxPccPZ6PSFjKFlaFQaDSEcSEjSEuSE5SCMRiQSqVTcZTdFTdxTaeTyljKljilnylvSlU6nWEWWE+WGFWGNWC5XK7iy7jK7ny7q67xq7yC7YTCYsWYsuYufYrLZbQizQlbQnLQrjQ1DQajUbcjbc+bdFbdMbdXbdjbdxbd6beQbeobe1csRcsZcsjcsrctFctXctccuNcu1eEOeEWeEceEjeE5eFceFjeFueFxeF6eGFeGNeGffcOfcRfcWfaMn2jh9pGfaVn2lx9pyfafH2op9qYfargDCcKQrC0LwxDMNQ3DkOw9D8QRDEURxJEsTRPFEUxVFcWRYhgABCfICAChh/gAFkXoTHQgARGx/gSDgkFgUBgkGBAJhUEgcDAYwHg+Hw3CQXgAiiZAIBIJJJCgUJJAiZJIA8MZ2EQBI5GEYBhEKJBIFwJAEHCRxNhqGAxlcUJYgCQBmkmAo3kIRBoDKZAGgIGw1mgMJZmMBJMhsHhfCoLJ4mAEwAE4BYEiQXJ5mMBpMBMMZcDALIhmIQgAFOA4uhIEJwgEJIFFQBRPlELocBAz4HiEPhaHwIAAmCbRdjwBIdFqFIAGCSZQhkMJzCQUALBUBJAhSVB8AAZRYCSTgYECa4qBSeJ"

s = s +
"6jMbwHiGXQSHiAJSicDYYjYYROACUYyCaiIbBSOh4giQJCAUXY8ogGBhAMBxNBKKxECgAxFgmQBFhcRRClQRAml4XB4nGFxCDAZhkFicYIBCG4pDQRAgHAPAtACAoMC4EAYiGfJ5kOCY3nof4QAmE4YEYAhiCGfh8BAIAwgOZ5Il6aBaEYaZWiAAwqEIKAUB4KBgg6HBIlaAICAQXhukKIg6g4fIYCCMImmQaIjAmLI0DCAomCWDIoDALwVGYEAhj8G4WAgQYzjYFhYgKDRSDyeIBAWGwGCAL44gaKBogKC47FwaJjAkN5SECIoIgECRkC2AIIgYEAADWYoynicANDIYBYgIDYuiqYwviCBBIFgMAECSWg7kuAIRlYWAhASEAUESS4plUKozm6S4wEMFJzEwMgPAoIIjGcIJLmEA4JAoKATCGGYkCoaIijQGxLmkCAfmYIBhAKBgqDOIACgeCgDmAAUIQJBwiRAgA8cIEBPAPB+FgQg0QKBjGIMEAwUQiCMFgGQLwe08jdAICEXA8BhihDKMwIIlAmBAFAPccwPwACgCAEcDYkQqh4BSFQGYJB/hxCsEIDoxAMAfAay8XAkBNgDCiDEAgAwEBBDAMcDYARzBQGmIoHAIQwDfAKFQfg4BgiSAMDgCwIAIgiHYJUS4DwBD5EgMRQh8xihjDCLwCg0wyBaGMPYQYBQBh0ECMQJ4TwAjQGIBwNoPBgiGAyHAcAuBKADF0OIGogwFAfHIDcIYtwYjQHCMYCY"

s = s +
"YVECHAiFUTAmAgi+DyIUcAwwICKGaMAIYHQ3BkDiMQDYWRAABEMBcHQcAwBBAuDcBg8ASgFCSGgCwhQOhtF47MDAawaABGmIAPYMRQCuV0KQEAcg2AHDoKEYwsAxAwACAYZQVxyBoDaEECYdA4iBFMHkBIsACgcCMLIGIBxYhcDyMUeAPwVC4HwNABgrwVBkAAG0I4sBwiGAmFES4exJKqAgMAQABxeDiFoIMCQVQ+DxAKBAKQIxdiQAKLEPwkBhAMksJUVI3A1gJAaDAYYBwsifBUPgcAhALhuCgEAAAOyAg="

With XMLGrid1
 .BeginUpdate
 .LevelWidth(1) = 148
 .LevelWidth(2) = 128
 With .Nodes

 With .Add("BackColor (green)")
 .Picture = s
 .Image = 1
 .BackColor = vbGreen
 .ForeColor = vbRed
 .BackColorChild = RGB(0, 128, 0)
 .ForeColorChild = RGB(128, 0, 0)

 With .Nodes
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 1)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 2)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 3)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 End With

 .Expanded = True
 End With
 End With
 .EndUpdate
End With

property Node.ForeColorChild as Color
Specifies the default foreground color for child nodes.

Type Description

Color A color expression that indicates the child node's
foreground color.

Use the ForeColorChild property to specify the foreground color for child nodes. Use the
ForeColor property to specify the node's foreground color. While the node's ForeColorChild
property is not specified the control uses the ForeColor property to paint the node's
Foreground. Use the ClearForeColorChild method to clear the child node's foreground
color. Use the ForeColorValue property to specify the foreground color of the node's value.
Use the SelForeColor, SelForeColor, SelForeColorChild and SelForeColorChild properties
to customize the colors for selected nodes. Use the <fgcolor> built-in HTML format to
specify a foreground color for parts of the node's value or name. Use the BackColorChild
property to specify the child node's background color.

The following sample changes the node's background color:

Dim s As String
s =
"gBHJJGHA5MIwAEIe4AAAFhwFBwOCERDYXC4bEAgEopFIwiwwjgwGQyHcRHcZHcjHcrHZEIhFixFjJFjhFlxFJpNKE5KBWKxbkZbnxbL5fMsWMsjMpoNBwjJwjhwlZwphwOJxPccPZ6PSFjKFlaFQaDSEcSEjSEuSE5SCMRiQSqVTcZTdFTdxTaeTyljKljilnylvSlU6nWEWWE+WGFWGNWC5XK7iy7jK7ny7q67xq7yC7YTCYsWYsuYufYrLZbQizQlbQnLQrjQ1DQajUbcjbc+bdFbdMbdXbdjbdxbd6beQbeobe1csRcsZcsjcsrctFctXctccuNcu1eEOeEWeEceEjeE5eFceFjeFueFxeF6eGFeGNeGffcOfcRfcWfaMn2jh9pGfaVn2lx9pyfafH2op9qYfargDCcKQrC0LwxDMNQ3DkOw9D8QRDEURxJEsTRPFEUxVFcWRYhgABCfICAChh/gAFkXoTHQgARGx/gSDgkFgUBgkGBAJhUEgcDAYwHg+Hw3CQXgAiiZAIBIJJJCgUJJAiZJIA8MZ2EQBI5GEYBhEKJBIFwJAEHCRxNhqGAxlcUJYgCQBmkmAo3kIRBoDKZAGgIGw1mgMJZmMBJMhsHhfCoLJ4mAEwAE4BYEiQXJ5mMBpMBMMZcDALIhmIQgAFOA4uhIEJwgEJIFFQBRPlELocBAz4HiEPhaHwIAAmCbRdjwBIdFqFIAGCSZQhkMJzCQUALBUBJAhSVB8AAZRYCSTgYECa4qBSeJ"

s = s +
"6jMbwHiGXQSHiAJSicDYYjYYROACUYyCaiIbBSOh4giQJCAUXY8ogGBhAMBxNBKKxECgAxFgmQBFhcRRClQRAml4XB4nGFxCDAZhkFicYIBCG4pDQRAgHAPAtACAoMC4EAYiGfJ5kOCY3nof4QAmE4YEYAhiCGfh8BAIAwgOZ5Il6aBaEYaZWiAAwqEIKAUB4KBgg6HBIlaAICAQXhukKIg6g4fIYCCMImmQaIjAmLI0DCAomCWDIoDALwVGYEAhj8G4WAgQYzjYFhYgKDRSDyeIBAWGwGCAL44gaKBogKC47FwaJjAkN5SECIoIgECRkC2AIIgYEAADWYoynicANDIYBYgIDYuiqYwviCBBIFgMAECSWg7kuAIRlYWAhASEAUESS4plUKozm6S4wEMFJzEwMgPAoIIjGcIJLmEA4JAoKATCGGYkCoaIijQGxLmkCAfmYIBhAKBgqDOIACgeCgDmAAUIQJBwiRAgA8cIEBPAPB+FgQg0QKBjGIMEAwUQiCMFgGQLwe08jdAICEXA8BhihDKMwIIlAmBAFAPccwPwACgCAEcDYkQqh4BSFQGYJB/hxCsEIDoxAMAfAay8XAkBNgDCiDEAgAwEBBDAMcDYARzBQGmIoHAIQwDfAKFQfg4BgiSAMDgCwIAIgiHYJUS4DwBD5EgMRQh8xihjDCLwCg0wyBaGMPYQYBQBh0ECMQJ4TwAjQGIBwNoPBgiGAyHAcAuBKADF0OIGogwFAfHIDcIYtwYjQHCMYCY"

s = s +
"YVECHAiFUTAmAgi+DyIUcAwwICKGaMAIYHQ3BkDiMQDYWRAABEMBcHQcAwBBAuDcBg8ASgFCSGgCwhQOhtF47MDAawaABGmIAPYMRQCuV0KQEAcg2AHDoKEYwsAxAwACAYZQVxyBoDaEECYdA4iBFMHkBIsACgcCMLIGIBxYhcDyMUeAPwVC4HwNABgrwVBkAAG0I4sBwiGAmFES4exJKqAgMAQABxeDiFoIMCQVQ+DxAKBAKQIxdiQAKLEPwkBhAMksJUVI3A1gJAaDAYYBwsifBUPgcAhALhuCgEAAAOyAg="

With XMLGrid1
 .BeginUpdate
 .LevelWidth(1) = 148
 .LevelWidth(2) = 128
 With .Nodes

 With .Add("BackColor (green)")
 .Picture = s
 .Image = 1
 .BackColor = vbGreen
 .ForeColor = vbRed
 .BackColorChild = RGB(0, 128, 0)
 .ForeColorChild = RGB(128, 0, 0)

 With .Nodes
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 1)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 2)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 With .Add("BackColorChild (dark green)", "BackColorValue
(blue)", 3)
 .BackColorValue = vbBlue
 .ForeColorValue = vbWhite
 End With
 End With

 .Expanded = True
 End With
 End With
 .EndUpdate
End With

property Node.ForeColorValue as Color
Specifies the foreground color for the node's value.

Type Description

Color A color expression that indicates the foreground color for
the node's value.

Use the ForeColorValue property to specify the node's value foreground color. Use the
Name property to assign a new name to a node. Use the Value property to change the
node's value. Use the ForeColor property to specify the node's foreground color. Use the
ForeColorChild property to specify the foreground color for child nodes. Use the
BackColorValue property to specify the node's value background color. Use the
ClearForeColorValue method to clear the node's value foreground color.

property Node.HasChilds as Boolean
Specifies whether the node contains child nodes.

Type Description

Boolean
A boolean expression that indicates whether the node
displays +/- signs even if the node contains no child
nodes.

Use the HasChilds property to display expanding/collapsing buttons for a node to build your
virtual tree. The property has no effect if the node contains already visible child nodes. Use
the BeforeExpandNode event to notify your application that the user is about to expand or
collapse a node. Use the Expanded property to expand or collapse a node. You can use the
BeforeExpandNode event to cancel expanding specified nodes.

The following sample adds new child nodes to the node that's about to be expanded:

Private Sub XMLGrid1_BeforeExpandNode(ByVal Node As EXMLGRIDLibCtl.INode, Cancel
As Variant)
 If Not Node.Expanded Then
 With Node.Nodes
 With .Add("New Node")
 .HasChilds = True
 End With
 End With
 End If
End Sub

property Node.ID as Variant
Retrieves the node's unique identifier.

Type Description

Variant A String expression that determines the unique node
identifier.

By default, the ID property is generated by the control, to identify uniquely a node within the
Nodes collection. The ItemByID property gets the node giving its identifier. For instance, the
ID property looks as: "0.1.1". The RemoveByID method removes a node giving its unique
identifier.

property Node.Image as Long
Retrieves or sets a value that indicates the index of icon to display in the node.

Type Description

Long A long value that indicates the index of the icon in Images
collection. The Images collection is 1 based.

Use the Image property to assign an icon to a node. The node's icon is displayed on the left
side of the node. The node's picture is displayed on the child level area. Use the Picture
property to assign a picture to a node. Use the Images method to load icons to the control.

In case you are using the LoadXML method, the Image property of the Node indicates the
type of XML node being added. The type of valid XML nodes are:

NODE_ELEMENT (1) The node represents an element (its nodeTypeString property is
"element"). An Element node can have the following child node types: Element, Text,
Comment, ProcessingInstruction, CDATASection, and EntityReference. The Element
node can be the child of the Document, DocumentFragment, EntityReference, and
Element nodes.
NODE_ATTRIBUTE (2) The node represents an attribute of an element (its
nodeTypeString property is "attribute"). An Attribute node can have the following child
node types: Text and EntityReference. The Attribute node does not appear as the child
node of any other node type; it is not considered a child node of an Element.
NODE_TEXT (3) The node represents the text content of a tag (its nodeTypeString
property is "text"). A Text node cannot have any child nodes. The Text node can appear
as the child node of the Attribute, DocumentFragment, Element, and EntityReference
nodes.
NODE_CDATA_SECTION (4) The node represents a CDATA section in the XML
source (its nodeTypeString property is "cdatasection"). CDATA sections are used to
escape blocks of text that would otherwise be recognized as markup. A CDATASection
node cannot have any child nodes. The CDATASection node can appear as the child of
the DocumentFragment, EntityReference, and Element nodes.
NODE_ENTITY_REFERENCE (5) The node represents a reference to an entity in the
XML document (its nodeTypeString property is "entityreference"). This applies to all
entities, including character entity references. An EntityReference node can have the
following child node types: Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference. The EntityReference node can appear as the
child of the Attribute, DocumentFragment, Element, and EntityReference nodes.
NODE_ENTITY (6) The node represents an expanded entity (its nodeTypeString
property is "entity"). An Entity node can have child nodes that represent the expanded
entity (for example, Text and EntityReference nodes). The Entity node can appear as
the child of the DocumentType node.

NODE_PROCESSING_INSTRUCTION (7) The node represents a processing
instruction from the XML document (its nodeTypeString property is
"processinginstruction"). A ProcessingInstruction node cannot have any child nodes.
The ProcessingInstruction node can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.
NODE_COMMENT (8) The node represents a comment in the XML document (its
nodeTypeString property is "comment"). A Comment node cannot have any child
nodes. The Comment node can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.
NODE_DOCUMENT (9) The node represents a document object, that as the root of
the document tree, provides access to the entire XML document (its nodeTypeString
property is "document"). It is created using the progID "Microsoft.XMLDOM" or
through a data island using <XML> or <SCRIPT LANGUAGE=XML>. A Document
node can have the following child node types: Element (maximum of one),
ProcessingInstruction, Comment, and DocumentType. The Document node cannot
appear as the child of any node types.
NODE_DOCUMENT_TYPE (10) The node represents the document type declaration,
indicated by the <!DOCTYPE> tag (its nodeTypeString property is "documenttype"). A
DocumentType node can have the following child node types: Notation and Entity. The
DocumentType node can appear as the child of the Document node.
NODE_DOCUMENT_FRAGMENT (11) The node represents a document fragment (its
nodeTypeString property is "documentfragment"). The DocumentFragment node
associates a node or subtree with a document without actually being contained within
the document. A DocumentFragment node can have the following child node types:
Element, ProcessingInstruction, Comment, Text, CDATASection, and EntityReference.
The DocumentFragment node cannot appear as the child of any node types.
NODE_NOTATION (12) The node represents a notation in the document type
declaration (its nodeTypeString property is "notation"). A Notation node cannot have
any child nodes. The Notation node can appear as the child of the DocumentType
node.

Use the Images method to add images to the control, so each type of element in your XML
file, has a specific representation. The first icon in the Images collection indicates the
NODE_ELEMENT type, the second icon in the Images collection indicates the
NODE_ATTRIBUTE type, and so on.

property Node.Index as Long
Retrieves the index of the node within the collection.

Type Description

Long A long expression that indicates the index of the node in
the Nodes collection.

The Index property specify the node's index in the control's nodes collection. Use the Item
property to access a node by its index. Use the Key property to identify a node. Use the
Add method to insert new nodes to the control's nodes collection.

property Node.IsChildOf (Parent as Node) as Boolean
Specifies whether a node is child of another node.

Type Description
Parent as Node A Node object that specifies the node's parent.

Boolean A boolean expression that indicates whether the node is
child of the Parent node.

Use the IsChildOf property to check whether a node is child of another node. Use the
Parent property to get the node's parent.

property Node.Key as String
Retrieves the node's key.

Type Description
String A string expression that indicates the node's key.

Use the Key property to identify a node. Use the Item property to access a node by its key.
The Index property specify the node's index in the control's nodes collection. Use the Add
method to insert new nodes to the control's nodes collection.

property Node.LastNode as Node
Gets the last child tree node.

Type Description
Node A Node object that specifies the last child node.

Use the LastNode property to get the last child node. Use the FirstNode property to get the
first child node. Use the NextNode property to get the next sibling node. Use the PrevNode
property to get the previous sibling node. Use the Visible property to hide a node.

property Node.Level as Long
Specifies the node's level.

Type Description
Long A long expression that indicates the node's level.

The Level property indicates the node's level. A root node has the level 0. The child nodes
of the root node has the level 1, and so on. The level of the child nodes is equal with the
level of the parent node plus 1. Use the LevelWidth property to specify the level's width.
Use the VisibleLevelCount property to specify the number of levels being displayed.

property Node.Name as String
Specifies the caption of the node.

Type Description

String A string expression that indicates the node's name (
caption).

The Name property defines the node's caption. Use the Value property to assign a value to
a node. Use the Editor property to assign an editor to a node. The control fires the Change
event when the user changes the node's value if the node has no child nodes, or the node's
name if the node has child nodes. Use the UserData property to assign an extra data to a
node. Use the Add method to specify the node's name and value at adding time. If the node
has an editor assigned, and it contains child nodes, the Name property indicates the value
for the assigned editor. Use the BackColor property to specify the node's background color.
Use the BackColorChild property to specify the background color for child nodes.

The Name property supports built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The

about:blank

rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra

FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Node.NextNode as Node
Gets the next sibling tree node.

Type Description
Node A Node object that's the next sibling node.

Use the NextNode property to get the next sibling node. Use the FirstNode property to get
the first child node. Use the PrevNode property to get the previous sibling node. Use the
Visible property to hide a node. Use the NextVisibleNode property to get the next visible
node. Use the PrevVisibleNode property to get the previous visible node. If there is no next
tree node, the NextNode property returns a null reference (Nothing in Visual Basic).

The following sample displays recursively all child nodes:

Private Sub scanRec(ByVal x As EXMLGRIDLibCtl.XMLGrid, ByVal n As
EXMLGRIDLibCtl.Node)
 Dim c As EXMLGRIDLibCtl.Node
 Set c = n.FirstNode
 While Not c Is Nothing
 Debug.Print c.Name
 scanRec x, c
 Set c = c.NextNode
 Wend
End Sub

property Node.NextVisibleNode as Node
Gets the next visible tree node.

Type Description
Node A Node object that indicates the next visible node.

Use the NextVisibleNode property to get the next visible node. Use the FirstVisibleNode
property to get the first visible node in the control's client area. Use the PrevVisibleNode
property to get the previous visible node. Use the Visible property to hide a node. The
NextVisibleNode can be a child, sibling, or a tree node from another branch. If there is no
next tree node, the NextVisibleNode property returns a null reference (Nothing in Visual
Basic).

The following sample displays the visible nodes in the control:

Private Sub vis(ByVal x As EXMLGRIDLibCtl.XMLGrid)
 Dim c As EXMLGRIDLibCtl.Node
 Set c = x.FirstVisibleNode
 While Not c Is Nothing
 Debug.Print c.Name
 Set c = c.NextVisibleNode
 Wend
End Sub

property Node.Nodes as Nodes
Gets the collection of Node objects assigned to the current node.

Type Description
Nodes A Nodes object that specifies the collection of child nodes.

Use the Nodes method to access the node's child nodes collection. Use the Add method to
insert child nodes. Use the Editor property to assign an editor to a node. Use the Editors
property to access the control's collection of editors. Use the Nodes property to access
the control's nodes collection.

The following sample adds few nodes to the control's nodes collection.

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate

 With .Nodes
 With .Add("Root").Nodes
 .Add "Child 1", "text1"
 .Add "Child 2", "text2"
 End With
 End With
 .EndUpdate
 End With
End Sub

property Node.Parent as Node
Retrieves the parent node.

Type Description
Node A Node object that specifies the node's parent.

Use the Parent property to get the node's parent. Use the IsChildOf property to check
whether a node is child of another node. Use the Nodes property to access the child node's
collection. Use the Add method to add child nodes to a node. Use the Remove method to
remove a node.

property Node.Picture as Variant
Assign a picture to a node.

Type Description

Variant

A Picture object that indicates the node's picture (A
Picture object implements IPicture interface),
A String expression that specifies the path to picture's
file to be displayed
A String expression that indicates the base64
encoded string that holds a picture object. Use the
eximages tool to save your picture as base64
encoded format.
A String expression that specifies the key of
HTMLPicture to be displayed.

Use the Picture property to assign a picture to a node. The node's icon is displayed on the
left side of the node. The node's picture is displayed on the child level area, so the node
should be expanded. The Expanded property specifies whether the node is expanded or
collapsed. Use the Image property to assign an icon to a node. Use the Images method to
load icons to the control. Use the Picture property to put a picture on the control's
background. You can use the BackgroundExt property for unlimited options to show any
HTML text, images, colors, EBNs, patterns, frames anywhere on the node's background

https://exontrol.com/eximages.jsp

property Node.Position as Long
Specifies the position of the node within the nodes collection.

Type Description

Long A long expression that indicates the position of the node in
the nodes collection.

Use the Position property to specify the node's position inside the nodes collection. Use the
Visible property to hide a node. Use the Remove method to remove a node. Use the
NodeHeight property to specify the height of the nodes. Use the FirstNode property to get
the first node in the child nodes collection. Use the NextNode property to get the next sibling
tree node. Use the NodeByPosition property to get a node giving its position. Use the
FirstVisibleNode property to get the first visible node in the control's client area.

The following sample displays the list of visible nodes as they are displayed:

With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, i As Long
 i = 0
 Set n = .NodeByPosition(i)
 While Not n Is Nothing
 Debug.Print n.Name
 i = i + 1
 Set n = .NodeByPosition(i)
 Wend
End With

property Node.PrevNode as Node
Gets the previous sibling tree node.

Type Description
Node A Node object that indicates the previous sibling node.

Use the PrevNode property to get the previous sibling node. Use the NextNode property to
get the next sibling node. Use the FirstNode property to get the first child node. Use the
Visible property to hide a node. Use the NextVisibleNode property to get the next visible
node. Use the PrevVisibleNode property to get the previous visible node. If there is no
previous tree node, the PrevNode property returns a null reference (Nothing in Visual
Basic).

property Node.PrevVisibleNode as Node
Gets the previous visible tree node.

Type Description
Node A Node object that indicates the previous visible node.

Use the PrevVisibleNode property to get the previous visible node. Use the NextVisibleNode
property to get the next visible node. Use the Visible property to hide a node. Use the
FirstVisibleNode property to get the first visible node in the control's client area. If there is
no previous tree node, the PrevVisibleNode property returns a null reference (Nothing in
Visual Basic).

property Node.Selected as Boolean
Specifies whether the node is selected.

Type Description

Boolean A boolean expression that indicates whether the node is
selected.

Use the Selected property to select a node. Use the SelectCount property to get the
number of selected nodes. Use the SelectedNode property to get the selected node by its
index. The ClearSel method clears the collection of selected nodes. Use the SelForeColor,
SelForeColorChild, SelBackColor, SelBackColorChild properties to customize the colors for
selected nodes. Use the FocusNode property to retrieve the focused node. Use the
SingleSel property to specify whether the control support single or multiple selection. The
control fires the SelectionChanged event when user changes the selection.

The following VB sample selects the node over the cursor as soon as the user moves the
cursor over the control:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not n Is Nothing Then
 n.Selected = True
 End If
 End With
End Sub

The following C++ sample selects the node over the cursor as soon as the user moves the
cursor over the control:

#include "Node.h"
void OnMouseMoveXmlgrid1(short Button, short Shift, long X, long Y)
{
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 node.SetSelected(TRUE);
}

The following VB.NET sample selects the node over the cursor as soon as the user moves
the cursor over the control:

Private Sub AxXMLGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles
AxXMLGrid1.MouseMoveEvent
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not n Is Nothing Then
 n.Selected = True
 End If
 End With
End Sub

The following C# sample selects the node over the cursor as soon as the user moves the
cursor over the control:

private void axXMLGrid1_MouseMoveEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 node.Selected = true;
}

The following VFP sample selects the node over the cursor as soon as the user moves the
cursor over the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.XMLGrid1
 n = .NodeFromPoint(x, y)
 if (!isnull(n))
 n.Selected = .t.
 endif
endwith

property Node.ToolTip as String
Specifies the node's tooltip.

Type Description
String A String expression that indicates the node's tooltip.

Use the ToolTip property to assign a tooltip to a node. The node's tooltip shows up when
the cursor hovers the node. Use the ToolTipDelay property to specify the time in ms that
passes before the ToolTip appears. The ToolTipPopDelay property specifies the period in
ms of time the ToolTip remains visible if the mouse pointer is stationary within a control. Use
the ToolTipFont property to assign a font for the control's tooltip. The ShowToolTip method
shows programmatically the control's tooltip. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color.

The ToolTip property supports built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on

about:blank

the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Node.ToolTipTitle as String
Specifies the node's title for its tooltip.

Type Description

String A String expression that defines the title for the node's
tooltip.

