
 ExInbox

The ExInbox ia simple-to-use POP3 (Post Office Protocol) client library that allows mail
readers to connect to many POP servers and manage email. It implements the client side
of RFC 1939. The ExInbox is a free implementation of POP3 protocol for Win32 platforms.
The email client can download the entire
email message or only message's header. Non-blocking mode supported. Use the ExInbox (
a POP3 implementation) to get the email messages. Use the ExEMail (a SMTP
implementation) to send your messages.

Here's a piece of code that shows how easy is to read the messages in VB:

Dim WithEvents ibx As Inbox

Private Sub Form_Load()
 Set ibx = New Inbox
 ibx.Read "mail.somewhere.com", "user", "password"
End Sub

Private Sub ibx_Read()
 Dim i As Long
 For i = 0 To ibx.Count - 1
 With ibx(i)
 Debug.Print "From: " & .From & " Subject: " & .Subject & " " & .Size
 End With
 Next
End Sub

Ž ExInbox is a trademark of Exontrol. All Rights Reserved.

http://www.ietf.org/rfc/rfc1939.txt
https://exontrol.com/exemail.jsp

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants StateEnum
StateEnum constans

Name Value Description
Ready 0 Ready
Connecting 1 Connecting
Connected 2 Connected
Authorization 3 Authorization
Authorized 4 Authorized
Listing 5 Listing
Listed 6 Listed
Loading 7 Loading
Loaded 8 Loaded
Executing 9 Executing
Executed 10 Executed
Disconnecting 11 Disconnecting
Disconnected 12 Disconnected

Attachment object
The Attachment object holds information about message attachments.

Name Description
Data Gets the data of the attachment.
EncodeType Gets the type of encoding.
LineFrom Gets the line from.
LineTo Gets the line to.
Name Gets the name of the attachment.
Save Saves the attachment to a file.
Type Gets the type of the attachment.

property Attachment.Data as Variant
Gets the data of the attachment.

Type Description

Variant A safe array of bytes as VARIANT (VT_ARRAY | VT_UI1)
or VT_EMPTY if no data is provided for the attachement.,

The Data property returns the data of the attachment as a safe array of bytes. The Save
method saves the attachment's data to a file. The for each statement of VB can be used to
enumerate the bytes within the array.

The following VB sample enumerates byte by byte, the data of the attachement:

Dim h As Variant
For Each h In a.Data
 Debug.Print h
Next

property Attachment.EncodeType as String
Gets the type of encoding.

Type Description
String A string expression that indicates the type of encoding.

The attachment's encoding type defines how the attachment's content is encoded. The
"Content-Transfer-Encoding" header field defines the attachment's encoding type. See the
RFC 2045 for all possible values.

http://www.faqs.org/rfcs/rfc2045.html

property Attachment.LineFrom as Long
Gets the line from.

Type Description

Long
A long expression that indicates the index of line that
indicates where the attachment begins in the message's
content

For instance, the following sample prints the first line in the first attachment:

With ibx(Index)
 Debug.Print .Line(.Attachment(0).LineFrom)
End With

The following sample prints all lines of the attachment:

Dim msg As Message, i As Long
Set msg = ibx(Index)
With msg.Attachment(0)
 For i = .LineFrom To .LineTo
 Debug.Print msg.Line(i)
 Next
End With

property Attachment.LineTo as Long
Gets the line to.

Type Description

Long A long expression that indicates the index of last line in the
message that specifies the attachment.

For instance, the following sample prints the last line in the first attachment:

With ibx(Index)
 Debug.Print .Line(.Attachment(0).LineTo)
End With

The following sample prints all lines in the attachment:

Dim msg As Message, i As Long
Set msg = ibx(Index)
With msg.Attachment(0)
 For i = .LineFrom To .LineTo
 Debug.Print msg.Line(i)
 Next
End With

property Attachment.Name as String
Gets the name of the attachment.

