
 ExList

Add an advanced list control to your application. The exList component displays and edit
your tabular data. The exList component lets the user changes its visual appearance using
skins, each one providing an additional visual experience that enhances viewing pleasure.
Skins are relatively easy to build and put on any part of the control.

Features include:

Print and Print Preview support.
Ability to display more than 2,000,000,000 records, using the virtual mode.
Any cell supports Built-in HTML format.
WYSWYG Template/Layout Editor support.
Skinnable Interface support (ability to apply a skin to the any background part)
Filter support

Filter-Prompt support, allows you to filter the items as you type while the filter bar
is always visible on the bottom part of the list area.
Filter-On-Type support. Ability to filter items by a column, as you type.
Ability to filter items using patterns that include wild card characters like *, ? or #,
items between two dates, numbers, checkboxes with an easy UI interface.
Ability to filter items using OR, AND or NOT operators between columns.

Conditional Format support.
Computed Fields support.
'starts with' and 'contains' incremental searching support.
Ability to assign multiple icons to a cell.
Ability to load icons and pictures using the BASE64 encoded strings.
Background Picture support.
Transparent Selection support.
Ability to specify how selected items are displayed.
Ability to show the control's element from right-to-left for Hebrew, Arabic and other
RTL languages
support for drag and drop items
multiple columns
multiple selection
multi-line list items
multi-line HTML tooltip support, XP shadow effect
multiple levels header support
multiple lines header support
sorting by single or multiple columns support
user resizable columns
columns dragable

locked or unlocked columns
"Merge Cells" support
unlimited color options for cells or items
ability to set a font for any cell or item
cells can be formatted individually, via columns or rows
radio buttons, images, check boxes
hyperlink cells support.
mouse wheel support
column alignment right, left, or center
format columns
break items, items with different heights
and more

Ž ExList is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

How to start?

The following steps show you progressively how to start programming the Exontrol's ExList
component:

1. Adding columns. The control supports multiple columns, so at least one column must
be added, before anything else. The Columns.Add method adds a new column to the
control's columns collection. Another option to add columns is using the DataSource
method of the control. If you have an ADO or DAO recordset just pass it to the
DataSource property, and it will do the rest. The AddColumn event notifies your
application that a new column has been added. Check the Column object for all options
you can apply to a column.

2. Adding items/data. The Items object holds a collection of items. Each item is
identified by its index. Each item contains a set of cells, one for each column in the
control. Each cell is identified by its index in the item. So, an item is always referred as
ItemProperty(i), and the cell as CellProperty(i,c). The control provides several ways to
add items. If you are using the DataSource method as described in the step 1, the
fields from the recordset are automatically loaded to the control. When you are doing
manually, use the Items.Add to add new items. The PutItems method takes an array of
data and loads it in the control. The AddItem event notifies your application that a new
item is added.

3. Filling the cells. If your control contains a single column, the data in the column is
automatically put at adding time, because any of the AddItem or InsertItem method
contains a Caption parameter that may be used at loading time. If you have a control
with multiple columns, you need to use the Caption property to specify the captions for
the rest of the columns. The Add method may use array of data as parameters in
order to specify captions for all cells in the data.

4. Adding options for cells and items. The Items object holds the entire collection of
options that may be applied to any cell or item. For instance, the CellBold property
bolds a cell, the ItemForeColor property changes the foreground color for the entire
item, the CellImage property assigns an icon to a cell, or the CellHasCheckBox
property assigns a checkbox to a cell.

5. Adding events. The control supports events for most of the UI operations. For
instance, the user clicks a checkbox, the CellStateChanged event is fired, or the user
changes the cell's value so the Change event is fired.

No matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor. It's a nice feature and we don't
want you to miss it.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The Template feature lets you to use a simple x-script language to call properties and
methods of the control at design as well at runtime. You can use this feature to build x-
script strings to pass them at runtime. You can find a short description of the x-script
language here

Send comments on this topic.
Š 1999-2006 Exontrol Inc, Software. All rights reserved.

https://exontrol.com/faq.jsp/all/#template
https://exontrol.com/sg.jsp?content=techsupport&order=start.html&product=ExList
https://www.exontrol.com

constants AlignmentEnum
Defines the column's alignment. Use the Alignment property to align the cells in the column.

Name Value Description
LeftAlignment 0 The object is left aligned.
CenterAlignment 1 The object is centered.
RightAlignment 2 The object is right aligned.

constants AppearanceEnum
Defines the control's appearance. Use the Appearance property to specify the control's
appearance.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on. The SingleSel property specifies whether the control
supports single or multiple selection. The drag and drop operation starts once the user
clicks and moves the cursor up or down, if the SingleSel property is True, and if SingleSel
property is False, the drag and drop starts once the user clicks, and waits for a short
period of time. If SingleSel property is False, moving up or down the cursor selects the
items by drag and drop.

The AutoDragEnum type supports the following values:

Name Value Description

exAutoDragNone 0
AutoDrag is disabled. You can use the
OLEDropMode property to handle the OLE Drag
and Drop event for your custom action.

exAutoDragPosition 1

The item can be dragged from a position to
another, but not outside of its group. If your items
are arranged as a flat list, no hierarchy, this option
can be used to allow the user change the item's
position at runtime by drag and drop. This option
does not change the parent of any dragged item.
The dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position of the
dragging items is changed. The draggable collection
is a collection of sortable items between 2 non-
sortable items (SortableItem property). The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.
Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends

exAutoDragCopy 8 on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopyImage 10

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content. Use the ScrollBySingleLine property on
False, to allow scrolling pixel by pixel when user
clicks the up or down buttons on the vertical scroll
bar.

Click here to watch a movie on how

https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

exAutoDragScroll works.

exAutoDragPositionOnShortTouch256
exAutoDragPositionOnShortTouch. The object can
be dragged from a position to another, but not
outside of its group.

exAutoDragCopyOnShortTouch2048
exAutoDragCopyOnShortTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnShortTouch2304
exAutoDragCopyTextOnShortTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnShortTouch2560
exAutoDragCopyImageOnShortTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 exAutoDragCopySnapShotOnShortTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnShortTouch4096
exAutoDragScrollOnShortTouch. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnRight 65536
exAutoDragPositionOnRight. The object can be
dragged from a position to another, but not outside
of its group.

exAutoDragCopyOnRight 524288
exAutoDragCopyOnRight. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnRight 589824
exAutoDragCopyTextOnRight. Drag and drop the
selected objects to a target application, and paste
them as text only.

exAutoDragCopyImageOnRight655360
exAutoDragCopyImageOnRight. Drag and drop the
selected objects to a target application, and paste
them as image only.

exAutoDragCopySnapShotOnRight720896exAutoDragCopySnapShotOnRight. Drag and drop
a snap shot of the current component.

exAutoDragScrollOnRight 1048576
exAutoDragScrollOnRight. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnLongTouch16777216
exAutoDragPositionOnLongTouch. The object can
be dragged from a position to another, but not

outside of its group.

exAutoDragCopyOnLongTouch134217728
exAutoDragCopyOnLongTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnLongTouch150994944
exAutoDragCopyTextOnLongTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnLongTouch167772160
exAutoDragCopyImageOnLongTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376exAutoDragCopySnapShotOnLongTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnLongTouch268435456
exAutoDragScrollOnLongTouch. The component is
scrolled by clicking the object and dragging to a
new position.

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
AutoSearch property to allow 'start with' incremental search or 'contains' incremental search
feature in the control.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Name Value Description

exHeaderFilterBarButton 0 Specifies the background color for the drop down
filter bar button.

exFooterFilterBarButton 1 Specifies the background color for the closing
button in the filter bar.

exCellButtonUp 2 Specifies the background color for the cell's button,
when it is up.

exCellButtonDown 3 Specifies the background color for the cell's button,
when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a
calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSelBackColorFilter 20

Specifies the visual appearance for the selection in
the drop down filter window. The drop down filter
window shows up when the user clicks the filter
button in the column's header. Use the
DisplayFilterButton property to specify whether the
drop down filter bar button is visible or hidden.

exSelForeColorFilter 21 Specifies the foreground color for the selection in
the drop down filter window.

exBackColorFilter 26

Specifies the background color for the drop down
filter window. If not specified, the BackColorHeader
property specifies the drop down filter's background
color. Use the exSelBackColorFilter option to
specify the selection background visual appearance
in the drop down filter window.

exForeColorFilter 27

Specifies the foreground color for the drop down
filter window. If not specified, the ForeColorHeader
property specifies the drop down filter's foreground
color. Use the exSelForeColorFilter option to
specify the selection foreground color in the drop
down filter window.

exSortBarLinkColor 28 Indicates the color or the visual appearance of the
links between columns in the control's sort bar.

exCursorHoverColumn 32 Specifies the visual appearance for the column
when the cursor hovers the column.

exDragDropBefore 33

Specifies the visual appearance for the drag and
drop cursor before showing the items. This option
can be used to apply a background to the dragging
items, before painting the items.

exDragDropAfter 34

Specifies the visual appearance for the drag and
drop cursor after showing the items. This option can
be used to apply a semi-transparent/opaque
background to the dragging items, after painting the
items. If the exDragDropAfter option is set on white
(0x00FFFFFF), the image is not showing on OLE
Drag and drop.

exDragDropListTop 35

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the top half
of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBottom 36

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the bottom
half of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropForeColor 37
Specifies the foreground color for the items being
dragged. By default, the foreground color is black.

Specifies the graphic feedback of the item from the

exDragDropListOver 38

cursor if it is over the item. Please note, that if a
visual effect is specified for exDragDropListOver
AND exDragDropListBetween states, and a visual
effect is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBetween 39

Specifies the graphic feedback of the item when the
drag and drop cursor is between items. Please
note, that if a visual effect is specified for
exDragDropListOver AND exDragDropListBetween
states, and a visual effect is specified for
exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropAlign 40

Specifies the alignment of the drag and drop image
relative to the cursor. By default, the
exDragDropAlign option is 0, which initially the drag
and drop image is shown centered relative to the
position of the cursor.

The valid values are listed as follows (hexa
representation):

0x00000000, (default), the drag and drop
image is shown centered relative to the cursor,
and shows up.
0x01000000, (left), the drag and drop image is

shown to the left of the cursor.
0x02000000, (right), the drag and drop image
is shown to the right of the cursor.
0x04000000, (center-down), the drag and drop
image is shown centered relative to the cursor,
and shows down.
0xFF000000, (as- is), the drag and drop image
is shown as it is clicked.

exHeaderFilterBarActive 41
exHeaderFilterBarActive. Specifies the visual
appearance of the drop down filter bar button, while
filter is applied to the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the CellToolTip property to
specify the cell's tooltip. Use the ToolTipWidth
property to specify the width of the tooltip window.
The ToolTipDelay property specifies the time in ms
that passes before the ToolTip appears. Use the
ShowToolTip method to display a custom tooltip.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exListOLEDropPosition 96

By default, the exListOLEDropPosition is 0, which
means no effect. Specifies the visual appearance of
the dropping position inside the control, when the
control is implied in a OLE Drag and Drop
operation. The exListOLEDropPosition has effect
only if different than 0, and the OLEDropMode
property is not exOLEDropNone. For instance, set
the Background(exScheduleOLEDropPosition)
property on RGB(0,0,255), and a blue line is shown
at the item position when the cursor is hover the
control, during an OLE Drag and Drop position. The
OLEDragDrop event notifies your application once
an object is drop in the control.

exSelBackColorHide 166 Specifies the selection's background color, when
the control has no focus.
Specifies the selection's foreground color, when the

exSelForeColorHide 167 control has no focus.

exTreeGlyphOpen 180 Specifies the visual appearance for the +/- buttons
when it is collapsed.

exTreeGlyphClose 181 Specifies the visual appearance for the +/- buttons
when it is expanded.

exColumnsPositionSign 182

exColumnsPositionSign. Specifies the visual
appearance for the position sign between columns,
when the user changes the position of the column
by drag an drop.

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is

pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants BackModeEnum
Specifies the background mode when painting the selected items. The SelBackMode
property retrieves or sets a value that indicates whether the selection is transparent or
opaque.

Name Value Description
exOpaque 0 The selection is opaque.
exTransparent 1 The selection is transparent.
exGrid 2 The selection is half transparent half opaque
exCustom 3 User is responsible for painting the selected items.

constants BreakLineEnum
Defines the type of break lines. In order to display an item of break type that caption of the
item needs to be empty. Use the ItemBreak property to specify whether an item is a break
item.

Name Value Description
EmptyLine 0 EmptyLine
SingleLine 1 SingleLine
DoubleLine 2 DoubleLine
DotLine 3 DotLine
DoubleDotLine 4 DoubleDotLine
ThinLine 5 ThinLine
DoubleThinLine 6 DoubleThinLine

constants CaptionFormatEnum
Defines how the cell's caption is painted. Use the CaptionFormat property to specify
whether the Caption property supports built-in HTML format.

Name Value Description
exText 0 No HTML tags are painted

The control uses built-in HTML tags to display the
caption using HTML format. The control supports
the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+

about:blank

" that displays show lines- in gray
when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...

exHTML 1

</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.

& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width

indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

exComputedField 2
Indicates a computed field. The Caption or the
ComputedField property indicates the formula to
compute the field.

constants CellSingleLineEnum
The CellSingleLineEnum type defines whether the cell's caption is displayed on a single or
multiple lines. The CellSingleLine property retrieves or sets a value indicating whether the
cell is displayed using one line, or more than one line. The Def(exCellSingleLine) property
specifies that all cells in the column display their content using multiple lines. The
CellSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the cell's caption is displayed on a
single line. In this case any \r\n or
 HTML tags
is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants CheckStateEnum
Specifies the states for a checkbox in the control.

Name Value Description
Unchecked 0 Specifies whether the cell is unchecked.
Checked 1 Specifies whether the cell is checked.
PartialChecked 2 Specifies whether the cell is partial-checked..

constants DefColumnEnum
The Def property retrieves or sets a value that indicates the default value of given
properties for all cells in the same column.

Name Value Description

exCellHasCheckBox 0

Assigns check boxes to all cells in the column, if it is
True. Similar with the CellHasCheckBox property.

(boolean expression, False)

exCellHasRadioButton 1

Assigns radio buttons to all cells in the column, if it
is True. Similar with the CellHasRadioButton
property.

(boolean expression, False)

exCellHasButton 2

Specifies that all cells in the column are buttons, if it
is True. Similar with the CellHasButton property.

(boolean expression, False)

exCellBackColor 4

Specifies the background color for all cells in the
column. Use the CellBackColor property to assign a
background color for a specific cell. The property
has effect only if the property is different than zero.

(long expression)

exCellForeColor 5

Specifies the foreground color for all cells in the
column. Use the CellForeColor property to assign a
foreground color for a specific cell. The property
has effect only if the property is different than zero.

(long expression)

exCellVAlignment 6

Specifies the column's vertical alignment. By
default, the Def(exCellVAlignment) property is
MiddleAlignment. Use the CellVAlignment property
to specify the vertical alignment for a particular
cell.

(VAlignmentEnum expression, by default

MiddleAlignment)

exHeaderBackColor 7

Specifies the column's header background color.
The property has effect only if the property is
different than zero. Use this option to change the
background color for a column in the header area.
The exHeaderBackColor option supports skinning,
so the last 7 bits in the high significant byte of the
color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control.

(Color expression)

exHeaderForeColor 8

Specifies the column's header background color.
The property has effect only if the property is
different than zero.

(Color expression)

exCellSingleLine 16

Specifies that all cells in the column displays its
content into single or multiple lines. Similar with the
CellSingleLine property. If using the CellSingleLine /
Def(exCellSingleLine) property, we recommend to
set the ScrollBySingleLine property on True so all
items can be scrolled.

(CellSingleLineEnum type, previously Boolean
expression)

exCaptionFormat 17

Specifies that all cells in the column display text,
HTML format, or a computed field. Similar with the
CaptionFormat property, (CaptionFormatEnum
expression, exText). The ComputedField property
indicates the formula to compute the column, when
the Def(exCaptionFormat) is exComputedField.

(CaptionFormatEnum expression)

Specifies the order of the drawing parts for the
entire column. By default, this option is
"check,icon,icons,picture,caption", which means that

exCellDrawPartsOrder 34

the cell displays its parts in the following order:
check box/ radio buttons (
CellHasCheckBox/CellRadioButton), single icon (
CellImage), multiple icons (CellImages), custom
size picture (CellPicture), and the cell's caption.
Use the exCellDrawPartsOrder option to specify a
new order for the drawing parts in the cells of the
column. The RightToLeft property automatically flips
the order of the columns. (string expression,
"check,icon,icons,picture,caption")

(String expression)

exCellPaddingLeft 48

The padding defines the space between the
element border and the element content. Gets or
sets the left padding (space) of the cells within the
column. This option applies a padding to all cells in
the column. Use the exHeaderPaddingLeft option to
apply the padding to the column's caption in the
control's header. The padding does not affect the
element's background color. By default, the
exCellPaddingLeft property is 0.

(Long expression)

exCellPaddingRight 49

Gets or sets the right padding (space) of the cells
within the column. This option applies a padding to
all cells in the column. Use the
exHeaderPaddingRight option to apply the padding
to the column's caption in the control's header. The
padding does not affect the element's background
color. By default, the exCellPaddingRight property
is 0.

(Long expression)

exCellPaddingTop 50

Gets or sets the top padding (space) of the cells
within the column. This option applies a padding to
all cells in the column. Use the exHeaderPaddingTop
option to apply the padding to the column's caption
in the control's header. The padding does not affect
the element's background color. By default, the
exCellPaddingTop property is 0.

(Long expression)

exCellPaddingBottom 51

Gets or sets the bottom padding (space) of the
cells within the column. This option applies a
padding to all cells in the column. Use the
exHeaderPaddingBottom option to apply the
padding to the column's caption in the control's
header. The padding does not affect the element's
background color. By default, the
exCellPaddingBottom property is 0.

(Long expression)

exHeaderPaddingLeft 52

Gets or sets the left padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingLeft option to apply the padding to all
cells in the column. The padding does not affect the
element's background color. By default, the
exHeaderPaddingLeft property is 0.

(Long expression)

exHeaderPaddingRight 53

Gets or sets the right padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingRight option to apply the padding to
all cells in the column. The padding does not affect
the element's background color. By default, the
exHeaderPaddingRight property is 0.

(Long expression)

exHeaderPaddingTop 54

Gets or sets the top padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingTop option to apply the padding to all
cells in the column. The padding does not affect the
element's background color. By default, the
exHeaderPaddingTop property is 0.

(Long expression)

exHeaderPaddingBottom 55

Gets or sets the bottom padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingBottom option to apply the padding to
all cells in the column. The padding does not affect
the element's background color. By default, the
exHeaderPaddingBottom property is 0.

(Long expression)

exColumnResizeContiguously 64

Gets or sets a value that indicates whether the
control's content is updated while the user is
resizing the column.

(Boolean expression, False)

constants DescriptionTypeEnum
The control's Description property defines descriptions for few control parts.

Name Value Description

exFilterBarAll 0

Defines the caption of (All) in the filter bar window.
If the Description(exFilterBarAll) property is empty,
the (All) predefined item is not shown in the drop
down filter window.

exFilterBarBlanks 1

Defines the caption of (Blanks) in the filter bar
window. If the Description(exFilterBarBlanks)
property is empty, the (Blanks) predefined item is
not shown in the drop down filter window.

exFilterBarNonBlanks 2

Defines the caption of (NonBlanks) in the filter bar
window. If the Description(exFilterBarNonBlanks)
property is empty, the (NonBlanks) predefined item
is not shown in the drop down filter window.

exFilterBarFilterForCaption 3 Defines the caption of "Filter For:" in the filter bar
window.

exFilterBarFilterTitle 4 Defines the title for the filter tooltip.
exFilterBarPatternFilterTitle 5 Defines the title for the filter pattern tooltip.
exFilterBarTooltip 6 Defines the tooltip for filter window.
exFilterBarPatternTooltip 7 Defines the tooltip for filter pattern window
exFilterBarFilterForTooltip 8 Defines the tooltip for "Filter For:" window

exFilterBarIsBlank 9 Defines the caption of the function 'IsBlank' in the
control's filter bar.

exFilterBarIsNonBlank 10 Defines the caption of the function 'not IsBlank' in
the control's filter bar.

exFilterBarAnd 11
Customizes the 'and' operator in the control's filter
bar when multiple columns are used to filter the
items in the control.

exFilterBarDate 12

Specifies the "Date:" caption being displayed in the
drop down filter window when DisplayFilterPattern
property is True, and DisplayFilterDate property is
True.
Specifies the "to" sequence being used to split the
from date and to date in the Date field of the drop
down filter window. For instance, the "to

exFilterBarDateTo 13 12/13/2004" specifies the items before 12/13/2004,
"12/23/2004 to 12/24/2004" filters the items
between 12/23/2004 and 12/24/2004, or "Feb 12
2004 to" specifies all items after a date.

exFilterBarDateTooltip 14

Describes the tooltip that shows up when cursor is
over the Date field. "You can filter the items into a
given interval of dates. For instance, you can filter
all items dated before a specified date (to
2/13/2004), or all items dated after a date (Feb
13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)."

exFilterBarDateTitle 15
Describes the title of the tooltip that shows up when
the cursor is over the Date field. By default, the
exFilterBarDateTitle is "Date".

exFilterBarDateTodayCaption 16
Specifies the caption for the 'Today' button in a date
filter window. By default, the
exFilterBarDateTodayCaption property is "Today".

exFilterBarDateMonths 17

Specifies the name for months to be displayed in a
date filter window. The list of months should be
delimitated by space characters. By default, the
exFilterBarDateMonths is "January February March
April May June July August September October
November December".

exFilterBarDateWeekDays 18

Specifies the shortcut for the weekdays to be
displayed in a date filter window. The list of shortcut
for the weekdays should be separated by space
characters. By default, the
exFilterBarDateWeekDays is "S M T W T F S".
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

exFilterBarChecked 19

Defines the caption of (Checked) in the filter bar
window. The exFilterBarChecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarChecked) property is
empty, the (Checked) predefined item is not shown
in the drop down filter window. If the user selects
the (Checked) item the control filter checked items.
The CellState property indicates the state of the
cell's checkbox.

exFilterBarUnchecked 20

Defines the caption of (Unchecked) in the filter bar
window. The exFilterBarUnchecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarUnchecked) property is
empty, the (Unchecked) predefined item is not
shown in the drop down filter window. If the user
selects the (Unchecked) item the control filter
unchecked items. The CellState property indicates
the state of the cell's checkbox.

exFilterBarIsChecked 21

Defines the caption of the 'IsChecked' function in
the control's filter bar. The 'IsChecked' function may
appear only if the user selects (Checked) item in
the drop down filter window, when the FilterType
property is exCheck

exFilterBarIsUnchecked 22

Defines the caption of the 'not IsChecked' function
in the control's filter bar. The 'not IsChecked'
function may appear only if the user selects
(Unchecked) item in the drop down filter window,
when the FilterType property is exCheck

exFilterBarOr 23
Customizes the 'or' operator in the control's filter
bar when multiple columns are used to filter the
items in the control.

exFilterBarNot 24 Customizes the 'not' operator in the control's filter
bar.

exFilterBarExclude 25

Specifies the 'Exclude' caption being displayed in
the drop down filter. The Exclude option is
displayed in the drop down filter window only if the
FilterList property includes the exShowExlcude flag.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc.

exCFBitmap 2 A bitmap compatible with Windows 2.x.

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed.

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB).

exCFPalette 9 A color-palette handle.
exCFEMetafile 14 A Windows enhanced metafile.

exCFFiles 15 A collection of files. Use Files property to get the
collection of files

exCFRTF -16639A RTF document.

constants exOLEDragOverEnum
State transition constants for the OLEDragOver event.

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum
Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled.

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648This one is not implemented.

constants exOLEDropModeEnum
Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality.

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code.

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side. If the control's
RightToLeft property is True, the close button of the
control's filter bar would be automatically displayed
on the left side.

exFilterBarCompact 2048

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to
the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The FilterList property specifies the items being included to the column's
drop down filter-list, including other options for filtering. Use the DisplayFilterPattern and/or
DisplayFilterDate property to display the pattern field, a date pattern or a calendar control
inside the drop down filter window.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 Not implemented.
exRootItems 4 Not implemented.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items
selection in the drop down filter list.
The filter's list displays a check box for each
included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses

exShowCheckBox 256

ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

exShowFocusItem 1024

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A
item being focused in the drop down filter list is the
one you have in the control's selection. This flag has
effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item

in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096

This flag indicates whether the filter's tooltip is
shown. The
Description(exFilterBarTooltip,exFilterBarPatternTooltip,
...) properties defines the filter's tooltips.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
Can be combined with
exFilterPromptCaseSensitive. The
FilterBarPromptPattern property may include wild
characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character

' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith, exFilterPromptEndWith or
exFilterPromptPattern.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
Defines the type of filter applies to a column. Use the FilterType property of the Column
object to specify the type of filter being used. Use the Filter property of Column object to
specify the filter being used. The value for Filter property depends on the FilterType
property.

Name Value Description
exAll 0 No filter applied
exBlanks 1 Only blank items are included
exNonBlanks 2 Only non blanks items are included

exPattern 3

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character. If any of the *,
?, # or | characters are preceded by a \ (escape
character) it masks the character itself.

exDate 4

Use the exDate type to filter items into a given
interval. The Filter property of the Column object
defines the interval of dates being used to filter
items. The interval of dates should be as
[dateFrom] to [dateTo]. Use the Description
property to changes the "to" conjunction used to
split the dates in the interval. If the dateFrom value
is missing, the control includes only the items before
the dateTo date, if the dateTo value is missing, the
control includes the items after the dateFrom date.
If both dates (dateFrom and dateTo) are present,
the control includes the items between this interval
of dates. For instance, the "2/13/2004 to" includes
all items after 2/13/2004 inclusive, or "2/13/2004 to
Feb 14 2005" includes all items between 2/13/2004
and 2/14/2004.

exNumeric 5

If the FilterType property is exNumeric, the Filter
property may include operators like <, <=, =, <>,
>= or > and numbers to define rules to include
numbers in the control's list. For instance, the "> 10
< 100" filter indicates all numbers greater than 10
and less than 100.
Only checked or unchecked items are included. The

exCheck 6

CellState property indicates the state of the cell's
checkbox. The control filters for checked items, if
the Filter property is "1". The control filters for
unchecked items, if the Filter property is "0". A
checked item has the the CellState property
different than zero. An unchecked item has the
CellState property on zero.

exImage 10 Filters items by icons. The CellImage property
indicates the cell's icon.

exFilter 240 Only the items that are in the Filter property are
included.

exFilterDoCaseSensitive 256

By default, the filtering is case-insensitive.
If this flag is set, the filtering is case-
sensitive. This option can be combined with
exFilter or exPattern flag to perform a case-
sensitive filtering. For instance, the exFilter
+ exFilterDoCaseSensitive indicates that the
column includes only the values that match
exactly the values in the Filter property.

constants FormatApplyToEnum
The FormatApplyToEnum expression indicates whether a format is applied to an item or to
a column. Any value that's greater than 0 indicates that the conditional format is applied to
the column with the value as index. A value less than zero indicates that the conditional
format object is applied to items. Use the ApplyTo property to specify whether the
conditional format is applied to items or to columns.

Name Value Description
exFormatToItems -1 Specifies whether the condition is applied to items.

exFormatToColumns 0

Specifies whether the condition is applied to
columns. The 0 value indicates that the conditional
format is applied to the first column. The 1 value
indicates the conditional format is applied to the
second column. The 2 value indicates the
conditional format is applied to the third column, and
so on.

constants GridLinesEnum

Defines how the control paints the grid lines. Use the DrawGridLines property to specify
whether the control draws the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of
a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants HitTestInfoEnum
The HitTestInfoEnum expression defines the hit area within a cell. Use the ItemFromPoint
property to determine the hit test code within the cell.

Name Value Description
exHTCell 0 In the cell's client area.

exHTCellInside 4 On the icon, picture, check or caption associated
with a cell.

exHTCellCaption 20 In the caption associated with a cell.
exHTCellCheck 36 In the check/radio button associated with a cell.
exHTCellIcon 68 In icon associated with a cell.
exHTCellPicture 132 In a picture associated to a cell.

exHTCellCaptionIcon 1044

In the icon's area inside the cell's caption. Use the
 HTML tag to insert icons inside the cell's
caption, when the CaptionFormat property is
exHTML.

exHTBottomHalf 2048

(HEXA 800) The cursor is in the bottom half of the
row. If this flag is not set, the cursor is in the top
half of the row. This is an OR combination with the
rest of predefined values. For instance, you can
check if the cursor is in the bottom half of the row
using HitTestCode AND 0x800

exHTBetween 4096

The cursor is between two rows. This is an OR
combination with the rest of predefined values. For
instance, you can check if the cursor is between
two items using HitTestCode AND 0x1000

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollBars property to specify whether the vertical or horizontal scroll bar is visible or
hidden. Use the ScrollPartVisible property to specify the visible parts in the control's scroll
bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollBarsEnum
Specifies the type of scroll bars that control uses. Use the ScrollBars property to specify
the control's scroll bars.

Name Value Description
NoScroll 0 No scroll bars are shown
Horizontal 1 Only horizontal scroll bars are shown.
Vertical 2 Only vertical scroll bars are shown.
Both 3 Both horizontal and vertical scroll bars are shown.

DisableNoHorizontal 5 The horizontal scroll bar is always shown, it is
disabled if it is unnecessary.

DisableNoVertical 10 The vertical scroll bar is always shown, it is
disabled if it is unnecessary.

DisableBoth 15 Both horizontal and vertical scroll bars are always
shown, disabled if they are unnecessary.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SortOnClickEnum
Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption has
been clicked.

Name Value Description

exNoSort 0 The column is not sorted when user clicks the
column's header.

exDefaultSort -1 (default) The control sorts the column when user
clicks the column's header.

exUserSort 1 The control displays the sort icons, but it doesn't
sort the column.

constants SortOrderEnum
Specifies the column's order type.

Name Value Description
SortNone 0 The column is not sorted.
SortAscending 1 The column is sorted ascending.
SortDescending 2 The column is sorted descending.

constants SortTypeEnum
Defines how a column can be sorted. The SortType property returns or sets a value that
indicates the way the control sorts the values for a column.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 The values sorted are the user data of cells. Values
are sorted as numbers.

exSortByValue 16 The column gets sorted by cell's value rather than
cell's caption.

exSortByState 32 The column gets sorted by cell's state rather than
cell's caption.

exSortByImage 48 The column gets sorted by cell's image rather than
cell's caption.

constants ItemsAllowSizingEnum
The ItemsAllowSizingEnum type specifies whether the user can resize items individuals or
all items at once, at runtime. Use the ItemsAllowSizing property to specify whether the user
can resize items individuals or all items at once, at runtime. Curently, the
ItemsAllowSizingEnum type supports the following values:

Name Value Description
exNoSizing 0 The user can't resize the items at runtime.

exResizeItem -1 Specifies whether the user resizes the item from
the cursor.

exResizeAllItems 1 Specifies whether the user resizes all items at
runtime.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme

constants VAlignmentEnum

Specifies the vertical alignment for the fields (captions). Use the CellVAlignment property
to align vertically the cell's caption.

Name Value Description
TopAlignment 0 The field is top aligned.
MiddleAlignment 1 The field is centered.
BottomAlignment 2 The field is bottom aligned.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the
background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicates the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background
color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the BackColor = BackColor Or
&H2000000 indicates that we apply the skin with the index 2 using the old color, to the
object that BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property

CellImage, CellImages, HeaderImage, CheckImage or RadioImage property

The following VB sample changes the visual appearance for the selected item. Shortly, we
need to add a skin to the Appearance object using the Add method, and we need to set the
last 7 bits in the SelBackColor property to indicates the index of the skin that we want to
use. The sample applies the " " to the selected item(s):

With List1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_list.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExList_Help\\selected.ebn")));
m_list.SetSelBackColor(0x23000000);
m_list.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxList1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExList_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axList1.VisualAppearance.Add(0x23, "D:\\Temp\\ExList_Help\\selected.ebn");
axList1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.List1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExList_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = 587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

The first screen shot was generated using the following template (On Windows XP):

BeginUpdate

ShowFocusRect = Fase
VisualAppearance.Add(1,"XP:Header 1 1")
VisualAppearance.Add(2,"XP:ScrollBar 2 1")
VisualAppearance.Add(3,"XP:Window 18 1")
VisualAppearance.Add(4,"XP:Window 16 1")
BackColorHeader = 16777216
SelBackColor = 33554432
Background(1) = 50331648
Background(0) = 67108864
Background(20) = 33554432
Background(21) = 1
SelForeColor = 0

ConditionalFormats
{
 Add("%2>100")
 {
 Bold = True

 ForeColor =RGB(0,0,255)
 ApplyTo = 2
 }
}
Columns
{
 "A".DisplayFilterButton = True
 "B"
 "=(A+B)*1.19"
 {
 ComputedField = "(%0 + %1)*1.19"
 }
}
Items
{
 Dim h
 h = Add(1)
 Caption(h,1) = 110
 h = Add(2)
 Caption(h,1) = 22
 h = Add(2)
 Caption(h,1) = 99
 h = Add(1)
 Caption(h,1) = 89
 h = Add(3)
 Caption(h,1) = 11
 h = Add(1)
 Caption(h,1) = 6
}
EndUpdate

The second screen shot was generated using the following template:

BeginUpdate

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

Images("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

VisualAppearance
{
 ' Header
 Add(1,
"gBFLBCJwBAEHhEJAEGg4BcoDg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRiYYJDiWCQ1ARHcpRPDgARbDyVQAhaJYJiSNYWDTJUpzBC8QwHHyaIDAKCXfoSGI6ABNUBzTKtBx3BIUYwFaCaAhaTgAUTAdYxJKYZBqEqua7mMZRQqCJ5lTLHcTATDARypESYbSme44DooAA1UBcMbybJ9dQHGakLqpS5ZchTBQYW7AYa3BQVDS1I66KRnCQ6XrKA5RQLiEB1HhWGABK6taziOwbGhmYpnaTddoTDCwDQTTQABLhEQser6HaRYJSGTSBhIAAtWrbMByOjdMpDPacb5wF7VOLAbSvCKuRiGOo4lgbRpgSVZikCWBIB4EgggSBQ2luOIwCoEhuDeHINiYExgjiRBtDgRYCEECAZAiG5yguDYhCKCBPCMF43GwEAzHADx4hEM58kYNJNmIGIaCqIIoDIC4DGECA+BKA4hEgRgVgSYRoGYGIGmEeB2BqB4hkgfgfgGTZmDwAIJCCUwolgN4LlMWJbgsYp4joMIMmMKJWDGDZjEiYg2g4Y5Im4PoOiQCJ2EGD5kCiQgqgJDYRAOAxOiOPJyDeTpDjyUA4g4aROFWFQlGkZhYhaZR5HYWoXiWSR+GKGBmEmAhmhiZh5hYaIXmQeA2EuApPjOcJ9D2T4TmiaA8g8SRAm+HonkkRh9h6Z5qAaAIgmeegWgKIYoEoHoKiIaJKCKDoimUaJCG4AAglOfoWhwT5TlodQ7E8M5WHcPQpnqBh4iiKgKg6JopGqCoSiqKZqjqJosiuapqkaLYsmeCZqhGC4pDoVoXhyDxTmSe4mg+I5AnUPYsCsEpDjEbILB6SoxiySwmk2MpsmsRpQjSbJ7FaUo1i0Sh+jaFQpCgLhvCqKRjn6GIvGueZWleOZtEuIpYjqborjaaY7m0WxqFGLZNjqZgLjgbg6nqQI7i6S5CnyP5vmwBp9jMLwpEqXIuC2ahSneLpPluEp7kCMAMA8EZEnEC5DAWPWmgMDJDi4bBXBKR4xEwfwijWcR8B6dZCGuK4KjyPoxlyDwgkucpskafJJE4ax0iqN5vgyLpljAcwMgcPpPHQA5bR2M4MG8LJPDMLQHD+UhzB0DwIk2cIsGsKpDHQfQvZ4NYLi8TpJnUDImnmTp1H0MxhlibI9G8GZOHUTYDFmWQ2C2LpDlmMoMC8U5HDSBsMw7RbhkC2IYXYuQ1j4D8NsX47h9j+HqKJe4rh4jAHiBgWoa1JDbB8I0WocAOA/BKKYeIeAbBrFOPATY7gtjEHkDwdwZxlDjA2I4UozQ3C8E+DkZwcA9COGiLoOg/QbhdEEHQDgbwijVHgNwe4XxrD2AmM8DIyx1icGcHUMAeAJivEEH0PAfgXiFHGPgTwRxGjkHyJ4L4nRyh6A8G8UY5R6g6HsHUOQewKj3FkH0fYfh3i1HePsT4BxejwH4J8D4zR4h9A+C8aY8RnCHGqLcbwYwZBpHKEwPwkxLjqD8P4f4zx2j9H+B8c49B/hgAGP8QATx9ACCABgBYABwAzDSE8JItRCCiEIBYfglwGAREEFAJwCgghYWwOAYgGRBhQDcA4FIhxyCDCkFEIggRkCCAkCIEgQzsgsBQIQaApgLBCFoC0BAShkgBIC")

 ' HeaderFilterBarButton

Add(2,"gBFLBCJwBAEHhEJAEGg4BCwEg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRjYYJDiWCQzARHcpRSKUOQvFaLIYleA5EgmNYNSZKcbRfIMBx7GcHUIvfQgASIf6LJxACZwADOI5CTpCIpxUKEEx/DyoKKoWh5RhENQlTIMVbzEKoYTBBKybLqGAwJhoI5WSJMEb0VRlGBnH65oCwHbdATlGS6I6paZpbhrBYDBpcEBhfaMByzLiuIpwGR6PjCHpTYhNUI4ZDsE4fLaiYpsGw6eqoAJpWRZUxXHBIDQTRKBRLhERMNrnEqEbhOG4yVg4AR/H4LNp2bLZUorA40VjrEB5Rr2NQHYLiODxaCYPoyDMGJYJKOpIloIQZiyR4CnCEA8CcZQDAodI2jOexIjabxojMCxgnaDAWl4KoAiSQhCDCEBsCeIAAAQHAnA0HhHgCRAkGEHQHgEfBmBiBhBhALgYgaUZBB4BMWAAuBhEQZA2EIQoECQLhCEGVZEBgRYNkAPZpFaD5zBiUw3ggYhoiqCxiniOgwgyYwolYMYNmMSJiDaDhjkibg+g6JAInYQYPmQKQKCoN4ZBkHgwDKDYDHiPQ1g2OQ+FGFAlCkVhUhWZQ5GYVoWiWCRuF6FxmAkchiheZg5gYZIUiSSIyC6EZQDiQJqDuTwjHybA7k0A4ImaHRnHmWh4h6Z4pnYeYfmeSgCH6IBoEoDoGiCKIKBaCYhmiKgGGmDAmliOJ7D8D5TlyeU9gOSJ0hyDp6HKHocmmeh22sagqhaIYpmoSoiiaKhqkqLouiqKwKjYeIUikAACDAUZpDOdJ2iWTpTkydYmE8SwCkKJosDsBpEjGbBrCaRYymyCwykqMxtAsPpSjOLRKGqHIsmUCpWjcUQrhOVN0muM5onAPRPGuDpljkLhriaaI6m4e42mqO4ukuPpyjwbxLkKdo8m8e5WkCNZnGqUguiQSoqmKFI3i4CheniQZvFwIp5kKcIsDcCZDm8a5uHONgNjsagukCD5cBKYZDjCTBDByR5xmyBwdjscQplKfY2G+epbBeNwwDsfwb1gDIPDGTJzAwQwlkUMRsAcLJGHKbAbDWTIznyUxAlCb4Ml8J5FHKGxsn+NxzluCxBlOdBNEMQpCjQY4an4KowAwYwak+NQdHcU5UjYDISlaRJ0HyZxalMdZ9HsYZaHMHRXFeVhzj0bxOlqNZUCcbJanIFsOybwyhZGsJcSw4BdieHeIUUoXAPgNDsG8LSuhShpE4A8B4ewcB8D+AcYg7BtiOGiLwNwnBLgxDmHITQTgri/HOJwO4NxojzB6CcHYxR5j8DcF8aQ9RODXCyNMdwHQDDlGuHYToJhUixHINoWw9xsD1C0OcNY1h7DbGeHETgcxtj3D2MEPAPgDiVFsPgPYLxFizHoF4L4kxvjoF8G8OoxQ7icAOFcdQeg/MTGwG8XwhRhjxGkP8EI9R5h9A+C8ao8x+h/CeNke4/RviPG2Pkfy5hujwi0AYBI/Rtj/HCPYf4oABj9EAE8fwARgAYASAEcANAEiAFgC4AgQBkAMFKIcaQ/A9DsHKDcR4JQ5gFGoKQDAHxYBqAcEETAPQDDgH4B0QgEBHARCEFgIYCRwgkBQIQaApRoCpGKB4ZQUgpAuEEKUDwGghhYDaA0cIxAciHCgO4DwQxsB9AeNUZgFQjAJFiBQIYFBDgRGkCoIgiQogiBKMQTAmQJjiDkDkJA5giCAEAQE=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BFQEg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRjYYJDiWCQzARHcpRSKUOQvFaLIYleA5EgmNYNSZKcbRfIMBx7GcHUIvfQgASIf6LJxACZwADOI5CTpCIpxUKEEx/DyoKKoWh5RhENQlTIMVbzEKoYTBBKybLqGAwJhoI5WSJMEb0VRlGBnH65oCwHbdATlGS6I6paZpbhrBYDBpcEBhfaMByzLiuIpwGR6PjCHpTYhNUI4ZDsE4fLaiYpsGw6eqoAJpWRZUxXHBIDQTRKBRLhERMNrnEqEbhOG4yVg4AR/H4LNp2bLZUorA40VjrEB5Rr2NQHYLiODxaCYPoyDMGJYJKOpIloIQZiyR4CnCEA8CcZQDAodI2jOexIjabxojMCxgnCEY0HgbY3gqIApDCEIECQGQJHQg5JkIcJRmQeAPJIEZQHgF5GGGCBjBsBpxkwZQLgYIY0HAR4BCecAABCBJYGUGR9tWIQJAuEIQHUcQGBEYxyAcehUHMGJTDeCBiGiKoMGMOJKDSDZjGiZg1g6Y4InIOoPGQCJ+EKD4kEkBhFhCZBpBoLg3hkGQuDQMoNgMeI9DWDY5E4VYVCUaRmFiFplHkdhaheJZJH4YoYGYSYCGaGJmHmFhohWJQIkIMoSlAtxqDuTwjHybA7k0A4ImaHhnjmah8h+Z5qAYfYgmgCgSgKIRogoHoKiGKJKCaDYimiagWG2DQnBiSJ7D8D5TlyeQ+g6A5InSHYOnqAoih2ag6gaJIpmoaomiWKpqgqMoqisawKj6MorisSpGHyFYpEAAg0FGaRznSdomk6U5MnWJxPEsEpGieLB7BaSIymyKw2kmM5sksQpOjQbRLE6Vo0i2Ch6iCLZlEqZo7FEK5TlTdhrnOaJwD0Txrh6aY6C6K42myO5ujuRpujyLwLk6do9G+C5SnqPZvjuZpEjaZ4qmIMolEqKpyhiOIuEobp8kKb4cDKfZDnCbBHA2RJviufh3jcDY7HoMpBg+XAimWRIxAwUwgkicgshck5xGmYwBjccA6msG44DAe4PB+SYyEyHw1k2cxMFMKZGDGLAXDCRxzCwKw5k2NA8mMRJRm+TJvCuRhylsfJ/jgdAbhsRZUnSDRTEaQ40iOGwCCqMBMHMHpQjUXYHFeVY2EyIpakWdI8ncXpUHYPYLGWWxzF0Zxblcc59H8UpbjIOgJo5xehtH2O4D4uQyiaHMF0T4aR8iOAmLsdwGBRAzGIO8DIBwAimDgFoOwoRhjxEwHcC4vw5C3HsM8SoawuAOHSMIdAHBTgxD4O8S4jwljMHiLcQ4HxahuF2GcI41B7AdCOFcUw5R+gGHaroDofhxjNHOxsBIyRzB9EeHUcI7AeifBGNofAGwDhzHCHkTo3Qfi0DmLwQ4PxyDxA8CcS46x6hdHMNMb4bQ+gXE2OsPgGx/i1HQPUTotwujvH6B4Y4xRzjzE2J8A47huC/EaDcfIHwvinHa8oD4rx5j7H+F8d4+B/jfG4AEP40AEj+B4GcUw4RMBEASFwOAKA+jAGQB0AQ4BCANEEDAHwCQghYBSAUcAnAMiCGgGoBQKRQj0GAB8EYvgnBjGSF4YQVQYgJEOOwFAhQoCeAsEITAWwFDhDoDEQwEBnAXGGFgMoDRQikBuHQFQgQkiyGoJwRgoQMhHEQFEBwIgiBYEaBEcQRAkiJCiC4EwRBqh7AQNEUQcAVhDH8B8UgeBWCSCkEQLIih4hqBYEUXAvQLhRHUEsGQJACEBA")

 ' SelectedItem
 Add(4,
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5GeRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGrcEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghgmYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJBYSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLgXiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiDIEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMijBIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCCQDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKAQTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYmQ9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvBqiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxfBumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohxoD6A+LQIwiRogqBSEUdAtQMiiFoG4RlfwahHDSAUD4pAqB6EkFIDQSwkDoEXRxLAfgpC6C2EsFIdQYimAoM4S40wtBlCaKkUoNxThUHMJ4KYig+hOHSP0HopRqCojeNEfoUQ1A9CMKkuApQqDaEmFMdQZQoCpGqEYVQVQdCtCoKoYoVRVg1C8KIV41AxCMGoEUMIrAqiOFkFYLQzQsjrCKGkVoVRXCzBIOQUAUwIhqBSK4JArhdAiFUO0Lg6xeh1FeAgUwtxKDSAEQEA=")

 ' Marks a cell

Add(5,"gBFLBCJwBAEHhEJAEGg4BEcMQAAYAQGKIYBkAKBQAGaAoDDMOILQiMQxDPBMKgBBCLIxhEqoJJuGofRSBMIgFBIaBrEiBkjSiLkMIYAAMQCQTKDfxBG4ZIhmSZ4WgwAIsSZMAwzAKkYQPHikJxlGa6p6AGqhKIoaTKNhqSoxUxVMIzcKQahLLivJ6GUYKfgmY5lVpVU5QHKFUyfFiVJYlahpCqyCQuC41No1RRdbSrHynahkWhrNrufZ8RbhU7yLSEEyHQaIaoxKp6XwWf4RWDmFoABY9RTJHzFMQyXCrPhENpTWYMcwTLidV4TKqYLAzOrcbx2ZpkXTrYAXRbVU4pLK3MYuDR8RymLKsYZvd7UbqONZlTzadwrHbLb4rOo0nOeZbH6DhuCuEocGuMpSA4k5fmWQhrjcUxuE+BwUAaRwMCyApRhePgJnEEp8n0GB9lcUx9m0aBRhQBCAgA==")

Add(6,"gBFLBCJwBAEHhEJAEGg4BaAFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSkEgNDQRaxjWZ6EgmO5TSjKYxSbJEQzpGSaIDwGZrfACRYEU7dVQxDQcNYbAYPJpwOh6LxWTZ2YjBGJ4FScPyrBLIYDFWCRHpqA5cZZOEQ2FYkRzXVy0JDzaCZQxCCQlQiIOjYLaUSRNFC+IZqMZhWw+FrGAbvIJbXakPZbVYSZ52AQuHcHY7lqAABhoDZllcEAxjwcCOD4GJbisGZPmmYQ1ggHIPg0dJnmCNYWG2D5OlkFYpmUPYaE6Xxzk+OxylAMZAHUHJGgGFBkAuBghjQcBQAEBAMEIExDCgNQWA2EIQiGahuFWIBhBYPwAnedReD+T5yjSGgekcMJ0ACCRiHiGgogqYoojYKYLmKSJCC6DBjEiTg2gyI4IlYOYNmKCIIHuCAUiieIlB8RQjHiTwxg8c4cmeEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYUiQYwaEMFIjmiPhhD0ThThYaIaiaGYuG6GxnAmMhyhuZw5kYdIdmcaZmHWHpngmch6hqZgYiIL4QA8M4MmOIRoHoGoIiKaIqDaCdXEoQoOiQaRKE6FokimChWhmJZogkAoCgoJADkSYQ4GoKoSiOKRqgqHoqimKpKiaLYqmqapGjCLJqnqVoyi2KxKhaHoJigOIAm8N5NnqfpBjALArBaRIxmwOwmkaMosgsLpOjMbQLDKUozm0OxGkKLpQDqAggDsTZTHaXI3i2Wx+mKOBuEuApmjibh7haaI6m6K42mmO5ukuQpujebYKnSfw6k2MxuniPovhubp+j8cALnMAo/nAPAHASQZwGwJwFkKcIMDMCo+m8Wxon8OhNhMZwUkWMRcF8GpGHGTBjB6RpxnwdwgkicgshcIZJnITIjCaRZxBiGhADoDRzGMMJMjMHJPDaTRzgyU2ynOPJnDyT5zm0Bw9lCdANBMQpMnKWB8n8OYNFMWxMlONJdD8UpUHUTRDFaVJ1H0VxYladYtHcWZXnWTYDF6U7QACZA0k0TYfGmWg2i2Nxsludo9kcbpcjcBsTw7RdDvA2KYeoux3h7GcNUWQxADgRFEGkOAXATgHGEPEDgPwKjDDiJwJ6ex4jcEeCEZI8R+CvBKMsOQnAXgAD+JwAweRQjOHmPwe4QRoj0C6C8IY0x6CdCOE0ag9ROhfC6NUOwHQ3hjGuPQDg2ReBmEyN0X4cxuB3C6O8PI3x7h+AeH0cIeAPAfEaOIfIHgTiVHGPkPwTw6jNE2IYLImR0D6D8JcVI6x9DeGeKsdo+1Fi1HcPwDw/xijvD4J8B4yx4j6E4NkWgZAMhfC+NsewfRviPHCPkfo/xXjlH2H4T4vx6j8H+J8Y4/B/DfH2P0Pozg2BsAYGESIAQwA8AMIECALgChAGwBMAY4AyAQECNAIwCggg4BaAQUAxAKiDBgF4AgORYisBiAYGgHxCAwEEBEIQWAkgJHCBwFIhBoCqAoEIXAXQFhhEICxIovgMjDAwER1ooBhAYEgOYDowxUB5AeOEegQRDixAcCAIgSBCgRDEEQI4iQovFCIJgTYEhwjjE2BoIYAAwhFBwKsCoIhaBZEWBENwKxijYFqBcUQ5AviMCiIYGQRgEDNAwOMHgZRFSwDQAscIgQNhjD4G4RwERnA5COFgcYHRxikDwI4aI5gfBHFwP0DwpACB9EgDEfwOJqQsAKPQQ4kQZAiCKEgbIGQRjkC4JESI0glBICSDkFoJQyDEEoJMKQXgmjJEyBR1oYBdAXEkIYKIygUhJBSOUGgqRKCyFcFQJQyQqgrDKIQV4lgpC6C0EsDKIBygjE2BkMQ4AujLFyHsF4JR6DBEwBMBwXxmBZEKDEUwJBjiZCmCYMwTBEidBkOYPgzRLywDIIsMIcwahmF4NYTYEw3BtCaNkWYNxzDkHAJsaYhg5BOByM0HApwiDlE6DMTwbJqCOBaAUXg7xPAzGEHkJ4WR0g9HOJwfInhpjqD4E8XI/QfhoAIPwUAUx/TFAyOR1oKBZAWFo8ac4GQhjoDqBEUItAnCICiEoEoRQ0DFAuKMKgWhHBRE0DsIw6AxibAwGIYAWRpA6CXYoGoKRSgUFcJMaQ2gqhLFSGUF4pgqDGE0FMBQbQmDpF6DUUksAwCKHCGMJ4aR+g+FQBUBwocRiDCiOoEoSBUDVBNkIXQnQpCqEKE0VQNQfCgBoJQYQkACj4FYBUeoZhWjVFULkK46h6hhFWLURwsArBKGKFkNYRQzitCqJoWwVhNDbCwJIAQgQriJASCIKodBAhdHWMUPIrwqjuF8FcbQ/QvjsAKIEIgCba5CEAI8SI1REhHEsC0Do2GwhjFYGUR4RwkD5BAAAAQAiAg==")

}
BackColorHeader = 16777216 '0x01BBGGRR
BackColorSortBarCaption = 16777216 '0x01BBGGRR
BackColorSortBar = RGB(255,255,255)
FilterBarBackColor = 16777216 '0x01BBGGRR
Background(0) = 33554432 '0x02BBGGRR
Background(1) = 50331648 '0x03BBGGRR
Background(8) = 67108864 '0x04BBGGRR

Background(9) = 67108864 '0x04BBGGRR
Background(10) = 100663296 '0x06BBGGRR
Background(11) = 100663296 '0x06BBGGRR
Background(12) = 100663296 '0x06BBGGRR
Background(13) = 100663296 '0x06BBGGRR
Background(14) = 100663296 '0x06BBGGRR
SelBackColor = 67108864 '0x04BBGGRR
SelForeColor = 0
'ForeColorHeader = RGB(255,255,255)
'ForeColorSortBar = RGB(255,255,255)
ShowFocusRect = False

MarkSearchColumn = False
BackColor = RGB(255,255,255)
BackColorLevelHeader = RGB(255,255,255)
SortBarVisible = True
DrawGridLines = -1
ScrollBySingleLine = True
Columns
{
 "Name"
 {
 HeaderImage = 1
 DisplayFilterButton = True
 DisplayFilterDate = True
 Width = 180
 }
 "1"
 {
 HeaderImage = 2
 HeaderImageAlignment = 2
 LevelKey = 1
 Def(0) = True
 Width = 18
 HTMLCaption = " 1 First"
 }
 "2"

 {
 HeaderImage = 3
 HeaderImageAlignment = 2
 LevelKey = 1
 Def(0) = True
 Width = 18
 HTMLCaption = "2 Second"
 }
 "3"
 {
 HeaderImage = 1
 HeaderImageAlignment = 2
 HTMLCaption = " 3 Third"
 LevelKey = 1
 Def(0) = True
 Width = 18
 }
 ""
 {
 LevelKey = 1
 Width = 40
 Def(1) = True
 }
}
Items
{
 Dim h
 h = Add("exListAdd an advanced List control to your application. ")
 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CaptionFormat(h,0) = 1
 CellImage(h,0) = 1
 CellForeColor(h,1) = RGB(0,0,255)
 CellState(h,1) = 1
 CellSingleLine(h,0) = False
 CellToolTip(h,0) = "This is the cell's tooltip that should appear when the cursor is over
the cell.

cell's tooltip"
 CellPicture(h,0) =
"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMwJE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

 h = Add("Item 2")
 CaptionFormat(h,0) = 1
 CellImage(h,0) = 3
 CellForeColor(h,1) = RGB(255,0,0)
 SelectItem(h) = True

 h = Add("Item 3")
 CaptionFormat(h,0) = 1
 CellImage(h,0) = 2
 CellForeColor(h,1) = RGB(255,0,0)

 h = Add("
The exList control supports features never seen in other controls.Exontrol
")
 CaptionFormat(h,0) = 1
 CellBackColor(h,0) = 83886080
 CellSingleLine(h,0) = False
 CellPicture(h,0) =
"gBHJJGHA5MIgAEIe4AAAFAoEDQXCoaEIdEkVi4lEgqEovEIVF8cF40F0jGw5FQdHI0EsrF0rk49mI+IY0Cs1Ds1Es1FxDHs9mU+HxOHodoglJxHG1JoZHI5OKFPKBPLFFqolLBHFxYKA2rg+rhHrlULRXLBaMBjI4lMZQFxjLRHuBPMZjtJjNBttZtKAlvguNpjK+BMBtNt5NpwPBaGx4MZPPBtK+RNB4O2KP55QRjHyCvWeMCCOxoQR/OGlzR/QKCRKBRmcRl6Rh2K6M02212tRiSRKXNo23w+S52I/DJ6XP5X5BgS6JPKXSSBUJ/I/TJ6hRJXUPRUKcUSsOw28A+Vh/J6sRPn7KsSRo9h5VicRKsUvfV6zWyJI62SRX/gwFsTg4FsUpJQITRgESG0Eh8YBJCeYEBGAV5JQnBBXlEZcFGXB8OCuZZOCfEAwGWUo8mWXBNRQURqkkH0WiOasQmqUowRoNBqlePJqmEVZwFeOBwGXHxllnIRdnqaskG9JZiADJ8oSjKUpypKsrSvLEsy1LcuS7L0vzBMMxTHMkyzNM8xIYAAQnyAgAoYf4ABZNSEzqIAETif4Eg4JBYFAYJBgKC5ABgaZTFCTISAkKBECgEJxgMRwPBkQwqAQYJAAEYRAhYLA0AwCFAAOBAFAMFAoBEUpiAUDIZDMZhIECcZxiABYqD0LBYBgE4oEiERAmsHBYHAYBTCCDAeHkFBGgmI5igoDwYDYbxMD0YYjAUGgdAsCASFiAJGA2G47mEbxklEMIhkgDgjkYCwWGiAJDg+GwLkSGhImkUYDgyIJBAAVp0CgIQWmEAADgIGQMBgYA3mCXQqHIdAsmYUpTHCCoiG8QBMhAKBBkQBQRCIBggjmA4nEUCISAQZQsFCApHnSHAwiULAwDgeFMgKDwtE4YAABERhJgqEY7DMBA2CwcACAgBoNi0PJYgAIYChQHI9AmLgogIYxMh0aBRhmFJBCuKBMgqXocnYVJnA6N5PhOG5cDcf5wGgYIUEGAQGgMGx0EEcBAAGGQRggFB3g6IBgD4QIfj8DgckkP4fAYiY8BISAGDSeCDg+MZkDiYYxhUNA4kODYQAIIxBAoLQ0CCQgpiwYBgiINACmKWBhAaHoIFiIoPBuagoCDwYokAYQKi+bJwnECoKnYWAAj8H5kFAYQHDgIgQkEAweBEchtASFw+EgaQEhoMgQCGB44kQaICASFAWCgTAvhIMBAECAgJEALAAgHA8CEGCIEAo/wQDhGKHwDQVAQCEEWGQbQoRIgGByCQU4XAmgHAYAAQQBwLgof0AIDAHAQDCAUDMbgFxhgRAyCweAwRPguBIHEQwHXaCwGOB8P4+AggFDsFALQxAiBwAaGF0UAhIihEEF8DcEhgh2D8NAWIRgLhdFQOEA4dw6AcGiIEUwRjEgDBAGQOgEREAgECLwGACgEAdB8DwGAow5AIHYPQR4BQbj0HCAAAQVB8CKEAHwe4EQ6BAAGIEGIUBAgKF4BUJY0CGgMkOAAZwVg9hQCAAAHZAQ"

 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CellMerge(h,0) = 3
 CellMerge(h,0) = 4
}
EndUpdate

Statring Windows XP, the following table shows how the common controls are broken into
parts and states:

Control/ClassName Part States
CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED =

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1
EBHC_NORMAL = 1

EBP_HEADERCLOSE = 2 EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3

LVP_LISTITEM = 1 LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3

UPHZS_DISABLED = 4
PROGRESS PP_BAR = 1

PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4
SCRBS_NORMAL = 1
SCRBS_HOT = 2

SBP_THUMBBTNHORZ = 2 SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11

SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED =
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED = 4
TTIBES_FOCUSED

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3

TTILES_DISABLED = 4
TTILES_FOCUSED

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED = 4
TTIRES_FOCUSED

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6
TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3

TP_SEPARATOR = 5 TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5
TUTS_NORMAL = 1
TUTS_HOT = 2

TKP_THUMBTOP = 5 TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23 HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3

RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12
FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3

SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage property

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Column object
The ExList control supports multiple columns. The Columns object contains a collection of
Column objects. By default, the control doesn't add any default column, so the user has to
add at least one column, before inserting any new items. The Column object holds
information about a column. The Column object supports the following properties:

Name Description
Alignment Specifies the column's alignment.

AllowDragging Retrieves or sets a value indicating whether the user will
be able to drag the column.