By default, the ToolTipTitle property is empty string. The ToolTipTitle defines the title for the
node's tooltip. Use the ToolTip property to assign a tooltip to a node. The node's tooltip
shows up when the cursor hovers the node. Use the ToolTipDelay property to specify the
time in ms that passes before the ToolTip appears. The ToolTipPopDelay property specifies
the period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. Use the ToolTipFont property to assign a font for the control's tooltip. The
ShowToolTip method shows programmatically the control's tooltip.

property Node.UserData as Variant
Associates an extra data to the node.

Type Description
Variant A Variant expression that specifies the node's extra data.

Use the UserData property to associate an extra data to a node. Use the RemoveNode
event to release any extra data associated to a node.

property Node.Value as Variant
Specifies the value of the node.

Type Description
Variant A Value expression that indicates the node's value.

The node's Value property is displayed only if the node contains no child nodes. Use the
Name property to assign a caption to the node. Use the Editor property to assign an editor
to a node. The control fires the Change event when the user changes the node's value if the
node has no child nodes, or the node's name if the node has child nodes. Use the Add
method to specify the node's name and value at adding time. Use the UserData property to
assign an extra data to a node. Use the BackColorValue property to specify the node's
value background color. Use the ForeColorValue property to specify the node's value
foreground color

If the node has no child nodes, and it has an editor assigned, the editor display the node's
value based on the editor and the node's value. For instance, if you have a drop down list
editor, the control displays the associated item to the node's value in the editor's list of
items. If the node has no editor assigned the Value property indicates the text being
displayed in the node's value area. The text supports built-in HTML format like described
bellow.

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of

about:blank

the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a

value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Node.Visible as Boolean
Specifies whether a node is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether a node is
visible or hidden.

Use the Visible property to hide a node. Use the Remove method to remove a node. Use
the NodeHeight property to specify the height of the nodes. Use the Position property to
specify the node's position inside the nodes collection. Use the FirstVisibleNode property to
get the first visible node in the control's client area. Use the NextVisibleNode property to get
the next visible node. Use the PrevVisibleNode property to get the previous visible node.

The following sample displays the list of visible nodes as they are displayed:

With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, i As Long
 i = 0
 Set n = .NodeByPosition(i)
 While Not n Is Nothing
 Debug.Print n.Name
 i = i + 1
 Set n = .NodeByPosition(i)
 Wend
End With

Nodes object
The Nodes object holds a collection of Node objects. The Nodes object holds the control's
nodes collection. Use the Nodes property to access the Nodes collection. Use the Editors
property to access to the control's editors collection. The Nodes collection supports the
following properties and methods:

Name Description

Add Adds a child node and returns a reference to the newly
created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific node of the Nodes collection.
ItemByID Returns a node giving its unique identifier.
ItemByPosition Retrieves a node giving its position.
Parent Retrieves the node's parent.
Remove Removes a specific member from the Nodes collection.
RemoveByID Removes a member giving its unique identifier.

method Nodes.Add (Name as String, [Value as Variant], [Key as Variant])
Adds a child node and returns a reference to the newly created object.

Type Description

Name as String A string expression that indicates the name of the node
being inserted.

Value as Variant A Variant expression that indicates the value of the node
being inserted.

Key as Variant A string or long expression that indicates the key of the
node being inserted.

Return Description
Node A Node object being created.

Use the Add method to add new nodes to the control. Use the LoadXML method to load
XML documents. Use the Nodes property to access the node's child nodes collection. Use
the Editors property to access the control's Editors collection. The control fires the
AddNode event when a new node is inserted to the control's nodes collection. The Name
and Value parameters support built-in HTML format. Use the Parent property to get the
node's parent. The AllowDuplicateEntries property returns or sets a value that specifies
whether the control supports nodes with the same key (duplicates).

The following sample adds few nodes to the control's nodes collection.

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate

 With .Nodes
 With .Add("Root").Nodes
 .Add "Child 1", "text1"
 .Add "Child 2", "text2"
 End With
 End With
 .EndUpdate
 End With
End Sub

method Nodes.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to clear the nodes collection.

property Nodes.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that retrieves the number of elements in
the collection.

The Count property gets the number of nodes in the collection. Use the Item property to
access a Node object.

The following sample shows how to enumerate the nodes in the collection:

Dim n As EXMLGRIDLibCtl.Node
For Each n In XMLGrid1.Nodes
 Debug.Print n.Key
Next

or

Dim i As Long
With XMLGrid1.Nodes
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Key
 Next
End With

The following sample enumerates all visible nodes in the control:

With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, i As Long
 i = 0
 Set n = .NodeByPosition(i)
 While Not n Is Nothing
 Debug.Print n.Name
 i = i + 1
 Set n = .NodeByPosition(i)
 Wend
End With

property Nodes.Item (Index as Variant) as Node
Returns a specific node of the Nodes collection.

Type Description

Index as Variant
A string expression that indicates the key of the node
being searched, or a long expression that indicates the
index of node being accessed.

Node A Node object being accessed.

Use the Item property to access a Node object giving its index or its key. The Count
property gets the number of nodes in the collection. Use the ItemByPosition property to
enumerate the root nodes as they are displayed. The Name property indicates the name of
the node, where the Value property specifies the node's value. The FirstNode property
specifies the first child node. Use the NextNode property to specify the next child node.

The following sample shows how to enumerate the nodes in the collection:

Dim n As EXMLGRIDLibCtl.Node
For Each n In XMLGrid1.Nodes
 Debug.Print n.Key
Next

or

Dim i As Long
With XMLGrid1.Nodes
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Key
 Next
End With

The following sample enumerates all visible nodes in the control:

With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, i As Long
 i = 0
 Set n = .NodeByPosition(i)
 While Not n Is Nothing
 Debug.Print n.Name
 i = i + 1

 Set n = .NodeByPosition(i)
 Wend
End With

property Nodes.ItemByID (ID as Variant) as Node
Returns a node giving its unique identifier.

Type Description

ID as Variant
A String expression that specifies the unique identifier of
the node, previously returned by the ID property of the
Node.

Node A Node object being returned.

The ItemByID property returns a node giving its unique identifier. The ID property is
generated by the control, to identify uniquely a node within the Nodes collection. The
RemoveByID method removes a node giving its unique identifier.

property Nodes.ItemByPosition (Position as Long) as Node
Retrieves a node giving its position.

Type Description

Position as Long
A Long expression that indicates the position of the node
being requested. The Position expression is 0 based,
where 0 indicates the first visible node.

Node A Node object that indicates the node at position

Use the ItemByPosition property to retrieve a node by its position. The Count property
counts the number of nodes in the collection. The Name property indicates the name of the
node, where the Value property specifies the node's value. The FirstNode property
specifies the first child node. Use the NextNode property to specify the next child node. Use
the ItemByPosition property to enumerate the root nodes as they are displayed. Use the
Item property to retrieve a node giving its key or its index.

The following VB sample enumerates all nodes in the control as they are displayed (
including child nodes too):

Private Sub enumerate(ByVal x As EXMLGRIDLibCtl.XMLGrid)
 With x.Nodes
 Dim i As Long
 For i = 0 To .Count - 1
 enumNodes .ItemByPosition(i)
 Next
 End With
End Sub

Private Sub enumNodes(ByVal n As EXMLGRIDLibCtl.Node)
 Dim c As EXMLGRIDLibCtl.Node
 Debug.Print n.Name
 Set c = n.FirstNode
 While Not c Is Nothing
 enumNodes c
 Set c = c.NextNode
 Wend
End Sub

property Nodes.Parent as Node
Retrieves the node's parent.

Type Description

Node A Node object that indicates the owner node of the Nodes
collection.

Use the Parent property to get the owner node of the Nodes collection. If the Parent
property points to nothing, the Nodes collection belongs to the control, and can be
accessed using the Nodes property.

method Nodes.Remove (Index as Variant)
Removes a specific member from the Nodes collection.

Type Description

Index as Variant
A long expression that indicates the index of the node
being removed, or a string expression that indicates the
key of the node being removed.

Use the Remove method to remove a node from the control's nodes collection. The
RemoveNode event is fired each time a node is removed. Use the Clear method to clear the
control's nodes collection, or the child nodes collection. Use the Visible property to hide a
node.

method Nodes.RemoveByID (Index as Variant)
Removes a member giving its unique identifier.

Type Description

Index as Variant
A String expression that specifies the unique identifier of
the node, previously returned by the ID property of the
Node.

The RemoveByID method removes a node giving its unique identifier. The ID property is
generated by the control, to identify uniquely a node within the Nodes collection. The
ItemByID property gets the node giving its identifier.

OleEvent object
The OleEvent object holds information about an event fired by an ActiveX contro. The
UserEditorOleEvent event uses the same type of the object to hold information about an
OLE event.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long
Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub XMLGrid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXMLGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Node As
EXMLGRIDLibCtl.INode)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the identifier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602.

property OleEvent.Name as String
Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the ID property to specify a specified even by its identifier. Use the ToString property to
display information about fired event such us name, parameters, types and values. Use the
CountParam property to count the parameters of an OLE event. Use the Param property
to get the event's parameter. Use the Value property to specify the value of the parameter.
The Name property indicates the name of the OLE event being fired.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub XMLGrid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXMLGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Node As
EXMLGRIDLibCtl.INode)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEvent.Param (Item as Variant) as OleEventParam
Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

Item as Variant A long expression that indicates the argument's index or a
a string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub XMLGrid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXMLGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Node As
EXMLGRIDLibCtl.INode)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object
The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves the value of the event's parameter.

property OleEventParam.Name as String
Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub XMLGrid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXMLGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Node As
EXMLGRIDLibCtl.INode)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

property OleEventParam.Value as Variant
Retrieves the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

The following sample shows how to enumerate the arguments of an OLE event:

Private Sub XMLGrid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXMLGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Node As
EXMLGRIDLibCtl.INode)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

XMLGrid object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {AC7F976E-48C3-4B0B-B952-45D92DFE7F3E}. The object's program identifier is: "Exontrol.XMLGrid".
The /COM object module is: "EXMLGrid.dll"

Exontrols new eXMLGrid control provides an innovative grid view look and handles data in
XML fashion way. It provides swift and robust performance and a wide range of formatting
features never seen on other grids. The eXMLGrid component can be seen as a
generalized tree control that allows resizing the node's indentation at runtime. Use the
Nodes property to access the control's nodes collection. Use the Editors property to access
the control's editors collection. The eXMLGrid component lets the user changes its visual
appearance using skins, each one providing an additional visual experience that enhances
viewing pleasure. Skins are relatively easy to build and put on any part of the control. The
component supports the following properties and methods:

Name Description
AlignChildContent Indicates whether the control aligns the child content.

AllowDuplicateEntries Returns or sets a value that specifies whether the control
supports nodes with the same key (duplicates).

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoEdit Specifies whether the node may be edited when it has the
focus.

AutoSearch Enables or disables the incremental searching feature.
BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when nodes are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

ClearSel Clears the collection of the selected nodes.
CollapseAll Collapses all the nodes.

Edit Edits the focused node.

Editing Specifies the window's handle of the built-in editor while
the control is running in edit mode.

Editors Retrieves the control's Editors collection.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EnsureVisibleNode Ensures that the node is visible, expanding tree nodes and
scrolling the tree view control as necessary.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
ExpandAll Expands all the nodes.

ExpandBarVisible Specifies whether the control's expand bar is visible or
hidden.

ExpandButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
nodes as an alternative to double-clicking the parent item.

ExpandButtonsCustom Specifies the index of icons for +/- signs when the
ExpandButtons property is exCustom.

ExpandOnDblClk Specifies whether the node is expanded or collapsed if the
user dbl clicks the node.

ExpandOnKeys
Specifies a value that indicates whether the control
expands or collapses a node when user presses arrow
keys.

ExpandOnSearch Expands nodes automatically while user types characters
to search for a specific node.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FirstVisibleNode Gets the first visible tree node in the tree view control.
FocusNode Specifies the focus node.
Font Retrieves or sets the control's font.

ForeColor Specifies the control's foreground color.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

GridLines Specifies whether the control renders grid lines.
GridLinesColor Specifies a value that indicates the grid line color.

HideSelection Specifies whether the selection is hidden when control
loses the focus.

HitTest Determines which portion of a node is at specified point.
HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

Layout Saves or loads the control's layout, such selected nodes,
scroll position, and so on.

LevelWidth Returns or sets a value that indicates the width of the
level.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MoveCursorOnCollapse Moves the cursor when a node is collapsed using the
mouse.

NodeByPosition Retrieves a node giving its position.
NodeFromPoint Retrieves the node's from point.
NodeHeight Sets or gets a value that indicates the node's height.
Nodes Retrieves the Nodes collection.

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

ReadOnly Specifies whether the control is read only.
Refresh Refreshes the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ResizeToFit Resizes the control's level (and the next ones) so its
content its fully visible.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

Scroll Scrolls the control's content.
ScrollBars Specifies the type of scroll bars that control has.
ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.
ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollPos Specifies the vertical/horizontal scroll position.
ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.
Search Searches for a node.
SelBackColor Specifies the selection's background color.

SelBackColorChild Specifies the selection's background color on the value
section.

SelBackColorCollapse Specifies the selection's background color, when the node
is collapsed.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectAll Selects all nodes. The property is available only if the
SingleSel property is False.

SelectCount Specifies the number of selected node.
SelectedNode Retrieves the selected node.
SelForeColor Specifies the selection foreground's color.

SelForeColorChild Specifies the selection's background color on the value
section.

ShowFocusRect Retrieves or sets a value indicating whether the control
draws a thin rectangle around the focused item.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowPartialParent Specifies where a partial-visible parent shows its content.
ShowToolTip Shows the specified tooltip at given position.

SingleSel Specifies whether the control supports single or multiple
selection.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UnselectAll Unselects all nodes. The property is available only if the
SingleSel property is False.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.

VisibleLevelCount Returns a value that indicates the number of visible levels
in the tree control.

VisibleNodeCount Specifies the number of visible nodes.
VisualAppearance Retrieves the control's appearance.

VisualDesign Invokes the control's VisualAppearance designer.

property XMLGrid.AlignChildContent as Boolean
Indicates whether the control aligns the child content.

Type Description

Boolean A Boolean expression that indicates whether the control
aligns the child content.

By default, the AlignChildContent property is False, which indicates the child content is not
aligned (icons, text, expanding buttons, get aligned).

The following screen shot shows the control's content (AlignChildContent property is False,
by default)

The following screen shot shows the control's content (AlignChildContent property is True)

property XMLGrid.AllowDuplicateEntries as Boolean
Returns or sets a value that specifies whether the control supports nodes with the same
key (duplicates).

Type Description

Boolean A Boolean expression that specifies whether the control
allows adding nodes with the same key.

By default, the AllowDuplicateEntries property is False, which indicates that nodes with the
same key can not be added. Use the AllowDuplicateEntries property on True, to allow
adding new nodes with the same key. You can change the AllowDuplicateEntries property
only, if the control's Nodes collection is empty. The Add method of Nodes collection adds a
new node to the Nodes collection.

property XMLGrid.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxXMLGrid1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles
AxXMLGrid1.MouseMoveEvent
 With AxXMLGrid1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With

End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axXMLGrid1_MouseMoveEvent(object sender,
AxEXXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{
 axXMLGrid1.ShowToolTip(axXMLGrid1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveXMLGrid1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_xmlGrid.ShowToolTip(m_xmlGrid.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .XMLGrid1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property XMLGrid.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
control's border style.

Use the Appearance property to define the control's border style. Use the Appearance
property to hide the control borders.

method XMLGrid.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub XMLGrid1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property XMLGrid.AutoEdit as Boolean
Specifies whether the node may be edited when it has the focus.

Type Description

Boolean A boolean expression that indicates whether the control
starts editing the focused node.

By default, the AutoEdit property is True. The AutoEdit property has no effect if the focused
node has no editor assigned. Use the Editor property to assign an editor to a node. Use the
Add method to add new type of editors to the control. Use the Edit method to
programmatically edit the focused node, when AutoEdit property is False. Use the Editing
property to specify whether the control is running in edit mode.

The following sample starts editing a node as soon as user presses the F2 key:

Private Sub XMLGrid1_KeyDown(KeyCode As Integer, Shift As Integer)
 With XMLGrid1
 If .Editing = 0 Then
 If KeyCode = vbKeyF2 Then
 .Edit
 End If
 End If
 End With
End Sub

property XMLGrid.AutoSearch as AutoSearchEnum
Enables or disables the incremental searching feature.

Type Description

AutoSearchEnum
An AutoSearchEnum expression that indicates the kind of
searching that control performs when user types
characters.

By default, the AutoSearch property is exStartWith. Use the AutoSearch property to define
a 'contains' incremental search. If the AutoSearch property is exContains, the control
searches for nodes that contain the typed characters. Use the ExpandOnSearch property
to expand nodes automatically while user types characters to search for a specific node.
The Search property searches programmatically for for a node.

property XMLGrid.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to specify the control's background color. Use the ForeColor
property to specify the control's foreground color. Use the SelBackColor, SelForeColor,
SelBackColorChild and SelForeColorChild properties to customize the colors for selected
nodes. Use the BackColor property to specify the node's background color. Use the
BackColorChild property to specify the background color for child nodes.

property XMLGrid.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the expand buttons. The
sample uses the " " for up state, and " "

With XMLGrid1
 With .VisualAppearance
 .Add &H12, App.Path + "\expandu.ebn"
 .Add &H13, App.Path + "\expandd.ebn"
 End With
 .Background(exExpandButtonUp) = &H12000000
 .Background(exExpandButtonDown) = &H13000000
End With

The following C++ sample changes the visual appearance for the expand buttons:

#include "Appearance.h"
m_xmlgrid.GetVisualAppearance().Add(0x12,
COleVariant(_T("D:\\Temp\\EXMLGrid.Help\\expandu.ebn")));
m_xmlgrid.GetVisualAppearance().Add(0x13,
COleVariant(_T("D:\\Temp\\EXMLGrid.Help\\expandd.ebn")));
m_xmlgrid.SetBackground(0, 0x12000000);
m_xmlgrid.SetBackground(1, 0x13000000);

The following VB.NET sample changes the visual appearance for the expand buttons:

With AxXMLGrid1
 With .VisualAppearance
 .Add(&H12, "d:\temp\EXMLGrid.Help\expandu.ebn")
 .Add(&H13, "d:\temp\EXMLGrid.Help\expandd.ebn")
 End With
 .set_Background(EXMLGRIDLib.BackgroundPartEnum.exExpandButtonUp, &H12000000)
 .set_Background(EXMLGRIDLib.BackgroundPartEnum.exExpandButtonDown,
&H13000000)
End With

The following C# sample changes the visual appearance for the expand buttons:

axXMLGrid1.VisualAppearance.Add(0x12, "d:\\temp\\EXMLGrid.Help\\expandu.ebn");
axXMLGrid1.VisualAppearance.Add(0x13, "d:\\temp\\EXMLGrid.Help\\expandd.ebn");
axXMLGrid1.set_Background(EXMLGRIDLib.BackgroundPartEnum.exExpandButtonUp,
0x12000000);
axXMLGrid1.set_Background(EXMLGRIDLib.BackgroundPartEnum.exExpandButtonDown,
0x13000000);

The following VFP sample changes the visual appearance for the expand buttons:

With thisform.XMLGrid1
 With .VisualAppearance
 .Add(18, "D:\Temp\EXMLGrid.Help\expandu.ebn")
 .Add(19, "D:\Temp\EXMLGrid.Help\expandd.ebn")
 EndWith
 .Background(0) = 301989888

 .Background(1) = 318767104
EndWith

where the 301989888 value is the hexa representation for 0x12000000, and 318767104 is
0x13000000.

method XMLGrid.BeginUpdate ()
Maintains performance when items are added to the control one at a time. This method
prevents the control from painting until the EndUpdate method is called.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use BeginUpdate and EndUpdate statement each time when the control requires
more changes. Using the BeginUpdate and EndUpdate methods increase the speed of
changing the control properties by preventing it from painting during changing. Use the
Refresh method to refresh the control.

The sample adds several nodes to the control and prevents painting the control, while
adding new nodes :

With XMLGrid1
 .BeginUpdate
 With .Nodes
 Dim i As Long
 For i = 1 To 100
 .Add "Child " & i & ""
 Next
 End With
 .EndUpdate
End With

property XMLGrid.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that indicates the height of the control's
border, in pixels.

Use the BorderWidth, BorderHeight property to specify the control's border size. By default,
the BorderHeight property is 2 pixels.

property XMLGrid.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that indicates the height of the control's
border, in pixels.

Use the BorderWidth, BorderHeight property to specify the control's border size. By default,
the BorderWidth property is 2 pixels.

method XMLGrid.ClearSel ()
Clears the collection of the selected nodes.

Type Description

The ClearSel method clears the collection of selected nodes. Use the Selected property to
select nodes. Use the SelectCount property to get the number of selected nodes. Use the
SelectedNode property to get the selected node by its index. Use the SelForeColor,
SelForeColorChild, SelBackColor, SelBackColorChild properties to customize the colors for
selected nodes. The control fires the SelectionChanged event when user changes the
selection.

method XMLGrid.CollapseAll ()
Collapses all the nodes.

Type Description

Use the CollapseAll method to collapse all nodes in the control. Use the ExpandAll method
to expand all nodes in the control. Use the Expanded property to expand or collapse a
node. Use the ExpandAll method to expand all child nodes. Use the CollapseAll method to
collapse all child nodes.

method XMLGrid.Edit ([Options as Variant])
Edits the focused node.

Type Description
Options as Variant Reserved.

Use the Edit method to programmatically edit the focused node. Use the FocusNode
property to specify the control's focused node. Use the Selected property to changes the
selection. When user changes the selection the focused node is moved too. Use the
ShowFocusRect property to mark focused node with a thin rectangle. Use the AutoEdit
property to specify whether the control starts editing a cell as soon as the user moves the
focused node. Use the Editor property to assign an editor to a node. Use the Editing
property to check whether the control is running in the edit mode.

The edit events are fired in the following order:

1. Edit event. Prevents editing nodes, before showing the node's editor.

2. EditOpen event. The edit operation started, the node's editor is shown. The Editing
property gives the window's handle of the built-in editor being shown.

3. Change event. The Change event is fired only if the user types ENTER key, the user
selects a new value from a predefined data list, or focus a new node.

4. EditClose event. The node's editor is hidden and closed.

The following sample starts editing a node as soon as user presses the F2 key:

Private Sub XMLGrid1_KeyDown(KeyCode As Integer, Shift As Integer)
 With XMLGrid1
 If .Editing = 0 Then
 If KeyCode = vbKeyF2 Then
 .Edit
 End If
 End If
 End With
End Sub

property XMLGrid.Editing as Long
Specifies the window's handle of the built-in editor while the control is running in edit mode.

Type Description

Long
A long expression that indicates the window's handle for
the built-in editor that's focused while the control is running
in the edit mode.

Use the Editing property to check whether the control is in edit mode. Use the Editing
property to get the window's handle for the built-in editor while editing. Use the Edit method
to start editing the focused cell. Use the EditType property to define the type of the editor.
Use the ReadOnly property to make the control read only. Use the Editor property to assign
an editor to a node.

The edit events are fired in the following order:

1. Edit event. Prevents editing nodes, before showing the node's editor.

2. EditOpen event. The edit operation started, the node's editor is shown. The Editing
property gives the window's handle of the built-in editor being shown.

3. Change event. The Change event is fired only if the user types ENTER key, the user
selects a new value from a predefined data list, or focus a new node.

4. EditClose event. The node's editor is hidden and closed.

property XMLGrid.Editors as Editors
Retrieves the control's Editors collection.

Type Description

Editors An Editors object that holds the collection of Editor
objects.

Use the Editors property to access the control's editors collection. The control supports
several type of editors like described in the EditTypeEnum enumeration. Use the Add
method to add new type of editors to the control. Use the Editor property to assign an
editor to a node. Use the EditType property to specify the type of editor being used. Use
the Editing property to check whether the control is running in edit mode.

The following sample adds a spin editor to a node:

With XMLGrid1
 .BeginUpdate
 With .Editors
 With .Add("Spin")
 .ButtonWidth = 18
 .EditType = SpinType
 .AddButton "A", 1
 .AddButton "B", 1, RightAlignment
 End With
 End With
 With .Nodes
 With .Add("Spin", 1)
 .Editor = "Spin"
 End With
 End With
 .EndUpdate
End With

property XMLGrid.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ReadOnly property to prevent
users changing the control's content. Use the Locked property to lock or unlock an editor.

method XMLGrid.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use BeginUpdate and EndUpdate statement each time when the control requires
more changes. Using the BeginUpdate and EndUpdate methods increase the speed of
changing the control properties by preventing it from painting during changing. Use the
Refresh method to refresh the control.

The sample adds several nodes to the control and prevents painting the control, while
adding new nodes :

With XMLGrid1
 .BeginUpdate
 With .Nodes
 Dim i As Long
 For i = 1 To 100
 .Add "Child " & i & ""
 Next
 End With
 .EndUpdate
End With

method XMLGrid.EnsureVisibleNode (Node as Variant)
Ensures that the node is visible, expanding tree nodes and scrolling the tree view control as
necessary.

Type Description
Node as Variant A Node object being made visible.

Call the EnsureVisibleNode method to ensure that a control's node is visible. Use the
NodeFromPoint property to get the node from point. If necessary, the method expands the
parent node or scrolls the xml grid view control so that the node is visible.

property XMLGrid.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method XMLGrid.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the count of nodes:

Debug.Print XMLGrid.ExecuteTemplate("Nodes.Count")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method XMLGrid.ExpandAll ()
Expands all the nodes.

Type Description

Use the ExpandAll method to expand all nodes in the control. Use the CollapseAll method to
collapse all nodes in the control. Use the Expanded property to expand or collapse a node.
Use the ExpandAll method to expand all child nodes. Use the CollapseAll method to
collapse all child nodes.

property XMLGrid.ExpandBarVisible as Boolean
Specifies whether the control's expand bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
expand bar is visible or hidden.

