
 ExMaskEdit

When you have several people entering data in your database, you can define how users
must enter data in specific fields to help maintain consistency and to make your database
easier to manage. For example, you can set an input mask for a form so that users can
only enter telephone numbers in the Swedish format or addresses in the French format. You
can set a specific format for the input mask, and select another format so that the same
data is displayed differently.

Features of eXMaskEdit include:

Ability to define and use one or more masks at runtime
Insert or Overtype mode support
Restrict Input Data until the user enters the appropriate value
HTML ToolTip, Warning, Beep support, so a tooltip is shown once the user enters any
invalid data
Ability to highlight entities with a different color, while the entire mask is not completed
Ability to define valid characters using the [] directive, or specify the margins of the
number to be entered using the {} directives
Left/Right alignment support

Here's a list of types you can mask:

floating/decimal point numbers support, including grouping of digits
license keys
IP addresses
urls
e-mails
phone numbers
extension, zip code
social security numbers
decimal numbers
hexa numbers
binary numbers
alpha and digit characters
RGB, A-RGB colors
date, time
passwords
and more

Ž ExMaskEdit is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AllowEmptyValueEnum
The AllowEmptyValueEnum type supports the values that the AllowEmptyValue property
supports. The AllowEmptyValueEnum type supports the following values.

Name Value Description

exNoEmptyValue 0 No empty value is accepted, so the control displays
the control's mask when its content is empty.

exAllowEmptyValueShowNothing-1
While the control's content is empty, the control's
mask is showing as soon as the user starts typing
character inside.

exAllowEmptyValueShowMask1
While the control's content is empty, the control's
mask is showing as soon as the control gains the
focus.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
border/frame. The Appearance property of the control specifies the control's border. The
AppearanceEnum type supports the following values:

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum
The BackgroundPartEnum type specifies parts of the control to be visually changed. The
Background property specifies the control's part background/foreground color or visual
appearance. The BackgroundPartEnum type supports the following values:

Name Value Description

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

constants ClipModeLiteralsEnum
The ClipModeLiteralsEnum type indicates the way the control's text/value is gathered. The
TextIncludeLiterals, TextIncludeLiteralsLoseFocus or Value property may use the
ClipModeLiteralsEnum type. The ClipModeLiteralsEnum type supports the following values:

Name Value Description
exClipModeLiteralsNone 0 Gets the full text.
exClipModeLiteralsInclude 1 Gets the value with no placeholders.
exClipModeLiteralsExclude 2 Gets the value with no placeholders and literals.

exClipModeLiteralsEscape 3
Gets the value of the optional, required and
escaped entities. The quoted literals are not
included.

constants InsertModeEnum
The InsertModeEnum type specifies the insertion mode the control supports. The
InsertMode property specifies the current control's insertion mode. The InsertModeEnum
type supports the following values:

Name Value Description
exEditInsertMode 0 Indicates the control's insert-type mode.
exEditOvertypeMode 1 Indicates the control's over-type mode.

constants PictureDisplayEnum
Only for internal use.

Name Value Description
UpperLeft 0 UpperLeft
UpperCenter 1 UpperCenter
UpperRight 2 UpperRight
MiddleLeft 16 MiddleLeft
MiddleCenter 17 MiddleCenter
MiddleRight 18 MiddleRight
LowerLeft 32 LowerLeft
LowerCenter 33 LowerCenter
LowerRight 34 LowerRight
Tile 48 Tile
Stretch 49 Stretch

constants SelectGotFocusEnum
The SelectGotFocusEnum type indicates how the control specifies the selection once the
control gains the focus. The SelectGotFocus property indicates how the control specifies
the selection once the control gets the focus. The SelectGotFocusEnum type supports the
following values.

Name Value Description
exSelectNoGotFocus 0 No effect.
exSelectAllGotFocus 1 Selects all once the field receives the focus.

exSelectEditableGotFocus 2 Selects the first empty and editable entity of the
field.

exMoveEditableGotFocus 3 Moves the cursor to the first empty and editable
entity of the field.

exSelectRequiredEditableGotFocus4 Selects the first empty, required and editable entity
of the field.

exMoveRequiredEditableGotFocus5 Moves the cursor to the first empty, required and
editable entity of the field.

constants TypeEnum
Specifies whether the control subclasses a standard edit control or the Rich editor.

Name Value Description
exTypeEdit 0 Indicates the standard edit control.

exTypeRichEdit 1

Indicates the rich control. The control subclass the
system's richedit class. You can use the
ForeColorRich property to specify the foreground
color for editable entities while the field is not
validated/completed.

constants UIVisualThemeEnum
Only for internal use.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

constants ValidateAsEnum
The ValidateAsEnum type specifies the additional validation the control can make when user
leaves the field. The ValidateAs property specifies the additional validation the control can
make when user leaves the field. The ValidateAsEnum type supports the following values:

Name Value Description
exValidateAsNone 0 No effect.
exValidateAsDate 1 The field is validated as date.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.
copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows. Let's
say that the control requests painting the {10, 10, 30,
20} area, a rectangle with the width of 20 pixels, and
the height of 10 pixels, the skin will be displayed on
the {14,10,26,20} as each coordinates in the "CP"
syntax is added to the displayed rectangle, so the
skin looks smaller. This way you can apply different
effects to your objects in your control.
the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins

https://exontrol.com/exbutton.jsp

the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control. Use the Background property to apply a skin to
a part of the control. Use the Appearance property to change the visual appearance of the
control's frame.

The following screen shot shows the control's with visual appearance changed:

The following screen shot shows the control's with no visual appearance changed:

https://exontrol.com/eximages.jsp

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =

5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2

EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2

MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,

SCROLLBAR SBP_ARROWBTN = 1 ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4
DNHZS_NORMAL = 1
DNHZS_HOT = 2

SPNP_DOWNHORZ = 4 DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5
TILES_NORMAL = 1

TABP_TABITEMLEFTEDGE = 2 TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TS_NORMAL = 1 TS_HOT = 2

TOOLBAR TP_BUTTON = 1
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2
TUS_NORMAL = 1 TUS_HOT =

TRACKBAR TKP_THUMB = 3 2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2
TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3

TVP_TREEITEM = 1 TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4
HBS_NORMAL = 1 HBS_HOT

WP_MDIHELPBUTTON = 24 = 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part. Use the Background property to apply a skin to a part of the
control. Use the Appearance property to change the visual appearance of the control's
frame.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part. Use the Background property to apply a skin to a
part of the control. Use the Appearance property to change the visual appearance of the
control's frame.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's appearance, by using an EBN
object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Appearance = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

MaskEdit object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {43F80262-F652-11D3-AD39-00C0DFC59237}. The object's program identifier is: "Exontrol.MaskEdit".
The /COM object module is: "MaskEdit.dll"

The ExMaskEdit ActiveX control handles the format of text entered by the user. What does
ExMaskEdit provide, and other mask edit control doesn't? The ExMaskEdit control provides
a nice and useful feature, that we called multi-mask (haven't seen it before) , that means
that the control is able to handle more than a mask at runtime. Sometime, your mask
doesn't fit all the requirements, or the masking rules are limited, so you are unable to use a
standard mask edit control. That's the reason why we decided to get released the
ExMaskEdit ActiveX control. The ExMaskEdit control can subclass a standard edit control
or a rich control edit. When the control subclasses a rich edit control, the mask is painted
using an user color. Here's a list of types of data that you might want to mask: license keys,
IP addresses, urls, e-mails, phone numbers, decimal numbers, hexa numbers, binary
numbers, alpha and digit characters, date, time, and so on.

Name Description
ActiveMask Specifies the index of active mask.

AllowBeep Specifies whether the control plays a beep once the user
enters any invalid character.

AllowContextMenu Specifies whether the control displays the content menu
when user right clicks the control.

AllowEmptyValue Specifies whether the field supports empty values.

AllowToggleInsertMode Specifies whether the control is toggling the InsertMode
when the user presses the Insert key.

Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

BackColorReadOnly Indicates the control's background when the control is
read only.

Background Returns or sets a value that indicates the background
color for parts in the control.

CursorPos Retrieves or sets a value that indicates the cursor position.

Enabled Enables or disables the control.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

ForeColorReadOnly Indicates the control's foreground when the control is read
only.

ForeColorRich Retrieves or sets the color to show the editable entitity,
while the Type is RichEdit and the value is not completed.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

InsertMode Specifies the control's inserting mode that could be insert-
type or over-type.

Invalid Indicates the html-tooltip message to be shown when the
user enters an invalid value.

Mask Retrieves or sets a string expression that indicates the
control's mask.

MaskChar Retrieves or sets a value that determines masking
character.

MaskFloat Specifies whether the Mask property masks a floating
point number.

Masks Retrieves or sets a value that determines all possible
masks that user can use at runtime.

MultiLine Retrieves or sets a value that determines whether the
control can accept multiple lines of text.

Password Displays all characters as an asterisk (*)

PasswordChar Retrieves or sets a value that determines password
character.

ReadOnly
Retrieves or sets a value that determines whether the
control is read only.

Refresh Refreshes the control's field.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

Right Right aligns text in a single-line or multiline edit control.
Select Selects the text between Start and End

SelectGotFocus Indicates whether the entire text is selected once the field
receives the focus.

SelEnd Returns or sets the ending point of text selected.
SelStart Returns or sets the starting point of text selected.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

Text Retrieves or sets the text displayed in the control.