AllowSizing
Retrieves or sets a value indicating whether the user will
be able to change the width of the visible column by
dragging.

AllowSort Returns or sets a value that indicates whether the user
can sort the column by clicking the column's header.

AutoSearch Specifies the kind of searching while user types
characters within the columns.

AutoWidth Computes the column's width required to fit the entire
column's content.

Caption Retrieves or sets a value that indicates the column's
caption.

ComputedField Retrieves or sets a value that indicates the formula of the
computed column.

CustomFilter Retrieves or sets a value that indicates the list of custom
filters.

Data Associates an extra data to the column.

Def Retrieves or sets a value that indicates the default value of
given properties for all cells in the same column.

DefaultSortOrder Specifies whether the default sort order is ascending or
descending.

DisplayFilterButton Specifies whether the column's header displays the filter
button.

DisplayFilterDate Specifies whether the drop down filter window displays a
date selector to specify the interval dates to filter for.

DisplayFilterPattern Specifies whether the dropdown filter bar contains a
textbox for editing the filter as pattern.

DisplaySortIcon Retrieves or sets a value indicating whether the sort icon
is visible on column's header, while the column is sorted.

Enabled Returns or sets a value that determines whether a
column's header can respond to user-generated events.

Filter Specifies the column's filter when filter type is exFilter,
exPattern or exDate.

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the column.

FilterList Specifies whether the drop down filter list includes visible
or all items.

FilterOnType Filters the column as user types characters in the drop
down filter window.

FilterType Specifies the column's filter type.

FireFormatColumn
Retrieves or sets a value that indicates whether the
control fires the FormatColumn event in order to format
the caption for each cell in the column.

FormatColumn Specifies the format to display the cells in the column.
HeaderAlignment Specifies the alignment of the column's caption.

HeaderBold Retrieves or sets a value that indicates whether the
column's caption is bolded.

HeaderImage
Retrieves or sets a value indicating the index of an Image
in the Images collection, that is displayed in the column's
header.

HeaderImageAlignment Retrieves or sets the alignment of the image into the
column's header.

HeaderItalic Retrieves or sets a value that indicates whether the
column's caption should appear in italic.

HeaderStrikeOut Retrieves or sets a value that indicates whether the
column's caption should appear in strikeout.

HeaderUnderline Retrieves or sets a value that indicates whether the
column's caption is underlined.

HeaderVertical Specifies whether the column's header is vertically
displayed.

HTMLCaption Retrieves or sets the text in HTML format displayed in the
column's header.

Index Returns a value that represents the index of an object in a

collection.
Key Retrieves or sets a the column's key.

LevelKey Retrieves or sets a value that indicates the key of the
column's level.

MaxWidthAutoResize Retrieves or sets a value that indicates the maximum
column's width when the WidthAutoResize is True.

MinWidthAutoResize Retrieves or sets a value that indicates the minimum
column's width when the WidthAutoResize is True.

Position Retrieves or sets a value that indicates the position of the
column in the header bar.

ShowFilter Shows the column's filter window.
SortOrder Specifies the column's sort order.

SortPosition Returns or sets a value that indicates the position of the
column in the sorting columns collection.

SortType Returns or sets a value that indicates the way a control
sorts the values for a column.

ToolTip Specifies the column's tooltip description.

Visible Retrieves or sets a value indicating whether the column is
visible or hidden.

Width Retrieves or sets a value that determines the column's
width.

WidthAutoResize
Retrieves or sets a value that indicates whether the
column is automatically resized according to the width of
the contents within the column.

property Column.Alignment as AlignmentEnum
Retrieves or sets the alignment of the caption into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cells in the column.

The Alignment property aligns the cells in the column. The HeaderAlignment property aligns
the caption of the column in the column's header. Use the CellHAlignment property to align a
particular cell. By default, all columns are aligned to the left. Use the CellVAlignment
property to align vertically the cell's caption.

property Column.AllowDragging as Boolean
Retrieves or sets a value indicating whether the user will be able to drag the column.

Type Description

Boolean A boolean expression indicating whether the user is able to
drag the column.

By default, the AllowDragging property is True. The AllowDragging property specifies
whether the user can click the control's header and drag it to another position. Use the
AllowSizing property to specify whether the user can resize the column at runtime. Use the
Position property to change pragmatically the column's position. Use the AllowSort property
to avoid sorting a column when the user clicks the column's header.

property Column.AllowSizing as Boolean
Retrieves or sets a value indicating whether the user will be able to change the width of the
visible column by dragging.

Type Description

Boolean
A boolean expression that indicates whether the user will
be able to change the width of the visible columns by
dragging.

By default, the AllowSizing property is True. Use the AllowSizing property to fix the column's
width. Use the ColumnAutoResize property of the control to fit the visible columns to the
control's client area. Use the AllowSort property to avoid sorting a column when the user
clicks the column's header. Use the AllowDragging property to specify whether the user can
click the column's header and drag it to another position. Use the Width property to specify
the column's width, at runtime. Use the ColumnsAllowSizing property to allow resizing the
columns, when the control's header bar is not visible.

property Column.AllowSort as Boolean
Returns or sets a value that indicates whether the user can sort the column by clicking the
column's header.

Type Description

Boolean A boolean expression that indicates whether the column
gets sorted when the user clicks the column's header.

Sorting by a single column in the control is a simple matter of clicking on the column head.
Sorting by multiple columns, however, is not so obvious. But it's actually quite easy. First,
sort by the first criterion, by clicking on the column head. Then hold the Shift key down as
you click on a second heading. Another option is dragging the column's header to the
control's sort bar. The SortBarVisible property shows the control's sort bar. Use the
AllowSort property to avoid sorting a column when the user clicks the column's header. Use
the SortOnClick property to specify the action that control executes when the user clicks
the column's head. The control fires the Sort event when the control sorts a column (the
user clicks the column's head) or when the sorting position is changed in the control's sort
bar. Use the AllowDragging property to specify whether the column's header can be
dragged. Use the DefaultSortOrder property to specify the column's default sort order,
when the user first clicks the column's header.

property Column.AutoSearch as AutoSearchEnum
Specifies the kind of searching while user types characters within the columns.

Type Description

AutoSearchEnum An AutoSearchEnum expression that defines the type of
incremental searching.

By default, the AutoSearch property is exStartWith. The AutoSearch property has effect
only if the AutoSearch property of the control is True. Use the AutoSearch property to
define a 'contains' incremental search.

If the AutoSearch property is exContains, the control searches for items that contains
the typed characters.

If the AutoSearch property is exStartWith, the control searches for items that starts
with the typed characters.

The searching column is defined by the SearchColumnIndex property.

property Column.AutoWidth as Long
Computes the column's width required to fit the entire column's content.

Type Description

Long A long value that indicates the required width of the column
to fit the entire column's content.

Use the AutoWidth property to arrange the columns to fit the entire control's content. The
AutoWidth property scans all cells of the column. The AutoWidth property. Use the Width
property to change the column's width at runtime. Use the WidthAutoResize property to let
control resizes the column each time when an item is expanded or collapsed. Use the
ColumnAutoResize property to specify whether the control resizes all visible columns to fit
the control's client area.

The following VB function resizes all columns:

Private Sub autoSize(ByVal t As EXLISTLibCtl.List)
 t.BeginUpdate
 Dim c As Column
 For Each c In t.Columns
 c.Width = c.AutoWidth
 Next
 t.EndUpdate
 t.Refresh
End Sub

The following C++ sample resizes all visible columns:

#include "Columns.h"
#include "Column.h"
void autoSize(CList& list)
{
 list.BeginUpdate();
 CColumns columns = list.GetColumns();
 for (long i = 0;i < columns.GetCount(); i++)
 {
 CColumn column = columns.GetItem(COleVariant(i));
 if (column.GetVisible())
 column.SetWidth(column.GetAutoWidth());

 }
 list.EndUpdate();
}

The following VB.NET sample resizes all visible columns:

Private Sub autoSize(ByRef list As AxEXLISTLib.AxList)
 list.BeginUpdate()
 Dim i As Integer
 With list.Columns
 For i = 0 To .Count - 1
 If .Item(i).Visible Then
 .Item(i).Width = .Item(i).AutoWidth
 End If
 Next
 End With
 list.EndUpdate()
End Sub

The following C# sample resizes all visible columns:

private void autoSize(ref AxEXLISTLib.AxList list)
{
 list.BeginUpdate();
 for (int i = 0; i < list.Columns.Count - 1; i++)
 if (list.Columns[i].Visible)
 list.Columns[i].Width = list.Columns[i].AutoWidth;
 list.EndUpdate();
}

The following VFP sample resizes all visible columns:

with thisform.List1
 .BeginUpdate()
 for i = 0 to .Columns.Count - 1
 if (.Columns(i).Visible)
 .Columns(i).Width = .Columns(i).AutoWidth
 endif
 next

 .EndUpdate()
endwith

property Column.Caption as String
Retrieves or sets a value that indicates the column's caption.

Type Description
String A string expression that indicates the column's caption.

Each property of the Items object that has an argument ColIndex can use the column's
caption to identify a column. Adding two columns with the same caption is accepted and
these are differentiated by their indexes. To hide a column use the Visible property of the
Column object. The column's caption is displayed using the following font attributes:
HeaderBold, HeaderItalic, HeaderUnderline, HeaderStrikeout. Use the HTMLCaption
property to specify the column's caption using built-in HTML tags. Use the Add method to
add new columns and to specify their captions.

property Column.ComputedField as String
Retrieves or sets a value that indicates the formula of the computed column.

Type Description

String

A String expression that indicates the formula to compute
the field/cell. The formula is applied to all cells in the
column with the CaptionFormat property on exText (the
exText value is by default).

A computed field or cell displays the result of an arithmetic formula that may include
operators, variables and constants. By default, the ComputedField property is empty. If the
the ComputedField property is empty, the property have no effect. If the ComputedField
property is not empty, all cells in the column, that have the CaptionFormat property on
exText, uses the same formula to display their content. For instance, you can use the
CaptionFormat property on exHTML, for cells in the column, that need to display other
things than column's formula, or you can use the CaptionFormat property on
exComputedField, to change the formula for a particular cell. Use the FormatColumn
property to format the column. Use the CaptionFormat property to change the type for a
particular cell. Use the Caption property to specify the cell's content. For instance, if the
CaptionFormat property is exComputedField, the Caption property indicates the formula to
compute the cell's content. The Def(exCaptionFormat) property is changed to
exComputedField, each time the ComputeField property is changed to a not empty value. If
the ComputedField property is set to an empty string, the Def(exCaptionFormat) property is
set to exText. Call the Refresh method to force refreshing the control.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The Caption property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.

This property/method supports predefined constants and operators/functions as described
here.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.

5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three
columns.

6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is
less than the sum of third and forth columns.

7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indictaes the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

property Column.CustomFilter as String
Retrieves or sets a value that indicates the list of custom filters.

Type Description
String A String expression that defines the list of custom filters.

By default, the CustomFilter property is empty. The CustomFilter property has effect only if
it is not empty, and the FilterType property is not exImage, exCheck or exNumeric. Use the
DisplayFilterPattern property to hide the text box to edit the pattern, in the drop down filter
window. The All predefined item and the list of custom filter is displayed in the drop down
filter window, if the CustomFilter property is not empty. The Blanks and NonBlanks
predefined items are not defined, when custom filter is displayed. Use the
Description(exFilterBarAll) property on empty string to hide the All predefined item, in the
drop down filter window. Use the DisplayFilterButton property to show the button on the
column's header to drop down the filter window. Use the Background property to define the
visual appearance for the drop down button.

The CustomFilter property defines the list of custom filters as pairs of (caption,pattern)
where the caption is displayed in the drop down filter window, and the pattern is get
selected when the user clicks the item in the drop down filter window (the FilterType
property is set on exPattern, and the Filter property defines the custom pattern being
selected). The caption and the pattern are separated by a "||" string (two vertical bars,
character 124). The pattern expression may contains multiple patterns separated by a
single "|" character (vertical bar, character 124). A pattern may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character. If any of the *, ?, # or | characters are preceded by a \ (escape
character) it masks the character itself. If the pattern is not present in the (caption,pattern)
pair, the caption is considered as being the pattern too. The pairs in the list of custom
patterns are separated by "|||" string (three vertical bars, character 124). So, the syntax
of the CustomFilter property should be of: CAPTION [|| PATTERN [| PATTERN]] [|||
CAPTION [|| PATTERN [| PATTERN]]].

For example, you may have a list of documents and instead of listing the name of each
document in the filter drop down list for the names column you may want to list the
following:

Excel Spreadsheets
Word Documents
Powerpoint Presentations
Text Documents

And define the filter patterns for each line above as follows:

*.xls
*.doc
*.pps
*.txt, *.log

and so the CustomFilter property should be "Excel Spreadsheets (*.xls)||*.xls|||Word
Documents||*.doc|||Powerpoint Presentations||*.pps|||Text Documents
(*.log,*.txt)||*.txt|*.log". The following screen shot shows this custom filter format

property Column.Data as Variant
Associates an extra data to the column.

Type Description

Variant A Variant expression that indicates the column's extra
data.

Use the Data property to assign any extra data to a column. Use the CellData property to
assign an extra data to a cell. Use the ItemData property to assign an extra data to an item

property Column.Def(Property as DefColumnEnum) as Variant
Retrieves or sets a value that indicates the default value of given properties for all cells in
the same column.

Type Description

Property as DefColumnEnum A DefColumnEnum expression that indicates the property
being changed.

Variant A Variant value that specifies the newly value.

Use the Def property to specify a common value for given properties for all cells in the
column. For instance, you can use the Def property to assign check boxes to all cells in the
column, without enumerating them. Use the ConditionalFormats method to apply formats to
a cell or range of cells, and have that formatting change depending on the value of the cell
or the value of a formula.

The following VB sample assigns checkboxes for all cells in the first column:

List1.Columns(0).Def(exCellHasCheckBox) = True

The following VB sample changes the background color for all cells in the first column:

List1.Columns(0).Def(exCellBackColor) = RGB(240, 240, 240)

The following C++ sample assigns checkboxes for all cells in the first column:

COleVariant vtCheckBox(VARIANT_TRUE);
m_list.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellHasCheckBox*/ 0,
vtCheckBox);

The following C++ sample changes the background color for all cells in the first column:

COleVariant vtBackColor((long)RGB(240, 240, 240));
m_list.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellBackColor*/ 4,
vtBackColor);

The following VB.NET sample assigns checkboxes for all cells in the first column:

With AxList1.Columns(0)
 .Def(EXLISTLib.DefColumnEnum.exCellHasCheckBox) = True
End With

The following VB.NET sample changes the background color for all cells in the first column:

With AxList1.Columns(0)
 .Def(EXLISTLib.DefColumnEnum.exCellBackColor) = ToUInt32(Color.WhiteSmoke)
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample assigns checkboxes for all cells in the first column:

axList1.Columns[0].set_Def(EXLISTLib.DefColumnEnum.exCellHasCheckBox, true);

The following C# sample changes the background color for all cells in the first column:

axList1.Columns[0].set_Def(EXLISTLib.DefColumnEnum.exCellBackColor,
ToUInt32(Color.WhiteSmoke));

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample assigns checkboxes for all cells in the first column:

with thisform.List1.Columns(0)
 .Def(0) = .t.

endwith

The following VFP sample changes the background color for all cells in the first column:

with thisform.List1.Columns(0)
 .Def(4) = RGB(240,240,240)
endwith

property Column.DefaultSortOrder as Boolean
Specifies whether the default sort order is ascending or descending.

Type Description
Boolean A boolean expression that specifies the default sort order.

Use the DefaultSortOrder property to specify the default sort order, when the column's
header is clicked. Use the SortOnClick property to specify the action that control takes
when the user clicks the column's header. The SortOrder property specifies the column's
sort order. Use the Sort method to sort items at runtime. Use the SingleSort property to
allow sorting by multiple columns.

property Column.DisplayFilterButton as Boolean
Shows or hides the column's filter bar button.

Type Description

Boolean A boolean expression that indicates whether the column's
filter bar button is visible or hidden.

By default, the DisplayFilterButton property is False. The column's filter button is displayed
on the column's caption. Use the FilterOnType property to enable the Filter-On-Type
feature, that allows you to filter the control's data based on the characters you type.

 The DisplayFilterPattern property determines whether the column's filter window includes
the "Filter For" (pattern) field. Use the DisplayFilterDate property to include a date selector
to the column's drop down filter window. Use the FilterBarDropDownHeight property to
specify the height of the drop down filter window. Use the FilterType property to specify the
type of the column's filter. Use the FilterList property to specify the list of items being
included in the column's drop down filter list. Use FilterBarDropDownWidth property to
specify the width of the drop down filter window. Use the Background property to change
the visual appearance for the drop down filter button. Use the FilterCriteria property to
specify the filter criteria usinr OR, AND or NOT operators. Use the CustomFilter property to
define you custom filters. Use the ShowFilter method to show programmatically the
column's drop down filter window.

property Column.DisplayFilterDate as Boolean
Specifies whether the drop down filter window displays a date selector to specify the
interval dates to filter for.

Type Description

Boolean
A boolean expression that indicates whether the drop
down filter window displays a date selector to filter items
into a given interval.

By default, the DisplayFilterDate property is False. Use the DisplayFilterDate property to
filter items that match a given interval of dates. The DisplayFilterDate property includes a
date button to the right of the Date field in the drop down filter window. The
DisplayFilterDate property has effect only if the DisplayFilterPattern property is True. If the
user clicks the filter's date selector the control displays a built-in calendar editor to help
user to include a date to the date field of the drop down filter window. Use the Description
property to customize the strings being displayed on the drop down filter window. If the
Date field in the filter drop down window is not empty, the FilterType property of the Column
object is set on exDate, and the Filter property of the Column object points to the interval
of dates being used when filtering.

property Column.DisplayFilterPattern as Boolean
Specifies whether the dropdown filter bar contains a textbox for editing the filter as pattern.

Type Description

Boolean A boolean expression that indicates whether the pattern
field is visible or hidden.

Use the DisplayFilterButton property to show the column's filter button. If the
DisplayFilterButton property is False the drop down filter window doesn't include the "Filter
For" or "Date" field. Use the DisplayFilterDate property to filter items that match a given
interval of dates. Use the CustomFilter property to define you custom filters. The "Filter
For" (pattern) field in the drop down filter window is always shown if the FilterOnType
property is True, no matter of the DisplayFilterPattern property.

The drop down filter window displays the "Filter For" field if the DisplayFilterPattern
property is True, and the DisplayFilterDate property is False. If the drop down filter window
displays "Filter For" field, and user types the filter inside, the FilterType property of the
Column is set to exPattern, and Filter property of the Column object specifies the filter
being typed.

property Column.DisplaySortIcon as Boolean
Retrieves or sets a value indicating whether the sort icon is visible on column's header,
while the column is sorted.

Type Description

Boolean A boolean expression indicating whether the sort icon is
visible on column's header, while the column is sorted.

Use the DisplaySortIcon property to hide the sort icon. Use the Sort method to sort the
items. Use the SortOrder property to sort a column. Use the SingleSort property to allow
multiple sort columns. Use the SortOnClick property of control to disable sorting columns by
clicking in the column's header.

property Column.Enabled as Boolean
Enables or disables the column.

Type Description

Boolean A boolean expression that specifies whether a column is
enabled or disabled.

If the Enabled property is False, then all cells of the column are disabled, no matter if the
CellEnabled property is true. Use the Enabled property to enable or disable a column. If a
cell of radio or check type is disabled, then the cell's state cannot be changed. Use the
EnableItem property to disable an item.

property Column.Filter as String
Specifies the column's filter when the filter type is exFilter, exPattern, exDate, exNumeric,
exCheck or exImage.

Type Description
String A string expression that specifies the column's filter.

If the FilterType property is exFilter the Filter property indicates the list of values being
included when filtering. The values are separated by '|' character. For instance if the
Filter property is "CellA|CellB" the control includes only the items that have captions
like: "CellA" or "CellB".

If the FilterType is exPattern the Filter property defines the list of patterns used in
filtering. The list of patterns is separated by the '|' character. A pattern filter may
contain the wild card characters like '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character. The '|' character separates
the options in the pattern. For instance: '1*|2*' specifies all items that start with '1' or
'2'.

If the FilterType property is exDate, the Filter property should be of "[dateFrom] to
[dateTo]" format, and it indicates that only items between a specified range of dates
will be included. If the dateFrom value is missing, the control includes only the items
before the dateTo date, if the dateTo value is missing, the control includes the items
after the dateFrom date. If both dates (dateFrom and dateTo) are present, the
control includes the items between this interval of dates. For instance, the "2/13/2004
to" includes all items after 2/13/2004 inclusive, or "2/13/2004 to Feb 14 2005" includes
all items between 2/13/2004 and 2/14/2004.

If the FilterType property is exNumeric, the Filter property may include operators like
<, <=, =, <>, >= or > and numbers to define rules to include numbers in the control's
list. The Filter property should be of the following format "operator number [operator
number ...]". For instance, the "> 10" indicates all numbers greater than 10. The "<>10
<> 20" filter indicates all numbers except 10 and 20. The "> 10 < 100" filter indicates
all numbers greater than 10 and less than 100. The ">= 10 <= 100 <> 50" filter
includes all numbers from 10 to 100 excepts 50. The "10" filter includes only 10 in the
list. The "=10 =20" includes no items in the list because after control filters only 10
items, the second rule specifies only 20, and so we have no items. The Filter property
may include unlimited rules. A rule is composed by an operator and a number. The
rules are separated by space characters.

If the FilterType property is exCheck the Filter property may include "0" for unchecked
items, and "1" for checked items. The CellState property specifies the state of the

cell's checkbox. If the Filter property is empty, the filter is not applied to the column,
when ApplyFilter method is called.

If the FilterType property is exImage the Filter property indicates the list of icons (index
of the icon being displayed) being filtered. The values are separated by '|' character.
The CellImage property indicates the index of the icon being displayed in the cell. For
instance, the '1|2' indicates that the filter includes the cells that display first or the
second icon (with the index 1 or 2). The drop down filter window displays the (All)
item and the list of icons being displayed in the column.

The Filter property has no effect if the FilterType property is one of the followings: exAll,
exBlanks and exNonBlanks

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the FilterCriteria property to specify the filter criteria usinr OR, AND or NOT
operators. Use the CustomFilter property to define you custom filters.

property Column.FilterBarDropDownWidth as Double
Specifies the width of the drop down filter window proportionally with the width of the
column.

Type Description

Double

A double expression that indicates the width of the drop
down filter window proportionally with the width of the
column. If the FilterBarDropDownWidth expression is
negative, the absolute value indicates the width of the drop
down filter window in pixels. Else, the value indicates how
many times the width of the column is multiply to get the
width of the drop down filter window.

By default, the FilterBarDropDownWidth property is 1, and so, the width of the drop down
filter window coincides with the width of the column. Use the Width property to specify the
width of the column. Use FilterBarDropDownHeight property to specify the height of the
drop down filter window. Use the FilterBarHeight property to specify the height of the
control's filter bar. Use the DisplayFilterButton property to display a filter button to the
column's caption. Use the Description property to define predefined strings in the filter bar.
Use the ShowFilter method to show programmatically the column's drop down filter window.

The following VB sample specifies that the width of the drop down filter window is double of
the column's width:

With List1.Columns(0)
 .FilterBarDropDownWidth = 2
End With

The following VB sample specifies that the width of the drop down filter window is 150
pixels:

With List1.Columns(0)
 .FilterBarDropDownWidth = -150
End With

property Column.FilterList as FilterListEnum
Specifies whether the drop down filter list includes visible or all items.

Type Description

FilterListEnum A FilterListEnum expression that indicates the items being
included in the drop down filter list

By default, the FilterList property is exAllItems. Use the FilterList property to specify the
items being included in the column's drop down filter list. Use the DisplayFilterButton
property to display the column's filter bar button. The DisplayFilterDate property specifies
whether the drop down filter window displays a date selector to specify the interval dates to
filter for. Use FilterBarDropDownWidth property to specify the width of the drop down filter
window.

property Column.FilterOnType as Boolean
Filters the column as user types characters in the drop down filter window.

Type Description

Boolean
A Boolean expression that specifies whether the column
gets filtered as the user types characters in the drop down
filter window.

By default, the FilterOnType property is False. The Filter-On-Type feature allows you to
filter the control's data based on the typed characters. Use the DisplayFilterButton property
to add a drop down filter button to the column's header. The Filter-On-Type feature works
like follows: User clicks the column's drop down filter button, so the drop down filter window
is shown. Use starts type characters, and the control filters the column based on the typed
characters as it includes all items that starts with typed characters, if the AutoSearch
property is exStartWith, or include in the filter list only the items that contains the typed
characters, if the AutoSearch property is exContains. Click the X button on the filterbar, and
so the control removes the filter, and so all data is displayed. The control fires the
FilterChange event to notify whether the control applies a new filter to control's data. Once,
the FilterOnType property is set on True, the column's FilterType property is changed to
exPattern, and the the Filter property indicates the typed string. Use the FilterCriteria
property to specify the expression being used to filter the control's data when multiple
columns are implied in the filter. Use the Description property to customize the text being
displayed in the drop down filter window. Use the FilterHeight property to specify the height
of the control's filterbar that's displayed on the bottom side of the control, once a filter is
applied. The "Filter For" (pattern) field in the drop down filter window is always shown if
the FilterOnType property is True, no matter of the DisplayFilterPattern property.

The following screen shot shows how the data gets filtered when the user types characters
in the Filter-On-Type columns:

Steps:

The user clicks the drop down filter window, in the column A
The "Filter For:" field is shown, and it waits for the user to start type characters.
As user types characters, the column gets filtered the items.

property Column.FilterType as FilterTypeEnum
Specifies the column's filter type.

Type Description

FilterTypeEnum A FilterTypeEnum expression that indicates the filter's
type.

The FilterType property defines the filter's type. By default, the FilterType is exAll. No filter
is applied if the FilterType is exAll. The Filter property defines the column's filter. Use the
DisplayFilterButton property to display the column's filter button. Use the FilterCriteria
property to specify the filter criteria usinr OR, AND or NOT operators. Use the CustomFilter
property to define you custom filters.

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties.

property Column.FireFormatColumn as Boolean
Retrieves or sets a value that indicates whether the control fires the FormatColumn event in
order to format the caption for each cell in the column.

Type Description

Boolean
A boolean expression that indicates whether the control
fires the FormatColumn event in order to format the
caption for each cell in the column.

By default, the FireFormatColumn property is False. If the FireFormatColumn property is
True, the control fires the FormatColumn event each time when a cell requires to be
displayed. The FormatColumn event lets the user to provide the cell's caption before it is
displayed on the control's list. For instance, the FormatColumn event is useful when the
column cells contains prices(numbers), and you want to display that column formatted as
currency, like $150 instead 150. Also, using the FormatColumn event, you can display the
result of some operations within an item, such of totals. Newer versions of the component
provides the FormatColumn property that helps formatting a cell using the several
predefined functions without using the control's event FormatColumn.

Before running any of the following samples, please make sure that the control contains
more than 3 columns, and the third column has the FireFormatColumn property on True.
The following VB sample displays the sum of the first two cells, and put the result on the
third one:

Private Sub List1_FormatColumn(ByVal ItemIndex As Long, ByVal ColIndex As Long, Value
As Variant)
On Error Resume Next
 With List1.Items
 Value = Int(.Caption(ItemIndex, 0)) + Int(.Caption(ItemIndex, 1))
 End With
End Sub

The following VB sample displays long date format, using the FormatDateTime function:

Private Sub List1_FormatColumn(ByVal ItemIndex As Long, ByVal ColIndex As Long, Value
As Variant)
On Error Resume Next
 Value = FormatDateTime(Value, vbLongDate)
End Sub

The following C++ sample displays the sum of the first two cells, and put the result on the

third one:

void OnFormatColumnList1(long ItemIndex, long ColIndex, VARIANT FAR* Value)
{
 CItems items = m_list.GetItems();
 long newValue = V2I(&items.GetCaption(ItemIndex, COleVariant(long(0))));
 newValue += V2I(&items.GetCaption(ItemIndex, COleVariant(long(1))));
 V_VT(Value) = VT_I4;
 V_I4(Value) = newValue;
}

where the V2I function converts a VARIANT value to a long expression,

static long V2I(VARIANT* pv, long nDefault = 0)
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return nDefault;

 COleVariant vt;
 vt.ChangeType(VT_I4, pv);
 return V_I4(&vt);
 }
 return nDefault;
}

The following C++ sample displays long date format:

void OnFormatColumnList1(long ItemIndex, long ColIndex, VARIANT FAR* Value)
{
 COleDateTime date(*Value);
 COleVariant vtNewValue(date.Format(_T("%A, %B %d, %Y")));
 VariantCopy(Value, vtNewValue);
}

The following VB.NET sample displays the sum of the first two cells, and put the result on
the third one:

Private Sub AxList1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_FormatColumnEvent) Handles AxList1.FormatColumn
 With AxList1.Items
 Dim newValue As Integer = Integer.Parse(.Caption(e.itemIndex, 0),
Globalization.NumberStyles.Any)
 newValue = newValue + Integer.Parse(.Caption(e.itemIndex, 1),
Globalization.NumberStyles.Any)
 e.value = newValue
 End With
End Sub

The following VB.NET sample displays long date format:

Private Sub AxList1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_FormatColumnEvent) Handles AxList1.FormatColumn
 e.value = DateTime.Parse(e.value).ToLongDateString()
End Sub

The following C# sample displays the sum of the first two cells, and put the result on the
third one:

private void axList1_FormatColumn(object sender,
AxEXLISTLib._IListEvents_FormatColumnEvent e)
{
 int newValue = int.Parse(axList1.Items.get_Caption(e.itemIndex, 0).ToString());
 newValue += int.Parse(axList1.Items.get_Caption(e.itemIndex, 1).ToString());
 e.value = newValue;
}

The following C# sample displays long date format:

private void axList1_FormatColumn(object sender,
AxEXLISTLib._IListEvents_FormatColumnEvent e)
{
 e.value = DateTime.Parse(e.value.ToString()).ToLongDateString();
}

The following VFP sample displays the sum of the first two cells, and put the result on the
third one:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex, value

with thisform.List1.Items
 value = .Caption(itemindex,0) + .Caption(itemindex,1)
endwith

property Column.FormatColumn as String
Specifies the format to display the cells in the column.

Type Description

String A string expression that defines the format to display the
cell, including HTML formatting, if the cell supports it.

By default, the FormatColumn property is empty. The cells in the column use the provided
format only if is valid (not empty, and syntactically correct), to display data in the column.
The FormatColumn property provides a format to display all cells in the column using a
predefined format. The expression may be a combination of variables, constants, strings,
dates and operators, and value. The value operator gives the value to be formatted. A
string is delimited by ", ` or ' characters, and inside they can have the starting character
preceded by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie
#1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The cell's HTML format is
applied only if the CaptionFormat or Def(exCaptionFormat) is exHTML. If valid, the
FormatColumn is applied to all cells for which the CellCaptionFormat property is not
exComputedField. This way you can specify which cells use or not the FormatColumn
property. The ComputedField property indicates the formula of the computed column.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn/FormatCell property indicates the value to be
formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The Caption property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.

Other known operators for auto-numbering are:

number index 'format', indicates the index of the item. The first added item has the
index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the
item starting from 100. The number indicates the starting index, while the format is a
set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the
absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for

specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive
position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each
parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

The following VB sample shows how can I display the column using currency:

With List1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .Add "1.23"
 .Add "2.34"
 .Add "0"
 .Add 5
 .Add "10000.99"
 End With
End With

The following VB.NET sample shows how can I display the column using currency:

With AxList1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .Add "1.23"
 .Add "2.34"
 .Add "0"
 .Add 5
 .Add "10000.99"
 End With
End With

The following C++ sample shows how can I display the column using currency:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXLISTLib' for the library: 'ExList 1.0 Control Library'

 #import "C:\\Windows\\System32\\ExList.dll"
 using namespace EXLISTLib;
*/
EXLISTLib::IListPtr spList1 = GetDlgItem(IDC_LIST1)->GetControlUnknown();
((EXLISTLib::IColumnPtr)(spList1->GetColumns()->Add(L"Currency")))-
>PutFormatColumn(L"currency(dbl(value))");
EXLISTLib::IItemsPtr var_Items = spList1->GetItems();
 var_Items->Add("1.23");
 var_Items->Add("2.34");
 var_Items->Add("0");
 var_Items->Add(long(5));
 var_Items->Add("10000.99");

The following C# sample shows how can I display the column using currency:

(axList1.Columns.Add("Currency") as EXLISTLib.Column).FormatColumn =
"currency(dbl(value))";
EXLISTLib.Items var_Items = axList1.Items;
 var_Items.Add("1.23");
 var_Items.Add("2.34");
 var_Items.Add("0");
 var_Items.Add(5);
 var_Items.Add("10000.99");

The following VFP sample shows how can I display the column using currency:

with thisform.List1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 with .Items
 .Add("1.23")
 .Add("2.34")
 .Add("0")

 .Add(5)
 .Add("10000.99")
 endwith
endwith

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the caption in the column's header.

Use the HeaderAlignment property to align the column's caption inside the column's header.
Use the Alignment property to align the cells into a column. Use the HeaderImageAlignment
property to align the column's icon inside the column's header. Use the CellHAlignment
property to align a cell.

property Column.HeaderBold as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in bold.

The HeaderBold property specifies whether the column's caption should appear in bold. Use
the CellBold or ItemBold properties to specify whether the cell or item should appear in
bold. Use the HTMLCaption property to specify portions of the caption using different
colors, fonts. Use the HeaderItalic, HeaderUnderline or HeaderStrikeOut property to specify
different font attributes when displaying the column's caption.

property Column.HeaderImage as Long
Retrieves or sets a value indicating the index of an Image in the Images collection, that is
displayed in the column's header.

Type Description

Long

A long value indicating the index of an Image in the Images
collection, that is displayed in the column's header. The
last 7 bits in the high significant byte of the long expression
indicates the identifier of the skin being used to paint the
object. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the part.

Use the HeaderImage property to add an icon to the column's caption. Use the
HeaderImageAlignment property to change the column header image's alignment. Use the
CellImage to assign a single icon to a cell. Use the CellImages to assign multiple icons to a
cell. Use the CellPicture to attach a picture object to a cell.

property Column.HeaderImageAlignment as AlignmentEnum
Retrieves or sets the alignment of the image into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the image into the column's header.

By default, the image is left aligned. Use the HeaderImageAlignment property to aligns the
icon in the column's header. Use the HeaderImage property to attach an icon to the
column's header.

property Column.HeaderItalic as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in italic.

Use the HeaderItalic property to specify whether the column's caption should appear in
italic. Use the CellItalic or ItemItalic properties to specify whether the the cell or the item
should appear in italic. Use the HeaderBold, HeaderUnderline or HeaderStrikeOut property
to specify different font attributes when displaying the column's caption.

property Column.HeaderStrikeOut as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in
strikeout.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in strikeout.

Use the HeaderStrikeOut property to specify whether the column's caption should appear in
strikeout. Use the CellStrikeOut or ItemStrikeOut properties to specify whether the cell or
the item should appear in strikeout. Use the HeaderItalic, HeaderUnderline or HeaderBold
property to specify different font attributes when displaying the column's caption.

property Column.HeaderUnderline as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in
underline.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in underline.

Use the HeaderUnderline property to specify whether the column's caption should appear in
underline. Use the CellUnderline or ItemUnderline properties to specify whether the cell or
the item should appear in underline. Use the HeaderItalic, HeaderBold or HeaderStrikeOut
property to specify different font attributes when displaying the column's caption.

property Column.HeaderVertical as Boolean
Specifies whether the column's header is vertically displayed.

Type Description

Boolean A boolean expression that indicates whether the column's
caption is vertically printed.

Use the HeaderVertical property to display vertically the column's caption. Use the Caption
property to specify the column's caption. Use the HTMLCaption property to specify the
column's caption using built-in HTML format. Use the HeaderAlignment property to align the
column's caption.

property Column.HTMLCaption as String
Retrieves or sets the text in HTML format displayed in the column's header.

Type Description

String A string expression that indicates the column's caption
using built-in HTML tags.

If the HTMLCaption property is empty, the Caption property is displayed in the column's
header. If the HTMLCaption property is not empty, the control uses it when displaying the
column's header. Use the HeaderHeight property to change the height of the control's
header bar. The list of built-in HTML tags supported are here.

property Column.Index as Long
Returns a value that represents the index of an object in a collection.

Type Description
Long A long expression that indicates the column's index.

The Index property is a read-only property. The control assigns the index of the column
when adding new columns. Use the Position property to change the column's position. The
Columns collection is zero based, so the Index property starts at 0. The last added column
has the Index set to Columns.Count - 1. When a column is removed from the collection, the
control updates all indexes. Use the Visible property to hide a column. Use the Columns
property to access column from it's index.

property Column.Key as String
Retrieves or sets a the column's key.

Type Description
String A string expression that defines the column's key

The column's key defines a column when using the Item property. Use the Index or the Key
property to identify a column, when using the Columns property.

property Column.LevelKey as Variant
Retrieves or sets a value that indicates the key of the column's level.

Type Description

Variant A Variant expression that indicates the key of the column's
level.

By default, the LevelKey is empty. The control's header displays multiple levels if there are
two or more neighbor columns with the same non empty level key. The HeaderHeight
property specifies the height of one level when multiple levels header is on. Use the
BackColorLevelHeader property to specify the control's level header area. Use the
PictureLevelHeader property to assign a picture on the control's header. The
BackColorHeader property specifies the background color for column's captions.

property Column.MaxWidthAutoResize as Long
Retrieves or sets a value that indicates the maximum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that the maximum column's width when
the WidthAutoResize is True.

If the WidthAutoResize property is False, the MaxWidthAutoResize and
MinWidthAutoResize properties have no effect. The MaxWidthAutoResize property
specifies the maximum column's width. The control recalculates the column's width each
time when an item is expanded or collapsed. If the MaxWidthAutoResize property is -1,
there is no maximum value for the column's width. Use the WidthAutoResize,
MaxWidthAutoResize and MinWidthAutoResize properties when you don't want to have
truncated the caption for cells in the column. Use the ColumnAutoResize property to specify
whether the control resizes the visible columns so they fit the control's client area.

property Column.MinWidthAutoResize as Long
Retrieves or sets a value that indicates the minimum column width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the minimum column's
width when the WidthAutoResize is True.

If the WidthAutoResize property is False, the MaxWidthAutoResize and
MinWidthAutoResize properties have no effect. The MinWidthAutoResize property
specifies the minimum column's width. The control recalculates the column's width each time
when an item is expanded or collapsed. Use the WidthAutoResize, MaxWidthAutoResize
and MinWidthAutoResize properties when you don't want to have truncated the caption for
cells in the column. Use the ColumnAutoResize property to specify whether the control
resizes the visible columns so they fit the control's client area.

property Column.Position as Long
Retrieves or sets a value that indicates the position of the column in the header bar area.

Type Description

Long A long expression that indicates the position of the column
in the header bar area

The column's index is not the same with the column's position. The Index property of
Column cannot be changed by the user. Use the Position property to change the column's
position. Use the SortPosition property to change the position of the column in the control's
sort bar. Use the Visible property to hide a column. Use the Width property to specify the
column's width.

method Column.ShowFilter ([Options as Variant])
Shows the column's filter window.

Type Description

Options as Variant

A string expression that indicates the position (in screen
coordinates) and the size (in pixels) where the drop
down filter window is shown. The Options parameter is
composed like follows:

the first parameter indicates the X coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the second parameter indicates the Y coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the third parameter indicates the width in pixels of the
drop down window, or empty if the width is ignored
the forth parameter indicates the height in pixels of
the drop down window, or empty if the height is
ignored

By default, the drop down filter window is shown at its
default position bellow the column's header.

Use the ShowFilter method to show the column's drop down filter programmatically. By
default, the drop down filter window is shown only if the user clicks the filter button in the
column's header, if the DisplayFilterButton property is True. The drop down filter window if
the user selects a predefined filter, or enters a pattern to match. If the Options parameter
is missing, or all parameters inside the Options are missing, the size of the drop down filter
window is automatcially computed based on the FilterBarDropDownWidth property and
FilterBarDropDownHeight property. Use the ColumnFromPoint property to get the index of
the column from the point.

For instance, the following VB sample displays the column's drop down filter window when
the user right clicks the control:

Private Sub List1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 With List1.Columns
 With .Item(List1.ColumnFromPoint(-1, 0))
 .ShowFilter "-1,-1,200,200"
 End With
 End With
 End If
End Sub

The following VB.NET sample displays the column's drop down filter window when the user
right clicks the control:

Private Sub AxList1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseUpEvent) Handles AxList1.MouseUpEvent
 If (e.button = 2) Then
 With AxList1.Columns
 With .Item(AxList1.get_ColumnFromPoint(-1, 0))
 .ShowFilter("-1,-1,200,200")
 End With
 End With
 End If
End Sub

The following C# sample displays the column's drop down filter window when the user right
clicks the control:

private void axList1_MouseUpEvent(object sender,
AxEXLISTLib._IListEvents_MouseUpEvent e)
{
 if (e.button == 2)
 {
 EXLISTLib.Column c = axList1.Columns[axList1.get_ColumnFromPoint(-1, 0)];
 c.ShowFilter("-1,-1,200,200");
 }
}

The following C++ sample displays the column's drop down filter window when the user
right clicks the control:

void OnMouseUpList1(short Button, short Shift, long X, long Y)
{
 m_list.GetColumns().GetItem(COleVariant(m_list.GetColumnFromPoint(-1, 0))
).ShowFilter(COleVariant("-1,-1,200,200"));
}

The following VFP sample displays the column's drop down filter window when the user
right clicks the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

if (button = 2) then
 With thisform.List1.Columns
 With .Item(thisform.List1.ColumnFromPoint(-1, 0))
 .ShowFilter("-1,-1,200,200")
 EndWith
 EndWith
endif

property Column.SortOrder as SortOrderEnum
Specifies the column's sort order.

Type Description

SortOrderEnum A SortOrderEnum expression that indicates the column's
sort order.

The SortOrder property determines the column's sort order. By default, the SortOrder
property is SortNone. Use the SortOrder property to sort a column at runtime. Use the
SortType property to determine the way how the column is sorted. Use the AllowSort
property to avoid sorting a column when the user clicks the column. Use the SingleSort
property to specify whether the control supports sorting by single or multiple columns. If the
control supports sorting by multiple columns, the SortOrder property adds or removes the
column to the sorting columns collection. For instance, if the SortOrder property is set to
SortAscending or SortDescending the column is added to the sorting columns collection. If
the SortOrder property is set to SortNone the control removes the column from its sorting
columns collection. The Sort event is fired when the user sorts a column. The SortPosition
property changes the position of the column in the control's sort bar. Use the
DefaultSortOrder property to specify the column's default sort order, when the user first
clicks the column's header. Use the FirstVisibleItem and NextVisibleItem properties to
enumerate the items as they are listed.

Using the SortOrder property of the Column object. The SortOrder property displays
the sorting icon in the column's header if the DisplaySortIcon property is True.

List1.Columns(ColIndex).SortOrder = SortAscending

Using the Sort method of Items object. The following sample sort descending the list of
root items on the "Column 2"

List1.Items.Sort "Column 2", False

property Column.SortPosition as Long
Returns or sets a value that indicates the position of the column in the sorting columns
collection.

Type Description

Long A long expression that indicates the position of the column
in the control's sort bar. The collection is 0 - based.

Use the SortPosition to change programmatically the position of the column in the control's
sort bar. Use the SingleSort property to allow sorting by multiple columns. Use the
SortBarVisible property to show the control's sort bar. Use the SortOrder property to add
columns to the control's sort bar. The control fires the Sort event when the user sorts a
column. Use the ItemBySortPosition property to get the columns being sorted in their order.
Use the AllowSort property to avoid sorting a column when the user clicks the column.

property Column.SortType as SortTypeEnum
Returns or sets a value that indicates the way the control sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that indicates the way how
control sorts the column.

The SortType property specifies the way how a column is sorted. By default, the column's
SortType is String. Use the SortType property to specifies how the control will sort the
column. Use the Sort method to sort a column. Use the SingleSort property to specify
whether the control supports sorting by single or multiple columns. The SortOrder property
determines the column's sort order. The Sort event is fired when the user sorts a column.
The SortPosition property changes the position of the column in the sorting columns
collection.

property Column.ToolTip as String
Specifes the column's tooltip description.

Type Description

String A string expression that defines the column's tooltip. The
column's tooltip supports built-in HTML format.

By default, the Tooltip property is empty. Use the ToolTip property to assign a tooltip to a
column. The column's tooltip shows up when the cursor is over the header of the column.
Use the CellToolTip property to assign a tooltip to a cell. The control fires the ToolTip event
when the column's tooltip is about to be displayed. The ToolTipWidth property specifies a
value that indicates the width of the tooltip window, in pixels.

property Column.Visible as Boolean
Retrieves or sets a value indicating whether the column is visible or hidden.

Type Description

Boolean A boolean expression indicating whether the column is
visible or hidden.

Use the Visible property to hide a column. Use the Width property to resize the column. The
ColumnAutoResize property specifies whether the visible columns fit the control's client
area. Use the Position property to specify the column's position. Use the HeaderVisible
property to show or hide the control's header bar. Use the ColumnFromPoint property to
get the column from point. Use the Remove method to remove a column.

property Column.Width as Long
Retrieves or sets the column's width.

Type Description
Long A long expression that indicates the column's width.

The Width property specifies the column's width in pixels. Use the AutoWidth property to
compute the required width to fit the entire column. Use the WidthAutoResize property to
automatically resize the column while the user expands or collapses items. Use the Visible
property to hide a column. Use the SortBarColumnWidth property to specify the column's
head in the control's sort bar. Use the ColumnAutoResize property to fit all visible columns
in the control's client area. Use FilterBarDropDownWidth property to specify the width of
the drop down filter window.

property Column.WidthAutoResize as Boolean
Retrieves or sets a value that indicates whether the column is automatically resized
according to the width of the contents within the column.

Type Description

Boolean
A boolean expression that indicates whether the column is
automatically resized according to the width of the
contents within the column.

If the WidthAutoResize property is True, the column's width is resized after user edits the
cell. Also, the column's width is refreshed if the user adds new items to the control. If the
WidthAutoResize property is True, the column's width is not larger than
MaxWidthAutoResize value, and it is not less than MinWidthAutoResize value. You can use
the AutoWidth property to computes the column's width to fit its content. For instance, if you
have a tree with one column, and this property True, you can simulate a simple tree,
because the control will automatically add a horizontal scroll bar when required. Use the
ColumnAutoResize property to specify whether the control resizes the visible columns so
they fit the control's client area. If the WidthAutoResize property is True, the user is not
able to resize the column, so the AllowSizing property has no effect in this case.

Columns object
The Columns object holds a collection of Column objects. The Columns collection supports
the following properties and methods:

Name Description

Add Adds a Column object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
ItemBySortPosition Returns a Column object giving its sorting position.
Remove Removes a specific member from the Columns collection.

method Columns.Add (ColumnCaption as String)
Adds a Column object to the collection and returns a reference to the newly created object.

Type Description
ColumnCaption as String A string expression that defines the column's caption
Return Description

Variant A Column object that represents the newly created
column.

By default, the control has no columns. Use Add method to add new columns to the control.
If the control contains no columns, adding new items fail. Use the Remove method to
remove a specific column. The control fires the AddColumn event when a new column is
added. The DataSource property automatically adds new columns for each field found in
the recordset, and add new items for each record in the recordset. You can use Add
method to add computed columns. Use the HTLMCaption property to display the column's
caption using HTML tags. Use the Visible property to hide a column. Use the BeginUpdate
and EndUpdate methods to prevent control from painting while adding columns and items.
Use the Add or PutItems method to add new items to the control. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula.

The following VB sample adds columns from a record set:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
With List1
 .BeginUpdate
 .ColumnAutoResize = False
 With .Columns
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 .PutItems rs.getRows()
 .EndUpdate
End With

The following VC sample adds a column:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_list.GetColumns();
CColumn column(V_DISPATCH(&columns.Add("Column 1")));
column.SetHeaderBold(TRUE);

The following VB.NET sample adds a column:

With AxList1.Columns
 With .Add("Column 1")
 .HeaderBold = True
 End With
End With

The Add method returns a Column object in a VARIANT value, so you can use a code like
follows:

With AxList1.Columns
 Dim c As EXLISTLib.Column
 c = .Add("Column 1")
 With c
 .HeaderBold = True
 End With
End With

this way, you can have the properties of the column at design time when typing the '.'
character.

The following C# sample adds a column:

EXLISTLib.Column column = axList1.Columns.Add("Column 1") as EXLISTLib.Column;
column.HeaderBold = true;

The following VFP sample adds a column:

with thisform.List1.Columns.Add("Column 1")
 .HeaderBold = .t.
endwith

method Columns.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to remove all columns in the Columns collection. If the Clear method
is called, the control removes also all items. Use the Remove method to Remove a
particular column. The Clear method calls RemoveColumn event for each column deleted.
Use the RemoveAll method to remove all items in the control.

property Columns.Count as Long
Returns the number of objects in a collection.

Type Description
Long Counts the columns in the collection.

The Count property counts the columns in the collection. Use the Columns property to
access the control's Columns collection. Use the Item property to access a column by its
index or key. Use the Add method to add new columns to the control. Use the Remove
method to remove a column. Use the Clear method to clear the columns collection.

The following VB sample enumerates the columns in the control:

For Each c In Tree1.Columns
 Debug.Print c.Caption
Next

The following VB sample enumerates the columns in the control:

For i = 0 To Tree1.Columns.Count - 1
 Debug.Print Tree1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_tree.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxTree1.Columns
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Caption)

 Next
End With

The following C# sample enumerates the columns in the control:

EXTREELib.Columns columns =axTree1.Columns;
for (int i = 0; i < columns.Count - 1; i++)
{
 EXTREELib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.Tree1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.Item (Index as Variant) as Column
Returns a specific Column of the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Column A Column object being accessed.

Use the Item property to access to a specific column. The Count property counts the
columns in the control. Use the Columns property to access the control's Columns
collection.

The following VB sample enumerates the columns in the control:

For Each c In Tree1.Columns
 Debug.Print c.Caption
Next

The following VB sample enumerates the columns in the control:

For i = 0 To Tree1.Columns.Count - 1
 Debug.Print Tree1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_tree.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxTree1.Columns
 Dim i As Integer

 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Caption)
 Next
End With

The following C# sample enumerates the columns in the control:

EXTREELib.Columns columns =axTree1.Columns;
for (int i = 0; i < columns.Count - 1; i++)
{
 EXTREELib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.Tree1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.ItemBySortPosition (Position as Variant) as Column
Returns a Column object giving its sorting position.

Type Description

Position as Variant A long expression that indicates the position of column
being requested.

Column A Column object being accessed.

Use the ItemBySortPosition property to get the list of sorted columns in their order. Use the
SortPosition property to specify the position of the column in the sorting columns collection.
Use the SingleSort property to specify whether the control supports sorting by single or
multiple columns. Use the SortOrder property to sort a column programmatically. The
control fires the Sort event when the user sorts a column.

The following VB sample displays the list of columns being sorted:

Dim s As String, i As Long, c As Column
i = 0
With List1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
End With
s = "Sort: " & s
Debug.Print s

The following VC sample displays the list of columns being sorted:

CString strOutput;
CColumns columns = m_list.GetColumns();
long i = 0;
CColumn column = columns.GetItemBySortPosition(COleVariant(i));
while (column.m_lpDispatch)
{
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ? "A" :
"D") + " ";

 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
}
strOutput += "\r\n";
OutputDebugString(strOutput);

The following C# sample displays the list of columns being sorted:

string strOutput = "";
int i = 0;
EXLISTLib.Column column = axList1.Columns.get_ItemBySortPosition(i);
while (column != null)
{
 strOutput += column.Caption + " " + (column.SortOrder ==
EXLISTLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axList1.Columns.get_ItemBySortPosition(++i);
}
Debug.WriteLine(strOutput);

The following VB.NET sample displays the list of columns being sorted:

With AxList1
 Dim s As String, i As Integer, c As EXLISTLib.Column
 i = 0
 With AxList1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXLISTLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
End With

The following VFP sample displays the list of columns being sorted:

local s, i, c
i = 0
s = ""
With thisform.List1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

method Columns.Remove (Index as Variant)
Removes a specific member from the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index being
removed, or a string expression that indicates the column's
caption or column's key

The Remove method removes a specific column in the Columns collection. Use Clear
method to remove all Column objects. The RemoveColumn event is fired when a column is
about to be removed. Use the Visible property to hide a column.

ConditionalFormat object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to add new ConditionalFormat objects. Use the Item property
to access a ConditionalFormat object. The ConditionalFormat object supports the following
properties and method:

Name Description

ApplyTo Specifies whether the format is applied to items or
columns.

BackColor Retrieves or sets the background color for objects that
match the condition.

Bold Bolds the objects that match the condition.
ClearBackColor Clears the background color.
ClearForeColor Clears the foreground color.
Enabled Specifies whether the condition is enabled or disabled.

Expression Indicates the expression being used in the conditional
format.

Font Retrieves or sets the font for objects that match the
criteria.

ForeColor Retrieves or sets the foreground color for objects that
match the condition.

Italic Specifies whether the objects that match the condition
should appear in italic.

Key Checks whether the expression is syntactically correct.

StrikeOut Specifies whether the objects that match the condition
should appear in strikeout.

Underline Underlines the objects that match the condition.
Valid Checks whether the expression is syntactically correct.

property ConditionalFormat.ApplyTo as FormatApplyToEnum
Specifies whether the format is applied to items or columns.

Type Description

FormatApplyToEnum

A FormatApplyToEnum expression that indicates whether
the format is applied to items or to columns. If the ApplyTo
property is less than zero, the format is applied to the
items.

By default, the format is applied to items. The ApplyTo property specifies whether the
format is applied to the items or to the columns. If the ApplyTo property is greater or equal
than zero the format is applied to the column with the index ApplyTo. For instance, if the
ApplyTo property is 0, the format is applied to the cells in the first column. If the ApplyTo
property is 1, the format is applied to the cells in the second column, if the ApplyTo property
is 2, the format is applied to the cells in the third column, and so on. If the ApplyTo property
is -1, the format is applied to items.

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With List1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_list.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxList1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXLISTLib.ConditionalFormat cf = axList1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXLISTLib.FormatApplyToEnum)1;

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.List1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.BackColor as Color
Retrieves or sets the background color for objects that match the condition.

Type Description

Color

A color expression that indicates the background color for
the object that match the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColor property to change the background color for items or cells in the column
when a certain condition is met. Use the ForeColor property to specify the foreground color
for objects that match the criteria. Use the ClearBackColor method to remove the
background color being set using previously the BackColor property. If the BackColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Bold as Boolean
Bolds the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
should appear in bold.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample bolds all cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

With List1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_list.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxList1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXLISTLib.ConditionalFormat cf = axList1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXLISTLib.FormatApplyToEnum)1;

The following VFP sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.List1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormat.ClearBackColor ()
Clears the background color.

Type Description

Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0.

method ConditionalFormat.ClearForeColor ()
Clears the foreground color.

Type Description

Use the ClearBackColor method to remove the foreground color being set using previously
the ForeColor property. If the ForeColor property is not set, it retrieves 0.

property ConditionalFormat.Enabled as Boolean
Specifies whether the condition is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the
expression is enabled or disabled.

By default, all expressions are enabled. A format is applied only if the expression is valid
and enabled. Use the Expression property to specify the format's formula. The Valid
property checks whether the formula is valid or not valid. Use the Enabled property to
disable applying the format for the moment. Use the Remove method to remove an
expression from ConditionalFormats collection.

property ConditionalFormat.Expression as String
Indicates the expression being used in the conditional format.

Type Description

String

A formal expression that indicates the formula being used
in formatting. For instance, "%0+%1>%2", highlights the
cells or the items, when the sum between first two
columns is greater than the value in the third column

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The Expression property specifies a formula that indicates the criteria to format the
items or the columns. Use the ApplyTo property to specify when the items or the columns
are formatted. Use the Add method to specify the expression at adding time. The
Expression property may include variables, constants, operators or () parenthesis. A
variable is defined as %n, where n is the index of the column (zero based). For instance,
the %0 indicates the first column, the %1, indicates the second column, and so on. The
Valid property specifies whether the expression is syntactically correct, and can be
evaluated. If the expression contains a variable that is not known, 0 (or empty string) value
is used instead. For instance, if your control has 2 columns, and the expression looks like
"%2 +%1 ", the %2 does not exist, 0 is used instead. For instance, if the control contains
two columns the known variables are %0 and %1.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The Caption property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.

This property/method supports predefined constants and operators/functions as described
here.

Samples:

1. "1", highlights all cells or items. Use this form, when you need to highlight all cells or
items in the column or control.

2. "%0 >= 0", highlights the cells or items, when the cells in the first column have the value
greater or equal with zero

3. "%0 = 1 and %1 = 0", highlights the cells or items, when the cells in the first column
have the value equal with 0, and the cells in the second column have the value equal
with 0

4. "%0+%1>%2", highlights the cells or the items, when the sum between first two

columns is greater than the value in the third column
5. "%0+%1 > %2+%3", highlights the cells or items, when the sum between first two

columns is greater than the sum between third and forth column.
6. "%0+%1 >= 0 and (%2+%3)/2 < %4-5", highlights the cells or the items, when the sum

between first two columns is greater than 0 and the half of the sum between third and
forth columns is less than fifth column minus 5.

7. "%0 startwith 'A'" specifies the cells that starts with A
8. "%0 endwith 'Bc'" specifies the cells that ends with Bc
9. "%0 contains 'aBc'" specifies the cells that contains the aBc string

10. "lower(%0) contains 'abc'" specifies the cells that contains the abc, AbC, ABC, and
so on

11. "upper(%0)'" retrieves the uppercase string
12. "len(%0)>0'" specifies the not blanks cells
13. "len %0 = 0'" specifies the blanks cells

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB samples bolds all items when the sum between first two columns is
greater than 0:

List1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_List.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxList1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C# sample bolds all items when the sum between first two columns is greater

than 0:

axList1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.List1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

property ConditionalFormat.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object that's applied to items or columns.

Use the Font property to change the font for items or columns that match the criteria. Use
the Font property only, if you need to change to a different font.

You can change directly the font attributes, like follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items

The following VB sample changes the font for ALL cells in the first column:

With List1.ConditionalFormats.Add("1")
 .ApplyTo = 0
 Set .Font = New StdFont
 With .Font
 .Name = "Comic Sans MS"
 End With
End With

property ConditionalFormat.ForeColor as Color
Retrieves or sets the foreground color for objects that match the condition.

Type Description

Color A color expression that indicates the foreground color for
the object that match the criteria.

Use the ForeColor property to specify the foreground color for objects that match the
criteria. Use the BackColor property to change the background color for items or cells in the
column when a certain condition is met. Use the ClearForeColor method to remove the
foreground color being set using previously the ForeColor property. If the ForeColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Italic as Boolean
Specifies whether the objects that match the condition should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the objects
should look in italic.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample makes italic the cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With List1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C++ sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_list.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetItalic(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxList1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C# sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

EXLISTLib.ConditionalFormat cf = axList1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Italic = true;
cf.ApplyTo = (EXLISTLib.FormatApplyToEnum)1;

The following VFP sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.List1.ConditionalFormats.Add("%1+%2<%0")
 .Italic = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Key as Variant
Checks whether the expression is syntactically correct.

Type Description
Variant A String expression that indicates the key of the element

The Key property indicates the key of the element. Use the Add method to specify a key at
adding time. Use the Remove method to remove a formula giving its key.

property ConditionalFormat.StrikeOut as Boolean
Specifies whether the objects that match the condition should appear in strikeout.

Type Description

Boolean A Boolean expression that indicates whether the objects
should appear in strikeout.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample applies strikeout font attribute to cells in the
second column (1), if the sum between second and third column (2) is less than the value
in the first column (0):

With List1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

COleVariant vtEmpty;
CConditionalFormat cf = m_list.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample applies strikeout font attribute to cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With AxList1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample applies strikeout font attribute to cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

EXLISTLib.ConditionalFormat cf = axList1.ConditionalFormats.Add("%1+%2<%0",null);

cf.Bold = true;
cf.ApplyTo = (EXLISTLib.FormatApplyToEnum)1;

The following VFP sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

with thisform.List1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Underline as Boolean
Underlines the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
are underlined.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample underlines the cells in the second column (1
), if the sum between second and third column (2) is less than the value in the first column
(0):

With List1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C++ sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_list.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetUnderline(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxList1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C# sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXLISTLib.ConditionalFormat cf = axList1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Underline = true;
cf.ApplyTo = (EXLISTLib.FormatApplyToEnum)1;

The following VFP sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.List1.ConditionalFormats.Add("%1+%2<%0")
 .Underline = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Valid as Boolean
Checks whether the expression is syntactically correct.