By default, the ExpandBarVisible property is False. Use the ExpandBarVisible property to
show the control's expand bar. The expand bar displays a button for each level found.
Clicking a button on the expand bar makes the control to expand or collapse the nodes on
the same level.

property XMLGrid.ExpandButtons as ExpandButtonEnum
Adds a button to the left side of each parent item. The user can click the button to expand
or collapse the child items as an alternative to double-clicking the parent item.

Type Description

ExpandButtonEnum An ExpandButtonEnum expression that indicates the type
of expanding/collapsing buttons being displayed.

Use the ExpandButtons property to change the appearance for +/- buttons. Use the +/-
buttons to expand or collapse nodes. Use the ExpandButtonsCustom property to assign
icons for +/- buttons.

property XMLGrid.ExpandButtonsCustom(Expanded as Boolean) as
Long
Specifies the index of icons for +/- signs when the ExpandButtons property is exCustom.

Type Description

Expanded as Boolean A boolean expression that indicates the expanding or
collapsing button being changed.

Long A long expression that indicates the index of icon being
displayed.

Use the ExpandButtonsCustom property to assign icons for +/- buttons. Use the +/- buttons
to expand or collapse nodes. Use the ExpandButtons property to change the appearance
for +/- buttons. The ExpandButtonsCustom property has effect only if the ExpandButtons
property is exCustom. Use the Images method to assign a list of icons to the control. Use
the MoveCursorOnCollapse property to move the cursor when user collapses a node.

The following sample assigns different icons for +/- buttons:

With XMLGrid1
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .ExpandButtons = exCustom
 .ExpandButtonsCustom(True) = 2
 .ExpandButtonsCustom(False) = 1
End With

property XMLGrid.ExpandOnDblClk as Boolean
Specifies whether the node is expanded or collapsed if the user dbl clicks the node.

Type Description

Boolean A boolean expression that indicates whether the node is
expanded or collapsed when a node is double clicked.

Use the ExpandOnDblClk property to specify whether the control expands or collapses a
node when user dbl clicks a node. Use the ExpandOnKeys property to allow users expand
or collapse the nodes using the keyboard. The ExpandOnSearch property specifies whether
the control expands nodes when incremental searching is on (AutoSearch property is
different than 0) and user types characters when the control has the focus.

Use the Expanded property to expand or collapse a node. Use the ExpandAll method to
expand all nodes in the control. Use the CollapseAll method to collapse all nodes in the
control. Use the ExpandAll method to expand all child nodes. Use the CollapseAll method to
collapse all child nodes.

property XMLGrid.ExpandOnKeys as Boolean
Specifies a value that indicates whether the control expands or collapses a node when user
presses arrow keys.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user presses arrow
keys.

Use the ExpandOnKeys property to specify whether the control expands or collapses a
node when user presses arrow keys. By default, the ExpandOnKeys property is True. Use
the ExpandOnDblClk property to specify whether the control expands or collapses a node
when user dbl clicks a node. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus.

property XMLGrid.ExpandOnSearch as Boolean
Expands nodes automatically while user types characters to search for a specific node.

Type Description

Boolean
A boolean expression that indicates whether the control
expands nodes automatically while user types characters
to search for a specific node.

Use the ExpandOnSearch property to expand nodes while user types characters to search
for nodes using incremental search feature. By default, the ExpandOnSearch property is
True. Use the AutoSearch property to enable or disable incremental searching feature. The
ExpandOnSearch property has no effect when the AutoSearch property is False.

property XMLGrid.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...

about:blank

</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property XMLGrid.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern.

property XMLGrid.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may
include wild characters as follows:

'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property XMLGrid.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that specifies whether
the control's filter-prompt is visible or hidden.

BY default, the FilterBarPromptVisible property is exFilterBarHidden. Use the
FilterBarPromptVisible property to show and use the control's filter-prompt. The filter
prompt feature allows you to filter the nodes as you type while the filter bar is visible on the
bottom part of the list area. Use the FilterBarPrompt property to specify the HTML caption
being displayed in the filter bar when the filter pattern is missing. The
FilterBarPromptPattern property specifies the pattern to filter the list. The
FilterBarPromptType property specifies how the filter is applied on node names and/or
values.

The following screen show shows the filter prompt (FilterBarPromptVisible property is
exFilterBarVisible):

The following screen show shows the list once the user types "Separator":

property XMLGrid.FirstVisibleNode as Node
Gets the first visible tree node in the tree view control.

Type Description

Node A Node object that's first visible node in the control's client
area.

Use the FirstVisibleNode property to get the first visible node in the control's client area.
Use the NodeByPosition property to access the node as they are displayed. Use the
NextVisibleNode property to retrieve the next visible node. Use the NodeFromPoint property
to get the node from cursor. Use the NextNode property to get the next sibling node. Use
the Visible property to hide a node. Use the Position property to change the node's position
inside the node's list of child nodes.

property XMLGrid.FocusNode as Node
Specifies the focus node.

Type Description
Node A Node object that indicates the focused node.

Use the FocusNode property to retrieve the focused node. Use the SelectCount property to
get the number of selected nodes. Use the SelectedNode property to retrieve the selected
node giving its index in the selected nodes collection. Use the Selected property to select a
node. Use the SelectionChanged event to notify your application when the focus is moved.
Use the ShowFocusRect property to mark with a thin rectangle the focused node.

property XMLGrid.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that defines the control's font

Use the Font property of an object to identify a specific Font object whose properties you
want to use. Use the BackColor property to change the control's background color. Use the
ForeColor property to specify the control's foreground color.

property XMLGrid.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to specify the control's foreground color. Use the BackColor
property to specify the control's background color. Use the SelBackColor, SelForeColor,
SelBackColorChild and SelForeColorChild properties to customize the colors for selected
nodes. Use the BackColor property to specify the node's background color. Use the
BackColorChild property to specify the background color for child nodes.

property XMLGrid.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

property XMLGrid.GridLines as GridLinesEnum
Specifies whether the control renders grid lines.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
control draws the grid lines.

The GridLines property indicates whether the control draws the grid lines. By default, the
GridLines property is exDotLines. Use the GridLinesColor property to specify the color of
the control's grid lines.

property XMLGrid.GridLinesColor as Color
Specifies a value that indicates the grid line color.

Type Description

Color A color expression that indicates the color for control's grid
lines.

Use the GridLinesColor property to specify the color of the control's grid lines. The
GridLines property indicates whether the control draws the grid lines. By default, the
GridLinesColor property is &H8000000F&.

property XMLGrid.HideSelection as HideSelectionEnum
Specifies whether the selection is hidden when control loses the focus.

Type Description

HideSelectionEnum A HideSelectionEnum expression that indicates whether
the selection is hidden when control loses the focus.

Use the HideSelection property to specify whether the control marks the selected nodes
even if the control loses the focus. Use the SingleSel property to allow multiple selection.
Use the SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild properties to
customize the colors for selected nodes. Use the SelectCount property to get the number of
selected nodes. Use the SelectedNode property to retrieve the selected node giving its
index in the selected nodes collection. Use the Selected property to select a node.

property XMLGrid.HitTest (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, Node as Node) as HitTestEnum
Determines which portion of a node is at specified point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Node as Node A Node object where the cursor is.

HitTestEnum A HitTestEnum expression that indicates the location of the
cursor relative to the control's client area.

Call the HitTest method to determine the location of the specified point relative to the client
area of a xml grid view control. Use the NodeFromPoint property to get the node from the
cursor. Use the Name property to specify the name of the node.

The following VB sample displays the hit test code while user moves the mouse:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not h = 0 Then
 If (Not n Is Nothing) Then
 Debug.Print "Node = " & n.Name & " H = " & Hex(h)
 Else
 Debug.Print "H = " & Hex(h)
 End If
 End If
 End With
End Sub

The following C++ sample displays the hit test code while user moves the mouse:

#include "Node.h"

void OnMouseMoveXmlgrid1(short Button, short Shift, long X, long Y)
{
 CNode node; node.m_bAutoRelease = FALSE;
 long nHitTest = m_xmlgrid.GetHitTest(X, Y, &node.m_lpDispatch);
 if (node.m_lpDispatch != NULL)
 {
 CString strFormat;
 strFormat.Format("HitTest = 0x%04X, '%s' ", nHitTest, node.GetName());
 OutputDebugString(strFormat);
 }
}

The following VB.NET sample displays the hit test code while user moves the mouse:

Private Sub AxXMLGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles
AxXMLGrid1.MouseMoveEvent
 With AxXMLGrid1
 Dim node As EXMLGRIDLib.Node = Nothing
 Dim hitTest As EXMLGRIDLib.HitTestEnum = .get_HitTest(e.x, e.y, node)
 If Not node Is Nothing Then
 Dim strMessage As String = "HitTest = " & hitTest.ToString() & " '" & node.Name &
"'"
 Debug.Write(strMessage)
 End If
 End With
End Sub

The following C# sample displays the hit test code while user moves the mouse:

private void axXMLGrid1_MouseMoveEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{
 EXMLGRIDLib.Node node = null;
 EXMLGRIDLib.HitTestEnum hitTest = axXMLGrid1.get_HitTest(e.x, e.y, out node);
 if (node != null)
 {
 String strMessage = "HitTest " + hitTest.ToString() + " '" + node.Name + "'";

 System.Diagnostics.Debug.Write(strMessage);
 }
}

The following VFP sample displays the hit test code while user moves the mouse:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.XMLGrid1
 local n, hitTest
 n = .SelectedNode(0)
 hitTest = .HitTest(x, y, @n)
 if (!isnull(n))
 wait window nowait "H:" + Str(hitTest) + " " + n.Name
 endif
endwith

property XMLGrid.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property XMLGrid.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long value that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method XMLGrid.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The control provides an image list window, that's displayed at design time. The ImageSize
property defines the size (width/height) of the icons within the control's Images collection.
Use the ShowImageList property to hide the image list window, at design time. At design
time, the user can add new icons to the control's Images collection, by dragging icon files,
exe files, etc, to the images list window. At runtime, the user can use the Images and
ReplaceIcon method to change the Images collection. Use the Image property to assign an
icon to a node. In case you are using the LoadXML method, the Image property of the
Node indicates the type of XML node being added. Use the Picture property to assign a
picture to a node. In case you are using the LoadXML method, use the Images method to
add images to the control, so each type of element in your XML file, has a specific
representation. The first icon in the Images collection indicates the NODE_ELEMENT type,
the second icon in the Images collection indicates the NODE_ATTRIBUTE type, and so on.

The following sample shows how to replace the entire list of icons, using a Microsoft Image
List control (ImageList1):

XMLGrid1.Images ImageList1.hImageList

With XMLGrid1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwCAw0Tf9dYGLAGLYGEvsQxGNxmSqmOymPzGYyFvwyAyeSzGiysPpObxmozWlxOWztlyWkx+x02j2usoOcjWqzOh020xOvrOf32J23G3GyyfHmu6jPO3vM4nA4vCqPU5nK12gjOg7WmmnEjfQ7O/03E6fm4PWpXow/f5Gz8AA0HM7uTmmY8W7xnE6T3vU5bGPYpz1vW9zvNu+UDuq+7XJk3j9ue5MAwRBsCKpAyNQs5T7wc+afN46SNOpDsMK/C0OQU/CjxK88NxJAMTrPFLDwk68AxNGa4QsrjqR3IEgyFIciI0iwfJXJCPJAkSSAAkqUSgnEHyKmCKI2eZ/yyjZwH/LsuB+cAfvGB5gAe8YBmAAaNkAAM2zZN0pIzNc1o3Ok2AOQADy4A5wT2jR8AfQKNn8B9Co2f5P0TREHoCA=="

 With .Nodes

 With .Add("Root")
 .Image = 1
 End With
 End With
 .EndUpdate
End With

property XMLGrid.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property XMLGrid.Layout as String
Saves or loads the control's layout, such selected nodes, scroll position, and so on.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the width of the node's llevel). The Layout property does NOT save the control's
data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

widths of the visible levels
vertical/horizontal scroll position
filter options (if any)
expanded/collapsed nodes
selected nodes
focused node

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

https://www.youtube.com/watch?v=TbWWnDJlD9w

property XMLGrid.LevelWidth(Level as Long) as Long
Returns or sets a value that indicates the width of the level.

Type Description

Level as Long
A long expression that inidcates the level being resized.
The 0 Level indicates the first level. The 1 Level indicates
the second level and so on.

Long A long expression that indicates the width of the level, in
pixels.

Use the LevelWidth property to specify the level's width. The control fires the ResizeLevel
event when user resizes a level. Use the Level property to get the node's level. Use the
VisibleLevelCount property to specify the number of levels being displayed. You can use the
ResizeToFit method to resize the visible levels to fit the visible node content.

The following sample specify a minimum width for the first level:

Private Sub XMLGrid1_ResizeLevel(ByVal Level As Long)
 If Level = 0 Then
 With XMLGrid1
 If .LevelWidth(Level) < 64 Then
 .LevelWidth(Level) = 64
 End If
 End With
 End If
End Sub

method XMLGrid.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document.

The object can represent a

string that indicates the file name, a URL, or a XML
supplied string,
IStream,
SAFEARRAY,
IXMLDOMDocument,

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document
)parser to load XML documents. The control is emptied when the LoadXML method is
called. During loading, the control fires the AddNode event for each XML node added to the
control. For instance, this way, you can assign an editor for each node, when the AddNode
event occurs. Use the Editor property to assign a predefined editor to a node. Use the
SaveXML method to save the control's content to a specified location. The
AllowDuplicateEntries property returns or sets a value that specifies whether the control
supports nodes with the same key (duplicates).

The Name property indicates the name of the XML node being loaded. The Value property
indicates the value of the XML node being loaded. The Image property of the Node object
indicates the type of the XML node being loaded. The Image property holds the type of the
XML node, like listed bellow:

NODE_ELEMENT (1) The node represents an element (its nodeTypeString property is
"element"). An Element node can have the following child node types: Element, Text,
Comment, ProcessingInstruction, CDATASection, and EntityReference. The Element
node can be the child of the Document, DocumentFragment, EntityReference, and
Element nodes.
NODE_ATTRIBUTE (2) The node represents an attribute of an element (its
nodeTypeString property is "attribute"). An Attribute node can have the following child
node types: Text and EntityReference. The Attribute node does not appear as the child

node of any other node type; it is not considered a child node of an Element.
NODE_TEXT (3) The node represents the text content of a tag (its nodeTypeString
property is "text"). A Text node cannot have any child nodes. The Text node can appear
as the child node of the Attribute, DocumentFragment, Element, and EntityReference
nodes.
NODE_CDATA_SECTION (4) The node represents a CDATA section in the XML
source (its nodeTypeString property is "cdatasection"). CDATA sections are used to
escape blocks of text that would otherwise be recognized as markup. A CDATASection
node cannot have any child nodes. The CDATASection node can appear as the child of
the DocumentFragment, EntityReference, and Element nodes.
NODE_ENTITY_REFERENCE (5) The node represents a reference to an entity in the
XML document (its nodeTypeString property is "entityreference"). This applies to all
entities, including character entity references. An EntityReference node can have the
following child node types: Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference. The EntityReference node can appear as the
child of the Attribute, DocumentFragment, Element, and EntityReference nodes.
NODE_ENTITY (6) The node represents an expanded entity (its nodeTypeString
property is "entity"). An Entity node can have child nodes that represent the expanded
entity (for example, Text and EntityReference nodes). The Entity node can appear as
the child of the DocumentType node.
NODE_PROCESSING_INSTRUCTION (7) The node represents a processing
instruction from the XML document (its nodeTypeString property is
"processinginstruction"). A ProcessingInstruction node cannot have any child nodes.
The ProcessingInstruction node can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.
NODE_COMMENT (8) The node represents a comment in the XML document (its
nodeTypeString property is "comment"). A Comment node cannot have any child
nodes. The Comment node can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.
NODE_DOCUMENT (9) The node represents a document object, that as the root of
the document tree, provides access to the entire XML document (its nodeTypeString
property is "document"). It is created using the progID "Microsoft.XMLDOM" or
through a data island using <XML> or <SCRIPT LANGUAGE=XML>. A Document
node can have the following child node types: Element (maximum of one),
ProcessingInstruction, Comment, and DocumentType. The Document node cannot
appear as the child of any node types.
NODE_DOCUMENT_TYPE (10) The node represents the document type declaration,
indicated by the <!DOCTYPE> tag (its nodeTypeString property is "documenttype"). A
DocumentType node can have the following child node types: Notation and Entity. The
DocumentType node can appear as the child of the Document node.
NODE_DOCUMENT_FRAGMENT (11) The node represents a document fragment (its
nodeTypeString property is "documentfragment"). The DocumentFragment node
associates a node or subtree with a document without actually being contained within

the document. A DocumentFragment node can have the following child node types:
Element, ProcessingInstruction, Comment, Text, CDATASection, and EntityReference.
The DocumentFragment node cannot appear as the child of any node types.
NODE_NOTATION (12) The node represents a notation in the document type
declaration (its nodeTypeString property is "notation"). A Notation node cannot have
any child nodes. The Notation node can appear as the child of the DocumentType
node.

Use the Images method to add images to the control, so each type of element in your XML
document, has a graphic representation. So, the first icon in the Images collection indicates
the NODE_ELEMENT type, the second icon in the Images collection indicates the
NODE_ATTRIBUTE type, and so on.

property XMLGrid.MoveCursorOnCollapse as Boolean
Moves the cursor when a node is collapsed using the mouse.

Type Description

Boolean A boolean expression that indicates whether the control
moves the cursor when user collapses a node.

By default, the MoveCursorOnCollapse property is True.

property XMLGrid.NodeByPosition (Position as Long) as Node
Retrieves a node giving its position.

Type Description

Position as Long A long expression that indicates the position of the node
being requested.

Node A Node object that indicates the node at position.

Use the NodeByPosition property to get a node giving its position. Use the Position property
to change the node's position in the list of node's child nodes collection. Use the Visible
property to hide a node. Use the NodeFromPoint property to get the node from cursor. The
VisibleNodeCount property specifies the number of visible nodes.

The following sample displays the list of visible nodes as they are displayed:

With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, i As Long
 i = 0
 Set n = .NodeByPosition(i)
 While Not n Is Nothing
 Debug.Print n.Name
 i = i + 1
 Set n = .NodeByPosition(i)
 Wend
End With

property XMLGrid.NodeFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Node
Retrieves the node's from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Node A Node object where the point is.

Use the NodeFromPoint property to get the node from the cursor. Call the HitTest method
to determine the location of the specified point relative to the client area of a xml grid view
control.

The following VB sample prints the name of the node over the cursor:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not n Is Nothing Then
 Debug.Print "Hovers '" & n.Name & "'."
 End If
 End With
End Sub

The following VB sample displays the hit test code while user moves the mouse:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not h = 0 Then
 If (Not n Is Nothing) Then

 Debug.Print "Node = " & n.Name & " H = " & Hex(h)
 Else
 Debug.Print "H = " & Hex(h)
 End If
 End If
 End With
End Sub

The following C++ sample prints the name of the node from the cursor:

#include "Node.h"
void OnMouseMoveXmlgrid1(short Button, short Shift, long X, long Y)
{
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 {
 CString strName = node.GetName();
 OutputDebugString(strName);
 }
}

The following VB.NET sample prints the name of the node from the cursor:

Private Sub AxXMLGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles
AxXMLGrid1.MouseMoveEvent
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not n Is Nothing Then
 Debug.Print("You have clicked the '" & n.Name & "'.")
 End If
 End With
End Sub

The following C# sample prints the name of the node from the cursor:

private void axXMLGrid1_MouseMoveEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{

 EXMLGRIDLib.Node node = axXMLGrid1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 System.Diagnostics.Debug.Write(node.Name);
}

The following VFP sample prints the name of the node from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.XMLGrid1
 n = .NodeFromPoint(x, y)
 if (!isnull(n))
 wait window nowait n.Name
 endif
endwith

property XMLGrid.NodeHeight as Long
Sets or gets a value that indicates the node's height.

Type Description

Long A long expression that indicates the height of nodes in the
control, in pixels.

Use the NodeHeight property to indicate the height of the nodes in the control. By default,
the NodeHeight property is 21 pixels. Use the Visible property to hide a node. Use the
Remove method to remove a node.

property XMLGrid.Nodes as Nodes
Retrieves the Nodes collection.

Type Description
Nodes A Nodes object that holds the control's nodes collection.

Use the Nodes property to access the control's nodes collection. Use the Add method to
add new nodes to the control. Use the Editors property to access the control's editors
collection. Use the Editor property to assign an editor to a node. Use the Nodes property to
access the node's child nodes collection. Use the ItemByPosition property to retrieve a
node giving its position. Use the FirstNode property to retrieves the first child node, and the
NextNode property to retrieve the next child node.

The following VB sample enumerates the nodes in the control (including the child nodes):

Private Sub enumerate(ByVal x As EXMLGRIDLibCtl.XMLGrid)
 With x.Nodes
 Dim i As Long
 For i = 0 To .Count - 1
 enumNodes .ItemByPosition(i)
 Next
 End With
End Sub

Private Sub enumNodes(ByVal n As EXMLGRIDLibCtl.node)
 Dim c As EXMLGRIDLibCtl.node
 Debug.Print n.Name
 Set c = n.FirstNode
 While Not c Is Nothing
 enumNodes c
 Set c = c.NextNode
 Wend
End Sub

The enumerate function enumerates the root nodes in the control. The enumNodes
function enumerates recursively the child nodes for each node.

method XMLGrid.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

Only for internal use.

property XMLGrid.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode.

The eXMLGrid component supports manual or automatic OLE Drag and Drop operation.
See the OLEStartDrag and OLEDragDrop events for more details about implementing OLE
drag and drop operations in the eXMLGrid component.

property XMLGrid.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object that indicates the control's picture.

Use the Picture property to load a picture on the control's background. Use the
PictureDisplay property to arrange the picture on the control's background. Use the Picture
property to assign a picture to a node. Use the Images method to load a list of icons to the
control. Use the Image property to assign an icon to a node.

property XMLGrid.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the control's picture is displayed.

Use the PictureDisplay property to arrange how the control's picture is displayed on its
background. Use the Picture property to load a picture into the control's background. Use
the Picture property to assign a picture to a node. Use the Images method to load a list of
icons to the control. Use the Image property to assign an icon to a node.

property XMLGrid.ReadOnly as Boolean
Specifies whether the control is read only.

Type Description

Boolean A boolean expression that indicates whether the control is
read only.

Use the ReadOnly property to make the control read only. Use the Enabled property to
disable the control. Use the Locked property to lock an editor. If the control is read only, the
Edit event is never fired

method XMLGrid.Refresh ()
Refreshes the control.

Type Description

Use the Refresh method to refresh the control's content. Use the BeginUpdate and
EndUpdate methods to maintain performance while adding or changing multiple nodes.

method XMLGrid.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle

Index as Variant A long expression that indicates the index where icon is
inserted

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = XMLGrid1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), in this case the i
specifies the index where the icon was added

The following sample shows how to replace an icon into control's images list::

 i = XMLGrid1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 XMLGrid1.ReplaceIcon 0, i, in this case the i must be the index of the icon that follows to
be removed

The following sample shows how to clear the control's icons collection:

 XMLGrid1.ReplaceIcon 0, -1

method XMLGrid.ResizeToFit ([Level as Variant], [IncludeNextLevels as
Variant])
Resizes the control's level (and the next ones) so its content its fully visible.

Type Description

Level as Variant A Long expression that specifies the level to start resizing
to fit.

IncludeNextLevels as Variant

A Boolean expression that specifies whether next levels
are adjusted as well. If IncludeNextLevels parameter is
missing, no next levels are included in the ResizeToFit
method.

The ResizeToFit method resizes the control's level (and the next ones) so its content its
fully visible. The user can [SHIFT +]double click the resizing level, so it gets fit. Use the
LevelWidth property to specify the level's width. The control fires the ResizeLevel event
when user resizes a level. Use the Level property to get the node's level.

method XMLGrid.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, reference to a
string member, an XML document object, or a custom
object that supports persistence as follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

XMLGrid1.SaveXML("sample.xml")

Reference to a String member - Saves the control's
content to the string member. Note that the string
member must be empty, before calling the SaveXML
method. For example:

Dim s As String
XMLGrid1.SaveXML s

In VB.NET for /NET assembly, you should call such as
:

Dim s As String = String.Empty
Exmlgrid1.SaveXML(s)

In C# for /NET assembly, you should call such as :

string s = string.Empty;
exmlgrid1.SaveXML(ref s);

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
XMLGrid1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write

method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method saves control's content in XML format. Use the LoadXML method to
load XML documents. The Name property indicates the name of the XML node being
saved. The Value property indicates the value of the XML node being saved. The Image
property of the Node object indicates the type of the XML node being saved. The Image
property holds the type of the XML node, like listed bellow:

NODE_ELEMENT (1) The node represents an element (its nodeTypeString property is
"element"). An Element node can have the following child node types: Element, Text,
Comment, ProcessingInstruction, CDATASection, and EntityReference. The Element
node can be the child of the Document, DocumentFragment, EntityReference, and
Element nodes.
NODE_ATTRIBUTE (2) The node represents an attribute of an element (its
nodeTypeString property is "attribute"). An Attribute node can have the following child
node types: Text and EntityReference. The Attribute node does not appear as the child
node of any other node type; it is not considered a child node of an Element.
NODE_TEXT (3) The node represents the text content of a tag (its nodeTypeString
property is "text"). A Text node cannot have any child nodes. The Text node can appear
as the child node of the Attribute, DocumentFragment, Element, and EntityReference
nodes.
NODE_CDATA_SECTION (4) The node represents a CDATA section in the XML
source (its nodeTypeString property is "cdatasection"). CDATA sections are used to
escape blocks of text that would otherwise be recognized as markup. A CDATASection
node cannot have any child nodes. The CDATASection node can appear as the child of
the DocumentFragment, EntityReference, and Element nodes.
NODE_ENTITY_REFERENCE (5) The node represents a reference to an entity in the
XML document (its nodeTypeString property is "entityreference"). This applies to all
entities, including character entity references. An EntityReference node can have the
following child node types: Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference. The EntityReference node can appear as the
child of the Attribute, DocumentFragment, Element, and EntityReference nodes.
NODE_ENTITY (6) The node represents an expanded entity (its nodeTypeString
property is "entity"). An Entity node can have child nodes that represent the expanded
entity (for example, Text and EntityReference nodes). The Entity node can appear as

the child of the DocumentType node.
NODE_PROCESSING_INSTRUCTION (7) The node represents a processing
instruction from the XML document (its nodeTypeString property is
"processinginstruction"). A ProcessingInstruction node cannot have any child nodes.
The ProcessingInstruction node can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.
NODE_COMMENT (8) The node represents a comment in the XML document (its
nodeTypeString property is "comment"). A Comment node cannot have any child
nodes. The Comment node can appear as the child of the Document,
DocumentFragment, Element, and EntityReference nodes.
NODE_DOCUMENT (9) The node represents a document object, that as the root of
the document tree, provides access to the entire XML document (its nodeTypeString
property is "document"). It is created using the progID "Microsoft.XMLDOM" or
through a data island using <XML> or <SCRIPT LANGUAGE=XML>. A Document
node can have the following child node types: Element (maximum of one),
ProcessingInstruction, Comment, and DocumentType. The Document node cannot
appear as the child of any node types.
NODE_DOCUMENT_TYPE (10) The node represents the document type declaration,
indicated by the <!DOCTYPE> tag (its nodeTypeString property is "documenttype"). A
DocumentType node can have the following child node types: Notation and Entity. The
DocumentType node can appear as the child of the Document node.
NODE_DOCUMENT_FRAGMENT (11) The node represents a document fragment (its
nodeTypeString property is "documentfragment"). The DocumentFragment node
associates a node or subtree with a document without actually being contained within
the document. A DocumentFragment node can have the following child node types:
Element, ProcessingInstruction, Comment, Text, CDATASection, and EntityReference.
The DocumentFragment node cannot appear as the child of any node types.
NODE_NOTATION (12) The node represents a notation in the document type
declaration (its nodeTypeString property is "notation"). A Notation node cannot have
any child nodes. The Notation node can appear as the child of the DocumentType
node.