TextIncludeLiterals Determines the way the Text property returns or set the
value of the field

TextIncludeLiteralsLoseFocus Determines how the field shows its content once it loses
the focus.

Type Retrieves or sets the base class for the mask field.

Valid Retrieves a value indicating whether the contrl contains a
valid value.

ValidateAs Indicates the additional validation is performed, once the
user leaves the field.

Value Retrieves the control's value with or without literals.
Version Retrieves the control's version.

VisibleMasks Retrieves or sets a value that indicates the number of
visible items in the control masks list.

VisualAppearance Retrieves the control's appearance.

Warning
Indicates the html-tooltip message to be shown when the
user enters an invalid character.

property MaskEdit.ActiveMask as Long
Specifies the index of active mask.

Type Description
Long A long expression that indicates the index of active mask.

The number of masks used is determined by the Masks property. If the Masks property is
not empty, the control loads multiple masks. Else, if the Mask property is used, the control
uses only a single mask.

The following sample changes the active mask after loading the masks list to the control:

Private Sub Form_Load()
 With MaskEdit1
 .Masks = "USA resident;(090)-###-###-###;Canada resident;(091)-###-###-###"
 .ActiveMask = 1
 End With
End Sub

property MaskEdit.AllowBeep as Boolean
Specifies whether the control plays a beep once the user enters any invalid character.

Type Description

Boolean A Boolean expression that specifies whether the control
beeps once the user enters any invalid character.

By default, the AllowBeep property is False. Use the AllowBeep property to let control
beeps once the user enters any invalid character. Use the Warning property to specify a
HTML tooltip to be shown at the cursor position when user enters an invalid character. Use
the Invalid property to specify a HTML tooltip to keep the control focused while the user
enters an inappropriate value for the field.

property MaskEdit.AllowContextMenu as Boolean
Specifies whether the control displays the content menu when user right clicks the control.

Type Description
Boolean A Boolean expression

By default, the AllowContextMenu property is True. Use the AllowContextMenu property on
False, to prevent showing the control's context menu when the user right clicks the control.
The AllowContextMenu property indicates that the field provides no context menu when user
right clicks the field. For instance, Mask on ";;;password,nocontext" displays a password
field, where the user can not invoke the default context menu, usually when a right click
occurs.

property MaskEdit.AllowEmptyValue as AllowEmptyValueEnum
Specifies whether the field supports empty values.

Type Description

AllowEmptyValueEnum A AllowEmptyValueEnum expression that specifies
whether the field supports empty values.

By default, AllowEmptyValue property is exNoEmptyValue. The AllowEmptyValue property
indicates whether the field supports empty values. This option can be used with invalid flag,
which indicates that the user can leave the field if it is empty. If empty flag is present, the
field displays nothing if no entity is completed (empty). Once the user starts typing
characters the current mask is displayed. For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies an empty or
valid phone to be entered.

property MaskEdit.AllowToggleInsertMode as Boolean
Specifies whether the control is toggling the InsertMode when the user presses the Insert
key.

Type Description

Boolean
A Boolean expression that specifies whether the control
toggles the insertion mode when the user presses the
Insert key.

By default, the AllowToggleInsertMode property is True. The AllowToggleInsertMode
property specifies whether the control toggles the insertion mode when the user presses
the Insert key. The InsertMode property specifies the control's insertion mode. Use the
InsertMode property on exEditOvertypeMode to allow user to edit the control's field in
overtype mode.

property MaskEdit.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy/chart,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

By default, the Appearance property is Flat. Use the Appearance property to specify the
control's border. Use the Add method to add new skins to the control. Use the BackColor
property to specify the control's background color. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the control's
tooltip.

The following screen shot shows the control's with visual appearance changed:

The following screen shot shows the control's with no visual appearance changed:

https://exontrol.com/exbutton.jsp

method MaskEdit.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub MaskEdit1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property MaskEdit.BackColor as Color
Retrieves or sets the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to change the control's background color. Use the ForeColor
property to change the control's foreground color. The BackColorReadOnly property
specifies the control's background color when the field is locked (ReadOnly property is
True). The ForeColorReadOnly property specifies the control's foreground color when the
field is locked (ReadOnly property is True).

property MaskEdit.BackColorReadOnly as Color
Indicates the control's background when the control is read only.

Type Description
Color A Color expression that indicates the control's color.

 The BackColorReadOnly property specifies the control's background color when the field is
locked (ReadOnly property is True). The ForeColorReadOnly property specifies the
control's foreground color when the field is locked (ReadOnly property is True). Use the
ForeColor property to change the control's foreground color. Use the BackColor property to
change the control's background color. Use the ForeColorRich property to change the color
used to paint the mask, while the control's Type is RichEdit, and the Value is not yet
validated. Use the Valid property to check whenever the control's mask value is valid or
invalid.

property MaskEdit.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control. Use the Invalid/Warning/ShowToolTip to display a
tooltip.

The following screen shot shows the control's tooltip with a new visual apperance:

The following sample shows how you can change the tooltip's visual appearance:

VBA (MS Access, Excell...)

With MaskEdit1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(64) = &H1000000
 .Warning = "Invalid character"
 .Mask = "`Time: ` 00:00:00"
End With

VB6

With MaskEdit1
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Background(exToolTipAppearance) = &H1000000
 .Warning = "Invalid character"
 .Mask = "`Time: ` 00:00:00"
End With

VB.NET

With Exmaskedit1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

.set_Background32(exontrol.EXMASKEDITLib.BackgroundPartEnum.exToolTipAppearance,&H1000000)

 .Warning = "Invalid character"
 .Mask = "`Time: ` 00:00:00"
End With

VB.NET for /COM

With AxMaskEdit1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")

.set_Background(EXMASKEDITLib.BackgroundPartEnum.exToolTipAppearance,16777216)

 .Warning = "Invalid character"
 .Mask = "`Time: ` 00:00:00"
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXMASKEDITLib' for the library: 'ExMaskEdit 7.1 Control
Library'

 #import <MaskEdit.dll>
 using namespace EXMASKEDITLib;

*/
EXMASKEDITLib::IMaskEditPtr spMaskEdit1 = GetDlgItem(IDC_MASKEDIT1)-
>GetControlUnknown();
spMaskEdit1->GetVisualAppearance()-
>Add(1,"c:\\exontrol\\images\\normal.ebn");
spMaskEdit1->PutBackground(EXMASKEDITLib::exToolTipAppearance,0x1000000);
spMaskEdit1->PutWarning(L"Invalid character");
spMaskEdit1->PutMask(L"`Time: ` 00:00:00");

C++ Builder

MaskEdit1->VisualAppearance-
>Add(1,TVariant("c:\\exontrol\\images\\normal.ebn"));
MaskEdit1-
>Background[Exmaskeditlib_tlb::BackgroundPartEnum::exToolTipAppearance] =
0x1000000;
MaskEdit1->Warning = L"Invalid character";
MaskEdit1->Mask = L"`Time: ` 00:00:00";

C#

exmaskedit1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
exmaskedit1.set_Background32(exontrol.EXMASKEDITLib.BackgroundPartEnum.exToolTipAppearance,0x1000000);

exmaskedit1.Warning = "Invalid character";
exmaskedit1.Mask = "`Time: ` 00:00:00";

JavaScript

<OBJECT classid="clsid:43F80262-F652-11D3-AD39-00C0DFC59237"
id="MaskEdit1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 MaskEdit1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
 MaskEdit1.Background(64) = 16777216;

 MaskEdit1.Warning = "Invalid character";
 MaskEdit1.Mask = "`Time: ` 00:00:00";
</SCRIPT>

C# for /COM

axMaskEdit1.VisualAppearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
axMaskEdit1.set_Background(EXMASKEDITLib.BackgroundPartEnum.exToolTipAppearance,0x1000000);

axMaskEdit1.Warning = "Invalid character";
axMaskEdit1.Mask = "`Time: ` 00:00:00";

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exmaskedit1.VisualAppearance().Add(1,"c:\\exontrol\\images\\normal.ebn");
 exmaskedit1.Background(64/*exToolTipAppearance*/,0x1000000);
 exmaskedit1.Warning("Invalid character");
 exmaskedit1.Mask("`Time: ` 00:00:00");
}

Delphi 8 (.NET only)

with AxMaskEdit1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');

set_Background(EXMASKEDITLib.BackgroundPartEnum.exToolTipAppearance,$1000000);

 Warning := 'Invalid character';
 Mask := '`Time: ` 00:00:00';
end

Delphi (standard)

with MaskEdit1 do
begin
 VisualAppearance.Add(1,'c:\exontrol\images\normal.ebn');
 Background[EXMASKEDITLib_TLB.exToolTipAppearance] := $1000000;
 Warning := 'Invalid character';
 Mask := '`Time: ` 00:00:00';
end

VFP

with thisform.MaskEdit1
 .VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
 .Object.Background(64) = 0x1000000
 .Warning = "Invalid character"
 .Mask = "`Time: ` 00:00:00"
endwith

dBASE Plus

local oMaskEdit

oMaskEdit = form.Activex1.nativeObject
oMaskEdit.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oMaskEdit.Template = [Background(64) = 0x1000000] //
oMaskEdit.Background(64) = 0x1000000
oMaskEdit.Warning = "Invalid character"
oMaskEdit.Mask = "`Time: ` 00:00:00"

XBasic (Alpha Five)