Type Description

Boolean A boolean expression that indicates whether the
Expression property is valid.

Use the Valid property to check whether the Expression formula is valid. The conditional
format is not applied to objects if expression is not valid, or the Enabled property is false.
An empty expression is not valid. Use the Enabled property to disable applying the format
to columns or items. Use the Remove method to remove an expression from
ConditionalFormats collection.

ConditionalFormats object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The ConditionalFormats collection holds a collection of ConditionalFormat objects.
Use the ConditionalFormats property to access the control's ConditionalFormats collection
.The ConditionalFormats collection supports the following properties and methods:

Name Description

Add Adds a new expression to the collection and returns a
reference to the newly created object.

Clear Removes all expressions in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific expression.
Remove Removes a specific member from the collection.

method ConditionalFormats.Add (Expression as String, [Key as Variant])
Adds a new expression to the collection and returns a reference to the newly created
object.

Type Description

Expression as String

A formal expression that indicates the formula being used
when the format is applied. Please check the Expression
property that shows the syntax of the expression that may
be used. For instance, the "%0 >= 10 and %1 > 67.23"
means all cells in the first column with the value less or
equal than 10, and all cells in the second column with a
value greater than 67.23

Key as Variant

A string or long expression that indicates the key of the
expression being added. If the Key parameter is missing,
by default, the current index in the ConditionalFormats
collection is used.

Return Description

ConditionalFormat A ConditionalFormat object that indicates the newly format
being added.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on values. Use the Add method
to add new ConditionalFormat objects to the ConditionalFormats collection. By default, the
ConditionalFormats collection is empty. A ConditionalFormat object indicates a formula and
a format to apply to cells or items. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column. Use the Expression
property to retrieve or set the formula. Use the Key property to retrieve the key of the
object. Use the Refresh method to update the changes on the control's content.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB sample bolds all items when the sum between first two columns is greater
than 0:

List1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With List1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_list.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_list.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxList1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxList1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all items when the sum between first two columns is greater

than 0:

axList1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXLISTLib.ConditionalFormat cf = axList1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXLISTLib.FormatApplyToEnum)1;

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.List1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.List1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormats.Clear ()
Removes all expressions in a collection.

Type Description

Use the Clear method to remove all objects in the collection. Use the Remove method to
remove a particular object from the collection. Use the Enabled property to disable a
conditional format.

property ConditionalFormats.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that counts the number of elements in
the collection.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In List1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With List1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_list.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_list.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXLISTLib.ConditionalFormat
For Each c In AxList1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxList1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXLISTLib.ConditionalFormat c in axList1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axList1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axList1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.List1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

property ConditionalFormats.Item (Key as Variant) as ConditionalFormat
Returns a specific expression.

Type Description

Key as Variant
A long expression that indicates the index of the element
being accessed, or a string expression that indicates the
key of the element being accessed.

ConditionalFormat A ConditionalFormat object being returned.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format. Use the Key property to get the
key of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In List1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With List1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_list.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_list.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXLISTLib.ConditionalFormat

For Each c In AxList1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxList1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXLISTLib.ConditionalFormat c in axList1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axList1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axList1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.List1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

method ConditionalFormats.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A Long or String expression that indicates the key of the
element to be removed.

Use the Remove method to remove a particular object from the collection. Use the Enabled
property to disable a conditional format. Use the Clear method to remove all objects in the
collection.

ExDataObject object
Defines the object that contains OLE drag and drop information.

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations.

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum.

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object

The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property.

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index.
String A string value that indicates the filename.

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames.

Items object
The Items object contains a collection of items. Each item is identified by an index. Each
item contains a collection of cells. The number of cells is determined by the number of
Column objects in the control. To access the Items collection use Items property of the
control. Using the Items collection you can add, remove or change the control items. The
Items object supports the following properties and methods:

Name Description

Add Adds a new item, and returns the index of the newly
created item.

Caption Retrieves or sets the text displayed by a specific cell.
CaptionFormat Specifies how the cell's caption is displayed.
CellBackColor Retrieves or sets the cell's background color.

CellBold Retrieves or sets a value that indicates whether the cell's
caption should appear in bold.

CellChecked Retrieves the cell's index that is checked on a specific
radio group.

CellData Retrieves or sets a value that indicates the extra data for
a specific cell.

CellEnabled Returns or sets a value that determines whether a cell can
respond to user-generated events.

CellFont Retrieves or sets the cell's font.
CellForeColor Retrieves or sets the cell's foreground color.

CellHAlignment Retrieves or sets a value that indicates the alignment of
the cell's caption.

CellHasButton Retrieves or sets a value indicating whether the cell has
associated a push button.

CellHasCheckBox Retrieves or sets a value indicating whether the cell has
associated a checkbox.

CellHasRadioButton Retrieves or sets a value indicating whether the cell has
associated a radio button.

CellHyperLink Specifies whether the cell's is highlighted when the cursor
mouse is over the cell.

CellImage Retrieves or sets a value that indicates the index of the
cell's image into Images collection.

CellImages Specifies an additional list of icons shown in the cell.

CellItalic Retrieves or sets a value that indicates whether the cell's
caption should appear in italic.

CellMerge Retrieves or sets a value that indicates the index of the
cell that's merged to.

CellPicture Retrieves or sets a value that indicates the Picture object
displayed by the cell.

CellPictureHeight Retrieves or sets a value that indicates the height of the
cell's picture.

CellPictureWidth Retrieves or sets a value that indicates the width of the
cell's picture.

CellRadioGroup Retrieves or sets a value indicating the radio group where
the cell is contained.

CellSingleLine Retrieves or sets a value indicating whether the cell's
caption is painted using one or more lines.

CellState Retrieves or sets the cell's state. Has effect only for cells
of check or radio types.

CellStrikeOut Retrieves or sets a value that indicates whether the cell's
caption should appear in strikeout.

CellToolTip Retrieves or sets a value that indicates the cell's tooltip.

CellUnderline Retrieves or sets a value that indicates whether the cell's
caption is underlined.

CellVAlignment Retrieves or sets a value that indicates how the cell's
caption is vertically aligned.

ClearCellBackColor Clears the cell's background color.
ClearCellForeColor Clears the cell's foreground color.
ClearCellHAlignment Clears the cell's alignment.
ClearItemBackColor Clears the item's background color.
ClearItemForeColor Clears the item's foreground color.
Count Retrieves the number of items.
Edit Edits a cell.

EnableItem Returns or sets a value that determines whether a item
can respond to user-generated events.

EnsureVisibleColumn Ensures that a column fits the control client area.
EnsureVisibleItem Ensures the given item is in the visible client area.

Finds an item, looking for Caption in ColIndex colum. The

FindItem searching starts at StartIndex item.

FindItemData Finds the item giving its data.
FirstVisibleItem Retrieves the index of the first visible item into control.
FocusItem Retrieves the index of the item that has the focus.
FormatCell Specifies the custom format to display the cell's content.
IsItemVisible Checks if the specific item is in the visible client area.

ItemAllowSizing Retrieves or sets a value that indicates whether a user
can resize the item at run-time.

ItemBackColor Retrieves or sets a background color for a specific item.

ItemBold Retrieves or sets a value that indicates whether the item
should appear in bold.

ItemBreak Retrieves or sets a value that indicates whether the item is
painted as a break line.

ItemData Retrieves or sets a value that indicates the extra data for
a specific item.

ItemFont Retrieves or sets the item's font.
ItemForeColor Retrieves or sets a foreground color for a specific item.
ItemHeight Retrieves or sets the item's height.

ItemItalic Retrieves or sets a value that indicates whether the item
should appear in italic.

ItemMaxHeight Retrieves or sets a value that indicates the maximum
height when the item's height is variable.

ItemMinHeight Retrieves or sets a value that indicates the minimum height
when the item's height is sizing.

ItemPosition Retrieves or sets a value that indicates the item's position.

ItemStrikeOut Retrieves or sets a value that indicates whether the item
should appear in strikeout.

ItemToVirtual Gets the index of the virtual item giving the index of the
item in the list.

ItemUnderline Retrieves or sets a value that indicates whether the item is
underlined.

LastVisibleItem Retrieves the index of the last visible item.
MatchItemCount Retrieves the number of items that match the filter.
NextVisibleItem Retrieves the index of next visible item.

PrevVisibleItem Retrieves the index of previous visible item.
Remove Removes a specific item.
RemoveAll Removes all items from the control.
RemoveSelection Removes the selected items (including the descendents).
SelectableItem Specifies whether the user can select the item.
SelectAll Selects all items.
SelectCount Retrieves the count of selected items.

SelectedItem Retrieves the selected item's index given its index into
selected items collection.

SelectItem Selects or unselects a specific item.
Sort Sorts a column.
SortableItem Specifies whether the item is sortable.
UnselectAll Unselects all items.

VirtualToItem Gets the index of the item in the list giving the index of the
virtual item.

VisibleCount Retrieves the number of visible items.
VisibleItemCount Retrieves the number of visible items.

method Items.Add ([Caption as Variant])
Adds a new item, and returns the index of the newly created item.

Type Description

Caption as Variant
A string expression that indicates the caption for the cell in
the first column, or a safe array that holds the captions for
each column.

Return Description

Long A long value that indicate the index for the newly created
item

The Add method adds a new item to the end of the list. If the control has more than a
Column object, use the Caption property to set the caption for the rest of the cells. Use the
CaptionFormat property to specify HTML tags in the caption, or a computed field. Use
ItemPosition property to change the item's position. The AddItem event is fired once that a
new item has been added. Use the PutItems method to load the control from an array. Use
the DataSource property to bind the control to an ADO record set. The Add method is not
available if the control is running in the virtual mode. Use the CellMerge property to combine
two or more cells in a single cell. Use the BeginUpdate and EndUpdate methods to maintain
performance while adding new columns and items. Use the ConditionalFormats method to
apply formats to a cell or range of cells, and have that formatting change depending on the
value of the cell or the value of a formula.

The following VB sample loads each item from a safe array:

With List1
 .BeginUpdate

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 With .Items
 .Add Array("Item 1", "Item 2", "Item 3")
 .Add Array("Item 4", "Item 5", "Item 6")
 .Add Array("Item 7", "Item 8", "Item 9")
 End With

 .EndUpdate

End With

The following VB sample add three columns and three items:

With List1
 .BeginUpdate

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 With .Items
 Dim i As Long
 i = .Add("Item 1")
 .Caption(i, 1) = "Item 2"
 .Caption(i, 2) = "Item 3"
 i = .Add("Item 4")
 .Caption(i, 1) = "Item 5"
 .Caption(i, 2) = "Item 6"
 i = .Add("Item 7")
 .Caption(i, 1) = "Item 8"
 .Caption(i, 2) = "Item 9"
 End With

 .EndUpdate
End With

The following C++ adds three columns and three items:

m_list.BeginUpdate();
CColumns columns = m_list.GetColumns();
CColumn column(V_DISPATCH(&columns.Add("Column 1")));
columns.Add("Column 2");
columns.Add("Column 3");

CItems items = m_list.GetItems();
int i = items.Add(COleVariant("Item 1"));
items.SetCaption(i, COleVariant(long(1)), COleVariant("SubItem 1.1"));
items.SetCaption(i, COleVariant(long(2)), COleVariant("SubItem 1.2"));
i = items.Add(COleVariant("Item 2"));
items.SetCaption(i, COleVariant(long(1)), COleVariant("SubItem 2.1"));
items.SetCaption(i, COleVariant(long(2)), COleVariant("SubItem 2.2"));
i = items.Add(COleVariant("Item 3"));
items.SetCaption(i, COleVariant(long(1)), COleVariant("SubItem 3.1"));
items.SetCaption(i, COleVariant(long(2)), COleVariant("SubItem 3.2"));
m_list.EndUpdate();

The following VB.NET adds three columns and three items:

With AxList1
 .BeginUpdate()
 .Columns.Add("Column 1")
 .Columns.Add("Column 2")
 .Columns.Add("Column 3")
 With .Items
 Dim i As Integer = .Add("Item 1")
 .Caption(i, 1) = "SubItem 1.1"
 .Caption(i, 2) = "SubItem 1.2"
 i = .Add("Item 2")
 .Caption(i, 1) = "SubItem 2.1"
 .Caption(i, 2) = "SubItem 2.2"
 i = .Add("Item 3")
 .Caption(i, 1) = "SubItem 3.1"
 .Caption(i, 2) = "SubItem 3.2"
 End With
 .EndUpdate()
End With

The following C# adds three columns and three items:

axList1.BeginUpdate();
axList1.Columns.Add("Column 1");
axList1.Columns.Add("Column 2");

axList1.Columns.Add("Column 3");
EXLISTLib.Items items = axList1.Items;
int i = items.Add("Item 1");
items.set_Caption(i, 1,"SubItem 1.1");
items.set_Caption(i, 2,"SubItem 1.2");
i = items.Add("Item 2");
items.set_Caption(i, 1,"SubItem 2.1");
items.set_Caption(i, 2,"SubItem 2.2");
i = items.Add("Item 3");
items.set_Caption(i, 1,"SubItem 3.1");
items.set_Caption(i, 2,"SubItem 3.2");
axList1.EndUpdate();

The following VFP adds three columns and three items:

with thisform.List1
 .BeginUpdate()
 .Columns.Add("Column 1")
 .Columns.Add("Column 2")
 .Columns.Add("Column 3")
 With .Items
 Local i
 i = .Add("Item 1")
 .Caption(i, 1) = "SubItem 1.1"
 .Caption(i, 2) = "SubItem 1.2"
 i = .Add("Item 2")
 .Caption(i, 1) = "SubItem 2.1"
 .Caption(i, 2) = "SubItem 2.2"
 i = .Add("Item 3")
 .Caption(i, 1) = "SubItem 3.1"
 .Caption(i, 2) = "SubItem 3.2"
 EndWith
 .EndUpdate()
 endwith

property Items.Caption(Index as Long, ColIndex as Variant) as Variant
Retrieves or sets the text displayed by a specific cell.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Variant A string expression that indicates the cell's caption.

The CellCaption property specifies the cell's content. To associate an user data for a cell
you can use CellData property. Use the CaptionFormat property to use HTML tags in the
cell's caption, or to specify a computed field . Use the ItemData property to associate an
extra data to an item. To hide a column you have to use Visible property of the Column
object. The Add method specifies also the caption for the first cell in the item. Use the
 HTML tag to insert icons inside the cell's caption, if the CaptionFormat property is
exHTML. For instance, the "some image 1 other image 2 rest of
text", displays combined text and icons in the cell's caption. Use the Images method to load
icons at runtime. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The Caption property is interpreted in different ways, based on the CaptionFormat property
as follows:

exText, the Caption property indicates just a plain text
exHTML, the Caption property indicates a text that may include HTML format. The
CaptionFormatEnum property indicates the built-in HTML tags that are supported.
exComputedField, the Caption property indicates the formula to compute the cell. Use
the ComputedField property to specify a formula for the entire column.

If the CaptionFormat property is exComputedField, the Caption property may may include
variables, constants, operators or () parenthesis. A variable is defined as %n, where n is
the index of the column (zero based). For instance, the %0 indicates the first column, the
%1, indicates the second column, and so on. A constant is a float expression (for instance,
23.45).

The property supports the following binary arithmetic operators:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
+ (addition operator), priority 4

- (subtraction operator), priority 4

The property supports the following unary boolean operators:

not (not operator), priority 3 (high priority)

The property supports the following binary boolean operators:

or (or operator), priority 2
and (or operator), priority 1

The property supports the following binary boolean operators, all these with the same
priority 0 :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator. The property may be a combination of
variables, constants and operators.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.
6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is

less than the sum of third and forth columns.

property Items.CaptionFormat(Index as Long, ColIndex as Variant) as
CaptionFormatEnum
Specifies how the cell's caption is displayed.

Type Description
Index as Long A long expression that specifies the index of item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

CaptionFormatEnum A CaptionFormatEnum expression that indicates the cell's
format.

The component supports built-in HTML format. That means that you can use HTML tags
when displays the cell's caption . By default, the CaptionFormat property is exText. If the
CaptionFormat is exText, the cell displays the Caption property without HTML format. If the
CaptionFormat is exHTML, the cell displays the Caption property using the HTML tags
specified in the CaptionFormatEnum type. Use the Def property to specify that all cells in
the column display HTML format. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut
property to apply different font attributes to the item. Use the CellItalic, CellUnderline,
CellBold or CellStrikeOut property to apply different font attributes to the cell. Use the
CaptionFormat property on exComputedField to indicate a computed field. Use the
ComputedField property to specify a formula for the entire column.

The following VB sample adds a built-in HTML cell:

Dim i As Long
With List1.Items
 i = .Add("This is a built-in HTML cell.")
 .CaptionFormat(i, 0) = exHTML
End With

The following C++ sample adds a built-in HTML cell:

CItems items = m_list.GetItems();
int i = items.Add(COleVariant("This is a built-in HTML cell."));
items.SetCaptionFormat(i, COleVariant(long(0)), 1);

The following VB.NET sample adds a built-in HTML cell:

With AxList1.Items

 Dim i As Integer = .Add("This is a built-in HTML cell.")
 .CaptionFormat(i, 0) = EXLISTLib.CaptionFormatEnum.exHTML
End With

The following C# sample adds a built-in HTML cell:

EXLISTLib.Items items = axList1.Items;
int i = items.Add("This is a built-in HTML cell.");
items.set_CaptionFormat(i, 0, EXLISTLib.CaptionFormatEnum.exHTML);

The following VFP sample adds a built-in HTML cell:

With thisform.List1.Items
 local i
 i = .Add("This is a built-in HTML cell.")
 .CaptionFormat(i, 0) = 1 && exHTML
EndWith

property Items.CellBackColor(Index as Long, ColIndex as Variant) as
Color
Retrieves or sets the cell's background color.

Type Description

Index as Long
A long expression that indicates the index of the item. If
the Index is -1, the ClearItemBackColor clears the
background color for all items.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Color

A color expression that indicates the cell's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the CellBackColor property to set the cell's background color. Use the ItemBackColor
property to change the item's background color. If the CellBackColor and CellForeColor
were not used, the cell uses the control's background color, retrieved by the BackColor
property. Use the CellForeColor property to change the cell's foreground color. Use the
ClearCellBackColor property to clear the cell's background color when CellBackColor
property was used. Use the Def(exCellBackColor) property to specify the background color
for all cells in a column. You can use the CellBackColor property and the Add method to
specify a different pattern on the cell's background. Use the ConditionalFormats method to
apply formats to a cell or range of cells, and have that formatting change depending on the
value of the cell or the value of a formula.

The following VB sample changes the cell's visual appearance. The sample uses the "
" skin to mark a cell:

With List1
 With .VisualAppearance
 .Add &H40, App.Path + "\cell.ebn"

 End With
 With .Items
 .CellBackColor(.FirstVisibleItem, 0) = &H40000000
 End With
End With

The following C++ sample changes the cell's appearance:

#include "Appearance.h"
#include "Items.h"
m_list.GetVisualAppearance().Add(0x40,
COleVariant(_T("D:\\Temp\\ExList.Help\\cell.ebn")));
m_list.GetItems().SetCellBackColor(COleVariant(m_list.GetItems().GetFirstVisibleItem()),
COleVariant(long(0)), 0x40000000);

The following VB.NET sample changes the cell's appearance.

With AxList1
 With .VisualAppearance
 .Add(&H40, "D:\Temp\ExList.Help\cell.ebn")
 End With
 With .Items
 .CellBackColor(.FirstVisibleItem, 0) = &H40000000
 End With
End With

The following C# sample changes the cell's appearance.

axList1.VisualAppearance.Add(0x40, "D:\\Temp\\ExList.Help\\cell.ebn");
axList1.Items.set_CellBackColor(axList1.Items.FirstVisibleItem, 0, 0x40000000);

The following VFP sample changes the cell's appearance.

With thisform.List1
 With .VisualAppearance
 .Add(64, "D:\Temp\ExList.Help\cell.ebn")
 EndWith
 with .Items
 .DefaultItem = .FirstVisibleItem

 .CellBackColor(0,0) = 1073741824
 endwith
EndWith

property Items.CellBold(Index as Long, ColIndex as Variant) as Boolean
Retrieves or sets a value that indicates whether the cell's caption should appear in bold.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Boolean A boolean expression that indicates whether the cell's
caption is bolded.

Use the CellBold property to bold a cell. Use the ItemBold property to specify whether the
item should appear in bold. Use the HeaderBold property of the Column object to bold the
column's caption. Use the CellItalic, CellUnderline or CellStrikeOut property to apply
different font attributes to the cell. Use the ItemItalic, ItemUnderline or ItemStrikeOut
property to apply different font attributes to the item. Use the CaptionFormat property to
specify an HTML caption. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

The following VB sample bolds the cells in the first column

Dim h As Variant
With List1
 .BeginUpdate
 With .Items
 For Each h In List1.Items
 .CellBold(h, 0) = True
 Next
 End With
 .EndUpdate
End With

The following C++ sample bolds the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellBold(items.GetFocusItem(), COleVariant((long)0), TRUE);

The following C# sample bolds the focused cell:

axList1.Items.set_CellBold(axList1.Items.FocusItem, 0, true);

The following VB.NET sample bolds the focused cell:

With AxList1.Items
 .CellBold(.FocusItem, 0) = True
End With

The following VFP sample bolds the focused cell:

with thisform.List1.Items
 .CellBold(.FocusItem, 0) = .t.
endwith

method Items.CellChecked (RadioGroup as Long, Index as Long,
ColIndex as Long)
Retrieves the cell's index that is checked on a specific radio group.

Type Description

RadioGroup as Long A long expression that indicates the identifier of the radio
group.

Index as Long A long value that indicates the index of the item that
contains the checked cell.

ColIndex as Long A long value that indicates the index of the column that
contains the checked cell.

A radio group contains a set of cells of radio types. Use the CellHasRadioButton property to
set the cell of radio type. To change the state for a cell you can use the CellState property.
To add or remove a cell to a given radio group you have to use CellHasRadioButton
property. Use the CellRadioGroup property to add cells in the same radio group. The
control fires the CellStateChanged event when the check box or radio button state is
changed.

The following VB sample groups the radio cells in the first column, and displays the caption
of the checked radio cell:

With List1
 .Columns(0).Def(exCellHasRadioButton) = True
 For Each i In .Items
 .Items.CellRadioGroup(i, 0) = 1234
 Next
End With

The following C++ sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

#include "Items.h"
COleVariant vtColumn(long(0));
CItems items = m_list.GetItems();
m_list.BeginUpdate();
for (long i = 0; i < items.GetCount(); i++)
{
 items.SetCellHasRadioButton(i, vtColumn, TRUE);

 items.SetCellRadioGroup(i, vtColumn, 1234);
}
m_list.EndUpdate();

The following VB.NET sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

With AxList1
 .BeginUpdate()
 .Columns(0).Def(EXLISTLib.DefColumnEnum.exCellHasRadioButton) = True
 With .Items
 Dim k As Integer
 For k = 0 To .Count - 1
 .CellRadioGroup(k, 0) = 1234
 Next
 End With
 .EndUpdate()
End With

The following C# sample groups the radio cells on the first column, and displays the caption
of the checked radio cell:

axList1.BeginUpdate();
EXLISTLib.Items items = axList1.Items;
axList1.Columns[0].set_Def(EXLISTLib.DefColumnEnum.exCellHasRadioButton, true);
for (int i = 0; i < items.Count; i++)
 items.set_CellRadioGroup(i, 0, 1234);
axList1.EndUpdate();

The following VFP sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

thisform.List1.BeginUpdate()
with thisform.List1.Items
 local i
 for i = 0 to .Count - 1
 .CellHasRadioButton(i,0) = .t.
 .CellRadioGroup(i,0) = 1234
 next

endwith
thisform.List1.EndUpdate()

property Items.CellData(Index as Long, ColIndex as Variant) as Variant
Retrieves or sets a value that indicates the extra data for a specific cell.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant A long expression that indicates the column's index or a
string expression that indicates the column's name.

Variant A VARIANT expression that indicates the cell's extra data.

Use the CellData to associate an extra data to your cell. Use ItemData when you need to
associate an extra data with an item. The CellData value is not used by the control, it is only
for user use. Use the Data property to assign an extra data to a column.

property Items.CellEnabled(Index as Long, ColIndex as Variant) as
Boolean
Returns or sets a value that determines whether a cell can respond to user-generated
events.

Type Description
Index as Long A long expression that indicates the item's index.

ColIndex as Variant A long expression that indicates the column's index or a
string expression that indicates the column's name.

Boolean A boolean expression that indicates whether the cell is
enabled or disabled.

Use the CellEnabled property to enable or disable a cell. If the cell is disabled, a check or
radio button cannot be clicked in order to change its state. Use the Enabled property to
disable the entire column. Use the EnableItem property to enable or disable an item. If an
item is disabled or contained cells are disable no matter if the CellEnabled is True. Use the
SelectableItem property to specify the user can select an item.

property Items.CellFont (Index as Long, ColIndex as Variant) as
IFontDisp
Retrieves or sets the cell's font.

Type Description
Index as Long A long expression that specifies the index of item.

ColIndex as Variant
A long expression that specifies the index of column, a
string expression that identifies the column's caption or
column's key.

IFontDisp A Font object being used by the cell.

By default, the CellFont property is nothing. If the CellFont property is noting, the cell uses
the item's font. Use the CellFont and ItemFont properties to specify different fonts for cells
or items. Use the CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline,
ItemStrikeout, ItemItalic or CaptionFormat to specify different font attributes. Use the
Refresh method to refresh the control's content on the fly. Use the BeginUpdate and
EndUpdate methods if you are doing multiple changes, so no need for an update each time
a change is done.

The following VB sample changes the font for the focused cell:

List1.BeginUpdate
With List1.Items
 .CellFont(.FocusItem, 0) = List1.Font
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Size = 10
 .Bold = True
 End With
End With
List1.EndUpdate

The following C++ sample changes the font for the focused cell:

#include "Items.h"
#include "Font.h"
m_list.BeginUpdate();
CItems items = m_list.GetItems();
long nItem = items.GetFocusItem();

COleVariant vtColumn((long)0);
items.SetCellFont(nItem, vtColumn, m_list.GetFont().m_lpDispatch);
COleFont font = items.GetCellFont(nItem, vtColumn);
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_list.EndUpdate();

The following VB.NET sample changes the font for the focused cell:

AxList1.BeginUpdate()
With AxList1.Items
 .CellFont(.FocusItem, 0) = IFDH.GetIFontDisp(AxList1.Font)
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxList1.EndUpdate()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused cell:

axList1.BeginUpdate();
axList1.Items.set_CellFont(axList1.Items.FocusItem, 0, IFDH.GetIFontDisp(axList1.Font));
stdole.IFontDisp spFont = axList1.Items.get_CellFont(axList1.Items.FocusItem, 0);

spFont.Name = "Comic Sans MS";
spFont.Bold = true;
axList1.EndUpdate();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")
 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused cell:

thisform.List1.Object.BeginUpdate()
with thisform.List1.Items
 .CellFont(.FocusItem,0) = thisform.List1.Font
 with .CellFont(.FocusItem,0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.List1.Object.EndUpdate()

property Items.CellForeColor(Index as Long, ColIndex as Variant) as
Color
Retrieves or sets the cell's foreground color.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant A long expression that indicates the column's index or a
string expression that indicates the column's name.

Color A color expression that indicates the cell's foreground
color.

Use the CellForeColor property to change the cell's foreground color. Use the
ItemForeColor property to change the item's foreground color. Use the CellBackColor
property to change the cell's background color. If the CellForeColor and ItemForeColor
were not used, the cell uses the control's ForeColor property. Use the ClearCellForeColor
property to clear the cell's foreground color when the CellForeColor property is used. Use
the Def(exCellForeColor) property to specify the foreground color for all cells in a column.
Use the ConditionalFormats method to apply formats to a cell or range of cells, and have
that formatting change depending on the value of the cell or the value of a formula.

The following VB sample changes the foreground color for the focused cell:

With List1.Items
 .CellForeColor(.FocusItem, 0) = vbRed
End With

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color for the focused cell:

axList1.Items.set_CellForeColor(axList1.Items.FocusItem, 0, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color for the focused cell:

With AxList1.Items
 .CellForeColor(.FocusItem, 0) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color for the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellForeColor(items.GetFocusItem(), COleVariant((long)0), RGB(255,0,0));

The following VFP sample changes the foreground color for the focused cell:

with thisform.List1.Items
 .CellForeColor(.FocusItem, 0) = RGB(255,0,0)
endwith

property Items.CellHAlignment (Index as Long, ColIndex as Variant) as
AlignmentEnum
Retrieves or sets a value that indicates the alignment of the cell's caption.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cell's caption.

The CellHAlignment property aligns a particular cell. Use the Alignment property of the
Column object to align all the cells in the column. Use the CellVAlignment property to align
vertically the caption of the cell, when the item displays its content using multiple lines. Use
the ClearCellHAlignment method to clear the cell's alignment previously set by the
CellHAlignment property. If the CellHAlignment property is not set, the Alignment property of
the Column object indicates the cell's alignment.

The following VB sample right aligns the focused cell:

With List1.Items
 .CellHAlignment(.FocusItem, 0) = AlignmentEnum.RightAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellHAlignment(items.GetFocusItem(), COleVariant((long)0), 2
/*RightAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxList1.Items
 .CellHAlignment(.FocusItem, 0) = EXLISTLib.AlignmentEnum.RightAlignment
End With

The following C# sample right aligns the focused cell:

axList1.Items.set_CellHAlignment(axList1.Items.FocusItem, 0,
EXLISTLib.AlignmentEnum.RightAlignment);

The following VFP sample right aligns the focused cell:

with thisform.List1.Items
 .CellHAlignment(.FocusItem,0) = 2 && RightAlignment
endwith

property Items.CellHasButton(Index as Long, ColIndex as Variant) as
Boolean
Retrieves or sets a value indicating whether the cell has associated a push button.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Boolean A boolean expression that indicates whether the cell has
associated a push button.

The CellHasButton property specifies whether the cell display a button inside. When the
cell's button is clicked the control fires CellButtonClick event. The caption of the push button
is specified by the Caption property. Use the Def(exCellHasButton) property to assign
buttons for all cells in the column. Use the Background property to change the visual
appearance for cell's button.

The following VB sample assigns a button to the focused cell:

With List1.Items
 .CellHasButton(.FocusItem, 0) = True
End With

The following C++ sample assigns a button to the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellHasButton(items.GetFocusItem(), COleVariant((long)0), TRUE);

The following VB.NET sample assigns a button to the focused cell:

With AxList1.Items
 .CellHasButton(.FocusItem, 0) = True
End With

The following C# sample assigns a button to the focused cell:

axList1.Items.set_CellHasButton(axList1.Items.FocusItem, 0, true);

The following VFP sample assigns a button to the focused cell:

with thisform.List1.Items
 .CellHasButton(.FocusItem,0) = .t.
endwith

property Items.CellHasCheckBox(Index as Long, ColIndex as Variant) as
Boolean
Retrieves or sets a value indicating whether the cell has associated a checkbox.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Boolean A boolean expression indicating whether the cell has
associated a checkbox.

Use the CellHasCheckBox property to add a checkbox to the cell. Use the
CellHasRadioButton property to add a radio button to the cell. A cell can displayed only a
check box or a radio button at one time. If the user clicks a check or a radio button, the
CellStateChanged event is fired. Use the CellState property to change the cell's state. Use
the CheckImage property to change the check box appearance. Use the Def property to
assign check boxes for all cells in the column. Use the CellImage property to add a single
icon to a cell. Use the CellImages property to assign multiple icons to a cell. Use the
CellPicture property to load a custom size picture to a cell. Use the FilterType property on
exCheck to filter for checked or unchecked items.

The following VB sample adds a checkbox to the focused cell:

With List1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
End With

The following C++ sample adds a checkbox to the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellHasCheckBox(items.GetFocusItem(), COleVariant((long)0), TRUE);

The following C# sample adds a checkbox to the focused cell:

axList1.Items.set_CellHasCheckBox(axList1.Items.FocusItem, 0, true);

The following VB.NET sample adds a checkbox to the focused cell:

With AxList1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
End With

The following VFP sample adds a checkbox to the focused cell:

with thisform.List1.Items
 .CellHasCheckBox(.FocusItem,0) = .t.
endwith

property Items.CellHasRadioButton(Index as Long, ColIndex as Variant)
as Boolean
Retrieves or sets a value indicating whether the cell has associated a radio button.

Type Description
Index as Long A long expression that specifies the index of item.

ColIndex as Variant
A long expression that specifies the index of column, a
string expression that identifies the column's caption or
column's key.

Boolean A boolean expression that specifies whether the cell
contains radio button.

Retrieves or sets a value indicating whether the cell has associated a radio button or not. To
change the state for a radio cell you have to use CellState property. The cell cannot display
in the same time a radio and a check button. The control fires CellStateChanged event
when the cell's state has been changed. To set the cell of check type you have call
CellHasCheckBox property. To add or remove a cell to a given radio group you have to use
CellRadioGroup property. Use the Def property to assign radio buttons for all cells in the
column. Use the CellImage property to add a single icon to a cell. Use the CellImages
property to assign multiple icons to a cell. Use the CellPicture property to load a custom
size picture to a cell. Use the RadioImage property to change the radio button appearance.

The following VB sample enumerates all the cells in the first column and groups all of them
in the same radio:

Dim h As Variant
List1.BeginUpdate
 With List1.Items
 For Each h In List1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
 Next
 End With
List1.EndUpdate

or

Dim h As Variant
With List1

 .BeginUpdate
 .Columns(0).Def(exCellHasRadioButton) = True
 With List1.Items
 For Each h In List1.Items
 .CellRadioGroup(h, 0) = 1234
 Next
 End With
 .EndUpdate
End With

The following VB sample assigns a radio button to the focused cell:

With List1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellHasRadioButton(items.GetFocusItem(), COleVariant((long)0), TRUE);
items.SetCellRadioGroup(items.GetFocusItem(), COleVariant((long)0), 1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxList1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axList1.Items.set_CellHasRadioButton(axList1.Items.FocusItem, 0, true);
axList1.Items.set_CellRadioGroup(axList1.Items.FocusItem, 0, 1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.List1.Items
 .CellHasRadioButton(.FocusItem,0) = .t.

 .CellRadioGroup(.FocusItem,0) = 1234
endwith

property Items.CellHyperLink (Index as Long, ColIndex as Variant) as
Boolean
Specifies whether the cell's is highlighted when the cursor mouse is over the cell.

Type Description
Index as Long A long expression that specifies the index of item.

ColIndex as Variant
A long expression that specifies the index of column, a
string expression that identifies the column's caption or
column's key.

Boolean A boolean expression that indicates whether the cell's is
highlighted when the cursor mouse is over the cell.

A cell that has CellHyperLink property to True, is a cell of hyper link type. Use the
CellHyperLink property to add hyper links to your control. Use the CellForeColor property to
change the cell's foreground color. Use the HyperLinkColor property to change the color
that's used by control when the cursor is over a cell of hyper link type. Use the <a> anchor
element to mark hyperlinks in HTML captions.

property Items.CellImage (Index as Long, ColIndex as Variant) as Long
Retrieves or sets a value that indicates the index of the cell's image into Images collection.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Long

A long value that indicates the index of the cell's image into
Images collection. The last 7 bits in the high significant
byte of the long expression indicates the identifier of the
skin being used to paint the object. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the part.

Use the CellImage to attach a single icon to a cell. Use the CellImages property to assign
multiple icons to a cell. Use the CellPicture property to associate a larger picture to a cell.
The cell's icon size is (16x16). If the index of image is not contained by the Images
collection, no icon is displayed in the cell. If the cell contains an icon, the control fires
CellImageClick event when the cell's icon is clicked. Use the ItemFromPoint property to
retrieve the part of the control being clicked. Use the CellHasCheckBox property to add a
check box to a cell. Use the CellHasRadioButton property to assign a radio button to a cell.
Use the CellPicture property to load a custom size picture to a cell. Use the HTML
tag to insert icons inside the cell's caption, if the CaptionFormat property is exHTML. Use
the FilterType property on exImage to filter items by icons. The ImageSize property defines
the size (width/height) of the icons within the control's Images collection.

The following VB sample displays the first icon in the focused cell:

With List1.Items
 .CellImage(.FocusItem, 0) = 1
End With

The following C++ sample displays the first icon in the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellImage(items.GetFocusItem() , COleVariant((long)0), 1);

The following C# sample displays the first icon in the focused cell:

axList1.Items.set_CellImage(axList1.Items.FocusItem, 0, 1);

The following VB.NET sample displays the first icon in the focused cell:

With AxList1.Items
 .CellImage(.FocusItem, 0) = 1
End With

The following VFP sample displays the first icon in the focused cell:

with thisform.List1.Items
 .CellImage(.FocusItem,0) = 1
endwith

property Items.CellImages (Index as Long, ColIndex as Variant) as Variant
Specifies an additional list of icons shown in the cell.

Type Description
Index as Long A long expression that specifies the index of item.

ColIndex as Variant
A long expression that specifies the index of column, a
string expression that identifies the column's caption or
column's key.

Variant A string expression that indicates the list of icons shown in
the cell.

The CellImages property assigns multiple icons to a cell. The CellImage property assign a
single icon to the cell. Instead if multiple icons need to be assigned to a single cell you have
to use the CellImages property. The CellImages property takes a list of additional icons and
display them in the cell. The list is separated by ',' and should contain numbers that
represent indexes to Images list collection. Use the ItemFromPoint property to retrieve the
part of the control being clicked. Use the CellHasCheckBox property to add a check box to
a cell. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellPicture property to load a custom size picture to a cell. Use the HTML tag to
insert icons inside the cell's caption, if the CaptionFormat property is exHTML. The
ImageSize property defines the size (width/height) of the icons within the control's Images
collection.

The following VB sample assigns the first and third icon to the cell:

With List1.Items
 .CellImages(.ItemByIndex(0), 1) = "1,3"
End With

The following VB sample displays the index of icon being clicked:

Private Sub List1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As Long, h As HitTestInfoEnum, c As Long
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i >= 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536
 End If

 End If
End Sub

The following C++ sample assigns the first and the third icon to the cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellImages(items.GetFocusItem(), COleVariant((long)0), COleVariant("1,3"));

The following C++ sample displays the index of icon being clicked:

#include "Items.h"
void OnMouseUpList1(short Button, short Shift, long X, long Y)
{
 CItems items = m_list.GetItems();
 long c = 0, hit = 0, h = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (h >= 0)
 {
 if ((hit & 0x44 /*exHTCellIcon*/) == 0x44)
 {
 CString strFormat;
 strFormat.Format("The index of icon being clicked is: %i\n", (hit >> 16));
 OutputDebugString(strFormat);
 }
 }
}

The following VB.NET sample assigns the first and the third icon to the cell:

With AxList1.Items
 .CellImages(.FocusItem, 0) = "1,3"
End With

The following VB.NET sample displays the index of icon being clicked:

Private Sub AxList1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseUpEvent) Handles AxList1.MouseUpEvent
 With AxList1
 Dim i As Integer, c As Integer, hit As EXLISTLib.HitTestInfoEnum

 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 Debug.WriteLine("The index of icon being clicked is: " & (hit And &HFFFF0000) /
65536)
 End If
 End With
End Sub

The following C# sample assigns the first and the third icon to the cell:

axList1.Items.set_CellImages(axList1.Items.FocusItem, 0, "1,3");

The following C# sample displays the index of icon being clicked:

private void axList1_MouseUpEvent(object sender,
AxEXLISTLib._IListEvents_MouseUpEvent e)
{
 int c = 0;
 EXLISTLib.HitTestInfoEnum hit;
 int i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((i >= 0))
 {
 if ((Convert.ToUInt32(hit) &
Convert.ToUInt32(EXLISTLib.HitTestInfoEnum.exHTCellIcon)) ==
Convert.ToUInt32(EXLISTLib.HitTestInfoEnum.exHTCellIcon))
 {
 string s = axList1.Items.get_Caption(i, c).ToString();
 s = "Cell: " + s + ", Icon's Index: " + (Convert.ToUInt32(hit) >> 16).ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
 }
}

The following VFP sample assigns the first and the third icon to the cell:

with thisform.List1.Items
 .CellImages(.FocusItem,0) = "1,3"
endwith

The following VFP sample displays the index of icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit, i
c = 0
hit = 0
with thisform.List1
 i = .ItemFromPoint(x, y, @c, @hit)
 if (i >= 0)
 if (bitand(hit, 68)= 68)
 wait window nowait .Items.Caption(i, c) + " " + Str(Int((hit - 68)/65536))
 endif
 endif
endwith

Add the code to the MouseUp, MouseMove or MouseDown event

property Items.CellItalic(Index as Long, ColIndex as Variant) as Boolean
Retrieves or sets a value that indicates whether the cell's caption should appear in italic.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Boolean A boolean expression that indicates whether the cell's
caption should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the focused cell:

With List1.Items
 .CellItalic(.FirstVisibleItem, 0) = True
End With

The following C++ sample makes italic the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellItalic(items.GetFocusItem(), COleVariant((long)0), TRUE);

The following C# sample makes italic the focused cell:

axList1.Items.set_CellItalic(axList1.Items.FocusItem, 0, true);

The following VB.NET sample makes italic the focused cell:

With AxList1.Items
 .CellItalic(.FocusItem, 0) = True
End With

The following VFP sample makes italic the focused cell:

with thisform.List1.Items
 .CellItalic(.FocusItem, 0) = .t.
endwith

property Items.CellMerge(Index as Long, ColIndex as Variant) as Variant
Retrieves or sets a value that indicates the index of the cell that's merged to.

Type Description

Index as Long A long expression that indicates the index of the item
where cells are merged.

ColIndex as Variant A long expression that indicates the column's index

Variant
A long expression that indicates the index of the cell that's
merged with, a safe array that holds the indexes of the
cells being merged.

Use the CellMerge property to combine two or more cells in the same item in a single cell.
The data of the source cell is displayed in the new larger cell. All the other cells' data is not
lost. Use the CellMerge property to unmerge a single cell. Use the Add method to add new
columns to the control. Use the Caption property to specify the caption of the cell. Use the
SelectableItem property to specify whether the user can select an item. Use the
BeginUpdate and EndUpdate methods to prevent control from painting while adding columns
and items.

The following VB sample merges first three cells in a single one:

With List1.Items
 .CellMerge(.FirstVisibleItem, 0) = 1
 .CellMerge(.FirstVisibleItem, 0) = 2
End With

or

With List1.Items
 .CellMerge(.FirstVisibleItem, 0) = Array(1, 2)
End With

The following VB sample unmerges the first visible cell:

With List1.Items
 .CellMerge(.FirstVisibleItem, 0) = -1
End With

The following C++ sample merges first three cells in a single one:

CItems items = m_list.GetItems();
items.SetCellMerge(items.GetFirstVisibleItem(), COleVariant(long(0)), COleVariant(
long(1)));
items.SetCellMerge(items.GetFirstVisibleItem(), COleVariant(long(0)), COleVariant(
long(2)));

The following VB.NET sample merges first three cells in a single one:

With AxList1.Items
 .CellMerge(.FirstVisibleItem, 0) = 1
 .CellMerge(.FirstVisibleItem, 0) = 2
End With

or

With AxList1.Items
 Dim m() As Integer = {1, 2}
 .CellMerge(.FirstVisibleItem, 0) = m
End With

The following C# sample merges first three cells in a single one:

axList1.Items.set_CellMerge(axList1.Items.FirstVisibleItem, 0, 1);
axList1.Items.set_CellMerge(axList1.Items.FirstVisibleItem, 0, 2);

or

int[] m = {1,2};
axList1.Items.set_CellMerge(axList1.Items.FirstVisibleItem, 0, m);

The following VFP sample merges first three cells in a single one:

with thisform.List1.Items

 .CellMerge(.FirstVisibleItem,0) = 1
 .CellMerge(.FirstVisibleItem,0) = 2
endwith

property Items.CellPicture (Index as Long, ColIndex as Variant) as
Variant
Retrieves or sets a value that indicates the Picture object displayed by the cell.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Variant

A Picture object that indicates the cell's picture. (A Picture
object implements IPicture interface), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

The control can associate to a cell a check or radio button, an icon, multiple icons, a
picture and a caption. Use the CellPicture property to associate a picture to a cell. You can
use the CellPicture property when you want to display images with different widths into a
cell. Use the CellImage property to associate an icon from Images collection. Use the
CellImages property to assign multiple icons to a cell. Use the CellHasCheckBox property
to add a check box to a cell. Use the CellHasRadioButton property to assign a radio button
to a cell. Use the ItemHeight property to enlarge the item's height. The CellPictureWidth and
CellPictureHeight properties specifies the size of the area where the cell's picture is
stretched.

The following VB sample loads a picture from a file:

With List1.Items
 .CellPicture(.FirstVisibleItem, 0) = "c:\winnt\logo.gif"
End With

The following sample loads the picture whose base64 representation is:

"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMwJE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

The following VB sample associates a picture to a cell by loading it from a base64 encoded
string:

Dim s As String
s =

https://exontrol.com/eximages.jsp

"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMw"

s = s +
"JE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

With List1.Items
 .CellPicture(.FocusItem, 0) = s
End With

The following C++ loads a picture from a file:

#include
BOOL LoadPicture(LPCTSTR szFileName, IPictureDisp** ppPictureDisp)
{
 BOOL bResult = FALSE;
 if (szFileName)
 {
 OFSTRUCT of;
 HANDLE hFile = NULL;;
#ifdef _UNICODE
 USES_CONVERSION;
 if ((hFile = (HANDLE)OpenFile(W2A(szFileName), &of;, OF_READ |
OF_SHARE_COMPAT)) != (HANDLE)HFILE_ERROR)
#else
 if ((hFile = (HANDLE)OpenFile(szFileName, &of;, OF_READ | OF_SHARE_COMPAT)) !=
(HANDLE)HFILE_ERROR)
#endif
 {
 *ppPictureDisp = NULL;
 DWORD dwHighWord = NULL, dwSizeLow = GetFileSize(hFile, &dwHighWord;);
 DWORD dwFileSize = dwSizeLow;
 HRESULT hResult = NULL;
 if (HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE, dwFileSize))
 if (void* pvData = GlobalLock(hGlobal))
 {
 DWORD dwReadBytes = NULL;
 BOOL bRead = ReadFile(hFile, pvData, dwFileSize, &dwReadBytes;, NULL);

 GlobalUnlock(hGlobal);
 if (bRead)
 {
 CComPtr spStream;
 _ASSERTE(dwFileSize == dwReadBytes);
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal, TRUE, &spStream;)))
 if (SUCCEEDED(hResult = OleLoadPicture(spStream, 0, FALSE,
IID_IPictureDisp, (void**)ppPictureDisp)))
 bResult = TRUE;
 }
 }
 CloseHandle(hFile);
 }
 }
 return bResult;
}

IPictureDisp* pPicture = NULL;
if (LoadPicture("c:\\winnt\\zapotec.bmp", &pPicture;))
{
 COleVariant vtPicture;
 V_VT(&vtPicture;) = VT_DISPATCH;
 pPicture->QueryInterface(IID_IDispatch, (LPVOID*)&V;_DISPATCH(&vtPicture;));
 CItems items = m_list.GetItems();
 items.SetCellPicture(items.GetFocusItem() , COleVariant(long(0)), vtPicture);
 pPicture->Release();
}

The following VB.NET sample loads a picture from a file:

With AxList1.Items
 .CellPicture(.FocusItem, 0) =
IPDH.GetIPictureDisp(Image.FromFile("c:\winnt\zapotec.bmp"))
End With

where the IPDH class is defined like follows:

Public Class IPDH

 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIPictureDisp(ByVal image As Image) As Object
 GetIPictureDisp = AxHost.GetIPictureDispFromPicture(image)
 End Function

End Class

The following C# sample loads a picture from a file:

axList1.Items.set_CellPicture(axList1.Items.FocusItem, 0,
IPDH.GetIPictureDisp(Image.FromFile("c:\\winnt\\zapotec.bmp")));

where the IPDH class is defined like follows:

internal class IPDH : System.Windows.Forms.AxHost
{
 public IPDH() : base("")
 {
 }

 public static object GetIPictureDisp(System.Drawing.Image image)
 {
 return System.Windows.Forms.AxHost.GetIPictureDispFromPicture(image);
 }
}

The following VFP sample loads a picture from a file:

with thisform.List1.Items
 .CellPicture(.FocusItem, 0) = LoadPicture("c:\winnt\zapotec.bmp")
endwith

property Items.CellPictureHeight (Index as Long, ColIndex as Variant) as
Long
Retrieves or sets a value that indicates the height of the cell's picture.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the height of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureHeight property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. Use the CellPictureWidth property to specify the width of the cell's
picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the area
where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureHeight
property is greater than 0, it indicates the height of the area where the cell's picture is
stretched. Use the ItemHeight property to specify the height of the item.

property Items.CellPictureWidth (Index as Long, ColIndex as Variant) as
Long
Retrieves or sets a value that indicates the width of the cell's picture.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the width of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureWidth property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. Use the CellPictureHeight property to specify the height of the cell's
picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the area
where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureWidth
property is greater than 0, it indicates the width of the area where the cell's picture is
stretched.

property Items.CellRadioGroup(Index as Long, ColIndex as Variant) as
Long
Retrieves or sets a value indicating the radio group where the cell is contained.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Long A long value indicating the radio group where the cell is
contained.

Use the CellRadioGroup property to add or remove a radio button from a group. In a radio
group only one radio button can be checked. A radio cell cannot be contained by two
different radio groups. Use the CellHasRadioButton property to add a radio button to a cell.
When the cell's state is changed the control fires the CellStateChanged event. The
CellState property specifies the cell's state. By default, when a cell of radio type is created
the radio cell is not grouped to any of existent radio groups.

The following VB sample groups the radio cells in the first column, and displays the caption
of the checked radio cell:

With List1
 .Columns(0).Def(exCellHasRadioButton) = True
 For Each i In .Items
 .Items.CellRadioGroup(i, 0) = 1234
 Next
End With

The following C++ sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

#include "Items.h"
COleVariant vtColumn(long(0));
CItems items = m_list.GetItems();
m_list.BeginUpdate();
for (long i = 0; i < items.GetCount(); i++)
{
 items.SetCellHasRadioButton(i, vtColumn, TRUE);

 items.SetCellRadioGroup(i, vtColumn, 1234);
}
m_list.EndUpdate();

The following VB.NET sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

With AxList1
 .BeginUpdate()
 .Columns(0).Def(EXLISTLib.DefColumnEnum.exCellHasRadioButton) = True
 With .Items
 Dim k As Integer
 For k = 0 To .Count - 1
 .CellRadioGroup(k, 0) = 1234
 Next
 End With
 .EndUpdate()
End With

The following C# sample groups the radio cells on the first column, and displays the caption
of the checked radio cell:

axList1.BeginUpdate();
EXLISTLib.Items items = axList1.Items;
axList1.Columns[0].set_Def(EXLISTLib.DefColumnEnum.exCellHasRadioButton, true);
for (int i = 0; i < items.Count; i++)
 items.set_CellRadioGroup(i, 0, 1234);
axList1.EndUpdate();

The following VFP sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

thisform.List1.BeginUpdate()
with thisform.List1.Items
 local i
 for i = 0 to .Count - 1
 .CellHasRadioButton(i,0) = .t.
 .CellRadioGroup(i,0) = 1234
 next

endwith
thisform.List1.EndUpdate()

property Items.CellSingleLine(Index as Long, ColIndex as Variant) as
CellSingleLineEnum
Retrieves or sets a value indicating whether the cell's caption is painted using one or more
lines.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

CellSingleLineEnum A CellSingleLineEnum expression that indicates whether
the cell displays its caption using one or more lines.

By default, the CellSingleLine property is exCaptionSingleLine / True, which indicates that
the cell's caption is displayed on a single line. Use the Def(exCellSingleLine) property to
specify that all cells in the column display their content using multiple lines. The control can
displays the cell's caption using more lines, if the CellSingleLine property is
exCaptionWordWrap or exCaptionBreakWrap. The CellSingleLine property wraps the cell's
caption so it fits in the cell's client area. If the text doesn't fit the cell's client area, the height
of the item is increased or decreased. When the CellSingleLine is exCaptionWordWrap /
exCaptionBreakWrap / False, the height of the item is computed based on each cell
caption. If the CellSingleLine property is exCaptionWordWrap / exCaptionBreakWrap /
False, changing the ItemHeight property has no effect. Use the ItemMaxHeight property to
specify the maximum height of the item when its height is variable. Use the CellVAlignment
property to align vertically a cell.

If using the CellSingleLine / Def(exCellSingleLine) property, we recommend to set the
ScrollBySingleLine property on True so all items can be scrolled.

The following VB sample displays the caption of the focused cell using multiple lines:

With List1.Items
 .CellSingleLine(.FocusItem, 0) = True
End With

The following C++ sample displays the caption of the focused cell using multiple lines:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellSingleLine(items.GetFocusItem() , COleVariant(long(0)), FALSE);

The following VB.NET sample displays the caption of the focused cell using multiple lines:

With AxList1.Items
 .CellSingleLine(.FocusItem, 0) = False
End With

The following C# sample displays the caption of the focused cell using multiple lines:

axList1.Items.set_CellSingleLine(axList1.Items.FocusItem, 0, false);

The following VFP sample displays the caption of the focused cell using multiple lines:

with thisform.List1.Items
 .CellSingleLine(.FocusItem, 0) = .f.
endwith

property Items.CellState(Index as Long, ColIndex as Variant) as Long
Retrieves or sets the cell's state.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Long
A long value that indicates the cell's state. 0 - Unchecked,
1 - Checked, (2 - Partial Checked, only for cells of check
type).

Use the CellState property to change the cell's state. The CellState property has effect only
for check and radio cells. Use the CellHasCheckBox property to assign a check box to a
cell. Use the CellHasRadioButton property to add a radio button to a cell. The control fires
the CellStateChanged event when user changes the cell's state. Use the CheckImage
property to change the check box appearance. Use the RadioImage property to change the
radio button appearance. Use the FilterType property on exCheck to filter for checked or
unchecked items.

The following VB sample adds a check box that's checked to the focused cell:

With List1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
 .CellState(.FocusItem, 0) = 1
End With

The following C++ sample adds a check box that's checked to the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
COleVariant vtColumn(long(0));
long nItem = items.GetFocusItem();
items.SetCellHasCheckBox(nItem, vtColumn, TRUE);
items.SetCellState(nItem, vtColumn, 1);

The following VB.NET sample adds a check box that's checked to the focused cell:

With AxList1.Items
 .CellHasCheckBox(.FocusItem, 0) = True

 .CellState(.FocusItem, 0) = 1
End With

The following C# sample adds a check box that's checked to the focused cell:

axList1.Items.set_CellHasCheckBox(axList1.Items.FocusItem, 0, true);
axList1.Items.set_CellState(axList1.Items.FocusItem, 0, 1);

The following VFP sample adds a check box that's checked to the focused cell:

with thisform.List1.Items
 .CellHasCheckBox(.FocusItem, 0) = .t.
 .CellState(.FocusItem,0) = 1
endwith

property Items.CellStrikeOut(Index as Long, ColIndex as Variant) as
Boolean
Retrieves or sets a value that indicates whether the cell's caption should appear in
strikeout.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Boolean A boolean expression that indicates whether the cell is
displayed with a horizontal line through it.

If the CellStrikeOut property is True, the cell's font is displayed with a horizontal line through
it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CaptionFormat property to specify an
HTML caption.

The following VB sample draws a horizontal line through the caption of the cell that has the
focus:

With List1.Items
 .CellStrikeOut(.FirstVisibleItem, 0) = True
End With

The following C++ sample draws a horizontal line through the caption of the cell that has the
focus:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellStrikeOut(items.GetFocusItem(), COleVariant((long)0), TRUE);

The following C# sample draws a horizontal line through the caption of the cell that has the
focus:

axList1.Items.set_CellStrikeOut(axList1.Items.FocusItem, 0, true);

The following VB.NET sample draws a horizontal line through the caption of the cell that has
the focus:

With AxList1.Items
 .CellStrikeOut(.FocusItem, 0) = True
End With

The following VFP sample draws a horizontal line through the caption of the cell that has the
focus:

with thisform.List1.Items
 .CellStrikeOut(.FocusItem, 0) = .t.
endwith

property Items.CellToolTip(Index as Long, ColIndex as Variant) as String
Retrieves or sets a value that indicates the cell's tooltip.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

String A string expression that indicates the cell's tooltip.

Use the CellToolTip property to associate a tooltip to a cell. By default, the CellToolTip
property is "..." (three dots). If the CellToolTip property is "..." the control shows a tooltip
that displays the cell's caption if the cell's caption doesn't fit the cell's client area. Use the
Caption property to change the cell's caption. Use the ToolTipWidth property to specify the
width of the tooltip window. The ToolTipPopDelay property specifies the period in ms of
time the ToolTip remains visible if the mouse pointer is stationary within a control. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipFont property to assign a font for the control's tooltip. Use the ShowToolTip
method to display a custom tooltip.

The tooltip supports the foolowing HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Items.CellUnderline(Index as Long, ColIndex as Variant) as
Boolean
Retrieves or sets a value that indicates whether the cell's caption is underlined.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Boolean A boolean expression that indicates whether the cell's
caption is underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the focused cell:

With List1.Items
 .CellUnderline(.FirstVisibleItem, 0) = True
End With

The following C++ sample underlines the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellUnderline(items.GetFocusItem(), COleVariant((long)0), TRUE);

The following C# sample underlines the focused cell:

axList1.Items.set_CellUnderline(axList1.Items.FocusItem, 0, true);

The following VB.NET sample underlines the focused cell:

With AxList1.Items
 .CellUnderline(.FocusItem, 0) = True
End With

The following VFP sample underlines the focused cell:

with thisform.List1.Items
 .CellUnderline(.FocusItem, 0) = .t.
endwith

property Items.CellVAlignment (Index as Long, ColIndex as Variant) as
VAlignmentEnum
Retrieves or sets a value that indicates how the cell's caption is vertically aligned.

Type Description
Index as Long A long expression that specifies the index of the item.

ColIndex as Variant
A long expression that specifies the index of column, a
string expression that identifies the column's caption or
column's key.

VAlignmentEnum A VAlignmentEnum expression that indicates the vertical
cell's alignment

The CellVAlignment property aligns vertically the cell's caption. Use the ItemHeight property
to specify the item's height. The Alignment property aligns horizontally the cells in a column.
The CellHAlignment property aligns a particular cell. the CellSingleLine property to specify
whether a cell uses single or multiple lines. Use the Def(exCellVAlignment) property to
specify the same vertical alignment for the entire column.

The following VB sample aligns the focused cell to the bottom:

With List1.Items
 .CellVAlignment(.FocusItem, 0) = VAlignmentEnum.BottomAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetCellVAlignment(items.GetFocusItem() , COleVariant((long)0), 2
/*BottomAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxList1.Items
 .CellVAlignment(.FocusItem, 0) = EXLISTLib.VAlignmentEnum.BottomAlignment
End With

The following C# sample right aligns the focused cell:

axList1.Items.set_CellVAlignment(axList1.Items.FocusItem, 0,

EXLISTLib.VAlignmentEnum.BottomAlignment);

The following VFP sample right aligns the focused cell:

with thisform.List1.Items
 .CellVAlignment(.FocusItem,0) = 2 && BottomAlignment
endwith

method Items.ClearCellBackColor (Index as Long, ColIndex as Variant)
Clears the cell's background color.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption, or
column's key.

The ClearCellBackColor method clears the cell's background color when the CellBackColor
property was used. Use the BackColor property to specify the control's background color.
Use the ItemBackColor property to specify the item's background color.

method Items.ClearCellForeColor (Index as Long, ColIndex as Variant)
Clears the cell's foreground color.

Type Description
Index as Long A long expression that indicates the index of the item

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or
column's key.