Type Description
String A string expression that indicates the attachment's name

Usually the attachment's name specifies the name of the file that was attached to the
message.

method Attachment.Save ([FileName as Variant])
Saves the attachment to a file.

Type Description

FileName as Variant

A string expression that defines the name of the file to
create and save the attachment's data. If no FileName
parameter is provided, the Save saves the data using the
attachment's name under the current directory.

The Save method saves the data of the attachment to a file. The Name property specifies
the name of the attachment. Please be aware that providing no FileName, indicates that the
Save method saves the data using the attachment's name under the current directory. The
Data property returns the data of the attachment as a safe array of bytes.

The following sample saves all attachments) into the c:\temp folder:

With ibx
 Dim iMessage As Long
 For iMessage = 0 To .Count - 1
 With .Item(iMessage)
 Dim iAttachement As Long
 For iAttachement = 0 To .AttachmentsCount - 1
 With .Attachment(iAttachement)
 .Save "c:\temp\" & iMessage & "." & .Name
 End With
 Next
 End With
 Next
End With

The file name of each attachment is prefixed by the message's index (0-based),
succeeded by the attachment's name such as : 12.image01.png

property Attachment.Type as String
Gets the type of the attachment.

Type Description

String A string expression that indicates the type of the
attachment.

A string expression that defines the type of the attachment. The attachment's type is
defined in the "Content-Type" header field. See the RFC 2045 for more details.

http://www.faqs.org/rfcs/rfc2045.html

Inbox object
The Inbox object supports the following properties and methods:

Name Description
Count Gets the number of messages.
Execute Executes a command on the server.

Host Retrieves or sets a value that indicates the incoming mail
server address.

Item Gets the message giving its index.
Pass Retrieves or sets the account password.
Read Connects to the host and read messages one by one.
State Retrieves the connection's state.

Timeout Specifies the amount of time (in seconds) the control will
wait for the server response.

User Retrieves or sets the account name.

property Inbox.Count as Long
Gets the number of messages.

Type Description

Long A long expression that defines the count of messages in
the Inbox object.

Use the Item property to access a message in the messages collection. The messages
collection is zero based. For instance, the following sample prints the subject for each
message in the messages collection:

Dim i As Long
For i = 0 To ibx.Count - 1
 With ibx(i)
 Debug.Print .Subject
 End With
Next

method Inbox.Execute ([Host as Variant], [User as Variant], [Pass as
Variant], [Command as Variant])
Executes a command on the server.

Type Description

Host as Variant

A string expression that indicates the incoming mail server
address. A POP3 server. You can use IP address or
domain names as well: Samples: 193.226.40.161,
mail.microsoft.com

User as Variant

Specifies the user account. Some servers require the full
email address as account, some not. Ask your ISP
provider about your account name. Samples: dean,
dean@exontrol.net. The User property is used when
control sends the USER command, a POP3 command.

Pass as Variant A string expression that indicates the account's password.

Command as Variant A string expression that indicates the POP3 command.
See the RFC 1939 for the list of supported commands.

Use the Execute method to execute a command on the server. Use the Execute event to
get the answer of the server after it executed the command.

For instance, you can use the Execute command to delete a message from the server. Use
the Index property to get the index of message on the server. Attention! That index is not
the same with the index of the message in the messages collection. ibx.Execute
"193.226.40.161", "james", "cucubau", "DELE 1" delete the first message on the server

mailto:dean@exontrol.net
http://www.ietf.org/rfc/rfc1939.txt

property Inbox.Host as String
Retrieves or sets a value that indicates the incoming mail server address.

Type Description

String A string expression that indicates the incoming mail server
address.

Use the Read method to read messages from the server. use the Execute method to
execute commands on the server.

property Inbox.Item (Index as Variant) as Message
Gets the message giving its index.

Type Description

Index as Variant

A long expression that indicates the index of message in
the messages collection. Attention! The Index property is
not the same thing. The Index property gets the index of
the message on the server.

Message A Message object that holds information about an e-mail
message.