The Destination's type can be one of the following:

xmlDestination Description

String
Specifies the file name. Note that this must be a file name, rather than a
URL. The file is created if necessary and the contents are entirely
replaced with the contents of the saved document. For example:

XMLGrid11.SaveXML("sample.xml")

XML Document
Object

For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
XMLGrid11.SaveXML(xmldoc)

Custom object
supporting
persistence

Any other custom COM object that supports QueryInterface for IStream,
IPersistStream, or IPersistStreamInit can also be provided here and the
document will be saved accordingly. In the IStream case, the
IStream::Write method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be called with an
IStream that supports the Read, Seek, and Stat methods.

method XMLGrid.Scroll (Type as ScrollEnum, [ScrollTo as Variant])
Scrolls the control's content.

Type Description

Type as ScrollEnum A ScrollEnum expression that indicates type of scrolling
being performed.

ScrollTo as Variant

A long expression that indicates the position where the
control is scrolled when Type is exScrollVTo or
exScrollHTo. If the ScrollTo parameter is missing, 0 value
is used.

Use the Scroll method to scroll the control's content by code. Use the Scrollbars property
specifies which scroll bars will be visible on the control. Use the EnsureVisibleNode method
to ensure that a specified node fits the control's client area.

property XMLGrid.ScrollBars as ScrollBarsEnum
Specifies the type of scroll bars that control has.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that indicates which scroll
bars will be visible in the control.

Use the ScrollBars property to disable the control's scroll bars. The ScrollPos property
specifies the vertical/horizontal scroll position. Use the ScrollPartVisible property to add or
remove buttons/parts in the control's scrollbar.

property XMLGrid.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property XMLGrid.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property XMLGrid.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property XMLGrid.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property XMLGrid.ScrollOrderParts(ScrollBar as ScrollBarEnum) as
String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property XMLGrid.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the ScrollFont property to specify the font in the
control's scroll bar. Use the ScrollOrderParts property to customize the order of the buttons
in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With XMLGrid1
 .BeginUpdate

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxXMLGrid1
 .BeginUpdate()
 .set_ScrollPartVisible(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part Or
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axXMLGrid1.BeginUpdate();
axXMLGrid1.set_ScrollPartVisible(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part |
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, true);
axXMLGrid1.set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part , "1");
axXMLGrid1.set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, "2");
axXMLGrid1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_xmlGrid.BeginUpdate();
m_xmlGrid.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_xmlGrid.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_xmlGrid.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_xmlGrid.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.XMLGrid1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property XMLGrid.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

property XMLGrid.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

property XMLGrid.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the Background property to change the visual appearance for
any part in the control's scroll bar. Use the ScrollOrderParts property to customize the
order of the buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With XMLGrid1
 .BeginUpdate

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxXMLGrid1
 .BeginUpdate()
 .set_ScrollPartVisible(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part Or
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axXMLGrid1.BeginUpdate();
axXMLGrid1.set_ScrollPartVisible(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part |
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, true);
axXMLGrid1.set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part , "1");
axXMLGrid1.set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, "2");
axXMLGrid1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_xmlGrid.BeginUpdate();
m_xmlGrid.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_xmlGrid.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_xmlGrid.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_xmlGrid.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.XMLGrid1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property XMLGrid.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean A Boolean expression that specifies the Vertical (True) or
Horizontal (False) scroll bar of the control.

Long A Long expression that indicates the control's scroll bar
position.

The ScrollPos property specifies the vertical/horizontal scroll position. Use the ScrollPos
property to determine or change the control's scroll position. The Layout property can be
used to save and restore the control's layout which includes: scrolling position, selected
nodes, expanded nodes, and so on. The ScrollBars property shows or hides the control's
scroll bars. Use the ScrollPartVisible property to add or remove buttons/parts in the
control's scrollbar.

property XMLGrid.ScrollThumbSize(ScrollBar as ScrollBarEnum) as
Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property XMLGrid.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar.

property XMLGrid.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonWidth property to specify the
width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify the
height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the height
of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify the
visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a fixed
size for the scrollbar's thumb.

property XMLGrid.Search (What as String, [How as Variant]) as Node
Searches for a node.

Type Description
What as String A String being searched.

How as Variant

An AutoSearchEnum expression that defines the way the
control searches for the What string. If How parameter is
missing, the control's AutoSearch property indicates the
way the control searches for the What string.

Node A Node object being found or null if nothing is found.

The Search property searches programmatically for for a node. The AutoSearch property
defines how the control's 'incremental search' works. The Search method starts searching
for specific node from the current focused node. The FocusNode property specifies the
control's focused node. If no result is found, the Search property returns a null object.

property XMLGrid.SelBackColor as Color
Specifies the selection's background color.

Type Description

Color

A color expression that indicates the background color of
selected nodes. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild properties to
customize the colors for selected nodes. The SelBackColorCollapse property specifies the
selection's background color, when the node is collapsed. The property has effect while its
value is not -1. In other words, use the -1 to prevent apply the color on the node's
background/foreground. Use the SelectCount property to get the number of selected nodes.
Use the SelectedNode property to retrieve the selected node giving its index in the selected
nodes collection. Use the Selected property to select a node. The SelBackMode property
specifies the way the control displays the selected nodes.

How do I assign a new look for the selected item?

The following VB sample changes the visual appearance for the selected node. The
SelBackColor property indicates the selection background color. Shortly, we need to add a
skin to the Appearance object using the Add method, and we need to set the last 7 bits in
the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected node:

With XMLGrid1
 With .VisualAppearance
 .Add &H22, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .SelBackColor Or &H22000000
 .SelBackColorChild = .BackColor
 .SelForeColorChild = vbBlack

End With

The following C++ sample changes the visual appearance for the selected node:

#include "Appearance.h"
m_xmlgrid.GetVisualAppearance().Add(0x22,
COleVariant(_T("D:\\Temp\\EXMLGrid.Help\\selected.ebn")));
m_xmlgrid.SetSelBackColor(RGB(0,0,255) | 0x22000000);
m_xmlgrid.SetSelForeColor(0);
m_xmlgrid.SetSelBackColorChild(m_xmlgrid.GetBackColor());
m_xmlgrid.SetSelForeColorChild(0);

The following VB.NET sample changes the visual appearance for the selected node:

With AxXMLGrid1
 With .VisualAppearance
 .Add(&H22, "D:\Temp\EXMLGrid.Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587137024"
 .SelBackColorChild = .BackColor
 .SelForeColorChild = Color.Black
End With

where the 587137024 value is the hexa representation of 0x22FF0000

The following C# sample changes the visual appearance for the selected node:

axXMLGrid1.VisualAppearance.Add(0x22, "d:\\temp\\EXMLGrid.Help\\selected.ebn");
axXMLGrid1.Template = "SelBackColor = 587137024";
axXMLGrid1.SelForeColorChild = Color.Black;
axXMLGrid1.SelBackColorChild = axXMLGrid1.BackColor;

where the 587137024 value is the hexa representation of 0x22FF0000.

The following VFP sample changes the visual appearance for the selected node:

With thisform.XMLGrid1
 With .VisualAppearance
 .Add(34, "D:\Temp\EXMLGrid.Help\selected.ebn")

 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = RGB(0,0,255) + 570425344
 .SelBackColorChild = .BackColor
 .SelForeColorChild = RGB(0, 0, 0)
EndWith

How do I assign a new look for the selected item?

The component supports skinning parts of the control, including the selected item. Shortly,
the idea is that identifier of the skin being added to the Appearance collection is stored in
the first significant byte of property of the color type. In our case, we know that the
SelBackColor property changes the background color for the selected item. This is what we
need to change. In other words, we need to change the visual appearance for the selected
item, and that means changing the background color of the selected item. So, the following
code (blue code) changes the appearance for the selected item:

With XMLGrid1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34000000
End With

Please notice that the 34 hexa value is arbitrary chosen, it is not a predefined value. Shortly,
we have added a skin with the identifier 34, and we specified that the SelBackColor
property should use that skin, in order to change the visual appearance for the selected
item. Also, please notice that the 34 value is stored in the first significant byte, not in other
position. For instance, the following sample doesn't use any skin when displaying the
selected item:

With XMLGrid1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34
End With

This code (red code) DOESN'T use any skin, because the 34 value is not stored in the
higher byte of the color value. The sample just changes the background color for the
selected item to some black color (RGB(0,0,34)). So, please pay attention when you
want to use a skin and when to use a color. Simple, if you are calling &H34000000, you
have 34 followed by 6 (six) zeros, and that means the first significant byte of the color
expression. Now, back to the problem. The next step is how we are creating skins? or EBN
files? The Exontrol's exbutton component includes a builder tool that saves skins to EBN

https://exontrol.com/exbutton.jsp

files. So, if you want to create new skin files, you need to download and install the exbutton
component from our web site. Once that the exbutton component is installed, please follow
the steps.

Let's say that we have a BMP file, that we want to stretch on the selected item's
background.

1. Open the VB\Builder or VC\Builder sample
2. Click the New File button (on the left side in the toolbar), an empty skin is created.
3. Locate the Background tool window and select the Picture\Add New item in the

menu, the Open file dialog is opened.
4. Select the picture file (GIF, BMP, JPG, JPEG). You will notice that the visual

appearance of the focused object in the skin is changed, actually the picture you have
selected is tiled on the object's background.

5. Select the None item, in the Background tool window, so the focused object in the skin
is not displaying anymore the picture being added.

6. Select the Root item in the skin builder window (in the left side you can find the
hierarchy of the objects that composes the skin), so the Root item is selected, and so
focused.

7. Select the picture file you have added at the step 4, so the Root object is filled with the
picture you have chosen.

8. Resize the picture in the Background tool window, until you reach the view you want to
have, no black area, or change the CX and CY fields in the Background tool window,
so no black area is displayed.

9. Select Stretch button in the Background tool window, so the Root object stretches the
picture you have selected.

10. Click the Save a file button, and select a name for the new skin, click the Save button
after you typed the name of the skin file. Add the .ebn extension.

11. Close the builder

You can always open the skin with the builder and change it later, in case you want to
change it.

Now, create a new project, and insert the component where you want to use the skin, and
add the skin file to the Appearance collection of the object, using blue code, by changing
the name of the file or the path where you have selected the skin. Once that you have
added the skin file to the Appearance collection, you can change the visual appearance for
parts of the controls that supports skinning. Usually the properties that changes the
background color for a part of the control supports skinning as well.

property XMLGrid.SelBackColorChild as Color
Specifies the selection's background color on the value section.

Type Description

Color

A color expression that indicates the background color for
child nodes of the selected nodes. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

Use the SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild properties to
customize the colors for selected nodes. The SelBackColorCollapse property specifies the
selection's background color, when the node is collapsed. The property has effect while its
value is not -1. In other words, use the -1 to prevent apply the color on the node's
background/foreground. Use the SelectCount property to get the number of selected nodes.
Use the SelectedNode property to retrieve the selected node giving its index in the selected
nodes collection. Use the Selected property to select a node. The SelBackMode property
specifies the way the control displays the selected nodes.

The following VB sample changes the visual appearance for the selected node. The
SelBackColor property indicates the selection background color. Shortly, we need to add a
skin to the Appearance object using the Add method, and we need to set the last 7 bits in
the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected node:

With XMLGrid1
 With .VisualAppearance
 .Add &H22, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .SelBackColor Or &H22000000
 .SelBackColorChild = .BackColor
 .SelForeColorChild = vbBlack
End With

The following C++ sample changes the visual appearance for the selected node:

#include "Appearance.h"
m_xmlgrid.GetVisualAppearance().Add(0x22,
COleVariant(_T("D:\\Temp\\EXMLGrid.Help\\selected.ebn")));
m_xmlgrid.SetSelBackColor(RGB(0,0,255) | 0x22000000);
m_xmlgrid.SetSelForeColor(0);
m_xmlgrid.SetSelBackColorChild(m_xmlgrid.GetBackColor());
m_xmlgrid.SetSelForeColorChild(0);

The following VB.NET sample changes the visual appearance for the selected node:

With AxXMLGrid1
 With .VisualAppearance
 .Add(&H22, "D:\Temp\EXMLGrid.Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587137024"
 .SelBackColorChild = .BackColor
 .SelForeColorChild = Color.Black
End With

where the 587137024 value is the hexa representation of 0x22FF0000

The following C# sample changes the visual appearance for the selected node:

axXMLGrid1.VisualAppearance.Add(0x22, "d:\\temp\\EXMLGrid.Help\\selected.ebn");
axXMLGrid1.Template = "SelBackColor = 587137024";
axXMLGrid1.SelForeColorChild = Color.Black;
axXMLGrid1.SelBackColorChild = axXMLGrid1.BackColor;

where the 587137024 value is the hexa representation of 0x22FF0000.

The following VFP sample changes the visual appearance for the selected node:

With thisform.XMLGrid1
 With .VisualAppearance
 .Add(34, "D:\Temp\EXMLGrid.Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)

 .SelBackColor = RGB(0,0,255) + 570425344
 .SelBackColorChild = .BackColor
 .SelForeColorChild = RGB(0, 0, 0)
EndWith

property XMLGrid.SelBackColorCollapse as Color
Specifies the selection's background color, when the node is collapsed.

Type Description

Color

A color expression that indicates the background color for
child nodes of the selected nodes. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

By default, the SelBackColorCollapse property is -1, which indicates it has no effect. The
SelBackColorCollapse property specifies the selection's background color, when the node
is collapsed. Use the SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild
properties to customize the colors for selected nodes. The property has effect while its
value is not -1. In other words, use the -1 to prevent apply the color on the node's
background/foreground. Use the SelectCount property to get the number of selected nodes.
Use the SelectedNode property to retrieve the selected node giving its index in the selected
nodes collection. Use the Selected property to select a node. The SelBackMode property
specifies the way the control displays the selected nodes.

The following screen shot shows the "DateFormat" node when it expanded (SelBackColor,
SelBackColorChild property is applied, using an EBN object)

The following screen shot shows the "DateFormat" node when it collapsed
(SelBackColorCollapse is NOT -1, so it is applied, so the SelBackColor, SelBackColorChild
property is NOT applied)

The following screen shot shows the "DateFormat" node when it collapsed
(SelBackColorCollapse is -1, so it is NOT applied, so the SelBackColor, SelBackColorChild
property is applied)

property XMLGrid.SelBackMode as BackModeEnum
Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that specifies the way the
control displays the selected nodes.

By default, the SelBackMode property is exOpaque. Use the SelBackMode property to
display the selected nodes using a semi-transparent color. The SingleSel property specifies
whether the control supports single or multiple nodes. Use the SelForeColor,
SelForeColorChild, SelBackColor, SelBackColorChild properties to customize the colors for
selected nodes.

The following screen shot shows the control, while SelBackMode property is exOpaque:

The following screen shot shows the control, while SelBackMode property is
exTransparent:

method XMLGrid.SelectAll ()
Selects all nodes. The property is available only if the SingleSel property is False.

Type Description

property XMLGrid.SelectCount as Long
Specifies the number of selected node.

Type Description

Long A long expression that indicates the number of selected
nodes.

Use the SelectCount property to get the number of selected nodes. Use the SelectedNode
property to retrieve the selected node giving its index in the selected nodes collection. Use
the Selected property to select a node. Use the SelForeColor, SelForeColorChild,
SelBackColor, SelBackColorChild properties to customize the colors for selected nodes.
Use the FocusNode property to retrieve the focused node. Use the SingleSel property to
specify whether the control support single or multiple selection.

The following VB sample enumerates the selected node(s):

With XMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Print .SelectedNode(i).Name
 Next
End With

The following C++ sample enumerates the selected node(s):

for (long i = 0; i < m_xmlgrid.GetSelectCount(); i++)
{
 CNode node = m_xmlgrid.GetSelectedNode(COleVariant(i));
 OutputDebugString(node.GetName());
}

The following VB.NET sample enumerates the selected node(s):

With AxXMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Write(.get_SelectedNode(i).Name())
 Next
End With

The following C# sample enumerates the selected node(s):

for (int i = 0; i < axXMLGrid1.SelectCount; i++)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_SelectedNode(i);
 System.Diagnostics.Debug.Write(node.Name);
}

The following VFP sample enumerates the selected node(s):

With thisform.XMLGrid1
 local i
 For i = 0 To .SelectCount - 1
 wait window nowait .SelectedNode(i).Name
 Next
EndWith

property XMLGrid.SelectedNode ([Index as Variant]) as Node
Retrieves the selected node.

Type Description
Index as Variant A long expression that indicates the index of selected node
Node A Node object being requested.

Use the SelectedNode property to retrieve the selected node giving its index in the selected
nodes collection. Use the SelectCount property to get the number of selected nodes. Use
the Selected property to select a node. Use the SelForeColor, SelForeColorChild,
SelBackColor, SelBackColorChild properties to customize the colors for selected nodes.
Use the FocusNode property to retrieve the focused node. Use the SingleSel property to
specify whether the control support single or multiple selection. The control fires the
SelectionChanged event when user changes the selection.

The following VB sample enumerates the selected node(s):

With XMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Print .SelectedNode(i).Name
 Next
End With

The following C++ sample enumerates the selected node(s):

for (long i = 0; i < m_xmlgrid.GetSelectCount(); i++)
{
 CNode node = m_xmlgrid.GetSelectedNode(COleVariant(i));
 OutputDebugString(node.GetName());
}

The following VB.NET sample enumerates the selected node(s):

With AxXMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Write(.get_SelectedNode(i).Name())
 Next
End With

The following C# sample enumerates the selected node(s):

for (int i = 0; i < axXMLGrid1.SelectCount; i++)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_SelectedNode(i);
 System.Diagnostics.Debug.Write(node.Name);
}

The following VFP sample enumerates the selected node(s):

With thisform.XMLGrid1
 local i
 For i = 0 To .SelectCount - 1
 wait window nowait .SelectedNode(i).Name
 Next
EndWith

property XMLGrid.SelForeColor as Color
Specifies the selection foreground's color.

Type Description

Color A color expression that indicates the foreground color of
selected nodes.

Use the SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild properties to
customize the colors for selected nodes. The property has effect while its value is not -1. In
other words, use the -1 to prevent apply the color on the node's background/foreground.
Use the SelectCount property to get the number of selected nodes. Use the SelectedNode
property to retrieve the selected node giving its index in the selected nodes collection. Use
the Selected property to select a node. The SelBackMode property specifies the way the
control displays the selected nodes.

property XMLGrid.SelForeColorChild as Color
Specifies the selection's background color on the value section.

Type Description

Color A color expression that indicates the foreground color for
child nodes of the selected nodes.

Use the SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild properties to
customize the colors for selected nodes. The property has effect while its value is not -1. In
other words, use the -1 to prevent apply the color on the node's background/foreground.
Use the SelectCount property to get the number of selected nodes. Use the SelectedNode
property to retrieve the selected node giving its index in the selected nodes collection. Use
the Selected property to select a node. The SelBackMode property specifies the way the
control displays the selected nodes.

property XMLGrid.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean
A boolean expression that specifies a value indicating
whether the control draws a thin rectangle around the
focused node.

Use the ShowFocusRect property to specify whether the control marks the focused node.
Use the FocusNode property to get the control's focused node. Use the SelectCount
property to get the number of selected nodes. Use the SelectedNode property to retrieve
the selected node giving its index in the selected nodes collection. Use the Selected
property to select a node.

property XMLGrid.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden.

The ShowImageList property has effect only at design time. Use the Images method to
load a list of icons to the control.

property XMLGrid.ShowPartialParent as ShowPartialParentEnum
Specifies where a partial-visible parent shows its content.

Type Description

ShowPartialParentEnum A ShowPartialParentEnum expression that specifies where
a partial-visible parent shows its content.

By default, the ShowPartialParent property is exShowPartialParentTop, which indicates that
the content of a partial-parent, is displayed on the top of the control (like you can see in the
image bellow). Use the ShowPartialParent property to hide the partial parent content, or to
display it on the focused node.

The following screen shot shows the content of the parent's node on the top of the control:

method XMLGrid.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String A String expression that indicates the description of the
tooltip.

Title as Variant If present, A String expression that indicates the title of the
tooltip.

Alignment as Variant
A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing, the tooltip
is aligned to the left/top corder.

X as Variant

A single that specifies the current X location of the mouse
pointer. The x values is always expressed in screen
coordinates. If missing or -1, the current mouse X position
is used. A string expression that indicates the offset to
move the tooltip window relative to the cursor position.

Y as Variant

A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in screen
coordinates. If missing or -1, the current mouse Y position
is used. A string expression that indicates the offset to
move the tooltip window relative to the cursor position.

Use the ShowToolTip method to display a custom tooltip. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipFont property to change the tooltip's font. Use
the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips. Use the Background(exToolTipBackColor) property indicates the
tooltip's background color. Use the Background(exToolTipForeColor) property indicates the
tooltip's foreground color. The ShowToolTip method has no effect if the ToolTip and Title
parameters are empty. The ToolTip/ToolTipTitle property assigns a tooltip to a node.

The Alignment parameter can be one of the followings:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight

0x13 - exCenterTop
0x14 - exCenterBottom

Use numeric values as strings for X and Y parameters, to move the tooltip window
relative to the position of the cursor. For instance, ShowToolTp("text",,,"11","12"), means
that the tooltip window is moved 11 pixels on the X axis, and 12 pixels on the Y axis,
before showing it in the default position. In this case the X and Y parameters MUST be
passed as strings not as LONG values.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxXMLGrid1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles
AxXMLGrid1.MouseMoveEvent
 With AxXMLGrid1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axXMLGrid1_MouseMoveEvent(object sender,
AxEXXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{
 axXMLGrid1.ShowToolTip(axXMLGrid1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveXMLGrid1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_xmlGrid.ShowToolTip(m_xmlGrid.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .XMLGrid1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property XMLGrid.SingleSel as Boolean
Specifies whether the control supports single or multiple selection.

Type Description

Boolean A boolean expression that indicates whether the control
supports single or multiple selection.

Use the SingleSel property to allow multiple selection. By default, the SingleSel property it
True. Use the HideSelection property to specify whether the selection is hidden when
control loses the focus. Use the FocusNode property to retrieve the focused node. Use the
SelectCount property to get the number of selected nodes. Use the SelectedNode property
to retrieve the selected node giving its index in the selected nodes collection. Use the
SelForeColor, SelForeColorChild, SelBackColor, SelBackColorChild properties to customize
the colors for selected nodes. The control fires the SelectionChanged event when user
changes the selection. Use the Selected property to select a node. The SelBackMode
property specifies the way the control displays the selected nodes.

The following sample displays the list of selected nodes:

With XMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Print .SelectedNode(i).Name
 Next
End With

property XMLGrid.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to executes a template string and retrieves the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property XMLGrid.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property XMLGrid.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip.

property XMLGrid.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window.

property XMLGrid.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip.

property XMLGrid.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ShowToolTip method to display a custom tooltip.

method XMLGrid.UnselectAll ()
Unselects all nodes. The property is available only if the SingleSel property is False.

Type Description

property XMLGrid.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property XMLGrid.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property XMLGrid.VisibleLevelCount as Long
Returns a value that indicates the number of visible levels in the tree control.

Type Description

Long A long expression that indicates the number of visible
levels.

Use the VisibleLevelCount property to specify the number of levels being displayed. Use the
LevelWidth property to specify the level's width. Use the Level property to get the node's
level.

property XMLGrid.VisibleNodeCount as Long
Specifies the number of visible nodes.

Type Description

Long A long expression that indicates the number of visible
nodes.

The VisibleNodeCount property specifies the number of visible nodes. Use the
NodeByPosition property to access a node by its position. Use the Visible property to hide
a node. Use the Expanded property to expand or collapse a node.