Dim oMaskEdit as P

oMaskEdit = topparent:CONTROL_ACTIVEX1.activex
oMaskEdit.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oMaskEdit.Template = "Background(64) = 16777216" ' oMaskEdit.Background(64)
= 16777216

oMaskEdit.Warning = "Invalid character"
oMaskEdit.Mask = "`Time: ` 00:00:00"

Visual Objects

oDCOCX_Exontrol1:VisualAppearance:Add(1,"c:\exontrol\images\normal.ebn")
oDCOCX_Exontrol1:[Background,exToolTipAppearance] := 0x1000000
oDCOCX_Exontrol1:Warning := "Invalid character"
oDCOCX_Exontrol1:Mask := "`Time: ` 00:00:00"

PowerBuilder

OleObject oMaskEdit

oMaskEdit = ole_1.Object
oMaskEdit.VisualAppearance.Add(1,"c:\exontrol\images\normal.ebn")
oMaskEdit.Background(64,16777216 /*0x1000000*/)
oMaskEdit.Warning = "Invalid character"
oMaskEdit.Mask = "`Time: ` 00:00:00"

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Variant voAppearance
 Get ComVisualAppearance to voAppearance
 Handle hoAppearance
 Get Create (RefClass(cComAppearance)) to hoAppearance
 Set pvComObject of hoAppearance to voAppearance
 Get ComAdd of hoAppearance 1 "c:\exontrol\images\normal.ebn" to Nothing
 Send Destroy to hoAppearance
 Set ComBackground OLEexToolTipAppearance to |CI$1000000
 Set ComWarning to "Invalid character"
 Set ComMask to "`Time: ` 00:00:00"

End_Procedure

property MaskEdit.CursorPos as Long
Retrieves or sets a value that indicates the cursor position.

Type Description
Long A long expression that indicates the cursor position.

The CursorPos property determines the cursor position. The CursorPos property starts
from 0.

The following sample displays the cursor position using a Timer:

Private Sub Timer1_Timer()
 Label1 = MaskEdit1.CursorPos
End Sub

property MaskEdit.Enabled as Boolean
Retrieves or sets a value indicating whether the control is enabled or disabled.

Type Description

Boolean A boolean expression indicating whether the control is
enabled or disabled.

Use the Enable property to disable the control. Use the ReadOnly property to make your
control read-only.

property MaskEdit.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method MaskEdit.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print MaskEdit1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property MaskEdit.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that indicates the control's font.

The Font property determines the control's font.

property MaskEdit.ForeColor as Color
Retrieves or sets the control's foreground color.

Type Description
Color A Color expression that indicates the control's color.

Use the ForeColor property to change the control's foreground color. Use the BackColor
property to change the control's background color. Use the ForeColorRich property to
change the color used to paint the mask, while the control's Type is RichEdit, and the Value
is not yet validated. Use the Valid property to check whenever the control's mask value is
valid or invalid. The BackColorReadOnly property specifies the control's background color
when the field is locked (ReadOnly property is True). The ForeColorReadOnly property
specifies the control's foreground color when the field is locked (ReadOnly property is True
).

property MaskEdit.ForeColorReadOnly as Color
Indicates the control's foreground when the control is read only.

Type Description
Color A Color expression that indicates the control's color.

The ForeColorReadOnly property specifies the control's foreground color when the field is
locked (ReadOnly property is True). The BackColorReadOnly property specifies the
control's background color when the field is locked (ReadOnly property is True). Use the
ForeColor property to change the control's foreground color. Use the BackColor property to
change the control's background color. Use the ForeColorRich property to change the color
used to paint the mask, while the control's Type is RichEdit, and the Value is not yet
validated. Use the Valid property to check whenever the control's mask value is valid or
invalid.

property MaskEdit.ForeColorRich as Color
Retrieves or sets a color that is used to paint the mask value, while the Type is RichEdit
and the value is not valid.

Type Description

Color A color expression that indicates the color used by control
to paint the mask value, while it is not valid.

The ForeColorRich property has effect only if the control's Type is RichEdit Use the
ForeColor property to change the control's foreground color. You can use the
ForeColorRich property to specify the foreground color for editable entities while the field is
not validated/completed. The BackColorReadOnly property specifies the control's
background color when the field is locked (ReadOnly property is True). The
ForeColorReadOnly property specifies the control's foreground color when the field is
locked (ReadOnly property is True).

property MaskEdit.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). Use the Images property to assign icons to the
control. Use the Warning property to specify a HTML tooltip to be shown at the cursor
position when user enters an invalid character. Use the Invalid property to specify a HTML
tooltip to keep the control focused while the user enters an inappropriate value for the field.

The following sample shows how to display icons in the control's invalid tooltip:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.Invalid = "A pic1"

https://exontrol.com/eximages.jsp

<COLUMN2>.Invalid = "B pic2"
<COLUMN3>.Invalid = "A pic1 + B pic2"

property MaskEdit.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

method MaskEdit.Images (Handle as Variant)

Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, remove or clear icons in the
control's images collection. Use the HTML tag to specify the index of the icon to be
displayed. Use the Warning property to specify a HTML tooltip to be shown at the cursor
position when user enters an invalid character. Use the Invalid property to specify a HTML
tooltip to keep the control focused while the user enters an inappropriate value for the field.

property MaskEdit.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property MaskEdit.InsertMode as InsertModeEnum
Specifies the control's inserting mode that could be insert-type or over-type.

Type Description

InsertModeEnum An InsertModeEnum expression that specifies the insertion
mode.

By default, the InsertMode property is exEditInsertMode. The InsertMode property
specifies the control's insertion mode. Use the InsertMode property on
exEditOvertypeMode to allow user to edit the control's field in overtype mode. The
AllowToggleInsertMode property specifies whether the control toggles the insertion mode
when the user presses the Insert key.

property MaskEdit.Invalid as String
Indicates the html-tooltip message to be shown when the user enters an invalid value.

Type Description

String
A String expression that defines the built-in HTML tooltip to
be shown at cursor position when user enters any invalid
character.

By default, the Invalid property is "". Use the Invalid property to specify a HTML tooltip to
keep the control focused while the user enters an inappropriate value for the field. The
Invalid property has no effect if the property is empty or the control is not masked. Use the
Warning property to specify a HTML tooltip to be shown at the cursor position when user
enters an invalid character. Use the AllowBeep property to let control beeps once the user
enters any invalid character. The Invalid property indicates the html message to be
displayed when the user enters an inappropriate value for the field. If the value is missing or
empty, the option has no effect, so no validation is performed. If the value is a not-empty
value, the validation is performed. If the value is single space, no message is displayed and
the field is keep opened while the value is inappropriate. For instance, "!(999) 000
0000;;;invalid=The value you entered isn't appropriate for the input mask
'<%mask%>' specified for this field." displays the "The value you entered isn't
appropriate for the input mask '...' specified for this field." tooltip once the user leaves the
field and it is not-valid (for instance, the field includes entities required and uncompleted).
The <%mask%> keyword in value, substitute the current mask of the field, while the
<%value%> keyword substitutes the current value (including the literals). If this option
should display/use the semicolon (;) character is should be \; (escape). This option can be
combined with AllowEmptyValue or ValidateAs property.

The following screen shot shows the Warning once the user enters an invalid character:

The control uses built-in HTML tags to display the caption using HTML format. The control
supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning

about:blank

and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;

(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property MaskEdit.Mask as String
Retrieves or sets a string expression that indicates the control's mask.

Type Description
String A string expression that indicates the control's mask

Indicates the control's mask. Use the Value property to get the value entered, and use the
Valid property to check if the field is completed and valid. Use the Masks property to
provide multiple masks to the control. Use the MaskFloat property to mask floating point
numbers without displaying the masking character. The MaskChange event is fired when the
Mask property is changed. The Mask property is composed by a combination of regular
characters, literal escape characters, and masking characters. The Mask property can
contain also alternative characters, or range rules. A literal escape character is preceded
by a \ character, and it is used to display a character that is used in masking rules. The
control fires the MaskChange event once the control's Mask property is changed.

Starting from the version 7.1 the Mask property has been radically changed as explained
bellow. If using any previously version, you can find the specifications at the bottom of the
page.

For instance, the following input-mask (ext-phone)

"!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,

until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape) (MaskChar property)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present. Use the
MaskFloat property to mask floating point numbers including digit grouping.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal

number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used. The Password property specifies whether the control
the control displays a black circle for any shown character. The PasswordChar
property specifies the character to be displayed when the control displays a
password.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. The Right property
specifies whether the control displays the characters aligned to the right.
readonly, the editor is locked, user can not update the content, the caret is
available, so user can copy the text, excepts the password fields. The ReadOnly
property specifies whether the control is read-only. The BackColorReadOnly
property specifies the control's background color when the field is locked (
ReadOnly property is True). The ForeColorReadOnly property specifies the
control's foreground color when the field is locked (ReadOnly property is True).
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed. The
InsertMode property specifies the control's insertion mode. The
AllowToggleInsertMode property specifies whether the control toggles the
insertion mode when the user presses the Insert key.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,

the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed. The
InsertMode property specifies the control's insertion mode. The
AllowToggleInsertMode property specifies whether the control toggles the
insertion mode when the user presses the Insert key.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs. The AllowContextMenu property indicates that the field provides no
context menu when user right clicks the field.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid

character!,select=4,overtype", indicates that the field is validate as date (
validateas=1). The ValidateAs property indicates the additional validation makes
once the user leaves the field.
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered. The AllowEmptyValue property specifies
whether the field supports empty values.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

Prior to version 7.1 the Mask property supports the following special characters.