The ClearCellForeColor method clears the cell's foreground color when CellForeColor
property was used. Use the ForeColor property to specify the control's foreground color.
Use the ItemForeColor property to specify the item's foreground color.

method Items.ClearCellHAlignment (Index as Long, ColIndex as Variant)
Clears the cell's alignment.

Type Description
Index as Long A long expression that indicates the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

Use the ClearCellHAlignment method to clear the alignment of the cell's caption previously
set using the CellHAlignment property. If the CellHAlignment property is not called, the
Alignment property of the Column object specifies the alignment of the cell's caption.

method Items.ClearItemBackColor (Index as Long)
Clears the item's background color.

Type Description
Index as Long A long expression that identifies the item's index.

The ClearItemBackColor method clears the item's background color when the
ItemBackColor property is used. Use the BackColor property to specify the control's
background color. Use the CellBackColor property to change the cell's background color.

method Items.ClearItemForeColor (Index as Long)
Clears the item's foreground color.

Type Description
Index as Long A long expression that indicates the index of the item.

The ClearItemForeColor method clears the item's foreground color when the ItemForeColor
property is used. Use the ForeColor property to specify the control's foreground color. Use
the CellForeColor property to change the cell's foreground color.

property Items.Count as Long
Retrieves the number of items.

Type Description
Long A long expression that indicates the items count.

Use the Count property to count the items into the Items collection. Use the VisibleCount
property to get the count of visible items. Use the FirstVisibleItem property to get the index
of the first visible item. Use the NextVisibleItem property to get the index of the next visible
item. Use the SortOrder property to sort a column. Use the ItemPosition property to specify
the position of the item.

The following VB sample displays all items in the list:

With List1.Items
 For i = 0 To .Count - 1
 Debug.Print .Caption(i, 0)
 Next
End With

The following C++ sample displays all items in the list:

CItems items = m_list.GetItems();
for (long i = 0; i < items.GetCount(); i++)
{
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(long(0))));
 OutputDebugString(strCaption);
}

where the V2S function converts a VARIANT expression to a string expression:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;

 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample displays all items in the list:

With AxList1.Items
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Caption(i, 0))
 Next
End With

The following C# sample displays all items in the list:

for (int i = 0; i < axList1.Items.Count; i++)
{
 object cell = axList1.Items.get_Caption(i, 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
}

The following VFP sample displays all items in the list:

With thisform.List1.Items
 For i = 0 To .Count - 1
 wait window nowait .Caption(i, 0)
 Next
EndWith

method Items.Edit (Index as Long, ColIndex as Variant)
Edits a cell.

Type Description

Index as Long A long expression that identifies the index of item being
edited.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that specifies the column's caption or the
column's key.

Use the Edit method to programmatically edit a cell. The BeforeCellEdit event is fired when
a cell starts to be edited. The AfterCellEdit event is fired when edit operation ends. The
CancelCellEdit event occurs if the user cancels the edit operation. Use the SelStart,
SelLength properties to specify the coordinates of the text being selected when edit starts.
The edit operation starts only if the control's AllowEdit property is True.

The following VB sample starts editing a cell as soon as user clicks a cell:

Private Sub List1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If (i >= 0) Then
 .AllowEdit = True
 .Items.Edit i, c
 End If
 End With
End Sub

The following C++ sample starts editing a cell as soon as user clicks a cell:

void OnMouseDownList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 m_list.SetAllowEdit(TRUE);
 items.Edit(i, COleVariant(c));

 }
}

The following VB.NET sample starts editing a cell as soon as user clicks a cell:

Private Sub AxList1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseDownEvent) Handles AxList1.MouseDownEvent
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 AxList1.AllowEdit = True
 With AxList1.Items
 .Edit(i, c)
 End With
 End If
End Sub

The following C# sample starts editing a cell as soon as user clicks a cell:

private void axList1_MouseDownEvent(object sender,
AxEXLISTLib._IListEvents_MouseDownEvent e)
{
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 axList1.AllowEdit = true;
 axList1.Items.Edit(i, c);
 }
}

The following VFP sample starts editing a cell as soon as user clicks a cell:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, i, hit
With thisform.List1
 c = 0

 hit = 0
 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 .AllowEdit = .t.
 .Items.Edit(i,c)
 EndIf
EndWith

Put the code in the MouseDown event.

property Items.EnableItem(Index as Long) as Boolean
Returns or sets a value that determines whether a item can respond to user-generated
events.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean A boolean expression that indicates whether the item is
enabled or disabled.

Use the EnableItem property to disable an item. A disabled item looks grayed and it is
selectable. Use the SelectableItem property to specify the user can select an item. Once
that an item is disabled all the cells of the item are disabled, so CellEnabled property has
no effect. To disable a column you can use Enabled property of a Column object.

method Items.EnsureVisibleColumn (ColIndex as Variant)
Ensures that a column fits the control client area.

Type Description

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

The EnsureVisibleColumn method ensures that the given column fits the control's client
area. The EnsureVisibleColumn method has no effect if the column is hidded. Use the
Visible property to show or hide a column. Use the Position property to change the column's
position. Use the EnsureVisibleItem method to ensure that an item fits the control's client
area. Use the ScrollBars property to hide the control's scroll bars.

method Items.EnsureVisibleItem (Index as Long)
Ensures the given item is in the visible client area.

Type Description
Index as Long A long expression that indicates the index of the item.

The control scrolls the list until the item fits the client area. Use the EnsureVisibleColumn
property to ensure that a cell fits the client area. Use the SelectItem property to select an
item. Use the SelectableItem property to specify whether the user can select an item. Use
the ScrollPos property to scroll the control's content.

property Items.FindItem (Caption as Variant, [ColIndex as Variant],
[StartIndex as Variant]) as Long
Finds an item, looking for Caption in ColIndex column. The searching starts at StartIndex
item.

Type Description

Caption as Variant A Variant expression that indicates the caption that is
searched for.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

StartIndex as Variant A long value that indicates the index of item from where
the searching starts.

Long A long value that indicates the index of item found.

Use the FindItem to search for an item. Finds a control's item that matches Caption(Item,
ColIndex) = Caption. The StartIndex parameter indicates the index from where the
searching starts. If it is missing, the searching starts from the item with the 0 index. Use the
AutoSearch property to enable incremental search feature within the column.

The following VB sample looks and selects the "Item 2":

With List1.Items
 Dim i As Long
 i = .FindItem("Item 2",0)
 If (i >= 0) Then
 .SelectItem(i) = True
 End If
End With

The following C++ sample looks and selects the "Item 2":

CItems items = m_list.GetItems();
COleVariant vtMissing; vtMissing.vt = VT_ERROR;
int i = items.GetFindItem(COleVariant("Item 2"), COleVariant(long(0)), vtMissing);
if (i >= 0)
 items.SetSelectItem(i, TRUE);

The following VB.NET sample looks and selects the "Item 2":

With AxList1.Items
 Dim i As Integer = .FindItem("Item 2", 0)
 If (i >= 0) Then
 .SelectItem(i) = True
 End If
End With

The following C# sample looks and selects the "Item 2":

int i = axList1.Items.get_FindItem("Item 2", 0, null);
if (i >= 0)
 axList1.Items.set_SelectItem(i, true);

The following VFP sample looks and selects the "Item 2":

With thisform.List1.Items
 local i
 i = .FindItem("Item 2",0)
 If (i >= 0) Then
 .SelectItem(i) = .t.
 EndIf
EndWith

property Items.FindItemData (UserData as Variant, [StartIndex as
Variant]) as Long
Finds the item giving its data.

Type Description
UserData as Variant A variant value that indicates the value being searched

StartIndex as Variant A long expression that indicates the index of the item
where the searching starts

Long A long expression that indicates the index of the item
found, or -1 if the item is not found.

Use the FindItemData property to search for an item giving its extra-data. Use the ItemData
property to associate an extra data to an item. Use the FindItem property to locate an item
given its caption.

property Items.FirstVisibleItem as Long
Retrieves the index of the first visible item into control.

Type Description

Long A long expression that indicates the index of the first
visible item into control.

Use the FirstVisibleItem and NextVisibleItem properties to enumerate the items as they are
listed. The LastVisibleItem property retrieves the index of last item that fits the client area.
Use the PrevVisibleItem property to get the previous item. Use the SortOrder property to
sort a column. Use the ItemPosition property to change the item's position. Use the
ItemFromPoint property to get the item from cursor. Use the GetItems property to get the
list of items.

The following VB sample displays the items as they are listed:

With List1.Items
 Dim i As Long
 i = .FirstVisibleItem
 While (i >= 0)
 Debug.Print .Caption(i, 0)
 i = .NextVisibleItem(i)
 Wend
End With

The following C++ sample displays the items as they are listed:

CItems items = m_list.GetItems();
long i = items.GetFirstVisibleItem();
while (i >= 0)
{
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(long(0))));
 OutputDebugString(strCaption);
 i = items.GetNextVisibleItem(i);
}

The following VB.NET sample displays the items as they are listed:

With AxList1.Items

 Dim i As Integer = .FirstVisibleItem
 While (i >= 0)
 Debug.WriteLine(.Caption(i, 0))
 i = .NextVisibleItem(i)
 End While
End With

The following C# sample displays the items as they are listed:

int i = axList1.Items.FirstVisibleItem;
while (i >= 0)
{
 object cell = axList1.Items.get_Caption(i, 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
 i = axList1.Items.get_NextVisibleItem(i);
}

The following VFP sample displays the items as they are listed:

With thisform.List1.Items
 local i
 i = .FirstVisibleItem
 do While (i >= 0)
 wait window .Caption(i, 0)
 i = .NextVisibleItem(i)
 enddo
EndWith

property Items.FocusItem as Long
Retrieves the index of the item that has the focus.

Type Description

Long A long value that indicates the index of the item that has
the focus.

The FocusItem property specifies the index of the focused item. If there is no focused item
the FocusItem property retrieves -1. At one moment, only one item can be focused. When
the selection is changed the focused item is changed too. Use the SelectCount property to
get the number of selected items. Use the SelectedItem property to get the selected item.
Use the SelectItem to select or unselect a specified item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same. Use the ShowFocusRect property to indicate whether the
control draws a marking rectangle around the focused item. You can change the focused
item, by selecting a new item using the SelectItem method. If the items is not selectable, it
is not focusable as well. Use the SelectableItem property to specify whether an item is
selectable/focusable.

property Items.FormatCell(Index as Long, [ColIndex as Variant]) as String
Specifies the custom format to display the cell's content.

Type Description
Index as Long A Long expression that specifies the index of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

String
A string expression that indicates the format to be applied
on the cell's value, including HTML formatting, if the cell
supports it.

By default, the FormatCell property is empty. The format is being applied if valid (not
empty, and syntactically correct). The expression may be a combination of variables,
constants, strings, dates and operators, and value. The value operator gives the value to
be formatted. A string is delimited by ", ` or ' characters, and inside they can have the
starting character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The
FormatColumn property applies the predefined format for all cells in the columns. The
Caption property indicates the cell's caption.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +

currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn/FormatCell property indicates the value to be
formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The Caption property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.

Other known operators for auto-numbering are:

number index 'format', indicates the index of the item. The first added item has the
index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the
item starting from 100. The number indicates the starting index, while the format is a
set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the
absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive
position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each
parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

property Items.IsItemVisible (Index as Long) as Boolean
Checks if the specific item is in the visible client area.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean A boolean expression that indicates whether the item fits
the client area

Calls the EnsureVisibleItem method to ensure that an item fits the control's client area. Use
the FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that fits
the client area. The NextVisibleItem property gets the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

property Items.ItemAllowSizing(Index as Long) as Boolean
Retrieves or sets a value that indicates whether a user can resize the item at run-time.

Type Description

Index as Long A long expression that indicates the index of the item that
can be resized.

Boolean A Boolean expression that specifies whether the user can
resize the item at run-time.

By default, the user can resize the item at run-time using mouse movements. Use the
ItemAllowSizing property to specify whether a user can resize the item at run-time. Use the
ItemsAllowSizing property to specify whether all items are resizable or not. Use the
ItemHeight property to specify the height of the item. An item is resizable if the
ItemAllowSizing property is True, or if the ItemsAllowSizing property is True (that means all
items are resizable), and the ItemAllowSizing property is not False. For instance, if your
application requires all items being resizable but only few of them being not resizable, you
can have the ItemsAllowSizing property on True, and for those items that are not resizable,
you can call the ItemAllowSizing property on False. The user can resize an item by moving
the mouse between two items, so the vertical split cursor shows up, click and drag the
mouse to the new position. Use the CellSingleLine property to specify whether the cell
displays its caption using multiple lines. The ScrollBySingleLine property is automatically set
on True, as soon as the user resizes an item.

property Items.ItemBackColor(Index as Long) as Color
Retrieves or sets a background color for a specific item.

Type Description

Index as Long
A long expression that indicates the index of the item. If
the Index is -1, the ItemBackColor changes the
background color for all items.

Color

A color expression that indicates the item's foreground
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the ItemBackColor property to change the item's background color. Use the
CellForeColor property to change the cell's foreground color. Use the ItemForeColor
property to change the item's foreground color. Use the CellBackColor property to change
the cell's background color. Use the ClearItemBackColor property to clear the item's
background color when the ItemBackColor property is used. You can use the
ItemBackColor property and a skin (Add method) to define a different pattern on the
item's background, when you need a special marker for the item.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;

 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused item:

axList1.Items.set_ItemBackColor(axList1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused item:

With AxList1.Items
 .ItemBackColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the background color for the focused item:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetItemBackColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the background color for the focused item:

with thisform.List1.Items
 .ItemBackColor(.FocusItem) = RGB(255,0,0)
endwith

property Items.ItemBold(Index as Long) as Boolean
Retrieves or sets a value that indicates whether the item should appear in bold.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean A boolean expression that specifies whether the item is
bolded.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample bolds the selected item:

Dim iOldBold As Long

Private Sub List1_SelectionChanged()
 With List1.Items
 If Not (iOldBold = -1) Then
 .ItemBold(iOldBold) = False
 End If
 iOldBold = .SelectedItem()
 .ItemBold(iOldBold) = True
 End With
End Sub

The following VB sample bolds the focused item:

With List1.Items
 .ItemBold(.FocusItem) = True
End With

The following C++ sample bolds the focused item:

#include "Items.h"
CItems items = m_list.GetItems();

items.SetItemBold(items.GetFocusItem() , TRUE);

The following C# sample bolds the focused item:

axList1.Items.set_ItemBold(axList1.Items.FocusItem, true);

The following VB.NET sample bolds the focused item:

With AxList1.Items
 .ItemBold(.FocusItem) = True
End With

The following VFP sample bolds the focused item:

with thisform.List1.Items
 .ItemBold(.FocusItem) = .t.
endwith

property Items.ItemBreak(Index as Long) as BreakLineEnum
Retrieves or sets a value that indicates whether the item is painted as a break line.

Type Description
Index as Long A long expression that indicates the index of the item.

BreakLineEnum A BreakLineEnum expression that defines the type of
break line.

The control draws the break line only if the cell's Caption is empty. Use the CellMerge
property to combine two or more cells in a single cell.

The following sample adds a break line:

List1.Items.ItemBreak(List1.Items.Add()) = DoubleDotLine

property Items.ItemData(Index as Long) as Variant
Retrieves or sets a value that indicates the extra data for a specific item.

Type Description
Index as Long A long expression that indicates the index of the item.
Variant A VARIANT expression that indicates the item's extra data

Use the ItemData property to assign an extra value to an item. Use CellData property to
associate an extra data with a cell. The ItemData and CellData are of Variant type, so you
will be able to save here what ever you want: numbers, objects, strings, and so on. The
user data is only for user use. The control doesn't use this value. Use the Data property to
assign an extra data to a column. For instance, you can use the RemoveItem event to
release any extra data that is associated to the item. Use the FindItemData property to
search for item's data.

property Items.ItemFont (Index as Long) as IFontDisp
Retrieves or sets the item's font.

Type Description
Index as Long A long expression that specifies the index of item.
IFontDisp A Font object being used for specified item.

By default, the ItemFont property is nothing. If the ItemFont property is nothing, the item
uses the control's font. Use the ItemFont property to define a different font for the item. Use
the CellFont and ItemFont properties to specify different fonts for cells or items. Use the
CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline, ItemStrikeout,
ItemItalic or CaptionFormat to specify different font attributes. Use the ItemHeight property
to specify the height of the item. Use the Refresh method to refresh the control's content on
the fly. Use the BeginUpdate and EndUpdate methods if you are doing multiple changes, so
no need for an update each time a change is done.

The following VB sample changes the font for the focused item:

List1.BeginUpdate
With List1.Items
 .ItemFont(.FocusItem) = List1.Font
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
List1.EndUpdate

The following C++ sample changes the font for the focused item:

#include "Items.h"
#include "Font.h"
m_list.BeginUpdate();
CItems items = m_list.GetItems();
items.SetItemFont(items.GetFocusItem(), m_list.GetFont().m_lpDispatch);
COleFont font = items.GetItemFont(items.GetFocusItem());
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_list.EndUpdate();

The following VB.NET sample changes the font for the focused item:

AxList1.BeginUpdate()
With AxList1.Items
 .ItemFont(.FocusItem) = IFDH.GetIFontDisp(AxList1.Font)
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxList1.EndUpdate()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused item:

axList1.BeginUpdate();
axList1.Items.set_ItemFont(axList1.Items.FocusItem, IFDH.GetIFontDisp(axList1.Font));
stdole.IFontDisp spFont = axList1.Items.get_ItemFont(axList1.Items.FocusItem);
spFont.Name = "Comic Sans MS";
spFont.Bold = true;
axList1.EndUpdate();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost

{
 public IFDH() : base("")
 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused item:

thisform.List1.Object.BeginUpdate()
with thisform.List1.Items
 .ItemFont(.FocusItem) = thisform.List1.Font
 with .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.List1.Object.EndUpdate()

property Items.ItemForeColor(Index as Long) as Color
Retrieves or sets a foreground color for a specific item.

Type Description
Index as Long A long expression that indicates the index of the item.

Color A color expression that indicates the item's foreground
color

Use the ItemForeColor property to change the item's foreground color. Use the
CellForeColor property to change the cell's foreground color. Use the ItemBackColor
property to change the item's background color. Use the ClearItemForeColor property to
clear the item's foreground color once that the ItemForeColor property is used. Use the
ForeColor property to specify the control's foreground color.

The following VB sample changes the foreground color of the focused item:

With List1.Items
 .ItemForeColor(.FocusItem) = vbRed
End With

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color of the focused item:

axList1.Items.set_ItemForeColor(axList1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color of the focused item:

With AxList1.Items
 .ItemForeColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color of the focused item:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetItemForeColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the foreground color of the focused item:

with thisform.List1.Items
 .ItemForeColor(.FocusItem) = RGB(255,0,0)
endwith

property Items.ItemHeight(Index as Long) as Long
Retrieves or sets the item's height.

Type Description

Index as Long
If the Index is -1, setting the ItemHeight property changes
the height for all items. For instance, the ItemHeight(-1) =
24, changes the height for all items to be 24 pixels wide.

Long A long expression that indicates the item's height in pixels.

Use the ItemHeight property to change the item's height. To change the default height of the
item before inserting items to collection you can call DefaultItemHeight property of the
control. The ExList control supports items with different heights. if the CellSingleLine
property is False. Use the ItemHeight property to specify the height of the item when it
contains no cells with CellSingleLine property on False. Use the ItemMaxHeight property to
specify the maximum height of the item when it contains cells with CellSingleLine property
on False. Use the ScrollBySingleLine property when using items with different heights. Use
the ItemAllowSizing property to specify whether the user can resize the item at runtime.

property Items.ItemItalic(Index as Long) as Boolean
Retrieves or sets a value that indicates whether the item should appear in italic.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean Retrieves or sets a value that indicates whether the item
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the focused item:

With List1.Items
 .ItemItalic(.FocusItem) = True
End With

The following C++ sample makes italic the focused item:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetItemItalic(items.GetFocusItem() , TRUE);

The following C# sample makes italic the focused item:

axList1.Items.set_ItemItalic(axList1.Items.FocusItem, true);

The following VB.NET sample makes italic the focused item:

With AxList1.Items
 .ItemItalic(.FocusItem) = True
End With

The following VFP sample makes italic the focused item:

with thisform.List1.Items

 .ItemItalic(.FocusItem) = .t.
endwith

property Items.ItemMaxHeight(Index as Long) as Long
Retrieves or sets a value that indicates the maximum height when the item's height is
variable.

Type Description

Index as Long
A long expression that indicates the index of the item. For
instance, the ItemMaxHeight(-1) = 24, changes the
maximum-height for all items to be 24 pixels wide.

Long A long value that indicates the maximum height when the
item's height is variable.

By default, the ItemMaxHeight property is -1. The ItemMaxHeight property has effect only if
it is greater than 0, and the item contains cells with CellSingleLine property on False. The
ItemMinHeight property specifies the minimal height of the item while resizing. The
CellSingleLine property specifies whether a cell displays its caption using multiple lines. The
CellSingleLine property specifies whether a cell displays its caption using multiple lines. The
ItemHeight property has no effect, if the CellSingleLine property is False. If the
CellSingleLine property is False, you can specify the maximum height for the item using the
ItemMaxHeight property. Use the ItemAllowSizing property to specify whether the user can
resize the item at runtime.

property Items.ItemMinHeight(Index as Long) as Long
Retrieves or sets a value that indicates the minimum height when the item's height is sizing.

Type Description

Index as Long
A long expression that indicates the index of the item. For
instance, the ItemMinHeight(-1) = 24, changes the
minimum-height for all items to be 24 pixels wide.

Long A long value that indicates the minimum height when the
item's height is variable.

By default, the ItemMinHeight property is -1. The ItemMinHeight property has effect only if
the item contains cells with CellSingleLine property on False. The ItemMaxHeight property
specifies the maximum height of the item while resizing. The CellSingleLine property
specifies whether a cell displays its caption using multiple lines. The ItemHeight property
has no effect, if the CellSingleLine property is False. If the CellSingleLine property is False,
you can specify the minimum height for the item using the ItemMinHeight property. Use the
ItemAllowSizing property to specify whether the user can resize the item at runtime

property Items.ItemPosition(Index as Long) as Long
Retrieves or sets a value that indicates the item's position.

Type Description
Index as Long A long expression that indicates the index of the item.
Long A long expression that indicates the item's position.

Use the ItemPosition property to change the item's position. The Sort method reorders the
items, so each item position is changed. The item's position is zero based. Use the
SortOrder property to sort a column. Use the FirstVisibleItem and NextVisibleItem
properties to enumerate the items as they are listed. The LastVisibleItem property retrieves
the index of last item that fits the client area. The ItemPosition property is not available if
the control is running in the virtual mode. Use the BackColorAlternate property to specify an
alternate background color for odd an even items. You can use the GetItems(1) method to
get the list of indexes for the items as they are displayed, sorted and filtered.

property Items.ItemStrikeOut(Index as Long) as Boolean
Retrieves or sets a value that indicates whether the item should appear in strikeout.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean A boolean expression that indicates whether the item is
displayed with a horizontal line through it.

If the ItemStrikeOut property is True, the cell's font is displayed with a horizontal line
through it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply
different font attributes to the item. Use the CellItalic, CellUnderline, CellBold or
CellStrikeOut property to apply different font attributes to the cell. Use the CaptionFormat
property to specify an HTML caption. Use the ConditionalFormats method to apply formats
to a cell or range of cells, and have that formatting change depending on the value of the
cell or the value of a formula.

The following VB sample draws a horizontal line through the focused item:

With List1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following C++ sample draws a horizontal line through the focused item:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetItemStrikeOut(items.GetFocusItem() , TRUE);

The following C# sample draws a horizontal line through the focused item:

axList1.Items.set_ItemStrikeOut(axList1.Items.FocusItem, true);

The following VB.NET sample draws a horizontal line through the focused item:

With AxList1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following VFP sample draws a horizontal line through the focused item:

with thisform.List1.Items

 .ItemStrikeOut(.FocusItem) = .t.
endwith

property Items.ItemToVirtual (Index as Long) as Long
Gets the index of the virtual item giving the index of the item in the list.

Type Description
Index as Long A long expression that the index of the item in the list.
Long A long expression that indicates the index of virtual item.

The ItemToVirtual property converts the index of the item in the list to the index of the virtual
item/record. The ItemToVirtual property has effect only if the control is running in the virtual
mode. Use the VirtualToItem property to get the index of the item in the list giving the index
of the virtual item/record.

The following VB sample notifies the adoVirtual object that the user changes the date in the
control:

Private Sub List1_AfterCellEdit(ByVal Index As Long, ByVal ColIndex As Long, ByVal
NewCaption As String)
 With List1.Items
 adoVirtual.Change .ItemToVirtual(Index), ColIndex, NewCaption
 End With
End Sub

property Items.ItemUnderline(Index as Long) as Boolean
Retrieves or sets a value that indicates whether the item is underlined.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean A boolean expression that indicates whether the item is
underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the focused item:

With List1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following C++ sample underlines the focused item:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetItemUnderline(items.GetFocusItem() , TRUE);

The following C# sample underlines the focused item:

axList1.Items.set_ItemUnderline(axList1.Items.FocusItem, true);

The following VB.NET sample underlines the focused item:

With AxList1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following VFP sample underlines the focused item:

with thisform.List1.Items

 .ItemUnderline(.FocusItem) = .t.
endwith

property Items.LastVisibleItem ([Partially as Variant]) as Long
Retrieves the index of the last visible item.

Type Description

Partially as Variant A boolean expression that indicates whether the item is
partially visible.

Long A long expression that indicates the index of the last visible
item.

The LastVisibleItem property retrieves the index of last item that fits the client area. Use the
FirstVisibleItem and NextVisibleItem properties to enumerate the items that fit the client
area.

property Items.MatchItemCount as Long
Retrieves the number of items that match the filter.

Type Description

Long
A long expression that specifies the number of matching
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The MatchItemCount property counts the number of items that matches the current filter
criteria. At runtime, the MatchItemCount property is a positive integer if no filter is applied,
and negative if a filter is applied. If positive, it indicates the number of items within the
control (Count property). If negative, a filter is applied, and the absolute value minus one,
indicates the number of matching items after filter is applied.

The MatchItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of items within the control (Count property)
negative number, the absolute value minus 1, indicates the number of items that
matches the current filter (match found)

property Items.NextVisibleItem (Index as Long) as Long
Retrieves the index of next visible item.

Type Description
Index as Long A long expression that indicates the index of the item.

Long A long expression that indicates the next visible item's
index

The NextVisibleItem property retrieves -1 if there is no next visible item. Use the
FirstVisibleItem and NextVisibleItem properties to enumerate the items as they are listed.
The LastVisibleItem property retrieves the index of last item that fits the client area. Use the
PrevVisibleItem property to get the previous item. Use the SortOrder property to sort a
column. Use the ItemPosition property to change the item's position. Use the ItemFromPoint
property to get the item from cursor. Use the GetItems property to get the list of items.

The following VB sample displays the items as they are listed:

With List1.Items
 Dim i As Long
 i = .FirstVisibleItem
 While (i >= 0)
 Debug.Print .Caption(i, 0)
 i = .NextVisibleItem(i)
 Wend
End With

The following C++ sample displays the items as they are listed:

CItems items = m_list.GetItems();
long i = items.GetFirstVisibleItem();
while (i >= 0)
{
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(long(0))));
 OutputDebugString(strCaption);
 i = items.GetNextVisibleItem(i);
}

The following VB.NET sample displays the items as they are listed:

With AxList1.Items
 Dim i As Integer = .FirstVisibleItem
 While (i >= 0)
 Debug.WriteLine(.Caption(i, 0))
 i = .NextVisibleItem(i)
 End While
End With

The following C# sample displays the items as they are listed:

int i = axList1.Items.FirstVisibleItem;
while (i >= 0)
{
 object cell = axList1.Items.get_Caption(i, 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
 i = axList1.Items.get_NextVisibleItem(i);
}

The following VFP sample displays the items as they are listed:

With thisform.List1.Items
 local i
 i = .FirstVisibleItem
 do While (i >= 0)
 wait window .Caption(i, 0)
 i = .NextVisibleItem(i)
 enddo
EndWith

property Items.PrevVisibleItem (Index as Long) as Long
Retrieves the index of previous visible item.

Type Description
Index as Long A long expression that indicates the index of the item.

Long A long expression that indicates the index of previous
visible item.

The PrevVisibleItem property retrieves -1 if there is no previous visible item. Use the
PrevVisibleItem property to get the previous visible item. Use the FirstVisibleItem and
NextVisibleItem properties to enumerate the items as they are listed. Use the SortOrder
property to sort a column. Use the ItemPosition property to change the item's position. Use
the ItemFromPoint property to get the item from cursor. Use the GetItems property to get
the list of items.

method Items.Remove (Index as Long)
Removes a specific item.

Type Description
Index as Long A long expression that indicates the index of the item.

Use the Remove method to remove a specific item. The Remove method updates the
indexes of the items in the list. For instance, if you remove the item 0, the items 1, 2, 3, ...
becomes the 0,1,2,... Use the RemoveAll method to clear the Items collection. The control
fires the RemoveItem event before removing an item. Use the RemoveItem event to release
any extra data associated to the item. The Remove method is not available if the control is
running in the virtual mode. Use the BeginUpdate and EndUpdate methods to maintain
performance while removing items. Use the CellState property to specify whether an item is
checked or unchecked. Use the SelectedItem property to retrieve the index of selected
item(s). The RemoveSelection method removes the selected items

The following VB sample removes all selected items:

With List1
 .BeginUpdate
 With .Items
 While .SelectCount > 0
 .Remove .SelectedItem(0)
 Wend
 End With
 .EndUpdate
End With

The following VB sample removes the checked items:

With List1
 .BeginUpdate
 With .Items
 Dim i As Long
 For i = .Count - 1 To 0 Step -1
 If .CellState(i, 0) Then
 .Remove i
 End If
 Next

 End With
 .EndUpdate
End With

or you can use a sample like follows:

With List1
 .BeginUpdate
 With .Items
 Dim i As Long
 i = 0
 While i < .Count
 If (.CellState(i, 0)) Then
 .Remove (i)
 Else
 i = i + 1
 End If
 Wend
 End With
 .EndUpdate
End With

The following C++ sample removes the selected items:

#include "Items.h"

m_list.BeginUpdate();
CItems items = m_list.GetItems();
while (items.GetSelectCount())
 items.Remove(items.GetSelectedItem(0));
m_list.EndUpdate();

The following VFP sample removes the selected items:

with thisform.List1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() > 0)
 .Remove(.SelectedItem(0))

 enddo
 endwith
 .EndUpdate()
endwith

method Items.RemoveAll ()
Removes all items from the control.

Type Description

Use the RemoveAll items in order to clear the Items collection. The RemoveAll method
doesn't clear the Columns collection. Use the Clear method to clear the remove all columns
and all items. Use the Remove method to remove an item. The control fires the
RemoveItem event before removing an item. The RemoveAll method is not available if the
control is running in the virtual mode.

method Items.RemoveSelection ()
Removes the selected items.

Type Description

The RemoveSelection method removes the selected items. The Remove method removes a
specific item. The UnselectAll method unselects all items in the list.

property Items.SelectableItem(Index as Long) as Boolean
Specifies whether the user can select the item.

Type Description

Index as Long A long expression that indicates the index of the item being
selectable.

Boolean A boolean expression that specifies whether the item is
selectable.

By default, all items are selectable. A selectable item is an item that user can select using
the keys or the mouse. The SelectableItem property specifies whether the user can select
an item. The SelectableItem property doesn't change the item's appearance. Use the
ItemBreak property to add a break item. Use the ItemForeColor property to specify the
item's foreground color. Use the ItemBackColor property to specify the item's background
color. Use the ItemFont, ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to
assign a different font to the item. Use the EnableItem property to disable an item. A
disabled item looks grayed, but it is selectable. For instance, the user can't change the
check box state in a disabled item. Use the SelectItem property to select an item. The
ItemFromPoint property gets the item from point. For instance, if the user clicks a non
selectable item the SelectionChanged event is not fired. A non selectable item is not
focusable as well. It means that if the incremental searching is on, the non selectable items
are ignored. Use the SelectCount property to get the number of selected items. Use the
SelForeColor and SelBackColor properties to customize the colors for selected items.

The following VB sample makes not selectable the first visible item:

With List1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C++ sample makes not selectable the first visible item:

#include "Items.h"
CItems items = m_list.GetItems();
items.SetSelectableItem(items.GetFirstVisibleItem(), FALSE);

The following VB.NET sample makes not selectable the first visible item:

With AxList1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C# sample makes not selectable the first visible item:

axList1.Items.set_SelectableItem(axList1.Items.FirstVisibleItem, false);

The following VFP sample makes not selectable the first visible item:

with thisform.List1.Items
 .SelectableItem(.FirstVisibleItem) = .f.
endwith

method Items.SelectAll ()
Selects all items.

Type Description

Use the SelectAll method to select all items in the list. The SelectAll method has effect only
if the SingleSel property is False, if the control supports multiple items selection. Use the
UnselectAll method to unselect all items in the list. Use the SelectItem property to select or
unselect a specified item. Use the SelectedItem property to retrieve a value that indicates
whether the item is selected or unselected. Use the SelectCount property to retrieve the
number of selected items.

property Items.SelectCount as Long
Retrieves the count of selected items.

Type Description

Long A long expression that indicates the count of the selected
items.

The control supports single or multiple selection. Use the SelectCount and SelectedItem
properties to enumerate the collection of selected items. Use the SelectItem property to
select or unselects programmatically an item. The SelectionChanged event is fired when the
user changes the selection. Use the SelForeColor and SelBackColor properties to specify
colors for selected items. Use the SingleSel property of the control to allow multiple
selection. If the control supports only single selection (SingleSel property is True), the
FocusItem retrieves the selected item too. Use the Caption property to specify the cell's
caption. Use the SelectAll method to select all items in the list. Use the UnselectAll method
to unselect all items in the list.

The following VB sample enumerates the collection of selected items:

Dim i As Long
With List1.Items
 For i = 0 To .SelectCount() - 1
 Debug.Print .Caption(.SelectedItem(i), 0)
 Next
End With

The following C++ sample enumerates the collection of selected items:

CItems items = m_list.GetItems();
for (long i = 0; i < items.GetSelectCount(); i++)
{
 CString strCaption = V2S(&items.GetCaption(items.GetSelectedItem(i), COleVariant(
long(0))));
 OutputDebugString(strCaption);
}

The following VB.NET sample enumerates the collection of selected items:

With AxList1.Items
 Dim i As Integer

 For i = 0 To .SelectCount() - 1
 Debug.WriteLine(.Caption(.SelectedItem(i), 0))
 Next
End With

The following C# sample enumerates the collection of selected items:

for (int i = 0; i < axList1.Items.SelectCount; i++)
{
 object cell = axList1.Items.get_Caption(axList1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
}

The following VFP sample enumerates the collection of selected items:

local i
With thisform.List1.Items
 For i = 0 To .SelectCount() - 1
 wait window nowait .Caption(.SelectedItem(i), 0)
 Next
EndWith

property Items.SelectedItem ([Index as Long]) as Long
Retrieves the selected item's index given its index into selected items collection.

Type Description

Index as Long
A long expression that indicates the index (into the
selected items collection) of selected item being
accessed.

Long A long expression that indicates the index of the selected
item.

The control supports single or multiple selection, depends on SingleSel property. Use the
SelectCount and SelectedItem properties to enumerate the collection of selected items.
Use the SelectItem property to select or unselect programmatically an item. The
SelectionChanged event is fired when the user changes the selection. Use the SelForeColor
and SelBackColor properties to specify colors for selected items. If the control supports
only single selection (SingleSel property is True), the FocusItem retrieves the selected
item too. Use the Caption property to specify the cell's caption.

The following VB sample enumerates the collection of selected items:

Dim i As Long
With List1.Items
 For i = 0 To .SelectCount() - 1
 Debug.Print .Caption(.SelectedItem(i), 0)
 Next
End With

The following C++ sample enumerates the collection of selected items:

CItems items = m_list.GetItems();
for (long i = 0; i < items.GetSelectCount(); i++)
{
 CString strCaption = V2S(&items.GetCaption(items.GetSelectedItem(i), COleVariant(
long(0))));
 OutputDebugString(strCaption);
}

The following VB.NET sample enumerates the collection of selected items:

With AxList1.Items

 Dim i As Integer
 For i = 0 To .SelectCount() - 1
 Debug.WriteLine(.Caption(.SelectedItem(i), 0))
 Next
End With

The following C# sample enumerates the collection of selected items:

for (int i = 0; i < axList1.Items.SelectCount; i++)
{
 object cell = axList1.Items.get_Caption(axList1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
}

The following VFP sample enumerates the collection of selected items:

local i
With thisform.List1.Items
 For i = 0 To .SelectCount() - 1
 wait window nowait .Caption(.SelectedItem(i), 0)
 Next
EndWith

property Items.SelectItem(Index as Long) as Boolean
Selects or unselects a specific item.

Type Description
Index as Long A long expression that indicates the index of the item.

Boolean A boolean expression that indicates whether the item is
selected or unselected.

The control supports single or multiple selection. Use the SelectItem property to select or
unselect programmatically an item. Use the SelectCount and SelectedItem properties to
enumerate the collection of selected items. The SelectionChanged event is fired when the
user changes the selection. Use the SelForeColor and SelBackColor properties to specify
colors for selected items. Use the SingleSel property of the control to allow multiple
selection. If the control supports only single selection (SingleSel property is True), the
FocusItem retrieves the selected item too. Use the Caption property to specify the cell's
caption. Use the SelectAll method to select all items in the list. Use the UnselectAll method
to unselect all items in the list.

The following VB sample selects the first visible item:

With List1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB sample selects all items in the list:

With List1
 .BeginUpdate
 With .Items
 For i = 0 To .Count - 1
 .SelectItem(i) = True
 Next
 End With
 .EndUpdate
End With

The following C++ sample selects the first visible item:

#include "Items.h"
CItems items = m_list.GetItems();

items.SetSelectItem(items.GetFirstVisibleItem(), TRUE);

The following VB.NET sample selects the first visible item:

With AxList1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following C# sample selects the first visible item:

axList1.Items.set_SelectItem(axList1.Items.FirstVisibleItem, true);

The following VFP sample selects the first visible item:

with thisform.List1.Items
 .SelectItem(.FirstVisibleItem) = .t.
endwith

method Items.Sort (ColIndex as Variant, Ascending as Boolean)
Sorts a column.

Type Description

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Ascending as Boolean A boolean expression that indicates whether the items are
sorted ascending or descending

The Sort method uses the SortType property to determine the way how the items are
ordered. Use the SortOrder property to sort a column and to display the sorting icon in the
column's header. The Sort event is fired when the user sorts a column. The SortPosition
property changes the position of the column in the control's sort bar. Use the
DefaultSortOrder property to specify the column's default sort order, when the user first
clicks the column's header. Use the ItemPosition property to change the item's position. Use
the FirstVisibleItem and NextVisibleItem properties to enumerate the items as they are
listed. The Sort method is not available if the control is running in the virtual mode.

property Items.SortableItem(Index as Long) as Boolean
Specifies whether the item is sortable.

Type Description

Index as Long A long expression that indicates the index of the item being
sortable.

Boolean A boolean expression that specifies whether the item is
sortable.

By default, all items are sortable. A sortable item can change its position after sorting. An
unsortable item keeps its position after user performs a sort operation. Thought, the
position of an unsortable item can be changed using the ItemPosition property. Use the
SortableItem to specify a group item, a total item or a separator item. An unsortable item is
not counted by a total field. The SortType property specifies the type of repositioning is
being applied on the column when a sort operation is performed. The SortOrder property
specifies whether the column is sorted ascendant or descendent. Use the Sort method to
sort the items. Use the AllowSort property to avoid sorting a column when the user clicks
the column. The SelectableItem property specifies whether an item can be selected.

The following screen shots shows the control when no column is sorted: (Group 1 and
Group 2 has the SortableItem property on False)

The following screen shots shows the control when the column A is being sorted: (Group 1
and Group 2 keeps their original position after sorting)

method Items.UnselectAll ()
Unselects all items.

Type Description

Use the UnselectAll method to unselect all items in the list. The UnselectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the SelectAll method to select all items in the list. Use the SelectItem property to select
or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items. The RemoveSelection method removes the selected
items.

property Items.VirtualToItem (Index as Long) as Long
Gets the index of the item in the list giving the index of the virtual item.

Type Description

Index as Long A long expression that indicates the index of the virtual
item.

Long A long expression that indicates the index of the item in the
list.

The VirtualToItem property converts the the index of the virtual item/record to the index of
the item in the list. The VirtualToItem property scrolls the control's content to make sure that
the virtual item is in the control's client area. The VirtualToItem property has effect only if
the control is running in the virtual mode. Use the ItemToVirtual property to get the index of
the virtual item based on the index of the item in the list.

The following VB sample notifies the adoVirtual object that the user changes the date in the
control:

Private Sub List1_AfterCellEdit(ByVal Index As Long, ByVal ColIndex As Long, ByVal
NewCaption As String)
 With List1.Items
 adoVirtual.Change .ItemToVirtual(Index), ColIndex, NewCaption
 End With
End Sub

property Items.VisibleCount as Long
Retrieves the number of visible items.

Type Description

Long A long expression that indicates the count of the visible
items.

The VisibleCount property counts the number of the items that fits the control's client area (
partially visible items are not counted). Use FirstVisibleItem and NextVisibleItem properties
to determine the items that fit the client area. Use the IsItemVisible property to check
whether an item fits the control's client area. Use the Count property to count the items in
the control.

property Items.VisibleItemCount as Long
Retrieves the number of visible items.

Type Description

Long
A long expression that specifies the number of visible
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The VisibleItemCount property counts the number of visible items in the list. For instance,
you can use the VisibleItemCount property to get the number the control displays once the
user applies a filter.

The VisibleItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of visible items, and the control has no filter
applied to any column
negative number, the absolute value munus 1, indicates the number of visible items,
and there is a filter applied (match found)

The VisibleCount property retrieves the number of items being displayed in the control's
client area. Use FirstVisibleItem and NextVisibleItem properties to determine the items
being displayed in the control's client area. Use the IsItemVisible property to check whether
an item fits the control's client area. Use the Count property to count the items in the
control.

List object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {1B0CA5A8-2107-4460-BBEE-F25F8801B2F6}. The object's program identifier is: "Exontrol.List". The
/COM object module is: "ExList.dll"

Add an advanced List control to your application. The exList ActiveX control is 32-bit light
ActiveX, that displays and edit your tabular data. The component lets the user changes its
visual appearance using skins, each one providing an additional visual experience that
enhances viewing pleasure. Skins are relatively easy to build and put on any part of the
control. The List control supports the following properties and methods:.

Name Description

AllowEdit Retrieves or sets a value that indicates whether the editing
list is allowed or disabled.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.
ApplyFilter Applies the filter.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoSearch Enables or disables incremental search feature.

BackColor Retrieves or sets a value that indicates the control's
background color.

BackColorAlternate Specifies the background color used to display alternate
items in the control.

BackColorHeader Specifies the header's background color.
BackColorLevelHeader Specifies the multiple levels header's background color.

BackColorLock Retrieves or sets a value that indicates the control's
background color for the locked area.

BackColorSortBar Retrieves or sets a value that indicates the sort bar's
background color.

BackColorSortBarCaption Returns or sets a value that indicates the caption's
background color in the control's sort bar.
Returns or sets a value that indicates the background

Background color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

CheckImage Retrieves or sets a value that indicates the index of image
used by cells of checkbox type.

ClearFilter Clears the filter.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnFromPoint Retrieves the column from point.
Columns Retrieves the control's column collection.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ConditionalFormats Retrieves the conditional formatting collection.

ContinueColumnScroll
Retrieves or sets a value indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.

CountLockedColumns Retrieves or sets a value indicating the number of locked
columns. A locked column is not scrollable.

DataSource Retrieves or sets a value that indicates the data source for
object.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for control objects.

DetectAddNew Specifies whether the control detects when a new record
is added to the bounded recordset.

DetectDelete Specifies whether the control detects when a record is
deleted from the bounded recordset.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

Enabled Enables or disables the control.

EndUpdate
Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
Export Exports the control's data to a CSV format.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the control's list.

FilterBarFont Retrieves or sets the font for control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FilterBarHeight
Specifies the height of the control's filter bar. If the value is
less than 0, the filter bar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.
Font Retrieves or sets the control's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

ForeColorHeader Specifies the header's foreground color.

ForeColorLock Retrieves or sets a value that indicates the control's
foreground color for the locked area.

ForeColorSortBar Retrieves or sets a value that indicates the sort bar's
foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML

captions.
FreezeEvents Prevents the control to fire any event.
FullRowSelect Enables full-row selection in the control.

GetItems Gets the collection of items into a safe array,
GridLineColor Specifies the grid line color.

GridLineStyle Specifies the style for gridlines in the list part of the
control.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderHeight Retrieves or sets a value indicating control's header
height.

HeaderSingleLine Specifies whether the control resizes the columns header
and wraps the captions in single or multiple lines.

HeaderVisible Retrieves or sets a value that indicates whether the the
list's header is visible or hidden.

HideSelection Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

HotBackColor Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
HyperLinkColor Specifies the hyperlink color.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Image List control (HIMAGELIST type).

ImageSize Retrieves or sets the size of icons the control displays.
ItemFromPoint Retrieves the item from point.
Items Retrieves the control's item collection.

ItemsAllowSizing Retrieves or sets a value that indicates whether a user
can resize items at run-time.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

MarkSearchColumn Retrieves or sets a value that indicates whether the
searching column is marked or unmarked

OLEDrag
Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PictureDisplayLevelHeader Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's header background.

PictureLevelHeader Retrieves or sets a graphic to be displayed in the control's
header when multiple levels is on.

PutItems Adds an array of integer, long, date, string, double, float,
or variant arrays to the list, beginning at Index.

RadioImage Retrieves or sets a value that indicates the index of image
used by cells of radio type.

RClickSelect Retrieves or sets a value that indicates whether an item is
selected using right mouse button.

Refresh Refreshes the control's content.
RemoveSelection Removes the selected items (including the descendents)

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

RightToLeft Indicates whether the component should draw right-to-left
for RTL languages.

ScrollBars Specifies the type of scroll bars that control has.
ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.

ScrollBySingleLine

Retrieves or sets a value that indicates whether the
control scrolls the lines to the end. If you have at least a
cell that has SingleLine false, you have to check the
ScrollBySingleLine property.

ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment
Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollPos Specifies the vertical/horizontal scroll position.
ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SearchColumnIndex Retrieves or sets a value indicating the column's index that
is used for auto search feature.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectColumnIndex
Retrieves or sets a value that indicates control column's
index where the user is able to select an item. It has effect
only for FullRowSelect = false.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

SelLength Returns or sets the number of characters selected.

SelStart
Returns or sets the starting point of text selected;
indicates the position of the insertion point if no text is
selected.

ShowFocusRect Retrieves or sets a value indicating whether the control
draws a thin rectangle around the focused item.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.

SingleSel Retrieves or sets a value that indicates whether the
control supports single or multiple selection.

SingleSort Returns or sets a value that indicates whether the control
supports sorting by single or multiple columns.

SortBarCaption Specifies the caption being displayed on the control's sort
bar when the sort bar contains no columns.

SortBarColumnWidth Specifies the maximum width a column can be in the
control's sort bar.

SortBarHeight Retrieves or sets a value that indicates the height of the
control's sort bar.

SortBarVisible Retrieves or sets a value that indicates whether control's
sort bar is visible or hidden.

SortOnClick
Retrieves or sets a value that indicates whether the
control sorts automatically the data when the user click on
column's caption.

Statistics Gives statistics data of objects being hold by the control.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UnboundHandler Specifies the control's unbound handler.

UseTabKey Retrieves or sets a value indicating whether the control
uses tab key for changing the searching column.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.

VirtualMode Specifies a value that indicates whether the control is
running in the virtual mode.

VisualAppearance Retrieves the control's appearance.

VisualDesign Invokes the control's VisualAppearance designer.

property List.AllowEdit as Boolean
Retrieves or sets a value that indicates whether the editing list is allowed or disabled.

Type Description

Boolean A boolean expression that indicates whether the editing list
is allowed or disabled.

By default, the AllowEdit property is false. If the AllowEdit property is True, the control fires
the BeforeCellEdit event just before editing a cell, and fires the AfterCellEdit after that edit
operation ends. Use the Edit method to pragmatically edit an item. Use the SelStart and
SelLenght properties to specify the selected text when edit operation starts.

property List.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

property List.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub List1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 With List1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxList1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_MouseMoveEvent) Handles AxList1.MouseMoveEvent
 With AxList1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axList1_MouseMoveEvent(object sender,
AxEXLISTLib._IListEvents_MouseMoveEvent e)
{
 axList1.ShowToolTip(axList1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveList1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_list.ShowToolTip(m_list.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty, vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .List1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property List.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The frame.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the HeaderAppearance
property to change the control's header bar appearance. Use the Add method to add new
skins to the control. Use the BackColor property to specify the control's background color.
Use the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With List1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\frame.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)

https://exontrol.com/exbutton.jsp

 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxList1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\frame.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axList1.BeginUpdate();
axList1.VisualAppearance.Add(0x16, "c:\\temp\\frame.ebn");
axList1.Appearance = (EXLISTLib.AppearanceEnum)0x16000000;
axList1.BackColor = Color.FromArgb(250, 250, 250);
axList1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_list.BeginUpdate();
m_list.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\frame.ebn"));
m_list.SetAppearance(0x16000000);
m_list.SetBackColor(RGB(250,250,250));
m_list.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.List1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\frame.ebn")
 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method List.ApplyFilter ()
Applies the filter.

Type Description

The ApplyFilter method updates the control's content once that user sets the filter using the
Filter and FilterType properties. Use the ClearFilter method to clear the control's filter. Use
the DisplayFilterButton property to show the filter drop down button in the column's caption.
Use the FilterCriteria property to specify the filter criteria usinr OR, AND or NOT operators.
Use the CustomFilter property to define you custom filters. Use the ShowFilter method to
show programmatically the column's drop down filter window.

method List.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub List1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property List.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection. The AutoDrag feature
adds automatically Drag and Drop, but you can still use the OLEDropMode property to
handle the OLE Drag and Drop event for your custom action. The control fires the
AllowAutoDrag event, when the AutoDrag property is exAutoDragPosition.

The drag and drop operation starts:

once the user clicks and moves the cursor up or down, if the SingleSel property is
True.
once the user clicks, and waits for a short period of time, if SingleSel property is False
(multiple items in selection is allowed). In this case, you can drag and drop any item
that is not selected, or a contiguously selection

Once the drag and drop operation starts the mouse pointer is changed to MOVE cursor if
the operation is possible, else if the Drag and Drop operation fails or if it is not possible, the
mouse pointer is changed to NO cursor.

If using the AutoDrag property on:

exAutoDragPosition

the Drag and Drop starts only:

item from cursor is a selectable (SelectableItem property on True, default) and
sortable item (SortableItem property on True, default).
if multiple items are selected, the selection is contiguously.

Use the AutoDrag property to allow Drag and Drop operations like follows:

Ability to change the column or row position without having to manually add the OLE
drag and drop events
Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to drag and drop the data as it looks, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or down
and more ...

https://www.youtube.com/watch?v=crG33cuKwC4
https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

property List.AutoSearch as Boolean
Enables or disables incremental search feature.

Type Description

Boolean A boolean expression that indicates whether the auto
search is enabled or disabled.

By default, the AutoSearch property is True. The auto-search feature is is commonly known
as incremental search. An incremental search begins searching as soon as you type the
first character of the search string. As you type in the search string, the control selects the
item (and highlight the portion of the string that match where the string (as you have typed
it so far) would be found. The control supports 'starts with' or 'contains' incremental search
as described in the AutoSearch property of the Column object. Use the MarkSearchColumn
property to specify whether the control draws a rectangle around the searching column.
The SearchColumnIndex property specifies the index of the column where incremental
search feature works.

property List.BackColor as Color
Retrieves or sets a value that indicates the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to change the control's background color. Use the ForeColor
property to change the control's foreground color. Use the ItemBackColor or CellBackColor
to change the item or cell's background color. The control highlights the selected items only
if the SelBackColor and BackColor properties have different values, and the SelForeColor
and ForeColor properties have different values. Use the Def(exCellBackColor) property to
specify the background color for all cells in a column. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's locked area use
BackColorLock property. Use the CellBackColor property to assign a different background
color for a specified cell. Use the ItemBackColor property to specify the item's background
color. Use the BackColorAlternate property to specify the background color used to display
alternate items in the control. Use the Picture property to assign a picture to the control's
background.

property List.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color Specifies the background color used to display alternate
items in the control

By default, the control's BackColorAlternate property is zero. The control ignores the
BackColorAlternate property if it is 0 (zero). Use the BackColor property to specify the
control's background color. Use the SelBackColor property to specify the selection
background color. Use the ItemPosition property to change the item's position.

property List.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color

A color expression that indicates the background color of
the control's header bar. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the BackColorLevelHeader property to specify the
background color of the control's header bar when multiple levels are displayed. Use the
LevelKey property to display the control's header bar using multiple levels. If the control
displays the header bar using multiple levels the HeaderHeight property gets the height in
pixels of a single level in the header bar. The control's header displays multiple levels if
there are two or more neighbor columns with the same non empty level key. Use the
BackColorSortBar property to specify the background color of the control's sort bar.

The following VB sample changes the visual appearance for the control's header. Shortly,
we need to add a skin to the Appearance object using the Add method, and we need to set
the last 7 bits in the BackColorHeader property to indicates the index of the skin that we
want to use. The sample applies the " " to the control' header bar:

With List1
 With .VisualAppearance
 .Add &H24, App.Path + "\header.ebn"
 End With
 .BackColorHeader = &H24000000
 .ForeColorHeader = RGB(255, 255, 255)
End With

The following C++ sample changes the visual aspect of the control' header bar:

#include "Appearance.h"
m_list.GetVisualAppearance().Add(0x24,
COleVariant(_T("D:\\Temp\\ExList.Help\\header.ebn")));
m_list.SetBackColorHeader(0x24000000);
m_list.SetForeColorHeader(RGB(255,255,255));

The following VB.NET sample changes the visual aspect of the control' header bar:

With AxList1
 With .VisualAppearance
 .Add(&H24, "D:\Temp\ExList.Help\header.ebn")
 End With
 .Template = "BackColorHeader = 603979776"
 .ForeColorHeader = RGB(255,255,255)
End With

The 603979776 value indicates the &H24000000 in hexadecimal.

The following C# sample changes the visual aspect of the control' header bar:

axList1.VisualAppearance.Add(0x24, "D:\\Temp\\ExList.Help\\header.ebn");
axList1.Template = "BackColorHeader = 603979776";
axList1.ForeColorHeader = Color.White;

The 603979776 value indicates the 0x24000000 in hexadecimal.

The following VFP sample changes the visual aspect of the control' header bar:

With thisform.List1
 With .VisualAppearance
 .Add(36, "D:\Temp\ExList.Help\header.ebn")
 EndWith
 .BackColorHeader = 603979776
 .ForeColorHeader = RGB(255,255,255)
EndWith

property List.BackColorLevelHeader as Color
Specifies the multiple levels header's background color.

Type Description

Color A color expression that indicates the control's multiple
levels header background color.

By default, the BackColorPropertyLevelHeader property is the same as the control's
BackColorHeader property. Use the BackColorLevelHeader property to specify a
background color for parts of the control's header that are not occupied by the column's
headers. The BackColorLevelHeader property has effect only if there are two or more
neighbor columns with the same non empty level key. Use the LevelKey property to specify
the control's level key. The HeaderHeight property indicates the height in pixels of a single
level in the control's header bar. Use the PictureLevelHeader property to specify a picture
being displayed on the multiple levels header bar.

property List.BackColorLock as Color
Retrieves or sets a value that indicates the control's background color for the locked area.

Type Description

Color A color expression that indicates the color used to paint
the control's background locked area.

The ExList control can group the control columns into two categories: locked and unlocked.
The Locked category contains all the columns that are fixed to the left area of the client
area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. Use ForeColorLock property to change the foreground color of the
control's locked area. Use the Def(exCellBackColor) property to specify the background
color for all cells in the column. Use the Def(exCellForeColor) property to specify the
foreground color for all cells in the column.

property List.BackColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's background color.

Type Description

Color

A color expression that indicates the background color of
the sort bar. The last 7 bits in the high significant byte of
the color to indicates the identifier of the skin being used.
Use the Add method to add new skins to the control. If
you need to remove the skin appearance from a part of
the control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

Use the BackColorSortBar property to specify the background color of the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBarCaption property to specify the background color of the caption of the
sort bar. The caption of the sort bar is visible, if there are no columns in the sort bar. Use
the SortBarCaption property to specify the caption of the sort bar. Use the
ForeColorSortBar property to specify the foreground color of the control's sort bar. Use the
BackColor property to specify the control's background color. Use the BackColorHeader
property to specify the background color of the control's header bar. Use the
BackColorLevelHeader property to specify the background color of the control's header bar
when multiple levels are displayed.

property List.BackColorSortBarCaption as Color
Returns or sets a value that indicates the caption's background color in the control's sort
bar.

Type Description

Color

A color expression that indicates the caption's background
color in the control's sort bar. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the SortBarCaption property to specify the caption of the sort bar, when the control's
sort bar contains no columns. Use the BackColorSortBar property to specify the
background color of the control's sort bar. Use the ForeColorSortBar property to specify
the foreground color of the caption in the control's sort bar.

property List.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the "drop down" filter button.
The sample applies the skin " " to the "drop down" filter buttons:

With List1
 With .VisualAppearance
 .Add &H1, App.Path + "\fbardd.ebn"
 End With
 .Background(exHeaderFilterBarButton) = &H1000000
End With

The following C++ sample changes the visual appearance for the "drop down" filter button:

#include "Appearance.h"

m_list.GetVisualAppearance().Add(0x01,
COleVariant(_T("D:\\Temp\\ExList.Help\\fbardd.ebn")));
m_list.SetBackground(0 /*exHeaderFilterBarButton*/, 0x1000000);

The following VB.NET sample changes the visual appearance for the "drop down" filter
button:

With AxList1
 With .VisualAppearance
 .Add(&H1, "D:\Temp\ExList.Help\fbardd.ebn")
 End With
 .set_Background(EXLISTLib.BackgroundPartEnum.exHeaderFilterBarButton, &H1000000)
End With

The following C# sample changes the visual appearance for the "drop down" filter button:

axList1.VisualAppearance.Add(0x1, "D:\\Temp\\ExList.Help\\fbardd.ebn");
axList1.set_Background(EXLISTLib.BackgroundPartEnum.exHeaderFilterBarButton,
0x1000000);

The following VFP sample changes the visual appearance for the "drop down" filter button:

With thisform.List1
 With .VisualAppearance
 .Add(1, "D:\Temp\ExList.Help\fbardd.ebn")
 EndWith
 .Object.Background(0) = 16777216
EndWith

The 16777216 value is the 0x1000000 value in hexadecimal.

method List.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

The following VB sample prevents painting the control while the control loads data from a
recordset:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

With List1
 .BeginUpdate
 For Each f In rs.Fields
 .Columns.Add f.Name
 Next
 .PutItems rs.GetRows()
 .EndUpdate
End With

The following C++ sample prevents refreshing the control while adding columns and items
from an ADODB recordset:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))

{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_list.BeginUpdate();
 m_list.SetColumnAutoResize(FALSE);
 CColumns columns = m_list.GetColumns();
 long nCount = spRecordset->Fields->Count;
 if (nCount > 0)
 {
 // Adds the columns
 for (long i = 0 ; i < nCount; i++)
 columns.Add(spRecordset->Fields->Item[i]->Name);
 m_list.PutItems(&spRecordset->GetRows(-1), vtMissing);
 }
 m_list.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The sample adds a column for each field in the recordset, and add a new items for each
record. You can use the DataSource property to bind a recordset to the control. The
#import statement imports definitions for ADODB type library, that's used to fill the control.