The following sample displays the list of visible nodes:

With XMLGrid1
 Dim i As Long
 For i = 0 To .VisibleNodeCount - 1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeByPosition(i)
 Debug.Print n.Name
 Next
End With

property XMLGrid.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

property XMLGrid.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With XMLGrid1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg7nBcHVJUAoABMIZ7/jEZf78jMJAkKAAEBkgAYOkACB8gAIxhEaGUkGctjMfg8MAAREEHGICg8CIROm0gmsIAIYngAQAAYAQGKIYBkAKBQAGaAoDDUMw3QwAAwjMLEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLiEZRQiiCYsS5GQBRWAkEwiBiEQTjea5CgOIAFS7LIqjRQEGyEHCZYIGaiYSDaPY8TyEEI1FR9KwvEAEIRKAyTDLQdRyGSMMgQXAZBCbMiLaagMSKTq2PgABhGUQ1NBLdzseS8HSvJybcr2fp/YBgN6XU5VcLlOx9cKaTC1fw1PKPZBkORZHimH4aX7FWowbBEVx1BCEISgegtB6ExLiaU5ojOaBcmoVwJH2VQxlgbAWAKdR0kAXhtjcGx9k6cx3j6XRtHYLAdFYAxGkQYQvlaaxFg8KRlk2Z4tDmXQegcS4kjGY4vnQeAEBaCYOkQYYslYCpvA+D5FmSc55j0PhfF8eYHlwQZ2nQTImDsFRaioVB9j8Hx/k+c53n4fogAeTJFHuXY3HCTAygyAociMKBKEKBIeCiCZyHYEAnCEOBUh+BQhBgNIegKCgYBySAgh2SAUgINAMmMNIgCcCYjn4KoKmKSI2C6CpiHIagkDMYgCAoIg1A0IxEhsJgJFiPg+g+Y4yFYOA0GMWIIloNhNGIaIXCUI5CE4SwkEkchOFCFIlBkThQCUCQZDYSglCQcxaEUX5IBmB"
 & _
"JhDeDZZDYOwlgmQhghaGZmkmKhnhoZo5ioTYYk2WYEgEYAnGOGJlDkCQyECDq6ikNoCCUSQ6A6BYhCgCZ0g6HoOEmWR9GFf44m0OwIlIJIHCRkAshGJhpjoaocieaZiC6GAimkUgehIOwnGYEYGGiah6jaE4rg6SpCjKK5rEOMYjGGGIChKOgglmdoij6L5aEYfo6CkGIEAQo6bpyAAXqOnygKEhKbACCyjqSpamqeqKpqqq6sq2rqvrCsayrOtK1rat64rmuq7ryva+r+wLBsKw7EsWxrHsiybKsuzLNs6z7QtG0rTtS1bWte2LZtq27ct23rfuC4biuO5Llua57oum6rruy7buu+8LxvK870vW9r3vi+b6vu/L9v6/8AwHAsDwTBcGwfCMJwrC8Mw3DsPxDEcSxPFMVxbF8YxnGsbxzHcex/IMhyLI8kkWZB/npJ5PF+G5Fl4YZ3BAfY9BMKYOkUK0KoKgfgfFeM8d40h6C/DgAsfQ/BfCmBWOIdouxDBhEoGQCg5QMhCCkBQEg8QiBPEmLATIOB/i9AgLQEwThhAEHoBoKAwQjBBAIO6GgERQBnAyKUAIOAmhDAiqICwxQiDUCcqmDASlXKwVkrRWwFwjq6V4r4FKwVhrFWOslZazRMgjAsMoGQgQUBIGSLIKIKQRiaGkCofwQBmAHASLwNwyRYjZBYpoAgtBmgWGYNMIg1QaDJFmBEXYMAIAsAIOgOYHBTghBMyQaQWQSgmjoG0AAShkjEFCCUH"
 & _
"okRpjBGSDoF4rASDoDuB0U4YQNBEEgOQQIGgiiSBoL0GYTAphUHaDhmTLwTBDGkAcMg6BhAwGaB0JYVRpA1DCNkK4VgKhtDIHYGgbAZgQCkFcAgGwfDUCuJUdYSBnjXAKCMCAgBAADIQTgg4xZ0AAbIUEoTXgAisna2wpgiBoBwbgVQqw1A2AybqGMEIjG8FkLMWgtRbC3DACwEwIwCgYgBCEEcAbgA4AxEgAwQAkgUikDUDsAYmxkBgDkAkCgRgmA0EwEINAMxEiMHkDcIwjQlBgDoKkaAAhMD6FQAAFQDxUC8H8VsVYjBTSBAoIACoGwDBCDSJIBQfQjHdEcA0IgshthUVaDAWowg2j3AyK0SQNwvilGaG8KAOhagyCuC0S4zAyCXFyKwcwcwQCkC0C8SgKgCCCFmEUXoYghCWjGFoH4lBAjZHYPENQtgdghBwK4KI4QblTCcAcMIgRyinDyIoSomhRicFoN0AAAwVhtGUOENw2xyB1E0GA14VRCCeHGCUCQoRCDGCYDYVY1wxh0GUGYecrxfDxBwNQFwRhDA1C8NYNQNKhAMHGGsbw2QuD3A2CgWojwshMGkHMXYmirAiAkFClQzhDhTEiJYVwThDAQESL+fA2gJAUBCC4aYfhCUVFwDARAuR1CZDMGgDQ8AuVMCCNARgIQEjBHgKoUwUwMgGEyEQOwHhiipHgH8YY0QCA/AgMQSIHAmYcDOLRRAkwDABE4FwTwxx8giDkEYKIoQLBxA+PEXI/gg"
 & _
"icBOPgdwcAPjjCSL4P4ixTDxH+BjHIaROBFAuAYKIgQMDHCiNEBYHhlBnHwPkEIjgJZVBGAsAw4R/gnE+PKCwQQLAmBiIoPQxw5AZAOCER4sgaDaD+I4Uw7BBg5AWKYbI/gUDOGmDkf4MgMDDHSFwMImBTihH8D0JY1ASDhB2A4WYsBtg7OONEfwKwojCC6B0IAnx5jxEMD0CoZgIiMDyJ8cYpQOhPyGHkWYUBqBjBqEYFo1AxCFCMCMDYBx+g3CCNMEYwQpBgEwMcSI/gbDVFqMEfwNAND1G6HoGAVxRC1D0CUa4ogGh7C0J8eokRBA7EoOYAokNsDVG6KIGLHhEC3DQIoGwiBHhoEOPYHobQzAYAGLUTQZArDDBaKMOeQwAirDoN0MQ1RrAoC0CIFoogPBaBuCEf4cQuA2DSJMLYDArhdH1kccwpiogLAuFgT4dd7hYD2HUb4dxeiaB2JUAwCRjB8E+OUJI1xFDiHwLYGAfxKDYFyEkRYlAcC5B+IscQcR7AiB4JUIwGRmiKAsCcOI/xLdBECNsTA5gyh2DMFYMwZYjhUDMHkLI/xKAYDGOELgYhOhHGoI4O46B9BJDmKQCw2gghp8IFoIIYRSBoFkLYQwQM2hBG8H4D45gOhtFeGsXQ/Q2BgGsMUeobAvBWGKNUNorRPj6GCo8SwpgojlFcBkSYRh1B/EyLMIw8vcBzCCI8GgTwjAlAKLkY4exEgOC6BkY4oeUiaEgP8DQfxNCwH+CL6gZ8dhoHk"
 & _
"MYP4LAzDyG4FEf4wxMjECyHwNGLx4j+DcOgboRwnjUHQMYcwjA2hiEMMYFAaxxBOgWA5hohIhzAPgNhpgOBNBzg9A/h7h+h8hjhXAOAjtBg4A8BjB/hGA+OIhkhUAkuzhfBGA/hOguAvhVh1A9BuAshphihOgOAshnwJBtBzhTh0ANByBYhLA2BOhjhkh7hxgPh/gzhuA/h+hfhDhvh8BPh/gkh7h5gNgVBMgZAzgNg/hvh9B/gPh6AAhAAIAGh/hgApBTAgAgCaGviDghJ2p3mzCiCiAUp6ilJ7m3ipJ+Crg2AYG6ghgYhSKCm9KEG+qFgsB+ASAwgQBJhkhSABgYASBFAugNBHBgBzNFAOBBAigIhKAnAwgRgchqBfA2gNhEBnAQgQAUAlh/BGAABRgfhxB5hoACBTADgeBJgogThoN4A2AJgEhQggB1AqBFEAgXgIgMqrBbAFlWA1AYBYhhA2B7BNBOAHIvBVBthSh7gchWBVB2gBhTiuA5AlhSBfAzgZhIAnhxgqhNA2gZBQg8NmBxgwhFBiASAbgShWgog1haA8K1h5hDhTBrByApAFhEABgMgBhVhgB4h7guBGAHBegvBFgsgWhIgVgWhVBogzBrhuByAIgOB8ABgdhRhfBzB3B8AshugZg6hBhjBgB7BdhMBrAtArgUBmgjB5hOAIADBDgehiBNhjgahZgXBMABBrhYBqhihVg9gfAzA7hDhoByghAggIBJBAhSBjA6AdBOBGBRgMgABVAMA"
 & _
"hATB9hRghg0AkC+BnBuAhAdh3gnAmh7BJArBgACBWACFmASBCAFAkAgBiBCACAllPg0guBXgMBIBEg9gEhOgYBUhvgFweA+AZgFhhBTgmATAvBMBogEAAArgKhyg4hrgJhOhDgwhtgJlQA2AqA7BigTguAlArgAACgqA2A8AjgDgghnA5hOgoh2FbgOB4hqQLAjBigkAAJnAygshxA8BPADgiBOgPgOgzgyAngPBkhjgiBMA8AkgSguBHJnBJAshygURLBGBTzogzhGBcArAAAIAAgtA8gmhIh6BSgLhjC1hqgbAPApgoAAgJBKh5gwhzgbgOhZh0hugMAigYh4hzA8gPA5hgAAAsAogDhOgKgLAnhTg0v4hohYgygKA8hogCikgsgpgKBOBvgjgohoBmB/gKhlAqMBAshLDHgjQVgogmAagGhqgzmssLhKAqgnAAALBKhUh0gthohYBeAXgOArgqA2g3A9ArBShQAAAtgLBShYwUBPBKByg8gQhr0sUmBLBbAUUohtBLAch1gugmBbBmBLgugPBrAehUAthAAChkg5AuAPBrgWBDz6gZhShpUEgDg8hwQUhShihiAAALg7hWhlA9grgphSgDg+gthLgUg7AugLggAAg8hAhvB5AOgThBhogpAOh3hAhLhAAAg+gEhPB8BGh6hCApAzhKhpA9sXhcg9hD05NJhEBPB5hSg/hIhrB5wxgvhMADCFhKBMADhjAuhIgyBKh+B0hLgPgMgwAANnADAHA0gi"
 & _
"gPAjhShWgzhsgKBPMnBygjAPBGhOhrAbAehdg1gsB9AIh5P1BjCcgxB1BDhnBWgvhvB7B3BZA8hrB9BYh5yuBQAAhHAxgMBzhrBmgxhPBNBnBqg1g1htgMhHAAAMhNhEh7hchzBMgDB2hEBzBNhMh7hcBM1ThgA4ANz/ACA/A4BDh3gGhhh4B+AQh8hggOBjgE2VBVhDh+A6A5hNhuBUhdhlh52dAVA3hkATghBeJzCAg=="

End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

EXMLGrid events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {AC7F976E-48C3-4B0B-B952-45D92DFE7F3E}. The object's program identifier is: "Exontrol.XMLGrid".
The /COM object module is: "EXMLGrid.dll"

The Exontrol's XMLGrid component supports the following events:

Name Description
AddNode Occurs when a node is added to the nodes collection.

AfterExpandNode Notifies the application when a node is expanded or
collapsed.

AnchorClick Occurs when an anchor element is clicked.

BeforeExpandNode Occurs when a node is about to be expanded or
collapsed.

ButtonClick Occurs when user clicks on the cell's button.
Change Occurs when the user changes the cell's content.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Edit Occurs just before editing the focused node.
EditClose Occurs when the edit operation ends.
EditOpen Occurs when the edit operation starts.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled
Occurs when a source component is dropped onto a

OLEDragDrop target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.

RemoveNode Occurs when a node is removed from the nodes
collection.

ResizeLevel Occurs when the user resizes the level.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelectionChanged Fires when the user changes the selection.
UserEditorClose Fired the user editor is about to be opened.
UserEditorOleEvent Occurs when an user editor fires an event.
UserEditorOpen Occurs when an user editor is about to be opened.

C#

VB

private void AddNode(object sender,exontrol.EXMLGRIDLib.Node NewNode)
{
}

Private Sub AddNode(ByVal sender As System.Object,ByVal NewNode As
exontrol.EXMLGRIDLib.Node) Handles AddNode
End Sub

C#

C++

C++
Builder

Delphi

private void AddNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_AddNodeEvent e)
{
}

void OnAddNode(LPDISPATCH NewNode)
{
}

void __fastcall AddNode(TObject *Sender,Exmlgridlib_tlb::INode *NewNode)
{
}

procedure AddNode(ASender: TObject; NewNode : INode);
begin
end;

event AddNode (NewNode as Node)
Occurs when a node is added to the nodes collection.

Type Description
NewNode as Node A Node object being inserted.

The AddNode event notifies your application that user adds a new node. Use the Add
method to insert a new node to the Nodes collection. Use the Nodes property to access the
control's nodes collection. Use the AddNode event to associate extra data to the newly
inserted node. Use the Add method to add new type of editors to the control. Use the
Editor property to assign an editor to a node.

Syntax for AddNode event, /NET version, on:

Syntax for AddNode event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddNode(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_AddNodeEvent);
begin
end;

begin event AddNode(oleobject NewNode)
end event AddNode

Private Sub AddNode(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_AddNodeEvent) Handles AddNode
End Sub

Private Sub AddNode(ByVal NewNode As EXMLGRIDLibCtl.INode)
End Sub

Private Sub AddNode(ByVal NewNode As Object)
End Sub

LPARAMETERS NewNode

PROCEDURE OnAddNode(oXMLGrid,NewNode)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddNode(NewNode)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddNode(NewNode)
End Function
</SCRIPT>

Procedure OnComAddNode Variant llNewNode
 Forward Send OnComAddNode llNewNode
End_Procedure

Syntax for AddNode event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_AddNode(NewNode) CLASS MainDialog
RETURN NIL

void onEvent_AddNode(COM _NewNode)
{
}

function AddNode as v (NewNode as OLE::Exontrol.XMLGrid.1::INode)
end function

function nativeObject_AddNode(NewNode)
return

The following VB sample assigns a default editors to all nodes, using the AddNode event:

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate

 With .Editors
 With .Add("Edit", EditType)
 .Appearance = SingleApp
 End With
 End With

 With .Nodes
 With .Add("Root").Nodes
 .Add "Child 1", "text1"
 .Add "Child 2", "text2"
 End With
 End With
 .EndUpdate
 End With
End Sub

Private Sub XMLGrid1_AddNode(ByVal NewNode As EXMLGRIDLibCtl.INode)
 NewNode.Editor = "Edit"

End Sub

The following C++ sample assigns a default editors to all nodes, using the AddNode event:

#include "Node.h"
void OnAddNodeXmlgrid1(LPDISPATCH NewNode)
{
 CNode node(NewNode); node.m_bAutoRelease = FALSE;
 node.SetEditor(COleVariant("Edit"));
}

The following VB.NET sample assigns a default editors to all nodes, using the AddNode
event:

Private Sub AxXMLGrid1_AddNode(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_AddNodeEvent) Handles AxXMLGrid1.AddNode
 e.newNode.Editor = "Edit"
End Sub

The following C# sample assigns a default editors to all nodes, using the AddNode event:

private void axXMLGrid1_AddNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_AddNodeEvent e)
{
 e.newNode.Editor = "Edit";
}

The following VFP sample assigns a default editors to all nodes, using the AddNode event:

*** ActiveX Control Event ***
LPARAMETERS newnode

with newnode
 .Editor = "Edit"
endwith

C#

VB

private void AfterExpandNode(object sender,exontrol.EXMLGRIDLib.Node Node)
{
}

Private Sub AfterExpandNode(ByVal sender As System.Object,ByVal Node As
exontrol.EXMLGRIDLib.Node) Handles AfterExpandNode
End Sub

C#

C++

C++
Builder

Delphi

private void AfterExpandNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_AfterExpandNodeEvent e)
{
}

void OnAfterExpandNode(LPDISPATCH Node)
{
}

void __fastcall AfterExpandNode(TObject *Sender,Exmlgridlib_tlb::INode *Node)
{
}

procedure AfterExpandNode(ASender: TObject; Node : INode);

event AfterExpandNode (Node as Node)
Notifies the application when a node is expanded or collapsed.

Type Description
Node as Node A Node object being expanded or collapsed.

Use the AfterExpandNode event to notify your application that a node is expanded or
collapsed. Use the Expanded property to programmatically expand or collapse a node. Use
the Expanded property to find out if a node is expanded or collapsed. Use the ExpandAll
method to expand all nodes in the control. Use the CollapseAll method to collapse all nodes
in the control. Use the ExpandAll method to expand all child nodes of specified node. Use
the CollapseAll method to collapse all child nodes of specified node. Use the
BeforeExpandNode event to prevent expanding or collapsing a node.

Syntax for AfterExpandNode event, /NET version, on:

Syntax for AfterExpandNode event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure AfterExpandNode(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_AfterExpandNodeEvent);
begin
end;

begin event AfterExpandNode(oleobject Node)
end event AfterExpandNode

Private Sub AfterExpandNode(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_AfterExpandNodeEvent) Handles
AfterExpandNode
End Sub

Private Sub AfterExpandNode(ByVal Node As EXMLGRIDLibCtl.INode)
End Sub

Private Sub AfterExpandNode(ByVal Node As Object)
End Sub

LPARAMETERS Node

PROCEDURE OnAfterExpandNode(oXMLGrid,Node)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpandNode(Node)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpandNode(Node)
End Function
</SCRIPT>

Syntax for AfterExpandNode event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterExpandNode Variant llNode
 Forward Send OnComAfterExpandNode llNode
End_Procedure

METHOD OCX_AfterExpandNode(Node) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpandNode(COM _Node)
{
}

function AfterExpandNode as v (Node as OLE::Exontrol.XMLGrid.1::INode)
end function

function nativeObject_AfterExpandNode(Node)
return

The following VB sample displays the caption of the node being expanded or collapsed:

Private Sub XMLGrid1_AfterExpandNode(ByVal Node As EXMLGRIDLibCtl.INode)
 Debug.Print "The '" & Node.Name & "' is " & IIf(Node.Expanded, "expanded",
"collapsed") & "."
End Sub

The following C++ sample displays the caption of the node being expanded or collapsed:

#include "Node.h"
void OnAfterExpandNodeXmlgrid1(LPDISPATCH Node)
{
 CNode node(Node); node.m_bAutoRelease = FALSE;
 CString strFormat, strName = node.GetName();
 strFormat.Format("The %s is %s.", strName, (node.GetExpanded() ? "expanded" :
"collapsed"));
 OutputDebugString(strFormat);
}

The following VB.NET sample displays the caption of the node being expanded or
collapsed:

Private Sub AxXMLGrid1_AfterExpandNode(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_AfterExpandNodeEvent) Handles
AxXMLGrid1.AfterExpandNode
 Dim strMessage As String = "The " + e.node.Name + " is "
 strMessage = strMessage + (IIf(e.node.Expanded, "expanded", "collapsed"))
 Debug.Write(strMessage)
End Sub

The following C# sample displays the caption of the node being expanded or collapsed:

private void axXMLGrid1_AfterExpandNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_AfterExpandNodeEvent e)
{
 String strMessage = "The " + e.node.Name + " is ";
 strMessage += (e.node.Expanded ? "expanded" : "collapsed");
 System.Diagnostics.Debug.Write(strMessage);
}

The following VFP sample displays the caption of the node being expanded or collapsed:

*** ActiveX Control Event ***
LPARAMETERS node

with node
 s = "The " + .Name + " is "
 if (.Expanded)
 s = s + "expanded"
 else
 s = s + "collapsed"
 endif
 wait window nowait s
endwith

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXMLGRIDLib._IXMLGridEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oXMLGrid,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void BeforeExpandNode(object sender,exontrol.EXMLGRIDLib.Node
Node,ref object Cancel)
{
}

Private Sub BeforeExpandNode(ByVal sender As System.Object,ByVal Node As
exontrol.EXMLGRIDLib.Node,ByRef Cancel As Object) Handles BeforeExpandNode
End Sub

C#

C++

C++
Builder

private void BeforeExpandNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_BeforeExpandNodeEvent e)
{
}

void OnBeforeExpandNode(LPDISPATCH Node,VARIANT FAR* Cancel)
{
}

void __fastcall BeforeExpandNode(TObject *Sender,Exmlgridlib_tlb::INode
*Node,Variant * Cancel)
{
}

event BeforeExpandNode (Node as Node, Cancel as Variant)
Occurs when a node is about to be expanded or collapsed.

Type Description
Node as Node A Node object being expanded or collapsed.

Cancel as Variant A boolean expression that indicates whether the operation
is canceled or not.

Use the BeforeExpandNode event to notify your application that the user is about to expand
or collapse a node. Use the Expanded property to expand or collapse a node. Use the
HasChilds property to display expanding/collapsing buttons for a node to build your virtual
tree. You can use the BeforeExpandNode event to cancel expanding specified nodes.

Syntax for BeforeExpandNode event, /NET version, on:

Syntax for BeforeExpandNode event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure BeforeExpandNode(ASender: TObject; Node : INode;var Cancel :
OleVariant);
begin
end;

procedure BeforeExpandNode(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_BeforeExpandNodeEvent);
begin
end;

begin event BeforeExpandNode(oleobject Node,any Cancel)
end event BeforeExpandNode

Private Sub BeforeExpandNode(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_BeforeExpandNodeEvent) Handles
BeforeExpandNode
End Sub

Private Sub BeforeExpandNode(ByVal Node As EXMLGRIDLibCtl.INode,Cancel As
Variant)
End Sub

Private Sub BeforeExpandNode(ByVal Node As Object,Cancel As Variant)
End Sub

LPARAMETERS Node,Cancel

PROCEDURE OnBeforeExpandNode(oXMLGrid,Node,Cancel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="BeforeExpandNode(Node,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpandNode(Node,Cancel)

Syntax for BeforeExpandNode event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComBeforeExpandNode Variant llNode Variant llCancel
 Forward Send OnComBeforeExpandNode llNode llCancel
End_Procedure

METHOD OCX_BeforeExpandNode(Node,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpandNode(COM _Node,COMVariant /*variant*/ _Cancel)
{
}

function BeforeExpandNode as v (Node as OLE::Exontrol.XMLGrid.1::INode,Cancel
as A)
end function

function nativeObject_BeforeExpandNode(Node,Cancel)
return

The following VB sample adds new child nodes to the node that's about to be expanded:

Private Sub XMLGrid1_BeforeExpandNode(ByVal Node As EXMLGRIDLibCtl.INode, Cancel
As Variant)
 If Not Node.Expanded Then
 With Node.Nodes
 With .Add("New Node")
 .HasChilds = True
 End With
 End With
 End If
End Sub

The following C++ sample adds new child nodes to the node that's about to be expanded:

#include "Node.h"
#include "Nodes.h"

void OnBeforeExpandNodeXmlgrid1(LPDISPATCH Node, VARIANT FAR* Cancel)
{
 if (IsWindow(m_xmlgrid.m_hWnd))
 {
 CNode node(Node); node.m_bAutoRelease = FALSE;
 if (!node.GetExpanded())
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CNode newNode = node.GetNodes().Add("New Node", vtMissing, vtMissing);
 newNode.SetHasChilds(TRUE);
 }
 }
}

The following VB.NET sample adds new child nodes to the node that's about to be
expanded:

Private Sub AxXMLGrid1_BeforeExpandNode(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_BeforeExpandNodeEvent) Handles
AxXMLGrid1.BeforeExpandNode
 If Not e.node.Expanded Then
 With e.node.Nodes
 With .Add("New Node")
 .HasChilds = True
 End With
 End With
 End If
End Sub

The following C# sample adds new child nodes to the node that's about to be expanded:

private void axXMLGrid1_BeforeExpandNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_BeforeExpandNodeEvent e)
{
 if (!e.node.Expanded)
 {
 EXMLGRIDLib.Nodes nodes = e.node.Nodes;
 nodes.Add("New Node", null, null).HasChilds = true;

 }
}

The following VFP sample adds new child nodes to the node that's about to be expanded:

*** ActiveX Control Event ***
LPARAMETERS node, cancel

with node
 If !.Expanded Then
 With .Nodes
 With .Add("New Node")
 .HasChilds = .t.
 EndWith
 EndWith
 EndIf
endwith

C#

VB

private void ButtonClick(object sender,exontrol.EXMLGRIDLib.Node Node,object
Key)
{
}

Private Sub ButtonClick(ByVal sender As System.Object,ByVal Node As
exontrol.EXMLGRIDLib.Node,ByVal Key As Object) Handles ButtonClick
End Sub

C#

C++

C++
Builder

private void ButtonClick(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ButtonClickEvent e)
{
}

void OnButtonClick(LPDISPATCH Node,VARIANT Key)
{
}

void __fastcall ButtonClick(TObject *Sender,Exmlgridlib_tlb::INode *Node,Variant
Key)
{
}

event ButtonClick (Node as Node, Key as Variant)
Occurs when user clicks on the cell's button.

Type Description
Node as Node A Node object being clicked.

Key as Variant A Variant expression that indicates the key of the button
inside the node being clicked.

Use the ButtonClick event to notify your application that the user clicks a button inside a
node. Use the AddButton method to add new buttons to an editor. Use the Editors property
to access the control's Editors collection. Use the Add method to add new type of editors to
the control. Use the Editor property to assign an editor to a node.