Here's the list of all rules and masking characters.

(Digit), Masks a digit character, [0-9]
x (Hexa Lower), Masks a lower case hexa character, [0-9],[a-f]
X (Hexa Upper), Masks an upper case hexa character, [0-9],[A-F]
A (AlphaNumeric), Masks a letter or a digit. [0-9], [a-z], [A-Z]
? (Alphabetic), Masks a letter. [a-z],[A-Z]
< (Alphabetic lower), Masks a lower case letter. [a-z]
> (Alphabetic upper), Masks an upper case letter. [A-Z]

* (Any), Masks any combination of characters.
\ (Literal Escape), Displays any masking characters. The following combinations are
valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[
{nMin,nMax} (Range), Masks a number in a range. The nMin and nMax values
should be numbers. For instance the mask {0,255} will mask any number between 0
and 255.
[...] (Alternative), Masks any characters that are contained in the [] brackets. For
instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following sample shows how to mask an IP address:

MaskEdit1.Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"

property MaskEdit.MaskChar as Integer
Retrieves or sets a value that determines masking character.

Type Description

Integer A character expression that indicates the character used
for masking characters

By default, the masking character is "_". Use the MaskChar property to change the masking
character. Use the Mask property to assign a single mask to the control. Use the Masks
property to assign multiple masks to the control. Use the MaskFloat property to mask
floating point numbers without displaying the masking character.

For instance, the following sample changes the masking character to "0":

With MaskEdit1
 .MaskChar = Asc("0")
 .Mask = "[0-9][0-9][0-9][0-9]"
End With

property MaskEdit.MaskFloat as Boolean
Specifies whether the Mask property masks a floating point number.

Type Description

Boolean A boolean expression that indicates whether the Mask
property masks a floating point number.

By default, the MaskFloat property is False. Use the MaskFloat property to mask floating
point numbers including digit grouping. Use the Mask property to specify the mask for
floating point numbers. If the MaskFloat property is True, and Mask property is empty, the
control filters the input characters using your regional options. If the MaskFloat property is
True, the control doesn't display the masking character that's referred by the MaskChar
property.

If the MaskFloat property is True, the Mask property may indicate the followings:

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates
the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the Mask property is empty, the control takes the settings for the regional options like:
Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The mask "-###.###.##0,00" filter floating point numbers a number for German settings (","
is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The mask "-###.###.###,##" filter floating point numbers a number for German settings (","
is the decimal sign, "." is the thousands separator)

The mask "-###,###,###.##" filter floating point numbers a number for English settings ("."
is the decimal sign, "," is the thousands separator)

The mask "####" indicates a max-4 digit number (positive) without a decimal symbol and
without digit grouping

The mask "-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the decimal
sign, no thousands separator)

The mask "#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

property MaskEdit.Masks as String
Retrieves or sets a value that determines all possible masks that user can use at runtime.

Type Description

String A string expression that defines the list of masks in the
control.

Use the Masks property to assign multiple masks to the control. Use the Mask property to
assign a single mask to the control. The MaskChange event is fired when user changes the
current mask. The Masks property is composed by pairs description and mask. The list of
masks is delimited by "|" character. Use the VisibleMasks property to specify the number of
visible items in the control's masks list.

The following sample adds multiple masks to the control:

VBA (MS Access, Excell...)

With MaskEdit1
 .InsertMode = 1
 .SelectGotFocus = 1
 .VisibleMasks = 6
 .TextIncludeLiterals = 2
 .Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1`" & _
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000"
 .Text = "845 0287"
 .ActiveMask = 1
End With

VB6

With MaskEdit1
 .InsertMode = exEditOvertypeMode
 .SelectGotFocus = exSelectAllGotFocus
 .VisibleMasks = 6
 .TextIncludeLiterals = exClipModeLiteralsExclude
 .Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1`" & _

" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000"
 .Text = "845 0287"
 .ActiveMask = 1
End With

VB.NET

With Exmaskedit1
 .InsertMode = exontrol.EXMASKEDITLib.InsertModeEnum.exEditOvertypeMode
 .SelectGotFocus =
exontrol.EXMASKEDITLib.SelectGotFocusEnum.exSelectAllGotFocus
 .VisibleMasks = 6
 .TextIncludeLiterals =
exontrol.EXMASKEDITLib.ClipModeLiteralsEnum.exClipModeLiteralsExclude
 .Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1`" & _
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000"
 .Text = "845 0287"
 .ActiveMask = 1
End With

VB.NET for /COM

With AxMaskEdit1
 .InsertMode = EXMASKEDITLib.InsertModeEnum.exEditOvertypeMode
 .SelectGotFocus = EXMASKEDITLib.SelectGotFocusEnum.exSelectAllGotFocus
 .VisibleMasks = 6
 .TextIncludeLiterals =
EXMASKEDITLib.ClipModeLiteralsEnum.exClipModeLiteralsExclude
 .Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1`" & _
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000"
 .Text = "845 0287"
 .ActiveMask = 1
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXMASKEDITLib' for the library: 'ExMaskEdit 7.1 Control
Library'

 #import <MaskEdit.dll>
 using namespace EXMASKEDITLib;
*/
EXMASKEDITLib::IMaskEditPtr spMaskEdit1 = GetDlgItem(IDC_MASKEDIT1)-
>GetControlUnknown();
spMaskEdit1->PutInsertMode(EXMASKEDITLib::exEditOvertypeMode);
spMaskEdit1->PutSelectGotFocus(EXMASKEDITLib::exSelectAllGotFocus);
spMaskEdit1->PutVisibleMasks(6);
spMaskEdit1->PutTextIncludeLiterals(EXMASKEDITLib::exClipModeLiteralsExclude);
spMaskEdit1->PutMasks(_bstr_t("Local;!000-0000|Domestic;!(999) 000-
0000|International;!`+1` 999-000-0000|Dialed in the US;!`1`") +
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000");
spMaskEdit1->PutText(L"845 0287");
spMaskEdit1->PutActiveMask(1);

C++ Builder

MaskEdit1->InsertMode =
Exmaskeditlib_tlb::InsertModeEnum::exEditOvertypeMode;
MaskEdit1->SelectGotFocus =
Exmaskeditlib_tlb::SelectGotFocusEnum::exSelectAllGotFocus;
MaskEdit1->VisibleMasks = 6;
MaskEdit1->TextIncludeLiterals =
Exmaskeditlib_tlb::ClipModeLiteralsEnum::exClipModeLiteralsExclude;
MaskEdit1->Masks = TVariant(String("Local;!000-0000|Domestic;!(999) 000-
0000|International;!`+1` 999-000-0000|Dialed in the US;!`1`") +
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000");
MaskEdit1->Text = L"845 0287";

MaskEdit1->ActiveMask = 1;

C#

exmaskedit1.InsertMode =
exontrol.EXMASKEDITLib.InsertModeEnum.exEditOvertypeMode;
exmaskedit1.SelectGotFocus =
exontrol.EXMASKEDITLib.SelectGotFocusEnum.exSelectAllGotFocus;
exmaskedit1.VisibleMasks = 6;
exmaskedit1.TextIncludeLiterals =
exontrol.EXMASKEDITLib.ClipModeLiteralsEnum.exClipModeLiteralsExclude;
exmaskedit1.Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1`" +
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000";
exmaskedit1.Text = "845 0287";
exmaskedit1.ActiveMask = 1;

JavaScript

<OBJECT classid="clsid:43F80262-F652-11D3-AD39-00C0DFC59237"
id="MaskEdit1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 MaskEdit1.InsertMode = 1;
 MaskEdit1.SelectGotFocus = 1;
 MaskEdit1.VisibleMasks = 6;
 MaskEdit1.TextIncludeLiterals = 2;
 MaskEdit1.Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1`" +
 " 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from
France;!`191` 999-000-0000";
 MaskEdit1.Text = "845 0287";
 MaskEdit1.ActiveMask = 1;
</SCRIPT>

C# for /COM

axMaskEdit1.InsertMode = EXMASKEDITLib.InsertModeEnum.exEditOvertypeMode;
axMaskEdit1.SelectGotFocus =
EXMASKEDITLib.SelectGotFocusEnum.exSelectAllGotFocus;
axMaskEdit1.VisibleMasks = 6;
axMaskEdit1.TextIncludeLiterals =
EXMASKEDITLib.ClipModeLiteralsEnum.exClipModeLiteralsExclude;
axMaskEdit1.Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1`" +
" 999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from France;!`191`
999-000-0000";
axMaskEdit1.Text = "845 0287";
axMaskEdit1.ActiveMask = 1;

X++ (Dynamics Ax 2009)

public void init()
{
 str var_s;
 ;

 super();

 exmaskedit1.InsertMode(1/*exEditOvertypeMode*/);
 exmaskedit1.SelectGotFocus(1/*exSelectAllGotFocus*/);
 exmaskedit1.VisibleMasks(6);
 exmaskedit1.TextIncludeLiterals(2/*exClipModeLiteralsExclude*/);
 var_s = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1` ";
 var_s = var_s + "999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed
from France;!`191` 999-000-0000";
 exmaskedit1.Masks(var_s);
 exmaskedit1.Text("845 0287");
 exmaskedit1.ActiveMask(1);
}