Use the Item property to access to Message objects in the messages collection. Use the
Count property to get the count of messages in the Inbox object.

property Inbox.Pass as String
Retrieves or sets the account password.

Type Description

String
A string expression that indicates the password for the
account. The string is used by PASS command (a POP3
command).

Use the Read method to read messages from the server. use the Execute method to
execute commands on the server

method Inbox.Read ([Host as Variant], [User as Variant], [Pass as
Variant])
Connects to the host and read messages one by one.

Type Description

Host as Variant

A string expression that indicates the incoming mail server
address. A POP3 server. You can use IP address or
domain names as well: Samples: 193.226.40.161,
mail.somewhere.com

User as Variant

Specifies the user account. Some servers require the full
email address as account, some not. Ask your ISP
provider about your account name. Samples: useraccount,
useraccount@somewere.com. The User property is used
when control sends the USER command, a POP3
command.

Pass as Variant A string expression that indicates the POP3 command.
See the RFC 1939 for the list of supported commands

The Read method connects the client to the server and gets all the messages for the given
account. By default, the control loads the entire message one by one. Use the Reading
event to cancel reading of a message.

For instance, the following sample prints the messages, on the server mail.somewhere.com
for the account: mike@somewhere.com (or simple mike if the server accepts) :

Dim WithEvents ibx As Inbox

Private Sub Form_Load()
 Set ibx = New Inbox
 ibx.Read "mail.somewhere.com", "mike@somewhere.com", "password"
End Sub

Private Sub ibx_Read()
 Dim i As Long
 For i = 0 To ibx.Count - 1
 With ibx(i)
 Debug.Print .Subject
 End With
 Next

http://www.ietf.org/rfc/rfc1939.txt

End Sub

Private Sub ibx_Reading(ByVal Index As Long, Cancel As Boolean)
 With ibx(Index)
 Cancel = .Size > 10240
 End With
End Sub

property Inbox.State as StateEnum
Retrieves the connection's state.

Type Description

StateEnum A StateEnum expression that indicates the connection's
state.

Use the State property to check whether the component is ready or it is busy.

property Inbox.Timeout as Long
Specifies the amount of time (in seconds) the control will wait for the server response.

Type Description

Long A long expression that specifies the amount of time (in
seconds) the control will wait for the server response.

By default, the Timeout property is 30 seconds.

property Inbox.User as String
Retrieves or sets the account name.

Type Description

String

A string expression that indicates the account's name. This
is usually the same as the part of your e-mail address to
the left of the "at" sign (@). Some servers requires the
entire e-mail address as account name.

Use the Read method to read messages from the server. use the Execute method to
execute commands on the server.

Message object
The Message object holds a collection of lines that defines the e-mail message in MIME
format. The Message object supports the following properties and methods:

Name Description
Attachment Gets the attachment given its index.
AttachmentsCount Gets the count of message attachments.

Count Gets the number of the lines in the message including the
message's header.

From Gets the message's sender.

Header Retrieves the header field attributes giving the name for
the header field.

HTML Gets the message's html text.
ID Gets the message's identifier.
Index Gets the index of the message on the server.
Line Gets the line in the message giving its index.
Load Loads the message from a file.
Refresh Refreshes the message.
Save Saves the message to a file.
Size Specifies the message's size.
Subject Gets the subject of the message.
Text Gets the message's plain text.
UserData Retrieves or sets an extra value associated to the object.

property Message.Attachment ([Index as Variant]) as Attachment
Gets the message attachment given its index.

Type Description

Index as Variant A long expression that indicates the index of the
attachment in the attachments collection.

Attachment An Attachment object that holds information about the
message attachment.

Use the Attachment property to access to the message attachments. Use the
AttachmentCount property to get the number of message attachments.

property Message.AttachmentsCount as Long
Gets the count of message attachments.

Type Description

Long A long expression that indicates the count of the message
attachments.

Use the AttachmentsCount property to count the attachments in the message. If the
message has no attachments the AttachmensCount property returns 0.

property Message.Count as Long
Gets the number of the lines in the message including the header.