The following VB.NET sample prevents refreshing the control while adding columns and
items:

With AxList1
 .BeginUpdate()
 With .Columns
 .Add("Column 1")
 .Add("Column 2")
 End With
 With .Items
 Dim iNewItem As Integer
 iNewItem = .Add("Item 1")
 .Caption(iNewItem, 1) = "SubItem 1"
 iNewItem = .Add("Item 2")
 .Caption(iNewItem, 1) = "SubItem 2"
 End With
 .EndUpdate()
End With

The following C# sample prevents refreshing the control while adding columns and items:

axList1.BeginUpdate();
EXLISTLib.Columns columns = axList1.Columns;
columns.Add("Column 1");
columns.Add("Column 2");
EXLISTLib.Items items = axList1.Items;
int iNewItem = items.Add("Item 1");
items.set_Caption(iNewItem, 1, "SubItem 1");
iNewItem = items.Add("Item 2");
items.set_Caption(iNewItem, 1, "SubItem 2");
axList1.EndUpdate();

The following VFP sample prevents refreshing the control while adding new columns and
items:

thisform.List1.BeginUpdate()
with thisform.List1.Columns
 .Add("Column 1")
 .Add("Column 2")
endwith

with thisform.List1.Items
 local i
 i = .Add("Item 1")
 .Caption(i, 1) = "SubItem 1"
 i = .Add("Item 2")
 .Caption(i, 1) = "SubItem 2"
endwith
thisform.List1.EndUpdate()

property List.CheckImage(State as CheckStateEnum) as Long
Retrieves or sets a value that indicates the index of image used by cells of checkbox type.

Type Description

State as CheckStateEnum A long expression that indicates the check' state: 0 -
unchecked, 1 - checked, 2 - partial checked.

Long

A long expression that indicates the index image used for
painting the cells of check type. The last 7 bits in the high
significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.
The CheckImage property defines the index of the icon being used by check boxes. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellHasRadioButton
property to assign a radio button to a cell. Use the CellImage or CellImages property to
assign one or multiple icons to a cell. Use the CellPicture property to assign a picture to a
cell. Use the CellStateChanged event to notify your application when the cell's state is
changed. The ImageSize property defines the size (width/height) of the control's check-
box/radio-button.

method List.ClearFilter ()
Clears the filter.

Type Description

The method clears the Filter and FilterType properties for all columns in the control, excepts
for exNumeric and exCheck values where only the Filter property is set on empty. The
ApplyFilter method is automatically called when ClearFilter method is invoked. Use the
FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption property to
specify the caption in the control's filter bar. Use the Description property to change
predefined strings in the control's filter bar. Use the Background property to change the
visual appearance for the closing button in the control's filter bar. Use the CustomFilter
property to define you custom filters. Use the ShowFilter method to show programmatically
the column's drop down filter window.

property List.ColumnAutoResize as Boolean
Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

Use the ColumnAutoResize property to fit all your columns in the client area. Use the Width
property to specify the column's width. Use the SortBarColumnWidth property to specify the
column's head in the control's sort bar. By default, the ColumnAutoResize property is True.

property List.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the column from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long

A long expression that indicates the column's index, or -1 if
there is no column at the point. The property gets a
negative value less or equal with 256, if the point is in the
area between columns where the user can resize the
column.

Use the ColumnFromPoint property to access the column from the point specified by the
{X,Y} coordinates. The ColumnFromPoint property gets the index of the column when the
cursor hovers the control's header bar. The X and Y coordinates are expressed in client
coordinates, so a conversion must be done in case your coordinates are relative to the
screen or to other window. If the X parameter is -1 and Y parameter is -1 the
ColumnFromPoint property determines the index of the column from the cursor. Use
the ItemFromPoint property to retrieve the item from cursor. The control fires the
ColumnClick event when user clicks a column. Use the SortOnClick property to specify the
operation that control odes when user clicks the control's header.

The following VB sample prints the caption of the column from the point:

Private Sub List1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 With List1
 Dim c As Long
 c = .ColumnFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If (c >= 0) Then
 With .Columns(c)
 Debug.Print .Caption
 End With
 End If
 End With
End Sub

The following C++ sample prints the caption of the column from the point:

#include "Columns.h"
#include "Column.h"
void OnMouseMoveList1(short Button, short Shift, long X, long Y)
{
 long nColIndex = m_list.GetColumnFromPoint(X, Y);
 if (nColIndex >= 0)
 {
 CColumn column = m_list.GetColumns().GetItem(COleVariant(nColIndex));
 OutputDebugString(column.GetCaption());
 }
}

The following VB.NET sample prints the caption of the column from the point:

Private Sub AxList1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseMoveEvent) Handles AxList1.MouseMoveEvent
 With AxList1
 Dim i As Integer = .get_ColumnFromPoint(e.x, e.y)
 If (i >= 0) Then
 With .Columns(i)
 Debug.WriteLine(.Caption)
 End With
 End If
 End With
End Sub

The following C# sample prints the caption of the column from the point:

private void axList1_MouseMoveEvent(object sender,
AxEXLISTLib._IListEvents_MouseMoveEvent e)
{
 int i = axList1.get_ColumnFromPoint(e.x,e.y);
 if (i >= 0)
 System.Diagnostics.Debug.WriteLine(axList1.Columns[i].Caption);
}

The following VFP sample prints the caption of the column from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.List1
 i = .ColumnFromPoint(x, y)
 if (i >= 0)
 wait window nowait .Columns(i).Caption
 endif
endwith

property List.Columns as Columns
Retrieves the control's column collection.

Type Description

Columns A Columns object that holds the control's columns
collection.

Use the Columns property to access the Columns collection. Use the Columns collection to
add, remove or change columns. Use the Add method to add a new column to the control.
Use the Items property to access the control's items collection. Use the Add or PutItems
method to add new items to the control. Use the DataSource property to add new columns
and items to the control. Adding new items fails if the control has no columns.

property List.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. A column can be resized only if the
AllowSizing property is True. Use the DrawGridLines property to show or hide the control's
grid lines. Use the HeaderVisible property to show or hide the control's header bar. The
HeaderAppearance property specifies the appearance of the column in the control's header
bar

property List.ConditionalFormats as ConditionalFormats
Retrieves the conditional formatting collection.

Type Description

ConditionalFormats A ConditionalFormats object that indicates the control's
ConditionalFormats collection.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on a formula. Use the Refresh
method to refresh the control, if a change occurs in the conditional format collection. Use
the Caption property indicates the cell's caption or value.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to a column.

property List.ContinueColumnScroll as Boolean
Retrieves or sets a value indicating whether the control will automatically scroll the visible
columns by pixel or by column width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

By default, the columns are scrolled pixel by pixel. Use the ContinueColumnScroll to scroll
horizontally the control column by column. Use the Visible property to hide a column. The
ScrollBySingleLine property retrieves or sets a value that indicates whether the control
scrolls the lines to the end, item by item. Use the ScrollBars property to hide the control's
scroll bars. Use the ScrollPos property to scroll the control's content.

method List.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. The items
are not expanded, they are listed in the order as they are displayed on the screen. Use the
HeaderVisible property to show or hide the control's header. The background of the copied
control is transparent.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub List1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 List1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{

 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr<IPicture> spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc, IID_IPicture, FALSE,
(LPVOID*)&spPicture)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr<IStream> spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b, 10240, &dwRead);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten, NULL);
 dwWritten += dwBWritten;
 }
 CloseHandle(hFile);

 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxList1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axList1.Copy();

property List.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file
being saved (EMF file). If present, the CopyTo property
retrieves True, if the operation succeeded, else False it is
failed. If the File parameter is missing or empty, the
CopyTo property retrieves an one dimension safe array of
bytes that contains the EMF content.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies the control's view to EMF files. Use the Copy method to copy
the control's content to the clipboard. The Enhanced Metafile format is a 32-bit format that
can contain both vector information and bitmap information. You can use the Export method
to export the control's DATA in CSV format.

This format is an improvement over the Windows Metafile Format and contains extended
features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a file:

If (List1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In List1.CopyTo("")

 Debug.Print i
Next

property List.CountLockedColumns as Long
Retrieves or sets a value indicating the number of locked columns. A locked column is not
scrollable.

Type Description

Long A long expression that indicates the count of locked
columns. The locked columns are fixed to left side.

The ExList control can group the control columns into two categories: locked and unlocked.
The Locked category contains all the columns that are fixed to the left area of the client
area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. Use BackColorLock property to change the background color of the
control's locked area. Use ForeColorLock property to change the foreground color of the
control's locked area. Use the Def(exCellBackColor) property to specify the background
color for all cells in the column.

property List.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description

Object
An Object that defines the control's data. Currently, the
control accepts ADO.Recordset, ADODB.Recordset
objects, DAO recordsets

The /COM version provides ADO, ADODB and DAO database support. The DataSource
property takes a recordset and add a column for each field found, and add a new item for
each record in the recordset. Use the Visible property to hide a column. Use the Caption
property to retrieves the value of the cell. Use the PutItems to load an array to the
control. Use the ConditionalFormats method to apply formats to a cell or range of cells, and
have that formatting change depending on the value of the cell or the value of a formula.
Use the DefaultItemHeight property before setting a DataSource property to specify the

The /NET version provides the following methods for data binding:

DataSource, gets or sets the data source that the control is displaying data for. By
default, this property is empty object. The DataSource property can be: DataTable,
DataView, DataSet, DataViewManager, any component that implements the
IListSource interface, or any component that implements the IList interface.
DataMember, indicates a sub-list of the DataSource to show in the control. By default,
this property is "". For instance, if DataSource property is a DataSet, the DataMember
should indicates the name of the table to be loaded.

Click here to watch a movie on how to assign a data source to the control, in design
mode, for /NET assembly.

The DataSource property can load all data in the memory or just visible records (virtual
mode). The VirtualMode property indicates whether the control loads all records in memory
or just visible records. If the VirtualMode property is False (by default), all records are
loaded in memory. The user must call the VirtualMode property before setting the
DataSource, else an error occurs. If the VirtualMode property is True, before specifying the
DataSource, the control loads virtually the records, just visible records are loaded. Use the
control's virtual mode when you require to display and edit large databases, and you don't
want to load the entire database in memory. Aldo, running the virtual mode disables some
features including sorting and filtering, like explained in the VirtualMode property. The
control builds an internal object that implements the IUnboundHandler interface that provides
data for the control, when running in virtual mode, so the UnboundHandler property is not
empty.

The following template script loads virtually the Order table, using the Template feature of

https://www.youtube.com/watch?v=2arnUlkpVhs

the control (copy the following template and paste it to the control's WYSWYG Template
editor) (the sample uses Jet.OLEDB provider to handle MDB files) :

Dim rs
VirtualMode = True
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
 Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExList\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs
ConditionalFormats
{
 Add("%1 > 4").Bold = True
 Add("%1 = 1 or %1 = 3")
 {
 Underline = True
 ForeColor = RGB(255,0,0)
 ApplyTo = 1
 }
}

or (the sample uses VFPOLEDB provider to handle DBF files)

Dim rs
VirtualMode = True
ColumnAutoResize = False
rs = CreateObject("ADODB.Recordset").Open("Select * from
Students","Provider=vfpoledb;Data Source=D:\Program Files\Microsoft Visual
Studio\Vfp98\Wizards\Template\Students And Classes\Data\STUDENTS AND
CLASSES.DBC;Collating Sequence=machine"1,1)
DataSource = rs

Use the Caption property to retrieves the value of the cell. Use the PutItems to load an
array to the control. If the VirtualMode property is False, the DetectAddNew detects when
a new record is added to the recordset and updates the control's list so the new record is
included. Use the ConditionalFormats method to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a

formula.

The following VB sample binds an ADO recordset to the ExList control:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

Set List1.DataSource = rs

The DataSource clears the columns collection, and fill the record set into the list.

The following C++ sample binds a table to the control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_list.BeginUpdate();
 m_list.SetColumnAutoResize(FALSE);
 m_list.SetDataSource(spRecordset);

 m_list.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The #import statement imports definitions for ADODB type library, that's used to fill the
control

property List.DefaultItemHeight as Long
Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression that indicates the default item's height.

The DefaultItemHeight property specifies the height of the items. Changing the property
fails if the control contains already items. You can change the DefaultItemHeight property at
design time, or at runtime, before adding any new items to the Items collection. Use the
ItemHeight property to specify the height of a specified item. Use the ScrollBySingleLine
property when using the items with different heights. Use the CellSingleLine property to
specify whether the cell displays the caption using multiple lines.

property List.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for control objects.

Type Description
Type as
DescriptionTypeEnum A long expression that defines the part being changed.

String A string value that indicates the part's description.

Use the Description property to customize the captions for control filter bar window. For
instance, the Description(exFilterAll) = "(Include All)" changes the "(All)" item description in
the filter bar window. Use the Description property to change the predefined strings in the
filter bar window. Use FilterBarDropDownWidth property to specify the width of the drop
down filter window.

property List.DetectAddNew as Boolean
Specifies whether the control detects when a new record is added to the bounded
recordset.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a new record is added to the bounded
recordset.

The DetectAddNew property detects adding new records to a recordset. Use the
DataSource property to bound the control to a table. If the DetectAddNew property is True,
and user adds a new record to the bounded recordset, the control automatically adds a
new item to the control. The DetectAddNew property has effect only if the control is
bounded to an ADO, ADODB recordset, using the DataSource property.

property List.DetectDelete as Boolean
Specifies whether the control detects when a record is deleted from the bounded
recordset.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a record is deleted from the bounded
recordset.

The property has effect only if the DataSource property points to a ADO recordset. If the
DetectDelete property is True, the control is notified when a record is deleted, and updates
the control.

property List.DrawGridLines as GridLinesEnum
Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the DrawGridLines property to add grid lines to the current view. Use the
ColumnsAllowSizing property to allow resizing the columns, when the control's header bar is
not visible. Use the HeaderVisible property to show or hide the control's header bar.

property List.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ForeColor property to change the
control's foreground color. Use the BackColor property to change the control's background
color. Use the EnableItem to disable an item. Use the CellEnabled property to disable a
cell. Use the Enabled property to disable a column. Use the SelectableItem property to
specify whether an user can select an item.

method List.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

The following VB sample prevents painting the control while the control loads data from a
recordset:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

With List1
 .BeginUpdate
 For Each f In rs.Fields
 .Columns.Add f.Name
 Next
 .PutItems rs.GetRows()
 .EndUpdate
End With

The following C++ sample prevents refreshing the control while adding columns and items
from an ADODB recordset:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{

 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_list.BeginUpdate();
 m_list.SetColumnAutoResize(FALSE);
 CColumns columns = m_list.GetColumns();
 long nCount = spRecordset->Fields->Count;
 if (nCount > 0)
 {
 // Adds the columns
 for (long i = 0 ; i < nCount; i++)
 columns.Add(spRecordset->Fields->Item[i]->Name);
 m_list.PutItems(&spRecordset->GetRows(-1), vtMissing);
 }
 m_list.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The sample adds a column for each field in the recordset, and add a new items for each
record. You can use the DataSource property to bind a recordset to the control. The
#import statement imports definitions for ADODB type library, that's used to fill the control.

The following VB.NET sample prevents refreshing the control while adding columns and
items:

With AxList1
 .BeginUpdate()
 With .Columns
 .Add("Column 1")
 .Add("Column 2")
 End With
 With .Items
 Dim iNewItem As Integer
 iNewItem = .Add("Item 1")
 .Caption(iNewItem, 1) = "SubItem 1"
 iNewItem = .Add("Item 2")
 .Caption(iNewItem, 1) = "SubItem 2"
 End With
 .EndUpdate()
End With

The following C# sample prevents refreshing the control while adding columns and items:

axList1.BeginUpdate();
EXLISTLib.Columns columns = axList1.Columns;
columns.Add("Column 1");
columns.Add("Column 2");
EXLISTLib.Items items = axList1.Items;
int iNewItem = items.Add("Item 1");
items.set_Caption(iNewItem, 1, "SubItem 1");
iNewItem = items.Add("Item 2");
items.set_Caption(iNewItem, 1, "SubItem 2");
axList1.EndUpdate();

The following VFP sample prevents refreshing the control while adding new columns and
items:

thisform.List1.BeginUpdate()
with thisform.List1.Columns
 .Add("Column 1")
 .Add("Column 2")
endwith

with thisform.List1.Items
 local i
 i = .Add("Item 1")
 .Caption(i, 1) = "SubItem 1"
 i = .Add("Item 2")
 .Caption(i, 1) = "SubItem 2"
endwith
thisform.List1.EndUpdate()

property List.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method List.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description
Variant A Variant expression that defines the result of the call.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the background color of the control:

Debug.Print List1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method List.Export ([Destination as Variant], [Options as Variant])
Exports the control's data to a CSV or HTML format.

Type Description

Destination as Variant

A String expression that specifies the file/format to be
created. The Destination parameter indicates the format
to be created as follows:

if "htm" or "html", the control returns the HTML format
(including CSS style)
Any file-name that ends on ".htm" or ".html" creates
the file with the HTML format inside
missing, empty, or any other case the Export exports
the control's data in CSV format.

No error occurs, if the Export method can not create the
file.

Options as Variant A String expression that specifies the options to be used
when exporting the control's data, as explained bellow.

Return Description

Variant
A String expression that indicates the format being
exported. It could be CSV or HTML format based on the
Destination parameter.

The Export method can export the control's DATA to a CSV or HTML format. The Export
method can export a collection of columns from selected, visible, check or all items. By
default, the control export all items, unless there is no filter applied on the control, where
only visible items are exported. No visual appearance is saved in CSV format, instead the
HTML format includes the visual appearance in CSS style.

The Options parameter consists a list of fields separated by | character, in the following
order:

1. The first field could be all, vis, sel or chk, to export all, just visible, selected or
checked items. The all option is used, if the field is missing. The all option displays all
items, including the hidden or collapsed items. The vis option includes the visible items
only, not including the child items of a collapsed item, or not-visible items (item's height
is 0). The sel options lists the items being selected. The chk option lists all check and
visible items. If chk option is used, the first column in the columns list should indicate
the index of the column being queried for a check box state.

2. the second field indicates the column to be exported. All visible columns are exported,

if missing. The list of columns is separated by , character, and indicates the index of
the column to be shown on the exported data. The first column in the list indicates the
column being queried, if the option chk is used.

3. the third field indicates the character to separate the fields inside each exported line
[tab character-if missing]. This field is valid, only when exporting to a CSV format

4. the forth field could be ansi or unicode, which indicates the character-set to save the
control's content to Destination. For instance, Export(Destination,"|||unicode") saves
the control's content to destination in UNICODE format (two-bytes per character). By
default, the Export method creates an ANSI file (one-byte character)

The Destination parameter indicates the file to be created where exported date should be
saved. For instance, Export("c:\temp\export.html") exports the control's DATA to
export.html file in HTML format, or Export("","sel|0,1|;") returns the cells from columns 0, 1
from the selected items, to a CSV format using the ; character as a field separator.

The "CSV" refers to any file that:

CSV stands for Comma Separated Value
is plain text using a character set such as ASCII, Unicode,
consists of records (typically one record per line),
with the records divided into fields separated by delimiters (typically a single reserved
character such as tab, comma, or semicolon; sometimes the delimiter may include
optional spaces),
where every record has the same sequence of fields

The "HTML" refers to any file that:

HTML stands for HyperText Markup Language.
is plain text using a character set such as ASCII, Unicode
It's the way web pages are encoded to handle things like bold, italics and even color
text red.

You can use the Copy/CopyTo to export the control's view to
clipboard/EMF/BMP/JPG/PNG/GIF or PDF format.

property List.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color

A color expression that defines the background color for
description of the control's filter. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the BackColorSortBar property to specify the background color
of the control's sort bar.

property List.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. For instance, if the control filters items based on the columns "EmployeeID" and
"ShipVia", the control's filter bar caption would appear such as "[EmployeeID] = '...' and
[ShipVia] = '...'". The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include

the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the

height of the control's filter bar. Use the FilterBarFont property to specify the font for the
control's filter bar. Use the Description property to define predefined strings in the filter bar
caption. The VisibleItemCount property specifies the number of visible items in the list. The
MatchItemCount property returns the number of matching items. The FilterBarPromptVisible
property specifies whether how/where the control's filter/prompt is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items as indicated by Count property.
At runtime the itemcount is a positive integer that indicates the count of all items. For
instance, "value + `<r><fgcolor=808080>Total: ` + itemcount" includes in the filter bar
the number of items aligned to the right.
visibleitemcount keyword returns the number of visible items as indicated by
VisibleItemCount property. At runtime, the visibleitemcount is a positive integer if no
filter is applied, and negative if a filter is applied. If positive, it indicates the number of
visible items. The visible items does not include child items of a collapsed item. If
negative, a filter is applied, and the absolute value minus one, indicates the number of
visible items after filter is applied. 0 indicates no visible items, while -1 indicates that a
filter is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (visibleitemcount < 0 ? (`Result: ` + (abs(visibleitemcount) - 1)
) : (`Visible: ` + visibleitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of visible items, if filter is applied, aligned
to the right
matchitemcount keyword returns the number of items that match the filter as
indicated by MatchItemCount property. At runtime, the matchitemcount is a positive
integer if no filter is applied, and negative if a filter is applied. If positive, it indicates the
number of items within the control (Count property). If negative, a filter is applied, and
the absolute value minus one, indicates the number of matching items after filter is
applied. 0 indicates no visible items, while -1 indicates that a filter is applied, but no
item matches the filter criteria. For instance, "value + `<r><fgcolor=808080>` + (
matchitemcount < 0 ? (`Result: ` + (abs(matchitemcount) - 1)) : (`Visible: ` +
matchitemcount))" includes "Visible: " plus number of visible items, if no filter is
applied or "Result: " plus number of macthing items, if filter is applied, aligned to the
right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the

number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned
to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The
FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. A column is available to be filtered, if the
DisplayFilterButton property of the Column object, is True. At runtime, the available
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]
<fgcolor> </fgcolor>[<s>RequiredDate</s>]<fgcolor> </fgcolor>
[<s>ShippedDate</s>]<fgcolor> </fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>
[<s>Select</s>]</fgcolor>", so the control automatically applies HTML format, which
you can change it. For instance, "value + ` ` + available", displays the current filter,
including all available columns to be filtered. For instance, the "value + `<r>` + available
replace `C0C0C0` with `FF0000`" displays the available columns aligned to the right
with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. A column is available to be filtered, if the DisplayFilterButton
property of the Column object, is True. At runtime, the allui keyword may return a string
such as "[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results
all keyword returns the list of all columns (visible or hidden) no matter if the
DisplayFilterButton property is True or False. At runtime, the all keyword may return a
string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor><fgcolor> </fgcolor>
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control automatically applies
HTML format, which you can change it. For instance, "all", displays the current filter,

including all other columns. For instance, the "((all + `<fgcolor=808080>` + (
matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` + abs(matchitemcount + 1) + `
result(s)`) : (`<r><fgcolor=808080>`+ itemcount + ` item(s)`))) replace `[` with
`<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with ` </bgcolor>
</fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0><fgcolor=FFFFFF> ` replace
`</s>]` with ` </bgcolor></fgcolor>`)" displays all columns with different
background/foreground colors including the number of items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show

about:blank

lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a

known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property List.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
control's list.

Type Description

Double A double expression that indicates the height of the drop
down filter window.

Use the FilterBarDropDownHeight property to specify the height of the drop down window
filter window. Use the DisplayFilterButton property to display a filter button to the column's
caption. BY default, the FilterBarDropDownHeight property is 0.5. It means, the height of
the drop down filter window is half of the height of the control's list. Use the Description
property to define predefined strings in the filter bar. Use FilterBarDropDownWidth property
to specify the width of the drop down filter window.

If the FilterBarDropDownHeight property is negative, the absolute value of the
FilterBarDropDownHeight property indicates the height of the drop down filter window in
pixels. In this case, the height of the drop down filter window is not proportionally with the
height of the control's list area. For instance, the following sample specifies the height of the
drop down filter window being 100 pixels:

With List1
 .FilterBarDropDownHeight = -100
End With

If the FilterBarDropDownHeight property is greater than 0, it indicates the height of the drop
down filter window proportionally with the height of the control's height list. For instance, the
following sample specifies the height of the drop down filter window being the same with
the height of the control's list area:

With List1
 .FilterBarDropDownHeight = 1
End With

The drop down filter window always include an item.

property List.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter.

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use the FilterBarHeight property to specify the height
of the filter bar. Use the FilterBarCaption property to define the control's filter bar caption.
Use the Refresh method to refresh the control.

The following VB sample assigns by code a new font to the filter bar control:

With List1
 With .FilterBarFont
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the filter bar control:

COleFont font = m_list.GetFilterBarFont();
font.SetName("Tahoma");
m_list.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the filter bar control:

With AxList1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .FilterBarFont = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the filter bar control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);
axList1.FilterBarFont = font;
axList1.CtlRefresh();

The following VFP sample assigns by code a new font to the filter bar control:

with thisform.List1.Object
 .FilterBarFont.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the filter bar control:

FilterBarFont
{
 Name = "Tahoma"
}

property List.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarFont property to specify the filter bar's
font. Use the FilterBarCaption property to specify the caption of the control's filter bar.

property List.FilterBarHeight as Long
Specifies the height of the control's filter bar. If the value is less than 0, the filter bar is
automatically resized to fit its description.

Type Description
Long A long expression that indicates the height of the filter bar.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the FilterBarFont property to specify
the font for the control's filter bar. Use the ShowFilter method to show programmatically the
column's drop down filter window.

property List.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The DisplayFilterButton property specifies whether the column's header displays
a filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied. The FilterBarFont property specifies the font to be
used in the filter bar. The FilterBarBackColor property specifies the background color or the
visual aspect of the control's filter bar. The FilterBarForeColor property specifies the
foreground color or the control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property List.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property List.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

property List.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The DisplayFilterButton property specifies whether the column's header displays a
filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may

include wild characters as follows:
'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property List.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarCaption property defines the caption to be displayed on the control's filter bar. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The DisplayFilterButton property specifies whether the
column's header displays a filter button. The VisibleItemCount property retrieves the
number of visible items in the list. The control fires the FilterChanging event just before
applying the filter, and FilterChange once the list gets filtered.

The following screen show shows the filter prompt:

The following screen show shows the list once the user types "london":

property List.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are listed in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not listed in
the FilterCriteria property, and the user filters values by that column, the AND operator is
used by default. For instance, let's say that we have three columns, and FilterCriteria
property is "%0 or %1". If the user filter for all columns, the filter clause is equivalent with (
%0 or %1) and %2, and it means all that match the third column, and is in the first or the
second column.

Use the Filter and FilterType properties to define a filter for a column. The ApplyFilter
method should be called to update the control's content after changing the Filter or
FilterType property, in code! Use the DisplayFilterButton property to display a drop down
button to filter by a column.

property List.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that indicates the control's font.

Use the Font property to change the control's font . Use the FilterBarFont property to
assign a different font for the control's filter bar. Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while adding
new columns or items. Use the DefaultItemHeight property to specify the default height for
all items in the control.

The following VB sample assigns by code a new font to the control:

With List1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_list.GetFont();
font.SetName("Tahoma");
m_list.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxList1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);
axList1.Font = font;
axList1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.List1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property List.ForeColor as Color
Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

The ForeColor property changes the foreground color of the control's scrolled area. The
ExList control can group the columns into two categories: locked and unlocked. The Locked
category contains all the columns that are fixed to the left area of the client area. These
columns cannot be scrolled horizontally. Use the CountLockedColumns to specify the
number of locked columns. The unlocked are contains the columns that can be scrolled
horizontally. To change the background color of the control's locked area use
BackColorLock property. Use the CellForeColor property to specify the cell's foreground
color. Use the ItemForeColor property to specify the item's foreground color.

property List.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. Use the Font property to change the control's font. Use the Add method to add new
columns to the control. Use the HeaderVisible property to hide the control's header bar.

property List.ForeColorLock as Color
Retrieves or sets a value that indicates the control's foreground color for the locked area.

Type Description

Color A color expression that indicates the foreground color of
the control's un-scrolled area

The ExList control can group the control columns into two categories: locked and unlocked.
The Locked category contains all the columns that are fixed to the left area of the client
area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. Use BackColorLock property to change the background color of the
control's locked area . Use the Def(exCellForeColor) property to specify the foreground
color for all cells in the column.

property List.ForeColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's sort bar.

Use the ForeColorSortBar property to specify the foreground color of the caption in the
control's sort bar. Use the SortBarVisible property to show the control's sort bar. Use the
SortBarCaption property to specify the caption of the sort bar, when the control's sort bar
contains no columns. Use the BackColorSortBar property to specify the background color
of the control's sort bar. Use the BackColorSortBarCaption property to specify the caption's
background color in the control's sort bar. Use the ForeColor property to specify the
control's foreground color. Use the ForeColorHeader property to specify the background
color of the control's header bar.

method List.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the List.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property List.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

method List.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to improve performance of the
control while loading data into it.

property List.FullRowSelect as Boolean
Enables full-row selection in the control.

Type Description

Boolean A boolean expression that indicates whether the full-row
selection is enabled or disabled.

The FullRowSelect property specifies whether the selection spans the entire width of the
control. The column pointed by the SelectColumnIndex specifies the column where the
selected cell is marked. Use the SelectItem property to select programmatically an item.
Use the SingleSel property to allow multiple items selection.

method List.GetItems (Options as Variant)
Gets the collection of items into a safe array,

Type Description

Options as Variant

Specifies a long expression as follows:

If 1, the GetItems method returns the one-
dimensional array of indexes of items in the control as
they are displayed (sorted, filtered)
else the GetItems method gets a safe array that
holds the items (values in the cells) in the control.

Return Description

Variant

A safe array that holds the items in the control. The safe
array being returned has two dimensions. The first
dimension holds the collection of columns, and the second
holds the cells.

The GetItems method to get a safe array that holds the items in the control. The GetItems
method gets the items as they are displayed, sorted and filtered. Use the PutItems method
to load an array to the control. The method returns nothing if the control has no columns or
items. Use the Items property to access the items collection. You can use the GetItems(1)
method to get the list of indexes for the items as they are displayed, sorted and filtered.
The GetItems method returns an empty expression (VT_EMPTY), if there is no items in
the result.

The following VB sample lists the indexes of the items in the control:

Dim v As Variant
For Each v In List1.GetItems(1)
 Debug.Print v
Next

The following VB sample gets the items from a control and put them to the second one:

With List2
 .BeginUpdate
 .Columns.Clear
 Dim c As EXLISTLibCtl.Column
 For Each c In List1.Columns
 .Columns.Add c.Caption

 Next
 .PutItems List1.GetItems
 .EndUpdate
End With

The following C++ sample gets the items from a control an put to the second one:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_list2.BeginUpdate();
 CColumns columns = m_list.GetColumns(), columns2 = m_list2.GetColumns();
 for (long i = 0; i < columns.GetCount(); i++)
 columns2.Add(columns.GetItem(COleVariant(i)).GetCaption());
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtItems = m_list.GetItems(vtMissing);
 m_list2.PutItems(&vtItems, vtMissing);
m_list2.EndUpdate();

The following C# sample gets the items from a control and put them to a second one:

axList2.BeginUpdate();
for (int i = 0; i < axList1.Columns.Count; i++)
 axList2.Columns.Add(axList1.Columns[i].Caption);
object vtItems = axList1.GetItems("");
axList2.PutItems(ref vtItems);
axList2.EndUpdate();

The following VB.NET sample gets the items from a control and put them to a second one:

With AxList2
 .BeginUpdate()
 Dim j As Integer
 For j = 0 To AxList1.Columns.Count - 1
 .Columns.Add(AxList1.Columns(j).Caption)
 Next
 Dim vtItems As Object
 vtItems = AxList1.GetItems("")
 .PutItems(vtItems)

 .EndUpdate()
End With

The following VFP sample gets the items from a control and put them to a second one:

local i
with thisform.List2
 .BeginUpdate()
 for i = 0 to thisform.List1.Columns.Count - 1
 .Columns.Add(thisform.List1.Columns(i).Caption)
 next
 local array vtItems[1]
 vtItems = thisform.List1.GetItems("")
 .PutItems(@vtItems)
 .EndUpdate()
endwith

property List.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines. Use the ColumnsAllowSizing property to allow resizing the
columns, when the control's header bar is not visible. Use the HeaderVisible property to
show or hide the control's header bar.

property List.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines.

The following VB sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = GridLinesStyleEnum.exGridLinesHDash Or
GridLinesStyleEnum.exGridLinesVSolid

The following VB/NET sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXLISTLib.GridLinesStyleEnum.exGridLinesHDash Or
exontrol.EXLISTLib.GridLinesStyleEnum.exGridLinesVSolid

The following C# sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXLISTLib.GridLinesStyleEnum.exGridLinesHDash |
exontrol.EXLISTLib.GridLinesStyleEnum.exGridLinesVSolid;

The following Delphi sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle := Integer(EXLISTLib.GridLinesStyleEnum.exGridLinesHDash) Or
Integer(EXLISTLib.GridLinesStyleEnum.exGridLinesVSolid);

The following VFP sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = 36

property List.HeaderAppearance as AppearanceEnum
Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the header
bar appearance.

Use the HeaderAppearance property to change the appearance of the control's header bar.
Use the HeaderVisible property to hide the control's header bar. Use the Appearance
property to specify the control's appearance. Use the ColumnsAllowSizing property to allow
resizing the columns, when the control's header bar is not visible.

property List.HeaderHeight as Long
Retrieves or sets a value indicating control's header height.

Type Description

Long A long expression that indicates the height of the control's
header bar.

Use the HeaderHeight property to change the height of the control's header bar. Use the
HeaderVisible property to hide the control's header bar. Use the LevelKey property to
display the control's header bar using multiple levels. If the control displays the header bar
using multiple levels the HeaderHeight property gets the height in pixels of a single level in
the header bar. The control's header displays multiple levels if there are two or more
neighbor columns with the same non empty level key. Use the HTMLCaption property to
display multiple lines in the column's caption. Use the Add method to add new columns to
the control. The HeaderSingleLine property specifies whether the header displays captions
using multiple lines.

For instance, the following VB sample displays the control's header bar using multiple lines:

With List1
 .BeginUpdate
 .HeaderHeight = 32
 With .Columns.Add("Line 1" & vbCrLf & "Line 2")
 .HeaderMultiLine = True
 End With
 With .Columns.Add("Line 1" & vbCrLf & "Line 2")
 .HeaderMultiLine = True
 End With
 .EndUpdate
End With

The following C++ sample displays a header bar using multiple lines:

#include "Columns.h"
#include "Column.h"
m_list.BeginUpdate();
m_list.SetHeaderHeight(32);
m_list.SetHeaderVisible(TRUE);
CColumn column1(V_DISPATCH(&m_list.GetColumns().Add("Column 1")));
 column1.SetHTMLCaption("Line1
Line2");

CColumn column2(V_DISPATCH(&m_list.GetColumns().Add("Column 2")));
 column2.SetHTMLCaption("Line1
Line2");
m_list.EndUpdate();

The following VB.NET sample displays a header bar using multiple lines:

With AxList1
 .BeginUpdate()
 .HeaderVisible = True
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate()
End With

The following C# sample displays a header bar using multiple lines:

axList1.BeginUpdate();
axList1.HeaderVisible = true;
axList1.HeaderHeight = 32;
EXLISTLib.Column column1 = axList1.Columns.Add("Column 1") as EXLISTLib.Column ;
column1.HTMLCaption = "Line1
Line2";
EXLISTLib.Column column2 = axList1.Columns.Add("Column 2") as EXLISTLib.Column;
column2.HTMLCaption = "Line1
Line2";
axList1.EndUpdate();

The following VFP sample displays a header bar using multiple lines:

with thisform.List1
 .BeginUpdate()
 .HeaderVisible = .t.
 .HeaderHeight = 32
 with .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 endwith

 with .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 endwith
 .EndUpdate()
endwith

property List.HeaderSingleLine as Boolean
Specifies whether the control resizes the columns header and wraps the captions in single
or multiple lines.

Type Description

Boolean A boolean expression that specifies whether the header
displays single or multiple lines.

By defauly, the HeaderSingleLine property is True. If the HeaderSingleLine property is False
the control breaks the column's caption as soon as the user resizes the column. In this
case the HeaderHeight property specifies the maximum height of the control's
header. The initial height is computed based on the control's Font property. The Caption
property specifies the caption of the column being displayed in the control's header. The
HTMLCaption property specifies the HTML caption of the column being displayed in the
column's header. Use the LevelKey property to display the control's header on multiple
levels.

property List.HeaderVisible as Boolean
Retrieves or sets a value that indicates whether the the list's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
header bar is visible or hidden.

By default, the HeaderVisible property is True. Use the HeaderVisible property to hide the
control's header bar. Use the HeaderAppearance property to change the header bar's
appearance. Use the BackColorHeader and ForeColorHeader properties to customize the
control's header. Use the BackColorLevelHeader property to specify the background color
of the header when it displays multiple levels. Use the HeaderHeight property to specify the
height of the control's header bar. Use the ColumnsAllowSizing property to allow resizing
the columns, when the control's header bar is not visible.

property List.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A boolean expression that determines whether selected
item appears highlighted when a control loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form or a dialog box has the focus. Use the SelForeColor
and SelBackColor property to customize the colors for the selected items in the control.
Use the SelectItem property to programmatically select an item. Use the SelectedItem and
SelectCount property to retrieve the list of selected items. Use the SelectableItem property
to specify whether an items can be selected.

property List.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelBackColor property specifies the selection background color. The SelBackMode
property specifies the way the selected items are shown in the control.

The following sample displays a different background color mouse passes over an item.

VBA

With List1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .Add "Item A"
 .Add "Item B"
 .Add "Item C"
 End With
 .EndUpdate
End With

VB6

With List1
 .BeginUpdate
 .Columns.Add "Def"

 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .Add "Item A"
 .Add "Item B"
 .Add "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exlist1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .Add("Item A")
 .Add("Item B")
 .Add("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxList1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .Add("Item A")
 .Add("Item B")
 .Add("Item C")
 End With
 .EndUpdate()

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXLISTLib' for the library: 'ExList 1.0 Control Library'

 #import <ExList.dll>
 using namespace EXLISTLib;
*/
EXLISTLib::IListPtr spList1 = GetDlgItem(IDC_LIST1)->GetControlUnknown();
spList1->BeginUpdate();
spList1->GetColumns()->Add(L"Def");
spList1->PutHotBackColor(RGB(0,0,128));
spList1->PutHotForeColor(RGB(255,255,255));
EXLISTLib::IItemsPtr var_Items = spList1->GetItems();
 var_Items->Add("Item A");
 var_Items->Add("Item B");
 var_Items->Add("Item C");
spList1->EndUpdate();

C++ Builder

List1->BeginUpdate();
List1->Columns->Add(L"Def");
List1->HotBackColor = RGB(0,0,128);
List1->HotForeColor = RGB(255,255,255);
Exlistlib_tlb::IItemsPtr var_Items = List1->Items;
 var_Items->Add(TVariant("Item A"));
 var_Items->Add(TVariant("Item B"));
 var_Items->Add(TVariant("Item C"));
List1->EndUpdate();

C#

exlist1.BeginUpdate();
exlist1.Columns.Add("Def");

exlist1.HotBackColor = Color.FromArgb(0,0,128);
exlist1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXLISTLib.Items var_Items = exlist1.Items;
 var_Items.Add("Item A");
 var_Items.Add("Item B");
 var_Items.Add("Item C");
exlist1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="List1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 List1.BeginUpdate()

 List1.Columns.Add("Def")

 List1.HotBackColor = 8388608

 List1.HotForeColor = 16777215

 var var_Items = List1.Items

 var_Items.Add("Item A")

 var_Items.Add("Item B")

 var_Items.Add("Item C")

 List1.EndUpdate()

</SCRIPT>

C# for /COM

axList1.BeginUpdate();
axList1.Columns.Add("Def");

axList1.HotBackColor = Color.FromArgb(0,0,128);
axList1.HotForeColor = Color.FromArgb(255,255,255);
EXLISTLib.Items var_Items = axList1.Items;
 var_Items.Add("Item A");
 var_Items.Add("Item B");
 var_Items.Add("Item C");
axList1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exlist1.BeginUpdate()

 exlist1.Columns().Add("Def")

 exlist1.HotBackColor(WinApi::RGB2int(0,0,128))

 exlist1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exlist1.Items()
 com_Items = var_Items

 com_Items.Add("Item A")

 com_Items.Add("Item B")

 com_Items.Add("Item C")

 exlist1.EndUpdate()

}

VFP

with thisform.List1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .Add("Item A")
 .Add("Item B")
 .Add("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oList,var_Items

oList = form.Activex1.nativeObject
oList.BeginUpdate()
oList.Columns.Add("Def")
oList.HotBackColor = 0x800000
oList.HotForeColor = 0xffffff
var_Items = oList.Items
 var_Items.Add("Item A")
 var_Items.Add("Item B")
 var_Items.Add("Item C")
oList.EndUpdate()

XBasic (Alpha Five)

Dim oList as P
Dim var_Items as P

oList = topparent:CONTROL_ACTIVEX1.activex
oList.BeginUpdate()
oList.Columns.Add("Def")
oList.HotBackColor = 8388608
oList.HotForeColor = 16777215
var_Items = oList.Items
 var_Items.Add("Item A")
 var_Items.Add("Item B")
 var_Items.Add("Item C")
oList.EndUpdate()

Delphi 8 (.NET only)

with AxList1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 Add('Item A');
 Add('Item B');
 Add('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with List1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);

 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 Add('Item A');
 Add('Item B');
 Add('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:Add("Item A")
 var_Items:Add("Item B")
 var_Items:Add("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oList,var_Items

oList = ole_1.Object
oList.BeginUpdate()
oList.Columns.Add("Def")
oList.HotBackColor = RGB(0,0,128)
oList.HotForeColor = RGB(255,255,255)
var_Items = oList.Items
 var_Items.Add("Item A")
 var_Items.Add("Item B")
 var_Items.Add("Item C")
oList.EndUpdate()

property List.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that indicates the foreground color for
item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelForeColor property specifies the selection foreground color.

The following sample displays a different background color mouse passes over an item.

VBA

With List1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .Add "Item A"
 .Add "Item B"
 .Add "Item C"
 End With
 .EndUpdate
End With

VB6

With List1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .Add "Item A"

 .Add "Item B"
 .Add "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exlist1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .Add("Item A")
 .Add("Item B")
 .Add("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxList1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .Add("Item A")
 .Add("Item B")
 .Add("Item C")
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXLISTLib' for the library: 'ExList 1.0 Control Library'

 #import <ExList.dll>
 using namespace EXLISTLib;
*/
EXLISTLib::IListPtr spList1 = GetDlgItem(IDC_LIST1)->GetControlUnknown();
spList1->BeginUpdate();
spList1->GetColumns()->Add(L"Def");
spList1->PutHotBackColor(RGB(0,0,128));
spList1->PutHotForeColor(RGB(255,255,255));
EXLISTLib::IItemsPtr var_Items = spList1->GetItems();
 var_Items->Add("Item A");
 var_Items->Add("Item B");
 var_Items->Add("Item C");
spList1->EndUpdate();

C++ Builder

List1->BeginUpdate();
List1->Columns->Add(L"Def");
List1->HotBackColor = RGB(0,0,128);
List1->HotForeColor = RGB(255,255,255);
Exlistlib_tlb::IItemsPtr var_Items = List1->Items;
 var_Items->Add(TVariant("Item A"));
 var_Items->Add(TVariant("Item B"));
 var_Items->Add(TVariant("Item C"));
List1->EndUpdate();

C#

exlist1.BeginUpdate();
exlist1.Columns.Add("Def");
exlist1.HotBackColor = Color.FromArgb(0,0,128);
exlist1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXLISTLib.Items var_Items = exlist1.Items;
 var_Items.Add("Item A");

 var_Items.Add("Item B");
 var_Items.Add("Item C");
exlist1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="List1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 List1.BeginUpdate()

 List1.Columns.Add("Def")

 List1.HotBackColor = 8388608

 List1.HotForeColor = 16777215

 var var_Items = List1.Items

 var_Items.Add("Item A")

 var_Items.Add("Item B")

 var_Items.Add("Item C")

 List1.EndUpdate()

</SCRIPT>

C# for /COM

axList1.BeginUpdate();
axList1.Columns.Add("Def");
axList1.HotBackColor = Color.FromArgb(0,0,128);
axList1.HotForeColor = Color.FromArgb(255,255,255);
EXLISTLib.Items var_Items = axList1.Items;
 var_Items.Add("Item A");

 var_Items.Add("Item B");
 var_Items.Add("Item C");
axList1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exlist1.BeginUpdate()

 exlist1.Columns().Add("Def")

 exlist1.HotBackColor(WinApi::RGB2int(0,0,128))

 exlist1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exlist1.Items()
 com_Items = var_Items

 com_Items.Add("Item A")

 com_Items.Add("Item B")

 com_Items.Add("Item C")

 exlist1.EndUpdate()

}

VFP

with thisform.List1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .Add("Item A")
 .Add("Item B")
 .Add("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oList,var_Items

oList = form.Activex1.nativeObject
oList.BeginUpdate()
oList.Columns.Add("Def")
oList.HotBackColor = 0x800000
oList.HotForeColor = 0xffffff
var_Items = oList.Items
 var_Items.Add("Item A")
 var_Items.Add("Item B")
 var_Items.Add("Item C")
oList.EndUpdate()

XBasic (Alpha Five)

Dim oList as P
Dim var_Items as P

oList = topparent:CONTROL_ACTIVEX1.activex

oList.BeginUpdate()
oList.Columns.Add("Def")
oList.HotBackColor = 8388608
oList.HotForeColor = 16777215
var_Items = oList.Items
 var_Items.Add("Item A")
 var_Items.Add("Item B")
 var_Items.Add("Item C")
oList.EndUpdate()

Delphi 8 (.NET only)

with AxList1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 Add('Item A');
 Add('Item B');
 Add('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with List1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);
 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 Add('Item A');

 Add('Item B');
 Add('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:Add("Item A")
 var_Items:Add("Item B")
 var_Items:Add("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oList,var_Items

oList = ole_1.Object
oList.BeginUpdate()
oList.Columns.Add("Def")
oList.HotBackColor = RGB(0,0,128)
oList.HotForeColor = RGB(255,255,255)
var_Items = oList.Items
 var_Items.Add("Item A")
 var_Items.Add("Item B")
 var_Items.Add("Item C")
oList.EndUpdate()

property List.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String

A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

If the Key is "OLEDragDropImage", it indicates the picture
to be shown while the control performs OLE Drag and
Drop operations. Currently, the "OLEDragDropImage"
has effect only for /COM version. In other words, you can
specify a custom-sized picture rather than image of the
dragging items, if you specify a picture with the name
"OLEDragDropImage" (no quotes included).

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this

https://exontrol.com/eximages.jsp

implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

property List.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

property List.HyperLinkColor as Color
Specifies the hyperlink color.

Type Description

Color A color expression that defines the color used by hyperlink
cells.

Use the HyperLinkColor property to specify the color used when the cursor is over the
hyperlink cells. A hyperlink cell has the CellHyperLink property true.

method List.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Image List
control (HIMAGELIST type).

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to list's image holder. The
ImageSize property defines the size (width/height) of the icons within the control's Images
collection. Use the ReplaceIcon method to update the images list collection at runtime. Use
the CellImage, CellImages properties to assign icons to a cell. Use the CellPicture property
to assign a custom size picture to a cell. Use the CheckImage or RadioImage property to
specify a different look for checkboxes or radio buttons in the cells.

The following VB sample loads an icon using the BASE64 encoded string:

With List1
 .BeginUpdate
 .Images
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwkQsuGQGJqrAxgAxjAwk9w2Th8Tf8uytIw2Py2OxucxKApuc0mfxuRzWXpmcymX0uQ14A0NB2O1xut1Eaw0oyuc3mq3WV3fCzM7ze33un0UZ5exoG+jW2yG43GA3fB4HBlGz2fU4s61nE13KjO+5unnfQ8vo9ew5GX7vizvXuXVjfF5fY+eV2cTzqcPC8bpuSyDZvM9qev66L2M9AbLtw7jFPs+r5Pu/kJMy+UIQw7KauPBzOuc/LzwKxSaNBE0FxK0UAtlDj9wEurvQ6/sNQrGz4RSm0ZxhELTPdICatjBUER5CLRQmuMeLBFsjxc0T4wfAkGp66TOvzHj1L7HkuO+osUSRHErsVKMqKJIyNSxCrcy7DqmTLDcwylHM5KbLMGNylskqhJLcOcq89zzQVB0JQq6osHyV0SjyQJEkgAJKlFIpw+lDUoijVHmd5+H+ebVHgZ54B+cDVHAB9THAH6MnAAJwAOYAHvLVtXoMx1ZkBSNcGAA9cOYAJgINWtIWAAFhV+AZAAO5gP2BV1V1GAZ8ViAB8B+eABn9aZ/D+fIHn+T6M0w1SAgA=="

 .Columns.Add("Column 1").HeaderImage = 1
 With .Items
 Dim i As Long
 i = .Add("Item 1")
 .CellImages(i, 0) = "2,3"
 End With
 .EndUpdate
End With

The following VB sample uses the Microsoft Image List control:

List1.Images ImageList1.hImageList

The following C++ sample loads icons from a BASE64 encoded string:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_list.BeginUpdate();
CString s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib";

s +=
"/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbs";

s +=
"NbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJA";

s +=
"kSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5Poyf5xoojKAg";

m_list.Images(COleVariant(s));
m_list.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_list.GetItems();
long h = items.Add(COleVariant("Item 1"));
items.SetCellImage(h, COleVariant((long) 0), 1);
h = items.Add(COleVariant("Item 2"));
items.SetCellImages(h, COleVariant((long) 0), COleVariant("2,3"));
m_list.EndUpdate();

The following VB.NET sample loads icons from a BASE64 encoded string:

Dim s As String
With AxList1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 Dim h As Integer
 h = .Add("Item 1")
 .CellImage(h, 0) = 1
 h = .Add("Item 2")

 .CellImages(h, 0) = "2,3"
 End With
 .EndUpdate()
End With

The following C# sample loads icons from a BASE64 encoded string:

axList1.BeginUpdate();
string s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5";

s = s + "Poyf5xoojKAg";
axList1.Images(s);
axList1.Columns.Add("Column 1");
int h = axList1.Items.Add("Item 1");
axList1.Items.set_CellImage(h, 0, 1);
h = axList1.Items.Add("Item 2");
axList1.Items.set_CellImages(h, 0, "2,3");
axList1.EndUpdate();

The following VFP sample loads icons from a BASE64 encoded string:

local s
With thisform.List1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrl"

 s = s +
"dr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeir"

 s = s +
"Goo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPP"

 s = s +
"kicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0D"

 s = s +

"wi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 local i
 i = .Add("Item 1")
 .CellImage(i, 0) = 1
 i = .Add("Item 2")
 .CellImages(i, 0) = "2,3"
 EndWith
 .EndUpdate()
EndWith

property List.ImageSize as Long
Retrieves or sets the size of control' icons/images/check-boxes/radio-buttons.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays (number ex-html tag, CellImage,
CellImages)
check-box or radio-buttons (CellHasCheckBox, CellHasRadioButton)
header's sorting or drop down-filter glyphs

property List.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, ColIndex as Long, HitTestInfo as HitTestInfoEnum)
as Long
Retrieves the item from point.

Type Description

X as OLE_XPOS_PIXELS A single expression that indicates the X position in client
coordinate.

Y as OLE_YPOS_PIXELS A single expression that indicates the Y position in client
coordinate.

ColIndex as Long A long value that indicates the column's index.
HitTestInfo as
HitTestInfoEnum

A HitTestInfoEnum expression that determines on return,
the position of the cursor within the cell.

Long A long expression that indicates item's index from point
(X,Y)

Use the ItemFromPoint property to get the item from the point specified by the {X,Y}. The X
and Y coordinates are expressed in client coordinates, so a conversion must be done in
case your coordinates are relative to the screen or to other window. If the X parameter is
-1 and Y parameter is -1 the ItemFromPoint property determines the index of the
item from the cursor. Use the ColumnFromPoint property to retrieve the column from
cursor. Use the SelectableItem property to specify the user can select an item.

The following VB sample displays the cell over the cursor:

Private Sub List1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If (i >= 0) Then
 If (c >= 0) Then
 Debug.Print .Items.Caption(i, c)
 End If
 End If
 End With
End Sub

The following C++ sample displays the cell over the cursor:

void OnMouseMoveList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));
 OutputDebugString(strCaption);
 }
}

The following VB.NET sample displays the cell over the cursor:

Private Sub AxList1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseMoveEvent) Handles AxList1.MouseMoveEvent
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 With AxList1.Items
 Debug.Write(.Caption(i, c))
 End With
 End If
End Sub

The following C# sample displays the cell over the cursor:

private void axList1_MouseMoveEvent(object sender,
AxEXLISTLib._IListEvents_MouseMoveEvent e)
{
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(i, c).ToString());
 }
}

The following VFP sample displays the cell over the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, i, hit
With thisform.List1
 c = 0
 hit = 0
 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 wait window nowait .Items.Caption(i, c)
 EndIf
EndWith

property List.Items as Items
Retrieves the control's item collection.

Type Description
Items An Items object that holds the control's items collection.

Use the Items property to access the items control. Use the Items collection to add or
remove items in the control. Use the PutItems method to load items from a safe array. Use
the Add method to add new items to the control's items collection. Use the DataSource to
add new columns and items to the control. Adding new items fails if the control has no
columns.

property List.ItemsAllowSizing as ItemsAllowSizingEnum
Retrieves or sets a value that indicates whether a user can resize items at run-time.

Type Description

ItemsAllowSizingEnum
An ItemsAllowSizingEnum expression that specifies
whether the user can resize a single item at runtime, or all
items, at once.

By default, the ItemsAllowSizing property is exNoSizing. Use the ItemsAllowSizing property
to specify whether all items are resizable. Use the ItemAllowSizing property of the Items
object to specify only when few items are resizable or not. Use the ItemHeight property to
specify the height of the item. The CellSingleLine property specifies whether a cell displays
its caption using multiple lines. The DefaultItemHeight property specifies the default height
of the items. The DefaultItemHeight property affects only items that are going to be added.
It doesn't affect items already added.

property List.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

columns size and position
current selection
scrolling position and size
sorting columns
filtering options
SearchColumnIndex property, indicates the column where the user can use the
control's incremental searching.

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is
displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

multiplesort="";singlesort="", removes any previously sorting
multiplesort="C3:1", sorts ascending the column with the index 3 (and add it to the sort
bar if visible)
singlesort="C4:2", sorts descending the column with the index 4 (it is not added to sort
bar panel)

https://www.youtube.com/watch?v=TbWWnDJlD9w

multiplesort="C3:1";singlesort="C4:2", sorts ascending the column with the index 3 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3 and 4.
multiplesort="C3:1 C5:2";singlesort="C4:2", sorts ascending the column with the index
3 (and add it to the sort bar if visible), sorts descending the column with the index 5 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3, 5 and 4.

The format of the Layout in non-encoded form is like follows:

c0.filtertype=0
c0.position=0
c0.select=0
c0.visible=1
c0.width=96
....
columns=13
collapse="0-3 5-63 80-81 83"
filterprompt=""
focus=8
focuscolumnindex=0
hasfilter=1
hscroll=0
multiplesort="C12:1 C2:2"
searchcolumnindex=3
select="39 2 13 8"
selectcolumnindex=0
singlesort="C5:2"
vscroll=12
vscrolloffset=0

property List.MarkSearchColumn as Boolean
Retrieves or sets a value that indicates whether the searching column is marked or
unmarked

Type Description

Boolean A boolean expression that indicates whether the searching
column is marked or unmarked.

The control supports incremental search feature. The MarkSearchColumn property
specifies whether the control highlights the searching column. Use the SearchColumnIndex
property to specify the index of the searching column. The user can change the searching
column by pressing the TAB ort Shift + TAB key. Use the AutoSearch property to specify
whether the control enables the incremental searching feature. Use the AutoSearch
property to specify the type of incremental searching the control supports within the column.
Use the UseTabKey property to specify whether the control uses the TAB key.

method List.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

Only for internal use.

property List.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode.

In the /NET Assembly, you have to use the AllowDrop property as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

Currently, the control supports only manual OLE Drag and Drop operations. See the
OLEStartDrag and OLEDragDrop events for more details about implementing drag and
drop operations into the control. Use the Background(exDragDropBefore) property to
specify the visual appearance for the dragging items, before painting the items. Use the
Background(exDragDropAfter) property to specify the visual appearance for the dragging
items, after painting the items. Use the Background(exDragDropList) property to specify the
graphic feedback for the item from the cursor, while the OLE drag and drop operation is
running. If the HTMLPicture("OLEDragDropImage") property points to a valid picture
object, it indicates the picture to be shown while the control performs OLE Drag and Drop
operations. Currently, the "OLEDragDropImage" has effect only for /COM version. In
other words, you can specify a custom-sized picture rather than image of the dragging
items, if you specify a picture with the name "OLEDragDropImage" (no quotes included).

https://exontrol.com/faq.jsp/net/#dragdrop

property List.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object that indicates the control's picture.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
PictureLevelHeader property to specify the picture on the control's levels header bar. Use
the CellPicture property to assign a picture to a cell. Use the BackColor property to specify
the control's background color. Use the SelBackMode property to define how the selected
items are painted.

property List.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the control's picture is displayed.

By default, the PictureDisplay property is exTile. Use the PictureDisplay property specifies
how the Picture is displayed on the control's background. If the control has no picture
associated the PictureDisplay property has no effect. Use the CellPicture property to assign
a picture to a cell. Use the BackColor property to specify the control's background color.
Use the SelBackMode property to define how the selected items are painted.

property List.PictureDisplayLevelHeader as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's header background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed on the control's header.

Use the PictureDisplayLevelHeader property to arrange the picture on the control's multiple
levels header bar. Use the PictureLevelHeader property to load a picture on the control's
header bar when it displays multiple levels. The control's header bar displays multiple levels
if there are two or more neighbor columns with the same non empty level key. Use the
LevelKey property to specify the control's level key.

property List.PictureLevelHeader as IPictureDisp
Retrieves or sets a graphic to be displayed in the control's header when multiple levels is
on.

Type Description

IPictureDisp A Picture object being displayed on the control's header
bar when multiple levels is on.

Use the PictureLevelHeader property to display a picture on the control's header bar when
it displays the columns using multiple levels. Use the PictureDisplayLevelHeader property to
arrange the picture on the control's multiple levels header bar. The control's header bar
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the LevelKey property to specify the control's level key. Use the Picture
property to display a picture on the control's list area. Use the BackColorLevelHeader
property to specify the background color for parts of the control's header bar that are not
occupied by column's headers.

method List.PutItems (Items as Variant, [Index as Variant])
Adds an array of integer, long, date, string, double, float, or variant arrays to the list,
beginning at Index.

Type Description

Items as Variant

An array that control uses to fill with. The array can be
one or two- dimensional. If the array is one-dimensional,
the control requires one column being added before calling
the PutItems method. If the Items parameter indicates a
two-dimensional array, the first dimension defines the
columns, while the second defines the number of items to
be loaded. For instance, a(2,100) means 2 columns and
100 items.

Index as Variant Optional. Only for future use.

Use the PutItems property when you have a table of elements stored by an array. Use the
GetItems method to get the items collection to a safe array. Use the Items property to
access the control's items collection. Use the Add method to add new items to the control's
items collection. Use the ColumnAutoResize property to specify whether the visible columns
should fit the control's client area. Use the DataSource property to bind the control to an
ADO or DAO recordset. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

The following VB sample loads an array to your control:

With List1
 .BeginUpdate
 .Columns.Add "Column 1"
 .PutItems Array("Item 1", "Item 2", "Item 3")
 .EndUpdate
End With

The following VB sample loads data from a string using the " " as delimiter:

Private Sub Form_Load()
 Dim s As String
 s = "a b c d"

 With List1

 .BeginUpdate
 .Columns.Add "Default"

 .PutItems Split(s, " ")
 .EndUpdate
 End With
End Sub

The following VB sample loads an array of strings:

Dim v(2, 2) As String
v(0, 0) = "One"
v(0, 1) = "Two"
v(0, 2) = "Three"
v(1, 0) = "One"
v(1, 1) = "Two"
v(1, 2) = "Three"
v(2, 0) = "One"
v(2, 1) = "Two"
v(2, 2) = "Three"

List1.BeginUpdate
 List1.Columns.Add "Column 1"
 List1.Columns.Add "Column 2"
 List1.Columns.Add "Column 3"
 List1.PutItems v
List1.EndUpdate

The following VB sample loads an ADO recordset using PutItems method.