Syntax for ButtonClick event, /NET version, on:

Syntax for ButtonClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ButtonClick(ASender: TObject; Node : INode;Key : OleVariant);
begin
end;

procedure ButtonClick(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_ButtonClickEvent);
begin
end;

begin event ButtonClick(oleobject Node,any Key)
end event ButtonClick

Private Sub ButtonClick(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ButtonClickEvent) Handles ButtonClick
End Sub

Private Sub ButtonClick(ByVal Node As EXMLGRIDLibCtl.INode,ByVal Key As
Variant)
End Sub

Private Sub ButtonClick(ByVal Node As Object,ByVal Key As Variant)
End Sub

LPARAMETERS Node,Key

PROCEDURE OnButtonClick(oXMLGrid,Node,Key)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ButtonClick(Node,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ButtonClick(Node,Key)
End Function
</SCRIPT>

Syntax for ButtonClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComButtonClick Variant llNode Variant llKey
 Forward Send OnComButtonClick llNode llKey
End_Procedure

METHOD OCX_ButtonClick(Node,Key) CLASS MainDialog
RETURN NIL

void onEvent_ButtonClick(COM _Node,COMVariant _Key)
{
}

function ButtonClick as v (Node as OLE::Exontrol.XMLGrid.1::INode,Key as A)
end function

function nativeObject_ButtonClick(Node,Key)
return

The following VB sample displays a message box when user clicks the 'A' button:

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate
 With .Editors
 With .Add("Spin", SpinType)
 .ButtonWidth = 18
 .AddButton "A", 1
 End With
 End With
 With .Nodes
 With .Add("Spin", 1)
 .Editor = "Spin"
 End With
 End With
 .EndUpdate
 End With
End Sub

Private Sub XMLGrid1_ButtonClick(ByVal Node As EXMLGRIDLibCtl.INode, ByVal Key As
Variant)
 If Key = "A" Then
 MsgBox "You have clicked the 'A' button."
 End If
End Sub

The following C++ sample displays a message box when user clicks the 'A' button:

#include "Node.h"
void OnButtonClickXmlgrid1(LPDISPATCH Node, const VARIANT FAR& Key)
{
 CNode node(Node); node.m_bAutoRelease = FALSE;
 if (V2S(&Key) == "A")
 MessageBox("Click the button") ;
}

where the VS2 function converts a VARIANT expression to a string expression:

static CString V2S(const VARIANT* pvtValue)
{
 COleVariant vtString;
 vtString.ChangeType(VT_BSTR, (VARIANT*)pvtValue);
 return V_BSTR(&vtString);
}

The following VB.NET sample displays a message box when user clicks the 'A' button:

Private Sub AxXMLGrid1_ButtonClick(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ButtonClickEvent) Handles AxXMLGrid1.ButtonClick
 If e.key = "A" Then
 MsgBox("You have clicked the 'A' button.")
 End If
End Sub

The following C# sample displays a message box when user clicks the 'A' button:

private void axXMLGrid1_ButtonClick(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ButtonClickEvent e)

{
 if (e.key.ToString() == "A")
 MessageBox.Show("The user clicks the 'A' button. ");
}

The following VFP sample displays a message box when user clicks the 'A' button:

*** ActiveX Control Event ***
LPARAMETERS node, key

if (key = "A")
 wait window nowait "The uuser clicks the 'A' button. "
endif

C#

VB

private void Change(object sender,exontrol.EXMLGRIDLib.Node Node,ref object
NewValue)
{
}

Private Sub Change(ByVal sender As System.Object,ByVal Node As
exontrol.EXMLGRIDLib.Node,ByRef NewValue As Object) Handles Change
End Sub

event Change (Node as Node, NewValue as Variant)
Occurs when the user changes the cell's content.

Type Description
Node as Node A Node object whose value is chaning.
NewValue as Variant A Variant expression that indicates the newly node's value.

Use the Change event to notify your application when the node's value is changed. The
Change event notifies that the editing focused node ended. Use the Value property to
assign a value to a node. Use the Name property to assign a caption to a node.

The NewValue parameter indicates the newly node's value before assigning it to the Value
property. You can use the Value property to get the old node's value.

The edit events are fired in the following order:

1. Edit event. Prevents editing nodes, before showing the node's editor.

2. EditOpen event. The edit operation started, the node's editor is shown. The Editing
property gives the window's handle of the built-in editor being shown.

3. Change event. The Change event is fired only if the user types ENTER key, the user
selects a new value from a predefined data list, or focus a new node.

4. EditClose event. The node's editor is hidden and closed.

If a node has an editor assigned the node's editor is applied to the:

Name property, if the node contains child node.
Value property, if the node contains no child node.

Syntax for Change event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void Change(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ChangeEvent e)
{
}

void OnChange(LPDISPATCH Node,VARIANT FAR* NewValue)
{
}

void __fastcall Change(TObject *Sender,Exmlgridlib_tlb::INode *Node,Variant *
NewValue)
{
}

procedure Change(ASender: TObject; Node : INode;var NewValue : OleVariant);
begin
end;

procedure Change(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_ChangeEvent);
begin
end;

begin event Change(oleobject Node,any NewValue)
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ChangeEvent) Handles Change
End Sub

Private Sub Change(ByVal Node As EXMLGRIDLibCtl.INode,NewValue As Variant)
End Sub

Private Sub Change(ByVal Node As Object,NewValue As Variant)
End Sub

LPARAMETERS Node,NewValue

Syntax for Change event, /COM version, on:

Xbas… PROCEDURE OnChange(oXMLGrid,Node,NewValue)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Change(Node,NewValue)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change(Node,NewValue)
End Function
</SCRIPT>

Procedure OnComChange Variant llNode Variant llNewValue
 Forward Send OnComChange llNode llNewValue
End_Procedure

METHOD OCX_Change(Node,NewValue) CLASS MainDialog
RETURN NIL

void onEvent_Change(COM _Node,COMVariant /*variant*/ _NewValue)
{
}

function Change as v (Node as OLE::Exontrol.XMLGrid.1::INode,NewValue as A)
end function

function nativeObject_Change(Node,NewValue)
return

Syntax for Change event, /COM version (others), on:

The following VB sample assign a drop down editor to a cell and displays the newly value
when user selects a new value from the drop down portion of the editor:

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate

 With .Editors
 With .Add("DD", DropDownListType)
 .AddButton "A", 1
 .AddButton "B", 1, RightAlignment
 .AddItem 1, "1 One"
 .AddItem 2, "2 One"
 .AddItem 3, "3 One"
 End With
 End With
 With .Nodes
 With .Add("Select", 1)
 .Editor = "DD"
 End With
 End With
 .EndUpdate
 End With
End Sub

Private Sub XMLGrid1_Change(ByVal Node As EXMLGRIDLibCtl.INode, NewValue As
Variant)
 Debug.Print "NewValue = " & NewValue
End Sub

The following C++ sample displays the value that user changes:

#include "Node.h"
void OnChangeXmlgrid1(LPDISPATCH Node, VARIANT FAR* NewValue)
{
 CNode node(Node); node.m_bAutoRelease = FALSE;
 CString strNewValue = V2S(NewValue);
 OutputDebugString(strNewValue);
}

where the V2S function converts a VARIANT expression to a string expression:

static CString V2S(const VARIANT* pvtValue)
{
 COleVariant vtString;

 vtString.ChangeType(VT_BSTR, (VARIANT*)pvtValue);
 return V_BSTR(&vtString);
}

The following VB.NET sample displays the value that user changes:

Private Sub AxXMLGrid1_Change(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ChangeEvent) Handles AxXMLGrid1.Change
 Debug.Write(e.newValue.ToString())
End Sub

The following C# sample displays the value that user changes:

private void axXMLGrid1_Change(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ChangeEvent e)
{
 System.Diagnostics.Debug.Write(e.newValue.ToString());
}

The following VFP sample displays the value that user chages:

*** ActiveX Control Event ***
LPARAMETERS node, newvalue

wait window nowait newValue

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oXMLGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXMLGRIDLib._IXMLGridEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when the user dbl clicks on the control. Use the DblClick event to
notify your application that a cell has been double-clicked. Use the NodeFromPoint method
to get the node from cursor. Use the ExpandOnDblClk property to disable expanding or
collapsing a node when user double clicks a node.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oXMLGrid,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.XMLGrid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.XMLGrid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays the node being double clicked:

Private Sub XMLGrid1_DblClick(Shift As Integer, X As Single, Y As Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not n Is Nothing Then
 Debug.Print "You have clicked the '" & n.Name & "'."
 End If
 End With
End Sub

The following C++ sample displays the node being double clicked:

#include "Node.h"
void OnDblClickXmlgrid1(short Shift, long X, long Y)
{
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 {
 CString strName = node.GetName();
 OutputDebugString(strName);
 }
}

The following VB.NET sample displays the node being double clicked:

Private Sub AxXMLGrid1_DblClick(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_DblClickEvent) Handles AxXMLGrid1.DblClick
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node
 n = .get_NodeFromPoint(e.x, e.y)
 If Not n Is Nothing Then
 Debug.Print("You have clicked the '" & n.Name & "'.")
 End If
 End With
End Sub

The following C# sample displays the node being double clicked:

private void axXMLGrid1_DblClick(object sender,
AxEXMLGRIDLib._IXMLGridEvents_DblClickEvent e)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 System.Diagnostics.Debug.Write(node.Name);
}

The following VFP sample displays the node being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

with thisform.XMLGrid1
 n = .NodeFromPoint(x, y)
 if (!isnull(n))
 wait window nowait n.Name
 endif
endwith

C#

VB

private void EditEvent(object sender,exontrol.EXMLGRIDLib.Node Node,ref bool
Cancel)
{
}

Private Sub EditEvent(ByVal sender As System.Object,ByVal Node As
exontrol.EXMLGRIDLib.Node,ByRef Cancel As Boolean) Handles EditEvent
End Sub

event Edit (Node as Node, Cancel as Boolean)
Occurs just before editing the focused node.

Type Description
Node as Node A Node object being edited.

Cancel as Boolean A boolean expression that indicates whether the edit
operation is canceled.

The Edit event is fired when the editing operation is about to begin. Use the Edit event to
disable editing specific nodes. Use the Editor property to assign an editor to a node. Use
the Editors property to access the control's Editors collection. Use the Edit method to
programmatically edit a node, if the AutoEdit property is False.

If a node has an editor assigned the node's editor is applied to the:

Name property, if the node contains child node.
Value property, if the node contains no child node.

The edit events are fired in the following order:

1. Edit event. Prevents editing nodes, before showing the node's editor.

2. EditOpen event. The edit operation started, the node's editor is shown. The Editing
property gives the window's handle of the built-in editor being shown.

3. Change event. The Change event is fired only if the user types ENTER key, the user
selects a new value from a predefined data list, or focus a new node.

4. EditClose event. The node's editor is hidden and closed.

Syntax for Edit event, /NET version, on:

Syntax for Edit event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void EditEvent(object sender, AxEXMLGRIDLib._IXMLGridEvents_EditEvent
e)
{
}

void OnEdit(LPDISPATCH Node,BOOL FAR* Cancel)
{
}

void __fastcall Edit(TObject *Sender,Exmlgridlib_tlb::INode *Node,VARIANT_BOOL
* Cancel)
{
}

procedure Edit(ASender: TObject; Node : INode;var Cancel : WordBool);
begin
end;

procedure EditEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_EditEvent);
begin
end;

begin event Edit(oleobject Node,boolean Cancel)
end event Edit

Private Sub EditEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_EditEvent) Handles EditEvent
End Sub

Private Sub Edit(ByVal Node As EXMLGRIDLibCtl.INode,Cancel As Boolean)
End Sub

Private Sub Edit(ByVal Node As Object,Cancel As Boolean)
End Sub

LPARAMETERS Node,Cancel

Xbas… PROCEDURE OnEdit(oXMLGrid,Node,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Edit(Node,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Edit(Node,Cancel)
End Function
</SCRIPT>

Procedure OnComEdit Variant llNode Boolean llCancel
 Forward Send OnComEdit llNode llCancel
End_Procedure

METHOD OCX_Edit(Node,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_Edit(COM _Node,COMVariant /*bool*/ _Cancel)
{
}

function Edit as v (Node as OLE::Exontrol.XMLGrid.1::INode,Cancel as L)
end function

function nativeObject_Edit(Node,Cancel)
return

Syntax for Edit event, /COM version (others), on:

The following VB sample disables editing nodes that contain child nodes (parent nodes):

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate
 .AutoEdit = True
 .Editors.Add "Edit", EditType

 With .Nodes
 With .Add("Root").Nodes
 .Add "Child 1", "text1"
 .Add "Child 2", "text2"
 End With
 End With
 .EndUpdate
 End With
End Sub

Private Sub XMLGrid1_AddNode(ByVal NewNode As EXMLGRIDLibCtl.INode)
 NewNode.Editor = "Edit"
End Sub

Private Sub XMLGrid1_Edit(ByVal Node As EXMLGRIDLibCtl.INode, Cancel As Boolean)
 Cancel = Not Node.Nodes.Count = 0
End Sub

The following C++ sample disables editing nodes that contain child nodes (parent nodes):

#include "Node.h"
void OnEditXmlgrid1(LPDISPATCH Node, BOOL FAR* Cancel)
{
 CNode node(Node); node.m_bAutoRelease = FALSE;
 if (node.GetNodes().GetCount() != 0)
 *Cancel = TRUE;
}

The following VB.NET sample disables editing nodes that contain child nodes (parent
nodes):

Private Sub AxXMLGrid1_EditEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_EditEvent) Handles AxXMLGrid1.EditEvent
 If (e.node.Nodes.Count <> 0) Then
 e.cancel = True
 End If
End Sub

The following C# sample disables editing nodes that contain child nodes (parent nodes):

private void axXMLGrid1_EditEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_EditEvent e)
{
 if (e.node.Nodes.Count != 0)
 e.cancel = true;
}

The following VFP sample disables editing nodes that contain child nodes (parent nodes):

*** ActiveX Control Event ***
LPARAMETERS node, cancel

if !(node.Nodes.Count = 0)
 cancel = .t.
endif

C#

VB

private void EditCloseEvent(object sender)
{
}

Private Sub EditCloseEvent(ByVal sender As System.Object) Handles
EditCloseEvent
End Sub

C#

C++

private void EditCloseEvent(object sender, EventArgs e)
{
}

void OnEditClose()
{
}

event EditClose ()
Occurs when the edit operation ends.

Type Description

The EditClose event notifies your application that the node's editor is hidden and closed.
Use the FocusNode property to specify the control's focused node. Use the Editor property
to assign an editor to a node. The Editing specifies the window's handle of the built-in editor
while the control is running in edit mode. Use the AutoEdit property to specify whether the
control starts editing the focused node.

The edit events are fired in the following order:

1. Edit event. Prevents editing nodes, before showing the node's editor.

2. EditOpen event. The edit operation started, the node's editor is shown. The Editing
property gives the window's handle of the built-in editor being shown.

3. Change event. The Change event is fired only if the user types ENTER key, the user
selects a new value from a predefined data list, or focus a new node.

4. EditClose event. The node's editor is hidden and closed.

Syntax for EditClose event, /NET version, on:

Syntax for EditClose event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall EditClose(TObject *Sender)
{
}

procedure EditClose(ASender: TObject;);
begin
end;

procedure EditCloseEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event EditClose()
end event EditClose

Private Sub EditCloseEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EditCloseEvent
End Sub

Private Sub EditClose()
End Sub

Private Sub EditClose()
End Sub

LPARAMETERS nop

PROCEDURE OnEditClose(oXMLGrid)
RETURN

Java…

VBSc…

<SCRIPT EVENT="EditClose()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function EditClose()

Syntax for EditClose event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComEditClose
 Forward Send OnComEditClose
End_Procedure

METHOD OCX_EditClose() CLASS MainDialog
RETURN NIL

void onEvent_EditClose()
{
}

function EditClose as v ()
end function

function nativeObject_EditClose()
return

The following VB sample displays a message when an editor is closed:

Private Sub XMLGrid1_EditClose()
 Debug.Print "XMLGrid1_EditClose event is fired"
End Sub

The following C++ sample displays a message when an editor is closed:

void OnEditCloseXmlgrid1()
{
 OutputDebugString("OnEditCloseXmlgrid1 is called.");
}

The following VB.NET sample displays a message when an editor is closed:

Private Sub AxXMLGrid1_EditClose(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxXMLGrid1.EditClose
 Debug.Print("AxXMLGrid1_EditClose is called.")

End Sub

The following C# sample displays a message when an editor is closed:

private void axXMLGrid1_EditClose(object sender, EventArgs e)
{
 System.Diagnostics.Debug.Write("axXMLGrid1_EditClose is called.");
}

The following VFP sample displays a message when an editor is closed:

*** ActiveX Control Event ***

wait window nowait "EditClose event is called."

C#

VB

private void EditOpen(object sender)
{
}

Private Sub EditOpen(ByVal sender As System.Object) Handles EditOpen
End Sub

C#

C++

private void EditOpen(object sender, EventArgs e)
{
}

void OnEditOpen()
{
}

event EditOpen ()
Occurs when the edit operation starts.

Type Description

The EditOpen event notifies your application that the user starts editing a node. Use the
FocusNode property to get the node being edited. Use the Editor property to assign an
editor to a node. The Editing specifies the window's handle of the built-in editor while the
control is running in edit mode. Use the AutoEdit property to specify whether the control
starts editing the focused node.

The edit events are fired in the following order:

1. Edit event. Prevents editing nodes, before showing the node's editor.

2. EditOpen event. The edit operation started, the node's editor is shown. The Editing
property gives the window's handle of the built-in editor being shown.

3. Change event. The Change event is fired only if the user types ENTER key, the user
selects a new value from a predefined data list, or focus a new node.

4. EditClose event. The node's editor is hidden and closed.

Syntax for EditOpen event, /NET version, on:

Syntax for EditOpen event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall EditOpen(TObject *Sender)
{
}

procedure EditOpen(ASender: TObject;);
begin
end;

procedure EditOpen(sender: System.Object; e: System.EventArgs);
begin
end;

begin event EditOpen()
end event EditOpen

Private Sub EditOpen(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EditOpen
End Sub

Private Sub EditOpen()
End Sub

Private Sub EditOpen()
End Sub

LPARAMETERS nop

PROCEDURE OnEditOpen(oXMLGrid)
RETURN

Java… <SCRIPT EVENT="EditOpen()" LANGUAGE="JScript">
</SCRIPT>

Syntax for EditOpen event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function EditOpen()
End Function
</SCRIPT>

Procedure OnComEditOpen
 Forward Send OnComEditOpen
End_Procedure

METHOD OCX_EditOpen() CLASS MainDialog
RETURN NIL

void onEvent_EditOpen()
{
}

function EditOpen as v ()
end function

function nativeObject_EditOpen()
return

The following VB sample displays a message when an editor is opened:

Private Sub XMLGrid1_EditOpen()
 Debug.Print "XMLGrid1_EditOpen event is fired"
End Sub

The following C++ sample displays a message when an editor is opened:

void OnEditOpenXmlgrid1()
{
 OutputDebugString("OnEditOpenXmlgrid1 is called.");
}

The following VB.NET sample displays a message when an editor is opened:

Private Sub AxXMLGrid1_EditOpen(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxXMLGrid1.EditOpen
 Debug.Print("AxXMLGrid1_EditOpen is called.")
End Sub

The following C# sample displays a message when an editor is opened:

private void axXMLGrid1_EditOpen(object sender, EventArgs e)
{
 System.Diagnostics.Debug.Write("axXMLGrid1_EditOpen is called.");
}

The following VFP sample displays a message when an editor is opened:

*** ActiveX Control Event ***

wait window nowait "EditOpen event is called."

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exxmlgrid1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender, AxEXMLGRIDLib._IXMLGridEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oXMLGrid,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)

Syntax for Event event, /COM version (others), on:

dBASE

end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Use the Editor property to assign an editor to a node. Use the Mask property to mask input
characters while user types inside the node's editor. Use the Numeric property to specify
whether the editor enables numeric values only. Use the Editing property to check whether
the control is running in edit mode.

Syntax for KeyDown event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Syntax for KeyDown event, /COM version, on:

Xbas… PROCEDURE OnKeyDown(oXMLGrid,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

The following VB sample starts editing a node as soon as user presses the F2 key:

Private Sub XMLGrid1_KeyDown(KeyCode As Integer, Shift As Integer)
 With XMLGrid1
 If .Editing = 0 Then

 If KeyCode = vbKeyF2 Then
 .Edit
 End If
 End If
 End With
End Sub

The following C++ sample starts editing a node as soon as user presses the F2 key:

void OnKeyDownXmlgrid1(short FAR* KeyCode, short Shift)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 if (m_xmlgrid.GetEditing() == 0)
 if (*KeyCode == VK_F2)
 m_xmlgrid.Edit(vtMissing);
}

The following VB.NET sample starts editing a node as soon as user presses the F2 key:

Private Sub AxXMLGrid1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_KeyDownEvent) Handles AxXMLGrid1.KeyDownEvent
 If (AxXMLGrid1.Editing = 0) Then
 If (e.keyCode = Keys.F2) Then
 AxXMLGrid1.Edit()
 End If
 End If
End Sub

The following C# sample starts editing a node as soon as user presses the F2 key:

private void axXMLGrid1_KeyDownEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_KeyDownEvent e)
{
 if (axXMLGrid1.Editing == 0)
 if (e.keyCode == Convert.ToUInt16(Keys.F2))
 axXMLGrid1.Edit();
}

The following VFP sample starts editing a node as soon as user presses the F2 key:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

with thisform.XMLGrid1
 if (.Editing = 0)
 if (keycode = 113)
 .Edit
 endif
 endif
endwith

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

private void KeyPressEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Use the Editor property to assign an editor to a node. Use the Mask property to mask input
characters while user types inside the node's editor. Use the Numeric property to specify
whether the editor enables numeric values only. Use the Editing property to check whether
the control is running in edit mode.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oXMLGrid,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oXMLGrid,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the NodeFromPoint method to get the node from cursor.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oXMLGrid,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.XMLGrid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.XMLGrid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample displays the node being clicked:

Private Sub XMLGrid1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)

 If Not n Is Nothing Then
 Debug.Print "You have clicked the '" & n.Name & "'."
 End If
 End With
End Sub

The following C++ sample displays the node being clicked:

#include "Node.h"
void OnMouseDownXmlgrid1(short Button, short Shift, long X, long Y)
{
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 {
 CString strName = node.GetName();
 OutputDebugString(strName);
 }
}

The following VB.NET sample displays the node being clicked:

Private Sub AxXMLGrid1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseDownEvent) Handles
AxXMLGrid1.MouseDownEvent
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not n Is Nothing Then
 Debug.Print("You have clicked the '" & n.Name & "'.")
 End If
 End With
End Sub

The following C# sample displays the node being clicked:

private void axXMLGrid1_MouseDownEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseDownEvent e)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_NodeFromPoint(e.x, e.y);
 if (node != null)

 System.Diagnostics.Debug.Write(node.Name);
}

The following VFP sample displays the node being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.XMLGrid1
 n = .NodeFromPoint(x, y)
 if (!isnull(n))
 wait window nowait n.Name
 endif
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Call the HitTest method to determine the
location of the specified point relative to the client area of a xml grid view control. Use the
NodeFromPoint property to get the node from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oXMLGrid,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.XMLGrid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.XMLGrid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the name of the node over the cursor:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)

 If Not n Is Nothing Then
 Debug.Print "Hovers '" & n.Name & "'."
 End If
 End With
End Sub

The following VB sample displays the hit test code while user moves the mouse:

Private Sub XMLGrid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, h As EXMLGRIDLibCtl.HitTestEnum
 h = .HitTest(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, n)
 If Not h = 0 Then
 If (Not n Is Nothing) Then
 Debug.Print "Node = " & n.Name & " H = " & Hex(h)
 Else
 Debug.Print "H = " & Hex(h)
 End If
 End If
 End With
End Sub

The following C++ sample prints the name of the node from the cursor:

#include "Node.h"
void OnMouseMoveXmlgrid1(short Button, short Shift, long X, long Y)
{
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 {
 CString strName = node.GetName();
 OutputDebugString(strName);
 }
}

The following VB.NET sample prints the name of the node from the cursor:

Private Sub AxXMLGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As

AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent) Handles
AxXMLGrid1.MouseMoveEvent
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not n Is Nothing Then
 Debug.Print("You have clicked the '" & n.Name & "'.")
 End If
 End With
End Sub

The following C# sample prints the name of the node from the cursor:

private void axXMLGrid1_MouseMoveEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseMoveEvent e)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 System.Diagnostics.Debug.Write(node.Name);
}

The following VFP sample prints the name of the node from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.XMLGrid1
 n = .NodeFromPoint(x, y)
 if (!isnull(n))
 wait window nowait n.Name
 endif
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the NodeFromPoint method to get the node from cursor.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oXMLGrid,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.XMLGrid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.XMLGrid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample displays the node where the user releases the mouse:

Private Sub XMLGrid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)

 If Not n Is Nothing Then
 Debug.Print "You have clicked the '" & n.Name & "'."
 End If
 End With
End Sub

The following C++ sample displays the node where the user releases the mouse:

#include "Node.h"
void OnMouseUpXmlgrid1(short Button, short Shift, long X, long Y)
{
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 {
 CString strName = node.GetName();
 OutputDebugString(strName);
 }
}

The following VB.NET sample displays the node where the user releases the mouse:

Private Sub AxXMLGrid1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_MouseUpEvent) Handles AxXMLGrid1.MouseUpEvent
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node = .get_NodeFromPoint(e.x, e.y)
 If Not n Is Nothing Then
 Debug.Print("You have clicked the '" & n.Name & "'.")
 End If
 End With
End Sub

The following C# sample displays the node where the user releases the mouse:

private void axXMLGrid1_MouseUpEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_MouseUpEvent e)
{
 EXMLGRIDLib.Node node = axXMLGrid1.get_NodeFromPoint(e.x, e.y);
 if (node != null)
 System.Diagnostics.Debug.Write(node.Name);

}

The following VFP sample displays the node where the user releases the mouse:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.XMLGrid1
 n = .NodeFromPoint(x, y)
 if (!isnull(n))
 wait window nowait n.Name
 endif
endwith

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLECompleteDragEvent e)
{
}

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another.