Type Description

Long A long expression that indicates the number of lines in the
message.

The Count property counts the lines of the message's header. Use the Line property to
access a specific line in the message.

The following sample prints the entire message's content:

 With ibx(i)
 For j = 0 To .Count - 1
 Debug.Print .Line(j)
 Next
End With

property Message.From as String
Gets the message's sender.

Type Description
String A string expression that indicates the message's sender

The Form property specifies the email address of the message's sender. The name for the
header field is "From". See the RFC 2045 for details about "From" header field.

http://www.ietf.org/rfc/rfc2045.txt

property Message.Header (Name as String) as String
Retrieves the header field attributes giving the name for the header field.

Type Description

Name as String A string expression that defines the name of the header
field, or empty to get the entire message's header.

String A string expression that indicates the header field
attributes.

Is the user passes empty string to Header property, it retrieves the entire message's
header. See the RFC 2045 for the list of the header field names.

http://www.faqs.org/rfcs/rfc2045.html

property Message.HTML as String
Gets the message's html text.

Type Description
String A string expression that indicates the message's text text

The HTML property gets the message's html text, while the Text property retrieves the
message's plain text.

property Message.ID as String
Gets the message's identifier.

Type Description
String A string expression that defines the message's identifier.

Use the message's identifier to identify uniquely the messages. The message's identifier is
defined by the server. The name of the header field that defines the message's identifier is
"Message-ID". See RFC 2045 for details.

http://www.ietf.org/rfc/rfc2045.txt

property Message.Index as Long
Gets the index of the message on the server.

Type Description

Long A long expression that indicates the index of message on
the server.

The Index property is not the index of the message in the messages collection. Use the
Index property to identify the message on the server. For instance you can use the Index
property to delete the message from the server using DELE command. See RFC 1939 for
DELE command details.

http://www.ietf.org/rfc/rfc1939.txt

property Message.Line (Index as Variant) as String
Gets the line in the message giving its index.

Type Description
Index as Variant A long expression that indicates the index of line requested
String A string expression that specifies the message's line.

Use the Count property to count the number of lines in the message.

The following sample prints the entire message's content:

 With ibx(i)
 For j = 0 To .Count - 1
 Debug.Print .Line(j)
 Next
End With

method Message.Load (FileName as Variant)
Loads the message from a file.

Type Description
FileName as Variant A string expression that indicates the file name

Use Save method to save a message to a file.

method Message.Refresh ()
Refreshes the message.

Type Description

Use the Refresh method to reload message from the server, if it wasn't loaded by canceling
it in Reading event.

method Message.Save ([FileName as Variant])
Saves the message to a file.

Type Description

FileName as Variant A string expression that specifies the file name where the
message is saving.

Use Load method to load a message from a file.

property Message.Size as Long
Specifies the message's size.

Type Description

Long A long expression that indicates the message's size in
bytes.

property Message.Subject as String
Gets the subject of the message.

Type Description
String A string expression that indicates the message's subject.

property Message.Text as String
Gets the message's plain text.

Type Description
String A string expression that indicates the message's plain text

The Text property retrieves the message's plain text, while the HTML property gets the
message's html text.

property Message.UserData as Variant
Retrieves or sets an extra value associated to the object.

Type Description
Variant A Variant expression that indicates the object's extra data.

The UserData property is not used by the component.

ExInbox events
Here's the list of messages supported by Exontrol! ExInbox ActiveX object

Name Description

Debug Fired each time when the control receives new data from
the host.

Error An error occurred.
Execute Fired once that Execute method is done.

Read Occurs once that Read method is done, and all messages
were loaded successfully.

Reading Fired just before reading the message.
Refresh Fired when the Refresh method ended.
StateChanged Fired when the connection's state is changing.

event Debug (Command as Boolean, Description as String)
Fired each time when the control receives new data from the host.