Delphi 8 (.NET only)

with AxMaskEdit1 do
begin
 InsertMode := EXMASKEDITLib.InsertModeEnum.exEditOvertypeMode;
 SelectGotFocus := EXMASKEDITLib.SelectGotFocusEnum.exSelectAllGotFocus;
 VisibleMasks := 6;
 TextIncludeLiterals :=
EXMASKEDITLib.ClipModeLiteralsEnum.exClipModeLiteralsExclude;
 Masks := 'Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1` ' +
 '999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from
France;!`191` 999-000-0000';
 Text := '845 0287';
 ActiveMask := 1;
end

Delphi (standard)

with MaskEdit1 do
begin
 InsertMode := EXMASKEDITLib_TLB.exEditOvertypeMode;
 SelectGotFocus := EXMASKEDITLib_TLB.exSelectAllGotFocus;
 VisibleMasks := 6;
 TextIncludeLiterals := EXMASKEDITLib_TLB.exClipModeLiteralsExclude;
 Masks := 'Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1` ' +
 '999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed from
France;!`191` 999-000-0000';
 Text := '845 0287';
 ActiveMask := 1;
end

VFP

with thisform.MaskEdit1
 .InsertMode = 1
 .SelectGotFocus = 1

 .VisibleMasks = 6
 .TextIncludeLiterals = 2
 var_s = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1` 999-000-
0000|Dialed in the US;!`1` "
 var_s = var_s + "999-000-0000|Dialed from Germany;!`001` 999-000-0000|Dialed
from France;!`191` 999-000-0000"
 .Masks = var_s
 .Text = "845 0287"
 .ActiveMask = 1
endwith

dBASE Plus

local oMaskEdit

oMaskEdit = form.Activex1.nativeObject
oMaskEdit.InsertMode = 1
oMaskEdit.SelectGotFocus = 1
oMaskEdit.VisibleMasks = 6
oMaskEdit.TextIncludeLiterals = 2
oMaskEdit.Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1` 999-000-0000|Dialed from Germany;!`001` 999-
000-0000|Dialed from France;!`191` 999-000-0000"
oMaskEdit.Text = "845 0287"
oMaskEdit.ActiveMask = 1

XBasic (Alpha Five)

Dim oMaskEdit as P

oMaskEdit = topparent:CONTROL_ACTIVEX1.activex
oMaskEdit.InsertMode = 1
oMaskEdit.SelectGotFocus = 1
oMaskEdit.VisibleMasks = 6
oMaskEdit.TextIncludeLiterals = 2
oMaskEdit.Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1` 999-000-0000|Dialed from Germany;!`001` 999-

000-0000|Dialed from France;!`191` 999-000-0000"
oMaskEdit.Text = "845 0287"
oMaskEdit.ActiveMask = 1

Visual Objects

oDCOCX_Exontrol1:InsertMode := exEditOvertypeMode
oDCOCX_Exontrol1:SelectGotFocus := exSelectAllGotFocus
oDCOCX_Exontrol1:VisibleMasks := 6
oDCOCX_Exontrol1:TextIncludeLiterals := exClipModeLiteralsExclude
oDCOCX_Exontrol1:Masks := "Local;!000-0000|Domestic;!(999) 000-
0000|International;!`+1` 999-000-0000|Dialed in the US;!`1` 999-000-0000|Dialed
from Germany;!`001` 999-000-0000|Dialed from France;!`191` 999-000-0000"
oDCOCX_Exontrol1:Text := "845 0287"
oDCOCX_Exontrol1:ActiveMask := 1

PowerBuilder

OleObject oMaskEdit

oMaskEdit = ole_1.Object
oMaskEdit.InsertMode = 1
oMaskEdit.SelectGotFocus = 1
oMaskEdit.VisibleMasks = 6
oMaskEdit.TextIncludeLiterals = 2
oMaskEdit.Masks = "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1` 999-000-0000|Dialed from Germany;!`001` 999-
000-0000|Dialed from France;!`191` 999-000-0000"
oMaskEdit.Text = "845 0287"
oMaskEdit.ActiveMask = 1

Visual DataFlex

Procedure OnCreate

 Forward Send OnCreate
 Set ComInsertMode to OLEexEditOvertypeMode
 Set ComSelectGotFocus to OLEexSelectAllGotFocus
 Set ComVisibleMasks to 6
 Set ComTextIncludeLiterals to OLEexClipModeLiteralsExclude
 Set ComMasks to "Local;!000-0000|Domestic;!(999) 000-0000|International;!`+1`
999-000-0000|Dialed in the US;!`1` 999-000-0000|Dialed from Germany;!`001` 999-
000-0000|Dialed from France;!`191` 999-000-0000"
 Set ComText to "845 0287"
 Set ComActiveMask to 1
End_Procedure

property MaskEdit.MultiLine as Boolean
Retrieves or sets a value that determines whether the control can accept multiple lines of
text.

Type Description

Boolean A boolean expression that determines whether the control
can accept multiple lines of text.

Use the MultiLine property to allow multiple lines to the control.

property MaskEdit.Password as Boolean
Displays all characters as an asterisk (*)

Type Description

Boolean A Boolean expression that specifies whether the control
displays (*) characters instead.

By default, the Password property is False. The Password property specifies whether the
control the control displays a black circle for any shown character. For instance, Mask on
";;;password", specifies that the field to be displayed as a password. If the value parameter
is present, the first character in the value indicates the password character to be used. By
default, the * password character is used for non-TrueType fonts, else the black circle
character is used. For instance, Mask on ";;;password=*", specifies that the field to be
displayed as a password, and use the * for password character. If the value parameter is
missing, the default password character is used. The PasswordChar property specifies the
character to be displayed instead the black circle character.

property MaskEdit.PasswordChar as Integer
Retrieves or sets a value that determines password character.

Type Description

Integer
A Short expression that specifies the code of the
character to be displayed when the control's Password
property is True.

By default, the PasswordChar property is -107, which indicates the code for the black circle
character. The Password property specifies whether the control the control displays a black
circle for any shown character. For instance, Mask on ";;;password", specifies that the field
to be displayed as a password. If the value parameter is present, the first character in the
value indicates the password character to be used. By default, the * password character is
used for non-TrueType fonts, else the black circle character is used. For instance, Mask on
";;;password=*", specifies that the field to be displayed as a password, and use the * for
password character. If the value parameter is missing, the default password character is
used.

property MaskEdit.ReadOnly as Boolean
Retrieves or sets a value that determines whether the control is read only.

Type Description

Boolean A boolean expression that determines whether the control
is read only.

By default, the ReadOnly property is False. The ReadOnly property indicates that the editor
is locked, user can not update the content, the caret is available, so user can copy the text,
excepts the password fields. Use the ReadOnly property to make your control read-only.
Use Enabled property to disable the control. If the control is read-only, the user can change
the cursor position. If the control is disabled, the cursor position cannot be changed. The
BackColorReadOnly property specifies the control's background color when the field is
locked (ReadOnly property is True). The ForeColorReadOnly property specifies the
control's foreground color when the field is locked (ReadOnly property is True).

method MaskEdit.Refresh ()
Refreshes the control's field.

Type Description

Use the Refresh method to programmatically refresh visually the control's content. Use the
Text property to specify the control's text. Use the Mask property to change the control's
mask.

method MaskEdit.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following VB sample adds a new icon to control's images list:

 i = ExMaskEdit1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExMaskEdit1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExMaskEdit1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExMaskEdit1.ReplaceIcon 0, -1

property MaskEdit.Right as Boolean
Right aligns text in a single-line or multiline edit control.

Type Description

Boolean A Boolean expression that specifies whether the control
aligns right the text

By default, the Right property is False. Use the Right property to align the control's text to
the right.

method MaskEdit.Select (Start as Long, End as Long)
Selects the text between Start and End

Type Description
Start as Long A long expression that indicates the starting position.
End as Long A long expression that indicates the ending position.

The Select method selects the text inside the control. The Start and End parameters
determine the starting and ending point of the selection. The SelStart property returns or
sets the starting point of text selected; indicates the position of the insertion point if no text
is selected. The SelEnd property returns or sets the ending point of the text selected. The
SelectGotFocus property indicates what the control should select once the control gets the
focus.

property MaskEdit.SelectGotFocus as SelectGotFocusEnum
Indicates whether the entire text is selected once the field receives the focus.

Type Description

SelectGotFocusEnum A SelectGotFocusEnum expression that specifies what to
select when the control gets the focus.

By default, The SelectGotFocus property is exMoveEditableGotFocus. The SelectGotFocus
property indicates what the control should select once the control gets the focus. For
instance, use the SelectGotFocus property to highlight the un-completed part of the field
when control gets the focus. The TextIncludeLiteralsLoseFocus property specifies the
control's text to be displayed when the control loses the focus. The Select method selects
programmatically a part of the text inside the control.

property MaskEdit.SelEnd as Long
Returns or sets the ending point of text selected.

Type Description

Long A long expression that indicates the ending point of the
text selected.

The SelEnd property returns or sets the ending point of the text selected. The SelStart
property returns or sets the starting point of text selected; indicates the position of the
insertion point if no text is selected. Use the Select method to select a part of the control's
text. The SelectGotFocus property indicates what the control should select once the control
gets the focus.

property MaskEdit.SelStart as Long
Returns or sets the starting point of text selected.

Type Description

Long A long expression that indicates the starting point of the
text selected.