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. Use
the OLEDropMode property to enable the OLE drag and drop operations in the control.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oXMLGrid,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in bellow.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

private void OLEDragOver(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exmlgridlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into control. In order to enable OLE drag and drop feature into control you have to check
the OLEDropMode property. The idea of drag and drop in the control is the same as in the
other controls. To start accepting drag and drop sources the control should have the
OLEDropMode property to exOLEDropManual. Once that is is set, the controls starts
accepting any drag and drop sources.

Use the OLEDragDrop event to notify your application that user drags some data to the
control. Use the Add method to insert new nodes to the control. Use the NodeFromPoint
property to retrieve the node from the cursor. If the OLEDropMode property to
exOLEDropManual and you need to drag data from the eXMLGrid control you need to
handle the OLEStartDrag event. Use the Selected property to select a node. Use the
EnsureVisibleNode method to ensure that a node fits the control's client area.

Syntax for OLEDragOver event, /NET version, on:

Syntax for OLEDragOver event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Private Sub OLEDragOver(ByVal Data As EXMLGRIDLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oXMLGrid,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java… <SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

Syntax for OLEDragOver event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.XMLGrid.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.XMLGrid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.XMLGrid.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

The following VB sample adds a new node when user drags data to the control:

Private Sub XMLGrid1_OLEDragDrop(ByVal Data As EXMLGRIDLibCtl.IExDataObject, Effect
As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With XMLGrid1
 Dim n As EXMLGRIDLibCtl.Node, nds As EXMLGRIDLibCtl.nodes
 Set nds = .nodes
 Set n = .NodeFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Not n Is Nothing Then
 Set nds = n.nodes
 End If
 With nds

 Dim strData As String
 strData = Data.GetData(exCFText)
 .Add(strData).Selected = True
 End With
 If Not n Is Nothing Then
 n.Expanded = True
 End If
 End With
End Sub

The following C++ sample adds a new node when user drags data to the control:

#include "Node.h"
#import <exmlgrid.dll>
void OnOLEDragDropXmlgrid1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 if (EXMLGRIDLib::IExDataObjectPtr spData = Data)
 {
 CString strData = V2S(&spData->GetData(EXMLGRIDLib::exCFText));
 CNodes nodes = m_xmlgrid.GetNodes();
 CNode node = m_xmlgrid.GetNodeFromPoint(X, Y);
 if (node.m_lpDispatch != NULL)
 nodes = node.GetNodes();
 nodes.Add(strData, vtMissing, vtMissing).SetSelected(TRUE);
 if (node.m_lpDispatch != NULL)
 node.SetExpanded(TRUE);
 }
}

The #import <exmlgrid.dll> is called to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exmlgrid.dll> creates the EXMLGRIDLib
namespace where all objects and types that eXMLGrid exports. If you need to drag data
from eXMLGrid control to a window you need to use RegisterDragDrop API function. The
RegisterDragDrop API function registers the specified window as one that can be the target
of an OLE drag-and-drop operation and specifies the IDropTarget instance to use for drop
operations. Shortly, you need an object that implements the IDropTarget interface, and to
call the RegisterDragDrop API function.

The V2S function converts a VARIANT expression to a string expression:

static CString V2S(const VARIANT* pvtValue)
{
 COleVariant vtString;
 vtString.ChangeType(VT_BSTR, (VARIANT*)pvtValue);
 return V_BSTR(&vtString);
}

The following VB.NET sample adds a new node when user drags data to the control:

Private Sub AxXMLGrid1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLEDragDropEvent) Handles
AxXMLGrid1.OLEDragDrop
 With AxXMLGrid1
 Dim n As EXMLGRIDLib.Node = .get_NodeFromPoint(e.x, e.y), nds As
EXMLGRIDLib.Nodes = .Nodes
 If Not n Is Nothing Then
 nds = n.Nodes
 End If
 With nds
 Dim strData As String =
e.data.GetData(EXMLGRIDLib.exClipboardFormatEnum.exCFText)
 .Add(strData).Selected = True
 End With
 If Not n Is Nothing Then
 n.Expanded = True
 End If
 End With
End Sub

The following C# sample adds a new node when user drags data to the control:

private void axXMLGrid1_OLEDragDrop(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLEDragDropEvent e)
{
 EXMLGRIDLib.Nodes nodes = axXMLGrid1.Nodes;
 EXMLGRIDLib.Node n = axXMLGrid1.get_NodeFromPoint(e.x, e.y);

 if (n != null)
 nodes = n.Nodes;

nodes.Add(e.data.GetData(Convert.ToInt16(EXMLGRIDLib.exClipboardFormatEnum.exCFText)).ToString(),
 null, null).Selected = true;
 if (n != null)
 n.Expanded = true;
}

The following VFP sample adds a new node when user drags data to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With thisform.XMLGrid1
 nds = .Nodes
 n = .NodeFromPoint(x , y)
 If !isnull(n) Then
 nds = n.Nodes
 EndIf
 With nds
 .Add(Data.GetData(1)).Selected = .t. && exCFText
 EndWith
 If !isnull(n) Then
 n.Expanded = .t.
 EndIf
EndWith

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed bellow.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

These bits correspond to the values 1, 2, and 4,
respectively. The shift parameter indicates the state of
these keys; some, all, or none of the bits can be set,
indicating that some, all, or none of the keys are
depressed. For example, if both the CTRL and ALT keys
were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

State as Integer
An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed bellow.

C#

VB

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void OLEDragOver(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exmlgridlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Private Sub OLEDragOver(ByVal Data As EXMLGRIDLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)

Syntax for OLEDragOver event, /COM version, on:

VBA

VFP

Xbas…

End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oXMLGrid,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.XMLGrid.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.XMLGrid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.XMLGrid.1::OLE_YPOS_PIXELS,State as N)

Syntax for OLEDragOver event, /COM version (others), on:

dBASE

end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed bellow.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OLEGiveFeedback(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLEGiveFeedbackEvent) Handles

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB6

VBA

VFP

Xbas…

OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oXMLGrid,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

Syntax for OLEGiveFeedback event, /COM version (others), on:

dBASE function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exmlgridlib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not implemented.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXMLGRIDLibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oXMLGrid,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.XMLGrid.1::IExDataObject,Format
as N)
end function

function nativeObject_OLESetData(Data,Format)
return

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event.

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the allowedeffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be).
You may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use the Data
object to provide the data that need to be dragged to other OLE component. Use the
OLEDropMode property to enable the OLE drag and drop operations in the control.

Syntax for OLEStartDrag event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void OLEStartDrag(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exmlgridlib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_OLEStartDragEvent);
begin
end;

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXMLGRIDLibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)

Syntax for OLEStartDrag event, /COM version, on:

VFP

Xbas…

End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oXMLGrid,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.XMLGrid.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

Syntax for OLEStartDrag event, /COM version (others), on:

The following samples shows how to enable drag and drop operation between exMLGrid
control an other controls, using the OLEDropMode property on exOLEDropManual. If the
OLEDropMode property is exOLEDropManual the OLEStartDrag and/or OLEDragDrop

events must be handled.

The following VB sample enables drag and drop nodes to a text editor:

Private Sub Form_Load()
 With XMLGrid1
 .BeginUpdate
 .OLEDropMode = exOLEDropManual
 With .Editors.Add("Float", EditType)
 .Numeric = exFloat
 End With
 With .Editors.Add("DropDown", DropDownListType)
 .AddItem 1, "Yes"
 .AddItem 2, "No"
 End With
 With .Nodes
 With .Add("Root").Nodes
 With .Add("Child 1", "1.2")
 .Editor = "Float"
 End With
 With .Add("Child 2", "1")
 .Editor = "DropDown"
 End With
 End With
 End With
 .EndUpdate
 End With
End Sub

Private Sub XMLGrid1_OLEStartDrag(ByVal Data As EXMLGRIDLibCtl.IExDataObject,
AllowedEffects As Long)
 AllowedEffects = EXMLGRIDLibCtl.exOLEDropEffectCopy
 Data.SetData XMLGrid1.FocusNode.Name, EXMLGRIDLibCtl.exCFText
End Sub

The following C++ sample enables drag and drop nodes to a text editor:

#include "Node.h"

#import <exmlgrid.dll>
void OnOLEStartDragXmlgrid1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 *AllowedEffects = EXMLGRIDLib::exOLEDropEffectCopy;
 if (EXMLGRIDLib::IExDataObjectPtr spData = Data)
 {
 COleVariant vtValue = m_xmlgrid.GetFocusNode().GetName();
 spData->SetData(vtValue, COleVariant((long)EXMLGRIDLib::exCFText));
 }
}

The #import <exmlgrid.dll> is called to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exmlgrid.dll> creates the EXMLGRIDLib
namespace where all objects and types that eXMLGrid exports. If you need to drag data
from eXMLGrid control to a window you need to use RegisterDragDrop API function. The
RegisterDragDrop API function registers the specified window as one that can be the target
of an OLE drag-and-drop operation and specifies the IDropTarget instance to use for drop
operations. Shortly, you need an object that implements the IDropTarget interface, and to
call the RegisterDragDrop API function. The OLEStartDrag event is not called if the
OLEDropMode property is exOLEDropNone.

The following VB.NET sample enables drag and drop nodes to a text editor:

Private Sub AxXMLGrid1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_OLEStartDragEvent) Handles AxXMLGrid1.OLEStartDrag
 e.allowedEffects = EXMLGRIDLib.exOLEDropEffectEnum.exOLEDropEffectCopy
 e.data.SetData(AxXMLGrid1.FocusNode.Name,
EXMLGRIDLib.exClipboardFormatEnum.exCFText)
End Sub

The OLEStartDrag event is not called if the OLEDropMode property is exOLEDropNone.

The following C# sample enables drag and drop nodes to a text editor:

private void axXMLGrid1_OLEStartDrag(object sender,
AxEXMLGRIDLib._IXMLGridEvents_OLEStartDragEvent e)
{
 e.allowedEffects =
Convert.ToUInt16(EXMLGRIDLib.exOLEDropEffectEnum.exOLEDropEffectCopy);
 e.data.SetData(axXMLGrid1.FocusNode.Name,

EXMLGRIDLib.exClipboardFormatEnum.exCFText);
}

The OLEStartDrag event is not called if the OLEDropMode property is exOLEDropNone.

The following VFP sample enables drag and drop nodes to a text editor:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

allowedeffects = 1 && exOLEDropEffectCopy
with thisform.XMLGrid1
 data.SetData(.FocusNode.Name, 1) && exCFText
endwith

The OLEStartDrag event is not called if the OLEDropMode property is exOLEDropNone.

C#

VB

private void RemoveNode(object sender,exontrol.EXMLGRIDLib.Node Node)
{
}

Private Sub RemoveNode(ByVal sender As System.Object,ByVal Node As
exontrol.EXMLGRIDLib.Node) Handles RemoveNode
End Sub

C#

C++

C++
Builder

Delphi

private void RemoveNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_RemoveNodeEvent e)
{
}

void OnRemoveNode(LPDISPATCH Node)
{
}

void __fastcall RemoveNode(TObject *Sender,Exmlgridlib_tlb::INode *Node)
{
}

procedure RemoveNode(ASender: TObject; Node : INode);
begin

event RemoveNode (Node as Node)
Occurs when a node is removed from the nodes collection.

Type Description
Node as Node A Node object being removed.

The RemoveNode event notifies your application that a node is removed. Use the
RemoveNode event to remove any extra data that you have associated to a node. Use the
Remove method to remove a node. Use the Clear method to clear the nodes collection. Use
the Nodes property to access the control's nodes collection. Use the Nodes property to
access the node's child nodes collection. Use the UserData property to assign an extra
data to a node.

Syntax for RemoveNode event, /NET version, on:

Syntax for RemoveNode event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure RemoveNode(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_RemoveNodeEvent);
begin
end;

begin event RemoveNode(oleobject Node)
end event RemoveNode

Private Sub RemoveNode(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_RemoveNodeEvent) Handles RemoveNode
End Sub

Private Sub RemoveNode(ByVal Node As EXMLGRIDLibCtl.INode)
End Sub

Private Sub RemoveNode(ByVal Node As Object)
End Sub

LPARAMETERS Node

PROCEDURE OnRemoveNode(oXMLGrid,Node)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RemoveNode(Node)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveNode(Node)
End Function
</SCRIPT>

Procedure OnComRemoveNode Variant llNode
 Forward Send OnComRemoveNode llNode

Syntax for RemoveNode event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_RemoveNode(Node) CLASS MainDialog
RETURN NIL

void onEvent_RemoveNode(COM _Node)
{
}

function RemoveNode as v (Node as OLE::Exontrol.XMLGrid.1::INode)
end function

function nativeObject_RemoveNode(Node)
return

The following VB sample displays the name of the node being removed:

Private Sub XMLGrid1_RemoveNode(ByVal Node As EXMLGRIDLibCtl.INode)
 Debug.Print Node.Name
End Sub

The following C++ sample displays the name of the node being removed:

#include "Node.h"
void OnRemoveNodeXmlgrid1(LPDISPATCH Node)
{
 CNode node(Node); node.m_bAutoRelease = FALSE;
 CString strName = node.GetName();
 OutputDebugString(strName);
}

The following VB.NET sample displays the name of the node being removed:

Private Sub AxXMLGrid1_RemoveNode(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_RemoveNodeEvent) Handles AxXMLGrid1.RemoveNode
 Debug.Print(e.node.Name)
End Sub

The following C# sample displays the name of the node being removed:

private void axXMLGrid1_RemoveNode(object sender,
AxEXMLGRIDLib._IXMLGridEvents_RemoveNodeEvent e)
{
 System.Diagnostics.Debug.Write(e.node.Name);
}

The following VFP sample displays the name of the node being removed:

*** ActiveX Control Event ***
LPARAMETERS node

wait window nowait node.Name

C#

VB

private void ResizeLevel(object sender,int Level)
{
}

Private Sub ResizeLevel(ByVal sender As System.Object,ByVal Level As Integer)
Handles ResizeLevel
End Sub

C#

C++

C++
Builder

Delphi

private void ResizeLevel(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ResizeLevelEvent e)
{
}

void OnResizeLevel(long Level)
{
}

void __fastcall ResizeLevel(TObject *Sender,long Level)
{
}

procedure ResizeLevel(ASender: TObject; Level : Integer);
begin

event ResizeLevel (Level as Long)
Occurs when the user resizes the level.

Type Description

Level as Long

A long expression that indicates the level being resized.
The Level parameter is zero based. The 0 Level indicates
the first level. The 1 Level indicates the second level and
so on.

Use the ResizeLevel event to notify your application when user resizes a level. Use the
LevelWidth property to specify the level's width. Use the Level property to get the node's
level.

Syntax for ResizeLevel event, /NET version, on:

Syntax for ResizeLevel event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ResizeLevel(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_ResizeLevelEvent);
begin
end;

begin event ResizeLevel(long Level)
end event ResizeLevel

Private Sub ResizeLevel(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ResizeLevelEvent) Handles ResizeLevel
End Sub

Private Sub ResizeLevel(ByVal Level As Long)
End Sub

Private Sub ResizeLevel(ByVal Level As Long)
End Sub

LPARAMETERS Level

PROCEDURE OnResizeLevel(oXMLGrid,Level)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ResizeLevel(Level)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ResizeLevel(Level)
End Function
</SCRIPT>

Procedure OnComResizeLevel Integer llLevel
 Forward Send OnComResizeLevel llLevel

Syntax for ResizeLevel event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_ResizeLevel(Level) CLASS MainDialog
RETURN NIL

void onEvent_ResizeLevel(int _Level)
{
}

function ResizeLevel as v (Level as N)
end function

function nativeObject_ResizeLevel(Level)
return

The following VB sample specifies a minimum width for the first level:

Private Sub XMLGrid1_ResizeLevel(ByVal Level As Long)
 If Level = 0 Then
 With XMLGrid1
 If .LevelWidth(Level) < 64 Then
 .LevelWidth(Level) = 64
 End If
 End With
 End If
End Sub

The following C++ sample specifies a minimum width for the first level:

void OnResizeLevelXmlgrid1(long Level)
{
 if (Level == 0)
 if (m_xmlgrid.GetLevelWidth(Level) < 64)
 m_xmlgrid.SetLevelWidth(Level, 64);
}

The following VB.NET sample specifies a minimum width for the first level:

Private Sub AxXMLGrid1_ResizeLevel(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ResizeLevelEvent) Handles AxXMLGrid1.ResizeLevel
 If (e.level = 0) Then
 With AxXMLGrid1
 If (.get_LevelWidth(e.level) < 64) Then
 .set_LevelWidth(e.level, 64)
 End If
 End With
 End If
End Sub

The following C# sample specifies a minimum width for the first level:

private void axXMLGrid1_ResizeLevel(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ResizeLevelEvent e)
{
 if (e.level == 0)
 if (axXMLGrid1.get_LevelWidth(e.level) < 64)
 axXMLGrid1.set_LevelWidth(e.level, 64);
}

The following VFP sample specifies a minimum width for the first level:

*** ActiveX Control Event ***
LPARAMETERS level

with thisform.XMLGrid1
 if (level = 0)
 if (.LevelWidth(level) < 64)
 .LevelWidth(level) = 64
 endif
 endif
endwith

C#

VB

private void ScrollButtonClick(object sender,exontrol.EXMLGRIDLib.ScrollBarEnum
ScrollBar,exontrol.EXMLGRIDLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXMLGRIDLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXMLGRIDLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C#

C++

private void ScrollButtonClick(object sender,
AxEXMLGRIDLib._IXMLGridEvents_ScrollButtonClickEvent e)
{
}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scroll bar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollBars property to specify the
visible scrollbars in the control. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the Background property to change the visual appearance
for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall ScrollButtonClick(TObject *Sender,Exmlgridlib_tlb::ScrollBarEnum
ScrollBar,Exmlgridlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXMLGRIDLibCtl.ScrollBarEnum,ByVal ScrollPart As
EXMLGRIDLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oXMLGrid,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.XMLGrid.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.XMLGrid.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With XMLGrid1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"

 .EndUpdate
End With

Private Sub XMLGrid1_ScrollButtonClick(ByVal ScrollPart As
EXXMLGRIDLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxXMLGrid1
 .BeginUpdate()
 .set_ScrollPartVisible(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part Or
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxXMLGrid1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXXMLGRIDLib._IXMLGridEvents_ScrollButtonClickEvent) Handles
AxXMLGrid1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axXMLGrid1.BeginUpdate();
axXMLGrid1.set_ScrollPartVisible(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part |
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, true);
axXMLGrid1.set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exLeftB1Part , "1");
axXMLGrid1.set_ScrollPartCaption(EXXMLGRIDLib.ScrollBarEnum.exVScroll,
EXXMLGRIDLib.ScrollPartEnum.exRightB1Part, "2");

axXMLGrid1.EndUpdate();

private void axXMLGrid1_ScrollButtonClick(object sender,
AxEXXMLGRIDLib._IXMLGridEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_xmlGrid.BeginUpdate();
m_xmlGrid.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_xmlGrid.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_xmlGrid.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_xmlGrid.EndUpdate();

void OnScrollButtonClickXMLGrid1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.XMLGrid1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

C#

VB

private void SelectionChanged(object sender)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object) Handles
SelectionChanged
End Sub

C#

C++

C++
Builder

Delphi

private void SelectionChanged(object sender, EventArgs e)
{
}

void OnSelectionChanged()
{
}

void __fastcall SelectionChanged(TObject *Sender)
{
}

procedure SelectionChanged(ASender: TObject;);
begin
end;

event SelectionChanged ()
Fires when the user changes the selection.

Type Description

Use the SelectionChanged event to notify your application that the user changes the
selection. Use the SingleSel property to specify whether the control supports single or
multiple selection. Use the FocusNode property to retrieve the focused node. Use the
SelectCount property to get the number of selected nodes. Use the SelectedNode property
to retrieve the selected node giving its index in the selected nodes collection. Use the
Selected property to select a node. Use the SelForeColor, SelForeColorChild,
SelBackColor, SelBackColorChild properties to customize the colors for selected nodes.

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure SelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelectionChanged()
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelectionChanged
End Sub

Private Sub SelectionChanged()
End Sub

Private Sub SelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnSelectionChanged(oXMLGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="SelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged()
End Function
</SCRIPT>

Procedure OnComSelectionChanged
 Forward Send OnComSelectionChanged
End_Procedure

Syntax for SelectionChanged event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_SelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged()
{
}

function SelectionChanged as v ()
end function

function nativeObject_SelectionChanged()
return

The following VB sample displays the selected node(s), as soon as the user changes the
selection:

Private Sub XMLGrid1_SelectionChanged()
 With XMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Print .SelectedNode(i).Name
 Next
 End With
End Sub

The following C++ sample displays the selected node(s), as soon as the user changes the
selection:

#include "Node.h"
void OnSelectionChangedXmlgrid1()
{
 if (IsWindow(m_xmlgrid.m_hWnd))
 for (long i = 0; i < m_xmlgrid.GetSelectCount(); i++)
 {
 CNode node = m_xmlgrid.GetSelectedNode(COleVariant(i));
 OutputDebugString(node.GetName());

 }
}

The following VB.NET sample displays the selected node(s), as soon as the user changes
the selection:

Private Sub AxXMLGrid1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxXMLGrid1.SelectionChanged
 With AxXMLGrid1
 Dim i As Long
 For i = 0 To .SelectCount - 1
 Debug.Write(.get_SelectedNode(i).Name())
 Next
 End With
End Sub

The following C# sample displays the selected node(s), as soon as the user changes the
selection:

private void axXMLGrid1_SelectionChanged(object sender, EventArgs e)
{
 for (int i = 0; i < axXMLGrid1.SelectCount; i++)
 {
 EXMLGRIDLib.Node node = axXMLGrid1.get_SelectedNode(i);
 System.Diagnostics.Debug.Write(node.Name);
 }
}

The following VFP sample displays the selected node(s), as soon as the user changes the
selection:

*** ActiveX Control Event ***

With thisform.XMLGrid1
 local i
 For i = 0 To .SelectCount - 1
 wait window nowait .SelectedNode(i).Name
 Next
EndWith

C#

VB

private void UserEditorClose(object sender,object
Obj,exontrol.EXMLGRIDLib.Node Node)
{
}

Private Sub UserEditorClose(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Node As exontrol.EXMLGRIDLib.Node) Handles UserEditorClose
End Sub

C#

C++

C++
Builder

private void UserEditorClose(object sender,
AxEXMLGRIDLib._IXMLGridEvents_UserEditorCloseEvent e)
{
}

void OnUserEditorClose(LPDISPATCH Object,LPDISPATCH Node)
{
}

void __fastcall UserEditorClose(TObject *Sender,IDispatch
*Object,Exmlgridlib_tlb::INode *Node)
{

event UserEditorClose (Object as Object, Node as Node)
Fired the user editor is about to be opened.

Type Description
Object as Object An object created by UserEditor property
Node as Node A Node object where the ActiveX editor is closed.

Use the UserEditorClose event to notify your application when the user editor is hidden. The
control fires UserEditorOleEvent event each time when a an user editor object fires an
event. Use the Add method and UserEditorType type to add an ActiveX editor to the
control. Use the UserEditor method to create an ActiveX editor. Use the UserEditorObject
property to get the ActiveX editor created by the UserEditor method. The UserEditorOpen
event is fired when the control shows an ActiveX editor.

Syntax for UserEditorClose event, /NET version, on:

Syntax for UserEditorClose event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure UserEditorClose(ASender: TObject; Object : IDispatch;Node : INode);
begin
end;

procedure UserEditorClose(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_UserEditorCloseEvent);
begin
end;

begin event UserEditorClose(oleobject Object,oleobject Node)
end event UserEditorClose

Private Sub UserEditorClose(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_UserEditorCloseEvent) Handles UserEditorClose
End Sub

Private Sub UserEditorClose(ByVal Object As Object,ByVal Node As
EXMLGRIDLibCtl.INode)
End Sub

Private Sub UserEditorClose(ByVal Object As Object,ByVal Node As Object)
End Sub

LPARAMETERS Object,Node

PROCEDURE OnUserEditorClose(oXMLGrid,Object,Node)
RETURN

Java…

VBSc…

<SCRIPT EVENT="UserEditorClose(Object,Node)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorClose(Object,Node)

Syntax for UserEditorClose event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComUserEditorClose Variant llObject Variant llNode
 Forward Send OnComUserEditorClose llObject llNode
End_Procedure

METHOD OCX_UserEditorClose(Object,Node) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorClose(COM _Object,COM _Node)
{
}

function UserEditorClose as v (Object as P,Node as
OLE::Exontrol.XMLGrid.1::INode)
end function

function nativeObject_UserEditorClose(Object,Node)
return

The following VB sample changes the node's Value property when the user editor is closed
(in this case we used the Exontrol's ExComboBox control):

Private Sub XMLGrid1_UserEditorClose(ByVal Object As Object, ByVal Node As
EXMLGRIDLibCtl.INode)
On Error Resume Next
 With Object.Items
 Node.Value = .Select(0)
 End With
End Sub

The following C++ sample changes the node's Value property when the user editor is
closed (in this case we have used the Exontrol's ExComboBox component):

#import <excombobox.dll>
void OnUserEditorCloseXmlgrid1(LPDISPATCH Object, LPDISPATCH Node)
{

https://exontrol.com/excombobox.jsp

 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CNode node(Node); node.m_bAutoRelease = FALSE;
 EXCOMBOBOXLib::IComboBoxPtr spComboBox = Object;
 if (spComboBox != NULL)
 {
 COleVariant vtValue;
 if (SUCCEEDED(spComboBox->get_Select(COleVariant((long)0), &vtValue)))
 node.SetValue(vtValue);
 }
}

The sample assumes that the Object parameter holds an ExComboBox control. We need to
call the #import <excombobox.dll> in order to include definitions for objects and types in the
ExComboBox control. The #import <excombobox.dll> creates EXCOMBOBOXLib
namespace that includes all definitions for objects and types that the ExComboBox control
exports.