Type Description

Command as Boolean
A Boolean expression that indicates whether the
Description specifies a POP3 command or a result sent by
the server

Description as String A string expression that indicates the command or the
result sent by the mail server.

The Debug event is fired each time when the control or the server communicates. Use the
Debug event to watch how the control fetches the email messages. Use the Debug event to
notify your application that the server replies to control's command. Use the Read event to
notify your application that the control finished to retrieves the messages. The following
sample prints the commands sent by the control to a mail server:

Private Sub ibx_Debug(ByVal Command As Boolean, ByVal Description As String)
 If Command = True Then
 Debug.Print Description
 End If
End Sub

event Error (Error as Long, Description as String)
An error occurred.

Type Description
Error as Long A long expression that indicates the error's number.
Description as String A string expression that indicates the error's description.

Use the Error event to notify your application that the control fails to fetch the messages.
Use the Read event to notify your application that all message were fetched. If the Error
event occurs any of the other events are not fired.

event Execute (Result as String)
Fired once that Execute method is done.

Type Description

Result as String A string expression that indicates the string sent by the
server when the control executes an user command.

The Execute event is fired when control finished the Execute method. Use the Result
argument to know what server replies.

event Read ()
Occurs once that Read method is done, and all messages were loaded successfully.

Type Description

Use the Read event to notify your application that the Read method was done, and all
messages were loaded successfully. Use the Error event to notify your application that an
error occurs. If the Error event occurs any of the other events are not fired. Use the
Reading event to cancel reading the entire message during Read method.

The following sample shows how to print the subject for all messages:

Private Sub ibx_Read()
 Dim i As Long
 For i = 0 To ibx.Count - 1
 With ibx(i)
 Debug.Print .Subject
 End With
 Next
End Sub

event Reading (Index as Long, Cancel as Boolean)
Fired just before reading the message.

Type Description

Index as Long A long expression that indicates the index of Message
being read.

Cancel as Boolean A boolean expression that specifies whether the reading of
the entire message is canceled.

Use the Reading event to cancel reading messages that are huge. Use the Reading event
to notify your application that a new message is reading. Use the Read event to know the
moment when the collection of Message objects are loaded. If a message was canceled
during Reading event you have to use the Refresh method to reload the message from the
server. Use the UserData property to stores an extra data for the message.

For instance, the following sample cancels the reading of messages that exceed 2M bytes:

Private Sub ibx_Reading(ByVal Index As Long, Cancel As Boolean)
 With ibx(Index)
 Cancel = .Size > 2048000
 End With
End Sub

event Refresh (Index as Long)
Fired when the Refresh method ended.

Type Description

Index as Long A long expression that indicates the index of message that
was refreshed.

Use the Refresh event to notify your application when a message was reloaded from the
server. Use the Refresh method to reload a message from the server.

event StateChanged (oldState as StateEnum, newState as StateEnum)
Fired when the connection's state is changing.

Type Description

oldState as StateEnum A StateEnum expression that indicates the state of the
connection before changing its state.

newState as StateEnum A StateEnum expression that indicates the current state.

Use the StateChanged event to notify your application when the connection's state was
changed.

	Information
	How to get support?
	Attachment
	Data property (readonly)
	EncodeType property (readonly)
	LineFrom property (readonly)
	LineTo property (readonly)
	Name property (readonly)
	Save method
	Type property (readonly)

	Inbox
	Count property (readonly)
	Execute method
	Host property
	Item property (readonly)
	Pass property
	Read method
	State property (readonly)
	Timeout property
	User property

	Message
	Attachment property (readonly)
	AttachmentsCount property (readonly)
	Count property (readonly)
	From property (readonly)
	Header property (readonly)
	HTML property (readonly)
	ID property (readonly)
	Index property (readonly)
	Line property (readonly)
	Load method
	Refresh method
	Save method
	Size property (readonly)
	Subject property (readonly)
	Text property (readonly)
	UserData property

	ExInbox events
	Debug event
	Error event
	Execute event
	Read event
	Reading event
	Refresh event
	StateChanged event