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

List1.BeginUpdate
For Each f In rs.Fields
 List1.Columns.Add f.Name
Next

List1.PutItems rs.GetRows()
List1.EndUpdate

The following C++ sample loads records from an ADO recordset, using the PutItems
method:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_list.BeginUpdate();
 m_list.SetColumnAutoResize(FALSE);
 CColumns columns = m_list.GetColumns();
 for (long i = 0; i < spRecordset->Fields->Count; i++)
 columns.Add(spRecordset->Fields->GetItem(i)->Name);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 m_list.PutItems(&spRecordset->GetRows(-1), vtMissing);
 m_list.EndUpdate();

 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The sample uses the #import statement to import ADODB recordset's type library. The
sample enumerates the fields in the recordset and adds a new column for each field found.
Also, the sample uses the GetRows method of the ADODB recordset to retrieves multiple
records of a Recordset object into a safe array. Please consult the ADODB documentation
for the GetRows property specification.

The following VB.NET sample loads an array of elements:

With AxList1
 .BeginUpdate()
 .Columns.Add("Column 1")
 Dim c() As Integer = {1, 2, 3, 4, 5}
 .PutItems(c)
 .EndUpdate()
End With

property List.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the index of image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio's state: True
- Checked, False - Unchecked.

Long

A long expression that indicates the index of the image
used to paint the cells of radio type. The last 7 bits in the
high significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells. The RadioImage property defines the index of the icon being used by radio
buttons. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellImage or CellImages
property to assign one or multiple icons to a cell. Use the CellPicture property to assign a
picture to a cell. Use the CellStateChanged event to notify your application when the cell's
state is changed. Use the Images method to insert icons at runtime. The following samples
require a control with icons, else nothing will be changed. The ImageSize property defines
the size (width/height) of the control's check-box/radio-button.

property List.RClickSelect as Boolean
Retrieves or sets a value that indicates whether an item is selected using right mouse
button.

Type Description

Boolean A boolean expression that indicates whether an item is
selected using right mouse button.

Use the RClickSelect property to allow users select items using the right click. By default,
the RClickSelect property is False. The control fires the SelectionChanged event when user
selects an item. Use the SelectItem property to select programmatically select an item. Use
the SelectCount property to get the number of selected items. Use the SelectedItem
property to get the selected item. Use the FocusItem property to get the focused item. Use
the ItemFromPoint property to retrieve an item from the point.

method List.Refresh ()
Refreshes the control's content.

Type Description

The Refresh method forces repainting the control. Use the BeginUpdate and EndUpdate
methods to maintain the control's performance while adding multiple items or columns. Use
the hWnd property to get the handle of the control's window.

The following VB sample calls the Refresh method:

List1.Refresh

The following C++ sample calls the Refresh method:

m_list.Refresh();

The following VB.NET sample calls the Refresh method:

AxList1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axList1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.List1.Object.Refresh()

method List.RemoveSelection ()
Removes the selected items (including the descendents)

Type Description

The RemoveSelection method removes the selected items. The Remove method removes a
specific item. The UnselectAll method unselects all items in the list.

method List.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle

Index as Variant A long expression that indicates the index where icon is
inserted

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = List1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), in this case the i specifies
the index where the icon was added

The following sample shows how to replace an icon into control's images list::

 i = List1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is zero,
because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 List1.ReplaceIcon 0, i, in this case the i must be the index of the icon that follows to be
removed

The following sample shows how to clear the control's icons collection:

 List1.ReplaceIcon 0, -1

property List.RightToLeft as Boolean
Indicates whether the component should draw right-to-left for RTL languages.

Type Description

Boolean A boolean expression that specifies whether the control is
drawn from right to left or from left to right.

By default, the RightToLeft property is False. The RightToLeft gets or sets a value indicating
whether control's elements are aligned to right or left. The RightTolLeft property affects all
columns, and future columns being added.

Changing the RightToLeft property on True does the following:

displays the vertical scroll bar on the left side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to right, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "caption,picture,icons,icon,check")
aligns the locked columns to the right (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the right (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the right (FilterBarPromptVisible
property)

(By default) Changing the RightToLeft property on False does the following:

displays the vertical scroll bar on the right side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to left, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "check,icon,icons,picture,caption")
aligns the locked columns to the left (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the left (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the left (FilterBarPromptVisible
property)

property List.ScrollBars as ScrollBarsEnum
Specifies the type of scroll bars that control has.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that indicates the type of
control's scroll bars.

Use the ScrollBars property to disable the control's scroll bars. By default, the ScrollBars
property is exBoth, so both scroll bars are used if necessarily. Use the ScrollPos property
to get the control's scroll position. Use the EnsureVisibleItem method to ensure that an item
fits the control's client area. The EnsureVisibleColumn method ensures that the given
column fits the control's client area. Use the ScrollOrderParts property to customize the
order of the buttons in the scroll bar.

property List.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property List.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property List.ScrollBySingleLine as Boolean
Retrieves or sets a value that indicates whether the control scrolls the lines to the end.

Type Description

Boolean A boolean expression that indicates whether the control
scrolls the content row by row

By default, the ScrollBySingleLine property is False. We recommend to set the
ScrollBySingleLine property on True if you have one of the following:

If you have at least a cell that has CellSingleLine property on exCaptionWordWrap /
exCaptionBreakWrap / False, or a column with Def(exCellSingleLine) on
exCaptionWordWrap / exCaptionBreakWrap / False
If the control displays items with different height. Use the ItemHeight property to
specify the item's height.

Use the EnsureVisibleItem property to ensure that an item fits the control's client area. Use
the ScrollBars property to hide the control's scroll bars. Use the ItemsAllowSizing property
to specify whether all items are resizable or not. Use the ItemAllowSizing property to
specify whether the user can resize the item at runtime.

property List.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar.

property List.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollBars property to specify
which scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property List.ScrollOrderParts(ScrollBar as ScrollBarEnum) as String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.
r1 for exRightB1Part, (R1) The first additional button in the right or down side.

r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property List.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar. Use the ScrollFont property to specify the font
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With List1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxList1
 .BeginUpdate()
 .ScrollBars = EXLISTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part Or EXLISTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axList1.BeginUpdate();
axList1.ScrollBars = EXLISTLib.ScrollBarsEnum.exDisableBoth;
axList1.set_ScrollPartVisible(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part | EXLISTLib.ScrollPartEnum.exRightB1Part, true);
axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part , "1");
axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exRightB1Part, "2");
axList1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_list.BeginUpdate();
m_list.SetScrollBars(15 /*exDisableBoth*/);
m_list.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32 /*exRightB1Part*/,
TRUE);
m_list.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_list.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2"));
m_list.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.List1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property List.ScrollPartCaptionAlignment(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

The following VB sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

With List1
 .ScrollPartCaption(exHScroll,exLowerBackPart) = "left"
 .ScrollPartCaptionAlignment(exHScroll,exLowerBackPart) = LeftAlignment
 .ScrollPartCaption(exHScroll,exUpperBackPart) = "right"
 .ScrollPartCaptionAlignment(exHScroll,exUpperBackPart) = RightAlignment
 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following VB.NET sample displays "left" aligned to the left on the lower part of the
control's horizontal scroll bar, and "right" aligned to the right on the upper part of the
control's horizontal scroll bar:

With AxList1

.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exLowerBackPart,"left")

.set_ScrollPartCaptionAlignment(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exLowerBackPart,EXLISTLib.AlignmentEnum.LeftAlignment)

.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exUpperBackPart,"right")

.set_ScrollPartCaptionAlignment(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exUpperBackPart,EXLISTLib.AlignmentEnum.RightAlignment)

 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following C# sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exLowerBackPart,"left");

axList1.set_ScrollPartCaptionAlignment(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exLowerBackPart,EXLISTLib.AlignmentEnum.LeftAlignment);

axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exUpperBackPart,"right");

axList1.set_ScrollPartCaptionAlignment(EXLISTLib.ScrollBarEnum.exHScroll,EXLISTLib.ScrollPartEnum.exUpperBackPart,EXLISTLib.AlignmentEnum.RightAlignment);

axList1.ColumnAutoResize = false;
axList1.Columns.Add(1.ToString());
axList1.Columns.Add(2.ToString());
axList1.Columns.Add(3.ToString());
axList1.Columns.Add(4.ToString());

The following C++ sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's

horizontal scroll bar:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXLISTLib' for the library: 'ExList 1.0 Control Library'

 #import "ExList.dll"
 using namespace EXLISTLib;
*/
EXLISTLib::IListPtr spList1 = GetDlgItem(IDC_LIST1)->GetControlUnknown();
spList1->PutScrollPartCaption(EXLISTLib::exHScroll,EXLISTLib::exLowerBackPart,L"left");
spList1-
>PutScrollPartCaptionAlignment(EXLISTLib::exHScroll,EXLISTLib::exLowerBackPart,EXLISTLib::LeftAlignment);

spList1->PutScrollPartCaption(EXLISTLib::exHScroll,EXLISTLib::exUpperBackPart,L"right");
spList1-
>PutScrollPartCaptionAlignment(EXLISTLib::exHScroll,EXLISTLib::exUpperBackPart,EXLISTLib::RightAlignment);

spList1->PutColumnAutoResize(VARIANT_FALSE);
spList1->GetColumns()->Add(L"1");
spList1->GetColumns()->Add(L"2");
spList1->GetColumns()->Add(L"3");
spList1->GetColumns()->Add(L"4");

The following VFP sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

with thisform.List1
 .ScrollPartCaption(1,512) = "left"
 .ScrollPartCaptionAlignment(1,512) = 0
 .ScrollPartCaption(1,128) = "right"
 .ScrollPartCaptionAlignment(1,128) = 2
 .ColumnAutoResize = .F.
 .Columns.Add(1)
 .Columns.Add(2)
 .Columns.Add(3)
 .Columns.Add(4)

endwith

property List.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the ScrollOrderParts property to customize the order of the buttons in
the scroll bar.

property List.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the Background property to change the visual appearance for any part
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With List1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxList1
 .BeginUpdate()
 .ScrollBars = EXLISTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part Or EXLISTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axList1.BeginUpdate();
axList1.ScrollBars = EXLISTLib.ScrollBarsEnum.exDisableBoth;
axList1.set_ScrollPartVisible(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part | EXLISTLib.ScrollPartEnum.exRightB1Part, true);
axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part , "1");
axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exRightB1Part, "2");
axList1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_list.BeginUpdate();
m_list.SetScrollBars(15 /*exDisableBoth*/);
m_list.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32 /*exRightB1Part*/,
TRUE);
m_list.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_list.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2"));
m_list.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.List1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property List.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean
A boolean expression that specifies the scrollbar being
changed. True means Vertical scroll bar, False means
Horizontal scroll bar.

Long A long expression that defines the scroll bar position.

Use the ScrollPos property to change programmatically the position of the control's scroll
bar. Use the ScrollPos property to get the horizontal or vertical scroll position. Use the
ScrollBars property to define the control's scroll bars.

property List.ScrollThumbSize(ScrollBar as ScrollBarEnum) as Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property List.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. The OffsetChanged event notifies your application that
the user changes the scroll position. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub List1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Not Horizontal) Then
 List1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxList1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OffsetChangedEvent) Handles AxList1.OffsetChanged
 If (Not e.horizontal) Then
 AxList1.set_ScrollToolTip(EXLISTLib.ScrollBarEnum.exVScroll, "Record " &
e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedList1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_list.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axList1_OffsetChanged(object sender,
AxEXLISTLib._IListEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axList1.set_ScrollToolTip(EXLISTLib.ScrollBarEnum.exVScroll, "Record " +
e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.List1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property List.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollBars property to specify which
scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to specify
the width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify
the height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the
height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify
the visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a
fixed size for the scrollbar's thumb.

property List.SearchColumnIndex as Long
Retrieves or sets a value indicating the column's index that is used for auto search feature.

Type Description

Long A long expression indicating the column's index that is used
for auto search feature.

The SearchColumnIndex property indicates the index of the column being used by the
control's incremental search feature. The user changes the searching column if he presses
TAB or Shift + TAB. Use the UseTabKey property to specify whether the control uses the
TAB key. Use the AutoSearch property to specify whether the control enables the
incremental searching feature. Use the AutoSearch property to specify the type of
incremental searching the control supports within the column. Use the MarkSearchColumn
property to hide the rectangle around the searching column.

property List.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the color used for
painting the selection background. The last 7 bits in the
high significant byte of the color to indicates the identifier
of the skin being used. Use the Add method to add new
skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the background's part.

Use the SelBackColor and SelForeColor properties to define the colors used for selected
items. The control highlights the selected items only if the SelBackColor and BackColor
properties have different values, and the SelForeColor and ForeColor properties have
different values. Use the SelectCount property to get the number of selected items. Use the
SelectedItem property to get the selected item. Use the SelectItem to select or unselect a
specified item. Use the FocusItem property to get the focused item. The control fires the
SelectionChanged event when user changes the selection. Use the SelectableItem property
to specify the user can select an item. Use the ShowFocusRect property to specify whether
the control marks the focused item. How do I assign a new look for the selected item?

The following VB sample changes the visual appearance for the selected item. Shortly, we
need to add a skin to the Appearance object using the Add method, and we need to set the
last 7 bits in the SelBackColor property to indicates the index of the skin that we want to
use. The sample applies the " " to the selected item(s):

With List1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item

using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_list.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExList_Help\\selected.ebn")));
m_list.SetSelBackColor(0x23000000);
m_list.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxList1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExList_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axList1.VisualAppearance.Add(0x23, "D:\\Temp\\ExList_Help\\selected.ebn");
axList1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.List1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExList_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = 587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

How do I assign a new look for the selected item?

The component supports skinning parts of the control, including the selected item. Shortly,
the idea is that identifier of the skin being added to the Appearance collection is stored in
the first significant byte of property of the color type. In our case, we know that the
SelBackColor property changes the background color for the selected item. This is what we
need to change. In other words, we need to change the visual appearance for the selected
item, and that means changing the background color of the selected item. So, the following
code (blue code) changes the appearance for the selected item:

With List1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34000000
End With

Please notice that the 34 hexa value is arbitrary chosen, it is not a predefined value. Shortly,
we have added a skin with the identifier 34, and we specified that the SelBackColor
property should use that skin, in order to change the visual appearance for the selected
item. Also, please notice that the 34 value is stored in the first significant byte, not in other
position. For instance, the following sample doesn't use any skin when displaying the
selected item:

With List1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34
End With

This code (red code) DOESN'T use any skin, because the 34 value is not stored in the
higher byte of the color value. The sample just changes the background color for the
selected item to some black color (RGB(0,0,34)). So, please pay attention when you
want to use a skin and when to use a color. Simple, if you are calling &H34000000, you
have 34 followed by 6 (six) zeros, and that means the first significant byte of the color
expression. Now, back to the problem. The next step is how we are creating skins? or EBN
files? The Exontrol's exbutton component includes a builder tool that saves skins to EBN
files. So, if you want to create new skin files, you need to download and install the exbutton
component from our web site. Once that the exbutton component is installed, please follow
the steps.

Let's say that we have a BMP file, that we want to stretch on the selected item's
background.

1. Open the VB\Builder or VC\Builder sample

https://exontrol.com/exbutton.jsp

2. Click the New File button (on the left side in the toolbar), an empty skin is created.
3. Locate the Background tool window and select the Picture\Add New item in the

menu, the Open file dialog is opened.
4. Select the picture file (GIF, BMP, JPG, JPEG). You will notice that the visual

appearance of the focused object in the skin is changed, actually the picture you have
selected is tiled on the object's background.

5. Select the None item, in the Background tool window, so the focused object in the skin
is not displaying anymore the picture being added.

6. Select the Root item in the skin builder window (in the left side you can find the
hierarchy of the objects that composes the skin), so the Root item is selected, and so
focused.

7. Select the picture file you have added at the step 4, so the Root object is filled with the
picture you have chosen.

8. Resize the picture in the Background tool window, until you reach the view you want to
have, no black area, or change the CX and CY fields in the Background tool window,
so no black area is displayed.

9. Select Stretch button in the Background tool window, so the Root object stretches the
picture you have selected.

10. Click the Save a file button, and select a name for the new skin, click the Save button
after you typed the name of the skin file. Add the .ebn extension.

11. Close the builder

You can always open the skin with the builder and change it later, in case you want to
change it.

Now, create a new project, and insert the component where you want to use the skin, and
add the skin file to the Appearance collection of the object, using blue code, by changing
the name of the file or the path where you have selected the skin. Once that you have
added the skin file to the Appearance collection, you can change the visual appearance for
parts of the controls that supports skinning. Usually the properties that changes the
background color for a part of the control supports skinning as well.

property List.SelBackMode as BackModeEnum
Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates how the
selected items are displayed.

By default, the SelBackMode property is exOpaque. Use the SelBackMode property to
specify how the selection is shown in the control. Use the SelBackMode property to specify
a specify a semi-transparent color so the selected rows do not lose the colors, pictures,
when they are selected. Use the SelBackColor property to specify the visual appearance or
the background color for selected items. Use the SelForeColor property to specify the
selection foreground color. The SingleSel property specifies whether the control supports
single or multiple selection. The control fires the SelectionChanged event when user selects
an item. Use the SelectedItem property to get the selected item. Use the SelectItem to
select or unselect a specified item. The FullRowSelect property specifies whether the full
item or a single cell is being selected.

Let's say that you are using the BackColorAlternate property to alternate the colors for
rows in the list, so the list with no selection shows as follows:

By default, the SelBackMode property is exOpaque, so the selected items looks like
follows:

And if the SelBackMode property is set on exTransparent, the selected rows do not
change their background/foreground colors as shown bellow:

The following screen shot shows the control when no items are selected:

The following screen shot shows the first three items selected, while the SelBackMode
property is exOpaque:

The following screen shot shows the first three items selected, while the SelBackMode
property is exOpaque, and FullRowSelect property is 0:

The following screen shot shows the first three items selected, while the SelBackMode
property is exTransparent:

The following screen shot shows the first three items selected, while the SelBackMode
property is exGrid:

property List.SelectColumnIndex as Long
Retrieves or sets a value that indicates control column's index where the user is able to
select an item.

Type Description

Long
A boolean expression that specifies whether the user
selects cells only in SelectColumnIndex column, while the
FullRowSelect property is False

By default, the SelectColumn property is False. The SelectColumn property has effect only
if the FullRowSelect is False. The control displays the selected cell in the
SelectColumnIndex column. The SelectColumnIndex property specifies the index of selected
column. Use the SelectableItem property to specify the user can select an item.

property List.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button.

property List.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

Use the SelForeColor and SelBackColor properties to change the colors used for selected
items. The control highlights the selected items only if the SelBackColor and BackColor
properties have different values, and the SelForeColor and ForeColor properties have
different values. Use the SelectCount property to get the number of selected items. Use the
SelectedItem property to get the selected item. Use the SelectItem to select or unselect a
specified item. Use the FocusItem property to get the focused item. The control fires the
SelectionChanged event when user changes the selection. Use the SelectableItem property
to specify the user can select an item.

property List.SelLength as Long
Returns or sets the number of characters selected.

Type Description

Long A long expression that indicates the number of characters
selected.

By default, the SelLenght property is -1 (all text gets selected). Use the SelLenght
property to specify the number of characters being selected when the edit operations
begins. The SelStart and SelLength properties have effect only if the control is editable.
Use the AllowEdit property to allow control edits the data using a text box field. Use the Edit
method to programmatically edit a cell using a textbox field. The SelLength property must
be set in the code, before starting editing the cell. The control fires the BeforeCellEdit event
when the control is about to open the text box editor. The control fires the AfterCellEdit
property when the edit ends.

property List.SelStart as Long
Returns or sets the starting point of text selected; indicates the position of the insertion
point if no text is selected.

Type Description

Long A long expression that indicates the starting point of text
selected

By default, the SelStart property is 0 (the text gets selected from the first character). Use
the SelStart property to specify the starting point of selected text, when edit operations
begins. The SelStart and SelLength properties are valid only if the control is editable. Use
the AllowEdit property to allow control edits the data using a text box field. Use the Edit
method to programmatically edit a cell using a textbox field. The SelStart property must be
set in the code, before starting editing the cell. The control fires the BeforeCellEdit event
when the control is about to open the text box editor. The control fires the AfterCellEdit
property when the edit ends.

property List.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that indicates whether the marker
for the focused cell is visible or hidden.

Use the ShowFocusRect property to hide the rectangle drawn around the focused item. The
FocusItem property specifies the handle of the focused item. If there is no focused item the
FocusItem property retrieves 0. At one moment, only one item can be focused. When the
selection is changed the focused item is changed too. Use the SelectCount property to get
the number of selected items. Use the SelectedItem property to get the selected item. Use
the SelectItem to select or unselect a specified item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same.

property List.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden,

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the tree control. Use the
RepaceIcon method to add, remove or clear icons in the control's images collection. Use
the CellImage, CellImages properties to assign icons to a cell. Use the CellPicture property
to assign a picture to a cell. Use the CheckImage or RadioImage property to specify a
different look for checkboxes or radio buttons in the cells.

method List.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property List.SingleSel as Boolean
Retrieves or sets a value that indicates whether the control supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the control
supports single or multiple selection.

Use the SingleSel property to enable multiple selection. Use the SelectCount property to
get the number of selected items. Use the SelectedItem property to get the selected item.
Use the SelectItem to select or unselect a specified item. Use the FocusItem property to
get the focused item. If the control supports only single selection, you can use the
FocusItem property to get the selected/focused item because they are always the same.
The control fires the SelectionChanged event when user selects an item. Use the
SelForeColor and SelBackColor properties to specify colors for selected items. Use the
SelectableItem property to specify the user can select an item. The FullRowSelect property
specifies whether the selection spans the entire width of the control.

property List.SingleSort as Boolean
Returns or sets a value that indicates whether the control supports sorting by single or
multiple columns.

Type Description

Boolean A boolean expression that indicates whether the control
supports single or multiple selection.

Use the SingleSort property to allow sorting by multiple columns. Sorting by a single column
in the control is a simple matter of clicking on the column head. Sorting by multiple columns,
however, is not so obvious. But it's actually quite easy. The user has two options to sort by
multiple columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

By default, the SingleSort property is True, and so the user can have sorting by a single
column only. Use the SortBarVisible property to show the control's sort bar. The SingleSort
property is automatically set on False, if the SortBarVisible property is set to True. Use the
SortOnClick property to specify the action that control should execute when the user clicks
the control's header. Use the SortOrder property to sort a column programmatically. Use
the SortPosition property to specify the position of the column in the sorted columns list.
The control fires the Sort event when the user sorts a column. Use the ItemBySortPosition
property to get the columns being sorted in their order.

For instance, if the control contains multiple sorted columns, changing the SingleSort
property on True, erases all the columns in the sorting columns collection, and so no column
is sorted.

property List.SortBarCaption as String
Specifies the caption being displayed on the control's sort bar when the sort bar contains no
columns.

Type Description

String A String expression that indicates the caption of the
control's sort bar.

The SortBarCaption property specifies the caption of the control's sort bar, when it contains
no sorted columns. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBar, BackColorSortBarCaption and ForeColorSortBar properties to specify
colors for the control's sort bar. Use the SortBarHeight property to specify the height of the
control's sort bar. Use the SortBarColumnWidth property to specify the width of the column
in the control's sort bar. By default, the SortBarCaption property is "Drag a column
header here to sort by that column.". Use the Font property to specify the control's font.
Use the ItemBySortPosition property to access the columns in the control's sort bar.

The SortBarCaption property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The

about:blank

Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously

loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property List.SortBarColumnWidth as Long
Specifies the maximum width a column can be in the control's sort bar.

Type Description

Long

A long expression that indicates the width of the columns
in the control's sort bar. If the value is negative, all
columns in the sort bar are displayed with the same width
(the absolute value represents the width of the columns,
in pixels). If the value is positive, it indicates the maximum
width, so the width of the columns in the sort bar may
differ.

Use the SortBarColumnWidth property to specify the width of the column in the control's
sort bar. Use the SortBarVisible property to show the control's sort bar. Use the Width
property to specify the width of the column in the control's header bar. Use the
SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarCaption property to specify the caption being displayed in the control's sort bar
when it contains no columns.

property List.SortBarHeight as Long
Retrieves or sets a value that indicates the height of the control's sort bar.

Type Description

Long A long expression that indicates the height of the control's
sort bar, in pixels.

Use the SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarVisible property to show the control's sort bar. By default, the SortBarHeight
property is 18 pixels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarColumnWidth property to specify the width of the columns
being displayed in the control's sort bar. Use the BackColorSortBar,
BackColorSortBarCaption and ForeColorSortBar properties to specify colors for the
control's sort bar. Use the SortBarCaption property to specify the caption being displayed in
the control's sort bar when it contains no columns.

property List.SortBarVisible as Boolean
Retrieves or sets a value that indicates whether control's sort bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the sort bar is
visible or hidden.

Use the SortBarVisible property to show the control's sort bar. By default, the
SortBarVisible property is False. Use the SingleSort property to specify whether the control
supports sorting by single or multiple columns. Sorting by a single column in the control is a
simple matter of clicking on the column head. Sorting by multiple columns, however, is not
so obvious. But it's actually quite easy. The user has two options to sort by multiple
columns:

The control's sort bar displays the SortBarCaption expression, when it contains no columns,
like follows (the "Drag a column header ..." area is the control's sort bar) :

The sort bar displays the list of columns being sorted in their order as follows:

The SortOrder property adds or removes programmatically columns in the control's sort
bar. Use the SortPosition property to specify the position of the column in the sorting
columns collection. Use the ItemBySortPosition property to access the columns being
sorted. Use the SortOnClick property to specify the action that control should execute when
user clicks the column's header. Use the AllowSort property to specify whether the user
sorts a column by clicking the column's header. The control fires the Sort event when the
user sorts a column.

property List.SortOnClick as SortOnClickEnum
Retrieves or sets a value that indicates whether the control sorts automatically the data
when the user click on column's caption.

Type Description

SortOnClickEnum A SortOnClickEnum expression that indicates the action
that control takes when user clicks the column's header.

Use the SortOnClick property to disable sorting items when the user clicks on the column's
header. Use the SortBarVisible property to show the control's sort bar. Use the SingleSort
property to allow sorting by single or multiple columns. Use the AllowSort property to avoid
sorting a column when user clicks the column. Use the DefaultSortOrder property to specify
the column's default sort order, when the user first clicks the column's header.

There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

List1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the Sort method of the Items collection. The Sort sorts the items. The following
sample sorts descending the list of items on the "Column 1".

List1.Items.Sort "Column 1", False

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
Sort event to sort the data when the SortOnClk property is exUserSort

property List.Statistics as String
Gives statistics data of objects being hold by the control.

Type Description

String A String expression that gives information about objects
being loaded into the control.

The Statistics property gives statistics data of objects being hold by the control. The
Statistics property gives a rough idea on how many columns, items, cell, bars, links, notes
and so on are loaded into the control. Also, the Statistics property gives percentage usage
of base-memory of different objects within the memory.

The following output shows how the Statistics looks like, on a 32-bits machine:

Cells: 832 x 55 = 45,760 (59.09%)
Control: 1 x 18,568 = 18,568 (23.98%)
Column: 13 x 648 = 8,424 (10.88%)
Item: 64 x 66 = 4,224 (5.45%)
Items: 1 x 372 = 372 (0.48%)
Columns: 1 x 68 = 68 (0.09%)
Appearances: 1 x 28 = 28 (0.04%)
Appearance: 0 x 712 = 0 (0.00%)
CComVariant: 0 x 16 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)

The following output shows how the Statistics looks like, on a 64-bits machine:

Cells: 832 x 91 = 75,712 (59.00%)
Control: 1 x 30,208 = 30,208 (23.54%)
Column: 13 x 1,056 = 13,728 (10.70%)
Item: 64 x 122 = 7,808 (6.08%)
Items: 1 x 680 = 680 (0.53%)
Columns: 1 x 136 = 136 (0.11%)
Appearances: 1 x 48 = 48 (0.04%)
Appearance: 0 x 1,168 = 0 (0.00%)
CComVariant: 0 x 24 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)

property List.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result after executing a script template.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier. For instance, the following
code creates an ADOR.Recordset and pass it to the control using the DataSource
property:

Dim rs
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExList\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs

property List.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method List.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property List.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
CellToolTip property to specify the cell's tooltip. Use the ShowToolTip method to display a
custom tooltip.

property List.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the CellToolTip property to specify the cell's tooltip. Use the ShowToolTip
method to display a custom tooltip.

property List.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the CellToolTip property to specify the cell's tooltip. Use the
ShowToolTip method to display a custom tooltip.

property List.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the CellToolTip property to specify the cell's tooltip. Use
the ShowToolTip method to display a custom tooltip.

property List.UnboundHandler as IUnboundHandler
Specifies the control's unbound handler.

Type Description

IUnboundHandler An object that implements IUnboundHandler notification
interface

The control supports unbound mode. In unbound mode, user is responsible for retrieving
items. In order to let the control works in unbound mode, the user has to implement the
IUnboundHandler notification interface. Use the VirtualMode property to run the control in
virtual mode. Use the RemoveAll method to remove all items from the control, after setting
the UnboundHandler property to nothing. Use the BeginUpdate and EndUpdate methods, or
Refresh method after setting the UnboundHandler property, to reflect the changes in the
control's client area.

If the VirtualMode property is True and the DataSource property is set (not empty), the
control provides an internal object that implements the IUnboundHandler interface to provide
data for the control from the data source.

The following VB sample shows how to activate the control's unbound mode

Implements IUnboundHandler
Dim its As Items

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As Long
 IUnboundHandler_ItemsCount = 150000
End Property

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As Object)
 its.Caption(Index, 0) = Index
 its.CellImage(Index, 0) = Index Mod 2 + 1
End Sub

Private Sub Form_Load()
 With List1
 .ColumnAutoResize = True
 .SortOnClick = False
 .MarkSearchColumn = False
 .Columns.Add "Unbound Column"

 Set its = .Items
 Set .UnboundHandler = Me

 End With
End Sub

property List.UseTabKey as Boolean
Retrieves or sets a value indicating whether the control uses tab key for changing the
searching column.

Type Description

Boolean A boolean expression indicating whether the control uses
tab key for changing the searching column.

By default, the UseTabKey property is True. The UseTabKey property specifies whether the
control uses the TAB key to change the searching column. The SearchColumnIndex
property indicates the index of the searching column. If the UseTabKey property is False,
the TAB key is used to navigate through the form's controls.

property List.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property List.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the control's version.

property List.VirtualMode as Boolean
Retrieves or sets a value that indicates whether the control runs in the virtual mode.

Type Description

Boolean A boolean expression that indicates whether the control
runs in the virtual mode.

Generally, the user needs to run the control in virtual mode, if a table with large number of
records needs to be displayed. In virtual mode, the control displays maximum
2,147,483,647 records. The control is running in virtual mode, only if VirtualMode
property is True, and the UnboundHandler property refers an object that implements
the IUnboundHandler interface. Implementing the IUnboundHandler interface is easy
because it has only two methods. The first one, ItemsCount specifies the number of
records that user needs to display in the control. The second method is ReadItem and it
provides data for a specific record. When control is running in the virtual mode, the control
loads only the items that need to be displayed. If the control is running in the unbound
mode (the VirtualMode property is False), the control allocates memory for all records
that need to be loaded. The data for each record is loaded only when it is required. The
virtual mode has few disadvantages like: the sorting is not available (the user needs to
provide sorting data), the control's filtering items is not available, the user cannot add items
manually, and so on. The main advantage of the virtual mode is that the control can display
large number of records. The unbound mode requires a lot of memory, depending on
number of loaded records, but it allows almost all features of the control, including sorting,
filtering and so on. Use the ItemToVirtual property to convert the index of the item in the list
to the index of the virtual item. Use the VirtualToItem property to get the index of the item in
the list giving the index of the virtual item. It is important to know, that the VirtualToItem
property ensures that the virtual item fits the control's client area.

Displaying a table, using the Virtual Mode

When you need to display large number of records, you need to provide an object that
implements the IUnboundHandler interface. The object provides the number of records that
need to be displayed, and data for each record. The VirtualMode property needs to be set
on true, and the object you have written needs to be passed to the UnboundHandler
property.

The following sample adds a column, and 100 records. The index of each item in the list is
displayed.

Create a new project (Project1)
Add a control to the form (List1)
Create a new class module (Class1) and add it to the project
Open the code of the class, and type "Implements IUnboundHandler"

Add the handler for the IUnboundHandler_ItemsCount property like follows:

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As
Long
 IUnboundHandler_ItemsCount = 100
End Property

The control calls the IUnboundHandler_ItemsCount property when the UnboundHandler
property is set, to update the vertical scroll range.

Add the handler for the IUnboundHandler_ReadItem method like follows:

 Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object)
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 End With
End Sub

The control calls the IUnboundHandler_ReadItem method each time when a virtual item
becomes visible. Important to notice is that the Items.VirtualToItem property is used to
convert the index of the virtual item to the index of the item in the list.

Open the form's code and add handler for the Form_Load event like follows:

Private Sub Form_Load()
 With List1
 .BeginUpdate
 .Columns.Add "Column 1"

 .VirtualMode = True
 Set .UnboundHandler = New Class1
 .EndUpdate
 End With
End Sub

Save the project
Run the project

The sample runs the control in the virtual mode. The control calls the
IUnboundHandler_ItemsCount property when UnboundHandler property is set. The

IUnboundHandler_ReadItem method is invoked when a record needs to be displayed.

Now, that you got the idea of the virtual mode, let's start to complicate the things. Let's
suppose that we have a table and we need to display its records in the control.

Create a new project (Project1)
Add a control to the form (List1)
Create a new class module (Class1) and add it to the project
Add a new variable rs, of Object type like: Public rs as Object. In the following sample,
the rs variable holds a reference to an ADO.Recordset object
Add a new procedure AttachTable like follows:

Public Sub AttachTable(ByVal strTable As String, ByVal strPath As String, ByVal g
As EXLISTLibCtl.List)
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open strTable, "Provider=Microsoft.Jet.OLEDB.4.0;Data Source= " & strPath,
3, 3
 With g
 .BeginUpdate
 With .Columns
 Dim f As Variant
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 .EndUpdate
 End With
End Sub

 The AttachTable subroutine opens a table using ADO, and insert in the control's
Columns collection a new column for each field found in the table.

Type "Implements IUnboundHandler" at the beginning of the class
Implement the IUnboundHandler_ItemsCount property like follows:

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As
Long
 IUnboundHandler_ItemsCount = rs.RecordCount
End Property

 In this case the IUnboundHandler_ItemsCount property the number of records in the

table.

Implement the IUnboundHandler_ReadItem method like follows:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object)
 rs.Move Index, 1
 Dim i As Long, l As Long
 With Source.Items
 i = 0
 l = .VirtualToItem(Index)
 Dim f As Variant
 For Each f In rs.Fields
 .Caption(l, i) = f.Value
 i = i + 1
 Next
 End With
End Sub

The IUnboundHandler_ReadItem method moves the current record using the rs.Move
method, at the record with the specified index, and loads values for each cell in the
item. If you need to apply colors, font attributes, ... to the items in the control, your
handler may change the CellBold, CellForeColor, ... properties.

Open the form's code, and add a new variable n like: Dim n As New Class1
Add a handler for the Form_Load event like follows:

Private Sub Form_Load()
 With List1
 .BeginUpdate

 n.AttachTable "Select * from Orders",
"D:\Exontrol\ExList\sample\sample.mdb", List1

 .VirtualMode = True
 Set .UnboundHandler = n

 .EndUpdate
 End With

End Sub

The AttachTable method opens the table, and fills the control's Columns collection. The
AttachTable method needs to be called before putting the control on virtual mode,
because properties of the rs object are called in the ItemsCount and ReadItem
methods.

Save the project
Run the project

Adding a custom column, when the control is running in the virtual mode.

Let's suppose that we want to display a column with the current position for each record in
the table. In this case, we need to add a new column, and we need to change the
ReadItem method like follows:

The Form_Load event should look like:

Private Sub Form_Load()
 With List1
 .BeginUpdate

 n.AttachTable "Select * from Orders",
"D:\Exontrol\ExList\sample\sample.mdb", List1

 .VirtualMode = True
 Set .UnboundHandler = n

 With .Columns.Add("Position")
 .Position = 0
 End With

 .EndUpdate
 End With
End Sub

The IUnboundHandler_ReadItem method looks like following:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object)

 rs.Move Index, 1
 Dim i As Long, l As Long
 With Source.Items
 i = 0
 l = .VirtualToItem(Index)
 Dim f As Variant
 For Each f In rs.Fields
 .Caption(l, i) = f.Value
 i = i + 1
 Next
 .Caption(l, "Position") = Index + 1
 End With
End Sub

For instance, if you need to have a column that computes its value based on the other
columns, it can be done like this:

.Caption(l, "Column") = .Caption(l, "Quantity") * .Caption(l, "UnitPrice")

Editing a table using the Virtual Mode

Locate the Form_Load event and change the AllowEdit property like follows:

Private Sub Form_Load()
 With List1
 .BeginUpdate

 .AllowEdit = True

 n.AttachTable "Select * from Orders",
"D:\Exontrol\ExList\sample\sample.mdb", List1

 .VirtualMode = True
 Set .UnboundHandler = n

 With .Columns.Add("Position")
 .Position = 0
 End With

 .EndUpdate
 End With
End Sub

Add handler for AfterCellEdit event like follows:

Private Sub List1_AfterCellEdit(ByVal Index As Long, ByVal ColIndex As Long,
ByVal newCaption As String)
 With List1.Items
 n.Change newCaption, .ItemToVirtual(Index), ColIndex
 End With
End Sub

Important to notice is that the Items.ItemToVirtual property is called to convert the
index of item in the list to the index of the virtual item being changed. The Change
method in the Class1 changes the value in the recordset.

Add a Change method to the Class1 like follows:

Public Sub Change(ByVal newCaption As Variant, ByVal Index As Long, ByVal
ColIndex As Long)
 rs.Move Index, 1
 rs(ColIndex) = newCaption
 rs.Update
End Sub

The Change method moves the current position to the Index position in the recordset,
and updates the recordset.

Save and Run the project

Loading a table using the Virtual Mode in C++

The following tutorial will show how to run the control in virtual mode. The sample is a
simple MFC dialog based application. Anyway, if your application is different than a MFC
dialog based, the base things you need are here, so please find that the following
information is useful.

Create a new project using MFC AppWizard (exe) (ADOVirtual)
Select Dialog based, for the type of the application
Insert the control to the application's main dialog (Insert ActiveX Control)

Save the Project
Open the MFC Class Wizard, by pressing CTRL + W
Add a new member variable for IDC_LIST1 resource called m_list. In the meanwhile,
please notice that the wizard will ask you 'The ActiveX Control "ExList ActiveX Control"
has not been inserted into the project. Developer Studio will do this now and generate
a C++ wrapper class for it', and you need to click ok, by following the steps that wizard
will ask you to do in order to insert the C++ wrapper classes. (CList1, CItems,
CColumns, CColumn, COleFont, CPicture)
Save the Project
Open the Dialog Properties, and click the "Clip siblings" and "Clip children"
Add a new MFC based class, CUnboundHandler derived from the CCmdTarget. We
define the CUnboundHandler class to implement the IUnboundHandler interface.
Import the control's definition using the #import directive, to the CUnboundHandler class
like follows:

#import "c:\winnt\system32\exlist.dll" rename("GetItems", "exGetItems")

The #import directive is used to incorporate information from a type library. The content
of the type library is converted into C++ classes, mostly describing the COM
interfaces. The path to the file need to be changed if the dll is somewhere else. After
building the project, the environment generates a namespace EXLISTLib. The
generated namespace includes definition for IUnboundHandler interface. It can be
accessed using the declaration EXLISTLib::IUnboundHandler

By default, the destructor of the CUnboundHandler class is declared as protected. The
destructor needs to be declared as public (Remove the protected keyword before
~CUnboundHandler).
Implementing the IUnboundHandler interface using the DECLARE_INTERFACE_MAP,
BEGIN_INTERFACE_PART and END_INTERFACE_PART macros. The following
snippet needs to be inserted in the class definition like

DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXLISTLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source,long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source);
 END_INTERFACE_PART(Handler)

The CUnboundHandler class definition should look like follows (we have removed the
comments added by the wizard):

#import "c:\winnt\system32\exlist.dll" rename("GetItems", "exGetItems")

class CUnboundHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CUnboundHandler)

 CUnboundHandler(); // protected constructor used by dynamic creation

DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXLISTLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source, long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source);
 END_INTERFACE_PART(Handler)

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CUnboundHandler)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CUnboundHandler();

 // Generated message map functions
 //{{AFX_MSG(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

Add INTERFACE_PART definition in the UnboundHandler.cpp file like follows:

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXLISTLib::IUnboundHandler),
Handler)

END_INTERFACE_MAP()

Write the get_ItemsCount property like follows:

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = 25000;
 return S_OK;;
 }
 return E_POINTER;
}

Write the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);

 // gets the source control
 EXLISTLib::IList* pList = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXLISTLib::IList),
(LPVOID*)&pList)))
 {
 // assigns the value for each cell.
 pList->Items->Caption[pList->Items->VirtualToItem[Index]][
_variant_t((long)0)] = _variant_t(Index);
 pList->Release();
 }
 return S_OK;
}

Add implementation for QueryInterface, AddRef and Release methods of IUnknown
interface like follows:

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (ppvObject)
 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {
 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;
 }
 if (IsEqualIID(__uuidof(EXLISTLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXLISTLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;
}

The CUnboundHandler class implementation should look like:

IMPLEMENT_DYNCREATE(CUnboundHandler, CCmdTarget)

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXLISTLib::IUnboundHandler),
Handler)
END_INTERFACE_MAP()

CUnboundHandler::CUnboundHandler()
{
}

CUnboundHandler::~CUnboundHandler()
{
}

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = 25000;
 return S_OK;;
 }
 return E_POINTER;
}

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);

 // gets the source control
 EXLISTLib::IList* pList = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXLISTLib::IList),
(LPVOID*)&pList)))
 {

 // assigns the value for each cell.
 pList->Items->Caption[pList->Items->VirtualToItem[Index]][
_variant_t((long)0)] = _variant_t(Index);
 pList->Release();
 }
 return S_OK;
}

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (ppvObject)
 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {
 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;
 }
 if (IsEqualIID(__uuidof(EXLISTLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXLISTLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;
}

BEGIN_MESSAGE_MAP(CUnboundHandler, CCmdTarget)
 //{{AFX_MSG_MAP(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

After all these steps we have defined the class CUnboundHandler that implements the
IUnboundHandler interface. All that we need to do from now, is to add a column to the
control, and to set the VirtualMode and UnboundHanlder properties like follows:

Open the definition of the application's main dialog (CADOVirtualDlg)
Include the definition of the CUnboundHandler class to CADOVirtualDlg using:

#include "UnboundHandler.h"

Add a new member of CUnboundHandler type to the CADOVirtualDlg class like:

CUnboundHandler m_unboundHandler;

Open the implementation file for the application's main dialog (CADOVirtualDlg)
Add the definition for CColumns class (a wrapper class for the control) at the
beginning of the file

 #include "Columns.h"

Locate the OnInitDialog() method and add the following code (after the "// TODO: Add
extra initialization here"):

m_list.BeginUpdate();
 m_list.GetColumns().Add(_T("Column 1"));
 m_list.SetVirtualMode(TRUE);
 m_list.SetUnboundHandler(&m_unboundHandler.m_xHandler);
m_list.EndUpdate();

Save, Compile and Run the project

The tutorial shows how to put the control on virtual mode. The sample loads the numbers
from 0 to 24999.

Now, that we got the idea how to implement the IUnboundHandler let's say that we want to
change the sample to load an edit an ADO recordset. The following tutorials shows how to
display a table and how to add code in order to let user edits the data.

Open the definition of the CUnboundHandler class
Import the Microsoft ADO Type Library to the CUnboundHandler class like follows:

#import <msado15.dll> rename ("EOF", "adoEOF")

The #import directive generates the ADODB namspace. The ADODB namspace
includes all definitions in the Microsoft ADO Type Library.

Include a member of ADODB::_RecordsetPtr called m_spRecordset. The
m_spRecordset member will handle data in the ADO table.

ADODB::_RecordsetPtr m_spRecordset;

Add definition for AttachTable function like follows:

virtual void AttachTable(EXLISTLib::IList* pList, LPCTSTR szTable, LPCTSTR
szDatabase);

Now, the CUnboundHandler class definition should look like follows:

#import "c:\winnt\system32\exlist.dll" rename("GetItems", "exGetItems")
#import <msado15.dll> rename ("EOF", "adoEOF")

class CUnboundHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CUnboundHandler)

 CUnboundHandler(); // protected constructor used by dynamic creation

DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXLISTLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source, long* pVal);

 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source);
 END_INTERFACE_PART(Handler)

 virtual void AttachTable(EXLISTLib::IList* pList, LPCTSTR szTable, LPCTSTR
szDatabase);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CUnboundHandler)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CUnboundHandler();

 // Generated message map functions
 //{{AFX_MSG(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 ADODB::_RecordsetPtr m_spRecordset;
};

Open the implementation file for CUnboundHandler class (UnboundHandler.cpp file)
Add the implementation for AttachTable function like follows:

void CUnboundHandler::AttachTable(EXLISTLib::IList* pList, LPCTSTR szTable,
LPCTSTR szDatabase)
{
 if (SUCCEEDED(m_spRecordset.CreateInstance("ADODB.Recordset")))
 {
 try
 {
 CString strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=";
 strConnection += szDatabase;
 if (SUCCEEDED(m_spRecordset->Open(_variant_t(szTable),

_variant_t(strConnection), ADODB::adOpenStatic, ADODB::adLockPessimistic,
NULL)))
 {
 pList->BeginUpdate();
 for (long i = 0; i < m_spRecordset->Fields->GetCount(); i++)
 pList->GetColumns()->Add(m_spRecordset->Fields->GetItem(
_variant_t(i))->Name);
 pList->EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

 }
}

The AttachTable function opens a recordset, and adds a new column to the
control's Columns collection for each field found in the recordset.

Change the get_ItemsCount property like follows:

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = pThis->m_spRecordset->RecordCount;
 return S_OK;;
 }
 return E_POINTER;
}

The ItemsCount property specifies that the control displays all records in the recordset

Change the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXLISTLib::IList* pList = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXLISTLib::IList),
(LPVOID*)&pList)))
 {
 // assigns the value for each cell.
 long l = pList->Items->VirtualToItem[Index];
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pList->Items->Caption[pList->Items->VirtualToItem[Index]][_variant_t(
i)] = pThis->m_spRecordset->Fields->GetItem(_variant_t(i))->Value;
 pList->Release();
 }
 return S_OK;
}

The ReadItem method moves the position of the current record in the recordset, and
sets the value for each cell in the item.

The implementation for CUnbundHandler class should look like:

IMPLEMENT_DYNCREATE(CUnboundHandler, CCmdTarget)

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXLISTLib::IUnboundHandler),
Handler)
END_INTERFACE_MAP()

CUnboundHandler::CUnboundHandler()
{
}

CUnboundHandler::~CUnboundHandler()
{
}

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = pThis->m_spRecordset->RecordCount;
 return S_OK;;
 }
 return E_POINTER;
}

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXLISTLib::IList* pList = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXLISTLib::IList),
(LPVOID*)&pList)))
 {
 // assigns the value for each cell.
 long l = pList->Items->VirtualToItem[Index];
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pList->Items->Caption[l][_variant_t(i)] = pThis-
>m_spRecordset->Fields->GetItem(_variant_t(i))->Value;
 pList->Release();
 }
 return S_OK;
}

void CUnboundHandler::AttachTable(EXLISTLib::IList* pList, LPCTSTR
szTable, LPCTSTR szDatabase)
{
 if (SUCCEEDED(m_spRecordset.CreateInstance("ADODB.Recordset")))
 {
 try
 {
 CString strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=";
 strConnection += szDatabase;
 if (SUCCEEDED(m_spRecordset->Open(_variant_t(szTable),
_variant_t(strConnection), ADODB::adOpenStatic,
ADODB::adLockPessimistic, NULL)))
 {
 pList->BeginUpdate();
 for (long i = 0; i < m_spRecordset->Fields->GetCount(); i++)
 pList->GetColumns()->Add(m_spRecordset->Fields-
>GetItem(_variant_t(i))->Name);
 pList->EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
 }
}

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (ppvObject)
 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {

 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;
 }
 if (IsEqualIID(__uuidof(EXLISTLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXLISTLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;
}

BEGIN_MESSAGE_MAP(CUnboundHandler, CCmdTarget)
 //{{AFX_MSG_MAP(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

Locate the OnInitDialog method in the implementation file of the application's main
dialog (AdoVirtualDlg.cpp)
Add the following code to the OnInitDialog method:

EXLISTLib::IListPtr spList = NULL;

m_list.GetControlUnknown()->QueryInterface(&spList);
m_list.BeginUpdate();
 m_unboundHandler.AttachTable(spList, _T("Orders"),
_T("D:\\Exontrol\\ExList\\sample\\sample.mdb"));
 m_list.SetVirtualMode(TRUE);
 m_list.SetUnboundHandler(&m_unboundHandler.m_xHandler);
m_list.EndUpdate();

The AttachTable function is called before setting the UnboundHandler property. The
AttachTable function opens a recordset giving the SQL phrase and the database. The
AttachTable function loads also the control's Columns collection from the Fields
collection of the recordset.

Save, Compile and Run the project

After all these your control will be able to display a table using the virtual mode. Now, we
need to add some changes in order to let user edits the data in the control.

Change the AllowEdit property of the control like follows:

 m_list.SetAllowEdit(TRUE);

The OnInitDialog looks like:

EXLISTLib::IListPtr spList = NULL;
m_list.GetControlUnknown()->QueryInterface(&spList);
m_list.BeginUpdate();
 m_unboundHandler.AttachTable(spList, _T("Orders"),
_T("D:\\Exontrol\\ExList\\sample\\sample.mdb"));
 m_list.SetAllowEdit(TRUE);
 m_list.SetVirtualMode(TRUE);
 m_list.SetUnboundHandler(&m_unboundHandler.m_xHandler);
m_list.EndUpdate();

Add the definition for the CItems class to CAdoVirtualDlg implementation file:

#include "Items.h"

Add a new handler for AfterCellEdit event:

void CADOVirtualDlg::OnAfterCellEditList1(long Index, long ColIndex, LPCTSTR

NewCaption)
{
 m_unboundHandler.Change(NewCaption, m_list.GetItems().GetItemToVirtual(
Index), ColIndex);
}

Add a new function definition (Change) to the CUnboundHandler class:

virtual void Change(LPCTSTR szCaption, long Index, long ColIndex);

The CUnboundHandler class definition should look like:

#import "c:\winnt\system32\exlist.dll" rename("GetItems", "exGetItems")
#import <msado15.dll> rename ("EOF", "adoEOF")

class CUnboundHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CUnboundHandler)

 CUnboundHandler(); // protected constructor used by dynamic creation

DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXLISTLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source, long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source);
 END_INTERFACE_PART(Handler)

 virtual void AttachTable(EXLISTLib::IList* pList, LPCTSTR szTable, LPCTSTR
szDatabase);
 virtual void Change(LPCTSTR szCaption, long Index, long ColIndex);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CUnboundHandler)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CUnboundHandler();

 // Generated message map functions
 //{{AFX_MSG(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 ADODB::_RecordsetPtr m_spRecordset;
};

Add the Change function's body like follows:

void CUnboundHandler::Change(LPCTSTR szCaption, long Index, long ColIndex)
{
 m_spRecordset->Move(Index, _variant_t((long)ADODB::adBookmarkFirst));
 m_spRecordset->Fields->GetItem(_variant_t(ColIndex))->Value = szCaption;
 m_spRecordset->Update();
}

Save, Compile and Run the project.

If you need to apply colors, font attributes, ... for items or cells while the control is running
in the virtual mode, the changes should be done in the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXLISTLib::IList* pList = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXLISTLib::IList),
(LPVOID*)&pList)))
 {

 long l = pList->Items->VirtualToItem[Index];
 // assigns the value for each cell.
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pList->Items->Caption[l][_variant_t(i)] = pThis->m_spRecordset-
>Fields->GetItem(_variant_t(i))->Value;

 if (pList->Items->Caption[_variant_t(l)][_variant_t(_T("ShipRegion"))] ==
_variant_t(_T("RJ")))
 pList->Items->put_ItemForeColor(l , RGB(0,0,255));
 if (pList->Items->Caption[_variant_t(l)][_variant_t(_T("ShipRegion"))] ==
_variant_t(_T("SP")))
 pList->Items->put_ItemBold(l , TRUE);

 pList->Release();
 }
 return S_OK;
}

While compiling the project the compiler displays warnings like: "warning C4146: unary
minus operator applied to unsigned type, result still unsigned". You have to include the :

#pragma warning(disable : 4146)

before importing the type libraries.

#pragma warning(disable : 4146)
#import "c:\winnt\system32\exlist.dll" rename("GetItems", "exGetItems")
#import <msado15.dll> rename ("EOF", "adoEOF")

property List.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, and so on,
Background property

property List.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With List1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg7oB0HBSQAwABsIfj/jEJAcKhYEjgCAscA8ThQBA8cAgIjgDh8KBAPjgJCUcAIhmgij6AhKAf4CBMIhgACIgg7+jYAgRCJ1BjkHoIBctHnTACAxRDAMgBQKAAzQFAYaByHKGAAGEYRXgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDCAkRRdDSOYDmGQYDiCIoRShOMpTXJ8bRfGigIqMVI2PACQ5FRZOUByTRcUAFH6QAijOopViWGpHUZRETxCKQahLLivIhGUYKfgmY5lTzPdSUDL8RSUACmLglORLNi+M4zSBPUZTRLlZT7OK3IzECKxBpaF5YVhSN72eKFHzTAa1cDyCCcFpWV5aYjCNgLEAAo7hyM5YiyEQcAwawkACNZlG6OhLnUNwXFCDZegAGhtFQawZgyRxLioOBsg6UhvByMJvnOegrDcDg1jiWJuiAew9m4GhAAiBIUA0JgziGVJkGUGJIA2QB4BkCIblqDQNiEIoIE6IhKBiC4ODsfJGHoTJLmydx7H2fwvg+U5hnaeZ9n6P4PHwDQ8mYP5fmgAZ/gAYBIA4BoAiCCAWAmAZgigBQDCaThTn4EIEiEGD8AUYYIFIGoFmGOBmByBJQDIYJkD+YgohII4JGKCIeCqCYikiJgtgqYpohUAwlE4M5+DSDYjFiXg6g4Y5ImIPoOmOeJ2ECDdM16P5kGkIhHhIZJJC4ToSiUCQ2FGE5lCkJQDCOTgTn4WIWiWG"
 & _

"RuF6FxmAkchiheZg5gYZIW0yMhZhqD55jIboamcCY2HGG5nCmVh0h2ZYUAyCQ4Xqbh9h8J5qT0IJnnoFoCiGKBKB4fhAkgYx8n+IxonoOoQiSaQqFaEYlmkShihaJhpAQDICDeD56H7ioqCqFokimag6iaJoqiqCouiIQJHnMdJ/iwaw6kqNItmsapmjWLprgqco6i8axEAwfA3A+ewOkWMWliaSIymwew2kqM4sksPpGaMGwSlUP5tHsZpWjabYLHKWo3G4Cx+mKMQQDGWJbD+bhriKZ46G6S4um7rILjacY7m8K9tByTYjn6eI+i+G5un6PxwAucwCj+cA8AcBI+lAMZAlkP5wiwMwLkMcQMD8EpDjETBHBWRJxGwNQDBsTYDn8HJHjGXB/CKSByEzQhInIfIXCiR/YiiVw/nKbJDC+TBzEyTw2kyM4MlcOZNnOLJFAMGZyn0AJ/lCNBNAcRpQnQPoFwkRSjpC0G4LwgRKDnCCP8VA6g9CWFSKsdQ2hnCrFaOsDQ5haiuHUIgDIWg6gfH2B4ZYsg2DbCcNEWo7B9huGqLcNomw/DMECJYI4YR/i6HcPsWw8RejvC2O4eYvx3icAMP0YA72YBwDuB8fgPwJjEDiFwN4GVgh8EeB0ZIcgOCfAoIES4pxAj/GYPMPg1wcjPHmN0B4O2QAdBOEUaQ84PCGDyB8foX2oB1G6I8MI2R6j9FeGUbYdhOi/C4IETIBxQj/G8Pcfo9xAjhHwF4F4gxxj4E8EcR"
 & _

"o5B8MwE4HsD4/g/ijHQHoLwrxUjrH0H4Z4rR2h7A8N8UggRNBnGCP8eA/A/gXGSPMfg3wnjLkCB8M41R7D8g8LIPoHx/iflYH4b4zx4j9H8P8d49JnjjH+H4YgDA3gPlyAEMAPADCBAgC4AoQBsJ/HAGQCAgRoBGAIVUZAPxDj8AuIMGAYgGhBGwDkA44BuAhEGNARQEAhA4BoEAZ42R9CFCOOYCwQhMBaD6EgDIAQBEIKGQcLtHSkBYKUUwppTwiUiKmVUq5WStldK+MgNwMyyFmBiMQtRbC3FwLkXQuxeC9F8L8YAwRhDDCOGGGQWAOQCCKBGCgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcTwAASgwCSEABQXwQiBEEGMMAqROhCBeEYUQ0QRDRNybs3pvzgnDOKJ4aoYhqgpFKD4boSRSjSFKdMOgvgxAAF2NAMo8w8hVHsJkPwlwnigDCEoVAVhqgJDoC8Y4YAGBOBcC0OAlRphpHkAsMAAwEgDFUEAeA1hsVXAyIoRY2AWgXEWA0TQyQxDTHIOoXIcADBXBuHUSIZAThUE6Iwf4VxYDAHAC4GYuQag6GmFEVQ5g5DbESLQOYSwGjjEACwfQjQOBbD6FYXoawwg6GcCYHwqgECEEoA0EwMxQjUHIGUbwQBtDbHEkoY6TUngQE8BYXwEAMCLFQDkfYgRtD9GiPVNIvwPi/GuPceQ/xQBvGCMwPwHx4AcAWAIIA0AmARAKJ8d4xABD7A2OcaI/wE"
 & _

"DCDgJQFICxhDQGYBofYQYFCwD4J+XYQwIBECiCwJIExhhnCIDoNAnhzj8CyBcIosQ+BlAwMZVIOgygeUOHEDoRwYjcD6B4ZAERYAAH4BgM8jQRDIHkDQSIJRkhSDYISfQpxIj/BQMoOQlBUgrGUNIZgnh9gWGPGMFwyx5D0GCDEZgUwWC2DoBUc4eR/g0GaHMKg2QbjNGmIwZwVAOqHYEE4WYvB6g8GeJMHIQg7L1H6AMIAUAqAtASEMZg5BojUD+NEKgZQLhGGkBQPoJQZiSEPAsJQ0h6C1BiE0aYVB2DOCMJwc4/QghRCoDUDoTQpDVAmDkBgchPj1C6FsKwVRqiNDCFkZg4x8jGD+1EYobwuDXEqN0PoMxHgHAiP8MA2A7AVESGO3ITBnA5A4Acfr6gsi2D6KUNA2hJg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQFHKEUQAAwiGFJKWU0hJTxUkMpWVYrBWiuFeAwNwNgMKagjCCISnJbS3lxLmXUu7LxEDIDUCUSQyRxAjCiIQUQEwWCXCMIAKQKBuB2AODYSAwByASBSAACwXwWgWEaOcaAORCgGDOAQDQ0RxBDCyKQPwmgAAHGEGoGYqAmgpuqAAKo3x4h5AIjlHaPUfpBSGJAAIoRCAiDaKoGgNhCCKBUFcHQoAxAuGgKUKY4hqiqGkMYfgexgAUBgEQbgJgLgNEIMH3wBxdjyY4I8Qg1hID5B4D4K4LRLjDBCHMLA+huANC2"
 & _

"J8YQlwaBMCaCMd6hRnBpE+HoIwIQ9hdEKM8VYawoCcC8BUSYtxqBuDuFsOwTgLgLhZhAhxA4BdBWhqg0hDhjgog5A6gdA2AXAThAgshxB1ANAegZBrmTBrgxB7A5hMgvA/gjB8Bth4A0BFhOg/gQgsBihzg6h9GqBlBiAHhsg+A5h+AmBPgfgJAVh2hyh1wcgtBXg+AThvBWgGhIAEBwgAhOAYAVBaAqhggHhgD1gghDBOAOEshHA8BTgEhYBThmAWBWgJgIBkh3gGhbgiheAegCgMhYgGAbA9hchxh2AmBhBMg4glheBugMAYg0BYgLheBxgJhpA6hch4AggrBhBGAIhlg8gKhYhzh2A+BvAdBRBoB+gQhagmBFBXAghkgGBiBKBhhiBhh0hwgThLBpBEBbgUi5BWBGBfAbARhaBagShZBpBoB2BsBVgjBmBiNNBJBeA8gZhcBTgWBqBCOcCPCDqPgAAyufqSOguhCnCgAmOjE7KWOkqXumOnOoCyupOqC1urKeOsqfuuOvOwOxOyOzO0O1O2O3O4O5O6O7O8O9O+O/PAPBPCPDPEPFPGPHPIPJPKArvLPMPNPOEeEfEgEhEiPRvSvTvUvVvWvXvYvZvavbvcvdvevfvgvhvivjvkvlvmvnvovpvqgyBoB8PtPuPvPwPxPyPzP0P1ATBEBcv3v4v5v6v7v8v9v+v/wAwBwChrgLgPhVBhBxA8AKhPAbgbhNhKhyh5hdAthXBCgxADhqh0h5hdsHBjg"
 & _

"zhGhtoEB+AsArhnhLhehUB5BfA4BfARBPgWB9h3hhBZB/AvA+BzhkhLhCh7hPg8g1BfhzAKBgB/hbhHgdg8B/hGAGAVh8AqhdAVBcgDgChZgIA2AOgChIF+ARBjhbRZgWgDgZBoBYRdBbgoBNh0gHhXhEAlCQKPOeAXqROgKTCaCgALKVRsOkKXOlivhqAzAbuogwqcRxKdusKfOtgEOuuvuwuxuyuzu0u1gohYASATARAGBCBBBxh5hcgKAHAgAChLhlgihRhFACPVAcBMhggDBqBMBIBtA9geBPBCAQgagVL4gXgQACAhFtBJgMhoB1A5AZBGJ4BcAMgEBNgyBFhpvYBFBOhbA+AAAGK6Aag0Alh3B2B5BeAdBXgnBNhyh7E1BgAwA3owgqhwhyg7A+hwhNBMBah/Aag8hHhkAyA5AsgeBTAfgNBfhihagYBsAiBXA6r9ghBQB6AtAegTBLgmhThogzhoBchqBXAJB9hVAxhYBsAWACh1B0hABeBtg3AbB9hOhzB3g+hdBtB2AsAdBWADBGhEBhAvhWhrBFgPApBlhNhngtA5hdAegHBLgkgxhjgvh0B4AEAWgJgOhEBhgshWAKhvAPgPhFhkB/h6A9A+BPBfgbhFheBhh3AQB9g9ATApgOhFBWgqgVAfgPhXhnh3tsBfg4AFh9B+BfBTAVhxB2hdhDAwhKAyAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATAnBhACB6ANAoBggjAggCB3VrgI"
 & _

"hQH1hSgAgcAmghgIg2AugLBigiBqAnAzBiVdglA1ANAjBEgbAmAJMwA+gLgjgyBWA4A0BjBYgUhaA2BNBiBogXAlAjhCBOBLAkBJHqARgLBlAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWAnAJgCBaBmgLBmBpgiBqgaBkhZgIhdgYE+gCB0A5gOBTgQgTAkAIhpAsgSgTWSg2gAAlBkhiBQgSgehIhphghkgdAXhWASB0A7tXgwgNAiHphAgNAihJAaBegZgmApgqB2gcI5BiAugTAhhpADgyB0BhAYBmgOglgqhpAao/grgrAKg2gyA7AaA2AZgIApArgCANgfBqArhKh1gkBnhrgCgRgIBACuTWiDgYzYRozZCSigAMTbCqTcOlKYAMTeTfRvzgOqzhqeutBxRzzkx1TmR2znzozpzqzrzsztzuzvzwzxzyzzz0z1z2z3z4z5z6z7z8gDT9z+z/0AgIUB0C0D0EgxUF0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z000102030405060708090+0/1A1B1C1D1E1F1G1Hhkhzh51KBfBfB5gHhcBBh2h0BMgmA7AVBagqBUB9g/AfJnhzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGLBCgEgeAogJhyB2AQAnAhA4BUgfgFFFg0w1vfAchIAggdh"
 & _

"IAUgCA0AMhjA0ggWUgjh+GhBihI1yAKhiByBqAkV1gCAKAiV3141516g+Jmhj19V+V/AI2A2B2C2D2E2F2GhOBQgUglAZBOBQFpgZA2BKAlAkBzBaBFBfhIAZgEhhA3gNoTA7AlgJvigWgZhmhJgqBntSNTBNgYhNhZgEgBBgAnBjgYtEAJAyBAgOuwApA2gCAlBJA6AOgFghAoAJh0gOgegOBJhZB9BhZXA4htA7AIhSAkgHWghSAsgRgmBpg6Bqgcgnhp22AYI5BSAegSP+hmARgGNjh6g2gTgrgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQhaBGB+g6ApAYgEAECTiDiVCDiWgAGKgdAZAQaH6HgW6JAZaEgAaLaF6GgagQAWgaaOaPaQCf6ECEaMgoAdAbaP6U6QCAg"

End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

UnboundHandler object
The control supports unbound mode. In unbound mode, the user is responsible for retrieving
items. The unbound mode and virtual unbound modes were provided to let user displays
large number of items. In order to let the control works in unbound mode, the user has to
implement the IUnboundHandler notification interface. The UnboundHandler property
specifies the control's unbound handler. Currently, the UnboundHandler / IUnboundHandler
interface is available for /COM version only. Use the VirtualMode property to run the control
in virtual mode. Use the VirtualToItem property to get the index of the item in the list giving
the index of the virtual item.