The SelStart property returns or sets the starting point of text selected; indicates the
position of the insertion point if no text is selected. The SelEnd property returns or sets the
ending point of the text selected. Use the Select method to select a part of the control's
text. The SelectGotFocus property indicates what the control should select once the control
gets the focus.

property MaskEdit.ShowImageList as Boolean

Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the control. Use the
RepaceIcon method to add, remove or clear icons in the control's images collection. Use
the HTML tag to display an icon to HTML tooltips.

method MaskEdit.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property MaskEdit.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property MaskEdit.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method MaskEdit.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property MaskEdit.Text as String
Retrieves or sets the text contained in the control.

Type Description

String A string expression that indicates the text contained in the
control.

Use the Text property to get/set the contained control's text, containing masking or non
masking characters. The TextIncludeLiterals property specifies the way the Text property
get/set the control's text. For instance, if you do not need to get the placeholders
characters in the Text property, set the TextIncludeLiterals property on
exClipModeLiteralsInclude before calling the Text property. The Value property is equivalent
with Text/TextIncludeLiterals property. The control fires the Change event if the user
changes the control's text. The TextIncludeLiteralsLoseFocus property specifies how the
control's field is shown when it loses the focus. The AllowEmptyValue property specifies
whether the control handles empty values.

property MaskEdit.TextIncludeLiterals as ClipModeLiteralsEnum
Determines the way the Text property returns or set the value of the field

Type Description

ClipModeLiteralsEnum A ClipModeIncludeLiteralEnum expression that specifies
the way the control's text is retrieved/set.

By default, the TextIncludeLiterals property is exClipModeLiteralsNone. The
TextIncludeLiterals property specifies the way the Text property get/set the control's text.
For instance, if you do not need to get the placeholders characters in the Text property, set
the TextIncludeLiterals property on exClipModeLiteralsInclude before calling the Text
property. The TextIncludeLiteralsLoseFocus property specifies how the control's field is
shown when it loses the focus. The Value property is equivalent with Text/TextIncludeLiterals
property. The control fires the Change event if the user changes the control's text. The
AllowEmptyValue property specifies whether the control handles empty values.

property MaskEdit.TextIncludeLiteralsLoseFocus as
ClipModeLiteralsEnum
Determines how the field shows its content once it loses the focus.

Type Description

ClipModeLiteralsEnum A ClipModeLiteralsEnum expression that specifies the way
the control displays its content once it loses the focus.

By default, the TextIncludeLiteralsLoseFocus property is exClipModeLiteralsNone. The
TextIncludeLiteralsLoseFocus property specifies how the control's field is shown when it
loses the focus. The TextIncludeLiterals property specifies the way the Text property get/set
the control's text. For instance, if you do not need to get the placeholders characters in the
Text property, set the TextIncludeLiterals property on exClipModeLiteralsInclude before
calling the Text property. The Value property is equivalent with Text/TextIncludeLiterals
property. The control fires the Change event if the user changes the control's text. The
AllowEmptyValue property specifies whether the control handles empty values. The
SelectGotFocus property indicates how the control specifies the selection once the control
gets the focus.

property MaskEdit.Type as TypeEnum
Retrieves or sets a value that determines the based window used by control.

Type Description

TypeEnum A TypeEnum expression that indicates the based window
type used.

By default, the Type property is Edit. Use the Type = RichEdit to allow coloring when the
masked value is not valid. Use Valid property to check if the masked value is valid or invalid

property MaskEdit.Valid as Boolean
Retrieves a value indicating whether the edit contains a valid value.

Type Description

Boolean A boolean expression that indicates whether the control's
mask contains a valid or invalid value.

Use the Valid property to check whether the user has completed entering the value into the
masked edit. The following sample shows how to use Valid property:

Private Sub MaskEdit1_Change()
 Debug.Print IIf(Not MaskEdit1.Valid, "...uncompleted", MaskEdit1.MaskValue())
End Sub

property MaskEdit.ValidateAs as ValidateAsEnum
Indicates the additional validation is performed, once the user leaves the field.

Type Description

ValidateAsEnum
A ValidateAsEnum expression that specifies the type of
validation it should be performed once the field is
completed.

By default, the ValidateAs property is exValidateAsNone, so no further validation is
performed. For instance, you can use the ValidateAs property to validate a valid date your
user enters in the field. This property has effect only if the Invalid property is not empty. The
Invalid property is not empty, indicates the html message to be displayed when the user
enters an inappropriate value for the field. If the value is missing or empty, the option has no
effect, so no validation is performed. If the value is a not-empty value, the validation is
performed. If the value is single space, no message is displayed and the field is keep
opened while the value is inappropriate. For instance, "!(999) 000 0000;;;invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field." displays the "The value you entered isn't appropriate for the input mask '...' specified
for this field." tooltip once the user leaves the field and it is not-valid (for instance, the field
includes entities required and uncompleted). The <%mask%> keyword in value, substitute
the current mask of the field, while the <%value%> keyword substitutes the current value (
including the literals). If this option should display/use the semicolon (;) character is should
be \; (escape). This option can be combined with empty, validateas.

The following samples validates the field as a date:

VBA (MS Access, Excell...)

With MaskEdit1
 .SelectGotFocus = 4
 .Mask = "!99/99/9999;; ;select=4,overtype"
 .Text = #1/2/2001#
 .Warning = "Invalid character!"
 .Invalid = "Invalid date!"
 .ValidateAs = 1
 .AllowEmptyValue = True
End With

VB6

With MaskEdit1

 .SelectGotFocus = exSelectRequiredEditableGotFocus
 .Mask = "!99/99/9999;; ;select=4,overtype"
 .Text = #1/2/2001#
 .Warning = "Invalid character!"
 .Invalid = "Invalid date!"
 .ValidateAs = exValidateAsDate
 .AllowEmptyValue = True
End With

VB.NET

With Exmaskedit1
 .SelectGotFocus =
exontrol.EXMASKEDITLib.SelectGotFocusEnum.exSelectRequiredEditableGotFocus
 .Mask = "!99/99/9999;; ;select=4,overtype"
 .Text = #1/2/2001#
 .Warning = "Invalid character!"
 .Invalid = "Invalid date!"
 .ValidateAs = exontrol.EXMASKEDITLib.ValidateAsEnum.exValidateAsDate
 .AllowEmptyValue = True
End With

VB.NET for /COM

With AxMaskEdit1
 .SelectGotFocus =
EXMASKEDITLib.SelectGotFocusEnum.exSelectRequiredEditableGotFocus
 .Mask = "!99/99/9999;; ;select=4,overtype"
 .Text = #1/2/2001#
 .Warning = "Invalid character!"
 .Invalid = "Invalid date!"
 .ValidateAs = EXMASKEDITLib.ValidateAsEnum.exValidateAsDate
 .AllowEmptyValue = True
End With

C++

/*

 Copy and paste the following directives to your header file as
 it defines the namespace 'EXMASKEDITLib' for the library: 'ExMaskEdit 7.1 Control
Library'

 #import <MaskEdit.dll>
 using namespace EXMASKEDITLib;
*/
EXMASKEDITLib::IMaskEditPtr spMaskEdit1 = GetDlgItem(IDC_MASKEDIT1)-
>GetControlUnknown();
spMaskEdit1-
>PutSelectGotFocus(EXMASKEDITLib::exSelectRequiredEditableGotFocus);
spMaskEdit1->PutMask(L"!99/99/9999;; ;select=4,overtype");
spMaskEdit1->PutText(L"1/2/2001");
spMaskEdit1->PutWarning(L"Invalid character!");
spMaskEdit1->PutInvalid(L"Invalid date!");
spMaskEdit1->PutValidateAs(EXMASKEDITLib::exValidateAsDate);
spMaskEdit1->PutAllowEmptyValue(VARIANT_TRUE);

C++ Builder

MaskEdit1->SelectGotFocus =
Exmaskeditlib_tlb::SelectGotFocusEnum::exSelectRequiredEditableGotFocus;
MaskEdit1->Mask = L"!99/99/9999;; ;select=4,overtype";
MaskEdit1->Text = L"TDateTime(2001,1,2).operator double()";
MaskEdit1->Warning = L"Invalid character!";
MaskEdit1->Invalid = L"Invalid date!";
MaskEdit1->ValidateAs = Exmaskeditlib_tlb::ValidateAsEnum::exValidateAsDate;
MaskEdit1->AllowEmptyValue = true;

C#

exmaskedit1.SelectGotFocus =
exontrol.EXMASKEDITLib.SelectGotFocusEnum.exSelectRequiredEditableGotFocus;
exmaskedit1.Mask = "!99/99/9999;; ;select=4,overtype";
exmaskedit1.Text =
Convert.ToDateTime("1/2/2001",System.Globalization.CultureInfo.GetCultureInfo("en-

US")).ToString();
exmaskedit1.Warning = "Invalid character!";
exmaskedit1.Invalid = "Invalid date!";
exmaskedit1.ValidateAs =
exontrol.EXMASKEDITLib.ValidateAsEnum.exValidateAsDate;
exmaskedit1.AllowEmptyValue = true;

JavaScript

<OBJECT classid="clsid:43F80262-F652-11D3-AD39-00C0DFC59237"
id="MaskEdit1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 MaskEdit1.SelectGotFocus = 4;
 MaskEdit1.Mask = "!99/99/9999;; ;select=4,overtype";
 MaskEdit1.Text = "1/2/2001";
 MaskEdit1.Warning = "Invalid character!";
 MaskEdit1.Invalid = "Invalid date!";
 MaskEdit1.ValidateAs = 1;
 MaskEdit1.AllowEmptyValue = true;
</SCRIPT>