The following VB.NET sample changes the node's Value property when the user editor is
closed (in this case we have used the Exontrol's ExComboBox component):

Private Sub AxXMLGrid1_UserEditorClose(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_UserEditorCloseEvent) Handles
AxXMLGrid1.UserEditorClose
 On Error Resume Next
 With e.object.Items
 e.node.Value = .Select(0)
 End With
End Sub

The following C# sample changes the node's Value property when the user editor is closed
(in this case we have used the Exontrol's ExComboBox component):

private void axXMLGrid1_UserEditorClose(object sender,
AxEXMLGRIDLib._IXMLGridEvents_UserEditorCloseEvent e)
{
 EXCOMBOBOXLib.ComboBox comboBox = e.@object as EXCOMBOBOXLib.ComboBox;
 if (comboBox != null)
 e.node.Value = comboBox.get_Select(0);

}

In C# your project needs a new reference to the Exontrol's ExComboBox control library.
Use the Project\Add Reference\COM item to add new reference to a COM object. Once
that you added a reference to the Exontrol's ExComboBox the EXCOMBOBOXLib
namespace is created. The EXCOMBOBOXLib namespace contains definitions for all
objects that ExComboBox control exports.

The following VFP sample changes the node's Value property when the user editor is
closed (in this case we have used the Exontrol's ExComboBox component):

*** ActiveX Control Event ***
LPARAMETERS object, node

node.value = object.Select(0)

C#

VB

private void UserEditorOleEvent(object sender,object
Obj,exontrol.EXMLGRIDLib.OleEvent Ev,ref bool
CloseEditor,exontrol.EXMLGRIDLib.Node Node)
{
}

Private Sub UserEditorOleEvent(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Ev As exontrol.EXMLGRIDLib.OleEvent,ByRef CloseEditor As
Boolean,ByVal Node As exontrol.EXMLGRIDLib.Node) Handles UserEditorOleEvent
End Sub

C# private void UserEditorOleEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOleEventEvent e)
{
}

event UserEditorOleEvent (Object as Object, Ev as OleEvent,
CloseEditor as Boolean, Node as Node)
Occurs when an user editor fires an event.

Type Description
Object as Object An object created by UserEditor property.
Ev as OleEvent An OleEvent object that holds information about the event

CloseEditor as Boolean A boolean expression that indicates whether the control
should close the user editor.

Node as Node A Node object where the ActiveX editor is opened.

The UserEditorOleEvent is fired every time when an user editor object fires an event. The
information about fired event is stored by Ev parameter. The CloseEditor parameter is
useful to inform the control when the editor should be hidden. The UserEditorOpen event is
fired when the control shows an ActiveX editor. The control fires the UserEditorClose event
when the user closes the ActiveX editor (for instance, when he clicks outside the editing
node). Use the Add method and UserEditorType type to add an ActiveX editor to the
control. Use the UserEditor method to create an ActiveX editor. Use the UserEditorObject
property to get the ActiveX editor created by the UserEditor method.

Syntax for UserEditorOleEvent event, /NET version, on:

Syntax for UserEditorOleEvent event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

void OnUserEditorOleEvent(LPDISPATCH Object,LPDISPATCH Ev,BOOL FAR*
CloseEditor,LPDISPATCH Node)
{
}

void __fastcall UserEditorOleEvent(TObject *Sender,IDispatch
*Object,Exmlgridlib_tlb::IOleEvent *Ev,VARIANT_BOOL *
CloseEditor,Exmlgridlib_tlb::INode *Node)
{
}

procedure UserEditorOleEvent(ASender: TObject; Object : IDispatch;Ev :
IOleEvent;var CloseEditor : WordBool;Node : INode);
begin
end;

procedure UserEditorOleEvent(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOleEventEvent);
begin
end;

begin event UserEditorOleEvent(oleobject Object,oleobject Ev,boolean
CloseEditor,oleobject Node)
end event UserEditorOleEvent

Private Sub UserEditorOleEvent(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOleEventEvent) Handles
UserEditorOleEvent
End Sub

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As
EXMLGRIDLibCtl.IOleEvent,CloseEditor As Boolean,ByVal Node As
EXMLGRIDLibCtl.INode)
End Sub

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As
Object,CloseEditor As Boolean,ByVal Node As Object)
End Sub

VFP

Xbas…

LPARAMETERS Object,Ev,CloseEditor,Node

PROCEDURE OnUserEditorOleEvent(oXMLGrid,Object,Ev,CloseEditor,Node)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

XBasic

dBASE

<SCRIPT EVENT="UserEditorOleEvent(Object,Ev,CloseEditor,Node)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorOleEvent(Object,Ev,CloseEditor,Node)
End Function
</SCRIPT>

Procedure OnComUserEditorOleEvent Variant llObject Variant llEv Boolean
llCloseEditor Variant llNode
 Forward Send OnComUserEditorOleEvent llObject llEv llCloseEditor llNode
End_Procedure

METHOD OCX_UserEditorOleEvent(Object,Ev,CloseEditor,Node) CLASS
MainDialog
RETURN NIL

void onEvent_UserEditorOleEvent(COM _Object,COM _Ev,COMVariant /*bool*/
_CloseEditor,COM _Node)
{
}

function UserEditorOleEvent as v (Object as P,Ev as
OLE::Exontrol.XMLGrid.1::IOleEvent,CloseEditor as L,Node as
OLE::Exontrol.XMLGrid.1::INode)
end function

function nativeObject_UserEditorOleEvent(Object,Ev,CloseEditor,Node)
return

Syntax for UserEditorOleEvent event, /COM version (others), on:

The following VB sample closes the Exontrol's ExComboBox user editor when the user
selects a new value, or when it presses the Escape key. Also the sample changes the value
of the node in the ExComboBox control:

Private Sub XMLGrid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXMLGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Node As
EXMLGRIDLibCtl.INode)
 If (Ev.Name = "Change") Then
 Node.Value = Object.Select(0)
 CloseEditor = True
 End If

 If (Ev.Name = "KeyPress") Then
 Dim l As Long
 l = Ev(0).Value
 If l = vbKeyEscape Then
 CloseEditor = True
 End If
 End If
End Sub

the sample requires an ActiveX editor (in our case the Exontrol's ExComboBox control):

With XMLGrid1.Editors
 With .Add("excombobox", UserEditorType)
 .UserEditor "Exontrol.ComboBox", ""
 With .UserEditorObject
 .BeginUpdate
 .LabelHeight = XMLGrid1.NodeHeight - 3
 .LinesAtRoot = True
 .HeightList = 256
 .WidthList = 256
 .IntegralHeight = True
 .Columns.Add ("Name")
 .Columns.Add ("Value")
 .ColumnAutoResize = True
 With .Items

https://exontrol.com/excombobox.jsp

 Dim h As Long, h1 As Long
 h = .AddItem("Item 1")
 .CellCaption(h, 1) = "Item 1.2"
 h1 = .InsertItem(h, , "SubItem 1")
 .CellCaption(h1, 1) = "SubItem 1.2"
 h1 = .InsertItem(h, , "SubItem 2")
 .CellCaption(h1, 1) = "SubItem 2.2"
 .ExpandItem(h) = True
 End With
 .EndUpdate
 End With
 End With
End With

The following C++ sample closes the Exontrol's ExComboBox user editor when the user
selects a new value, or when it presses the Escape key. Also the sample changes the value
of the node in the ExComboBox control:

#import <exmlgrid.dll>
#import <excombobox.dll>
void OnUserEditorOleEventXmlgrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, LPDISPATCH Node)
{
 EXMLGRIDLib::IOleEventPtr spEvent = Ev;
 EXCOMBOBOXLib::IComboBoxPtr spComboBox = Object;
 if (spComboBox != NULL)
 if (spEvent != NULL)
 {
 if (spEvent->Name.operator ==("Change"))
 {
 CNode node(Node);
 node.SetValue(spComboBox->GetSelect(COleVariant((long)0)));
 *CloseEditor = TRUE;
 }
 else
 if (spEvent->Name.operator ==("KeyPress"))
 {
 // gets the KeyCode parameter

 EXMLGRIDLib::IOleEventParamPtr spParam;
 if (SUCCEEDED(spEvent->get_Param(COleVariant((long)0), &spParam)))
 {
 COleVariant vtI4;
 vtI4.ChangeType(VT_I4, &spParam->Value);
 if (V_I4(&vtI4) == VK_ESCAPE)
 *CloseEditor = TRUE;
 }
 }
 }
}

the sample requires an ActiveX editor (in our case the Exontrol's ExComboBox control), so
we need to call the #import <excombobox.dll> in order to include definitions for objects and
types in the ExComboBox control. The #import <excombobox.dll> creates
EXCOMBOBOXLib namespace that includes all definitions for objects and types that the
ExComboBox control exports.

#include "Editor.h"
#include "Editors.h"
COleVariant vtMissing; V_VT(&vtMissing;) = VT_ERROR;
CEditors editors = m_xmlgrid.GetEditors();
CEditor editor = editors.Add(COleVariant("excombobox"), 16 /*UserEditorType*/);
editor.UserEditor("Exontrol.ComboBox", "");
EXCOMBOBOXLib::IComboBoxPtr spComboBox = editor.GetUserEditorObject();
if (spComboBox != NULL)
{
 spComboBox->BeginUpdate();
 spComboBox->LabelHeight = m_xmlgrid.GetNodeHeight() - 3;
 spComboBox->LinesAtRoot = EXCOMBOBOXLib::exLinesAtRoot;
 spComboBox->put_HeightList(vtMissing, 256);
 spComboBox->put_WidthList(vtMissing, 256);
 spComboBox->IntegralHeight = true;
 spComboBox->Columns->Add("Name");
 spComboBox->Columns->Add("Value");
 spComboBox->ColumnAutoResize = true;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 long h = spItems->AddItem(COleVariant("Item 1"));

 spItems->put_CellCaption(COleVariant(h),COleVariant((long)1), COleVariant("Item 1.2")
);
 long h1 = spItems->InsertItem(h, vtMissing, COleVariant("SubItem 1"));
 spItems->put_CellCaption(COleVariant(h1),COleVariant((long)1), COleVariant("SubItem
1.2"));
 h1 = spItems->InsertItem(h, vtMissing, COleVariant("SubItem 2"));
 spItems->put_CellCaption(COleVariant(h1),COleVariant((long)1), COleVariant("SubItem
2.2"));
 spItems->put_ExpandItem(h, true);
 spComboBox->EndUpdate();
}

The following VB.NET sample closes the Exontrol's ExComboBox user editor when the user
selects a new value, or when it presses the Escape key. Also the sample changes the value
of the node in the ExComboBox control:

Private Sub AxXMLGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOleEventEvent) Handles
AxXMLGrid1.UserEditorOleEvent
 If (e.ev.Name = "Change") Then
 e.node.Value = e.object.Select(0)
 e.closeEditor = True
 End If

 If (e.ev.Name = "KeyPress") Then
 Dim l As Integer = e.ev(0).Value
 If l = Keys.Escape Then
 e.closeEditor = True
 End If
 End If
End Sub

the sample requires an ActiveX editor (in our case the Exontrol's ExComboBox control):

With AxXMLGrid1.Editors
 With .Add("excombobox", EXMLGRIDLib.EditTypeEnum.UserEditorType)
 .UserEditor("Exontrol.ComboBox", "")
 With .UserEditorObject

 .BeginUpdate()
 .LabelHeight = AxXMLGrid1.NodeHeight - 3
 .LinesAtRoot = True
 .HeightList = 256
 .WidthList = 256
 .IntegralHeight = True
 .Columns.Add("Name")
 .Columns.Add("Value")
 .ColumnAutoResize = True
 With .Items
 Dim h, h1 As Integer
 h = .AddItem("Item 1")
 .CellCaption(h, 1) = "Item 1.2"
 h1 = .InsertItem(h, , "SubItem 1")
 .CellCaption(h1, 1) = "SubItem 1.2"
 h1 = .InsertItem(h, , "SubItem 2")
 .CellCaption(h1, 1) = "SubItem 2.2"
 .ExpandItem(h) = True
 End With
 .EndUpdate()
 End With
 End With
End With

The following C# sample closes the Exontrol's ExComboBox user editor when the user
selects a new value, or when it presses the Escape key. Also the sample changes the value
of the node in the ExComboBox control:

private void axXMLGrid1_UserEditorOleEvent(object sender,
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOleEventEvent e)
{
 if (e.ev.Name == "Change")
 {
 EXCOMBOBOXLib.ComboBox comboBox = e.@object as
EXCOMBOBOXLib.ComboBox;
 if (comboBox != null)
 e.node.Value = comboBox.get_Select(0);
 e.closeEditor = true;

 }
 else
 if (e.ev.Name == "KeyPress")
 {
 if (Convert.ToInt16(e.ev[0].Value) == Convert.ToInt16(Keys.Escape))
 e.closeEditor = true;
 }
}

the sample requires an ActiveX editor (in our case the Exontrol's ExComboBox control):

EXMLGRIDLib.Editor editor = axXMLGrid1.Editors.Add("excombobox",
EXMLGRIDLib.EditTypeEnum.UserEditorType);
editor.UserEditor("Exontrol.ComboBox", "");
EXCOMBOBOXLib.ComboBox comboBox = editor.UserEditorObject as
EXCOMBOBOXLib.ComboBox;
if (comboBox != null)
{
 comboBox.BeginUpdate();
 comboBox.LabelHeight = axXMLGrid1.NodeHeight - 3;
 comboBox.LinesAtRoot = EXCOMBOBOXLib.LinesAtRootEnum.exLinesAtRoot ;
 comboBox.set_HeightList(null, 256);
 comboBox.set_WidthList(null, 256);
 comboBox.IntegralHeight = true;
 comboBox.Columns.Add("Name");
 comboBox.Columns.Add("Value");
 comboBox.ColumnAutoResize = true;
 EXCOMBOBOXLib.Items items = comboBox.Items;
 int h = items.AddItem("Item 1");
 items.set_CellCaption(h, 1, "Item 1.2");
 int h1 = items.InsertItem(h, null, "SubItem 1");
 items.set_CellCaption(h1, 1,"SubItem 1.2");
 h1 = items.InsertItem(h, null, "SubItem 2");
 items.set_CellCaption(h1, 1,"SubItem 2.2");
 items.set_ExpandItem(h, true);
 comboBox.EndUpdate();
}

In C# your project needs a new reference to the Exontrol's ExComboBox control library.
Use the Project\Add Reference\COM item to add new reference to a COM object. Once
that you added a reference to the Exontrol's ExComboBox the EXCOMBOBOXLib
namespace is created. The EXCOMBOBOXLib namespace contains definitions for all
objects that ExComboBox control exports.

The following VFP sample closes the Exontrol's ExComboBox user editor when the user
selects a new value, or when it presses the Escape key. Also the sample changes the value
of the node in the ExComboBox control:

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, node

If (ev.Name = "Change") Then
 node.Value = object.Select(0)
 closeeditor = .t.
else
 If (ev.Name = "KeyPress") Then
 local l
 l = Ev(0).Value
 If l = 27 Then
 closeeditor = .t.
 EndIf
 EndIf
EndIf

the sample requires an ActiveX editor (in our case the Exontrol's ExComboBox control):

With thisform.XMLGrid1.Editors
 With .Add("excombobox", 16) && UserEditorType
 .UserEditor("Exontrol.ComboBox", "")
 With .UserEditorObject
 .BeginUpdate
 .LabelHeight = thisform.XMLGrid1.NodeHeight - 3
 .LinesAtRoot = -1
 .HeightList(0) = 256
 .WidthList(0) =256
 .IntegralHeight = .t.
 .Columns.Add ("Name")

 .Columns.Add ("Value")
 .ColumnAutoResize = .t.
 With .Items
 .DefaultItem = .AddItem("Item 1")
 h = .DefaultItem
 .CellCaption(0, 1) = "Item 1.2"
 .DefaultItem = .InsertItem(h, , "SubItem 1")
 .CellCaption(0, 1) = "SubItem 1.2"
 .DefaultItem = .InsertItem(h, , "SubItem 2")
 .CellCaption(0, 1) = "SubItem 2.2"
 .DefaultItem = h
 .ExpandItem(0) = .t.
 EndWith
 .EndUpdate
 EndWith
 EndWith
EndWith

C#

VB

private void UserEditorOpen(object sender,object
Obj,exontrol.EXMLGRIDLib.Node Node)
{
}

Private Sub UserEditorOpen(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Node As exontrol.EXMLGRIDLib.Node) Handles UserEditorOpen
End Sub

C#

C++

C++
Builder

private void UserEditorOpen(object sender,
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOpenEvent e)
{
}

void OnUserEditorOpen(LPDISPATCH Object,LPDISPATCH Node)
{
}

void __fastcall UserEditorOpen(TObject *Sender,IDispatch
*Object,Exmlgridlib_tlb::INode *Node)

event UserEditorOpen (Object as Object, Node as Node)
Occurs when an user editor is about to be opened.

Type Description
Object as Object An object created by UserEditor property.
Node as Node A Node object that hosts an user editor.

The control fires the UserEditorOpen event when an user editor is shown. Use the
UserEditorOpen event to initialize the user editor when it is shown. The control fires the
UserEditorOleEvent event each time when an user editor fires an event. Use the Add
method and UserEditorType type to add an ActiveX editor to the control. Use the
UserEditor method to create an ActiveX editor. Use the UserEditorObject property to get
the ActiveX editor created by the UserEditor method. The control fires the UserEditorClose
event when the user closes the ActiveX editor (for instance, when he clicks outside the
editing node).

Syntax for UserEditorOpen event, /NET version, on:

Syntax for UserEditorOpen event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure UserEditorOpen(ASender: TObject; Object : IDispatch;Node : INode);
begin
end;

procedure UserEditorOpen(sender: System.Object; e:
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOpenEvent);
begin
end;

begin event UserEditorOpen(oleobject Object,oleobject Node)
end event UserEditorOpen

Private Sub UserEditorOpen(ByVal sender As System.Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOpenEvent) Handles UserEditorOpen
End Sub

Private Sub UserEditorOpen(ByVal Object As Object,ByVal Node As
EXMLGRIDLibCtl.INode)
End Sub

Private Sub UserEditorOpen(ByVal Object As Object,ByVal Node As Object)
End Sub

LPARAMETERS Object,Node

PROCEDURE OnUserEditorOpen(oXMLGrid,Object,Node)
RETURN

Java…

VBSc…

<SCRIPT EVENT="UserEditorOpen(Object,Node)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for UserEditorOpen event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function UserEditorOpen(Object,Node)
End Function
</SCRIPT>

Procedure OnComUserEditorOpen Variant llObject Variant llNode
 Forward Send OnComUserEditorOpen llObject llNode
End_Procedure

METHOD OCX_UserEditorOpen(Object,Node) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorOpen(COM _Object,COM _Node)
{
}

function UserEditorOpen as v (Object as P,Node as
OLE::Exontrol.XMLGrid.1::INode)
end function

function nativeObject_UserEditorOpen(Object,Node)
return

The following VB sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox (Exontrol's ExComboBox control) type:

Private Sub XMLGrid1_UserEditorOpen(ByVal Object As Object, ByVal Node As
EXMLGRIDLibCtl.INode)
On Error Resume Next
 With Object.Items
 .SelectItem(.FindItem(Node.Value)) = True
 End With
End Sub

The following C++ sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox (Exontrol's ExComboBox control) type:

#import <excombobox.dll>
void OnUserEditorOpenXmlgrid1(LPDISPATCH Object, LPDISPATCH Node)

https://exontrol.com/excombobox.jsp

{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CNode node(Node); node.m_bAutoRelease = FALSE;
 EXCOMBOBOXLib::IComboBoxPtr spComboBox = Object;
 if (spComboBox != NULL)
 {
 long nItem = NULL;
 EXCOMBOBOXLib::IItemsPtr spItems = spComboBox->Items;
 if (SUCCEEDED(spItems->get_FindItem(node.GetValue(), COleVariant(long(0)),
vtMissing, &nItem)))
 spItems->put_SelectItem(nItem, VARIANT_TRUE);
 }
}

The sample assumes that the Object parameter holds an ExComboBox control. We need to
call the #import <excombobox.dll> in order to include definitions for objects and types in the
ExComboBox control. The #import <excombobox.dll> creates EXCOMBOBOXLib
namespace that includes all definitions for objects and types that the ExComboBox control
exports.

The following VB.NET sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox (Exontrol's ExComboBox control) type:

Private Sub AxXMLGrid1_UserEditorOpen(ByVal sender As Object, ByVal e As
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOpenEvent) Handles
AxXMLGrid1.UserEditorOpen
 On Error Resume Next
 With e.object.Items
 .SelectItem(.FindItem(e.node.Value)) = True
 End With
End Sub

The following C# sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox (Exontrol's ExComboBox control) type:

private void axXMLGrid1_UserEditorOpen(object sender,
AxEXMLGRIDLib._IXMLGridEvents_UserEditorOpenEvent e)
{
 EXCOMBOBOXLib.ComboBox comboBox = e.@object as EXCOMBOBOXLib.ComboBox;

 if (comboBox != null)
 {
 EXCOMBOBOXLib.Items items = comboBox.Items;
 int nItem = items.get_FindItem(e.node.Value, 0, null);
 if (nItem != 0)
 items.set_SelectItem(nItem, true);
 }
}

In C# your project needs a new reference to the Exontrol's ExComboBox control library.
Use the Project\Add Reference\COM item to add new reference to a COM object. Once
that you added a reference to the Exontrol's ExComboBox the EXCOMBOBOXLib
namespace is created. The EXCOMBOBOXLib namespace contains definitions for all
objects that ExComboBox control exports.

The following VFP sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox (Exontrol's ExComboBox control) type:

*** ActiveX Control Event ***
LPARAMETERS object, node

With object.Items
 .DefaultItem = .FindItem(node.Value,0)
 if (.DefaultItem # 0)
 .SelectItem(0) = .t.
 endif
EndWith

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Editor
	AddButton method
	AddItem method
	Appearance property
	ButtonWidth property
	ClearButtons method
	ClearItems method
	DropDown method
	DropDownAlignment property
	DropDownAutoWidth property
	DropDownMinWidth property
	DropDownRows property
	DropDownVisible property
	EditType property
	ExpandAll method
	ExpandItem property
	FindItem property (readonly)
	Index property (readonly)
	InsertItem method
	ItemToolTip property
	Key property (readonly)
	Locked property
	Mask property
	MaskChar property
	Numeric property
	Option property
	PartialCheck property
	PopupAppearance property
	RemoveButton method
	RemoveItem method
	SortItems method
	UserEditor method
	UserEditorObject property (readonly)

	Editors
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemByKey property (readonly)
	Remove method
	RemoveByKey method

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Node
	BackColor property
	BackColorChild property
	BackColorValue property
	BackgroundExt property
	BackgroundExtValue property
	ClearBackColor method
	ClearBackColorChild method
	ClearBackColorValue method
	ClearForeColor method
	ClearForeColorChild method
	ClearForeColorValue method
	CollapseAll method
	Editor property
	Enabled property
	ExpandAll method
	Expanded property
	FirstNode property (readonly)
	ForeColor property
	ForeColorChild property
	ForeColorValue property
	HasChilds property
	ID property (readonly)
	Image property
	Index property (readonly)
	IsChildOf property (readonly)
	Key property (readonly)
	LastNode property (readonly)
	Level property (readonly)
	Name property
	NextNode property (readonly)
	NextVisibleNode property (readonly)
	Nodes property (readonly)
	Parent property (readonly)
	Picture property
	Position property
	PrevNode property (readonly)
	PrevVisibleNode property (readonly)
	Selected property
	ToolTip property
	ToolTipTitle property
	UserData property
	Value property
	Visible property

	Nodes
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemByID property (readonly)
	ItemByPosition property (readonly)
	Parent property (readonly)
	Remove method
	RemoveByID method

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	XMLGrid
	AlignChildContent property
	AllowDuplicateEntries property
	AnchorFromPoint property (readonly)
	Appearance property
	AttachTemplate method
	AutoEdit property
	AutoSearch property
	BackColor property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	ClearSel method
	CollapseAll method
	Edit method
	Editing property (readonly)
	Editors property (readonly)
	Enabled property
	EndUpdate method
	EnsureVisibleNode method
	EventParam property
	ExecuteTemplate method
	ExpandAll method
	ExpandBarVisible property
	ExpandButtons property
	ExpandButtonsCustom property
	ExpandOnDblClk property
	ExpandOnKeys property
	ExpandOnSearch property
	FilterBarPrompt property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FirstVisibleNode property (readonly)
	FocusNode property
	Font property
	ForeColor property
	FormatAnchor property
	GridLines property
	GridLinesColor property
	HideSelection property
	HitTest property (readonly)
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Layout property
	LevelWidth property
	LoadXML method
	MoveCursorOnCollapse property
	NodeByPosition property (readonly)
	NodeFromPoint property (readonly)
	NodeHeight property
	Nodes property (readonly)
	OLEDrag method
	OLEDropMode property
	Picture property
	PictureDisplay property
	ReadOnly property
	Refresh method
	ReplaceIcon method
	ResizeToFit method
	SaveXML method
	Scroll method
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollPos property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	Search property (readonly)
	SelBackColor property
	SelBackColorChild property
	SelBackColorCollapse property
	SelBackMode property
	SelectAll method
	SelectCount property (readonly)
	SelectedNode property (readonly)
	SelForeColor property
	SelForeColorChild property
	ShowFocusRect property
	ShowImageList property
	ShowPartialParent property
	ShowToolTip method
	SingleSel property
	Template property
	TemplateDef property
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	UnselectAll method
	UseVisualTheme property
	Version property
	VisibleLevelCount property
	VisibleNodeCount property (readonly)
	VisualAppearance property (readonly)
	VisualDesign property

	EXMLGrid events
	AddNode event
	AfterExpandNode event
	AnchorClick event
	BeforeExpandNode event
	ButtonClick event
	Change event
	Click event
	DblClick event
	Edit event
	EditClose event
	EditOpen event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	RemoveNode event
	ResizeLevel event
	ScrollButtonClick event
	SelectionChanged event
	UserEditorClose event
	UserEditorOleEvent event
	UserEditorOpen event