Here's the IDL definition of the IUnboundHandler interface:

[
 uuid(42FD4C01-3385-4BF4-9F42-E6E65104CF42),
 pointer_default(unique)
]
interface IUnboundHandler : IUnknown
{
 [propget, id(1), helpcontext(3001), helpstring("Gets the number of items.")] HRESULT
ItemsCount(IDispatch* Source, [out, retval] long* pVal);
 [id(2), helpcontext(3002), helpstring("The source requires an item.")] HRESULT ReadItem(
long Index, IDispatch* Source);
}

Here's the IDL definition of the UnboundHandler interface (this interface is available starting
from the version 11.1):

[
 uuid(42FD4C01-3385-4BF4-9F42-E6E65104CF43),
]
dispinterface UnboundHandler
{
 interface IUnboundHandler;
}

The following VB sample displays 1,000,000 items in virtual mode:

Implements EXLISTLibCtl.IUnboundHandler

Private Sub Form_Load()
 With List1
 .BeginUpdate
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = True
 Set .UnboundHandler = Me
 .EndUpdate
 End With
End Sub

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As Long
 IUnboundHandler_ItemsCount = 1000000
End Property

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As Object)
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 End With
End Sub

The following VB/NET sample displays 1,000,000 items in virtual mode:

Public Class Form1
 Implements EXLISTLib.IUnboundHandler

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 With AxList1
 .BeginUpdate()
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = True
 .UnboundHandler = Me
 .EndUpdate()
 End With
 End Sub

 Public ReadOnly Property ItemsCount(ByVal Source As Object) As Integer Implements

EXLISTLib.IUnboundHandler.ItemsCount
 Get
 ItemsCount = 10000000
 End Get
 End Property

 Public Sub ReadItem(ByVal Index As Integer, ByVal Source As Object) Implements
EXLISTLib.IUnboundHandler.ReadItem
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 End With
 End Sub
End Class

The following C# sample displays 1,000,000 items in virtual mode:

public partial class Form1 : Form, EXLISTLib.IUnboundHandler
{
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 axList1.BeginUpdate();
 (axList1.Columns.Add("Index") as EXLISTLib.IColumn).FormatColumn = "value format
`0`";
 axList1.VirtualMode = true;
 axList1.UnboundHandler = this;
 axList1.EndUpdate();
 }

 public int get_ItemsCount(object Source)
 {
 return 1000000;
 }

 public void ReadItem(int Index, object Source)
 {
 (Source as EXLISTLib.IList).Items.set_Caption((Source as
EXLISTLib.IList).Items.get_VirtualToItem(Index), 0, Index + 1);
 }
}

The following VFP 9 sample displays 1,000,000 items in virtual mode:

with thisform.List1
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = .T.
 .UnboundHandler = newobject('UnboundHandler', 'class1.prg')
endwith

where the class1.prg is:

define class UnboundHandler as session OLEPUBLIC

implements IUnboundHandler in "ExList.dll"
function IUnboundHandler_get_ItemsCount(Source)
 return 1000000
endfunc
function IUnboundHandler_ReadItem(Index, Source)
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 EndWith
endfunc

implements UnboundHandler in "ExList.dll"
function UnboundHandler_get_ItemsCount(Source)
 return this.IUnboundHandler_get_ItemsCount(Source)
endfunc
function UnboundHandler_ReadItem(Index, Source)
 return this.IUnboundHandler_ReadItem(Index, Source)
endfunc

enddefine

The following VFP 7 and VFP 8 sample displays 1,000,000 items in virtual mode:

with thisform.List1
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = .T.
 .UnboundHandler = newobject('UnboundHandler', 'class1.prg')
endwith

where the class1.prg is:

define class UnboundHandler as custom

implements IUnboundHandler in "ExList.dll"
function IUnboundHandler_get_ItemsCount(Source)
 return 1000000
endfunc
function IUnboundHandler_ReadItem(Index, Source)
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 EndWith
endfunc

enddefine

The UnboundHandler / IUnboundHandler interface requires the following properties and
methods:

Name Description
ItemsCount Gets the number of items.
ReadItem The source requires an item.

property UnboundHandler.ItemsCount (Source as Object) as Long
Gets the number of items.

Type Description
Source as Object The control that requires the number of items

Long A Long expression that specifies the number of items in
unbound/virtual mode.

The ItemsCount property specifies the number of items in unbound/virtual mode.

The following VB sample, shows how ItemsCount property should be implemented:

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As Long
 IUnboundHandler_ItemsCount = 1000000
End Property

The following VB/NET sample, shows how ItemsCount property should be implemented:

Public ReadOnly Property ItemsCount(ByVal Source As Object) As Integer Implements
EXLISTLib.IUnboundHandler.ItemsCount
 Get
 ItemsCount = 10000000
 End Get
End Property

The following C# sample, shows how ItemsCount property should be implemented:

public int get_ItemsCount(object Source)
{
 return 1000000;
}

The following VFP sample , shows how ItemsCount property should be implemented:

function IUnboundHandler_get_ItemsCount(Source)
 return 1000000
endfunc

method UnboundHandler.ReadItem (Index as Long, Source as Object)
The source requires an item.

Type Description

Index as Long

A Long expression that specifies the index of the item to
be requested. Use the VirtualToItem property to get the
index of the item in the list giving the index of the virtual
item.

Source as Object The source object to be filled.

The ReadItem method is called every time the Source requires an item to be displayed.

The following VB sample, shows how ReadItem method should be implemented:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As Object)
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 End With
End Sub

The following VB/NET sample, shows how ReadItem method should be implemented:

Public Sub ReadItem(ByVal Index As Integer, ByVal Source As Object) Implements
EXLISTLib.IUnboundHandler.ReadItem
 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 End With
End Sub

The following C# sample, shows how ReadItem method should be implemented:

public void ReadItem(int Index, object Source)
{
 (Source as EXLISTLib.IList).Items.set_Caption((Source as
EXLISTLib.IList).Items.get_VirtualToItem(Index), 0, Index + 1);
}

The following VFP sample , shows how ReadItem method should be implemented:

function IUnboundHandler_ReadItem(Index, Source)

 With Source.Items
 .Caption(.VirtualToItem(Index), 0) = Index + 1
 EndWith
endfunc

ExList events
The ExList control supports the following events:

Name Description
AddColumn Fired after a new column is added.
AddItem Occurs after a new Item is inserted to Items collection.
AfterCellEdit Occurs after data in the current cell is edited.

AllowAutoDrag Occurs when the user drags the item between InsertA and
InsertB.

AnchorClick Occurs when an anchor element is clicked.

BeforeCellEdit Occurs just before the user enters edit mode by clicking in
a cell.

CancelCellEdit Occurs if the edit operation is canceled.
CellButtonClick Fired after the user clicks the cell's button.
CellImageClick Fired after the user clicks the cell's icon.
CellStateChanged Fired after cell's state is changed.
CellStateChanging Fired before cell's state is about to be changed.

Click Occurs when the user presses and then releases the left
mouse button over the list control.

ColumnClick Fired after the user clicks on column's header.

DblClick
Occurs when the user presses and releases a mouse
button and then presses and releases it again over an
object.

Event Notifies the application once the control fires an event.
FilterChange Occurs when filter was changed.
FilterChanging Notifies your application that the filter is about to change.
FormatColumn Fired when a cell requires to format its caption.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutChanged Occurs when column's position or column's size is
changed.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OffsetChanged Occurs when the scroll position is changed.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.
OversizeChanged Occurs when the right range of the scroll is changed.
RClick Fired when right mouse button is clicked
RemoveColumn Fired before deleting a Column.
RemoveItem Occurs before deleting an Item.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelectionChanged Fired after a new item is selected.
Sort Fired when the control sorts a column.
ToolTip Fired when the control prepares the object's tooltip.

C#

VB

private void AddColumn(object sender,exontrol.EXLISTLib.Column Column)
{
}

Private Sub AddColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXLISTLib.Column) Handles AddColumn
End Sub

C#

C++

C++
Builder

Delphi

private void AddColumn(object sender,
AxEXLISTLib._IListEvents_AddColumnEvent e)
{
}

void OnAddColumn(LPDISPATCH Column)
{
}

void __fastcall AddColumn(TObject *Sender,Exlistlib_tlb::IColumn *Column)
{
}

procedure AddColumn(ASender: TObject; Column : IColumn);
begin

event AddColumn (Column as Column)
Fired after a new column has been added.

Type Description
Column as Column A Column object that's added to the Columns collection.

The control fires the AddColumn event is fired when a new column is inserted to the
Columns collection. Use the AddColumn event to associate any extra data to the column.
Use the Add method to add a new column. Use the Add, PutItems or DataSource method
to add new items to the control. Use the ColumnAutoResize property to allow visible
columns fit the control's client area.

Syntax for AddColumn event, /NET version, on:

Syntax for AddColumn event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure AddColumn(sender: System.Object; e:
AxEXLISTLib._IListEvents_AddColumnEvent);
begin
end;

begin event AddColumn(oleobject Column)
end event AddColumn

Private Sub AddColumn(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_AddColumnEvent) Handles AddColumn
End Sub

Private Sub AddColumn(ByVal Column As EXLISTLibCtl.IColumn)
End Sub

Private Sub AddColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnAddColumn(oList,Column)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddColumn(Column)
End Function
</SCRIPT>

Procedure OnComAddColumn Variant llColumn
 Forward Send OnComAddColumn llColumn

Syntax for AddColumn event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_AddColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_AddColumn(COM _Column)
{
}

function AddColumn as v (Column as OLE::Exontrol.List.1::IColumn)
end function

function nativeObject_AddColumn(Column)
return

The following VB sample sets the width for all columns:

Private Sub List1_AddColumn(ByVal Column As EXLISTLibCtl.IColumn)
 Column.Width = 128
End Sub

The following C++ sample changes the column's width when a new column is added:

#include "Column.h"
#include "Columns.h"
void OnAddColumnList1(LPDISPATCH Column)
{
 CColumn column(Column);column.m_bAutoRelease = FALSE;
 column.SetWidth(128);
}

The following VB.NET sample changes the column's width when a new column is added:

Private Sub AxList1_AddColumn(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_AddColumnEvent) Handles AxList1.AddColumn
 e.column.Width = 128
End Sub

The following C# sample changes the column's width when a new column is added:

private void axList1_AddColumn(object sender, AxEXLISTLib._IListEvents_AddColumnEvent
e)
{
 e.column.Width = 128;
}

The following VFP sample changes the column's width when a new column is added:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

C#

VB

private void AddItem(object sender,int ItemIndex)
{
}

Private Sub AddItem(ByVal sender As System.Object,ByVal ItemIndex As Integer)
Handles AddItem
End Sub

C#

C++

C++
Builder

Delphi

private void AddItem(object sender, AxEXLISTLib._IListEvents_AddItemEvent e)
{
}

void OnAddItem(long ItemIndex)
{
}

void __fastcall AddItem(TObject *Sender,long ItemIndex)
{
}

procedure AddItem(ASender: TObject; ItemIndex : Integer);
begin
end;

event AddItem (ItemIndex as Long)
Occurs after a new item has been inserted to Items collection.

Type Description

ItemIndex as Long A long expression that indicates the index of the item being
added.

The control fires the AddItem event when a new item is added. Use the Add method to add
new items to the control. Use the AddItem event to associate extra data to the item. Use
the Add method to add a new column to the control. Use the PutItems to add items from
safe array. Use the DataSource property to add columns and items from a recordset.

Syntax for AddItem event, /NET version, on:

Syntax for AddItem event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddItem(sender: System.Object; e:
AxEXLISTLib._IListEvents_AddItemEvent);
begin
end;

begin event AddItem(long ItemIndex)
end event AddItem

Private Sub AddItem(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_AddItemEvent) Handles AddItem
End Sub

Private Sub AddItem(ByVal ItemIndex As Long)
End Sub

Private Sub AddItem(ByVal ItemIndex As Long)
End Sub

LPARAMETERS ItemIndex

PROCEDURE OnAddItem(oList,ItemIndex)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddItem(ItemIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddItem(ItemIndex)
End Function
</SCRIPT>

Procedure OnComAddItem Integer llItemIndex
 Forward Send OnComAddItem llItemIndex
End_Procedure

Syntax for AddItem event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_AddItem(ItemIndex) CLASS MainDialog
RETURN NIL

void onEvent_AddItem(int _ItemIndex)
{
}

function AddItem as v (ItemIndex as N)
end function

function nativeObject_AddItem(ItemIndex)
return

The following VB sample bolds the cells in the first column, when a new items is inserted:

Private Sub List1_AddItem(ByVal Index As Long)
 With List1.Items
 .CellBold(Index, 0) = True
 End With
End Sub

The following C++ sample bolds the cells in the first column, when a new items is inserted:

void OnAddItemList1(long ItemIndex)
{
 if (IsWindow(m_list.m_hWnd))
 {
 CItems items = m_list.GetItems();
 items.SetCellBold(ItemIndex, COleVariant(long(0)), TRUE);
 }
}

The following VB.NET sample bolds the cells in the first column, when a new items is
inserted:

Private Sub AxList1_AddItem(ByVal sender As System.Object, ByVal e As

AxEXLISTLib._IListEvents_AddItemEvent) Handles AxList1.AddItem
 With AxList1.Items
 .CellBold(e.itemIndex, 0) = True
 End With
End Sub

The following C# sample bolds the cells in the first column, when a new items is inserted:

private void axList1_AddItem(object sender, AxEXLISTLib._IListEvents_AddItemEvent e)
{
 axList1.Items.set_CellBold(e.itemIndex, 0, true);
}

The following VFP sample bolds the cells in the first column, when a new items is inserted:

*** ActiveX Control Event ***
LPARAMETERS itemindex

with thisform.List1.Items
 .CellBold(itemIndex, 0) = .t.
endwith

C#

VB

private void AfterCellEdit(object sender,int ItemIndex,int ColIndex,string
NewCaption)
{
}

Private Sub AfterCellEdit(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer,ByVal NewCaption As String) Handles
AfterCellEdit
End Sub

C#

C++

private void AfterCellEdit(object sender,
AxEXLISTLib._IListEvents_AfterCellEditEvent e)
{
}

void OnAfterCellEdit(long ItemIndex,long ColIndex,LPCTSTR NewCaption)
{
}

event AfterCellEdit (ItemIndex as Long, ColIndex as Long, NewCaption
as String)
Occurs after data in the current cell is edited.

Type Description

ItemIndex as Long A long expression that indicates the index of item being
edited.

ColIndex as Long A long expression that indicates the column's index
NewCaption as String A string expression that indicates the text being edited

Use the AfterCellEdit event to change the cell's caption after the edit operation ends. The
control fires BeforeCellEdit event and AfterCellEdit events if the AllowEdit property is True.
The AfterCellEdit event notifies your application that the user alters the cell's caption. Use
the Edit method to edit programmatically a cell. The CancelCellEdit event occurs if the user
cancels the edit operation. The CancelCellEdit event is fired when the user presses ESC
key while editing or when the user clicks outside the edit field.

Syntax for AfterCellEdit event, /NET version, on:

Syntax for AfterCellEdit event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall AfterCellEdit(TObject *Sender,long ItemIndex,long ColIndex,BSTR
NewCaption)
{
}

procedure AfterCellEdit(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer;NewCaption : WideString);
begin
end;

procedure AfterCellEdit(sender: System.Object; e:
AxEXLISTLib._IListEvents_AfterCellEditEvent);
begin
end;

begin event AfterCellEdit(long ItemIndex,long ColIndex,string NewCaption)
end event AfterCellEdit

Private Sub AfterCellEdit(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_AfterCellEditEvent) Handles AfterCellEdit
End Sub

Private Sub AfterCellEdit(ByVal ItemIndex As Long,ByVal ColIndex As Long,ByVal
NewCaption As String)
End Sub

Private Sub AfterCellEdit(ByVal ItemIndex As Long,ByVal ColIndex As Long,ByVal
NewCaption As String)
End Sub

LPARAMETERS ItemIndex,ColIndex,NewCaption

PROCEDURE OnAfterCellEdit(oList,ItemIndex,ColIndex,NewCaption)
RETURN

Syntax for AfterCellEdit event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AfterCellEdit(ItemIndex,ColIndex,NewCaption)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterCellEdit(ItemIndex,ColIndex,NewCaption)
End Function
</SCRIPT>

Procedure OnComAfterCellEdit Integer llItemIndex Integer llColIndex String
llNewCaption
 Forward Send OnComAfterCellEdit llItemIndex llColIndex llNewCaption
End_Procedure

METHOD OCX_AfterCellEdit(ItemIndex,ColIndex,NewCaption) CLASS MainDialog
RETURN NIL

void onEvent_AfterCellEdit(int _ItemIndex,int _ColIndex,str _NewCaption)
{
}

function AfterCellEdit as v (ItemIndex as N,ColIndex as N,NewCaption as C)
end function

function nativeObject_AfterCellEdit(ItemIndex,ColIndex,NewCaption)
return

The following VB sample change the cell's caption when the user hits the ENTER key:

Private Sub List1_AfterCellEdit(ByVal Index As Long, ByVal ColIndex As Long, ByVal
NewCaption As String)
 Debug.Print NewCaption
 With List1.Items
 .Caption(Index, ColIndex) = NewCaption
 End With
End Sub

The following C++ sample change the cell's caption when the user hits the ENTER key:

void OnAfterCellEditList1(long ItemIndex, long ColIndex, LPCTSTR NewCaption)
{
 CItems items = m_list.GetItems();
 items.SetCaption(ItemIndex, COleVariant(ColIndex), COleVariant(NewCaption));
}

The following VB.NET sample change the cell's caption when the user hits the ENTER key:

Private Sub AxList1_AfterCellEdit(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_AfterCellEditEvent) Handles AxList1.AfterCellEdit
 With AxList1.Items
 .Caption(e.itemIndex, e.colIndex) = e.newCaption
 End With
End Sub

The following C# sample change the cell's caption when the user hits the ENTER key:

private void axList1_AfterCellEdit(object sender,
AxEXLISTLib._IListEvents_AfterCellEditEvent e)
{
 axList1.Items.set_Caption(e.itemIndex, e.colIndex, e.newCaption);
}

The following VFP sample change the cell's caption when the user hits the ENTER key:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex, newcaption

with thisform.List1.Items
 .Caption(itemIndex, colindex) = newcaption
endwith

event AllowAutoDrag (Item as Long, InsertA as Long, InsertB as Long,
Cancel as Boolean)
Occurs when the user drags the item between InsertA and InsertB.

Type Description
Item as Long A long expression that indicates the item being dragged.

InsertA as Long
A long expression that specifies the index of the item to
insert the dragging Item after. If -1, it indicates that no
item after.

InsertB as Long
A long expression that specifies the index of the item to
insert the dragging Item before. If -1, it indicates that no
item before.

Cancel as Boolean A Boolean expression that specifies whether the operation
can continue (this parameter is by reference)

The AllowAutoDrag event occurs when the user drags the item between InsertA and
InsertB, using the AutoDrag property. The AutoDrag feature indicates what the control does
when the user clicks an item and starts dragging it. For instance, using the AutoDrag
feature you can let the user arrange the items in the control, or can drop the selection to a
any OLE compliant applications like Microsoft Word, Excel and so on... The AllowAutoDrag
event may fire when the AutoDrag property is any of the following values:

exAutoDragPosition... (the item can be dragged from a position to another)

You can use the AllowAutoDrag event to cancel or continue drag and drop operation using
the AutoDrag property.

The following screen shot shows the InsertA and InsertB parameters, when "Item 2" is
dragging to a new position:

InsertA is "Item 1"
InsertB is "Item 3"

C#

VB

private void AllowAutoDrag(object sender,int Item,int InsertA,int InsertB,ref
bool Cancel)
{
}

Private Sub AllowAutoDrag(ByVal sender As System.Object,ByVal Item As
Integer,ByVal InsertA As Integer,ByVal InsertB As Integer,ByRef Cancel As Boolean)
Handles AllowAutoDrag
End Sub

C#

C++

private void AllowAutoDrag(object sender,
AxEXLISTLib._IListEvents_AllowAutoDragEvent e)
{
}

void OnAllowAutoDrag(long Item,long InsertA,long InsertB,BOOL FAR*
Cancel)
{
}

InsertA is -1
InsertB is "Item 1"

InsertA is "Item 3"
InsertB is -1

Syntax for AllowAutoDrag event, /NET version, on:

Syntax for AllowAutoDrag event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall AllowAutoDrag(TObject *Sender,long Item,long InsertA,long
InsertB,VARIANT_BOOL * Cancel)
{
}

procedure AllowAutoDrag(ASender: TObject; Item : Integer;InsertA :
Integer;InsertB : Integer;var Cancel : WordBool);
begin
end;

procedure AllowAutoDrag(sender: System.Object; e:
AxEXLISTLib._IListEvents_AllowAutoDragEvent);
begin
end;

begin event AllowAutoDrag(long Item,long InsertA,long InsertB,boolean
Cancel)

end event AllowAutoDrag

Private Sub AllowAutoDrag(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_AllowAutoDragEvent) Handles AllowAutoDrag
End Sub

Private Sub AllowAutoDrag(ByVal Item As Long,ByVal InsertA As Long,ByVal
InsertB As Long,Cancel As Boolean)
End Sub

Private Sub AllowAutoDrag(ByVal Item As Long,ByVal InsertA As Long,ByVal
InsertB As Long,Cancel As Boolean)
End Sub

LPARAMETERS Item,InsertA,InsertB,Cancel

PROCEDURE OnAllowAutoDrag(oList,Item,InsertA,InsertB,Cancel)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AllowAutoDrag(Item,InsertA,InsertB,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AllowAutoDrag(Item,InsertA,InsertB,Cancel)
End Function
</SCRIPT>

Procedure OnComAllowAutoDrag Integer llItem Integer llInsertA Integer
llInsertB Boolean llCancel
 Forward Send OnComAllowAutoDrag llItem llInsertA llInsertB llCancel
End_Procedure

METHOD OCX_AllowAutoDrag(Item,InsertA,InsertB,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_AllowAutoDrag(int _Item,int _InsertA,int _InsertB,COMVariant
/*bool*/ _Cancel)
{
}

function AllowAutoDrag as v (Item as N,InsertA as N,InsertB as N,Cancel as L)
end function

function nativeObject_AllowAutoDrag(Item,InsertA,InsertB,Cancel)
return

Syntax for AllowAutoDrag event, /COM version (others), on:

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C#

C++

private void AnchorClick(object sender, AxEXLISTLib._IListEvents_AnchorClickEvent
e)
{
}

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata".

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXLISTLib._IListEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oList,AnchorID,Options)
RETURN

Syntax for AnchorClick event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

C#

VB

private void BeforeCellEdit(object sender,int ItemIndex,int ColIndex,ref object
Value,ref object Cancel)
{
}

Private Sub BeforeCellEdit(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer,ByRef Value As Object,ByRef Cancel As Object)
Handles BeforeCellEdit
End Sub

C#

C++

private void BeforeCellEdit(object sender,
AxEXLISTLib._IListEvents_BeforeCellEditEvent e)
{
}

void OnBeforeCellEdit(long ItemIndex,long ColIndex,VARIANT FAR*
Value,VARIANT FAR* Cancel)

event BeforeCellEdit (ItemIndex as Long, ColIndex as Long, Value as
Variant, Cancel as Variant)
Occurs just before the user enters edit mode by clicking in a cell.

Type Description

ItemIndex as Long A long expression that indicates the index of item that
being edited.

ColIndex as Long A long expression that indicates the index of column being
edited.

Value as Variant A string value that indicates the cell's caption being edited.

Cancel as Variant A boolean expression that indicates whether the edit
operation is canceled or not.

The BeforeCellEdit event notifies your application that a cell starts editing. Use the
BeforeCellEdit event to cancel editing a cell. The control fires the BeforeCellEdit and
AfterCellEdit events only if the AllowEdit property is True. Use the Edit method to edit
programmatically a cell.

Syntax for BeforeCellEdit event, /NET version, on:

Syntax for BeforeCellEdit event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall BeforeCellEdit(TObject *Sender,long ItemIndex,long
ColIndex,Variant * Value,Variant * Cancel)
{
}

procedure BeforeCellEdit(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer;var Value : OleVariant;var Cancel : OleVariant);
begin
end;

procedure BeforeCellEdit(sender: System.Object; e:
AxEXLISTLib._IListEvents_BeforeCellEditEvent);
begin
end;

begin event BeforeCellEdit(long ItemIndex,long ColIndex,any Value,any Cancel)
end event BeforeCellEdit

Private Sub BeforeCellEdit(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_BeforeCellEditEvent) Handles BeforeCellEdit
End Sub

Private Sub BeforeCellEdit(ByVal ItemIndex As Long,ByVal ColIndex As Long,Value
As Variant,Cancel As Variant)
End Sub

Private Sub BeforeCellEdit(ByVal ItemIndex As Long,ByVal ColIndex As Long,Value
As Variant,Cancel As Variant)
End Sub

LPARAMETERS ItemIndex,ColIndex,Value,Cancel

PROCEDURE OnBeforeCellEdit(oList,ItemIndex,ColIndex,Value,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BeforeCellEdit(ItemIndex,ColIndex,Value,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeCellEdit(ItemIndex,ColIndex,Value,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeCellEdit Integer llItemIndex Integer llColIndex Variant
llValue Variant llCancel
 Forward Send OnComBeforeCellEdit llItemIndex llColIndex llValue llCancel
End_Procedure

METHOD OCX_BeforeCellEdit(ItemIndex,ColIndex,Value,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeCellEdit(int _ItemIndex,int _ColIndex,COMVariant /*variant*/
_Value,COMVariant /*variant*/ _Cancel)
{
}

function BeforeCellEdit as v (ItemIndex as N,ColIndex as N,Value as A,Cancel as A)
end function

function nativeObject_BeforeCellEdit(ItemIndex,ColIndex,Value,Cancel)
return

Syntax for BeforeCellEdit event, /COM version (others), on:

The following VB sample disables editing the cells on the second column:

Private Sub List1_BeforeCellEdit(ByVal Index As Long, ByVal ColIndex As Long, Value As
Variant, Cancel As Variant)
 Cancel = ColIndex = 1
End Sub

The following C++ sample disables editing the cells on the second column:

void OnBeforeCellEditList1(long ItemIndex, long ColIndex, VARIANT FAR* Value, VARIANT
FAR* Cancel)
{
 if (ColIndex == 1)
 {
 V_VT(Cancel) = VT_BOOL;
 V_BOOL(Cancel) = VARIANT_TRUE;
 }
}

The following VB.NET sample disables editing the cells on the second column:

Private Sub AxList1_BeforeCellEdit(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_BeforeCellEditEvent) Handles AxList1.BeforeCellEdit
 If (e.colIndex = 1) Then
 e.cancel = True
 End If
End Sub

The following C# sample disables editing the cells on the second column:

private void axList1_BeforeCellEdit(object sender,
AxEXLISTLib._IListEvents_BeforeCellEditEvent e)
{
 if (e.colIndex == 1)
 e.cancel = true;
}

The following VFP sample disables editing the cells on the second column:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex, value, cancel

if (colindex = 1)
 cancel = .t.
endif

C#

VB

private void CancelCellEdit(object sender,int ItemIndex,int ColIndex,object
Reserved)
{
}

Private Sub CancelCellEdit(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer,ByVal Reserved As Object) Handles
CancelCellEdit
End Sub

C#

C++

private void CancelCellEdit(object sender,
AxEXLISTLib._IListEvents_CancelCellEditEvent e)
{
}

void OnCancelCellEdit(long ItemIndex,long ColIndex,VARIANT Reserved)

event CancelCellEdit (ItemIndex as Long, ColIndex as Long, Reserved as
Variant)
Occurs if the edit operation is canceled.

Type Description

ItemIndex as Long A long expression that indicates the index of item being
edited.

ColIndex as Long A long expression that indicates the column's index

Reserved as Variant
Contains the caption of the edit control when the user
presses the ESC key, or when the user clicks outside the
edit field.

The CancelCellEdit event notifies your application that the user cancels the edit operation.
The CancelCellEdit event is fired when the user presses ESC key while editing or when the
user clicks outside the edit field. The control fires BeforeCellEdit, AfterCellEdit,
CancelCellEdit events if the AllowEdit property is True. The AfterCellEdit event notifies your
application that the user alters the cell's caption. Use the Edit method to programmatically
edit a cell.

Syntax for CancelCellEdit event, /NET version, on:

Syntax for CancelCellEdit event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall CancelCellEdit(TObject *Sender,long ItemIndex,long
ColIndex,Variant Reserved)
{
}

procedure CancelCellEdit(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer;Reserved : OleVariant);
begin
end;

procedure CancelCellEdit(sender: System.Object; e:
AxEXLISTLib._IListEvents_CancelCellEditEvent);
begin
end;

begin event CancelCellEdit(long ItemIndex,long ColIndex,any Reserved)
end event CancelCellEdit

Private Sub CancelCellEdit(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_CancelCellEditEvent) Handles CancelCellEdit
End Sub

Private Sub CancelCellEdit(ByVal ItemIndex As Long,ByVal ColIndex As Long,ByVal
Reserved As Variant)
End Sub

Private Sub CancelCellEdit(ByVal ItemIndex As Long,ByVal ColIndex As Long,ByVal
Reserved As Variant)
End Sub

LPARAMETERS ItemIndex,ColIndex,Reserved

PROCEDURE OnCancelCellEdit(oList,ItemIndex,ColIndex,Reserved)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CancelCellEdit(ItemIndex,ColIndex,Reserved)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CancelCellEdit(ItemIndex,ColIndex,Reserved)
End Function
</SCRIPT>

Procedure OnComCancelCellEdit Integer llItemIndex Integer llColIndex Variant
llReserved
 Forward Send OnComCancelCellEdit llItemIndex llColIndex llReserved
End_Procedure

METHOD OCX_CancelCellEdit(ItemIndex,ColIndex,Reserved) CLASS MainDialog
RETURN NIL

void onEvent_CancelCellEdit(int _ItemIndex,int _ColIndex,COMVariant _Reserved)
{
}

function CancelCellEdit as v (ItemIndex as N,ColIndex as N,Reserved as A)
end function

function nativeObject_CancelCellEdit(ItemIndex,ColIndex,Reserved)
return

Syntax for CancelCellEdit event, /COM version (others), on:

The following VB sample changes the cell's caption when the user clicks outside the edit
field:

Private Declare Function GetAsyncKeyState Lib "user32" (ByVal vKey As Long) As Integer

Private Sub List1_CancelCellEdit(ByVal ItemIndex As Long, ByVal ColIndex As Long, ByVal
Reserved As Variant)
 If Not (GetAsyncKeyState(27) < 0) Then

 With List1.Items
 .Caption(ItemIndex, ColIndex) = Reserved
 End With
 End If
End Sub

The GetAsyncKeyState function determines whether a key is up or down at the time the
function is called. The sample changes the selected caption only if the user didn't press
ESC key.

The following C++ sample changes the cell's caption when the user clicks outside the edit
field:

void OnCancelCellEditList1(long ItemIndex, long ColIndex, const VARIANT FAR& Reserved)
{
 if (! (GetAsyncKeyState(VK_ESCAPE) < 0))
 {
 CString strNewCaption = V2S((VARIANT*)&Reserved);
 CItems items = m_list.GetItems();
 items.SetCaption(ItemIndex, COleVariant(ColIndex), COleVariant(strNewCaption));
 }
}

where the V2S function converts a VARIANT expression to a string expression,

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

C#

VB

private void CellButtonClick(object sender,int ItemIndex,int ColIndex)
{
}

Private Sub CellButtonClick(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer) Handles CellButtonClick
End Sub

C#

C++

C++
Builder

Delphi

private void CellButtonClick(object sender,
AxEXLISTLib._IListEvents_CellButtonClickEvent e)
{
}

void OnCellButtonClick(long ItemIndex,long ColIndex)
{
}

void __fastcall CellButtonClick(TObject *Sender,long ItemIndex,long ColIndex)
{
}

procedure CellButtonClick(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer);

event CellButtonClick (ItemIndex as Long, ColIndex as Long)
Fired after the user clicks the cell's button.

Type Description
ItemIndex as Long A long value that indicates the index of item being clicked.
ColIndex as Long A long value that indicates the index of the column.

The CellButtonClick event is fired after the user has released the left mouse button over a
cell of button type. Use the CellHasButton property to specify whether a cell is of button
type. The CellButtonClick event notifies your application that user presses a cell of button
type. Use the Caption property to specify the button's caption.

Syntax for CellButtonClick event, /NET version, on:

Syntax for CellButtonClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure CellButtonClick(sender: System.Object; e:
AxEXLISTLib._IListEvents_CellButtonClickEvent);
begin
end;

begin event CellButtonClick(long ItemIndex,long ColIndex)
end event CellButtonClick

Private Sub CellButtonClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_CellButtonClickEvent) Handles CellButtonClick
End Sub

Private Sub CellButtonClick(ByVal ItemIndex As Long,ByVal ColIndex As Long)
End Sub

Private Sub CellButtonClick(ByVal ItemIndex As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS ItemIndex,ColIndex

PROCEDURE OnCellButtonClick(oList,ItemIndex,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="CellButtonClick(ItemIndex,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellButtonClick(ItemIndex,ColIndex)
End Function
</SCRIPT>

Syntax for CellButtonClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComCellButtonClick Integer llItemIndex Integer llColIndex
 Forward Send OnComCellButtonClick llItemIndex llColIndex
End_Procedure

METHOD OCX_CellButtonClick(ItemIndex,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellButtonClick(int _ItemIndex,int _ColIndex)
{
}

function CellButtonClick as v (ItemIndex as N,ColIndex as N)
end function

function nativeObject_CellButtonClick(ItemIndex,ColIndex)
return

The following VB sample prints the caption of the cell being clicked:

Private Sub List1_CellButtonClick(ByVal Index As Long, ByVal ColIndex As Long)
 Debug.Print List1.Items.Caption(Index, ColIndex)
End Sub

The following C++ sample prints the caption of the cell being clicked:

void OnCellButtonClickList1(long ItemIndex, long ColIndex)
{
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(ItemIndex, COleVariant(ColIndex)));
 OutputDebugString(strCaption);
}

where the V2S function converts a VARIANT expression to a string expression,

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{

 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample prints the caption of the cell being clicked:

Private Sub AxList1_CellButtonClick(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_CellButtonClickEvent) Handles AxList1.CellButtonClick
 With AxList1.Items
 Debug.Write(.Caption(e.itemIndex, e.colIndex))
 End With
End Sub

The following C# sample prints the caption of the cell being clicked:

private void axList1_CellButtonClick(object sender,
AxEXLISTLib._IListEvents_CellButtonClickEvent e)
{
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(e.itemIndex,
e.colIndex).ToString());
}

The following VFP sample prints the caption of the cell being clicked:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex

with thisform.List1.Items
 wait window nowait .Caption(itemindex,colindex)
endwith

C#

VB

private void CellImageClick(object sender,int ItemIndex,int ColIndex)
{
}

Private Sub CellImageClick(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer) Handles CellImageClick
End Sub

C#

C++

C++
Builder

private void CellImageClick(object sender,
AxEXLISTLib._IListEvents_CellImageClickEvent e)
{
}

void OnCellImageClick(long ItemIndex,long ColIndex)
{
}

void __fastcall CellImageClick(TObject *Sender,long ItemIndex,long ColIndex)
{
}

event CellImageClick (ItemIndex as Long, ColIndex as Long)
Fired after the user clicks the cell's icon.

Type Description
ItemIndex as Long A long value that indicates the index of item being clicked.

ColIndex as Long A long value that indicates the index of column, where the
cell's icon is clicked.

The CellImageClick event is fired when user clicks on the cell's image. Use the CellImage
property to assign an icon to a cell. Use the CellImages property to assign multiple icons to
a cell. Use the ItemFromPoint property to determine the index of the icon being clicked, in
case the cell displays multiple icons using the CellImages property. Use the
CellHasCheckBox or CellHasRadioButton property to assign a check box or a radio button
to a cell.

Syntax for CellImageClick event, /NET version, on:

Syntax for CellImageClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure CellImageClick(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer);
begin
end;

procedure CellImageClick(sender: System.Object; e:
AxEXLISTLib._IListEvents_CellImageClickEvent);
begin
end;

begin event CellImageClick(long ItemIndex,long ColIndex)
end event CellImageClick

Private Sub CellImageClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_CellImageClickEvent) Handles CellImageClick
End Sub

Private Sub CellImageClick(ByVal ItemIndex As Long,ByVal ColIndex As Long)
End Sub

Private Sub CellImageClick(ByVal ItemIndex As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS ItemIndex,ColIndex

PROCEDURE OnCellImageClick(oList,ItemIndex,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="CellImageClick(ItemIndex,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellImageClick(ItemIndex,ColIndex)
End Function
</SCRIPT>

Syntax for CellImageClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComCellImageClick Integer llItemIndex Integer llColIndex
 Forward Send OnComCellImageClick llItemIndex llColIndex
End_Procedure

METHOD OCX_CellImageClick(ItemIndex,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellImageClick(int _ItemIndex,int _ColIndex)
{
}

function CellImageClick as v (ItemIndex as N,ColIndex as N)
end function

function nativeObject_CellImageClick(ItemIndex,ColIndex)
return

The following VB sample changes the cell's icon when it is clicked:

Private Sub List1_CellImageClick(ByVal Index As Long, ByVal ColIndex As Long)
 With List1.Items
 .CellImage(Index, ColIndex) = 1 + (.CellImage(Index, ColIndex)) Mod 2
 End With
End Sub

The following C++ sample changes the cell's icon when it is clicked:

void OnCellImageClickList1(long ItemIndex, long ColIndex)
{
 COleVariant vtColumn(ColIndex);
 CItems items = m_list.GetItems();
 items.SetCellImage(ItemIndex, vtColumn, (items.GetCellImage(ItemIndex, vtColumn)
% 2) + 1);
}

The following VB.NET sample changes the cell's icon when it is clicked:

Private Sub AxList1_CellImageClick(ByVal sender As Object, ByVal e As

AxEXLISTLib._IListEvents_CellImageClickEvent) Handles AxList1.CellImageClick
 With AxList1.Items
 .CellImage(e.itemIndex, e.colIndex) = .CellImage(e.itemIndex, e.colIndex) Mod 2 + 1
 End With
End Sub

The following C# sample changes the cell's icon when it is clicked:

private void axList1_CellImageClick(object sender,
AxEXLISTLib._IListEvents_CellImageClickEvent e)
{
 axList1.Items.set_CellImage(e.itemIndex, e.colIndex,
axList1.Items.get_CellImage(e.itemIndex, e.colIndex) % 2 + 1);
}

The following VFP sample changes the cell's icon when it is clicked:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex

with thisform.List1.Items
 .CellImage(itemindex, colindex) = mod(.CellImage(itemindex, colindex), 2) + 1
endwith

C#

VB

private void CellStateChanged(object sender,int ItemIndex,int ColIndex)
{
}

Private Sub CellStateChanged(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer) Handles CellStateChanged
End Sub

C#

C++

C++
Builder

private void CellStateChanged(object sender,
AxEXLISTLib._IListEvents_CellStateChangedEvent e)
{
}

void OnCellStateChanged(long ItemIndex,long ColIndex)
{
}

void __fastcall CellStateChanged(TObject *Sender,long ItemIndex,long ColIndex)
{

event CellStateChanged (ItemIndex as Long, ColIndex as Long)
Fired after cell's state has been changed.

Type Description

ItemIndex as Long A long value that indicates the index of the item where the
cell's state being changed.

ColIndex as Long A long value that indicates the column's index.

A cell that contains a radio button or a check box button fires the CellStateChanged event
when its state is changed. Use the CellState property to change the cell's state. Use the
CellHasRadioButton or CellHasCheckBox property to enable radio or check box button into
a cell. Use the CellImage property to display an icon in the cell. Use the CellImages
property to display multiple icons in the same cell. Use the CellChecked property to
determine the handle of the cell that's checked in a radio group. Use the CellRadioGroup
property to radio group cells.

Syntax for CellStateChanged event, /NET version, on:

Syntax for CellStateChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure CellStateChanged(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer);
begin
end;

procedure CellStateChanged(sender: System.Object; e:
AxEXLISTLib._IListEvents_CellStateChangedEvent);
begin
end;

begin event CellStateChanged(long ItemIndex,long ColIndex)
end event CellStateChanged

Private Sub CellStateChanged(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_CellStateChangedEvent) Handles CellStateChanged
End Sub

Private Sub CellStateChanged(ByVal ItemIndex As Long,ByVal ColIndex As Long)
End Sub

Private Sub CellStateChanged(ByVal ItemIndex As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS ItemIndex,ColIndex

PROCEDURE OnCellStateChanged(oList,ItemIndex,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="CellStateChanged(ItemIndex,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanged(ItemIndex,ColIndex)

Syntax for CellStateChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComCellStateChanged Integer llItemIndex Integer llColIndex
 Forward Send OnComCellStateChanged llItemIndex llColIndex
End_Procedure

METHOD OCX_CellStateChanged(ItemIndex,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanged(int _ItemIndex,int _ColIndex)
{
}

function CellStateChanged as v (ItemIndex as N,ColIndex as N)
end function

function nativeObject_CellStateChanged(ItemIndex,ColIndex)
return

The following VB sample displays the caption of the cell that's checked into a radio group:

Private Sub List1_CellStateChanged(ByVal Index As Long, ByVal ColIndex As Long)
 With List1.Items
 Dim i As Long, c As Long
 .CellChecked 1234, i, c
 Debug.Print .Caption(i, c)
 End With
End Sub

Use the CellRadioGroup property to group cells into the same radio group.

The following VB sample groups the cells in the second column:

Dim i As Long
With List1.Items
 For i = 0 To .Count - 1
 .CellHasRadioButton(i, 1) = True

 .CellRadioGroup(i, 1) = 1234
 Next
End With

The following VB sample prints the caption of the cell's whose state is changed:

Private Sub List1_CellStateChanged(ByVal ItemIndex As Long, ByVal ColIndex As Long)
 With List1.Items
 Debug.Print .Caption(Index, ColIndex)
 End With
End Sub

The following C++ sample prints the caption of the cell's whose state is changed:

void OnCellStateChangedList1(long ItemIndex, long ColIndex)
{
 if (IsWindow(m_list.m_hWnd))
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(ItemIndex, COleVariant(ColIndex)));
 OutputDebugString(strCaption);
 }
}

The following VB.NET sample prints the caption of the cell's whose state is changed:

Private Sub AxList1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_CellStateChangedEvent) Handles AxList1.CellStateChanged
 With AxList1.Items
 Debug.Write(.Caption(e.itemIndex, e.colIndex))
 End With
End Sub

The following C# sample prints the caption of the cell's whose state is changed:

private void axList1_CellStateChanged(object sender,
AxEXLISTLib._IListEvents_CellStateChangedEvent e)
{
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(e.itemIndex,

e.colIndex).ToString());
}

The following VFP sample prints the caption of the cell's whose state is changed:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex

with thisform.List1.Items
 wait window nowait .Caption(itemindex,colindex)
endwith

event CellStateChanging (ItemIndex as Long, ColIndex as Long,
NewState as Long)
Fired before cell's state is about to be changed.

Type Description

ItemIndex as Long A long expression that indicates the index of the item
where the cell's state is about to be changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

NewState as Long A long expression that specifies the new state of the cell (
0- unchecked, 1 - checked)

The control fires the CellStateChanging event just before cell's state is about to be
changed. For instance, you can prevent changing the cell's state, by calling the NewState =
Items.CellState(Item,ColIndex). A cell that contains a radio button or a check box button
fires the CellStateChanged event when its state is changed. Use the CellState property to
change the cell's state. Use the CellHasRadioButton or CellHasCheckBox property to
enable radio or check box button into a cell. Use the Def property to assign check-boxes /
radio-buttons for all cells in the column. Use the CellImage property to display an icon in the
cell. Use the CellImages property to display multiple icons in the same cell. Use
the CellChecked property to determine the handle of the cell that's checked in a radio
group. Use the CellRadioGroup property to radio group cells. We would not recommend
changing the CellState property during the CellStateChanging event, to prevent recursive
calls, instead you can change the NewState parameter which is passed by reference.

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of
the cell's checkbox / radio-button.

CellStateChanged event notifies your application that the cell's check-box or radio-
button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

For instance, the following VB sample prevents changing the cell's checkbox/radio-button,
when the control's ReadOnly property is set:

Private Sub List1_CellStateChanging(ByVal ItemIndex As Long, ByVal ColIndex As Long,
NewState As Long)

C#

VB

private void CellStateChanging(object sender,int Item,int ColIndex,ref int
NewState)
{
}

Private Sub CellStateChanging(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef NewState As Integer) Handles
CellStateChanging
End Sub

C#

C++

C++
Builder

Delphi

private void CellStateChanging(object sender,
AxEXLISTLib._IListEvents_CellStateChangingEvent e)
{
}

void OnCellStateChanging(long Item,long ColIndex,long FAR* NewState)
{
}

void __fastcall CellStateChanging(TObject *Sender,long ItemIndex,long
ColIndex,long * NewState)
{
}

procedure CellStateChanging(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer;var NewState : Integer);

 With List1
 If (.ReadOnly) Then
 With .Items
 NewState = .CellState(ItemIndex, ColIndex)
 End With
 End If
 End With
End Sub

Syntax for CellStateChanging event, /NET version, on:

Syntax for CellStateChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure CellStateChanging(sender: System.Object; e:
AxEXLISTLib._IListEvents_CellStateChangingEvent);
begin
end;

begin event CellStateChanging(long ItemIndex,long ColIndex,long NewState)

end event CellStateChanging

Private Sub CellStateChanging(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_CellStateChangingEvent) Handles CellStateChanging
End Sub

Private Sub CellStateChanging(ByVal ItemIndex As Long,ByVal ColIndex As
Long,NewState As Long)
End Sub

Private Sub CellStateChanging(ByVal Item As Long,ByVal ColIndex As
Long,NewState As Long)
End Sub

LPARAMETERS Item,ColIndex,NewState

PROCEDURE OnCellStateChanging(oList,Item,ColIndex,NewState)

RETURN

Java…

VBSc…

<SCRIPT EVENT="CellStateChanging(Item,ColIndex,NewState)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for CellStateChanging event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function CellStateChanging(Item,ColIndex,NewState)
End Function
</SCRIPT>

Procedure OnComCellStateChanging Integer llItemIndex Integer llColIndex
Integer llNewState
 Forward Send OnComCellStateChanging llItemIndex llColIndex llNewState
End_Procedure

METHOD OCX_CellStateChanging(Item,ColIndex,NewState) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanging(int _Item,int _ColIndex,COMVariant /*long*/
_NewState)
{
}

function CellStateChanging as v (ItemIndex as N,ColIndex as N,NewState as N)
end function

function nativeObject_CellStateChanging(ItemIndex,ColIndex,NewState)
return

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the list control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click MouseDown and MouseUp events
lets you distinguish between the left, right, and middle mouse buttons. You can also write
code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oList)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ColumnClick(object sender,exontrol.EXLISTLib.Column Column)
{
}

Private Sub ColumnClick(ByVal sender As System.Object,ByVal Column As
exontrol.EXLISTLib.Column) Handles ColumnClick
End Sub

C#

C++

C++
Builder

private void ColumnClick(object sender,
AxEXLISTLib._IListEvents_ColumnClickEvent e)
{
}

void OnColumnClick(LPDISPATCH Column)
{
}

void __fastcall ColumnClick(TObject *Sender,Exlistlib_tlb::IColumn *Column)
{
}

event ColumnClick (Column as Column)
Fired after the user clicks on column's header.

Type Description
Column as Column A Column object being clicked.

The ColumnClick event is fired when the user clicks the column's header. By default, the
control sorts by the column when user clicks the column's header. Use the SortOnClick
property to specify the operation that control does when user clicks the column's caption.
Use the ColumnFromPoint property to access the column from point. Use the
ItemFromPoint property to access the item from point. The control fires Sort method when
the control sorts a column. Use the MouseDown or MouseUp event to notify the control
when the user clicks the control, including the columns. Use the HeaderVisible property to
hide the control's header bar.

Syntax for ColumnClick event, /NET version, on:

Syntax for ColumnClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ColumnClick(ASender: TObject; Column : IColumn);
begin
end;

procedure ColumnClick(sender: System.Object; e:
AxEXLISTLib._IListEvents_ColumnClickEvent);
begin
end;

begin event ColumnClick(oleobject Column)
end event ColumnClick

Private Sub ColumnClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_ColumnClickEvent) Handles ColumnClick
End Sub

Private Sub ColumnClick(ByVal Column As EXLISTLibCtl.IColumn)
End Sub

Private Sub ColumnClick(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnColumnClick(oList,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ColumnClick(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ColumnClick(Column)
End Function
</SCRIPT>

Syntax for ColumnClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComColumnClick Variant llColumn
 Forward Send OnComColumnClick llColumn
End_Procedure

METHOD OCX_ColumnClick(Column) CLASS MainDialog
RETURN NIL

void onEvent_ColumnClick(COM _Column)
{
}

function ColumnClick as v (Column as OLE::Exontrol.List.1::IColumn)
end function

function nativeObject_ColumnClick(Column)
return

The following VB sample displays the caption of the column being clicked:

Private Sub List1_ColumnClick(ByVal Column As EXLISTLibCtl.IColumn)
 Debug.Print Column.Caption
End Sub

The following C++ sample displays the caption of the column being clicked:

#include "Column.h"
void OnColumnClickList1(LPDISPATCH Column)
{
 CColumn column(Column);
 column.m_bAutoRelease = FALSE;
 MessageBox(column.GetCaption());

}

The following VB.NET sample displays the caption of the column being clicked:

Private Sub AxList1_ColumnClick(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_ColumnClickEvent) Handles AxList1.ColumnClick
 MessageBox.Show(e.column.Caption)
End Sub

The following C# sample displays the caption of the column being clicked:

private void axList1_ColumnClick(object sender,
AxEXLISTLib._IListEvents_ColumnClickEvent e)
{
 MessageBox.Show(e.column.Caption);
}

The following VFP sample displays the caption of the column being clicked:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 wait window nowait .Caption
endwith

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender, AxEXLISTLib._IListEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user presses and releases a mouse button and then presses and
releases it again over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the ItemFromPoint
method to determine the cell over the cursor. Use the ColumnFromPoint property to get the
column from point. The MouseDown event notifies your application that user clicks the
control.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXLISTLib._IListEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oList,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.List.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.List.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays the caption of the cell being double clicked:

Private Sub List1_DblClick(Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If (i >= 0) Then
 If (c >= 0) Then
 Debug.Print "DblClk on " & .Items.Caption(i, c)
 End If
 End If
 End With
End Sub

The following C++ sample displays the caption of the cell being double clicked:

void OnDblClickList1(short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));
 OutputDebugString(strCaption);
 }
}

The following VB.NET sample displays the caption of the cell being double clicked:

Private Sub AxList1_DblClick(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_DblClickEvent) Handles AxList1.DblClick
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 With AxList1.Items
 Debug.Write(.Caption(i, c))
 End With
 End If
End Sub

The following C# sample displays the caption of the cell being double clicked:

private void axList1_DblClick(object sender, AxEXLISTLib._IListEvents_DblClickEvent e)
{
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(i, c).ToString());
 }
}

The following VFP sample displays the caption of the cell being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

local c, i, hit
With thisform.List1
 c = 0
 hit = 0
 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 wait window nowait .Items.Caption(i, c)
 EndIf
EndWith

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exgantt1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exgantt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exgantt1.Items().EnableItem(exgantt1.EventParam(2 /*NewItem*/)))
 exgantt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender, AxEXLISTLib._IListEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e: AxEXLISTLib._IListEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oList,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void FilterChange(object sender)
{
}

Private Sub FilterChange(ByVal sender As System.Object) Handles FilterChange
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChange(object sender, EventArgs e)
{
}

void OnFilterChange()
{
}

void __fastcall FilterChange(TObject *Sender)
{
}

procedure FilterChange(ASender: TObject;);
begin
end;

event FilterChange ()
Occurs when filter was changed.

Type Description

Use the FilterChange event to notify your application that the control's filter is changed. The
FilterChanging event occurs just before applying the filter. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar.

Syntax for FilterChange event, /NET version, on:

Syntax for FilterChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure FilterChange(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChange()
end event FilterChange

Private Sub FilterChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChange
End Sub

Private Sub FilterChange()
End Sub

Private Sub FilterChange()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChange(oList)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChange()
End Function
</SCRIPT>

Procedure OnComFilterChange
 Forward Send OnComFilterChange

Syntax for FilterChange event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_FilterChange() CLASS MainDialog
RETURN NIL

void onEvent_FilterChange()
{
}

function FilterChange as v ()
end function

function nativeObject_FilterChange()
return

C#

VB

private void FilterChanging(object sender)
{
}

Private Sub FilterChanging(ByVal sender As System.Object) Handles
FilterChanging
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChanging(object sender, EventArgs e)
{
}

void OnFilterChanging()
{
}

void __fastcall FilterChanging(TObject *Sender)
{
}

procedure FilterChanging(ASender: TObject;);
begin

event FilterChanging ()
Notifies your application that the filter is about to change.

Type Description

The FilterChanging event occurs just before applying the filter. The FilterChange event
occurs once the filter is applied, so the list gets filtered. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar. For instance, you can use the FilterChanging event to start a
timer, and count the time to get the filter applied, when the FilterChange event is fired.

Syntax for FilterChanging event, /NET version, on:

Syntax for FilterChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure FilterChanging(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChanging()
end event FilterChanging

Private Sub FilterChanging(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChanging
End Sub

Private Sub FilterChanging()
End Sub

Private Sub FilterChanging()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChanging(oList)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChanging()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChanging()
End Function
</SCRIPT>

Procedure OnComFilterChanging
 Forward Send OnComFilterChanging
End_Procedure

Syntax for FilterChanging event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_FilterChanging() CLASS MainDialog
RETURN NIL

void onEvent_FilterChanging()
{
}

function FilterChanging as v ()
end function

function nativeObject_FilterChanging()
return

C#

VB

private void FormatColumn(object sender,int ItemIndex,int ColIndex,ref object
Value)
{
}

Private Sub FormatColumn(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer,ByRef Value As Object) Handles FormatColumn
End Sub

C# private void FormatColumn(object sender,
AxEXLISTLib._IListEvents_FormatColumnEvent e)
{
}

event FormatColumn (ItemIndex as Long, ColIndex as Long, Value as
Variant)
Fired when a cell requires to format its caption.

Type Description

ItemIndex as Long A long value that indicates the index of item being
formatted.

ColIndex as Long A long value that indicates the column's index.

Value as Variant
A VARIANT value that indicates the value that being
displayed. Initially, the Value parameter indicates the the
Caption value.