C# for /COM

axMaskEdit1.SelectGotFocus =
EXMASKEDITLib.SelectGotFocusEnum.exSelectRequiredEditableGotFocus;
axMaskEdit1.Mask = "!99/99/9999;; ;select=4,overtype";
axMaskEdit1.Text =
Convert.ToDateTime("1/2/2001",System.Globalization.CultureInfo.GetCultureInfo("en-
US")).ToString();
axMaskEdit1.Warning = "Invalid character!";
axMaskEdit1.Invalid = "Invalid date!";
axMaskEdit1.ValidateAs = EXMASKEDITLib.ValidateAsEnum.exValidateAsDate;
axMaskEdit1.AllowEmptyValue = true;

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exmaskedit1.SelectGotFocus(4/*exSelectRequiredEditableGotFocus*/);
 exmaskedit1.Mask("!99/99/9999;; ;select=4,overtype");
 exmaskedit1.Text(str2Date("1/2/2001",213));
 exmaskedit1.Warning("Invalid character!");
 exmaskedit1.Invalid("Invalid date!");
 exmaskedit1.ValidateAs(1/*exValidateAsDate*/);
 exmaskedit1.AllowEmptyValue(true);
}

Delphi 8 (.NET only)

with AxMaskEdit1 do
begin
 SelectGotFocus :=
EXMASKEDITLib.SelectGotFocusEnum.exSelectRequiredEditableGotFocus;
 Mask := '!99/99/9999;; ;select=4,overtype';
 Text := '1/2/2001';
 Warning := 'Invalid character!';
 Invalid := 'Invalid date!';
 ValidateAs := EXMASKEDITLib.ValidateAsEnum.exValidateAsDate;
 AllowEmptyValue := True;
end

Delphi (standard)

with MaskEdit1 do
begin
 SelectGotFocus := EXMASKEDITLib_TLB.exSelectRequiredEditableGotFocus;
 Mask := '!99/99/9999;; ;select=4,overtype';
 Text := '1/2/2001';
 Warning := 'Invalid character!';
 Invalid := 'Invalid date!';

 ValidateAs := EXMASKEDITLib_TLB.exValidateAsDate;
 AllowEmptyValue := True;
end

VFP

with thisform.MaskEdit1
 .SelectGotFocus = 4
 .Mask = "!99/99/9999;; ;select=4,overtype"
 .Text = {^2001-1-2}
 .Warning = "Invalid character!"
 .Invalid = "Invalid date!"
 .ValidateAs = 1
 .AllowEmptyValue = .T.
endwith

dBASE Plus

local oMaskEdit

oMaskEdit = form.Activex1.nativeObject
oMaskEdit.SelectGotFocus = 4
oMaskEdit.Mask = "!99/99/9999;; ;select=4,overtype"
oMaskEdit.Text = Str("01/02/2001")
oMaskEdit.Warning = "Invalid character!"
oMaskEdit.Invalid = "Invalid date!"
oMaskEdit.ValidateAs = 1
oMaskEdit.AllowEmptyValue = true

XBasic (Alpha Five)

Dim oMaskEdit as P

oMaskEdit = topparent:CONTROL_ACTIVEX1.activex
oMaskEdit.SelectGotFocus = 4
oMaskEdit.Mask = "!99/99/9999;; ;select=4,overtype"
oMaskEdit.Text = {01/02/2001}

oMaskEdit.Warning = "Invalid character!"
oMaskEdit.Invalid = "Invalid date!"
oMaskEdit.ValidateAs = 1
oMaskEdit.AllowEmptyValue = .t.

Visual Objects

oDCOCX_Exontrol1:SelectGotFocus := exSelectRequiredEditableGotFocus
oDCOCX_Exontrol1:Mask := "!99/99/9999;; ;select=4,overtype"
oDCOCX_Exontrol1:Text := AsString(SToD("20010102"))
oDCOCX_Exontrol1:Warning := "Invalid character!"
oDCOCX_Exontrol1:Invalid := "Invalid date!"
oDCOCX_Exontrol1:ValidateAs := exValidateAsDate
oDCOCX_Exontrol1:AllowEmptyValue := true

PowerBuilder

OleObject oMaskEdit

oMaskEdit = ole_1.Object
oMaskEdit.SelectGotFocus = 4
oMaskEdit.Mask = "!99/99/9999;; ;select=4,overtype"
oMaskEdit.Text = String(2001-01-02)
oMaskEdit.Warning = "Invalid character!"
oMaskEdit.Invalid = "Invalid date!"
oMaskEdit.ValidateAs = 1
oMaskEdit.AllowEmptyValue = true

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComSelectGotFocus to OLEexSelectRequiredEditableGotFocus
 Set ComMask to "!99/99/9999;; ;select=4,overtype"

 Set ComText to "1/2/2001"
 Set ComWarning to "Invalid character!"
 Set ComInvalid to "Invalid date!"
 Set ComValidateAs to OLEexValidateAsDate
 Set ComAllowEmptyValue to True
End_Procedure

property MaskEdit.Value ([ClipModeIncludeLiteral as Variant]) as String
Retrieves the control's value with or without literals.

Type Description
ClipModeIncludeLiteral as
Variant

A ClipModeIncludeLiteralEnum expression that specifies
the way the control's text is retrieved.

String A String expression that defines the control's value base
on the ClipModeIncludeLiteral parameter.

The Value property indicates the control's text or value. The Mask property specifies the
control's mask. Use the Text property to change programmatically the control's text. The
TextIncludeLiterals property specifies the way the Text property get/set the control's text.
For instance, if you do not need to get the placeholders characters in the Text property, set
the TextIncludeLiterals property on exClipModeLiteralsInclude before calling the Text
property. The Value property is equivalent with Text/TextIncludeLiterals property. The control
fires the Change event if the user changes the control's text. The
TextIncludeLiteralsLoseFocus property specifies how the control's field is shown when it
loses the focus. The AllowEmptyValue property specifies whether the control handles empty
values.

property MaskEdit.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the control's version. The Version property is read-only.

property MaskEdit.VisibleMasks as Long
Retrieves or sets a value that indicates the number of visible items in the control masks list.

Type Description

Long A long expression that indicates the number of visible
items in the control masks list.

The VisibleMasks property indicates the number of visible items in the control masks list.
Use the Masks property to assign multiple masks to the control.

property MaskEdit.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Background property to apply a
skin to a part of the control. Use the Appearance property to change the visual appearance
of the control's frame.

The following screen shot shows the control's with visual appearance changed:

The following screen shot shows the control's with no visual appearance changed:

property MaskEdit.Warning as String
Indicates the html-tooltip message to be shown when the user enters an invalid character.

Type Description

String
A String expression that defines the built-in HTML tooltip to
be shown at cursor position when user enters any invalid
character.

By default, the Warning property is "". Use the Warning property to specify a HTML tooltip
to be shown at the cursor position when user enters an invalid character. The Warning
property has no effect if the property is empty or the control is not masked. Use the Invalid
property to specify a HTML tooltip to keep the control focused while the user enters an
inappropriate value for the field. Use the AllowBeep property to let control beeps once the
user enters any invalid character.

The following screen shot shows the Warning once the user enters an invalid character:

The control uses built-in HTML tags to display the caption using HTML format. The control
supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text

about:blank

with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the

red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

ExMaskEdit events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {43F80262-F652-11D3-AD39-00C0DFC59237}. The object's program identifier is: "Exontrol.MaskEdit".
The /COM object module is: "MaskEdit.dll"

The ExMaskEdit control supports the following events:

Name Description
Change Fired while the user changes the control's text.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MaskChange Occurs when the user changes the control's mask.
MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
RClick Occurs once the user right clicks the control.
ValidateValue Validates the field's value, once the user leaves the field.

C#

VB

private void Change(object sender)
{
}

Private Sub Change(ByVal sender As System.Object) Handles Change
End Sub

C#

C++

C++
Builder

Delphi

private void Change(object sender, EventArgs e)
{
}

void OnChange()
{
}

void __fastcall Change(TObject *Sender)
{
}

procedure Change(ASender: TObject;);
begin
end;

event Change ()
Fired while the user changes the control's text.

Type Description

Indicates that the control's contents is changed. Occurs when a DDE link updates data,
when a user changes the mask, or when you change the Text property setting through
code. The Change event procedure can synchronize or coordinate data display among
controls. The MaskChange property is fired once the user changes the control's Mask
property.