Use the FormatColumn event to display a string different than the Caption property. The
FormatColumn event is fired only if the FireFormatColumn property of the Column is True.
The FormatColumn event lets the user to provide the cell's caption before it is displayed on
the control's list. For instance, the FormatColumn event is useful when the column cells
contains prices(numbers), and you want to display that column formatted as currency, like
$150 instead 150. Also, using the FormatColumn event, you can display the result of some
operations within an item, such of totals. Newer versions of the component provides the
FormatColumn property that helps formatting a cell using the several predefined functions
without using the control's event FormatColumn.

Syntax for FormatColumn event, /NET version, on:

Syntax for FormatColumn event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnFormatColumn(long ItemIndex,long ColIndex,VARIANT FAR* Value)
{
}

void __fastcall FormatColumn(TObject *Sender,long ItemIndex,long
ColIndex,Variant * Value)
{
}

procedure FormatColumn(ASender: TObject; ItemIndex : Integer;ColIndex :
Integer;var Value : OleVariant);
begin
end;

procedure FormatColumn(sender: System.Object; e:
AxEXLISTLib._IListEvents_FormatColumnEvent);
begin
end;

begin event FormatColumn(long ItemIndex,long ColIndex,any Value)
end event FormatColumn

Private Sub FormatColumn(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_FormatColumnEvent) Handles FormatColumn
End Sub

Private Sub FormatColumn(ByVal ItemIndex As Long,ByVal ColIndex As Long,Value
As Variant)
End Sub

Private Sub FormatColumn(ByVal ItemIndex As Long,ByVal ColIndex As Long,Value
As Variant)
End Sub

LPARAMETERS ItemIndex,ColIndex,Value

PROCEDURE OnFormatColumn(oList,ItemIndex,ColIndex,Value)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="FormatColumn(ItemIndex,ColIndex,Value)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FormatColumn(ItemIndex,ColIndex,Value)
End Function
</SCRIPT>

Procedure OnComFormatColumn Integer llItemIndex Integer llColIndex Variant
llValue
 Forward Send OnComFormatColumn llItemIndex llColIndex llValue
End_Procedure

METHOD OCX_FormatColumn(ItemIndex,ColIndex,Value) CLASS MainDialog
RETURN NIL

void onEvent_FormatColumn(int _ItemIndex,int _ColIndex,COMVariant /*variant*/
_Value)
{
}

function FormatColumn as v (ItemIndex as N,ColIndex as N,Value as A)
end function

function nativeObject_FormatColumn(ItemIndex,ColIndex,Value)
return

Syntax for FormatColumn event, /COM version (others), on:

Before running any of the following samples, please make sure that the control contains
more than 3 columns, and the third column has the FireFormatColumn property on True.
The following VB sample displays the sum of the first two cells, and put the result on the
third one:

Private Sub List1_FormatColumn(ByVal ItemIndex As Long, ByVal ColIndex As Long, Value

As Variant)
On Error Resume Next
 With List1.Items
 Value = Int(.Caption(ItemIndex, 0)) + Int(.Caption(ItemIndex, 1))
 End With
End Sub

The following VB sample displays long date format, using the FormatDateTime function:

Private Sub List1_FormatColumn(ByVal ItemIndex As Long, ByVal ColIndex As Long, Value
As Variant)
On Error Resume Next
 Value = FormatDateTime(Value, vbLongDate)
End Sub

The following C++ sample displays the sum of the first two cells, and put the result on the
third one:

void OnFormatColumnList1(long ItemIndex, long ColIndex, VARIANT FAR* Value)
{
 CItems items = m_list.GetItems();
 long newValue = V2I(&items.GetCaption(ItemIndex, COleVariant(long(0))));
 newValue += V2I(&items.GetCaption(ItemIndex, COleVariant(long(1))));
 V_VT(Value) = VT_I4;
 V_I4(Value) = newValue;
}

where the V2I function converts a VARIANT value to a long expression,

static long V2I(VARIANT* pv, long nDefault = 0)
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return nDefault;

 COleVariant vt;
 vt.ChangeType(VT_I4, pv);
 return V_I4(&vt);

 }
 return nDefault;
}

The following C++ sample displays long date format:

void OnFormatColumnList1(long ItemIndex, long ColIndex, VARIANT FAR* Value)
{
 COleDateTime date(*Value);
 COleVariant vtNewValue(date.Format(_T("%A, %B %d, %Y")));
 VariantCopy(Value, vtNewValue);
}

The following VB.NET sample displays the sum of the first two cells, and put the result on
the third one:

Private Sub AxList1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_FormatColumnEvent) Handles AxList1.FormatColumn
 With AxList1.Items
 Dim newValue As Integer = Integer.Parse(.Caption(e.itemIndex, 0),
Globalization.NumberStyles.Any)
 newValue = newValue + Integer.Parse(.Caption(e.itemIndex, 1),
Globalization.NumberStyles.Any)
 e.value = newValue
 End With
End Sub

The following VB.NET sample displays long date format:

Private Sub AxList1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_FormatColumnEvent) Handles AxList1.FormatColumn
 e.value = DateTime.Parse(e.value).ToLongDateString()
End Sub

The following C# sample displays the sum of the first two cells, and put the result on the
third one:

private void axList1_FormatColumn(object sender,
AxEXLISTLib._IListEvents_FormatColumnEvent e)

{
 int newValue = int.Parse(axList1.Items.get_Caption(e.itemIndex, 0).ToString());
 newValue += int.Parse(axList1.Items.get_Caption(e.itemIndex, 1).ToString());
 e.value = newValue;
}

The following C# sample displays long date format:

private void axList1_FormatColumn(object sender,
AxEXLISTLib._IListEvents_FormatColumnEvent e)
{
 e.value = DateTime.Parse(e.value.ToString()).ToLongDateString();
}

The following VFP sample displays the sum of the first two cells, and put the result on the
third one:

*** ActiveX Control Event ***
LPARAMETERS itemindex, colindex, value

with thisform.List1.Items
 value = .Caption(itemindex,0) + .Caption(itemindex,1)
endwith

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender, AxEXLISTLib._IListEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXLISTLib._IListEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oList,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender, AxEXLISTLib._IListEvents_KeyPressEvent
e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXLISTLib._IListEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oList,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender, AxEXLISTLib._IListEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{
}

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXLISTLib._IListEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oList,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutChanged(object sender)
{
}

Private Sub LayoutChanged(ByVal sender As System.Object) Handles
LayoutChanged
End Sub

C#

C++

C++
Builder

Delphi

private void LayoutChanged(object sender, EventArgs e)
{
}

void OnLayoutChanged()
{
}

void __fastcall LayoutChanged(TObject *Sender)
{
}

procedure LayoutChanged(ASender: TObject;);
begin
end;

event LayoutChanged ()
Occurs when column's position or column's size is changed.

Type Description

The LayoutChanged event is fired each time when the user resizes a column, or drags the
column to a new position. Use the LayoutChanged event to notify your application that the
columns position or size is changed. Use the LayoutChanged event to save the columns
position and size for future use. Use the Width property to retrieve the column's width. Use
the Position property to retrieve the column's position. The Visible property specifies
whether a column is shown or hidden. Use the ColumnAutoResize property to specify
whether the visible columns fit the control's client area.

Syntax for LayoutChanged event, /NET version, on:

Syntax for LayoutChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure LayoutChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event LayoutChanged()
end event LayoutChanged

Private Sub LayoutChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LayoutChanged
End Sub

Private Sub LayoutChanged()
End Sub

Private Sub LayoutChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnLayoutChanged(oList)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="LayoutChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutChanged()
End Function
</SCRIPT>

Procedure OnComLayoutChanged
 Forward Send OnComLayoutChanged
End_Procedure

Syntax for LayoutChanged event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_LayoutChanged() CLASS MainDialog
RETURN NIL

void onEvent_LayoutChanged()
{
}

function LayoutChanged as v ()
end function

function nativeObject_LayoutChanged()
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXLISTLib._IListEvents_MouseDownEvent e)
{

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to retrieve the cell over the cursor.
Use the ColumnFromPoint property to get the column from point.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXLISTLib._IListEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oList,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.List.1::OLE_XPOS_PIXELS,Y as OLE::Exontrol.List.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample displays the cell's caption from the cursor:

Private Sub List1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)

 If (i >= 0) Then
 If (c >= 0) Then
 Debug.Print .Items.Caption(i, c)
 End If
 End If
 End With
End Sub

The getCellPos function determines the client coordinates of the cell:

Private Sub getCellPos(ByVal l As EXLISTLibCtl.List, ByVal nItem As Long, ByVal nColumn As
Long, x As Long, y As Long)
 x = -l.ScrollPos(False)
 With l
 Dim c As EXLISTLibCtl.Column
 For Each c In .Columns
 If (c.Visible) Then
 If (c.Position < .Columns(nColumn).Position) Then
 x = x + c.Width
 End If
 End If
 Next
 y = 0
 If (.HeaderVisible) Then
 y = y + .HeaderHeight
 End If
 With .Items
 Dim i As Long
 i = .FirstVisibleItem
 While Not (i = nItem) And (i >= 0)
 y = y + .ItemHeight(i)
 i = .NextVisibleItem(i)
 Wend
 End With
 End With
End Sub

The getCellPos method gets the x, y client coordinates of the cell (nItem, nColumn). The
nItem indicates the index of the item, and the nColumn indicates the index of the column.
Use the ClientToScreen API function to convert the client coordinates to screen coordinates
like bellow:

Private Type POINTAPI
 x As Long
 y As Long
End Type
Private Declare Function ClientToScreen Lib "user32" (ByVal hwnd As Long, lpPoint As
POINTAPI) As Long

In the following MouseDown handler the ItemFromPoint method determines the cell from
the cursor. The sample displays an exPopupMenu control at the beginning of the cell, when
user right clicks the cell:

Private Sub List1_MouseDown(Button As Integer, Shift As Integer, x As Single, y As Single)
 If Button = 2 Then
 With List1
 Dim i As Long, c As Long, hit As HitTestInfoEnum
 i = .ItemFromPoint(x / Screen.TwipsPerPixelX, y / Screen.TwipsPerPixelY, c, hit)
 If (i >= 0) Then
 ' Selects the item when user does a right click
 List1.Items.SelectItem(i) = True
 ' Gets the client coordinates of the cell
 Dim xCell As Long, yCell As Long
 getCellPos List1, i, c, xCell, yCell
 ' Converts the client coordinates to the screen coordinates
 Dim p As POINTAPI
 p.x = xCell
 p.y = yCell
 ClientToScreen List1.hwnd, p
 ' Displays the exPopupMenu control at specified position
 PopupMenu1.HAlign = EXPOPUPMENULibCtl.exLeft
 Debug.Print "You have selected " & PopupMenu1.Show(p.x, p.y)
 End If
 End With
 End If

https://exontrol.com/expopupmenu.jsp

End Sub

The following C++ sample displays the caption of the cell being clicked:

void OnMouseDownList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));
 OutputDebugString(strCaption);
 }
}

The following C++ sample displays the caption of the cell being clicked:

void OnMouseDownList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));
 OutputDebugString(strCaption);
 }
}

The following VB.NET sample displays the caption of the cell being clicked:

Private Sub AxList1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseDownEvent) Handles AxList1.MouseDownEvent
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 With AxList1.Items
 Debug.Write(.Caption(i, c))
 End With
 End If

End Sub

The following C# sample displays the caption of the cell being clicked:

private void axList1_MouseDownEvent(object sender,
AxEXLISTLib._IListEvents_MouseDownEvent e)
{
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(i, c).ToString());
 }
}

The following VFP sample displays the caption of the cell being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, i, hit
With thisform.List1
 c = 0
 hit = 0
 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 wait window nowait .Items.Caption(i, c)
 EndIf
EndWith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXLISTLib._IListEvents_MouseMoveEvent e)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer

An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down. Gets
which mouse button was pressed as 1 for Left Mouse
Button, 2 for Right Mouse Button and 4 for Middle Mouse
Button.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the ItemFromPoint property to
retrieve the cell over the cursor. Use the ColumnFromPoint property to get the column from
point:

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXLISTLib._IListEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseMove(oList,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.List.1::OLE_XPOS_PIXELS,Y as OLE::Exontrol.List.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample displays the cell over the cursor:

Private Sub List1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum

 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If (i >= 0) Then
 If (c >= 0) Then
 Debug.Print .Items.Caption(i, c)
 End If
 End If
 End With
End Sub

The following C++ sample displays the cell over the cursor:

void OnMouseMoveList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));
 OutputDebugString(strCaption);
 }
}

The following VB.NET sample displays the cell over the cursor:

Private Sub AxList1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseMoveEvent) Handles AxList1.MouseMoveEvent
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 With AxList1.Items
 Debug.Write(.Caption(i, c))
 End With
 End If
End Sub

The following C# sample displays the cell over the cursor:

private void axList1_MouseMoveEvent(object sender,

AxEXLISTLib._IListEvents_MouseMoveEvent e)
{
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(i, c).ToString());
 }
}

The following VFP sample displays the cell over the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, i, hit
With thisform.List1
 c = 0
 hit = 0
 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 wait window nowait .Items.Caption(i, c)
 EndIf
EndWith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXLISTLib._IListEvents_MouseUpEvent e)
{

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to retrieve the cell over the cursor.
Use the ColumnFromPoint property to get the column from point.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXLISTLib._IListEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oList,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.List.1::OLE_XPOS_PIXELS,Y as OLE::Exontrol.List.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample displays the cell over the cursor:

Private Sub List1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)

 If (i >= 0) Then
 If (c >= 0) Then
 Debug.Print .Items.Caption(i, c)
 End If
 End If
 End With
End Sub

The following C++ sample displays the cell over the cursor:

void OnMouseUpList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));
 OutputDebugString(strCaption);
 }
}

The following VB.NET sample displays the cell over the cursor:

Private Sub AxList1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseUpEvent) Handles AxList1.MouseUpEvent
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 With AxList1.Items
 Debug.Write(.Caption(i, c))
 End With
 End If
End Sub

The following C# sample displays the cell over the cursor:

private void axList1_MouseUpEvent(object sender,
AxEXLISTLib._IListEvents_MouseUpEvent e)
{

 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(i, c).ToString());
 }
}

The following VFP sample displays the cell over the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, i, hit
With thisform.List1
 c = 0
 hit = 0
 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 wait window nowait .Items.Caption(i, c)
 EndIf
EndWith

C#

VB

private void OffsetChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OffsetChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OffsetChanged
End Sub

C#

C++

C++
Builder

private void OffsetChanged(object sender,
AxEXLISTLib._IListEvents_OffsetChangedEvent e)
{
}

void OnOffsetChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OffsetChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)

event OffsetChanged (Horizontal as Boolean, NewVal as Long)
Occurs when the scroll position is changed.

Type Description

Horizontal as Boolean

A boolean expression that indicates whether the horizontal
scroll bar is changed. If the Horizontal parameter is True
the position of the horizontal scroll bar is changed. If the
Horizontal parameter is False, the position of the vertical
scroll bar is changed.

NewVal as Long A long value that indicates the new scroll bar value.

The event OffsetChanged is not fired if the control's list has no scroll bars. The control adds
automatically scroll bar to its list based on the control's content. Use the OffsetChanged
event to be notified when one of the control's scroll bars has been changed. Use the
ScrollBars property to specify the type of scroll bars that control has. Use the ScrollPos
property to scroll the control's content.

Syntax for OffsetChanged event, /NET version, on:

Syntax for OffsetChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure OffsetChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

procedure OffsetChanged(sender: System.Object; e:
AxEXLISTLib._IListEvents_OffsetChangedEvent);
begin
end;

begin event OffsetChanged(boolean Horizontal,long NewVal)
end event OffsetChanged

Private Sub OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OffsetChangedEvent) Handles OffsetChanged
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOffsetChanged(oList,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OffsetChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for OffsetChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function OffsetChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Procedure OnComOffsetChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOffsetChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OffsetChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OffsetChanged(boolean _Horizontal,int _NewVal)
{
}

function OffsetChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OffsetChanged(Horizontal,NewVal)
return

The following VB sample displays the new scroll position when user scrolls horizontally the
control:

Private Sub List1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Horizontal) Then
 Debug.Print "The horizontal scroll bar has been moved to " & NewVal
 End If
End Sub

The following C++ sample displays the new scroll position when the user scrolls vertically
the control:

void OnOffsetChangedList1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;

 strFormat.Format("NewPos = %i\n", NewVal);
 OutputDebugString(strFormat);
 }
}

The following VB.NET sample displays the new scroll position when the user scrolls
vertically the control:

Private Sub AxList1_OffsetChanged(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_OffsetChangedEvent) Handles AxList1.OffsetChanged
 If (Not e.horizontal) Then
 Debug.WriteLine(e.newVal)
 End If
End Sub

The following C# sample displays the new scroll position when the user scrolls vertically the
control:

private void axList1_OffsetChanged(object sender,
AxEXLISTLib._IListEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 System.Diagnostics.Debug.WriteLine(e.newVal);
}

The following VFP sample displays the new scroll position when the user scrolls vertically
the control:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

if (0 # horizontal)
 wait window nowait str(newval)
endif

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXLISTLib._IListEvents_OLECompleteDragEvent e)
{

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to check the OLEDropMode and OLEDrag properties.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXLISTLib._IListEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OLECompleteDragEvent) Handles OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oList,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLEDragDrop(object sender,
AxEXLISTLib._IListEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

void __fastcall OLEDragDrop(TObject *Sender,Exlistlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y)

In the /NET Assembly, you have to use the DragDrop event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the Add method to add a new
item to the control. Use the ItemPosition property to specify the item's position.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXLISTLib._IListEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXLISTLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oList,Data,Effect,Button,Shift,X,Y)
RETURN

Syntax for OLEDragDrop event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as OLE::Exontrol.List.1::IExDataObject,Effect as
N,Button as N,Shift as N,X as OLE::Exontrol.List.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.List.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

The idea of drag and drop in exList control is the same as in other controls. To start
accepting drag and drop sources the exList control should have the OLEDropMode to
exOLEDropManual. Once that is is set, the exList starts accepting any drag and drop
sources.

The first step is if you want to be able to drag items from your exList control to other
controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects should be set inside of
handler event. Here's a sample:

Private Sub List1_OLEStartDrag(ByVal Data As EXLISTLibCtl.IExDataObject, AllowedEffects

As Long)
 Dim i As Long
 Dim str As String
 With List1.Items
 For i = 0 To .SelectCount - 1
 str = str + .Caption(.SelectedItem(i), 0)
 str = str + vbCrLf
 Next
 AllowedEffects = 1
 Data.SetData str, exCFText
 End With
End Sub

What the above code does? It takes each selected item from the exList source, and builds
a string that will be passed to the clipboard object Data as text string. So, the clipboard
data will contains text, so you will be able to drag the items to a text control. Of course the
target controls should have enabled the OLE drag and drop features, and it depends on
each control. The AllowedEffects = 1 specifies the type of cursor used in drag and drop
operations. The value should be a combination of one of the exOLEDropEffectEnum type.
Please check your environment browsed for the all possible values: 1 - Copy, 2 - Move, 0 -
None, So, AllowedEffects = 1 specifies the "copy" cursor. If you don't set the
AllowedEffects parameter, the cursor is by default None. There is no rule how you have to
store the data into the clipboard Data object. It depends how you would like to do the drag
and drop operations works.

The second step is accepting OLE drag and drop source objects. That means, if you would
like to let your control accept drag and drop objects, you have to handle the OLEDragDrop
event. It passes as argument an object Data that stores the drag and drop information. The
next sample shows how to take each line saved into the data object and add for each line
found a new item into your exList control:

Private Sub List2_OLEDragDrop(ByVal Data As Object, Effect As Long, ByVal Button As
Integer, ByVal Shift As Integer, ByVal X As Long, ByVal Y As Long)
 Dim str As String
 str = Data.GetData(exCFText)
 if Not (Right(str, Len(vbCrLf)) = vbCrLf) Then
 str = str + vbCrLf
 End If
 With List2
 .BeginUpdate

 Dim c As Long, i As Long, n1 As Long, n2 As Long, nPos As Long
 While .Items.SelectCount <> 0
 .Items.SelectItem(.Items.SelectedItem(0)) = False
 Wend
 i = .ItemFromPoint(X / 15, Y / 15, c)
 If (i >= 0) Then
 nPos = .Items.ItemPosition(i)
 End If
 Debug.Print "Index = " & i
 n1 = 1
 n2 = InStr(n1, str, vbCrLf)
 While (n2 > 0)
 Dim n As Long
 n = .Items.Add(Mid(str, n1, n2 - n1))
 If .Items.Caption(n, 0) = "" Then
 .Items.ItemBreak(n) = DotLine
 End If
 If (i >= 0) Then
 .Items.ItemPosition(n) = nPos + 1
 nPos = nPos + 1
 End If
 .Items.SelectItem(n) = True
 n1 = n2 + Len(vbCrLf)
 n2 = InStr(n1, str, vbCrLf)
 Wend
 .EndUpdate
 End With
End Sub

The following VB sample adds a new item when the user drags a file (Open the Windows
Explorer, click and drag a file to the control) :

Private Sub List1_OLEDragDrop(ByVal Data As EXLISTLibCtl.IExDataObject, Effect As Long,
ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 If Data.GetFormat(exCFFiles) Then
 Data.GetData (exCFFiles)
 Dim strFile As String
 strFile = Data.Files(0)

 'Adds a new item to the control
 List1.Visible = False
 With List1
 .BeginUpdate
 Dim i As Long
 i = .Items.Add(strFile)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 List1.Visible = True
 End If
End Sub

The following VC sample inserts a child item for each file that user drags:

#import <exlist.dll> rename("GetItems", "exGetItems")

#include "Items.h"
void OnOLEDragDropList1(LPDISPATCH Data, long FAR* Effect, short Button, short Shift,
long X, long Y)
{
 EXLISTLib::IExDataObjectPtr spData(Data);
 if (spData != NULL)
 if (spData->GetFormat(EXLISTLib::exCFFiles))
 {
 CItems items = m_list.GetItems();
 long c = 0, h = 0, iFrom = m_list.GetItemFromPoint(X, Y, &c, &h);
 EXLISTLib::IExDataObjectFilesPtr spFiles(spData->Files);
 if (spFiles->Count > 0)
 {
 m_list.BeginUpdate();
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 for (long i = 0; i < spFiles->Count; i++)
 {
 long h = items.Add(COleVariant(spFiles->GetItem(i).operator const char *())
);
 if (i >= 0)

 items.SetItemPosition(h, items.GetItemPosition(iFrom));
 }
 m_list.EndUpdate();
 }
 }
}

The #import statement imports definition for the ExDataObject and ExDataObjectFiles
objects. If the exlist.dll file is located in another folder than the system folder, the path to the
file must be specified. The sample gets the item where the files were dragged and insert all
files in that position, as child items, if case.

The following VB.NET sample inserts a child item for each file that user drags:

Private Sub AxList1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_OLEDragDropEvent) Handles AxList1.OLEDragDrop
 If e.data.GetFormat(EXLISTLib.exClipboardFormatEnum.exCFFiles) Then
 If (e.data.Files.Count > 0) Then
 AxList1.BeginUpdate()
 With AxList1.Items
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum, iFrom As Integer =
AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 Dim i As Long
 For i = 0 To e.data.Files.Count - 1
 Dim newI As Integer = .Add(e.data.Files(i))
 If (iFrom >= 0) Then
 .ItemPosition(newI) = .ItemPosition(iFrom)
 End If
 Next
 End With
 AxList1.EndUpdate()
 End If
 End If
End Sub

The following C# sample inserts a child item for each file that user drags:

private void axList1_OLEDragDrop(object sender,
AxEXLISTLib._IListEvents_OLEDragDropEvent e)

{
 if (e.data.GetFormat(Convert.ToInt16(EXLISTLib.exClipboardFormatEnum.exCFFiles)))
 if (e.data.Files.Count > 0)
 {
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, iFrom = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 axList1.BeginUpdate();
 for (int i = 0; i < e.data.Files.Count; i++)
 {
 int newI = axList1.Items.Add(e.data.Files[i].ToString());
 if (iFrom >= 0)
 axList1.Items.set_ItemPosition(newI, axList1.Items.get_ItemPosition(iFrom));
 }
 axList1.EndUpdate();
 }
}

The following VFP sample inserts a child item for each file that user drags:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

local c, hit, iFrom
c = 0
hit = 0
if (data.GetFormat(15)) && exCFFiles
 if (data.Files.Count() > 0)
 with thisform.List1.Items
 iFrom = thisform.List1.ItemFromPoint(x, y, @c, @hit)
 thisform.List1.BeginUpdate()
 for i = 0 to data.files.Count() - 1
 local newI
 newI = .Add(data.files(i))
 if (iFrom >= 0)
 .ItemPosition(newI) = .ItemPosition(iFrom)
 endif
 next

 thisform.List1.EndUpdate()
 endwith
 endif
endif

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C# // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

State as Integer An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed in Remarks.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

VB // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OLEDragOver(object sender,
AxEXLISTLib._IListEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exlistlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXLISTLib._IListEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Syntax for OLEDragOver event, /COM version, on:

VB6

VBA

VFP

Xbas…

Private Sub OLEDragOver(ByVal Data As EXLISTLibCtl.IExDataObject,Effect As Long,ByVal
Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As Single,ByVal State As
Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oList,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,

Syntax for OLEDragOver event, /COM version (others), on:

XBasic

dBASE

DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.List.1::IExDataObject,Effect as
N,Button as N,Shift as N,X as OLE::Exontrol.List.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.List.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed in Remarks.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXLISTLib._IListEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXLISTLib._IListEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OLEGiveFeedbackEvent) Handles OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oList,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender, AxEXLISTLib._IListEvents_OLESetDataEvent
e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exlistlib_tlb::IExDataObject *Data,short
Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not implemented.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXLISTLib._IListEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXLISTLibCtl.IExDataObject,ByVal Format
As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oList,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.List.1::IExDataObject,Format as N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

In the /NET Assembly, you have to use the DragEnter event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

Use the Background(exDragDropBefore) property to specify the visual appearance for the
dragging items, before painting the items. Use the Background(exDragDropAfter) property
to specify the visual appearance for the dragging items, after painting the items. Use the
Background(exDragDropList) property to specify the graphic feedback for the item from the
cursor, while the OLE drag and drop operation is running.

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move

The source component should logically Or together the supported values and places the
result in the allowedeffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be).
You may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled.

Syntax for OLEStartDrag event, /NET version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OLEStartDrag(object sender,
AxEXLISTLib._IListEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exlistlib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXLISTLib._IListEvents_OLEStartDragEvent);
begin
end;

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Syntax for OLEStartDrag event, /COM version, on:

VB6

VBA

VFP

Xbas…

Private Sub OLEStartDrag(ByVal Data As
EXLISTLibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oList,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.List.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)

Syntax for OLEStartDrag event, /COM version (others), on:

return

The idea of drag and drop in exList control is the same as in other controls. To start
accepting drag and drop sources the exList control should have the OLEDropMode to
exOLEDropManual. Once that is is set, the exList starts accepting any drag and drop
sources.

The first step is if you want to be able to drag items from your exList control to other
controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects should be set inside of
handler event. Here's a sample:

Private Sub List1_OLEStartDrag(ByVal Data As EXLISTLibCtl.IExDataObject, AllowedEffects
As Long)
 Dim i As Long
 Dim str As String
 With List1.Items
 For i = 0 To .SelectCount - 1
 str = str + .Caption(.SelectedItem(i), 0)
 str = str + vbCrLf
 Next
 AllowedEffects = 1
 Data.SetData str, exCFText
 End With
End Sub

What the above code does? It takes each selected item from the exList source, and builds
a string that will be passed to the clipboard object Data as text string. So, the clipboard
data will contains text, so you will be able to drag the items to a text control. Of course the
target controls should have enabled the OLE drag and drop features, and it depends on
each control. The AllowedEffects = 1 specifies the type of cursor used in drag and drop
operations. The value should be a combination of one of the exOLEDropEffectEnum type.
Please check your environment browsed for the all possible values: 1 - Copy, 2 - Move, 0 -
None, So, AllowedEffects = 1 specifies the "copy" cursor. If you don't set the
AllowedEffects parameter, the cursor is by default None. There is no rule how you have to
store the data into the clipboard Data object. It depends how you would like to do the drag
and drop operations works.

The second step is accepting OLE drag and drop source objects. That means, if you would
like to let your control accept drag and drop objects, you have to handle the OLEDragDrop

event. It passes as argument an object Data that stores the drag and drop information. The
next sample shows how to take each line saved into the data object and add for each line
found a new item into your exList control:

Private Sub List2_OLEDragDrop(ByVal Data As Object, Effect As Long, ByVal Button As
Integer, ByVal Shift As Integer, ByVal X As Long, ByVal Y As Long)
 Dim str As String
 str = Data.GetData(exCFText)
 if Not (Right(str, Len(vbCrLf)) = vbCrLf) Then
 str = str + vbCrLf
 End If
 With List2
 .BeginUpdate
 Dim c As Long, i As Long, n1 As Long, n2 As Long, nPos As Long
 While .Items.SelectCount <> 0
 .Items.SelectItem(.Items.SelectedItem(0)) = False
 Wend
 i = .ItemFromPoint(X / 15, Y / 15, c)
 If (i >= 0) Then
 nPos = .Items.ItemPosition(i)
 End If
 Debug.Print "Index = " & i
 n1 = 1
 n2 = InStr(n1, str, vbCrLf)
 While (n2 > 0)
 Dim n As Long
 n = .Items.Add(Mid(str, n1, n2 - n1))
 If .Items.Caption(n, 0) = "" Then
 .Items.ItemBreak(n) = DotLine
 End If
 If (i >= 0) Then
 .Items.ItemPosition(n) = nPos + 1
 nPos = nPos + 1
 End If
 .Items.SelectItem(n) = True
 n1 = n2 + Len(vbCrLf)
 n2 = InStr(n1, str, vbCrLf)

 Wend
 .EndUpdate
 End With
End Sub

The following VC sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

#import <exlist.dll> rename("GetItems", "exGetItems")

#include "Items.h"
#include "Columns.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOLEStartDragList1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 CItems items = m_list.GetItems();
 long nCount = items.GetSelectCount(), nColumnCount =
m_list.GetColumns().GetCount();
 if (nCount > 0)
 {
 *AllowedEffects = /*exOLEDropEffectCopy */ 1;
 EXLISTLib::IExDataObjectPtr spData(Data);
 if (spData !=NULL)
 {

 CString strData;
 for (long i = 0; i < nCount; i++)
 {
 long nItem = items.GetSelectedItem(i);
 for (long j = 0; j < nColumnCount; j++)
 strData += V2S(&items.GetCaption(nItem, COleVariant(j))) + "\t";
 }
 strData += "\r\n";
 spData->SetData(COleVariant(strData), COleVariant((long)EXLISTLib::exCFText));
 }
 }
}

The sample saves data as CF_TEXT format (EXLISTLib::exCFText). The data is a text,
where each item is separated by "\r\n" (new line), and each cell is separated by "\t" (TAB
charcater). Of course, data can be saved as you want. The sample only gives an idea of
what and how it could be done. The sample uses the #import statement to import the
control's type library, including definitions for ExDataObject and ExDataObjectFiles that are
required to fill data to be dragged. If your exlist.dll file is located in another place than your
system folder, the path to the exlist.dll file needs to be specified, else compiler errors occur.

The following VB.NET sample copies the selected items to the clipboard, as soon as the
user starts dragging the items:

Private Sub AxList1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_OLEStartDragEvent) Handles AxList1.OLEStartDrag
 With AxList1.Items
 If (.SelectCount > 0) Then
 e.allowedEffects = 1 'exOLEDropEffectCopy
 Dim i As Integer, j As Integer, strData As String, nColumnCount As Long =
AxList1.Columns.Count
 For i = 0 To .SelectCount - 1
 For j = 0 To nColumnCount - 1
 strData = strData + .Caption(.SelectedItem(i), j) + Chr(Keys.Tab)
 Next
 Next
 strData = strData + vbCrLf
 e.data.SetData(strData, EXLISTLib.exClipboardFormatEnum.exCFText)
 End If

 End With
End Sub

The following C# sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

private void axList1_OLEStartDrag(object sender,
AxEXLISTLib._IListEvents_OLEStartDragEvent e)
{
 int nCount = axList1.Items.SelectCount;
 if (nCount > 0)
 {
 int nColumnCount = axList1.Columns.Count;
 e.allowedEffects = /*exOLEDropEffectCopy*/ 1;
 string strData = "";
 for (int i =0 ; i < nCount; i++)
 {
 for (int j = 0; j < nColumnCount; j++)
 {
 object strCell = axList1.Items.get_Caption(axList1.Items.get_SelectedItem(i), j);
 strData += (strCell != null ? strCell.ToString() : "") + "\t";
 }
 strData += "\r\n";
 }
 e.data.SetData(strData, EXLISTLib.exClipboardFormatEnum.exCFText);
 }
}

The following VFP sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

local sData, nColumnCount, i, j
with thisform.List1.Items
 if (.SelectCount() > 0)
 allowedeffects = 1 && exOLEDropEffectCopy

 sData = ""
 nColumnCount = thisform.List1.Columns.Count
 for i = 0 to .SelectCount - 1
 for j = 0 to nColumnCount
 sData = sData + .Caption(.SelectedItem(i), j) + chr(9)
 next
 sData = sData + chr(10)+ chr(13)
 next
 data.SetData(sData, 1) && exCFText
 endif
endwith

C#

VB

private void OversizeChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OversizeChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OversizeChanged
End Sub

C#

C++

C++
Builder

private void OversizeChanged(object sender,
AxEXLISTLib._IListEvents_OversizeChangedEvent e)
{
}

void OnOversizeChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OversizeChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)

event OversizeChanged (Horizontal as Boolean, NewVal as Long)
Occurs when the right range of the scroll is changed.

Type Description

Horizontal as Boolean

A boolean expression that indicates whether the horizontal
scroll bar is changed. If the Horizontal parameter is True
the range of the horizontal scroll bar is changed. If the
Horizontal parameter is False, the range of the vertical
scroll bar is changed.

NewVal as Long A long value that indicates the new scroll bar value.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. When the scroll bar range is changed the OversizeChanged event is fired. Use the
ScrollBars property of the control to determine which scroll bars are visible within the
control. The control fires the LayoutChanged event when the user resizes a column, or
change its position.

Syntax for OversizeChanged event, /NET version, on:

Syntax for OversizeChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure OversizeChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

procedure OversizeChanged(sender: System.Object; e:
AxEXLISTLib._IListEvents_OversizeChangedEvent);
begin
end;

begin event OversizeChanged(boolean Horizontal,long NewVal)
end event OversizeChanged

Private Sub OversizeChanged(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_OversizeChangedEvent) Handles OversizeChanged
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOversizeChanged(oList,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OversizeChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for OversizeChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function OversizeChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Procedure OnComOversizeChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOversizeChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OversizeChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OversizeChanged(boolean _Horizontal,int _NewVal)
{
}

function OversizeChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OversizeChanged(Horizontal,NewVal)
return

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

event RClick ()
Fired when right mouse button is clicked

Type Description

Use the RClick event to add your context menu. The RClick event notifies your application
when the user right clicks the control. Use the Click event to notify your application that the
user clicks the control (using the left mouse button). Use the MouseDown or MouseUp
event if you require the cursor position during the RClick event. Use the RClickSelect
property to specify whether the user can select items by right clicking the mouse. Use the
ItemFromPoint property to get the item from point. Use the ColumnFromPoint property to
get the column from point.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oList)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

The following VB sample displays the cell over the cursor:

Private Sub List1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim c As Long, i As Long, hit As HitTestInfoEnum
 With List1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If (i >= 0) Then
 If (c >= 0) Then
 Debug.Print .Items.Caption(i, c)
 End If
 End If
 End With
End Sub

The following C++ sample displays the cell over the cursor:

void OnMouseUpList1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, i = m_list.GetItemFromPoint(X, Y, &c, &hit);
 if (i >= 0)
 {
 CItems items = m_list.GetItems();
 CString strCaption = V2S(&items.GetCaption(i, COleVariant(c)));

 OutputDebugString(strCaption);
 }
}

The following VB.NET sample displays the cell over the cursor:

Private Sub AxList1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXLISTLib._IListEvents_MouseUpEvent) Handles AxList1.MouseUpEvent
 Dim c As Integer, hit As EXLISTLib.HitTestInfoEnum
 Dim i As Integer = AxList1.get_ItemFromPoint(e.x, e.y, c, hit)
 If (i >= 0) Then
 With AxList1.Items
 Debug.Write(.Caption(i, c))
 End With
 End If
End Sub

The following C# sample displays the cell over the cursor:

private void axList1_MouseUpEvent(object sender,
AxEXLISTLib._IListEvents_MouseUpEvent e)
{
 EXLISTLib.HitTestInfoEnum hit;
 int c = 0, i = axList1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i >= 0)
 {
 System.Diagnostics.Debug.WriteLine(axList1.Items.get_Caption(i, c).ToString());
 }
}

The following VFP sample displays the cell over the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, i, hit
With thisform.List1
 c = 0
 hit = 0

 i = .ItemFromPoint(x, y, @c, @hit)
 If (i >= 0)
 wait window nowait .Items.Caption(i, c)
 EndIf
EndWith

C#

VB

private void RemoveColumn(object sender,exontrol.EXLISTLib.Column Column)
{
}

Private Sub RemoveColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXLISTLib.Column) Handles RemoveColumn
End Sub

C#

C++

C++
Builder

private void RemoveColumn(object sender,
AxEXLISTLib._IListEvents_RemoveColumnEvent e)
{
}

void OnRemoveColumn(LPDISPATCH Column)
{
}

void __fastcall RemoveColumn(TObject *Sender,Exlistlib_tlb::IColumn *Column)
{
}

event RemoveColumn (Column as Column)
Fired before deleting a Column.

Type Description

Column as Column A Column object being removed from the Columns
collection.

The RemoveColumn event is invoked when the control is about to remove a column. Use the
RemoveColumn event to release any extra data associated to the column. Use the Remove
method to remove a specific column from Columns collection. Use the Clear method to
clear the columns collection. Use the Remove method to remove an item. Use the
RemoveAll method to remove all items. Use the CellData property to assign an extra data
to a cell. Use the ItemData property to assign an extra data to an item. Use the Data
property to assign an extra data to a column.

Syntax for RemoveColumn event, /NET version, on:

Syntax for RemoveColumn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveColumn(ASender: TObject; Column : IColumn);
begin
end;

procedure RemoveColumn(sender: System.Object; e:
AxEXLISTLib._IListEvents_RemoveColumnEvent);
begin
end;

begin event RemoveColumn(oleobject Column)
end event RemoveColumn

Private Sub RemoveColumn(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_RemoveColumnEvent) Handles RemoveColumn
End Sub

Private Sub RemoveColumn(ByVal Column As EXLISTLibCtl.IColumn)
End Sub

Private Sub RemoveColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnRemoveColumn(oList,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveColumn(Column)
End Function
</SCRIPT>

Syntax for RemoveColumn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveColumn Variant llColumn
 Forward Send OnComRemoveColumn llColumn
End_Procedure

METHOD OCX_RemoveColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_RemoveColumn(COM _Column)
{
}

function RemoveColumn as v (Column as OLE::Exontrol.List.1::IColumn)
end function

function nativeObject_RemoveColumn(Column)
return

C#

VB

private void RemoveItem(object sender,int ItemIndex)
{
}

Private Sub RemoveItem(ByVal sender As System.Object,ByVal ItemIndex As
Integer) Handles RemoveItem
End Sub

C#

C++

C++
Builder

private void RemoveItem(object sender,
AxEXLISTLib._IListEvents_RemoveItemEvent e)
{
}

void OnRemoveItem(long ItemIndex)
{
}

void __fastcall RemoveItem(TObject *Sender,long ItemIndex)
{
}

event RemoveItem (ItemIndex as Long)
Occurs before deleting an Item.

Type Description

ItemIndex as Long A long expression that indicates the index of the item being
removed.

Use the RemoveItem to release any extra data that you might have used. The control fires
the RemoveItem event before removing the item. Use the Remove method to remove an
item from Items collection. Use the RemoveAll method to clear the items collection. Use the
Remove method to remove a column. Use the Clear method to clear the columns collection.
Use the CellData property to assign an extra data to a cell. Use the ItemData property to
assign an extra data to an item. Use the Data property to assign an extra data to a
column.

Syntax for RemoveItem event, /NET version, on:

Syntax for RemoveItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveItem(ASender: TObject; ItemIndex : Integer);
begin
end;

procedure RemoveItem(sender: System.Object; e:
AxEXLISTLib._IListEvents_RemoveItemEvent);
begin
end;

begin event RemoveItem(long ItemIndex)
end event RemoveItem

Private Sub RemoveItem(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_RemoveItemEvent) Handles RemoveItem
End Sub

Private Sub RemoveItem(ByVal ItemIndex As Long)
End Sub

Private Sub RemoveItem(ByVal ItemIndex As Long)
End Sub

LPARAMETERS ItemIndex

PROCEDURE OnRemoveItem(oList,ItemIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveItem(ItemIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveItem(ItemIndex)
End Function
</SCRIPT>

Syntax for RemoveItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveItem Integer llItemIndex
 Forward Send OnComRemoveItem llItemIndex
End_Procedure

METHOD OCX_RemoveItem(ItemIndex) CLASS MainDialog
RETURN NIL

void onEvent_RemoveItem(int _ItemIndex)
{
}

function RemoveItem as v (ItemIndex as N)
end function

function nativeObject_RemoveItem(ItemIndex)
return

C#

VB

private void ScrollButtonClick(object sender,exontrol.EXLISTLib.ScrollBarEnum
ScrollBar,exontrol.EXLISTLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXLISTLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXLISTLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C# private void ScrollButtonClick(object sender,
AxEXLISTLib._IListEvents_ScrollButtonClickEvent e)
{
}

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scrollbar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollBars property to specify the
visible scrollbars in the control. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. Use the Background property to change the
visual appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{
}

void __fastcall ScrollButtonClick(TObject *Sender,Exlistlib_tlb::ScrollBarEnum
ScrollBar,Exlistlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXLISTLib._IListEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_ScrollButtonClickEvent) Handles ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As EXLISTLibCtl.ScrollBarEnum,ByVal
ScrollPart As EXLISTLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oList,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.List.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.List.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With List1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"

 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

Private Sub List1_ScrollButtonClick(ByVal ScrollPart As EXLISTLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxList1
 .BeginUpdate()
 .ScrollBars = EXLISTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part Or EXLISTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxList1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_ScrollButtonClickEvent) Handles AxList1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axList1.BeginUpdate();
axList1.ScrollBars = EXLISTLib.ScrollBarsEnum.exDisableBoth;
axList1.set_ScrollPartVisible(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part | EXLISTLib.ScrollPartEnum.exRightB1Part, true);
axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exLeftB1Part , "1");
axList1.set_ScrollPartCaption(EXLISTLib.ScrollBarEnum.exVScroll,
EXLISTLib.ScrollPartEnum.exRightB1Part, "2");
axList1.EndUpdate();

private void axList1_ScrollButtonClick(object sender,
AxEXLISTLib._IListEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_list.BeginUpdate();
m_list.SetScrollBars(15 /*exDisableBoth*/);
m_list.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32 /*exRightB1Part*/,
TRUE);
m_list.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_list.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2"));
m_list.EndUpdate();

void OnScrollButtonClickList1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.List1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWit

C#

VB

private void SelectionChanged(object sender)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object) Handles
SelectionChanged
End Sub

C#

C++

C++
Builder

private void SelectionChanged(object sender, EventArgs e)
{
}

void OnSelectionChanged()
{
}

void __fastcall SelectionChanged(TObject *Sender)
{
}

event SelectionChanged ()
Fired after a new item is selected.

Type Description

Use the SelectionChanged event to notify your application that the user selects an item
(that's selectable). The control supports single or multiple selection as well. When an item is
selected or unselected the control fires the SelectionChanged event. Use the SingleSel
property to specify if your control supports single or multiple selection. Use the SelectCount
property to get the number of selected items. Use the SelectedItem property to get the
selected item. Use the SelectItem to select or unselect a specified item. Use the FocusItem
property to get the focused item. If the control supports only single selection, you can use
the FocusItem property to get the selected/focused item because they are always the
same. Use the SelForeColor and SelBackColor properties to specify colors for selected
items.

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure SelectionChanged(ASender: TObject;);
begin
end;

procedure SelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelectionChanged()
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelectionChanged
End Sub

Private Sub SelectionChanged()
End Sub

Private Sub SelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnSelectionChanged(oList)
RETURN

Java…

VBSc…

<SCRIPT EVENT="SelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged()
End Function
</SCRIPT>

Syntax for SelectionChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComSelectionChanged
 Forward Send OnComSelectionChanged
End_Procedure

METHOD OCX_SelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged()
{
}

function SelectionChanged as v ()
end function

function nativeObject_SelectionChanged()
return

The following VB sample displays the selected items:

Private Sub List1_SelectionChanged()
On Error Resume Next
 Dim i As Long, j As Long, nCols As Long, nSels As Long, h As Long
 nCols = List1.Columns.Count
 With List1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .Caption(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
 End With
End Sub

The following VB sample displays the selected items:

Private Sub List1_SelectionChanged()

 Dim i As Long
 With List1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .Caption(.SelectedItem(i), 0)
 Next
 End With
End Sub

The following C++ sample displays the selected items:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnSelectionChangedList1()
{
 CItems items = m_list.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {
 long nItem = items.GetSelectedItem(i);
 CString strOutput;
 strOutput.Format("%s\n", V2S(&items.GetCaption(nItem, COleVariant((long)0))));
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the selected items:

Private Sub AxList1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxList1.SelectionChanged
 With AxList1.Items
 Dim i As Integer
 For i = 0 To .SelectCount - 1
 Debug.WriteLine(.Caption(.SelectedItem(i), 0))
 Next
 End With
End Sub

The following C# sample displays the selected items:

private void axList1_SelectionChanged(object sender, System.EventArgs e)
{
 for (int i = 0; i < axList1.Items.SelectCount - 1; i++)
 {
 object cell = axList1.Items.get_Caption(axList1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
 }
}

The following VFP sample displays the selected items:

*** ActiveX Control Event ***

with thisform.List1.Items
 for i = 0 to .SelectCount - 1
 wait window nowait .Caption(.SelectedItem(i), 0)
 next
endwith

C#

VB

private void Sort(object sender)
{
}

Private Sub Sort(ByVal sender As System.Object) Handles Sort
End Sub

C#

C++

C++
Builder

Delphi

private void Sort(object sender, EventArgs e)
{
}

void OnSort()
{
}

void __fastcall Sort(TObject *Sender)
{
}

procedure Sort(ASender: TObject;);
begin

event Sort ()
Fired when the control sorts a column.

Type Description

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
SortOnClick property to specify the action that control executes when the user clicks the
column's head. Use the SortBarVisible property to show the control's sort bar. Use the
SortOrder property to sorts a column at runtime. Use the SortPosition property to
determine the position of the column in the sorting columns collection. Use the
ItemBySortPosition property to access a column giving its position in the sorting columns
collection. Use the Sort event to sort the data when the SortOnClk property is exUserSort.
Use the SingleSort property to allow sorting by single or multiple columns

Syntax for Sort event, /NET version, on:

Syntax for Sort event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Sort(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Sort()
end event Sort

Private Sub Sort(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Sort
End Sub

Private Sub Sort()
End Sub

Private Sub Sort()
End Sub

LPARAMETERS nop

PROCEDURE OnSort(oList)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Sort()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Sort()
End Function
</SCRIPT>

Procedure OnComSort
 Forward Send OnComSort
End_Procedure

Syntax for Sort event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Sort() CLASS MainDialog
RETURN NIL

void onEvent_Sort()
{
}

function Sort as v ()
end function

function nativeObject_Sort()
return

The following VB sample displays the list of columns being sorted:

Private Sub List1_Sort()
 Dim s As String, i As Long, c As Column
 i = 0
 With List1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
 End With
 s = "Sort: " & s
 Debug.Print s
End Sub

The following VC sample displays the list of columns being sorted:

void OnSortList1()
{
 CString strOutput;
 CColumns columns = m_list.GetColumns();
 long i = 0;
 CColumn column = columns.GetItemBySortPosition(COleVariant(i));

 while (column.m_lpDispatch)
 {
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ?
"A" : "D") + " ";
 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
 }
 strOutput += "\r\n";
 OutputDebugString(strOutput);
}

The following C# sample displays the list of columns being sorted:

private void axList1_Sort(object sender, System.EventArgs e)
{
 string strOutput = "";
 int i = 0;
 EXLISTLib.Column column = axList1.Columns.get_ItemBySortPosition(i);
 while (column != null)
 {
 strOutput += column.Caption + " " + (column.SortOrder ==
EXLISTLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axList1.Columns.get_ItemBySortPosition(++i);
 }
 Debug.WriteLine(strOutput);
}

The following VB.NET sample displays the list of columns being sorted:

Private Sub AxList1_Sort(ByVal sender As Object, ByVal e As System.EventArgs) Handles
AxList1.Sort
 With AxList1
 Dim s As String, i As Integer, c As EXLISTLib.Column
 i = 0
 With AxList1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =

EXLISTLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
 End With
End Sub

The following VFP sample displays the list of columns being sorted:

local s, i, c
i = 0
s = ""
With thisform.List1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

C#

VB

private void ToolTip(object sender,int ItemIndex,int ColIndex,ref bool Visible,ref int
X,ref int Y,int CX,int CY)
{
}

Private Sub ToolTip(ByVal sender As System.Object,ByVal ItemIndex As
Integer,ByVal ColIndex As Integer,ByRef Visible As Boolean,ByRef X As Integer,ByRef
Y As Integer,ByVal CX As Integer,ByVal CY As Integer) Handles ToolTip

event ToolTip (ItemIndex as Long, ColIndex as Long, Visible as Boolean,
X as Long, Y as Long, CX as Long, CY as Long)
Fired when the control prepares the object's tooltip.

Type Description

ItemIndex as Long A long expression that indicates the item's index or -1 if
the cursor is not over the cell.

ColIndex as Long A long expression that indicates the column's index.

Visible as Boolean A boolean expression that indicates whether the object's
tooltip is visible.

X as Long
A long expression that indicates the left location of the
tooltip's window. The x values is always expressed in
screen coordinates.

Y as Long
A long expression that indicates the top location of the
tooltip's window. The y values is always expressed in
screen coordinates.

CX as Long A long expression that indicates the width of the tooltip's
window.

CY as Long A long expression that indicates the height of the tooltip's
window.

The ToolTip event notifies your application that the control prepares the tooltip for a cell or
column. Use the ToolTip event to change the default position of the tooltip's window. Use the
CellToolTip property to specify the cell's tooltip. Use the Tooltip property to assign a tooltip
to a column. Use the ToolTipWidth property to specify the width of the tooltip window. Use
the ToolTipDelay property to specify the time in ms that passes before the ToolTip appears.
Use the ToolTipPopDelay property to specify the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

Syntax for ToolTip event, /NET version, on:

End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void ToolTip(object sender, AxEXLISTLib._IListEvents_ToolTipEvent e)
{
}

void OnToolTip(long ItemIndex,long ColIndex,BOOL FAR* Visible,long FAR* X,long
FAR* Y,long CX,long CY)
{
}

void __fastcall ToolTip(TObject *Sender,long ItemIndex,long
ColIndex,VARIANT_BOOL * Visible,long * X,long * Y,long CX,long CY)
{
}

procedure ToolTip(ASender: TObject; ItemIndex : Integer;ColIndex : Integer;var
Visible : WordBool;var X : Integer;var Y : Integer;CX : Integer;CY : Integer);
begin
end;

procedure ToolTip(sender: System.Object; e:
AxEXLISTLib._IListEvents_ToolTipEvent);
begin
end;

begin event ToolTip(long ItemIndex,long ColIndex,boolean Visible,long X,long
Y,long CX,long CY)
end event ToolTip

Private Sub ToolTip(ByVal sender As System.Object, ByVal e As
AxEXLISTLib._IListEvents_ToolTipEvent) Handles ToolTip
End Sub

Private Sub ToolTip(ByVal ItemIndex As Long,ByVal ColIndex As Long,Visible As
Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)

Syntax for ToolTip event, /COM version, on:

VBA

VFP

Xbas…

End Sub

Private Sub ToolTip(ByVal ItemIndex As Long,ByVal ColIndex As Long,Visible As
Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

LPARAMETERS ItemIndex,ColIndex,Visible,X,Y,CX,CY

PROCEDURE OnToolTip(oList,ItemIndex,ColIndex,Visible,X,Y,CX,CY)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="ToolTip(ItemIndex,ColIndex,Visible,X,Y,CX,CY)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolTip(ItemIndex,ColIndex,Visible,X,Y,CX,CY)
End Function
</SCRIPT>

Procedure OnComToolTip Integer llItemIndex Integer llColIndex Boolean llVisible
Integer llX Integer llY Integer llCX Integer llCY
 Forward Send OnComToolTip llItemIndex llColIndex llVisible llX llY llCX llCY
End_Procedure

METHOD OCX_ToolTip(ItemIndex,ColIndex,Visible,X,Y,CX,CY) CLASS MainDialog
RETURN NIL

void onEvent_ToolTip(int _ItemIndex,int _ColIndex,COMVariant /*bool*/
_Visible,COMVariant /*long*/ _X,COMVariant /*long*/ _Y,int _CX,int _CY)
{
}

function ToolTip as v (ItemIndex as N,ColIndex as N,Visible as L,X as N,Y as N,CX as
N,CY as N)

Syntax for ToolTip event, /COM version (others), on:

dBASE

end function

function nativeObject_ToolTip(ItemIndex,ColIndex,Visible,X,Y,CX,CY)
return

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and
programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,

https://exontrol.com/expression.jsp

0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For

instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or

statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.
a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by

2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of

the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (

0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"

timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	How to start?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Column
	Alignment property
	AllowDragging property
	AllowSizing property
	AllowSort property
	AutoSearch property
	AutoWidth property (readonly)
	Caption property
	ComputedField property
	CustomFilter property
	Data property
	Def property
	DefaultSortOrder property
	DisplayFilterButton property
	DisplayFilterDate property
	DisplayFilterPattern property
	DisplaySortIcon property
	Enabled property
	Filter property
	FilterBarDropDownWidth property
	FilterList property
	FilterOnType property
	FilterType property
	FireFormatColumn property
	FormatColumn property
	HeaderAlignment property
	HeaderBold property
	HeaderImage property
	HeaderImageAlignment property
	HeaderItalic property
	HeaderStrikeOut property
	HeaderUnderline property
	HeaderVertical property
	HTMLCaption property
	Index property (readonly)
	Key property
	LevelKey property
	MaxWidthAutoResize property
	MinWidthAutoResize property
	Position property
	ShowFilter method
	SortOrder property
	SortPosition property
	SortType property
	ToolTip property
	Visible property
	Width property
	WidthAutoResize property

	Columns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemBySortPosition property (readonly)
	Remove method

	ConditionalFormat
	ApplyTo property
	BackColor property
	Bold property
	ClearBackColor method
	ClearForeColor method
	Enabled property
	Expression property
	Font property
	ForeColor property
	Italic property
	Key property (readonly)
	StrikeOut property
	Underline property
	Valid property (readonly)

	ConditionalFormats
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Items
	Add method
	Caption property
	CaptionFormat property
	CellBackColor property
	CellBold property
	CellChecked method
	CellData property
	CellEnabled property
	CellFont property
	CellForeColor property
	CellHAlignment property
	CellHasButton property
	CellHasCheckBox property
	CellHasRadioButton property
	CellHyperLink property
	CellImage property
	CellImages property
	CellItalic property
	CellMerge property
	CellPicture property
	CellPictureHeight property
	CellPictureWidth property
	CellRadioGroup property
	CellSingleLine property
	CellState property
	CellStrikeOut property
	CellToolTip property
	CellUnderline property
	CellVAlignment property
	ClearCellBackColor method
	ClearCellForeColor method
	ClearCellHAlignment method
	ClearItemBackColor method
	ClearItemForeColor method
	Count property (readonly)
	Edit method
	EnableItem property
	EnsureVisibleColumn method
	EnsureVisibleItem method
	FindItem property (readonly)
	FindItemData property (readonly)
	FirstVisibleItem property (readonly)
	FocusItem property (readonly)
	FormatCell property
	IsItemVisible property (readonly)
	ItemAllowSizing property
	ItemBackColor property
	ItemBold property
	ItemBreak property
	ItemData property
	ItemFont property
	ItemForeColor property
	ItemHeight property
	ItemItalic property
	ItemMaxHeight property
	ItemMinHeight property
	ItemPosition property
	ItemStrikeOut property
	ItemToVirtual property (readonly)
	ItemUnderline property
	LastVisibleItem property (readonly)
	MatchItemCount property (readonly)
	NextVisibleItem property (readonly)
	PrevVisibleItem property (readonly)
	Remove method
	RemoveAll method
	RemoveSelection method
	SelectableItem property
	SelectAll method
	SelectCount property (readonly)
	SelectedItem property (readonly)
	SelectItem property
	Sort method
	SortableItem property
	UnselectAll method
	VirtualToItem property (readonly)
	VisibleCount property (readonly)
	VisibleItemCount property (readonly)

	List
	AllowEdit property
	AllowSelectNothing property
	AnchorFromPoint property (readonly)
	Appearance property
	ApplyFilter method
	AttachTemplate method
	AutoDrag property
	AutoSearch property
	BackColor property
	BackColorAlternate property
	BackColorHeader property
	BackColorLevelHeader property
	BackColorLock property
	BackColorSortBar property
	BackColorSortBarCaption property
	Background property
	BeginUpdate method
	CheckImage property
	ClearFilter method
	ColumnAutoResize property
	ColumnFromPoint property (readonly)
	Columns property (readonly)
	ColumnsAllowSizing property
	ConditionalFormats property (readonly)
	ContinueColumnScroll property
	Copy method
	CopyTo property (readonly)
	CountLockedColumns property
	DataSource property
	DefaultItemHeight property
	Description property
	DetectAddNew property
	DetectDelete property
	DrawGridLines property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	Export method
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	Font property
	ForeColor property
	ForeColorHeader property
	ForeColorLock property
	ForeColorSortBar property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	FullRowSelect property
	GetItems method
	GridLineColor property
	GridLineStyle property
	HeaderAppearance property
	HeaderHeight property
	HeaderSingleLine property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	HTMLPicture property
	hWnd property (readonly)
	HyperLinkColor property
	Images method
	ImageSize property
	ItemFromPoint property (readonly)
	Items property (readonly)
	ItemsAllowSizing property
	Layout property
	MarkSearchColumn property
	OLEDrag method
	OLEDropMode property
	Picture property
	PictureDisplay property
	PictureDisplayLevelHeader property
	PictureLevelHeader property
	PutItems method
	RadioImage property
	RClickSelect property
	Refresh method
	RemoveSelection method
	ReplaceIcon method
	RightToLeft property
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollBySingleLine property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollPos property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SearchColumnIndex property
	SelBackColor property
	SelBackMode property
	SelectColumnIndex property
	SelectOnRelease property
	SelForeColor property
	SelLength property
	SelStart property
	ShowFocusRect property
	ShowImageList property
	ShowToolTip method
	SingleSel property
	SingleSort property
	SortBarCaption property
	SortBarColumnWidth property
	SortBarHeight property
	SortBarVisible property
	SortOnClick property
	Statistics property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	UnboundHandler property
	UseTabKey property
	UseVisualTheme property
	Version property
	VirtualMode property
	VisualAppearance property (readonly)
	VisualDesign property

	UnboundHandler
	ItemsCount property (readonly)
	ReadItem method

	ExList events
	AddColumn event
	AddItem event
	AfterCellEdit event
	AllowAutoDrag event
	AnchorClick event
	BeforeCellEdit event
	CancelCellEdit event
	CellButtonClick event
	CellImageClick event
	CellStateChanged event
	CellStateChanging event
	Click event
	ColumnClick event
	DblClick event
	Event event
	FilterChange event
	FilterChanging event
	FormatColumn event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutChanged event
	MouseDown event
	MouseMove event
	MouseUp event
	OffsetChanged event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	OversizeChanged event
	RClick event
	RemoveColumn event
	RemoveItem event
	ScrollButtonClick event
	SelectionChanged event
	Sort event
	ToolTip event