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Change(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Change()
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Change
End Sub

Private Sub Change()
End Sub

Private Sub Change()
End Sub

LPARAMETERS nop

PROCEDURE OnChange(oMaskEdit)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Change()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change()
End Function
</SCRIPT>

Procedure OnComChange
 Forward Send OnComChange

Syntax for Change event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Change() CLASS MainDialog
RETURN NIL

void onEvent_Change()
{
}

function Change as v ()
end function

function nativeObject_Change()
return

Here's a VB6 sample that handles the Change event:

Private Sub MaskEdit1_Change()
 Debug.Print "The Change event was fired. The new control's mask value is: " &
MaskEdit1.Text()
End Sub

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click MouseDown and MouseUp events
lets you distinguish between the left, right, and middle mouse buttons. You can also write
code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers. The RClick event notifies once the user right clicks the control.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oMaskEdit)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXMASKEDITLib._IMaskEditEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

By default, the control selects the entity from the cursor when the user double clicks the
control. The DblClick event notifies your application once the user double clicks the control.
The Click event notifies your application once the user clicks the control's content. The
RClick event notifies once the user right clicks the control.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oMaskEdit,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.MaskEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.MaskEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exmaskedit1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exmaskedit1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exmaskedit1.Items().EnableItem(exmaskedit1.EventParam(2 /*NewItem*/)))
 exmaskedit1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender, AxEXMASKEDITLib._IMaskEditEvents_EventEvent
e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oMaskEdit,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXMASKEDITLib._IMaskEditEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas… PROCEDURE OnKeyDown(oMaskEdit,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXMASKEDITLib._IMaskEditEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oMaskEdit,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXMASKEDITLib._IMaskEditEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oMaskEdit,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MaskChange(object sender)
{
}

Private Sub MaskChange(ByVal sender As System.Object) Handles MaskChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void MaskChange(object sender, EventArgs e)
{
}

void OnMaskChange()
{
}

void __fastcall MaskChange(TObject *Sender)
{
}

procedure MaskChange(ASender: TObject;);
begin
end;

procedure MaskChange(sender: System.Object; e: System.EventArgs);
begin
end;

event MaskChange ()
Occurs when the user changes the control's mask.

Type Description

The MaskChange event occurs if user changes the Mask property. The MaskChange event
occurs when user selects a new mask from the control's masks list. Use the Masks
property to assign multiple masks to the control. The Change event notifies your application
once the control's Text property is changed (the control's content).

Syntax for MaskChange event, /NET version, on:

Syntax for MaskChange event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event MaskChange()
end event MaskChange

Private Sub MaskChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MaskChange
End Sub

Private Sub MaskChange()
End Sub

Private Sub MaskChange()
End Sub

LPARAMETERS nop

PROCEDURE OnMaskChange(oMaskEdit)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="MaskChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MaskChange()
End Function
</SCRIPT>

Procedure OnComMaskChange
 Forward Send OnComMaskChange
End_Procedure

METHOD OCX_MaskChange() CLASS MainDialog
RETURN NIL

void onEvent_MaskChange()

Syntax for MaskChange event, /COM version (others), on:

XBasic

dBASE

{
}

function MaskChange as v ()
end function

function nativeObject_MaskChange()
return

The following sample displays the current control's mask when the user changes the mask
from the control's masks list:

Private Sub Form_Load()
 With MaskEdit1
 .Masks = "USA resident;(090)-###-###-###;Canada resident;(091)-###-###-###"
 End With
End Sub

Private Sub MaskEdit1_MaskChange()
 Debug.Print "The current mask is: " & MaskEdit1.Mask
End Sub

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXMASKEDITLib._IMaskEditEvents_MouseDownEvent e)
{

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click event, MouseDown and MouseUp
events lets you distinguish between the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseDown(oMaskEdit,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.MaskEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.MaskEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

private void MouseMoveEvent(object sender,
AxEXMASKEDITLib._IMaskEditEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse over the control

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oMaskEdit,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.MaskEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.MaskEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXMASKEDITLib._IMaskEditEvents_MouseUpEvent e)
{

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click event, MouseDown and MouseUp
events lets you distinguish between the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oMaskEdit,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.MaskEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.MaskEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

event RClick ()
Occurs once the user right clicks the control.

Type Description

The RClick event notifies once the user right clicks the control. Use a MouseDown or
MouseUp event procedure to specify actions that will occur when a mouse button is
pressed or released. Unlike the Click MouseDown and MouseUp events lets you distinguish
between the left, right, and middle mouse buttons. You can also write code for mouse-
keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oMaskEdit)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

event ValidateValue (NewValue as Variant, Cancel as Boolean)
Validates the field's value, once the user leaves the field.

Type Description

NewValue as Variant
A Text expression that specifies the control's text to be
validated. The NewValue parameter carries the same
value as Value(exClipModeLiteralsInclude)

Cancel as Boolean

A Boolean expression that specifies whether the value is
validated or canceled. If True, the Value is not validated,
so the field receives again the focus, if False, the user can
leave the field.

The ValidateValue event is fired once the user leaves the field and the current value needs
to be validated. The ValidateValue event could be user to validate programmatically the
value your user enters in the field. The Invalid property specifies the html message to be
displayed when the user enters an inappropriate value for the field. For instance, if the user
fills the field's content properly, the ValidateValue event gives you a chance to validate more
the value, if for instance, it does not fit your requirements. The Valid property specifies
whether the field is completed and valid (all required entities are completed, and the
ValidateAs option is verified). Use the Text property to gives the control's text as it is
displayed.

The ValidateValue event is fired only if

Invalid property is not empty, indicates the html message to be displayed when the
user enters an inappropriate value for the field. If the value is missing or empty, the
option has no effect, so no validation is performed. If the value is a not-empty value,
the validation is performed. If the value is single space, no message is displayed and
the field is keep opened while the value is inappropriate. For instance, "!(999) 000
0000;;;invalid=The value you entered isn't appropriate for the input mask
'<%mask%>' specified for this field." displays the "The value you entered isn't
appropriate for the input mask '...' specified for this field." tooltip once the user leaves
the field and it is not-valid (for instance, the field includes entities required and
uncompleted). The <%mask%> keyword in value, substitute the current mask of the
field, while the <%value%> keyword substitutes the current value (including the literals
). If this option should display/use the semicolon (;) character is should be \; (escape).
This option can be combined with empty, validateas.
the Mask property is not empty (the first part in the mask or the pattern). In other
words, the pattern is not empty. The pattern includes the mask characters or string
(series of characters) along with placeholders and literal data such as, parentheses,
periods, and hyphens.
the ReadOnly is False (by default), the editor is locked, user can not update the

C#

VB

private void ValidateValue(object sender,object NewValue,ref bool Cancel)
{
}

Private Sub ValidateValue(ByVal sender As System.Object,ByVal NewValue As
Object,ByRef Cancel As Boolean) Handles ValidateValue
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void ValidateValue(object sender,
AxEXMASKEDITLib._IMaskEditEvents_ValidateValueEvent e)
{
}

void OnValidateValue(VARIANT NewValue,BOOL FAR* Cancel)
{
}

void __fastcall ValidateValue(TObject *Sender,Variant NewValue,VARIANT_BOOL *
Cancel)
{
}

procedure ValidateValue(ASender: TObject; NewValue : OleVariant;var Cancel :
WordBool);
begin
end;

procedure ValidateValue(sender: System.Object; e:
AxEXMASKEDITLib._IMaskEditEvents_ValidateValueEvent);
begin
end;

content, the caret is available, so user can copy the text, excepts the password fields.

The Value property gives the field's content in different formats.

Syntax for ValidateValue event, /NET version, on:

Syntax for ValidateValue event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event ValidateValue(any NewValue,boolean Cancel)
end event ValidateValue

Private Sub ValidateValue(ByVal sender As System.Object, ByVal e As
AxEXMASKEDITLib._IMaskEditEvents_ValidateValueEvent) Handles ValidateValue
End Sub

Private Sub ValidateValue(ByVal NewValue As Variant,Cancel As Boolean)
End Sub

Private Sub ValidateValue(ByVal NewValue As Variant,Cancel As Boolean)
End Sub

LPARAMETERS NewValue,Cancel

PROCEDURE OnValidateValue(oMaskEdit,NewValue,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="ValidateValue(NewValue,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ValidateValue(NewValue,Cancel)
End Function
</SCRIPT>

Procedure OnComValidateValue Variant llNewValue Boolean llCancel
 Forward Send OnComValidateValue llNewValue llCancel
End_Procedure

METHOD OCX_ValidateValue(NewValue,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_ValidateValue(COMVariant _NewValue,COMVariant /*bool*/ _Cancel)
{

Syntax for ValidateValue event, /COM version (others), on:

XBasic

dBASE

}

function ValidateValue as v (NewValue as A,Cancel as L)
end function

function nativeObject_ValidateValue(NewValue,Cancel)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	MaskEdit
	ActiveMask property
	AllowBeep property
	AllowContextMenu property
	AllowEmptyValue property
	AllowToggleInsertMode property
	Appearance property
	AttachTemplate method
	BackColor property
	BackColorReadOnly property
	Background property
	CursorPos property
	Enabled property
	EventParam property
	ExecuteTemplate method
	Font property
	ForeColor property
	ForeColorReadOnly property
	ForeColorRich property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	InsertMode property
	Invalid property
	Mask property
	MaskChar property
	MaskFloat property
	Masks property
	MultiLine property
	Password property
	PasswordChar property
	ReadOnly property
	Refresh method
	ReplaceIcon method
	Right property
	Select method
	SelectGotFocus property
	SelEnd property (readonly)
	SelStart property (readonly)
	ShowImageList property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	Text property
	TextIncludeLiterals property
	TextIncludeLiteralsLoseFocus property
	Type property
	Valid property (readonly)
	ValidateAs property
	Value property (readonly)
	Version property
	VisibleMasks property
	VisualAppearance property (readonly)
	Warning property

	ExMaskEdit events
	Change event
	Click event
	DblClick event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MaskChange event
	MouseDown event
	MouseMove event
	MouseUp event
	RClick event
	ValidateValue event

